1
|
Yan B, Zeng L, Lu Y, Li M, Lu W, Zhou B, He Q. Rapid bacterial identification through volatile organic compound analysis and deep learning. BMC Bioinformatics 2024; 25:347. [PMID: 39506632 PMCID: PMC11539783 DOI: 10.1186/s12859-024-05967-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 10/22/2024] [Indexed: 11/08/2024] Open
Abstract
BACKGROUND The increasing antimicrobial resistance caused by the improper use of antibiotics poses a significant challenge to humanity. Rapid and accurate identification of microbial species in clinical settings is crucial for precise medication and reducing the development of antimicrobial resistance. This study aimed to explore a method for automatic identification of bacteria using Volatile Organic Compounds (VOCs) analysis and deep learning algorithms. RESULTS AlexNet, where augmentation is applied, produces the best results. The average accuracy rate for single bacterial culture classification reached 99.24% using cross-validation, and the accuracy rates for identifying the three bacteria in randomly mixed cultures were SA:98.6%, EC:98.58% and PA:98.99%, respectively. CONCLUSION This work provides a new approach to quickly identify bacterial microorganisms. Using this method can automatically identify bacteria in GC-IMS detection results, helping clinical doctors quickly detect bacterial species, accurately prescribe medication, thereby controlling epidemics, and minimizing the negative impact of bacterial resistance on society.
Collapse
Affiliation(s)
- Bowen Yan
- Research Department, Daping Hosipital, Army Medical University, Chongqing, 400042, China
| | - Lin Zeng
- Research Department, Daping Hosipital, Army Medical University, Chongqing, 400042, China
| | - Yanyi Lu
- Research Department, Daping Hosipital, Army Medical University, Chongqing, 400042, China
| | - Min Li
- Laboratory Department, Daping Hosipital, Army Medical University, Chongqing, 400042, China
| | - Weiping Lu
- Laboratory Department, Daping Hosipital, Army Medical University, Chongqing, 400042, China
| | - Bangfu Zhou
- Research Department, Daping Hosipital, Army Medical University, Chongqing, 400042, China
| | - Qinghua He
- Research Department, Daping Hosipital, Army Medical University, Chongqing, 400042, China.
| |
Collapse
|
2
|
Li Y, Wang Y, Wu Q, Qi R, Li L, Xu L, Yuan H. High-throughput fluorescence sensing array based on tetraphenylethylene derivatives for detecting and distinguishing pathogenic microbes. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 318:124435. [PMID: 38796890 DOI: 10.1016/j.saa.2024.124435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/05/2024] [Accepted: 05/08/2024] [Indexed: 05/29/2024]
Abstract
Infections induced by pathogenic microorganisms will bring negative effects such as diseases that damage health and result in heavy economic burden. Therefore, it is very important to detect and identify the pathogens in time. Moreover, traditional clinical diagnosis or food testing often faces the problem of dealing with a large number of samples. Here, we designed a high-throughput fluorescent sensor array based on the different binding ability of five tetraphenylethylene derivatives (TPEs) with various side chains to different kinds of pathogenic microbes, which is used to detect and distinguish various species, so as to realize rapid mass diagnosis, and hopefully provide guidance for further determination of microbial infections and clinical treatment.
Collapse
Affiliation(s)
- Yutong Li
- Department of Chemistry, Beijing Technology and Business University, Beijing 100048, China
| | - Yi Wang
- Department of Chemistry, Beijing Technology and Business University, Beijing 100048, China
| | - Qiaoyue Wu
- Department of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Ruilian Qi
- Department of Chemistry, Beijing Technology and Business University, Beijing 100048, China.
| | - Li Li
- Department of Chemistry, Beijing Technology and Business University, Beijing 100048, China
| | - Li Xu
- Department of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China.
| | - Huanxiang Yuan
- Department of Chemistry, Beijing Technology and Business University, Beijing 100048, China.
| |
Collapse
|
3
|
Zhou X, Yang M, Chen F, Wang L, Han P, Jiang Z, Shen S, Rao G, Yang F. Prediction of antimicrobial resistance in Klebsiella pneumoniae using genomic and metagenomic next-generation sequencing data. J Antimicrob Chemother 2024; 79:2509-2517. [PMID: 39028665 DOI: 10.1093/jac/dkae248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 07/04/2024] [Indexed: 07/21/2024] Open
Abstract
OBJECTIVES Klebsiella pneumoniae is a significant pathogen with increasing resistance and high mortality rates. Conventional antibiotic susceptibility testing methods are time-consuming. Next-generation sequencing has shown promise for predicting antimicrobial resistance (AMR). This study aims to develop prediction models using whole-genome sequencing data and assess their feasibility with metagenomic next-generation sequencing data from clinical samples. METHODS On the basis of 4170 K. pneumoniae genomes, the main genetic characteristics associated with AMR were identified using a LASSO regression model. Consequently, the prediction model was established, validated and optimized using clinical isolate read simulation sequences. To evaluate the efficacy of the model, clinical specimens were collected. RESULTS Four predictive models for amikacin, ciprofloxacin, levofloxacin, and piperacillin/tazobactam, initially had positive predictive values (PPVs) of 92%, 98%, 99%, 94%, respectively, when they were originally constructed. When applied to clinical specimens, their PPVs were 96%, 96%, 95%, and 100%, respectively. Meanwhile, there were negative predictive values (NPVs) of 100% for ciprofloxacin and levofloxacin, and 'not applicable' (NA) for amikacin and piperacillin/tazobactam. Our method achieved antibacterial phenotype classification accuracy rates of 95.92% for amikacin, 96.15% for ciprofloxacin, 95.31% for levofloxacin and 100% for piperacillin/tazobactam. The sequence-based prediction antibiotic susceptibility testing (AST) reported results in an average time of 19.5 h, compared with the 67.9 h needed for culture-based AST, resulting in a significant reduction of 48.4 h. CONCLUSIONS These preliminary results demonstrated that the performance of prediction model for a clinically significant antimicrobial-species pair was comparable to that of phenotypic methods, thereby encouraging the expansion of sequence-based susceptibility prediction and its clinical validation and application.
Collapse
Affiliation(s)
- Xun Zhou
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, China
| | - Ming Yang
- The Second Affiliated Hospital of Air Force Military Medical University, Xi'an, China
| | | | - Leilei Wang
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, China
| | - Peng Han
- Genskey Medical Technology Co. Ltd., Beijing, China
| | - Zhi Jiang
- Genskey Medical Technology Co. Ltd., Beijing, China
| | - Siquan Shen
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, China
| | - Guanhua Rao
- Genskey Medical Technology Co. Ltd., Beijing, China
| | - Fan Yang
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, China
| |
Collapse
|
4
|
Lee JH, Song J, Hong S, Kim Y, Song M, Cho B, Wu T, Riley LW, Landegren U, Lee LP. Nanoplasmonic Rapid Antimicrobial-Resistance Point-of-Care Identification Device: RAPIDx. Adv Healthc Mater 2024:e2402044. [PMID: 39205550 DOI: 10.1002/adhm.202402044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/05/2024] [Indexed: 09/04/2024]
Abstract
The emergence of antibiotic resistance has become a global health crisis, and everyone must arm themselves with wisdom to effectively combat the "silent tsunami" of infections that are no longer treatable with antibiotics. However, the overuse or inappropriate use of unnecessary antibiotics is still routine for administering them due to the unavailability of rapid, precise, and point-of-care assays. Here, a rapid antimicrobial-resistance point-of-care identification device (RAPIDx) is reported for the accurate and simultaneous identification of bacterial species (genotype) and target enzyme activity (phenotype). First, a contamination-free active target enzyme is extracted via the photothermal lysis of preconcentrated bacteria cells on a nanoplasmonic functional layer on-chip. Second, the rapid, precise identification of pathogens is achieved by the photonic rolling circle amplification of DNA on a chip. Third, the simultaneous identification of bacterial species (genotype) and target enzyme activity (phenotype) is demonstrated within a sample-to-answer 45 min operation via the RAPIDx. It is believed that the RAPIDx will be a valuable method for solving the bottleneck of employing on-chip nanotechnology for antibiotic-resistant bioassay and other infectious diseases.
Collapse
Affiliation(s)
- Jong-Hwan Lee
- Department of Bioengineering, University of California Berkeley, Berkeley, CA, 94720, USA
- Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon, 34114, South Korea
| | - Jihwan Song
- Department of Mechanical Engineering, Hanbat National University, Daejeon, 34158, South Korea
| | - SoonGweon Hong
- Department of Bioengineering, University of California Berkeley, Berkeley, CA, 94720, USA
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Yun Kim
- Department of Mechanical Engineering, Hanbat National University, Daejeon, 34158, South Korea
| | - Minsun Song
- Department of Bioengineering, University of California Berkeley, Berkeley, CA, 94720, USA
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Byungrae Cho
- Department of Bioengineering, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Tiffany Wu
- Division of Infectious Disease and Vaccinology, School of Public Health, University of California, Berkeley, CA, 94720, USA
| | - Lee W Riley
- Division of Infectious Disease and Vaccinology, School of Public Health, University of California, Berkeley, CA, 94720, USA
| | - Ulf Landegren
- Departments of Immunology, Genetics and Pathology, Uppsala University, Uppsala, SE-751 08, Sweden
| | - Luke P Lee
- Department of Bioengineering, University of California Berkeley, Berkeley, CA, 94720, USA
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Department of Electrical Engineering and Computer Science, University of California Berkeley, Berkeley, CA, 94720, USA
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, 16419, South Korea
| |
Collapse
|
5
|
Sett A, Dubey V, Bhowmik S, Pathania R. Decoding Bacterial Persistence: Mechanisms and Strategies for Effective Eradication. ACS Infect Dis 2024; 10:2525-2539. [PMID: 38940498 DOI: 10.1021/acsinfecdis.4c00270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
The ability of pathogenic bacteria to evade antibiotic treatment is an intricate and multifaceted phenomenon. Over the years, treatment failure among patients due to determinants of antimicrobial resistance (AMR) has been the focal point for the research and development of new therapeutic agents. However, the survival of bacteria by persisting under antibiotic stress has largely been overlooked. Bacterial persisters are a subpopulation of sensitive bacterial cells exhibiting a noninheritable drug-tolerant phenotype. They are linked to the recalcitrance of infections in healthcare settings, in turn giving rise to AMR variants. The importance of bacterial persistence in recurring infections has been firmly recognized. Fundamental work over the past decade has highlighted numerous unique tolerance factors contributing to the persister phenotype in many clinically relevant pathogens. This review summarizes contributing factors that could aid in developing new strategies against bacterial antibiotic persisters.
Collapse
Affiliation(s)
- Abhiroop Sett
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Roorkee, Uttarakhand 247667, India
| | - Vineet Dubey
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Roorkee, Uttarakhand 247667, India
| | - Somok Bhowmik
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Roorkee, Uttarakhand 247667, India
| | - Ranjana Pathania
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Roorkee, Uttarakhand 247667, India
- Centre of Excellence in Disaster Mitigation and Management, Indian Institute of Technology, Roorkee, Uttarakhand 247667, India
| |
Collapse
|
6
|
López I, Otero F, Fernández MDC, Bou G, Gosálvez J, Fernández JL. Rapid and Simple Morphological Assay for Determination of Susceptibility/Resistance to Combined Ciprofloxacin and Ampicillin, Independently, in Escherichia coli. Antibiotics (Basel) 2024; 13:676. [PMID: 39061357 PMCID: PMC11273673 DOI: 10.3390/antibiotics13070676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/16/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
Current antibiograms cannot discern the particular effect of a specific antibiotic when the bacteria are incubated with a mixture of antibiotics. To prove that this task is achievable, Escherichia coli strains were treated with ciprofloxacin for 45 min, immobilized on a slide and stained with SYBR Gold. In susceptible strains, the nucleoid relative surface started to decrease near the MIC, being progressively condensed as the dose increased. The shrinkage level correlated with the DNA fragmentation degree. Ciprofloxacin-resistant bacilli showed no change. Additionally, E. coli strains were incubated with ampicillin for 45 min and processed similarly. The ampicillin-susceptible strain revealed intercellular DNA fragments that increased with dose, unlike the resistant strain. Co-incubation with both antibiotics revealed that ampicillin did not modify the nucleoid condensation effect of ciprofloxacin, whereas the quinolone partially decreased the background of DNA fragments induced by ampicillin. Sixty clinical isolates, with different combinations of susceptibility-resistance to each antibiotic, were co-incubated with the EUCAST breakpoints of susceptibility of ciprofloxacin and ampicillin. The morphological assay correctly categorized all the strains for each antibiotic in 60 min, demonstrating the feasible independent evaluation of a mixture of quinolone and beta-lactam. The rapid phenotypic assay may shorten the incubation times and necessary microbial mass currently required for evaluation.
Collapse
Affiliation(s)
- Isidoro López
- Genetics Unit, Institute of Biomedical Research of A Coruña (INIBIC)—Complejo Hospitalario Universitario A Coruña (CHUAC), 15006 A Coruña, Spain; (I.L.); (F.O.)
- Molecular Genetics and Radiobiology Laboratory, Centro Oncológico de Galicia, 15009 A Coruña, Spain
| | - Fátima Otero
- Genetics Unit, Institute of Biomedical Research of A Coruña (INIBIC)—Complejo Hospitalario Universitario A Coruña (CHUAC), 15006 A Coruña, Spain; (I.L.); (F.O.)
- Molecular Genetics and Radiobiology Laboratory, Centro Oncológico de Galicia, 15009 A Coruña, Spain
| | - María del Carmen Fernández
- CIBER (Biomedical Research Networking Centre) de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029 Madrid, Spain; (M.d.C.F.); (G.B.)
- Microbiology Service and INIBIC—Complejo Hospitalario Universitario A Coruña (CHUAC), 15006 A Coruña, Spain
| | - Germán Bou
- CIBER (Biomedical Research Networking Centre) de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029 Madrid, Spain; (M.d.C.F.); (G.B.)
- Microbiology Service and INIBIC—Complejo Hospitalario Universitario A Coruña (CHUAC), 15006 A Coruña, Spain
| | - Jaime Gosálvez
- Genetics Unit, Facultad de Biología, Universidad Autónoma de Madrid, 28049 Madrid, Spain;
| | - José Luis Fernández
- Genetics Unit, Institute of Biomedical Research of A Coruña (INIBIC)—Complejo Hospitalario Universitario A Coruña (CHUAC), 15006 A Coruña, Spain; (I.L.); (F.O.)
- Molecular Genetics and Radiobiology Laboratory, Centro Oncológico de Galicia, 15009 A Coruña, Spain
- CIBER (Biomedical Research Networking Centre) de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029 Madrid, Spain; (M.d.C.F.); (G.B.)
| |
Collapse
|
7
|
Fahy S, O’Connor JA, Sleator RD, Lucey B. From Species to Genes: A New Diagnostic Paradigm. Antibiotics (Basel) 2024; 13:661. [PMID: 39061343 PMCID: PMC11274079 DOI: 10.3390/antibiotics13070661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 07/05/2024] [Accepted: 07/13/2024] [Indexed: 07/28/2024] Open
Abstract
Molecular diagnostics has the potential to revolutionise the field of clinical microbiology. Microbial identification and nomenclature have, for too long, been restricted to phenotypic characterisation. However, this species-level view fails to wholly account for genetic heterogeneity, a result of lateral gene transfer, mediated primarily by mobile genetic elements. This genetic promiscuity has helped to drive virulence development, stress adaptation, and antimicrobial resistance in several important bacterial pathogens, complicating their detection and frustrating our ability to control them. We argue that, as clinical microbiologists at the front line, we must embrace the molecular technologies that allow us to focus specifically on the genetic elements that cause disease rather than the bacterial species that express them. This review focuses on the evolution of microbial taxonomy since the introduction of molecular sequencing, the role of mobile genetic elements in antimicrobial resistance, the current and emerging assays in clinical laboratories, and the comparison of phenotypic versus genotypic analyses. In essence, it is time now to refocus from species to genes as part of a new diagnostic paradigm.
Collapse
Affiliation(s)
- Sinead Fahy
- Department of Microbiology, Mercy University Hospital, T12 WE28 Cork, Ireland;
- Department of Biological Sciences, Munster Technological University, T12 P928 Cork, Ireland; (J.A.O.); (B.L.)
| | - James A. O’Connor
- Department of Biological Sciences, Munster Technological University, T12 P928 Cork, Ireland; (J.A.O.); (B.L.)
| | - Roy D. Sleator
- Department of Biological Sciences, Munster Technological University, T12 P928 Cork, Ireland; (J.A.O.); (B.L.)
| | - Brigid Lucey
- Department of Biological Sciences, Munster Technological University, T12 P928 Cork, Ireland; (J.A.O.); (B.L.)
| |
Collapse
|
8
|
Huang J, Yue H, Wei W, Shan J, Zhu Y, Feng L, Ma Y, Zou B, Wu H, Zhou G. FARPA-based tube array coupled with quick DNA extraction enables ultra-fast bedside detection of antibiotic-resistant pathogens. Analyst 2024; 149:3607-3614. [PMID: 38767613 DOI: 10.1039/d4an00185k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Rapid and accurate detection of pathogens and antimicrobial-resistant (AMR) genes of the pathogens are crucial for the clinical diagnosis and effective treatment of infectious diseases. However, the time-consuming steps of conventional culture-based methods inhibit the precise and early application of anti-infection therapy. For the prompt treatment of pathogen-infected patients, we have proposed a novel tube array strategy based on our previously reported FARPA (FEN1-aided recombinase polymerase amplification) principle for the ultra-fast detection of antibiotic-resistant pathogens on site. The entire process from "sample to result" can be completed in 25 min by combining quick DNA extraction from a urine sample with FARPA to avoid the usually complicated DNA extraction step. Furthermore, a 36-tube array made from commercial 384-well titre plates was efficiently introduced to perform FARPA in a portable analyser, achieving an increase in the loading sample throughput (from several to several tens), which is quite suitable for the point-of-care testing (POCT) of multiple pathogens and multiple samples. Finally, we tested 92 urine samples to verify the performance of our proposed method. The sensitivities for the detection of E. coli, K. pneumoniae, E. faecium, and E. faecalis were 92.7%, 93.8%, 100% and 88.9%, respectively. The specificities for the detection of the four pathogens were 100%. Consequently, our rapid, low-cost and user-friendly POCT method holds great potential for guiding the rational use of antibiotics and reducing bacterial resistance.
Collapse
Affiliation(s)
- Jinling Huang
- Department of Clinical Pharmacy, Jinling Hospital, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
| | - Huijie Yue
- Department of Clinical Pharmacy, Jinling Hospital, Affiliated Hospital of Medical School, State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210002, China
| | - Wei Wei
- Department of Clinical Pharmacy, Jinling Hospital, Affiliated Hospital of Medical School, State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210002, China
| | - Jingwen Shan
- Department of Clinical Pharmacy, Jinling Hospital, Affiliated Hospital of Medical School, State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210002, China
| | - Yue Zhu
- Department of Clinical Pharmacy, Jinling Hospital, Affiliated Hospital of Medical School, State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210002, China
| | - Liying Feng
- Department of Clinical Pharmacy, Jinling Hospital, Affiliated Hospital of Medical School, State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210002, China
| | - Yi Ma
- Department of Clinical Pharmacy, Jinling Hospital, Affiliated Hospital of Medical School, State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210002, China
| | - Bingjie Zou
- Department of Clinical Pharmacy, Jinling Hospital, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
- Key Laboratory of Drug Quality Control and Pharmacovigilance of Ministry of Education, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Haiping Wu
- Department of Clinical Pharmacy, Jinling Hospital, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
- Department of Clinical Pharmacy, Jinling Hospital, Affiliated Hospital of Medical School, State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210002, China
| | - Guohua Zhou
- Department of Clinical Pharmacy, Jinling Hospital, Affiliated Hospital of Medical School, State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210002, China
| |
Collapse
|
9
|
Traylor A, Lee PW, Hsieh K, Wang TH. Improving bacteria identification from digital melt assay via oligonucleotide-based temperature calibration. Anal Chim Acta 2024; 1297:342371. [PMID: 38438240 PMCID: PMC11082877 DOI: 10.1016/j.aca.2024.342371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/07/2024] [Accepted: 02/12/2024] [Indexed: 03/06/2024]
Abstract
BACKGROUND Bacterial infections, especially polymicrobial infections, remain a threat to global health and require advances in diagnostic technologies for timely and accurate identification of all causative species. Digital melt - microfluidic chip-based digital PCR combined with high resolution melt (HRM) - is an emerging method for identification and quantification of polymicrobial bacterial infections. Despite advances in recent years, existing digital melt instrumentation often delivers nonuniform temperatures across digital chips, resulting in nonuniform digital melt curves for individual bacterial species. This nonuniformity can lead to inaccurate species identification and reduce the capacity for differentiating bacterial species with similar digital melt curves. RESULTS We introduce herein a new temperature calibration method for digital melt by incorporating an unamplified, synthetic DNA fragment with a known melting temperature as a calibrator. When added at a tuned concentration to an established digital melt assay amplifying the commonly targeted 16S V1 - V6 region, this calibrator produced visible low temperature calibrator melt curves across-chip along with the target bacterial melt curves. This enables alignment of the bacterial melt curves and correction of heating-induced nonuniformities. Using this calibration method, we were able to improve the uniformity of digital melt curves from three causative species of bacteria. Additionally, we assessed calibration's effects on identification accuracy by performing machine learning identification of three polymicrobial mixtures comprised of two bacteria with similar digital melt curves in different ratios. Calibration greatly improved mixture composition prediction. SIGNIFICANCE To the best of our knowledge, this work represents the first DNA calibrator-supplemented assay and calibration method for nanoarray digital melt. Our results suggest that this calibration method can be flexibly used to improve identification accuracy and reduce melt curve variabilities across a variety of pathogens and assays. Therefore, this calibration method has the potential to elevate the diagnostic capabilities of digital melt toward polymicrobial bacterial infections and other infectious diseases.
Collapse
Affiliation(s)
- Amelia Traylor
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, 21218, United States
| | - Pei-Wei Lee
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, 21218, United States
| | - Kuangwen Hsieh
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, 21218, United States
| | - Tza-Huei Wang
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, 21218, United States; Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD, 21205, United States; Institute of NanoBioTechnology, Johns Hopkins University, Baltimore, MD, 21218, United States.
| |
Collapse
|
10
|
Mohanty D, Das BK, Kumari P, Dey S, Bera AK, Sahoo AK, Dasgupta S, Roy S. Prevalence of Extended-Spectrum β-Lactamases (ESBLs) Producing Aeromonas spp. Isolated from Lamellidens marginalis (Lamark, 1819) of Sewage-Fed Wetland: A Phenotypic and Genotypic Approach. Microorganisms 2024; 12:723. [PMID: 38674667 PMCID: PMC11051913 DOI: 10.3390/microorganisms12040723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/14/2024] [Accepted: 02/16/2024] [Indexed: 04/28/2024] Open
Abstract
The global rise of zoonotic bacteria resistant to multiple antimicrobial classes and the growing occurrence of infections caused by Aeromonas spp. resistant to β-lactam antibiotics pose a severe threat to animal and human health. However, the contribution of natural environments, particularly aquatic ecosystems, as ideal settings for the development and spread of antimicrobial resistance (AMR) is a key concern. Investigating the phenotypic antibiotic resistance and detection of β-lactamase producing Aeromonas spp. in Lamellidens marginalis, which inhabit all freshwater ecosystems of the Indian subcontinent, is essential for implications in monitoring food safety and drug resistance. In the present investigation, 92 isolates of Aeromonas spp. were recovered from 105 bivalves and screened for their antimicrobial resistance patterns. In vitro antibiotic resistance profiling showed a higher Multiple Antibiotic Resistance (MAR) index of 0.8 with the highest resistance against ampicillin/sulbactam (82%), while 58, 44, 39 and 38% of the isolates were resistant to cephalothin, erythromycin, cefoxitin and imipenem, respectively. PCR results revealed that these isolates carried the blaTEM gene (94%), which was followed by the blaCTX-M gene (51%) and the blaSHV gene (45%). A combination of blaSHV, blaCTX-M, and blaTEM genes was found in 17% of the isolates, indicating the presence of all three resistance genes. This is the first investigation which highlights the importance of multidrug-resistant Aeromonas spp. in L. marginalis. The identification of extended-spectrum-β-lactamases (ESBLs) genes demand the necessity of continuous surveillance and systematic monitoring, considering its potential health risks for both animals and human beings.
Collapse
Affiliation(s)
- Debasmita Mohanty
- ICAR-Central Inland Fisheries Research Institute, Barrackpore 700120, West Bengal, India; (D.M.); (A.K.B.); (A.K.S.); (S.D.); (S.R.)
- Department of Bioscience and Biotechnology, Fakir Mohan University, Balasore 756020, Odisha, India;
| | - Basanta Kumar Das
- ICAR-Central Inland Fisheries Research Institute, Barrackpore 700120, West Bengal, India; (D.M.); (A.K.B.); (A.K.S.); (S.D.); (S.R.)
| | - Punam Kumari
- Department of Bioscience and Biotechnology, Fakir Mohan University, Balasore 756020, Odisha, India;
| | - Saikat Dey
- National Institute of Mental Health and Neurosciences, Bangalore 5600029, Karnataka, India;
| | - Asit Kumar Bera
- ICAR-Central Inland Fisheries Research Institute, Barrackpore 700120, West Bengal, India; (D.M.); (A.K.B.); (A.K.S.); (S.D.); (S.R.)
| | - Amiya Kumar Sahoo
- ICAR-Central Inland Fisheries Research Institute, Barrackpore 700120, West Bengal, India; (D.M.); (A.K.B.); (A.K.S.); (S.D.); (S.R.)
| | - Shubhankhi Dasgupta
- ICAR-Central Inland Fisheries Research Institute, Barrackpore 700120, West Bengal, India; (D.M.); (A.K.B.); (A.K.S.); (S.D.); (S.R.)
| | - Shreya Roy
- ICAR-Central Inland Fisheries Research Institute, Barrackpore 700120, West Bengal, India; (D.M.); (A.K.B.); (A.K.S.); (S.D.); (S.R.)
| |
Collapse
|
11
|
Shelef O, Kopp T, Tannous R, Arutkin M, Jospe-Kaufman M, Reuveni S, Shabat D, Fridman M. Enzymatic Activity Profiling Using an Ultrasensitive Array of Chemiluminescent Probes for Bacterial Classification and Characterization. J Am Chem Soc 2024; 146:5263-5273. [PMID: 38362863 PMCID: PMC10910560 DOI: 10.1021/jacs.3c11790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 02/02/2024] [Accepted: 02/05/2024] [Indexed: 02/17/2024]
Abstract
Identification and characterization of bacterial species in clinical and industrial settings necessitate the use of diverse, labor-intensive, and time-consuming protocols as well as the utilization of expensive and high-maintenance equipment. Furthermore, while cutting-edge identification technologies such as mass spectrometry and PCR are highly effective in identifying bacterial pathogens, they fall short in providing additional information for identifying bacteria not present in the databases upon which these methods rely. In response to these challenges, we present a robust and general approach to bacterial identification based on their unique enzymatic activity profiles. This method delivers results within 90 min, utilizing an array of highly sensitive and enzyme-selective chemiluminescent probes. Leveraging our recently developed technology of chemiluminescent luminophores, which emit light under physiological conditions, we have crafted an array of probes designed to rapidly detect various bacterial enzymatic activities. The array includes probes for detecting resistance to the important and large class of β-lactam antibiotics. The analysis of chemiluminescent fingerprints from a diverse range of prominent bacterial pathogens unveiled distinct enzymatic activity profiles for each strain. The reported universally applicable identification procedure offers a highly sensitive and expeditious means to delineate bacterial enzymatic activity fingerprints. This opens new avenues for characterizing and identifying pathogens in research, clinical, and industrial applications.
Collapse
Affiliation(s)
| | | | | | - Maxence Arutkin
- School of Chemistry, Raymond
& Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Moriah Jospe-Kaufman
- School of Chemistry, Raymond
& Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Shlomi Reuveni
- School of Chemistry, Raymond
& Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Doron Shabat
- School of Chemistry, Raymond
& Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Micha Fridman
- School of Chemistry, Raymond
& Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
12
|
Lehnert T, Gijs MAM. Microfluidic systems for infectious disease diagnostics. LAB ON A CHIP 2024; 24:1441-1493. [PMID: 38372324 DOI: 10.1039/d4lc00117f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Microorganisms, encompassing both uni- and multicellular entities, exhibit remarkable diversity as omnipresent life forms in nature. They play a pivotal role by supplying essential components for sustaining biological processes across diverse ecosystems, including higher host organisms. The complex interactions within the human gut microbiota are crucial for metabolic functions, immune responses, and biochemical signalling, particularly through the gut-brain axis. Viruses also play important roles in biological processes, for example by increasing genetic diversity through horizontal gene transfer when replicating inside living cells. On the other hand, infection of the human body by microbiological agents may lead to severe physiological disorders and diseases. Infectious diseases pose a significant burden on global healthcare systems, characterized by substantial variations in the epidemiological landscape. Fast spreading antibiotic resistance or uncontrolled outbreaks of communicable diseases are major challenges at present. Furthermore, delivering field-proven point-of-care diagnostic tools to the most severely affected populations in low-resource settings is particularly important and challenging. New paradigms and technological approaches enabling rapid and informed disease management need to be implemented. In this respect, infectious disease diagnostics taking advantage of microfluidic systems combined with integrated biosensor-based pathogen detection offers a host of innovative and promising solutions. In this review, we aim to outline recent activities and progress in the development of microfluidic diagnostic tools. Our literature research mainly covers the last 5 years. We will follow a classification scheme based on the human body systems primarily involved at the clinical level or on specific pathogen transmission modes. Important diseases, such as tuberculosis and malaria, will be addressed more extensively.
Collapse
Affiliation(s)
- Thomas Lehnert
- Laboratory of Microsystems, École Polytechnique Fédérale de Lausanne, Lausanne, CH-1015, Switzerland.
| | - Martin A M Gijs
- Laboratory of Microsystems, École Polytechnique Fédérale de Lausanne, Lausanne, CH-1015, Switzerland.
| |
Collapse
|
13
|
Trippa D, Scalenghe R, Basso MF, Panno S, Davino S, Morone C, Giovino A, Oufensou S, Luchi N, Yousefi S, Martinelli F. Next-generation methods for early disease detection in crops. PEST MANAGEMENT SCIENCE 2024; 80:245-261. [PMID: 37599270 DOI: 10.1002/ps.7733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 08/21/2023] [Indexed: 08/22/2023]
Abstract
Plant pathogens are commonly identified in the field by the typical disease symptoms that they can cause. The efficient early detection and identification of pathogens are essential procedures to adopt effective management practices that reduce or prevent their spread in order to mitigate the negative impacts of the disease. In this review, the traditional and innovative methods for early detection of the plant pathogens highlighting their major advantages and limitations are presented and discussed. Traditional techniques of diagnosis used for plant pathogen identification are focused typically on the DNA, RNA (when molecular methods), and proteins or peptides (when serological methods) of the pathogens. Serological methods based on mainly enzyme-linked immunosorbent assay (ELISA) are the most common method used for pathogen detection due to their high-throughput potential and low cost. This technique is not particularly reliable and sufficiently sensitive for many pathogens detection during the asymptomatic stage of infection. For non-cultivable pathogens in the laboratory, nucleic acid-based technology is the best choice for consistent pathogen detection or identification. Lateral flow systems are innovative tools that allow fast and accurate results even in field conditions, but they have sensitivity issues to be overcome. PCR assays performed on last-generation portable thermocyclers may provide rapid detection results in situ. The advent of portable instruments can speed pathogen detection, reduce commercial costs, and potentially revolutionize plant pathology. This review provides information on current methodologies and procedures for the effective detection of different plant pathogens. © 2023 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Daniela Trippa
- Dipartimento di Scienze Agrarie Alimentari e Forestali, Università degli Studi di Palermo, Palermo, Italy
| | - Riccardo Scalenghe
- Dipartimento di Scienze Agrarie Alimentari e Forestali, Università degli Studi di Palermo, Palermo, Italy
| | | | - Stefano Panno
- Dipartimento di Scienze Agrarie Alimentari e Forestali, Università degli Studi di Palermo, Palermo, Italy
| | - Salvatore Davino
- Dipartimento di Scienze Agrarie Alimentari e Forestali, Università degli Studi di Palermo, Palermo, Italy
| | - Chiara Morone
- Regione Piemonte - Phytosanitary Division, Torino, Italy
| | - Antonio Giovino
- Council for Agricultural Research and Economics (CREA)-Research Centre for Plant Protection and Certification (CREA-DC), Palermo, Italy
| | - Safa Oufensou
- Dipartimento di Agraria, Università degli Studi di Sassari, Sassari, Italy
| | - Nicola Luchi
- National Research Council, Institute for Sustainable Plant Protection, (CNR-IPSP), Florence, Italy
| | - Sanaz Yousefi
- Department of Horticultural Science, Bu-Ali Sina University, Hamedan, Iran
| | - Federico Martinelli
- Department of Biology, University of Florence, Florence, Italy
- National Research Council, Institute for Sustainable Plant Protection, (CNR-IPSP), Florence, Italy
| |
Collapse
|
14
|
Wu W, Suo Y, Zhao Q, Cai G, Liu Y, Jin W, Mu Y, Zhang B. Inoculum size-insensitive susceptibility determination of urine sample based on in-situ measurement of inducible enzyme activity after 20 min of antibiotic exposure. Anal Chim Acta 2023; 1282:341858. [PMID: 37923403 DOI: 10.1016/j.aca.2023.341858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/28/2023] [Accepted: 09/28/2023] [Indexed: 11/07/2023]
Abstract
BACKGROUND The empirical antibiotic therapies for bacterial infections cause the emergence and propagation of multi-drug resistant bacteria, which not only impair the effectiveness of existing antibiotics but also raise healthcare costs. To reduce the empirical treatments, rapid antimicrobial susceptibility testing (AST) of causative microorganisms in clinical samples should be conducted for prescribing evidence-based antibiotics. However, most of culture-based ASTs suffer from inoculum effect and lack differentiation of target pathogen and commensals, hampering their adoption for evidence-based antibiotic prescription. Therefore, rapid ASTs which can specifically determine pathogens' susceptibilities, regardless of the bacterial load in clinical samples, are in urgent need. RESULTS We present a pathogen-specific and inoculum size-insensitive AST to achieve the reliable susceptibility determination on Escherichia coli (E. coli) in urine samples. The developed AST is featured with an 1 h sample-to-result workflow in a filter, termed on-filter AST. The AST results can be obtained by using an inducible enzymatic assay to in-situ measure the cell response of E. coli collected from urine after 20 min of antibiotic exposure. The calculated detection limit of our AST (1.95 × 104 CFU/mL) is much lower than the diagnosis threshold of urinary tract infections. The specific expression of the inducible enzyme enables on-filter AST to correctly profile the susceptibilities of target pathogen to multi-type antibiotics without the interference from commensals. We performed the on-filter AST on 1 mL urine samples with bacterial loads varying from 105 CFU/mL to 107 CFU/mL and compared the results to that of standard method, demonstrating its insensitivity to inoculum size. SIGNIFICANCE The developed AST is demonstrated to be of high sensitivity, specificity, and insensitive to inoculum size. With further developments for additional bacteria and clinical validation, on-filter AST is promising as a rapid and reliable surrogate of culture-based AST to promote the evidence-based prescription at the first visit and minimize the emergency of new multi-drug resistant microorganisms.
Collapse
Affiliation(s)
- Wenshuai Wu
- Research Center for Analytical Instrumentation, Institute of Cyber-Systems and Control, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou, 310027, China
| | - Yuanjie Suo
- Research Center for Analytical Instrumentation, Institute of Cyber-Systems and Control, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou, 310027, China
| | - Qianbin Zhao
- Center of Health Science and Engineering, Hebei Key Laboratory of Biomaterials and Smart Theranostics, Hebei University of Technology, Tianjin, 300131, China
| | - Gaozhe Cai
- School of Microelectronics, Shanghai University, Shanghai, 200444, China
| | - Yang Liu
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing, 102401, China
| | - Wei Jin
- Research Center for Analytical Instrumentation, Institute of Cyber-Systems and Control, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou, 310027, China; Huzhou Institute of Zhejiang University, Huzhou, 313002, China
| | - Ying Mu
- Research Center for Analytical Instrumentation, Institute of Cyber-Systems and Control, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou, 310027, China.
| | - Boran Zhang
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing, 210098, China.
| |
Collapse
|
15
|
Gauthier A, Tlili L, Battu S, Delebassée S, Duval RE, Cardot PJP, Ploy MC, Lalloué F, Le-Moan C, Barraud O, Begaud G. Sedimentation Field-Flow Fractionation: A Diagnostic Tool for Rapid Antimicrobial Susceptibility Testing. Anal Chem 2023; 95:16950-16957. [PMID: 37939234 DOI: 10.1021/acs.analchem.3c03134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
Conventional antimicrobial susceptibility testing (AST) methods require 24-48 h to provide results, creating the need for a probabilistic antibiotic therapy that increases the risk of antibiotic resistance emergence. Consequently, the development of rapid AST methods has become a priority. Over the past decades, sedimentation field-flow fractionation (SdFFF) has demonstrated high sensitivity in early monitoring of induced biological events in eukaryotic cell populations. This proof-of-concept study aimed at investigating SdFFF for the rapid assessment of bacterial susceptibility to antibiotics. Three bacterial species were included (Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa) with two panels of antibiotics tailored to each bacterial species. The results demonstrate that SdFFF, when used in "Hyperlayer" elution mode, enables monitoring of antibiotic-induced morphological changes. The percentage variation of the retention factor (PΔR) was used to quantify the biological effect of antibiotics on bacteria with the establishment of a threshold value of 16.8% to differentiate susceptible and resistant strains. The results obtained with SdFFF were compared to that of the AST reference method, and a categorical agreement of 100% was observed. Overall, this study demonstrates the potential of SdFFF as a rapid method for the determination of antibiotic susceptibility or resistance since it is able to provide results within a shorter time frame than that needed for conventional methods (3-4 h vs 16-24 h, respectively), enabling earlier targeted antibiotic therapy. Further research and validation are necessary to establish the effectiveness and reliability of SdFFF in clinical settings.
Collapse
Affiliation(s)
- Audrey Gauthier
- University of Limoges, Inserm, CHU Limoges, RESINFIT, UMR 1092, 87000 Limoges, France
- University of Limoges, Inserm, CHU Limoges, CAPTuR, UMR 1308, 87000 Limoges, France
| | - Linda Tlili
- University of Limoges, Inserm, CHU Limoges, RESINFIT, UMR 1092, 87000 Limoges, France
| | - Serge Battu
- University of Limoges, Inserm, CHU Limoges, CAPTuR, UMR 1308, 87000 Limoges, France
| | - Sylvie Delebassée
- University of Limoges, Faculty of Pharmacy, LABCiS, UR22722, 87000 Limoges, France
| | - Raphaël E Duval
- University of Lorraine, CNRS, L2CM, UMR 7053, 54000 Nancy, France
| | - Philippe J P Cardot
- University of Limoges, Inserm, CHU Limoges, CAPTuR, UMR 1308, 87000 Limoges, France
| | - Marie-Cécile Ploy
- University of Limoges, Inserm, CHU Limoges, RESINFIT, UMR 1092, 87000 Limoges, France
| | - Fabrice Lalloué
- University of Limoges, Inserm, CHU Limoges, CAPTuR, UMR 1308, 87000 Limoges, France
| | - Coline Le-Moan
- University of Limoges, Inserm, CHU Limoges, CAPTuR, UMR 1308, 87000 Limoges, France
| | - Olivier Barraud
- University of Limoges, Inserm, CHU Limoges, RESINFIT, UMR 1092, 87000 Limoges, France
- CHU Limoges, Inserm, CIC1435 Limoges, France
| | - Gaëlle Begaud
- University of Limoges, Inserm, CHU Limoges, CAPTuR, UMR 1308, 87000 Limoges, France
| |
Collapse
|
16
|
Wu W, Zhang B, Yin W, Xia L, Suo Y, Cai G, Liu Y, Jin W, Zhao Q, Mu Y. Enzymatic Antimicrobial Susceptibility Testing with Bacteria Identification in 30 min. Anal Chem 2023; 95:16426-16432. [PMID: 37874622 DOI: 10.1021/acs.analchem.3c04316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Rapid antimicrobial susceptibility testing (AST) with the ability of bacterial identification is urgently needed for evidence-based antibiotic prescription. Herein, we propose an enzymatic AST (enzyAST) that employs β-d-glucuronidase as a biomarker to identify pathogens and profile phenotypic susceptibilities simultaneously. EnzyAST enables to offer binary AST results within 30 min, much faster than standard methods (>16 h). The general applicability of enzyAST was verified by testing the susceptibility of two Escherichia coli strains to three antibiotics with different action mechanisms. The pilot study also shows that the minimal inhibitory concentrations can be determined by enzyAST with the statistical analysis of enzymatic activity of the bacteria population exposed to varying antibiotic concentrations. With further development of multiple bacteria and sample treatment, enzyAST could be able to evaluate the susceptibility of pathogens in clinical samples directly to facilitate the evidence-based therapy.
Collapse
Affiliation(s)
- Wenshuai Wu
- Research Center for Analytical Instrumentation, Institute of Cyber-Systems and Control, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou 310027, China
| | - Boran Zhang
- Department of Hydraulic Engineering, College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China
| | - Weihong Yin
- Research Center for Analytical Instrumentation, Institute of Cyber-Systems and Control, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou 310027, China
| | - Liping Xia
- Research Center for Analytical Instrumentation, Institute of Cyber-Systems and Control, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou 310027, China
| | - Yuanjie Suo
- Research Center for Analytical Instrumentation, Institute of Cyber-Systems and Control, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou 310027, China
| | - Gaozhe Cai
- School of Microelectronics, Shanghai University, Shanghai 200444, China
| | - Yang Liu
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 102401, China
| | - Wei Jin
- Research Center for Analytical Instrumentation, Institute of Cyber-Systems and Control, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou 310027, China
- Huzhou Institute of Zhejiang University, Huzhou 313002, China
| | - Qianbin Zhao
- Center of Health Science and Engineering, Hebei Key Laboratory of Biomaterials and Smart Theranostics, Hebei University of Technology, Tianjin 300131, China
| | - Ying Mu
- Research Center for Analytical Instrumentation, Institute of Cyber-Systems and Control, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
17
|
Jiang X, Borkum T, Shprits S, Boen J, Arshavsky-Graham S, Rofman B, Strauss M, Colodner R, Sulam J, Halachmi S, Leonard H, Segal E. Accurate Prediction of Antimicrobial Susceptibility for Point-of-Care Testing of Urine in Less than 90 Minutes via iPRISM Cassettes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303285. [PMID: 37587020 PMCID: PMC10625094 DOI: 10.1002/advs.202303285] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 08/04/2023] [Indexed: 08/18/2023]
Abstract
The extensive and improper use of antibiotics has led to a dramatic increase in the frequency of antibiotic resistance among human pathogens, complicating infectious disease treatments. In this work, a method for rapid antimicrobial susceptibility testing (AST) is presented using microstructured silicon diffraction gratings integrated into prototype devices, which enhance bacteria-surface interactions and promote bacterial colonization. The silicon microstructures act also as optical sensors for monitoring bacterial growth upon exposure to antibiotics in a real-time and label-free manner via intensity-based phase-shift reflectometric interference spectroscopic measurements (iPRISM). Rapid AST using clinical isolates of Escherichia coli (E. coli) from urine is established and the assay is applied directly on unprocessed urine samples from urinary tract infection patients. When coupled with a machine learning algorithm trained on clinical samples, the iPRISM AST is able to predict the resistance or susceptibility of a new clinical sample with an Area Under the Receiver Operating Characteristic curve (AUC) of ∼ 0.85 in 1 h, and AUC > 0.9 in 90 min, when compared to state-of-the-art automated AST methods used in the clinic while being an order of magnitude faster.
Collapse
Affiliation(s)
- Xin Jiang
- Department of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| | - Talya Borkum
- Department of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| | - Sagi Shprits
- Department of Urology, Bnai Zion Medical Center, Haifa, 3104800, Israel
| | - Joseph Boen
- Department of Biomedical Engineering, Johns Hopkins University, Clark 320B, 3400 N Charles St, Baltimore, MD, 21218, USA
| | - Sofia Arshavsky-Graham
- Department of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| | - Baruch Rofman
- Department of Mechanical Engineering, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| | - Merav Strauss
- Laboratory of Clinical Microbiology, Emek Medical Center, Afula, 1834111, Israel
| | - Raul Colodner
- Laboratory of Clinical Microbiology, Emek Medical Center, Afula, 1834111, Israel
| | - Jeremias Sulam
- Department of Biomedical Engineering, Johns Hopkins University, Clark 320B, 3400 N Charles St, Baltimore, MD, 21218, USA
| | - Sarel Halachmi
- Department of Urology, Bnai Zion Medical Center, Haifa, 3104800, Israel
- The Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| | - Heidi Leonard
- Department of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| | - Ester Segal
- Department of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| |
Collapse
|
18
|
Kaushal S, Priyadarshi N, Garg P, Singhal NK, Lim DK. Nano-Biotechnology for Bacteria Identification and Potent Anti-bacterial Properties: A Review of Current State of the Art. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2529. [PMID: 37764558 PMCID: PMC10536455 DOI: 10.3390/nano13182529] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 08/26/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023]
Abstract
Sepsis is a critical disease caused by the abrupt increase of bacteria in human blood, which subsequently causes a cytokine storm. Early identification of bacteria is critical to treating a patient with proper antibiotics to avoid sepsis. However, conventional culture-based identification takes a long time. Polymerase chain reaction (PCR) is not so successful because of the complexity and similarity in the genome sequence of some bacterial species, making it difficult to design primers and thus less suitable for rapid bacterial identification. To address these issues, several new technologies have been developed. Recent advances in nanotechnology have shown great potential for fast and accurate bacterial identification. The most promising strategy in nanotechnology involves the use of nanoparticles, which has led to the advancement of highly specific and sensitive biosensors capable of detecting and identifying bacteria even at low concentrations in very little time. The primary drawback of conventional antibiotics is the potential for antimicrobial resistance, which can lead to the development of superbacteria, making them difficult to treat. The incorporation of diverse nanomaterials and designs of nanomaterials has been utilized to kill bacteria efficiently. Nanomaterials with distinct physicochemical properties, such as optical and magnetic properties, including plasmonic and magnetic nanoparticles, have been extensively studied for their potential to efficiently kill bacteria. In this review, we are emphasizing the recent advances in nano-biotechnologies for bacterial identification and anti-bacterial properties. The basic principles of new technologies, as well as their future challenges, have been discussed.
Collapse
Affiliation(s)
- Shimayali Kaushal
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea;
| | - Nitesh Priyadarshi
- National Agri-Food Biotechnology Institute (NABI), Sector-81, Mohali 140306, India; (N.P.); (P.G.)
| | - Priyanka Garg
- National Agri-Food Biotechnology Institute (NABI), Sector-81, Mohali 140306, India; (N.P.); (P.G.)
| | - Nitin Kumar Singhal
- National Agri-Food Biotechnology Institute (NABI), Sector-81, Mohali 140306, India; (N.P.); (P.G.)
| | - Dong-Kwon Lim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea;
- Department of Integrative Energy Engineering, College of Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
- Brain Science Institute, Korea Institute of Science and Technology (KIST), 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
| |
Collapse
|
19
|
Li Y, Qi R, Wang X, Yuan H. Recent Strategies to Develop Conjugated Polymers for Detection and Therapeutics. Polymers (Basel) 2023; 15:3570. [PMID: 37688196 PMCID: PMC10490465 DOI: 10.3390/polym15173570] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/16/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023] Open
Abstract
The infectious diseases resulting from pathogenic microbes are highly contagious and the source of infection is difficult to control, which seriously endangers life and public health safety. Although the emergence of antibiotics has a good therapeutic effect in the early stage, the massive abuse of antibiotics has brought about the evolution of pathogens with drug resistance, which has gradually weakened the lethality and availability of antibiotics. Cancer is a more serious disease than pathogenic bacteria infection, which also threatens human life and health. Traditional treatment methods have limitations such as easy recurrence, poor prognosis, many side effects, and high toxicity. These two issues have led to the exploration and development of novel therapeutic agents (such as conjugated polymers) and therapeutic strategies (such as phototherapy) to avoid the increase of drug resistance and toxic side effects. As a class of organic polymer biological functional materials with excellent photoelectric properties, Conjugated polymers (CPs) have been extensively investigated in biomedical fields, such as the detection and treatment of pathogens and tumors due to their advantages of easy modification and functionalization, good biocompatibility and low cost. A rare comprehensive overview of CPs-based detection and treatment applications has been reported. This paper reviews the design strategies and research status of CPs used in biomedicine in recent years, introduces and discusses the latest progress of their application in the detection and treatment of pathogenic microorganisms and tumors according to different detection or treatment methods, as well as the limitations and potential challenges in prospective exploration.
Collapse
Affiliation(s)
- Yutong Li
- Department of Chemistry, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Ruilian Qi
- Department of Chemistry, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Xiaoyu Wang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Huanxiang Yuan
- Department of Chemistry, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
20
|
Jones DC, LaMartina EL, Lewis JR, Dahl AJ, Nadig N, Szabo A, Newton RJ, Skwor TA. One Health and Global Health View of Antimicrobial Susceptibility through the "Eye" of Aeromonas: Systematic Review and Meta-Analysis. Int J Antimicrob Agents 2023; 62:106848. [PMID: 37201798 PMCID: PMC10524465 DOI: 10.1016/j.ijantimicag.2023.106848] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 04/26/2023] [Accepted: 05/09/2023] [Indexed: 05/20/2023]
Abstract
Antimicrobial resistance (AMR) is one of the most pressing public health concerns; therefore, it is imperative to advance our understanding of the factors influencing AMR from Global and One Health perspectives. To address this, Aeromonas populations were identified using 16S rRNA gene libraries among human, agriculture, aquaculture, drinking water, surface water, and wastewater samples, supporting its use as indicator bacteria to study AMR. A systematic review and meta-analysis was then performed from Global and One Health perspectives, including data from 221 articles describing 15 891 isolates from 57 countries. The interconnectedness of different environments was evident as minimal differences were identified between sectors among 21 different antimicrobials. However, resistance to critically important antibiotics (aztreonam and cefepime) was significantly higher among wastewater populations compared with clinical isolates. Additionally, isolates from untreated wastewater typically exhibited increased AMR compared with those from treated wastewater. Furthermore, aquaculture was associated with increased AMR to ciprofloxacin and tetracycline compared with wild-caught seafood. Using the World Health Organization AWaRe classifications, countries with lower consumption of "Access" compared to "Watch" drugs from 2000 to 2015 demonstrated higher AMR levels. The current analysis revealed negative correlations between AMR and anthropogenic factors, such as environmental performance indices and socioeconomic standing. Environmental health and sanitation were two of the environmental factors most strongly correlated with AMR. The current analysis highlights the negative impacts of "Watch" drug overconsumption, anthropogenic activity, absence of wastewater infrastructure, and aquaculture on AMR, thus stressing the need for proper infrastructure and global regulations to combat this growing problem.
Collapse
Affiliation(s)
| | - Emily Lou LaMartina
- School of Freshwater Sciences, University of Wisconsin - Milwaukee, Milwaukee, WI, USA
| | - Jenna Rachel Lewis
- Department of Biological Sciences, University of Wisconsin - Milwaukee, Milwaukee, WI, USA
| | - Andrew James Dahl
- Department of Biomedical Sciences, University of Wisconsin - Milwaukee, Milwaukee, WI, USA
| | - Nischala Nadig
- Department of Biomedical Sciences, University of Wisconsin - Milwaukee, Milwaukee, WI, USA
| | - Aniko Szabo
- Division of Biostatistics, Institute for Health & Equity, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Ryan J Newton
- School of Freshwater Sciences, University of Wisconsin - Milwaukee, Milwaukee, WI, USA
| | - Troy A Skwor
- Department of Biomedical Sciences, University of Wisconsin - Milwaukee, Milwaukee, WI, USA.
| |
Collapse
|
21
|
Costa A, Figueroa-Espinosa R, Martínez JA, Fernández-Canigia L, Maldonado MI, Bergese SA, Schneider AE, Vay C, Rodriguez CH, Nastro M, Gutkind GO, Di Conza JA. MALDI-TOF MS-Based KPC Direct Detection from Patients' Positive Blood Culture Bottles, Short-Term Cultures, and Colonies at the Hospital. Pathogens 2023; 12:865. [PMID: 37513712 PMCID: PMC10385308 DOI: 10.3390/pathogens12070865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/15/2023] [Accepted: 06/19/2023] [Indexed: 07/30/2023] Open
Abstract
Carbapenemase resistance in Enterobacterales is a global public health problem and rapid and effective methods for detecting these resistance mechanisms are needed urgently. Our aim was to evaluate the performance of a MALDI-TOF MS-based "Klebsiella pneumoniae carbapenemase" (KPC) detection protocol from patients' positive blood cultures, short-term cultures, and colonies in healthcare settings. Bacterial identification and KPC detection were achieved after protein extraction with organic solvents and target spot loading with suitable organic matrices. The confirmation of KPC production was performed using susceptibility tests and blaKPC amplification using PCR and sequencing. The KPC direct detection (KPC peak at approximately 28.681 Da) from patients' positive blood cultures, short-term cultures, and colonies, once bacterial identification was achieved, showed an overall sensibility and specificity of 100% (CI95: [95%, 100%] and CI95: [99%, 100%], respectively). The concordance between hospital routine bacterial identification protocol and identification using this new methodology from the same extract used for KPC detection was ≥92%. This study represents the pioneering effort to directly detect KPC using MALDI-TOF MS technology, conducted on patient-derived samples obtained from hospitals for validation purposes, in a multi-resistance global context that requires concrete actions to preserve the available therapeutic options and reduce the spread of antibiotic resistance markers.
Collapse
Affiliation(s)
- Agustina Costa
- Instituto de Investigaciones en Bacteriología y Virología Molecular (IBaViM), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires 1113, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires 1033, Argentina
| | - Roque Figueroa-Espinosa
- Instituto de Investigaciones en Bacteriología y Virología Molecular (IBaViM), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires 1113, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires 1033, Argentina
| | - Jerson A Martínez
- Instituto de Investigaciones en Bacteriología y Virología Molecular (IBaViM), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires 1113, Argentina
| | | | | | | | - Ana E Schneider
- Hospital Alemán de Buenos Aires, Buenos Aires 1113, Argentina
| | - Carlos Vay
- Hospital de Clínicas "José de San Martín", Universidad de Buenos Aires, Buenos Aires 1118, Argentina
| | - Carlos H Rodriguez
- Hospital de Clínicas "José de San Martín", Universidad de Buenos Aires, Buenos Aires 1118, Argentina
| | - Marcela Nastro
- Hospital de Clínicas "José de San Martín", Universidad de Buenos Aires, Buenos Aires 1118, Argentina
| | - Gabriel O Gutkind
- Instituto de Investigaciones en Bacteriología y Virología Molecular (IBaViM), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires 1113, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires 1033, Argentina
| | - José A Di Conza
- Instituto de Investigaciones en Bacteriología y Virología Molecular (IBaViM), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires 1113, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires 1033, Argentina
| |
Collapse
|
22
|
Caliskan-Aydogan O, Alocilja EC. A Review of Carbapenem Resistance in Enterobacterales and Its Detection Techniques. Microorganisms 2023; 11:1491. [PMID: 37374993 PMCID: PMC10305383 DOI: 10.3390/microorganisms11061491] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/23/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
Infectious disease outbreaks have caused thousands of deaths and hospitalizations, along with severe negative global economic impacts. Among these, infections caused by antimicrobial-resistant microorganisms are a major growing concern. The misuse and overuse of antimicrobials have resulted in the emergence of antimicrobial resistance (AMR) worldwide. Carbapenem-resistant Enterobacterales (CRE) are among the bacteria that need urgent attention globally. The emergence and spread of carbapenem-resistant bacteria are mainly due to the rapid dissemination of genes that encode carbapenemases through horizontal gene transfer (HGT). The rapid dissemination enables the development of host colonization and infection cases in humans who do not use the antibiotic (carbapenem) or those who are hospitalized but interacting with environments and hosts colonized with carbapenemase-producing (CP) bacteria. There are continuing efforts to characterize and differentiate carbapenem-resistant bacteria from susceptible bacteria to allow for the appropriate diagnosis, treatment, prevention, and control of infections. This review presents an overview of the factors that cause the emergence of AMR, particularly CRE, where they have been reported, and then, it outlines carbapenemases and how they are disseminated through humans, the environment, and food systems. Then, current and emerging techniques for the detection and surveillance of AMR, primarily CRE, and gaps in detection technologies are presented. This review can assist in developing prevention and control measures to minimize the spread of carbapenem resistance in the human ecosystem, including hospitals, food supply chains, and water treatment facilities. Furthermore, the development of rapid and affordable detection techniques is helpful in controlling the negative impact of infections caused by AMR/CRE. Since delays in diagnostics and appropriate antibiotic treatment for such infections lead to increased mortality rates and hospital costs, it is, therefore, imperative that rapid tests be a priority.
Collapse
Affiliation(s)
- Oznur Caliskan-Aydogan
- Department of Biosystems and Agricultural Engineering, Michigan State University, East Lansing, MI 48824, USA;
- Global Alliance for Rapid Diagnostics, Michigan State University, East Lansing, MI 48824, USA
| | - Evangelyn C. Alocilja
- Department of Biosystems and Agricultural Engineering, Michigan State University, East Lansing, MI 48824, USA;
- Global Alliance for Rapid Diagnostics, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
23
|
Wu W, Cai G, Liu Y, Suo Y, Zhang B, Jin W, Yu Y, Mu Y. Direct single-cell antimicrobial susceptibility testing of Escherichia coli in urine using a ready-to-use 3D microwell array chip. LAB ON A CHIP 2023; 23:2399-2410. [PMID: 36806255 DOI: 10.1039/d2lc01095j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Empirical antibiotic therapies are prescribed for treating uncomplicated urinary tract infections (UTIs) due to the long turnaround time of conventional antimicrobial susceptibility testing (AST), leading to the prevalence of multi-drug resistant pathogens. We present a ready-to-use 3D microwell array chip to directly conduct comprehensive AST of pathogenic agents in urine at the single-cell level. The developed device features a highly integrated 3D microwell array, offering a dynamic range from 102 to 107 CFU mL-1, and a capillary valve-based flow distributor for flow equidistribution in dispensing channels and uniform sample distribution. The chip with pre-loaded reagents and negative pressure inside only requires the user to initiate AST by loading samples (∼3 s) and can work independently. We demonstrate an accessible sample-to-result workflow, including syringe filter-based bacteria separation and rapid single-cell AST on chip, which enables us to bypass the time-consuming bacteria isolation and pre-culture, speeding up the AST in ∼3 h from 2 days of conventional methods. Moreover, the bacterial concentration and AST with minimum inhibitory concentrations can be assessed simultaneously to provide comprehensive information on infections. With further development for multiple antibiotic conditions, the Dsc-AST assay could contribute to timely prescription of targeted drugs for better patient outcomes and mitigation of the threat of drug-resistant bacteria.
Collapse
Affiliation(s)
- Wenshuai Wu
- Research Center for Analytical Instrumentation, Institute of Cyber-Systems and Control, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou 310027, China.
| | - Gaozhe Cai
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
| | - Yang Liu
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 102401, China
| | - Yuanjie Suo
- Research Center for Analytical Instrumentation, Institute of Cyber-Systems and Control, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou 310027, China.
| | - Boran Zhang
- Department of Hydraulic Engineering, College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China
| | - Wei Jin
- Research Center for Analytical Instrumentation, Institute of Cyber-Systems and Control, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou 310027, China.
- Huzhou Institute of Zhejiang University, Huzhou 313002, China
| | - Yinghua Yu
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Ying Mu
- Research Center for Analytical Instrumentation, Institute of Cyber-Systems and Control, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou 310027, China.
| |
Collapse
|
24
|
Marutescu LG. Current and Future Flow Cytometry Applications Contributing to Antimicrobial Resistance Control. Microorganisms 2023; 11:1300. [PMID: 37317273 DOI: 10.3390/microorganisms11051300] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 06/16/2023] Open
Abstract
Antimicrobial resistance is a global threat to human health and welfare, food safety, and environmental health. The rapid detection and quantification of antimicrobial resistance are important for both infectious disease control and public health threat assessment. Technologies such as flow cytometry can provide clinicians with the early information, they need for appropriate antibiotic treatment. At the same time, cytometry platforms facilitate the measurement of antibiotic-resistant bacteria in environments impacted by human activities, enabling assessment of their impact on watersheds and soils. This review focuses on the latest applications of flow cytometry for the detection of pathogens and antibiotic-resistant bacteria in both clinical and environmental samples. Novel antimicrobial susceptibility testing frameworks embedding flow cytometry assays can contribute to the implementation of global antimicrobial resistance surveillance systems that are needed for science-based decisions and actions.
Collapse
Affiliation(s)
- Luminita Gabriela Marutescu
- Department of Botany and Microbiology, Faculty of Biology, University of Bucharest, 91-95 Spl. Independentei, 050095 Bucharest, Romania
- Research Institute of the University of Bucharest, 050095 Bucharest, Romania
| |
Collapse
|
25
|
Potvin M, Larranaga Lapique E, Hites M, Martiny D. Implementing Alfred60 AST in a clinical lab: Clinical impact on the management of septic patients and financial analysis. ANNALES PHARMACEUTIQUES FRANÇAISES 2023; 81:466-474. [PMID: 36402206 DOI: 10.1016/j.pharma.2022.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/22/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022]
Abstract
INTRODUCTION Sepsis is an important cause of morbidity and mortality. An accelerated microbiology diagnosis is crucial in order to reduce the time to initiate targeted antibiotic therapy. The Alfred60AST system is able to provide phenotypic Antimicrobial Susceptibility Testing (AST) results within hours. This study has two objectives: assess the clinical impact of this technology and determine its cost-effectiveness. METHODS During a ten-week period, all new enterobacterial or enterococcal bloodstream infection was analyzed with the Alfred60AST system, in parallel with routine methods. Its impact on the clinician's therapeutic strategy was studied. In order to assess the financial and practical aspects of the method, an analysis of the extracosts and a survey of the technical staff were conducted. RESULTS Fifty-three cases of bacteriemia were included. For the Enterobacteriaceae bacteriemias, a clinical impact was shown in 18.9% of the cases (e.g, treatment modification). The financial analysis highlighted an increase in costs (+38% for Enterobacteriaceae, +50% for Enterococci), compared to the theoretical costs reported by the firm, due to the workflow and the volumes of samples used. Finally, results of the technical staff survey were favorable in terms of ease of use of the system. CONCLUSION In addition to its ease of use, the Alfred60AST system is able to provide an AST in a record time. This study shows a real interest of the technique in the therapeutic management of patients with enterobacterial sepsis. However, its routine implementation requires an increase of the analyzed volumes as well as a 24/7 organization of the laboratory in order to be profitable.
Collapse
Affiliation(s)
- M Potvin
- Microbiology Department, LHUB-ULB, rue haute, 322, 1000 Brussels, Belgium.
| | - E Larranaga Lapique
- Department of Infectious Disease, Erasme Hospital, route de Lennik, 808, 1070 Brussels, Belgium
| | - M Hites
- Department of Infectious Disease, Erasme Hospital, route de Lennik, 808, 1070 Brussels, Belgium
| | - D Martiny
- Microbiology Department, LHUB-ULB, rue haute, 322, 1000 Brussels, Belgium
| |
Collapse
|
26
|
Kalpana S, Lin WY, Wang YC, Fu Y, Lakshmi A, Wang HY. Antibiotic Resistance Diagnosis in ESKAPE Pathogens-A Review on Proteomic Perspective. Diagnostics (Basel) 2023; 13:1014. [PMID: 36980322 PMCID: PMC10047325 DOI: 10.3390/diagnostics13061014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/26/2023] [Accepted: 02/28/2023] [Indexed: 03/11/2023] Open
Abstract
Antibiotic resistance has emerged as an imminent pandemic. Rapid diagnostic assays distinguish bacterial infections from other diseases and aid antimicrobial stewardship, therapy optimization, and epidemiological surveillance. Traditional methods typically have longer turn-around times for definitive results. On the other hand, proteomic studies have progressed constantly and improved both in qualitative and quantitative analysis. With a wide range of data sets made available in the public domain, the ability to interpret the data has considerably reduced the error rates. This review gives an insight on state-of-the-art proteomic techniques in diagnosing antibiotic resistance in ESKAPE pathogens with a future outlook for evading the "imminent pandemic".
Collapse
Affiliation(s)
- Sriram Kalpana
- Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan 333423, Taiwan
| | | | - Yu-Chiang Wang
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
- Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Yiwen Fu
- Department of Medicine, Kaiser Permanente Santa Clara Medical Center, Santa Clara, CA 95051, USA
| | - Amrutha Lakshmi
- Department of Biochemistry, University of Madras, Guindy Campus, Chennai 600025, India
| | - Hsin-Yao Wang
- Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan 333423, Taiwan
| |
Collapse
|
27
|
Salam MA, Al-Amin MY, Pawar JS, Akhter N, Lucy IB. Conventional methods and future trends in antimicrobial susceptibility testing. Saudi J Biol Sci 2023; 30:103582. [PMID: 36852413 PMCID: PMC9958398 DOI: 10.1016/j.sjbs.2023.103582] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/07/2023] [Accepted: 01/29/2023] [Indexed: 02/12/2023] Open
Abstract
Antimicrobial susceptibility testing is an essential task for selecting appropriate antimicrobial agents to treat infectious diseases. Constant evolution has been observed in methods used in the diagnostic microbiology laboratories. Disc diffusion or broth microdilution are classical and conventional phenotypic methods with long turnaround time and labour-intensive but still widely practiced as gold-standard. Scientists are striving to develop innovative, novel and faster methods of antimicrobial susceptibility testing to be applicable for routine microbiological laboratory practice and research. To meet the requirements, there is an increasing trend towards automation, genotypic and micro/nano technology-based innovations. Automation in detection systems and integration of computers for online data analysis and data sharing are giant leaps towards versatile nature of automated methods currently in use. Genotypic methods detect a specific genetic marker associated with resistant phenotypes using molecular amplification techniques and genome sequencing. Microfluidics and microdroplets are recent addition in the continuous advancement of methods that show great promises with regards to safety and speed and have the prospect to identify and monitor resistance mechanisms. Although genotypic and microfluidics methods have many exciting features, however, their applications into routine clinical laboratory practice warrant extensive validation. The main impetus behind the evolution of methods in antimicrobial susceptibility testing is to shorten the overall turnaround time in obtaining the results and to enhance the ease of sample processing. This comprehensive narrative review summarises major conventional phenotypic methods and automated systems currently in use, and highlights principles of some of the emerging genotypic and micro/nanotechnology-based methods in antimicrobial susceptibility testing.
Collapse
Key Words
- ADR, Adverse drug reaction
- AMR, Antimicrobial resistance
- AST, Antimicrobial susceptibility testing
- ATCC, American Type Culture Collection
- Advantages and disadvantages
- Antimicrobial susceptibility testing
- Automations
- CFU, Colony forming units
- CLSI, Clinical & Laboratory Standards Institute
- Conventional methods
- DOT-MGA, Direct-On-Target Microdroplet Growth Assay
- EUCAST, European Committee on Antimicrobial Susceptibility Testing
- Etest, Epsilometer testing
- Genotypic methods
- ID, Identification
- MALDI-TOF MS, Matrix-Assisted Laser Desorption/Ionization Time-Of-Flight Mass Spectrometry
- MBC, Minimum bactericidal concentration
- MDR, Multi drug resistant
- MHA, Muller Hinton Agar
- MIC, Minimum inhibitory concentration
- Micro/nanotechnology-based techniques
- NAAT, Nucleic Acid Amplification Test
- PCR, Polymerase chain reaction
- PMF, Peptide mass fingerprint
- POC, Point of care
- WGS, Whole Genome Sequencing
- ZOI, Zone of inhibition
Collapse
Affiliation(s)
- Md. Abdus Salam
- Department of Basic Medical Sciences, Kulliyyah of Medicine, International Islamic University, Malaysia
| | - Md. Yusuf Al-Amin
- Purdue University Interdisciplinary Life Sciences Graduate Program, Purdue University, West Lafayette, IN, USA,Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, USA
| | - Jogendra Singh Pawar
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, USA
| | - Naseem Akhter
- Department of Neurology, Henry Ford Health System, Detroit, MI 48202, USA
| | - Irine Banu Lucy
- Department of Physics, University of Rajshahi, Rajshahi 6205, Bangladesh,Corresponding author at: Department of Physics, University of Rajshahi, Rajshahi 6205, Bangladesh.
| |
Collapse
|
28
|
Fast Track Diagnostic Tools for Clinical Management of Sepsis: Paradigm Shift from Conventional to Advanced Methods. Diagnostics (Basel) 2023; 13:diagnostics13020277. [PMID: 36673087 PMCID: PMC9857847 DOI: 10.3390/diagnostics13020277] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/24/2022] [Accepted: 01/09/2023] [Indexed: 01/15/2023] Open
Abstract
Sepsis is one of the deadliest disorders in the new century due to specific limitations in early and differential diagnosis. Moreover, antimicrobial resistance (AMR) is becoming the dominant threat to human health globally. The only way to encounter the spread and emergence of AMR is through the active detection and identification of the pathogen along with the quantification of resistance. For better management of such disease, there is an essential requirement to approach many suitable diagnostic techniques for the proper administration of antibiotics and elimination of these infectious diseases. The current method employed for the diagnosis of sepsis relies on the conventional culture of blood suspected infection. However, this method is more time consuming and generates results that are false negative in the case of antibiotic pretreated samples as well as slow-growing microbes. In comparison to the conventional method, modern methods are capable of analyzing blood samples, obtaining accurate results from the suspicious patient of sepsis, and giving all the necessary information to identify the pathogens as well as AMR in a short period. The present review is intended to highlight the culture shift from conventional to modern and advanced technologies including their limitations for the proper and prompt diagnosing of bloodstream infections and AMR detection.
Collapse
|
29
|
Sherry NL, Horan KA, Ballard SA, Gonҫalves da Silva A, Gorrie CL, Schultz MB, Stevens K, Valcanis M, Sait ML, Stinear TP, Howden BP, Seemann T. An ISO-certified genomics workflow for identification and surveillance of antimicrobial resistance. Nat Commun 2023; 14:60. [PMID: 36599823 DOI: 10.1038/s41467-022-35713-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 12/21/2022] [Indexed: 01/05/2023] Open
Abstract
Realising the promise of genomics to revolutionise identification and surveillance of antimicrobial resistance (AMR) has been a long-standing challenge in clinical and public health microbiology. Here, we report the creation and validation of abritAMR, an ISO-certified bioinformatics platform for genomics-based bacterial AMR gene detection. The abritAMR platform utilises NCBI's AMRFinderPlus, as well as additional features that classify AMR determinants into antibiotic classes and provide customised reports. We validate abritAMR by comparing with PCR or reference genomes, representing 1500 different bacteria and 415 resistance alleles. In these analyses, abritAMR displays 99.9% accuracy, 97.9% sensitivity and 100% specificity. We also compared genomic predictions of phenotype for 864 Salmonella spp. against agar dilution results, showing 98.9% accuracy. The implementation of abritAMR in our institution has resulted in streamlined bioinformatics and reporting pathways, and has been readily updated and re-verified. The abritAMR tool and validation datasets are publicly available to assist laboratories everywhere harness the power of AMR genomics in professional practice.
Collapse
Affiliation(s)
- Norelle L Sherry
- Microbiological Diagnostic Unit Public Health Laboratory (MDU-PHL), Department of Microbiology & Immunology, University of Melbourne at the Peter Doherty Institute for Infection & Immunity, Melbourne, Victoria, Australia
- Department of Infectious Diseases, Austin Health, Heidelberg, Victoria, Australia
- Department of Microbiology & Immunology, University of Melbourne at the Peter Doherty Institute for Infection & Immunity, Melbourne, Australia
| | - Kristy A Horan
- Microbiological Diagnostic Unit Public Health Laboratory (MDU-PHL), Department of Microbiology & Immunology, University of Melbourne at the Peter Doherty Institute for Infection & Immunity, Melbourne, Victoria, Australia
| | - Susan A Ballard
- Microbiological Diagnostic Unit Public Health Laboratory (MDU-PHL), Department of Microbiology & Immunology, University of Melbourne at the Peter Doherty Institute for Infection & Immunity, Melbourne, Victoria, Australia
| | - Anders Gonҫalves da Silva
- Microbiological Diagnostic Unit Public Health Laboratory (MDU-PHL), Department of Microbiology & Immunology, University of Melbourne at the Peter Doherty Institute for Infection & Immunity, Melbourne, Victoria, Australia
| | - Claire L Gorrie
- Department of Microbiology & Immunology, University of Melbourne at the Peter Doherty Institute for Infection & Immunity, Melbourne, Australia
| | - Mark B Schultz
- Microbiological Diagnostic Unit Public Health Laboratory (MDU-PHL), Department of Microbiology & Immunology, University of Melbourne at the Peter Doherty Institute for Infection & Immunity, Melbourne, Victoria, Australia
| | - Kerrie Stevens
- Microbiological Diagnostic Unit Public Health Laboratory (MDU-PHL), Department of Microbiology & Immunology, University of Melbourne at the Peter Doherty Institute for Infection & Immunity, Melbourne, Victoria, Australia
| | - Mary Valcanis
- Microbiological Diagnostic Unit Public Health Laboratory (MDU-PHL), Department of Microbiology & Immunology, University of Melbourne at the Peter Doherty Institute for Infection & Immunity, Melbourne, Victoria, Australia
| | - Michelle L Sait
- Microbiological Diagnostic Unit Public Health Laboratory (MDU-PHL), Department of Microbiology & Immunology, University of Melbourne at the Peter Doherty Institute for Infection & Immunity, Melbourne, Victoria, Australia
| | - Timothy P Stinear
- Department of Microbiology & Immunology, University of Melbourne at the Peter Doherty Institute for Infection & Immunity, Melbourne, Australia
| | - Benjamin P Howden
- Microbiological Diagnostic Unit Public Health Laboratory (MDU-PHL), Department of Microbiology & Immunology, University of Melbourne at the Peter Doherty Institute for Infection & Immunity, Melbourne, Victoria, Australia.
- Department of Infectious Diseases, Austin Health, Heidelberg, Victoria, Australia.
- Department of Microbiology & Immunology, University of Melbourne at the Peter Doherty Institute for Infection & Immunity, Melbourne, Australia.
| | - Torsten Seemann
- Microbiological Diagnostic Unit Public Health Laboratory (MDU-PHL), Department of Microbiology & Immunology, University of Melbourne at the Peter Doherty Institute for Infection & Immunity, Melbourne, Victoria, Australia
- Department of Microbiology & Immunology, University of Melbourne at the Peter Doherty Institute for Infection & Immunity, Melbourne, Australia
| |
Collapse
|
30
|
Tomaselli S, Pasini M, Kozma E, Giovanella U, Scavia G, Pagano K, Molinari H, Iannace S, Ragona L. Bacteria as sensors: Real-time NMR analysis of extracellular metabolites detects sub-lethal amounts of bactericidal molecules released from functionalized materials. Biochim Biophys Acta Gen Subj 2023; 1867:130253. [PMID: 36228877 DOI: 10.1016/j.bbagen.2022.130253] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/22/2022] [Accepted: 10/05/2022] [Indexed: 11/13/2022]
Abstract
BACKGROUND Cells exposed to stress factors experience time-dependent variations of metabolite concentration, acting as reliable sensors of the effective concentration of drugs in solution. NMR can detect and quantify changes in metabolite concentration, thus providing an indirect estimate of drug concentration. The quantification of bactericidal molecules released from antimicrobial-treated biomedical materials is crucial to determine their biocompatibility and the potential onset of drug resistance. METHODS Real-time NMR measurements of extracellular metabolites produced by bacteria grown in the presence of known concentrations of an antibacterial molecule (irgasan) are employed to quantify the bactericidal molecule released from antimicrobial-treated biomedical devices. Viability tests assess their activity against E. coli and S. aureus planktonic and sessile cells. AFM and contact angle measurements assisted in the determination of the mechanism of antibacterial action. RESULTS NMR-derived concentration kinetics of metabolites produced by bacteria grown in contact with functionalized materials allows for indirectly evaluating the effective concentration of toxic substances released from the device, lowering the detection limit to the nanomolar range. NMR, AFM and contact angle measurements support a surface-killing mechanism of action against bacteria. CONCLUSIONS The NMR based approach provides a reliable tool to estimate bactericidal molecule release from antimicrobial materials. GENERAL SIGNIFICANCE The novelty of the proposed NMR-based strategy is that it i) exploits bacteria as sensors of the presence of bactericidal molecules in solution; ii) is independent of the chemo-physical properties of the analyte; iii) establishes the detection limit to nanomolar concentrations.
Collapse
Affiliation(s)
- Simona Tomaselli
- Istituto di Scienze e Tecnologie Chimiche (SCITEC), Consiglio Nazionale delle Ricerche - CNR, Milan, Italy.
| | - Mariacecilia Pasini
- Istituto di Scienze e Tecnologie Chimiche (SCITEC), Consiglio Nazionale delle Ricerche - CNR, Milan, Italy
| | - Erika Kozma
- Istituto di Scienze e Tecnologie Chimiche (SCITEC), Consiglio Nazionale delle Ricerche - CNR, Milan, Italy
| | - Umberto Giovanella
- Istituto di Scienze e Tecnologie Chimiche (SCITEC), Consiglio Nazionale delle Ricerche - CNR, Milan, Italy
| | - Guido Scavia
- Istituto di Scienze e Tecnologie Chimiche (SCITEC), Consiglio Nazionale delle Ricerche - CNR, Milan, Italy
| | - Katiuscia Pagano
- Istituto di Scienze e Tecnologie Chimiche (SCITEC), Consiglio Nazionale delle Ricerche - CNR, Milan, Italy
| | - Henriette Molinari
- Istituto di Scienze e Tecnologie Chimiche (SCITEC), Consiglio Nazionale delle Ricerche - CNR, Milan, Italy
| | - Salvatore Iannace
- Istituto di Scienze e Tecnologie Chimiche (SCITEC), Consiglio Nazionale delle Ricerche - CNR, Milan, Italy
| | - Laura Ragona
- Istituto di Scienze e Tecnologie Chimiche (SCITEC), Consiglio Nazionale delle Ricerche - CNR, Milan, Italy
| |
Collapse
|
31
|
Wu W, Zhao Q, Cai G, Zhang B, Suo Y, Liu Y, Jin W, Mu Y. All-In-One Escherichia coli Viability Assay for Multi-dimensional Detection of Uncomplicated Urinary Tract Infections. Anal Chem 2022; 94:17853-17860. [PMID: 36524619 DOI: 10.1021/acs.analchem.2c03604] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The urinary tract infections by antibiotic-resistant bacteria have been a serious public health problem and increase the healthcare costs. The conventional technologies of diagnosis and antimicrobial susceptibility testing (AST) relying on multiple culture-based assays are time-consuming and labor-intensive and thus compel the empirical antimicrobial therapies to be prescribed, fueling the prevalence of antimicrobial resistance. Herein, we propose an all-in-one Escherichia coli viability assay in an enclosed 3D microwell array chip, termed digital β-d-glucuronidase (GUS)-AST assay. It employs GUS, a specific metabolism-related enzyme, to convert the presence of E. coli into bright fluorescence. The random distribution of single bacteria in microwell array enables to quantify the E. coli concentrations by counting the positive microwells. We incorporate the most probable number with digital quantification to lower the limit of detection and expand the dynamic range to 7 orders. The digital GUS-AST assay is able to indicate the potency of antibiotics and determine the minimum inhibitory concentrations. A streamlined procedure of urine removal, bacterial separation, and digital GUS-AST is established to perform the direct analysis of bacteria population in urine. The sample-to-result workflow can be finished in 4.5 h with a limit of detection of 39 CFU/mL. With further development for additional pathogens and multiple antibiotic conditions, the digital GUS-AST assay could help physicians to prescribe timely targeted therapies for better patient outcomes and the minimum emergence of resistant bacteria.
Collapse
Affiliation(s)
- Wenshuai Wu
- Research Center for Analytical Instrumentation, Institute of Cyber-Systems and Control, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou 310027, China
| | - Qianbin Zhao
- Center of Health Science and Engineering, Hebei Key Laboratory of Biomaterials and Smart Theranostics, Hebei University of Technology, Tianjin 300131, China
| | - Gaozhe Cai
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
| | - Boran Zhang
- Department of Hydraulic Engineering, College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China
| | - Yuanjie Suo
- Research Center for Analytical Instrumentation, Institute of Cyber-Systems and Control, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou 310027, China
| | - Yang Liu
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 102401, China
| | - Wei Jin
- Research Center for Analytical Instrumentation, Institute of Cyber-Systems and Control, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou 310027, China.,Huzhou Institute of Zhejiang University, Huzhou 313002, China
| | - Ying Mu
- Research Center for Analytical Instrumentation, Institute of Cyber-Systems and Control, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
32
|
Recent Studies on Advance Spectroscopic Techniques for the Identification of Microorganisms: A Review. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
33
|
Alkhawaldeh R, Abu Farha R, Abu Hammour K, Alefishat E. Optimizing antimicrobial therapy in urinary tract infections: A focus on urine culture and sensitivity testing. Front Pharmacol 2022; 13:1058669. [PMID: 36532780 PMCID: PMC9748416 DOI: 10.3389/fphar.2022.1058669] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/15/2022] [Indexed: 09/29/2023] Open
Abstract
Objectives: This cross-sectional study was conducted at Jordan university hospital to evaluate the impact of microbial culture data and sensitivity results on optimizing UTI treatment. Methods: All positive urine cultures requested for adult patients (≥18 years) admitted to Jordan University Hospital (JUH) within the period from January 2019-July 2021 were evaluated. The antibiotics prescribed before and after culture data and sensitivity results were compared to evaluate the impact of these diagnostic measures on optimizing UTI treatment. Results: During the study period, 2400 urine cultures revealed positive results. Among those patients, 1,600 (66.7%) were discharged before the availability of culture results and excluded. Of the remaining 800 patients, 701 patients (87.6%) received empiric treatment. After culture and sensitivity results were available, overall, 84 (10.5%) patients had optimization (improvement) in their UTI management after culture results were known, while 6 (0.8%) patients had a worsening in their treatments. Based on the culture results, we found that only 12.4% of patients were appropriately treated before and after the culture results. Moreover, our results revealed that 31.9% were inappropriately treated for their UTIs before and after culture results. Conclusion: This study revealed an alarmingly high rate of inappropriate treatment of UTIs despite the availability of urine culture and sensitivity data, and that culture results were not used to optimize treatment strategies for UTI. This practice can potentially result in poor health-related outcomes and adversely affects efforts to battle AMR. Multifaceted strategies must be implemented to help clinicians follow the best current evidence and current guidelines in their selection of antibiotics for the management of UTIs.
Collapse
Affiliation(s)
- Rama Alkhawaldeh
- Department of Clinical Pharmacy, Faculty of Pharmacy, Applied Science Private University, Amman, Jordan
| | - Rana Abu Farha
- Department of Clinical Pharmacy, Faculty of Pharmacy, Applied Science Private University, Amman, Jordan
| | - Khawla Abu Hammour
- Department Biopharmaceutics and Clinical Pharmacy, Faculty of Pharmacy, The University of Jordan, Amman, Jordan
| | - Eman Alefishat
- Department Biopharmaceutics and Clinical Pharmacy, Faculty of Pharmacy, The University of Jordan, Amman, Jordan
- Department of Pharmacology, College of Medicine and Health Science, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| |
Collapse
|
34
|
Burnet M, Metcalf DG, Milo S, Gamerith C, Heinzle A, Sigl E, Eitel K, Haalboom M, Bowler PG. A Host-Directed Approach to the Detection of Infection in Hard-to-Heal Wounds. Diagnostics (Basel) 2022; 12:2408. [PMID: 36292097 PMCID: PMC9601189 DOI: 10.3390/diagnostics12102408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/24/2022] [Accepted: 09/26/2022] [Indexed: 01/08/2023] Open
Abstract
Wound infection is traditionally defined primarily by visual clinical signs, and secondarily by microbiological analysis of wound samples. However, these approaches have serious limitations in determining wound infection status, particularly in early phases or complex, chronic, hard-to-heal wounds. Early or predictive patient-derived biomarkers of wound infection would enable more timely and appropriate intervention. The observation that immune activation is one of the earliest responses to pathogen activity suggests that immune markers may indicate wound infection earlier and more reliably than by investigating potential pathogens themselves. One of the earliest immune responses is that of the innate immune cells (neutrophils) that are recruited to sites of infection by signals associated with cell damage. During acute infection, the neutrophils produce oxygen radicals and enzymes that either directly or indirectly destroy invading pathogens. These granular enzymes vary with cell type but include elastase, myeloperoxidase, lysozyme, and cathepsin G. Various clinical studies have demonstrated that collectively, these enzymes, are sensitive and reliable markers of both early-onset phases and established infections. The detection of innate immune cell enzymes in hard-to-heal wounds at point of care offers a new, simple, and effective approach to determining wound infection status and may offer significant advantages over uncertainties associated with clinical judgement, and the questionable value of wound microbiology. Additionally, by facilitating the detection of early wound infection, prompt, local wound hygiene interventions will likely enhance infection resolution and wound healing, reduce the requirement for systemic antibiotic therapy, and support antimicrobial stewardship initiatives in wound care.
Collapse
Affiliation(s)
- Michael Burnet
- Synovo GmbH, Paul Ehrlich Straße 15, 72076 Tuebingen, Germany
| | - Daniel G. Metcalf
- ConvaTec Ltd., First Avenue, Deeside Industrial Park, Deeside CH5 2NU, UK
| | - Scarlet Milo
- ConvaTec Ltd., First Avenue, Deeside Industrial Park, Deeside CH5 2NU, UK
| | - Clemens Gamerith
- Austrian Centre of Industrial Biotechnology, Krennagsse 37, A-8010 Graz, Austria
| | - Andrea Heinzle
- Qualizyme Diagnostics GmbH & Co. KG, Neue Stiftingtalstrasse 2, A-8010 Graz, Austria
| | - Eva Sigl
- Qualizyme Diagnostics GmbH & Co. KG, Neue Stiftingtalstrasse 2, A-8010 Graz, Austria
| | - Kornelia Eitel
- Synovo GmbH, Paul Ehrlich Straße 15, 72076 Tuebingen, Germany
| | - Marieke Haalboom
- Medical School Twente, Medisch Spectrum Twente, 7512 KZ Enschede, The Netherlands
| | | |
Collapse
|
35
|
Freitas AR, Werner G. Antibiotic susceptibility testing for therapy and antimicrobial resistance surveillance: genotype beats phenotype? Future Microbiol 2022; 17:1093-1097. [PMID: 35833803 DOI: 10.2217/fmb-2022-0109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Ana R Freitas
- Department of Biological Sciences, UCIBIO - Applied Molecular Biosciences Unit, REQUIMTE, Laboratory of Microbiology, Faculty of Pharmacy, University of Porto, Porto, 4050-313, Portugal.,Associate Laboratory i4HB - Institute for Health & Bioeconomy, Faculty of Pharmacy, University of Porto, Porto, 4050-313, Portugal.,TOXRUN - Toxicology Research Unit, University Institute of Health Sciences, CESPU, CRL, Gandra, 4585-116, Portugal
| | - Guido Werner
- Department of Infectious Diseases, Division of Nosocomial Pathogens & Antimicrobial Resistances, Robert Koch Institute, Wernigerode Branch, Wernigerode, Germany.,National Reference Centre for Staphylococci & Enterococci, Wernigerode, Germany
| |
Collapse
|
36
|
Bellali S, Haddad G, Iwaza R, Fontanini A, Hisada A, Ominami Y, Raoult D, Khalil JB. Antimicrobial susceptibility testing for Gram positive cocci towards vancomycin using scanning electron microscopy. CURRENT RESEARCH IN MICROBIAL SCIENCES 2022; 3:100154. [PMID: 35909629 PMCID: PMC9325908 DOI: 10.1016/j.crmicr.2022.100154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The rapid detection of resistant bacteria has become a challenge for microbiologists worldwide. Numerous pathogens that cause nosocomial infections are still being treated empirically and have developed resistance mechanisms against key antibiotics. Thus, one of the challenges for researchers has been to develop rapid antimicrobial susceptibility testing (AST) to detect resistant isolates, ensuring better antibiotic stewardship. In this study, we established a proof-of-concept for a new strategy of phenotypic AST on Gram-positive cocci towards vancomycin using scanning electron microscopy (SEM). Our study evaluated the profiling of Enterococcus faecalis, Enterococcus faecium and Staphylococcus aureus after brief incubation with vancomycin. Sixteen isolates were analysed aiming to detect ultrastructural modifications at set timepoints, comparing bacteria with and without vancomycin. After optimising slides preparation and micrographs acquisition, two analytical strategies were used. The high magnification micrographs served to analyse the division of cocci based on the ratio of septa, along with the bacterial size. Susceptible strains with vancomycin showed a reduced septa percentage and the average surface area was consequently double that of the controls. The resistant bacteria revealed multiple septa occurring at advanced timepoints. Low magnification micrographs made it possible to quantify the pixels at different timepoints, confirming the profiling of cocci towards vancomycin. This new phenotypic AST strategy proved to be a promising tool to discriminate between resistant and susceptible cocci within an hour of contact with vancomycin. The analysis strategies applied here would potentially allow the creation of artificial intelligence algorithms for septa detection and bacterial quantification, subsequently creating a rapid automated SEM-AST assay.
Collapse
Affiliation(s)
- Sara Bellali
- Institut Hospitalo-Universitaire Méditerranée Infection, Marseille 13385, France
| | - Gabriel Haddad
- Institut Hospitalo-Universitaire Méditerranée Infection, Marseille 13385, France
- Aix-Marseille Université, Institut de Recherche pour le Développement (IRD), UMR Microbes Evolution Phylogeny and Infections (MEPHI), Marseille 13385, France
| | - Rim Iwaza
- Institut Hospitalo-Universitaire Méditerranée Infection, Marseille 13385, France
- Aix-Marseille Université, Institut de Recherche pour le Développement (IRD), UMR Microbes Evolution Phylogeny and Infections (MEPHI), Marseille 13385, France
| | - Anthony Fontanini
- Institut Hospitalo-Universitaire Méditerranée Infection, Marseille 13385, France
| | - Akiko Hisada
- Hitachi, Ltd., Research & Development Group, 1-280, Higashi-Koigakubo, Kokubunji-shi, Tokyo 185-8601, Japan
| | - Yusuke Ominami
- Hitachi High-Tech Corporation, 882 Ichige, Hitachinaka-shi, Ibaraki-ken 312-8504, Japan
| | - Didier Raoult
- Institut Hospitalo-Universitaire Méditerranée Infection, Marseille 13385, France
- Aix-Marseille Université, Institut de Recherche pour le Développement (IRD), UMR Microbes Evolution Phylogeny and Infections (MEPHI), Marseille 13385, France
| | - Jacques Bou Khalil
- Institut Hospitalo-Universitaire Méditerranée Infection, Marseille 13385, France
- Aix-Marseille Université, Institut de Recherche pour le Développement (IRD), UMR Microbes Evolution Phylogeny and Infections (MEPHI), Marseille 13385, France
| |
Collapse
|
37
|
Santos M, Mariz M, Tiago I, Martins J, Alarico S, Ferreira P. A review on urinary tract infections diagnostic methods: Laboratory-based and point-of-care approaches. J Pharm Biomed Anal 2022; 219:114889. [PMID: 35724611 DOI: 10.1016/j.jpba.2022.114889] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/18/2022] [Accepted: 06/11/2022] [Indexed: 02/07/2023]
Abstract
Urinary tract infections (UTIs) are among the most common infectious diseases worldwide. This type of infections can be healthcare-associated or community-acquired and affects millions of people every year. Different diagnostic procedures are available to detect pathogens in urine and they can be divided into two main categories: laboratory-based and point-of-care (POC) detection techniques. Traditional methodologies are often time-consuming, thus, achieving a rapid and accurate identification of pathogens is a challenging feature that has been pursued by many research groups and companies operating in this area. The purpose of this review is to compare and highlight advantages and disadvantages of the traditional and currently most used detection methods, as well as the emerging POC approaches and the relevant advances in on-site detection of pathogens´ mechanisms, suitable to be adapted to UTI diagnosis. Lately, the commercially available UTI self-testing kits and devices are helping in the diagnosis of urinary infections as patients or care givers are able to perform the test, easily and comfortably at home and, upon the result, decide when to attend an appointment/Urgent Health Care Unit.
Collapse
Affiliation(s)
- Marta Santos
- CIEPQPF, Chemical Engineering Department, University of Coimbra, 3030-790 Coimbra, Portugal
| | - Marcos Mariz
- CIEPQPF, Chemical Engineering Department, University of Coimbra, 3030-790 Coimbra, Portugal
| | - Igor Tiago
- CFE, Centre for Functional Ecology (CFE), Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Jimmy Martins
- Faculty of Medicine and Biomedical Sciences, University of Algarve, 8005-139 Faro, Portugal
| | - Susana Alarico
- CNC, Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; CIBB, Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal; IIIUC, Institute for Interdisciplinary Research, University of Coimbra, 3004-504 Coimbra, Portugal.
| | - Paula Ferreira
- CIEPQPF, Chemical Engineering Department, University of Coimbra, 3030-790 Coimbra, Portugal; Department of Chemical and Biological Engineering, Coimbra Institute of Engineering, 3030-199 Coimbra, Portugal.
| |
Collapse
|
38
|
Saxena S, Punjabi K, Ahamad N, Singh S, Bendale P, Banerjee R. Nanotechnology Approaches for Rapid Detection and Theranostics of Antimicrobial Resistant Bacterial Infections. ACS Biomater Sci Eng 2022; 8:2232-2257. [PMID: 35546526 DOI: 10.1021/acsbiomaterials.1c01516] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
As declared by WHO, antimicrobial resistance (AMR) is a high priority issue with a pressing need to develop impactful technologies to curb it. The rampant and inappropriate use of antibiotics due to the lack of adequate and timely diagnosis is a leading cause behind AMR evolution. Unfortunately, populations with poor economic status and those residing in densely populated areas are the most affected ones, frequently leading to emergence of AMR pathogens. Classical approaches for AMR diagnostics like phenotypic methods, biochemical assays, and molecular techniques are cumbersome and resource-intensive and involve a long turnaround time to yield confirmatory results. In contrast, recent emergence of nanotechnology-assisted approaches helps to overcome challenges in classical approaches and offer simpler, more sensitive, faster, and more affordable solutions for AMR diagnostics. Nanomaterial platforms (metallic, quantum-dot, carbon-based, upconversion, etc.), nanoparticle-based rapid point-of-care platforms, nano-biosensors (optical, mechanical, electrochemical), microfluidic-assisted devices, and importantly, nanotheranostic devices for diagnostics with treatment of AMR infections are examples of rapidly growing nanotechnology approaches used for AMR management. This review comprehensively summarizes the past 10 years of research progress on nanotechnology approaches for AMR diagnostics and for estimating antimicrobial susceptibility against commonly used antibiotics. This review also highlights several bottlenecks in nanotechnology approaches that need to be addressed prior to considering their translation to clinics.
Collapse
Affiliation(s)
- Survanshu Saxena
- Nanomedicine Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Kapil Punjabi
- Nanomedicine Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Nadim Ahamad
- Nanomedicine Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Subhasini Singh
- Nanomedicine Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Prachi Bendale
- Nanomedicine Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Rinti Banerjee
- Nanomedicine Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| |
Collapse
|
39
|
Kuil SD, Hidad S, Schneeberger C, Singh P, Rhodes P, de Jong MD, Visser CE. Susceptibility Testing by Volatile Organic Compound Detection Direct from Positive Blood Cultures: A Proof-of-Principle Laboratory Study. Antibiotics (Basel) 2022; 11:antibiotics11060705. [PMID: 35740111 PMCID: PMC9220186 DOI: 10.3390/antibiotics11060705] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 12/23/2022] Open
Abstract
Background: Bacteria produce volatile organic compounds (VOCs) during growth, which can be detected by colorimetric sensor arrays (CSAs). The SpecifAST® system (Specific Diagnostics) employs this technique to enable antibiotic susceptibility testing (AST) directly from blood cultures without prior subculture of isolates. The aim of this study was to compare the SpecifAST® AST results and analysis time to the VITEK®2 (bioMérieux) system. Methods: In a 12-month single site prospective study, remnants of clinical positive monomicrobial blood cultures were combined with a series of antibiotic concentrations. Volatile emission was monitored at 37 °C via CSAs. Minimal Inhibitory Concentrations (MICs) of seven antimicrobial agents for Enterobacterales, Staphylococcus, and Enterococcus spp. were compared to VITEK®2 AST results. MICs were interpreted according to EUCAST clinical breakpoints. Performance was assessed by calculating agreement and discrepancy rates. Results: In total, 96 positive blood cultures containing Enterobacterales, Staphylococcus, and Enterococcus spp. were tested (269 bug–drug combinations). The categorical agreement of the SpecifAST® system compared to the VITEK®2 system was 100% and 91% for Gram-negatives and Gram-positives, respectively. Errors among Gram-positives were from coagulase-negative staphylococci. Overall results were available in 3.1 h (±0.9 h) after growth detection without the need for subculture steps. Conclusion: The AST results based on VOC detection are promising and warrant further evaluation in studies with a larger sample of bacterial species and antimicrobials.
Collapse
Affiliation(s)
- Sacha Daniëlle Kuil
- Department of Medical Microbiology, Amsterdam Infection & Immunity Institute, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (S.H.); (C.S.); (M.D.d.J.); (C.E.V.)
- Correspondence: ; Tel.: +312-0566-7625
| | - Soemeja Hidad
- Department of Medical Microbiology, Amsterdam Infection & Immunity Institute, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (S.H.); (C.S.); (M.D.d.J.); (C.E.V.)
| | - Caroline Schneeberger
- Department of Medical Microbiology, Amsterdam Infection & Immunity Institute, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (S.H.); (C.S.); (M.D.d.J.); (C.E.V.)
| | - Pragya Singh
- Specific Diagnostics, San Jose, CA 95134, USA; (P.S.); (P.R.)
| | - Paul Rhodes
- Specific Diagnostics, San Jose, CA 95134, USA; (P.S.); (P.R.)
| | - Menno Douwe de Jong
- Department of Medical Microbiology, Amsterdam Infection & Immunity Institute, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (S.H.); (C.S.); (M.D.d.J.); (C.E.V.)
| | - Caroline Elisabeth Visser
- Department of Medical Microbiology, Amsterdam Infection & Immunity Institute, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (S.H.); (C.S.); (M.D.d.J.); (C.E.V.)
| |
Collapse
|
40
|
Alkhawaldeh R, Abu Farha R, Abu Hammour K, Alefishat E. The Appropriateness of Empiric Treatment of Urinary Tract Infections in a Tertiary Teaching Hospital in Joran: A Cross-Sectional Study. Antibiotics (Basel) 2022; 11:antibiotics11050629. [PMID: 35625272 PMCID: PMC9137745 DOI: 10.3390/antibiotics11050629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 04/23/2022] [Accepted: 04/28/2022] [Indexed: 02/04/2023] Open
Abstract
This is a cross-sectional study that was conducted at Jordan University Hospital (JUH) to evaluate the appropriateness of Urinary Tract Infection (UTI) empiric treatment based on microbial culture data and susceptibility testing. All urine cultures requested for adult patients (≥18 years) admitted to JUH within the period from January 2019–July 2021 were reviewed and only those cultures with positive episodes of infection were considered. In this study, 6950 urine culture episodes were screened; among them, 34.5% (n = 2400) revealed positive results. Among those patients with positive culture episodes, 1600 patients (66.7%) were discharged before the availability of culture results and were excluded. Of the remaining eligible 800 patients, 701 (87.6%) received empiric treatment. In 26.8% of the eligible cases (n = 214), the prescribed empiric agents failed to have appropriate coverage of the identified pathogens, and in 14.6% of the cases (n = 117) the identified microorganisms were reported as resistant to the prescribed empiric agents. Furthermore, only 13.4% of the patients (n = 107) were appropriately treated for their UTI with empiric antibacterial agents. We were not able to judge the appropriateness of UTI treatment for one third (n = 263, 32.9%) of the patients, because they did not have susceptibility reports performed. This study revealed an alarmingly high rate of inappropriate treatment of UTIs, which encourages the emergence of bacterial resistance and affects health-related outcomes negatively. Therefore, antimicrobial stewardship programs must be applied to optimize antibiotic consumption in hospital settings.
Collapse
Affiliation(s)
- Rama Alkhawaldeh
- Department of Clinical Pharmacy, Faculty of Pharmacy, Applied Science Private University, Amman 11931, Jordan; (R.A.); (R.A.F.)
| | - Rana Abu Farha
- Department of Clinical Pharmacy, Faculty of Pharmacy, Applied Science Private University, Amman 11931, Jordan; (R.A.); (R.A.F.)
| | - Khawla Abu Hammour
- Department Biopharmaceutics and Clinical Pharmacy, Faculty of Pharmacy, The University of Jordan, Amman 11942, Jordan;
| | - Eman Alefishat
- Department Biopharmaceutics and Clinical Pharmacy, Faculty of Pharmacy, The University of Jordan, Amman 11942, Jordan;
- Department of Pharmacology, College of Medicine and Health Science, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates
- Correspondence: ; Tel.: +97-15-018-466
| |
Collapse
|
41
|
Choi S. Electrogenic Bacteria Promise New Opportunities for Powering, Sensing, and Synthesizing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2107902. [PMID: 35119203 DOI: 10.1002/smll.202107902] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/06/2022] [Indexed: 06/14/2023]
Abstract
Considerable research efforts into the promises of electrogenic bacteria and the commercial opportunities they present are attempting to identify potential feasible applications. Metabolic electrons from the bacteria enable electricity generation sufficient to power portable or small-scale applications, while the quantifiable electric signal in a miniaturized device platform can be sensitive enough to monitor and respond to changes in environmental conditions. Nanomaterials produced by the electrogenic bacteria can offer an innovative bottom-up biosynthetic approach to synergize bacterial electron transfer and create an effective coupling at the cell-electrode interface. Furthermore, electrogenic bacteria can revolutionize the field of bioelectronics by effectively interfacing electronics with microbes through extracellular electron transfer. Here, these new directions for the electrogenic bacteria and their recent integration with micro- and nanosystems are comprehensively discussed with specific attention toward distinct applications in the field of powering, sensing, and synthesizing. Furthermore, challenges of individual applications and strategies toward potential solutions are provided to offer valuable guidelines for practical implementation. Finally, the perspective and view on how the use of electrogenic bacteria can hold immeasurable promise for the development of future electronics and their applications are presented.
Collapse
Affiliation(s)
- Seokheun Choi
- Bioelectronics & Microsystems Laboratory, Department of Electrical & Computer Engineering, State University of New York at Binghamton, Binghamton, NY, 13902, USA
- Center for Research in Advanced Sensing Technologies & Environmental Sustainability, State University of New York at Binghamton, Binghamton, NY, 13902, USA
| |
Collapse
|
42
|
Tjandra KC, Ram-Mohan N, Abe R, Hashemi MM, Lee JH, Chin SM, Roshardt MA, Liao JC, Wong PK, Yang S. Diagnosis of Bloodstream Infections: An Evolution of Technologies towards Accurate and Rapid Identification and Antibiotic Susceptibility Testing. Antibiotics (Basel) 2022; 11:511. [PMID: 35453262 PMCID: PMC9029869 DOI: 10.3390/antibiotics11040511] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/05/2022] [Accepted: 04/08/2022] [Indexed: 02/07/2023] Open
Abstract
Bloodstream infections (BSI) are a leading cause of death worldwide. The lack of timely and reliable diagnostic practices is an ongoing issue for managing BSI. The current gold standard blood culture practice for pathogen identification and antibiotic susceptibility testing is time-consuming. Delayed diagnosis warrants the use of empirical antibiotics, which could lead to poor patient outcomes, and risks the development of antibiotic resistance. Hence, novel techniques that could offer accurate and timely diagnosis and susceptibility testing are urgently needed. This review focuses on BSI and highlights both the progress and shortcomings of its current diagnosis. We surveyed clinical workflows that employ recently approved technologies and showed that, while offering improved sensitivity and selectivity, these techniques are still unable to deliver a timely result. We then discuss a number of emerging technologies that have the potential to shorten the overall turnaround time of BSI diagnosis through direct testing from whole blood-while maintaining, if not improving-the current assay's sensitivity and pathogen coverage. We concluded by providing our assessment of potential future directions for accelerating BSI pathogen identification and the antibiotic susceptibility test. While engineering solutions have enabled faster assay turnaround, further progress is still needed to supplant blood culture practice and guide appropriate antibiotic administration for BSI patients.
Collapse
Affiliation(s)
- Kristel C. Tjandra
- Department of Emergency Medicine, Stanford University School of Medicine, Palo Alto, CA 94305, USA; (K.C.T.); (N.R.-M.); (R.A.); (M.M.H.)
| | - Nikhil Ram-Mohan
- Department of Emergency Medicine, Stanford University School of Medicine, Palo Alto, CA 94305, USA; (K.C.T.); (N.R.-M.); (R.A.); (M.M.H.)
| | - Ryuichiro Abe
- Department of Emergency Medicine, Stanford University School of Medicine, Palo Alto, CA 94305, USA; (K.C.T.); (N.R.-M.); (R.A.); (M.M.H.)
| | - Marjan M. Hashemi
- Department of Emergency Medicine, Stanford University School of Medicine, Palo Alto, CA 94305, USA; (K.C.T.); (N.R.-M.); (R.A.); (M.M.H.)
| | - Jyong-Huei Lee
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA; (J.-H.L.); (S.M.C.); (M.A.R.); (P.K.W.)
| | - Siew Mei Chin
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA; (J.-H.L.); (S.M.C.); (M.A.R.); (P.K.W.)
| | - Manuel A. Roshardt
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA; (J.-H.L.); (S.M.C.); (M.A.R.); (P.K.W.)
| | - Joseph C. Liao
- Department of Urology, Stanford University School of Medicine, Stanford, CA 94305, USA;
- Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304, USA
| | - Pak Kin Wong
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA; (J.-H.L.); (S.M.C.); (M.A.R.); (P.K.W.)
- Department of Mechanical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
- Department of Surgery, The Pennsylvania State University, Hershey, PA 17033, USA
| | - Samuel Yang
- Department of Emergency Medicine, Stanford University School of Medicine, Palo Alto, CA 94305, USA; (K.C.T.); (N.R.-M.); (R.A.); (M.M.H.)
| |
Collapse
|
43
|
Zhang W, Chen X, Zhang J, Chen X, Zhou L, Wang P, Hong W. Rapid antimicrobial susceptibility testing for mixed bacterial infection in urine by AI-stimulated Raman scattering metabolic imaging. MEDICINE IN NOVEL TECHNOLOGY AND DEVICES 2022. [DOI: 10.1016/j.medntd.2022.100132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
44
|
Abstract
Early initiated adequate antibiotic treatment is essential in intensive care. Shortening the length of antibiotic susceptibility testing (AST) can accelerate clinical decision-making. Our objective was to develop a simple flow cytometry (FC)-based AST that produces reliable results within a few hours. We developed a FC-based AST protocol (MICy) and tested it on six different bacteria strains (Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Staphylococcus aureus, Streptococcus pyogenes, Enterococcus faecalis) in Mueller-Hinton and Luria-Bertani broth. We monitored the bacterial growth by FC to define the optimal time of AST. All bacteria were tested against 12 antibiotics and the MIC values were compared to microdilution used as reference method. McNemar and Fleiss' kappa inter-observer tests were performed to analyze the bias between the two methods. Susceptibility profiles of the two methods were also compared. We found that FC is able to detect the bacterial growth after 4-h incubation. The point-by-point comparison of MICy and microdilution resulted in exact match above 87% (2642/3024) of all measurements. The MIC values obtained by MICy and microdilution agreed over 80% (173/216) within ±1 dilution range that gives a substantial inter-observer agreement with weighted Fleiss' kappa. By using the EUCAST clinical breakpoints, we defined susceptibility profiles of MICy that were identical to microdilution in more than 92% (197/213) of the decisions. MICy resulted 8.7% major and 3.2% very major discrepancies. MICy is a new, simple FC-based AST method that produces susceptibility profile with low failure rate a workday earlier than the microdilution method. IMPORTANCE MICy is a new, simple and rapid flow cytometry based antibiotic susceptibility testing (AST) method that produces susceptibility profile a workday earlier than the microdilution method or other classical phenotypic AST methods. Shortening the length of AST can accelerate clinical decision-making as targeted antibiotic treatment improves clinical outcomes and reduces mortality, duration of artificial ventilation, and length of stay in intensive care unit. It can also reduce nursing time and costs and the spreading of antibiotic resistance. In this study, we present the workflow and methodology of MICy and compare the results produced by MICy to microdilution step by step.
Collapse
|
45
|
Systematic Evaluation of the Accelerate Pheno System for Susceptibility Testing of Gram-Negative Bacteria Isolated from Blood Cultures. Microbiol Spectr 2021; 9:e0183621. [PMID: 34937177 PMCID: PMC8694102 DOI: 10.1128/spectrum.01836-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacteremia is a major cause of morbidity and mortality. Rapid identification of pathogens for early targeted antimicrobial therapy is crucial for detecting emergence of antibiotic resistance and improving outcomes. However, there are limited data regarding the analytical performance of a rapid identification (ID) and antimicrobial susceptibility testing (AST) method like Accelerate Pheno blood culture detection system compared with the conventional methods routinely used in microbiology laboratories. We undertook a systematic quality improvement (QI) study to compare AST results obtained with Accelerate Pheno system rapid ID/AST system with a standard reference method in a university hospital microbiology laboratory. This was a single center, retrospective (5/10/19 to 8/1/19) and prospective (8/1/19 to 1/31/20) study that evaluated all blood cultures growing Gram-negative rods (GNR). We compared AST results obtained using the reference disk diffusion (DD) susceptibility method with those obtained by the Accelerate Pheno system. We calculated the error rates and categorical agreement between the Accelerate Pheno system and DD for each organism and specific drug tested. We evaluated 355 blood cultures growing GNR, of which 284 met the inclusion criteria. We grouped all Enterobacterales (n = 263) for analysis (156 Escherichiacoli, 60 Klebsiella spp., 20 Proteus mirabilis, 17 Enterobacter spp., and 10 Serratiamarcescens). Twenty-one Pseudomonasaeruginosa isolates were analyzed separately. For Enterobacterales, categorical agreement (CA) was ≥90% for amikacin (AMK), aztreonam (ATM), cefepime (FEP), ceftriaxone (CRO), ertapenem (ETP), gentamicin (GEN), meropenem (MEM), and tobramycin (TOB); and very major error (VME) was <5% for ampicillin/sulbactam (SAM), GEN, MEM, TOB, CRO, and ceftazidime (CAZ). For ciprofloxacin (CIP), CA was 87% and VME was 8%. For P. aeruginosa, CA was ≥90% for AMK and TOB, and VME was ≥5% for AMK, CAZ, GEN, MEM, piperacillin-tazobactam (TZP), and TOB. Accelerate Pheno rapid ID/AST system for GNR isolated from blood culture (BCs) was reliable for some but not all agents in the panel. Based on the findings from this study, our laboratory reports Accelerate Pheno system AST results only for Enterobacterales, and we limit our reports to CRO, CAZ, TZP, CIP, ATM, and GEN. IMPORTANCE This was an 8-month retrospective and prospective study looking at the analytical performance of the Accelerate Pheno system on clinical isolates obtained from patients seen in our tertiary care hospital. Most of the published literature on the analytical performance of Accelerate Pheno System has been from clinical trials with limited data from clinical microbiology laboratories postimplementation of the system. Here we compare the AST results on 355 blood cultures growing Gram-negative bacteria in Accelerate Pheno system with the CLSI reference disk diffusion (DD) method. The findings from this study highlight the “real-world” performance of the Accelerate Pheno system for Gram-negative bacteria from blood cultures. We provide data to show the reliable susceptibility testing results of Enterobacterales for most of the commonly used antimicrobial agents and significant limitation for susceptibility testing results of Pseudomonas aeruginosa on the Accelerate Pheno system.
Collapse
|
46
|
Cave R, Cole J, Mkrtchyan HV. Surveillance and prevalence of antimicrobial resistant bacteria from public settings within urban built environments: Challenges and opportunities for hygiene and infection control. ENVIRONMENT INTERNATIONAL 2021; 157:106836. [PMID: 34479136 PMCID: PMC8443212 DOI: 10.1016/j.envint.2021.106836] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/12/2021] [Accepted: 08/15/2021] [Indexed: 05/09/2023]
Abstract
Antimicrobial resistant (AMR) bacteria present one of the biggest threats to public health; this must not be forgotten while global attention is focussed on the COVID-19 pandemic. Resistant bacteria have been demonstrated to be transmittable to humans in many different environments, including public settings in urban built environments where high-density human activity can be found, including public transport, sports arenas and schools. However, in comparison to healthcare settings and agriculture, there is very little surveillance of AMR in the built environment outside of healthcare settings and wastewater. In this review, we analyse the existing literature to aid our understanding of what surveillance has been conducted within different public settings and identify what this tells us about the prevalence of AMR. We highlight the challenges that have been reported; and make recommendations for future studies that will help to fill knowledge gaps present in the literature.
Collapse
Affiliation(s)
- Rory Cave
- School of Biomedical Sciences, University of West London, United Kingdom
| | - Jennifer Cole
- Royal Holloway University of London, Department of Health Studies, United Kingdom
| | | |
Collapse
|
47
|
Zhao H, Kennedy JN, Wang S, Brant EB, Bernard GR, DeMerle K, Chang CCH, Angus DC, Seymour CW. Revising Host Phenotypes of Sepsis Using Microbiology. Front Med (Lausanne) 2021; 8:775511. [PMID: 34805235 PMCID: PMC8602092 DOI: 10.3389/fmed.2021.775511] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 10/18/2021] [Indexed: 01/27/2023] Open
Abstract
Background: There is wide heterogeneity in sepsis in causative pathogens, host response, organ dysfunction, and outcomes. Clinical and biologic phenotypes of sepsis are proposed, but the role of pathogen data on sepsis classification is unknown. Methods: We conducted a secondary analysis of the Recombinant Human Activated Protein C (rhAPC) Worldwide Evaluation in Severe Sepsis (PROWESS) Study. We used latent class analysis (LCA) to identify sepsis phenotypes using, (i) only clinical variables ("host model") and, (ii) combining clinical with microbiology variables (e.g., site of infection, culture-derived pathogen type, and anti-microbial resistance characteristics, "host-pathogen model"). We describe clinical characteristics, serum biomarkers, and outcomes of host and host-pathogen models. We tested the treatment effects of rhAPC by phenotype using Kaplan-Meier curves. Results: Among 1,690 subjects with severe sepsis, latent class modeling derived a 4-class host model and a 4-class host-pathogen model. In the host model, alpha type (N = 327, 19%) was younger and had less shock; beta type (N=518, 31%) was older with more comorbidities; gamma type (N = 532, 32%) had more pulmonary dysfunction; delta type (N = 313, 19%) had more liver, renal and hematologic dysfunction and shock. After the addition of microbiologic variables, 772 (46%) patients changed phenotype membership, and the median probability of phenotype membership increased from 0.95 to 0.97 (P < 0.01). When microbiology data were added, the contribution of individual variables to phenotypes showed greater change for beta and gamma types. In beta type, the proportion of abdominal infections (from 20 to 40%) increased, while gamma type patients had an increased rate of lung infections (from 50 to 78%) with worsening pulmonary function. Markers of coagulation such as d-dimer and plasminogen activator inhibitor (PAI)-1 were greater in the beta type and lower in the gamma type. The 28 day mortality was significantly different for individual phenotypes in host and host-pathogen models (both P < 0.01). The treatment effect of rhAPC obviously changed in gamma type when microbiology data were added (P-values of log rank test changed from 0.047 to 0.780). Conclusions: Sepsis host phenotype assignment was significantly modified when microbiology data were added to clinical variables, increasing cluster cohesiveness and homogeneity.
Collapse
Affiliation(s)
- Huiying Zhao
- Department of Critical Care Medicine, Peking University People's Hospital, Beijing, China,Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, United States,Clinical Research, Investigation, and Systems Modeling of Acute Illness (CRISMA) Center, Pittsburgh, PA, United States,*Correspondence: Huiying Zhao
| | - Jason N. Kennedy
- Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, United States,Clinical Research, Investigation, and Systems Modeling of Acute Illness (CRISMA) Center, Pittsburgh, PA, United States
| | - Shu Wang
- Department of Biostatistics, University of Florida, Gainesville, FL, United States
| | - Emily B. Brant
- Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, United States,Clinical Research, Investigation, and Systems Modeling of Acute Illness (CRISMA) Center, Pittsburgh, PA, United States
| | - Gordon R. Bernard
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Kimberley DeMerle
- Clinical Research, Investigation, and Systems Modeling of Acute Illness (CRISMA) Center, Pittsburgh, PA, United States
| | - Chung-Chou H. Chang
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA, United States
| | - Derek C. Angus
- Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, United States,Clinical Research, Investigation, and Systems Modeling of Acute Illness (CRISMA) Center, Pittsburgh, PA, United States
| | - Christopher W. Seymour
- Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, United States,Clinical Research, Investigation, and Systems Modeling of Acute Illness (CRISMA) Center, Pittsburgh, PA, United States,Department of Emergency Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
48
|
Sklavounos AA, Nemr CR, Kelley SO, Wheeler AR. Bacterial classification and antibiotic susceptibility testing on an integrated microfluidic platform. LAB ON A CHIP 2021; 21:4208-4222. [PMID: 34549763 DOI: 10.1039/d1lc00609f] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
With the prevalence of bacterial infections and increasing levels of antibiotic resistance comes the need for rapid and accurate methods for bacterial classification (BC) and antibiotic susceptibility testing (AST). Here we demonstrate the use of the fluid handling technique digital microfluidics (DMF) for automated and simultaneous BC and AST using growth metabolic markers. Custom instrumentation was developed for this application including an integrated heating module and a machine-learning-enabled low-cost colour camera for real-time absorbance and fluorescent sample monitoring on multipurpose devices. Antibiotic dilutions along with sample handling, mixing and incubation at 37 °C were all pre-programmed and processed automatically. By monitoring the metabolism of resazurin, resorufin beta-D-glucuronide and resorufin beta-D-galactopyranoside to resorufin, BC and AST were achieved in under 18 h. AST was validated in two uropathogenic E. coli strains with antibiotics ciprofloxacin and nitrofurantoin. BC was performed independently and simultaneously with ciprofloxacin AST for E. coli, K. pneumoniae, P. mirabilis and S. aureus. Finally, a proof-of-concept multiplexed system for breakpoint testing of two antibiotics, as well as E. coli and coliform classification was investigated with a multidrug-resistant E. coli strain. All bacteria were correctly identified, while AST and breakpoint test results were in essential and category agreement with reference methods. These results show the versatility and accuracy of this all-in-one microfluidic system for analysis of bacterial growth and phenotype.
Collapse
Affiliation(s)
- Alexandros A Sklavounos
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Canada.
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, Ontario, M5S 3G9, Canada
| | - Carine R Nemr
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Canada.
| | - Shana O Kelley
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Canada.
- Department of Pharmaceutical Science, University of Toronto, 144 College Street, Toronto, Ontario, M5S 3E5, Canada
- Institute of Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario, M5S 3G9, Canada
| | - Aaron R Wheeler
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Canada.
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, Ontario, M5S 3G9, Canada
- Institute of Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario, M5S 3G9, Canada
| |
Collapse
|
49
|
Diagnostic and prognostic prediction models in ventilator-associated pneumonia: Systematic review and meta-analysis of prediction modelling studies. J Crit Care 2021; 67:44-56. [PMID: 34673331 DOI: 10.1016/j.jcrc.2021.10.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 08/23/2021] [Accepted: 10/04/2021] [Indexed: 12/12/2022]
Abstract
PURPOSE Existing expert systems have not improved the diagnostic accuracy of ventilator-associated pneumonia (VAP). The aim of this systematic literature review was to review and summarize state-of-the-art prediction models detecting or predicting VAP from exhaled breath, patient reports and demographic and clinical characteristics. METHODS Both diagnostic and prognostic prediction models were searched from a representative list of multidisciplinary databases. An extensive list of validated search terms was added to the search to cover papers failing to mention predictive research in their title or abstract. Two authors independently selected studies, while three authors extracted data using predefined criteria and data extraction forms. The Prediction Model Risk of Bias Assessment Tool was used to assess both the risk of bias and the applicability of the prediction modelling studies. Technology readiness was also assessed. RESULTS Out of 2052 identified studies, 20 were included. Fourteen (70%) studies reported the predictive performance of diagnostic models to detect VAP from exhaled human breath with a high degree of sensitivity and a moderate specificity. In addition, the majority of them were validated on a realistic dataset. The rest of the studies reported the predictive performance of diagnostic and prognostic prediction models to detect VAP from unstructured narratives [2 (10%)] as well as baseline demographics and clinical characteristics [4 (20%)]. All studies, however, had either a high or unclear risk of bias without significant improvements in applicability. CONCLUSIONS The development and deployment of prediction modelling studies are limited in VAP and related outcomes. More computational, translational, and clinical research is needed to bring these tools from the bench to the bedside. REGISTRATION PROSPERO CRD42020180218, registered on 05-07-2020.
Collapse
|
50
|
Kandasamy K, Jannatin M, Chen YC. Rapid Detection of Pathogenic Bacteria by the Naked Eye. BIOSENSORS 2021; 11:317. [PMID: 34562907 PMCID: PMC8469438 DOI: 10.3390/bios11090317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/01/2021] [Accepted: 09/02/2021] [Indexed: 11/23/2022]
Abstract
Escherichia coli O157:H7 and Staphylococcus aureus are common pathogens. Gram-negative bacteria, such as E. coli, contain high concentrations of endogenous peroxidases, whereas Gram-positive bacteria, such as S. aureus, possess abundant endogenous catalases. Colorless 3,5,3',5'-tetramethyl benzidine (TMB) changes to blue oxidized TMB in the presence of E. coli and a low concentration of H2O2 (e.g., ~11 mM) at pH of 3. Moreover, visible air bubbles containing oxygen are generated after S. aureus reacts with H2O2 at a high concentration (e.g., 180 mM) at pH of 3. A novel method for rapidly detecting the presence of bacteria on the surfaces of samples, on the basis of these two endogenous enzymatic reactions, was explored. Briefly, a cotton swab was used for collecting bacteria from the surfaces of samples, such as tomatoes and door handles, then two-step endogenous enzymatic reactions were carried out. In the first step, a cotton swab containing bacteria was immersed in a reagent comprising H2O2 (11.2 mM) and TMB for 25 min. In the second step, the swab was dipped further in H2O2 (180 mM) at pH 3 for 5 min. Results showed that the presence of Gram-negative bacteria, such as E. coli with a cell number of ≥ ~105, and Gram-positive bacteria, such as S. aureus with a cell number of ≥ ~106, can be visually confirmed according to the appearance of the blue color in the swab and the formation of air bubbles in the reagent solution, respectively, within ~30 min. To improve visual sensitivity, we dipped the swab carrying the bacteria in a vial containing a growth broth, incubated it for ~4 h, and carried out the two-stage reaction steps. Results showed that bluish swabs resulting from the presence of E. coli O157: H7 with initial cell numbers of ≥ ~34 were obtained, whereas air bubbles were visible in the samples containing S. aureus with initial cell numbers of ≥ ~8.5 × 103.
Collapse
Affiliation(s)
- Karthikeyan Kandasamy
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu 300, Taiwan; (K.K.); (M.J.)
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Miftakhul Jannatin
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu 300, Taiwan; (K.K.); (M.J.)
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Yu-Chie Chen
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu 300, Taiwan; (K.K.); (M.J.)
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| |
Collapse
|