1
|
Faouzi A, Arnaud A, Hallé F, Roussel J, Aymard M, Denavit V, Do CV, Mularoni A, Salah M, ElHady A, Pham TN, Bancet A, Le Borgne M, Terreux R, Barret R, Engel M, Lomberget T. Design, synthesis, and structure-activity relationship studies of 6 H-benzo[ b]indeno[1,2- d]thiophen-6-one derivatives as DYRK1A/CLK1/CLK4/haspin inhibitors. RSC Med Chem 2024:d4md00537f. [PMID: 39430953 PMCID: PMC11487425 DOI: 10.1039/d4md00537f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 09/06/2024] [Indexed: 10/22/2024] Open
Abstract
A series of sulfur-containing tetracycles was designed and evaluated for their ability to inhibit protein kinase DYRK1A, a target known to have several potential therapeutic applications including cancers, Down syndrome or Alzheimer's disease. Our medicinal chemistry strategy relied on the design of new compounds using ring contraction/isosteric replacement and constrained analogy of known DYRK1A inhibitors, thus resulting in their DYRK1A inhibitory activity enhancement. Whereas a good inhibitory effect of targeted DYRK1A protein was observed for 5-hydroxy compounds 4i-k (IC50 = 35-116 nM) and the 5-methoxy derivative 4e (IC50 = 52 nM), a fairly good selectivity towards its known DYRK1B off-target was observed for 4k. In addition, the most active compound 4k, having an ATP-competitive mechanism of action, proved to be also a potent inhibitor of CLK1/CLK4 (IC50 = 20 and 26 nM) and, to a lesser extent, of haspin (IC50 = 76 nM) kinases. In silico docking studies within the DYRK1A, CLK1/CLK4 and haspin ATP binding sites were carried out to understand the interactions of our tetracyclic derivatives 4 with these targets. Antiproliferative activities on U87/U373 glioblastoma cell lines of the most potent compound 4k showed a moderate effect (IC50 values between 33 and 46 μM). Microsomal stabilities of the designed compounds 4a-m were also investigated, showing great disparities, depending on benzo[b]thiophene ring 5-substitution.
Collapse
Affiliation(s)
- Abdelfattah Faouzi
- Universite Claude Bernard Lyon 1, EA 4446 Bioactive Molecules and Medicinal Chemistry, Faculté de Pharmacie, ISPB, Univ Lyon F-69373 Lyon Cedex 08 France
| | - Alexandre Arnaud
- Universite Claude Bernard Lyon 1, EA 4446 Bioactive Molecules and Medicinal Chemistry, Faculté de Pharmacie, ISPB, Univ Lyon F-69373 Lyon Cedex 08 France
| | - François Hallé
- Universite Claude Bernard Lyon 1, CNRS UMR 5246, Institut de Chimie et Biochimie Moléculaires et Supramoléculaires (ICBMS), COSSBA Team, Faculté de Pharmacie, ISPB 8, avenue Rockefeller F-69373 Lyon Cedex 08 France
| | - Jean Roussel
- Universite Claude Bernard Lyon 1, CNRS UMR 5246, Institut de Chimie et Biochimie Moléculaires et Supramoléculaires (ICBMS), COSSBA Team, Faculté de Pharmacie, ISPB 8, avenue Rockefeller F-69373 Lyon Cedex 08 France
| | - Mandy Aymard
- Universite Claude Bernard Lyon 1, CNRS UMR 5246, Institut de Chimie et Biochimie Moléculaires et Supramoléculaires (ICBMS), COSSBA Team, Faculté de Pharmacie, ISPB 8, avenue Rockefeller F-69373 Lyon Cedex 08 France
| | - Vincent Denavit
- Universite Claude Bernard Lyon 1, CNRS UMR 5246, Institut de Chimie et Biochimie Moléculaires et Supramoléculaires (ICBMS), COSSBA Team, Faculté de Pharmacie, ISPB 8, avenue Rockefeller F-69373 Lyon Cedex 08 France
| | - Cong Viet Do
- Universite Claude Bernard Lyon 1, EA 4446 Bioactive Molecules and Medicinal Chemistry, Faculté de Pharmacie, ISPB, Univ Lyon F-69373 Lyon Cedex 08 France
- University of Science and Technology of HanoÏ USTH 18 Hoang Quoc Viet Hanoi 100000 Vietnam
| | - Angélique Mularoni
- Universite Claude Bernard Lyon 1, EA 4446 Bioactive Molecules and Medicinal Chemistry, Faculté de Pharmacie, ISPB, Univ Lyon F-69373 Lyon Cedex 08 France
| | - Mohamed Salah
- Pharmaceutical and Medicinal Chemistry, Saarland University Campus C2.3 D-66123 Saarbrücken Germany
- Department of Pharmaceutical Chemistry, School of Pharmacy, Newgiza University (NGU) Newgiza, km 22 Cairo-Alexandria Desert Road 12577 Cairo Egypt
| | - Ahmed ElHady
- Pharmaceutical and Medicinal Chemistry, Saarland University Campus C2.3 D-66123 Saarbrücken Germany
- School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation New Administrative Capital Cairo 11865 Egypt
| | - Thanh-Nhat Pham
- Universite Claude Bernard Lyon 1, EA 4446 Bioactive Molecules and Medicinal Chemistry, Faculté de Pharmacie, ISPB, Univ Lyon F-69373 Lyon Cedex 08 France
| | - Alexandre Bancet
- Universite Claude Bernard Lyon 1, EA 4446 Bioactive Molecules and Medicinal Chemistry, Faculté de Pharmacie, ISPB, Univ Lyon F-69373 Lyon Cedex 08 France
| | - Marc Le Borgne
- Universite Claude Bernard Lyon 1, EA 4446 Bioactive Molecules and Medicinal Chemistry, Faculté de Pharmacie, ISPB, Univ Lyon F-69373 Lyon Cedex 08 France
| | - Raphaël Terreux
- Universite Claude Bernard Lyon 1, CNRS UMR 5305, LBTI, ECMO Team, Institut de Biologie et Chimie des Protéines 7 Passage du Vercors 69367 Lyon Cedex 07 France
| | - Roland Barret
- Universite Claude Bernard Lyon 1, EA 4446 Bioactive Molecules and Medicinal Chemistry, Faculté de Pharmacie, ISPB, Univ Lyon F-69373 Lyon Cedex 08 France
| | - Matthias Engel
- Pharmaceutical and Medicinal Chemistry, Saarland University Campus C2.3 D-66123 Saarbrücken Germany
| | - Thierry Lomberget
- Universite Claude Bernard Lyon 1, CNRS UMR 5246, Institut de Chimie et Biochimie Moléculaires et Supramoléculaires (ICBMS), COSSBA Team, Faculté de Pharmacie, ISPB 8, avenue Rockefeller F-69373 Lyon Cedex 08 France
- Universite Claude Bernard Lyon 1, EA 4446 Bioactive Molecules and Medicinal Chemistry, Faculté de Pharmacie, ISPB, Univ Lyon F-69373 Lyon Cedex 08 France
| |
Collapse
|
2
|
Mao X, Wu S, Huang D, Li C. Complications and comorbidities associated with antineoplastic chemotherapy: Rethinking drug design and delivery for anticancer therapy. Acta Pharm Sin B 2024; 14:2901-2926. [PMID: 39027258 PMCID: PMC11252465 DOI: 10.1016/j.apsb.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 01/29/2024] [Accepted: 02/10/2024] [Indexed: 07/20/2024] Open
Abstract
Despite the considerable advancements in chemotherapy as a cornerstone modality in cancer treatment, the prevalence of complications and pre-existing diseases is on the rise among cancer patients along with prolonged survival and aging population. The relationships between these disorders and cancer are intricate, bearing significant influence on the survival and quality of life of individuals with cancer and presenting challenges for the prognosis and outcomes of malignancies. Herein, we review the prevailing complications and comorbidities that often accompany chemotherapy and summarize the lessons to learn from inadequate research and management of this scenario, with an emphasis on possible strategies for reducing potential complications and alleviating comorbidities, as well as an overview of current preclinical cancer models and practical advice for establishing bio-faithful preclinical models in such complex context.
Collapse
Affiliation(s)
- Xiaoman Mao
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Shuang Wu
- Medical Research Institute, Southwest University, Chongqing 400715, China
| | - Dandan Huang
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Chong Li
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
- Medical Research Institute, Southwest University, Chongqing 400715, China
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
3
|
Orobeti S, Sima LE, Porosnicu I, Diplasu C, Giubega G, Cojocaru G, Ungureanu R, Dobrea C, Serbanescu M, Mihalcea A, Stancu E, Staicu CE, Jipa F, Bran A, Axente E, Sandel S, Zamfirescu M, Tiseanu I, Sima F. First in vitro cell co-culture experiments using laser-induced high-energy electron FLASH irradiation for the development of anti-cancer therapeutic strategies. Sci Rep 2024; 14:14866. [PMID: 38937505 PMCID: PMC11211417 DOI: 10.1038/s41598-024-65137-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 06/17/2024] [Indexed: 06/29/2024] Open
Abstract
Radiation delivery at ultrahigh dose rates (UHDRs) has potential for use as a new anticancer therapeutic strategy. The FLASH effect induced by UHDR irradiation has been shown to maintain antitumour efficacy with a reduction in normal tissue toxicity; however, the FLASH effect has been difficult to demonstrate in vitro. The objective to demonstrate the FLASH effect in vitro is challenging, aiming to reveal a differential response between cancer and normal cells to further identify cell molecular mechanisms. New high-intensity petawatt laser-driven accelerators can deliver very high-energy electrons (VHEEs) at dose rates as high as 1013 Gy/s in very short pulses (10-13 s). Here, we present the first in vitro experiments carried out on cancer cells and normal non-transformed cells concurrently exposed to laser-plasma accelerated (LPA) electrons. Specifically, melanoma cancer cells and normal melanocyte co-cultures grown on chamber slides were simultaneously irradiated with LPA electrons. A non-uniform dose distribution on the cell cultures was revealed by Gafchromic films placed behind the chamber slide supporting the cells. In parallel experiments, cell co-cultures were exposed to pulsed X-ray irradiation, which served as positive controls for radiation-induced nuclear DNA double-strand breaks. By measuring the impact on discrete areas of the cell monolayers, the greatest proportion of the damaged DNA-containing nuclei was attained by the LPA electrons at a cumulative dose one order of magnitude lower than the dose obtained by pulsed X-ray irradiation. Interestingly, in certain discrete areas, we observed that LPA electron exposure had a different effect on the DNA damage in healthy normal human epidermal melanocyte (NHEM) cells than in A375 melanoma cells; here, the normal cells were less affected by the LPA exposure than cancer cells. This result is the first in vitro demonstration of a differential response of tumour and normal cells exposed to FLASH irradiation and may contribute to the development of new cell culture strategies to explore fundamental understanding of FLASH-induced cell effect.
Collapse
Affiliation(s)
- Stefana Orobeti
- National Institute for Laser, Plasma and Radiation Physics (INFLPR), 409 Atomistilor Street, RO-077125, Magurele, Romania
- Department of Molecular Cell Biology, Institute of Biochemistry of the Romanian Academy, 296 Splaiul Independentei, 060031, Bucharest, Romania
| | - Livia Elena Sima
- Department of Molecular Cell Biology, Institute of Biochemistry of the Romanian Academy, 296 Splaiul Independentei, 060031, Bucharest, Romania
| | - Ioana Porosnicu
- National Institute for Laser, Plasma and Radiation Physics (INFLPR), 409 Atomistilor Street, RO-077125, Magurele, Romania
| | - Constantin Diplasu
- National Institute for Laser, Plasma and Radiation Physics (INFLPR), 409 Atomistilor Street, RO-077125, Magurele, Romania
| | - Georgiana Giubega
- National Institute for Laser, Plasma and Radiation Physics (INFLPR), 409 Atomistilor Street, RO-077125, Magurele, Romania
| | - Gabriel Cojocaru
- National Institute for Laser, Plasma and Radiation Physics (INFLPR), 409 Atomistilor Street, RO-077125, Magurele, Romania
| | - Razvan Ungureanu
- National Institute for Laser, Plasma and Radiation Physics (INFLPR), 409 Atomistilor Street, RO-077125, Magurele, Romania
| | - Cosmin Dobrea
- National Institute for Laser, Plasma and Radiation Physics (INFLPR), 409 Atomistilor Street, RO-077125, Magurele, Romania
| | - Mihai Serbanescu
- National Institute for Laser, Plasma and Radiation Physics (INFLPR), 409 Atomistilor Street, RO-077125, Magurele, Romania
| | - Alexandru Mihalcea
- National Institute for Laser, Plasma and Radiation Physics (INFLPR), 409 Atomistilor Street, RO-077125, Magurele, Romania
| | - Elena Stancu
- National Institute for Laser, Plasma and Radiation Physics (INFLPR), 409 Atomistilor Street, RO-077125, Magurele, Romania
| | - Cristina Elena Staicu
- National Institute for Laser, Plasma and Radiation Physics (INFLPR), 409 Atomistilor Street, RO-077125, Magurele, Romania
| | - Florin Jipa
- National Institute for Laser, Plasma and Radiation Physics (INFLPR), 409 Atomistilor Street, RO-077125, Magurele, Romania
| | - Alexandra Bran
- National Institute for Laser, Plasma and Radiation Physics (INFLPR), 409 Atomistilor Street, RO-077125, Magurele, Romania
| | - Emanuel Axente
- National Institute for Laser, Plasma and Radiation Physics (INFLPR), 409 Atomistilor Street, RO-077125, Magurele, Romania
| | - Simion Sandel
- National Institute for Laser, Plasma and Radiation Physics (INFLPR), 409 Atomistilor Street, RO-077125, Magurele, Romania
| | - Marian Zamfirescu
- National Institute for Laser, Plasma and Radiation Physics (INFLPR), 409 Atomistilor Street, RO-077125, Magurele, Romania
| | - Ion Tiseanu
- National Institute for Laser, Plasma and Radiation Physics (INFLPR), 409 Atomistilor Street, RO-077125, Magurele, Romania
| | - Felix Sima
- National Institute for Laser, Plasma and Radiation Physics (INFLPR), 409 Atomistilor Street, RO-077125, Magurele, Romania.
| |
Collapse
|
4
|
Carrera-Pacheco SE, Mueller A, Puente-Pineda JA, Zúñiga-Miranda J, Guamán LP. Designing cytochrome P450 enzymes for use in cancer gene therapy. Front Bioeng Biotechnol 2024; 12:1405466. [PMID: 38860140 PMCID: PMC11164052 DOI: 10.3389/fbioe.2024.1405466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 04/30/2024] [Indexed: 06/12/2024] Open
Abstract
Cancer is a significant global socioeconomic burden, as millions of new cases and deaths occur annually. In 2020, almost 10 million cancer deaths were recorded worldwide. Advancements in cancer gene therapy have revolutionized the landscape of cancer treatment. An approach with promising potential for cancer gene therapy is introducing genes to cancer cells that encode for chemotherapy prodrug metabolizing enzymes, such as Cytochrome P450 (CYP) enzymes, which can contribute to the effective elimination of cancer cells. This can be achieved through gene-directed enzyme prodrug therapy (GDEPT). CYP enzymes can be genetically engineered to improve anticancer prodrug conversion to its active metabolites and to minimize chemotherapy side effects by reducing the prodrug dosage. Rational design, directed evolution, and phylogenetic methods are some approaches to developing tailored CYP enzymes for cancer therapy. Here, we provide a compilation of genetic modifications performed on CYP enzymes aiming to build highly efficient therapeutic genes capable of bio-activating different chemotherapeutic prodrugs. Additionally, this review summarizes promising preclinical and clinical trials highlighting engineered CYP enzymes' potential in GDEPT. Finally, the challenges, limitations, and future directions of using CYP enzymes for GDEPT in cancer gene therapy are discussed.
Collapse
Affiliation(s)
- Saskya E. Carrera-Pacheco
- Centro de Investigación Biomédica (CENBIO), Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, Ecuador
| | | | | | | | | |
Collapse
|
5
|
Kędra K, Oledzka E, Sobczak M. Self-Immolative Domino Dendrimers as Anticancer-Drug Delivery Systems: A Review. Pharmaceutics 2024; 16:668. [PMID: 38794329 PMCID: PMC11125333 DOI: 10.3390/pharmaceutics16050668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/06/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
Worldwide cancer statistics have indicated about 20 million new cancer cases and over 10 million deaths in 2022 (according to data from the International Agency for Research on Cancer). One of the leading cancer treatment strategies is chemotherapy, using innovative drug delivery systems (DDSs). Self-immolative domino dendrimers (SIDendr) for triggered anti-cancer drugs appear to be a promising type of DDSs. The present review provides an up-to-date survey on the contemporary advancements in the field of SIDendr-based anti-cancer drug delivery systems (SIDendr-ac-DDSs) through an exhaustive analysis of the discovery and application of these materials in improving the pharmacological effectiveness of both novel and old drugs. In addition, this article discusses the designing, chemical structure, and targeting techniques, as well as the properties, of several SIDendr-based DDSs. Approaches for this type of targeted DDSs for anti-cancer drug release under a range of stimuli are also explored.
Collapse
Affiliation(s)
- Karolina Kędra
- Institute of Physical Chemistry, Polish Academy of Sciences, 44/52 Kasprzaka Str., 01-224 Warsaw, Poland;
| | - Ewa Oledzka
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry and Biomaterials, Medical University of Warsaw, 1 Banacha Str., 02-097 Warsaw, Poland;
| | - Marcin Sobczak
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry and Biomaterials, Medical University of Warsaw, 1 Banacha Str., 02-097 Warsaw, Poland;
| |
Collapse
|
6
|
Jiang X, Zhu L, Wei Q, Lu W, Yu J, Zhu S. Enhancing SN38 prodrug delivery using a self-immolative linker and endogenous albumin transport. J Control Release 2024; 369:622-629. [PMID: 38604383 DOI: 10.1016/j.jconrel.2024.04.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/07/2024] [Accepted: 04/08/2024] [Indexed: 04/13/2024]
Abstract
Enhancing the delivery and release efficiency of hydroxyl agents, constrained by high pKa values and issues of release rate or unstable linkage, is a critical challenge. To address this, a self-immolative linker, composed of a modifiable p-hydroxybenzyl ether and a fast cyclization adapter (N-(ortho-hydroxyphenyl)-N-methylcarbamate) was strategically designed, for the synthesis of prodrugs. The innovative linker not only provides a side chain modification but also facilitates the rapid release of the active payloads, thereby enabling precise drug delivery. Particularly, five prodrug model compounds (J1, J2, J3, J5 and J6) were synthesized to evaluate the release rates by using β-glucuronic acid as trigger and five hydroxyl compounds as model payloads. Significantly, all prodrug model compounds could efficiently release the hydroxyl payloads under the action of β-glucuronidase, validating the robustness of the linker. And then, to assess the drug delivery and release efficiency using endogenous albumin as a transport vehicle, J1148, a SN38 prodrug modified with maleimide side chain was synthesized. Results demonstrated that J1148 covalently bound to plasma albumin through in situ Michael addition, effectively targeting the tumor microenvironment. Activated by β-glucuronidase, J1148 underwent a classical 1, 6-elimination, followed by rapid cyclization of the adapter, thereby releasing SN38. Impressively, J1148 showed excellent therapeutic efficacy against human colonic cancer xenograft model, leading to a significant reduction or even disappearance of tumors (3/6 of mice cured). These findings underscore the potential of the designed linker in the delivery system of hydroxyl agents, positioning it at the forefront of advancements in drug delivery technology.
Collapse
Affiliation(s)
- Xing Jiang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, PR China
| | - Lingyi Zhu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, PR China
| | - Qingyu Wei
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, PR China
| | - Wei Lu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, PR China
| | - Jiahui Yu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, PR China.
| | - Shulei Zhu
- Innovation Center for AI and Drug Discovery, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, PR China.
| |
Collapse
|
7
|
Sharma A, Verwilst P, Li M, Ma D, Singh N, Yoo J, Kim Y, Yang Y, Zhu JH, Huang H, Hu XL, He XP, Zeng L, James TD, Peng X, Sessler JL, Kim JS. Theranostic Fluorescent Probes. Chem Rev 2024; 124:2699-2804. [PMID: 38422393 PMCID: PMC11132561 DOI: 10.1021/acs.chemrev.3c00778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/31/2024] [Accepted: 02/08/2024] [Indexed: 03/02/2024]
Abstract
The ability to gain spatiotemporal information, and in some cases achieve spatiotemporal control, in the context of drug delivery makes theranostic fluorescent probes an attractive and intensely investigated research topic. This interest is reflected in the steep rise in publications on the topic that have appeared over the past decade. Theranostic fluorescent probes, in their various incarnations, generally comprise a fluorophore linked to a masked drug, in which the drug is released as the result of certain stimuli, with both intrinsic and extrinsic stimuli being reported. This release is then signaled by the emergence of a fluorescent signal. Importantly, the use of appropriate fluorophores has enabled not only this emerging fluorescence as a spatiotemporal marker for drug delivery but also has provided modalities useful in photodynamic, photothermal, and sonodynamic therapeutic applications. In this review we highlight recent work on theranostic fluorescent probes with a particular focus on probes that are activated in tumor microenvironments. We also summarize efforts to develop probes for other applications, such as neurodegenerative diseases and antibacterials. This review celebrates the diversity of designs reported to date, from discrete small-molecule systems to nanomaterials. Our aim is to provide insights into the potential clinical impact of this still-emerging research direction.
Collapse
Affiliation(s)
- Amit Sharma
- Amity
School of Chemical Sciences, Amity University
Punjab, Sector 82A, Mohali 140 306, India
| | - Peter Verwilst
- Rega
Institute for Medical Research, Medicinal Chemistry, KU Leuven, Herestraat 49, Box 1041, 3000 Leuven, Belgium
| | - Mingle Li
- College
of Materials Science and Engineering, Shenzhen
University, Shenzhen 518060, China
| | - Dandan Ma
- College
of Materials Science and Engineering, Shenzhen
University, Shenzhen 518060, China
- College
of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Nem Singh
- Department
of Chemistry, Korea University, Seoul 02841, Korea
| | - Jiyoung Yoo
- Department
of Chemistry, Korea University, Seoul 02841, Korea
| | - Yujin Kim
- Department
of Chemistry, Korea University, Seoul 02841, Korea
| | - Ying Yang
- School of
Light Industry and Food Engineering, Guangxi
University, Nanning, Guangxi 530004, China
| | - Jing-Hui Zhu
- College
of Materials Science and Engineering, Shenzhen
University, Shenzhen 518060, China
- College
of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Haiqiao Huang
- College
of Materials Science and Engineering, Shenzhen
University, Shenzhen 518060, China
- College
of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Xi-Le Hu
- Key
Laboratory for Advanced Materials and Joint International Research
Laboratory of Precision Chemistry and Molecular Engineering, Feringa
Nobel Prize Scientist Joint Research Center, School of Chemistry and
Molecular Engineering, East China University
of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Xiao-Peng He
- Key
Laboratory for Advanced Materials and Joint International Research
Laboratory of Precision Chemistry and Molecular Engineering, Feringa
Nobel Prize Scientist Joint Research Center, School of Chemistry and
Molecular Engineering, East China University
of Science and Technology, 130 Meilong Road, Shanghai 200237, China
- National
Center for Liver Cancer, the International Cooperation Laboratory
on Signal Transduction, Eastern Hepatobiliary
Surgery Hospital, Shanghai 200438, China
| | - Lintao Zeng
- School of
Light Industry and Food Engineering, Guangxi
University, Nanning, Guangxi 530004, China
| | - Tony D. James
- Department
of Chemistry, University of Bath, Bath BA2 7AY, United Kingdom
- School
of Chemistry and Chemical Engineering, Henan
Normal University, Xinxiang 453007, China
| | - Xiaojun Peng
- College
of Materials Science and Engineering, Shenzhen
University, Shenzhen 518060, China
- State
Key Laboratory of Fine Chemicals, Dalian
University of Technology, Dalian 116024, China
| | - Jonathan L. Sessler
- Department
of Chemistry, The University of Texas at
Austin, Texas 78712-1224, United
States
| | - Jong Seung Kim
- Department
of Chemistry, Korea University, Seoul 02841, Korea
- TheranoChem Incorporation, Seongbuk-gu, Seoul 02841, Korea
| |
Collapse
|
8
|
Cho TJ, Reipa V, Gorham JM, Pettibone JM, Tona A, Johnston-Peck A, Liu J, Nelson BC, Hackley VA. Stability-Enhanced Cisplatin Gold Nanoparticles As Therapeutic Anticancer Agents. ACS APPLIED NANO MATERIALS 2024; 7:10.1021/acsanm.3c04935. [PMID: 38846932 PMCID: PMC11155487 DOI: 10.1021/acsanm.3c04935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2024]
Abstract
Using dendron chemistry, we developed stability enhanced, carboxylate surface modified (negatively charged dendron) AuNPs (Au-NCD). Since the carboxylate surface of Au-NCD is optimal for complexation with cisplatin (Pt) moieties, we further synthesized Pt loaded Au-NCD (Au-NCD/Pt) to serve as potential therapeutic anticancer agents. The size distribution, zeta potential and surface plasmon resonance of both Au-NCDs and Au-NCD/Pt were characterized via dynamic light scattering, scanning transmission electron microscopy and ultraviolet-visible spectrophotometry. Surface chemistry, Pt uptake, and Pt release were evaluated using inductively coupled plasma-mass spectrometry and X-ray photoelectron spectroscopy. Colloidal stability in physiological media over a wide pH range (1 to 13) and shelf-life stability (up to 6 months) were also assessed. Finally, the cytotoxicity of both Au-NCD and Au-NCD/Pt to Chinese hamster ovary cells (CHO K1; as a normal cell line) and to human lung epithelial cells (A549; as a cancer cell line) were evaluated. The results of these physicochemical and functional cytotoxicity studies with Au-NCD/Pt demonstrated that the particles exhibited superlative colloidal stability, cisplatin uptake and in vitro anticancer activity despite low amounts of Pt release from the conjugate.
Collapse
Affiliation(s)
- Tae Joon Cho
- Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Vytas Reipa
- Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Justin M. Gorham
- Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - John M. Pettibone
- Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Alessandro Tona
- Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Aaron Johnston-Peck
- Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | | | - Bryant C. Nelson
- Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Vincent A. Hackley
- Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| |
Collapse
|
9
|
Husain A, Monga J, Narwal S, Singh G, Rashid M, Afzal O, Alatawi A, Almadani NM. Prodrug Rewards in Medicinal Chemistry: An Advance and Challenges Approach for Drug Designing. Chem Biodivers 2023; 20:e202301169. [PMID: 37833241 DOI: 10.1002/cbdv.202301169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/09/2023] [Accepted: 10/11/2023] [Indexed: 10/15/2023]
Abstract
This article emphasizes the importance of prodrugs and their diverse spectrum of effects in the field of developing novel drugs for a variety of biological applications. Prodrugs are chemicals that are supplied inactively, but then go through enzymatic and chemical transformation in vivo to release the active parent medication that can have the desired pharmacological effect. By adding an inactive chemical moiety, prodrugs are improved in a number of ways that contribute to their potency and durability. For the purpose of illustrating the usefulness of the prodrug approach, this review covers examples of prodrugs that have been made available or are now undergoing human trials. Additionally, it included lists of the most common functional groups, carrier linkers, and reactive chemicals that can be used to create prodrugs. The current study also provides a brief introduction, several chemical methods and modifications for creating prodrugs and mutual prodrugs, as well as an explanation of recent advancements and difficulties in the field of prodrug design. The primary chemical carriers employed in the creation of prodrugs, such as esters, amides, imides, NH-acidic carriers, amines, alcohols, carbonyl, carboxylic, and azo-linkages, are also discussed. This review also discusses glycosidic and triglyceride mutually activated prodrugs, which aim to deliver the drugs after bioconversion at the intended site of action. The article also discusses the extensive chemistry and wide variety of applications of recently approved prodrugs, such as antibacterial, anti-inflammatory, cardiovascular, antiplatelet, antihypertensive, atherosclerotic, antiviral, etc. In order to illustrate the prodrug and mutual drug concept's various applications and highlight its many triumphs in overcoming the formulation and delivery of problematic pharmaceuticals, this work represents a thorough guide that includes the synthetic moiety for the reader.
Collapse
Affiliation(s)
- Asif Husain
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110064, India
| | - Jyoti Monga
- Ch. Devi Lal College of Pharmacy, Jagadhri, 135003, Haryana, India
| | - Smita Narwal
- Global Research Institute of Pharmacy, Nachraun, Radaur, 135133, Haryana, India
| | - Gurvirender Singh
- Institute of Pharmaceutical Sciences, Kurukshetra University Kurukshetra-136119, Haryana, India
| | - Mohammad Rashid
- Department of Pharmacognosy and Pharmaceutical Chemistry, College of Dentistry and Pharmacy, Buraydah Private Colleges, Buraydah, 51418, Saudi Arabia
| | - Obaid Afzal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj, 11942, Saudi Arabia
| | - Abdurahhman Alatawi
- Clinical Pharmacist, Pharmaceutical Care Department, King Fahad Specialized Hospital, Tabuk, 47717, Saudi Arabia
| | - Norah M Almadani
- Biochemistry Department, Faculty of Science, University of Tabuk, Tabuk, 47914, Saudi Arabia
| |
Collapse
|
10
|
Cao Y, Si J, Zheng M, Zhou Q, Ge Z. X-ray-responsive prodrugs and polymeric nanocarriers for multimodal cancer therapy. Chem Commun (Camb) 2023. [PMID: 37318285 DOI: 10.1039/d3cc01398g] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Radiotherapy as one of the most important cancer treatment modalities has been widely used in the therapy of various cancers. The clinically used radiation (e.g. X-ray) for radiotherapy has the advantages of precise spatiotemporal controllability and deep tissue penetration. However, traditional radiotherapy is frequently limited by the high side effects and tumor hypoxia. The combination of radiotherapy and other cancer treatment modalities may overcome the disadvantages of radiotherapy and improve the final therapeutic efficacy. In recent years, X-ray-activable prodrugs and polymeric nanocarriers have been extensively explored to introduce other treatment modalities in the precise position during radiotherapy, which can reduce the side toxicity of the drugs and improve the combination therapeutic efficacy. In this review, we focus on recent advances in X-ray-activable prodrugs and polymeric nanocarriers to boost X-ray-based multimodal synergistic therapy with reduced toxicity. The design strategies of prodrugs and polymeric nanocarriers are highlighted. Finally, challenges and outlooks of X-ray-activable prodrugs and polymeric nanocarriers are discussed.
Collapse
Affiliation(s)
- Yufei Cao
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China.
| | - Jiale Si
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China.
| | - Moujiang Zheng
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China.
| | - Qinghao Zhou
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China.
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Zhishen Ge
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China.
| |
Collapse
|
11
|
Sonzini S, Caputo F, Mehn D, Calzolai L, Even Borgos S, Hyldbakk A, Treacher K, Li W, Jackman M, Mahmoudi N, Jayne Lawrence M, Patterson C, Owen D, Ashford M, Akhtar N. In depth characterization of physicochemical critical quality attributes of a clinical drug-dendrimer conjugate. Int J Pharm 2023; 637:122905. [PMID: 37003312 PMCID: PMC10157317 DOI: 10.1016/j.ijpharm.2023.122905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 03/19/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023]
Abstract
A deep and detailed understanding of drug-dendrimer conjugates key properties is needed to define the critical quality attributes that affect drug product performance. The characterization must be executed both in the formulation media and in biological matrices. This, nevertheless, is challenging on account of a very limited number of suitable, established methods for characterizing the physicochemical properties, stability, and interaction with biological environment of complex drug-dendrimer conjugates. In order to fully characterize AZD0466, a drug-dendrimer conjugate currently under clinical development by AstraZeneca, a collaboration was initiated with the European Nanomedicine Characterisation Laboratory to deploy a state-of-the-art multi-step approach to measure physicochemical properties. An incremental complexity characterization approach was applied to two batches of AZD0466 and the corresponding dendrimer not carrying any drug, SPL-8984. Thus, the aim of this work is to guide in depth characterization efforts in the analysis of drug-dendrimer conjugates. Additionally, it serves to highlight the importance of using the adequate complementary techniques to measure physical and chemical stability in both simple and biological media, to drive a complex drug-dendrimer conjugate product from discovery to clinical development.
Collapse
Affiliation(s)
- Silvia Sonzini
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Cambridge, UK.
| | - Fanny Caputo
- Department of Biotechnology and Nanomedicine, SINTEF Industry, Trondheim, Norway; Univ. Grenoble Alpes, CEA, LETI, F-38000 Grenoble, France
| | - Dora Mehn
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - Luigi Calzolai
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - Sven Even Borgos
- Department of Biotechnology and Nanomedicine, SINTEF Industry, Trondheim, Norway
| | - Astrid Hyldbakk
- Department of Biotechnology and Nanomedicine, SINTEF Industry, Trondheim, Norway
| | - Kevin Treacher
- New Modalities & Parenteral Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Macclesfield, UK
| | - Weimin Li
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Mark Jackman
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Najet Mahmoudi
- Rutherford Appleton Laboratory, ISIS Facility, Science and Technology Facilities Council, Didcot OX11 0QX, UK
| | - M Jayne Lawrence
- Division of Pharmacy & Optometry and the North West Centre for Advanced Drug Delivery (NoWCADD), School of Health Sciences, University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Claire Patterson
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Macclesfield, UK
| | - David Owen
- Starpharma Pty Ltd., 4-6 Southampton Cresent, Abbotsford, Victoria 3067, Australia
| | - Marianne Ashford
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Macclesfield, UK
| | - Nadim Akhtar
- New Modalities & Parenteral Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Macclesfield, UK
| |
Collapse
|
12
|
Park SH, Lee JH, Yang SB, Lee DN, Kang TB, Park J. Development of a Peptide-Based Nano-Sized Cathepsin B Inhibitor for Anticancer Therapy. Pharmaceutics 2023; 15:pharmaceutics15041131. [PMID: 37111617 PMCID: PMC10141979 DOI: 10.3390/pharmaceutics15041131] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/17/2023] [Accepted: 03/29/2023] [Indexed: 04/07/2023] Open
Abstract
Numerous cathepsin B inhibitors have been developed and are under investigation as potential cancer treatments. They have been evaluated for their ability to inhibit cathepsin B activity and reduce tumor growth. However, they have shown critical limitations, including low anticancer efficacy and high toxicity, due to their low selectivity and delivery problems. In this study, we developed a novel peptide and drug conjugate (PDC)-based cathepsin B inhibitor using cathepsin-B-specific peptide (RR) and bile acid (BA). Interestingly, this RR and BA conjugate (RR–BA) was able to self-assemble in an aqueous solution, and as a result, it formed stable nanoparticles. The nano-sized RR–BA conjugate showed significant cathepsin B inhibitory effects and anticancer effects against mouse colorectal cancer (CT26) cells. Its therapeutic effect and low toxicity were also confirmed in CT26 tumor-bearing mice after intravenous injection. Therefore, based on these results, the RR–BA conjugate could be developed as an effective anticancer drug candidate for inhibiting cathepsin B in anticancer therapy.
Collapse
Affiliation(s)
- So-Hyeon Park
- Department of Applied Life Science, BK21 Program, Graduate School, Konkuk University, Chungju 27478, Republic of Korea
| | - Jun-Hyuck Lee
- Department of Applied Life Science, BK21 Program, Graduate School, Konkuk University, Chungju 27478, Republic of Korea
| | - Seong-Bin Yang
- Department of Applied Life Science, BK21 Program, Graduate School, Konkuk University, Chungju 27478, Republic of Korea
| | - Dong-Nyeong Lee
- Department of Applied Life Science, BK21 Program, Graduate School, Konkuk University, Chungju 27478, Republic of Korea
| | - Tae-Bong Kang
- Department of Applied Life Science, BK21 Program, Graduate School, Konkuk University, Chungju 27478, Republic of Korea
| | - Jooho Park
- Department of Applied Life Science, BK21 Program, Graduate School, Konkuk University, Chungju 27478, Republic of Korea
- Center for Metabolic Diseases, Konkuk University, Chungju 27478, Republic of Korea
| |
Collapse
|
13
|
Hollstein S, Ali LMA, Coste M, Vogel J, Bettache N, Ulrich S, von Delius M. A Triazolium-Anchored Self-Immolative Linker Enables Self-Assembly-Driven siRNA Binding and Esterase-Induced Release. Chemistry 2023; 29:e202203311. [PMID: 36346344 PMCID: PMC10108132 DOI: 10.1002/chem.202203311] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 11/08/2022] [Indexed: 11/09/2022]
Abstract
The increased importance of RNA-based therapeutics comes with a need to develop next-generation stimuli-responsive systems capable of binding, transporting and releasing RNA oligomers. In this work, we describe triazolium-based amphiphiles capable of siRNA binding and enzyme-responsive release of the nucleic acid payload. In aqueous medium, the amphiphile self-assembles into nanocarriers that can disintegrate upon the addition of esterase. Key to the molecular design is a self-immolative linker that is anchored to the triazolium moiety and acts as a positively-charged polar head group. We demonstrate that addition of esterase leads to a degradation cascade of the linker, leaving the neutral triazole compound unable to form complexes and therefore releasing the negatively-charged siRNA. The reported molecular design and overall approach may have broad utility beyond this proof-of-principle study, because the underlying CuAAC "click" chemistry allows bringing together three groups very efficiently as well as cleaving off one of the three groups under the mild action of an esterase enzyme.
Collapse
Affiliation(s)
- Selina Hollstein
- Institute of Organic ChemistryUlm UniversityAlbert-Einstein-Allee 1189081UlmGermany
| | - Lamiaa M. A. Ali
- Institut des Biomolécules Max Mousseron (IBMM)CNRSUniversité de Montpellier, ENSCMMontpellierFrance
- Department of BiochemistryMedical Research InstituteUniversity of Alexandria21561AlexandriaEgypt
| | - Maëva Coste
- Institut des Biomolécules Max Mousseron (IBMM)CNRSUniversité de Montpellier, ENSCMMontpellierFrance
| | - Julian Vogel
- Institute of Organic ChemistryUlm UniversityAlbert-Einstein-Allee 1189081UlmGermany
| | - Nadir Bettache
- Institut des Biomolécules Max Mousseron (IBMM)CNRSUniversité de Montpellier, ENSCMMontpellierFrance
| | - Sébastien Ulrich
- Institut des Biomolécules Max Mousseron (IBMM)CNRSUniversité de Montpellier, ENSCMMontpellierFrance
| | - Max von Delius
- Institute of Organic ChemistryUlm UniversityAlbert-Einstein-Allee 1189081UlmGermany
| |
Collapse
|
14
|
Han HH, Wang HM, Jangili P, Li M, Wu L, Zang Y, Sedgwick AC, Li J, He XP, James TD, Kim JS. The design of small-molecule prodrugs and activatable phototherapeutics for cancer therapy. Chem Soc Rev 2023; 52:879-920. [PMID: 36637396 DOI: 10.1039/d2cs00673a] [Citation(s) in RCA: 70] [Impact Index Per Article: 70.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Cancer remains as one of the most significant health problems, with approximately 19 million people diagnosed worldwide each year. Chemotherapy is a routinely used method to treat cancer patients. However, current treatment options lack the appropriate selectivity for cancer cells, are prone to resistance mechanisms, and are plagued with dose-limiting toxicities. As such, researchers have devoted their attention to developing prodrug-based strategies that have the potential to overcome these limitations. This tutorial review highlights recently developed prodrug strategies for cancer therapy. Prodrug examples that provide an integrated diagnostic (fluorescent, photoacoustic, and magnetic resonance imaging) response, which are referred to as theranostics, are also discussed. Owing to the non-invasive nature of light (and X-rays), we have discussed external excitation prodrug strategies as well as examples of activatable photosensitizers that enhance the precision of photodynamic therapy/photothermal therapy. Activatable photosensitizers/photothermal agents can be seen as analogous to prodrugs, with their phototherapeutic properties at a specific wavelength activated in the presence of disease-related biomarkers. We discuss each design strategy and illustrate the importance of targeting biomarkers specific to the tumour microenvironment and biomarkers that are known to be overexpressed within cancer cells. Moreover, we discuss the advantages of each approach and highlight their inherent limitations. We hope in doing so, the reader will appreciate the current challenges and available opportunities in the field and inspire subsequent generations to pursue this crucial area of cancer research.
Collapse
Affiliation(s)
- Hai-Hao Han
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Rd., Shanghai 200237, P. R. China. .,State Key Laboratory of Drug Research, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China. .,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, P. R. China.,Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, P. R. China
| | - Han-Min Wang
- State Key Laboratory of Drug Research, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China. .,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, P. R. China
| | - Paramesh Jangili
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea.
| | - Mingle Li
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea.
| | - Luling Wu
- Department of Chemistry, University of Bath, Bath, BA2 7AY, UK.
| | - Yi Zang
- State Key Laboratory of Drug Research, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China. .,Lingang laboratory, Shanghai 201203, China
| | - Adam C Sedgwick
- Chemistry Research Laboratory, University of Oxford, Mansfield Road, OX1 3TA, UK.
| | - Jia Li
- State Key Laboratory of Drug Research, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China. .,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, P. R. China.,Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, P. R. China
| | - Xiao-Peng He
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Rd., Shanghai 200237, P. R. China. .,The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Shanghai 200438, China.,National Center for Liver Cancer, Shanghai 200438, China
| | - Tony D James
- Department of Chemistry, University of Bath, Bath, BA2 7AY, UK. .,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Jong Seung Kim
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
15
|
Hwang YS, So D, Lee M, Yoon J, Reipa V, Tona A, Yi F, Nelson BC, LaVan DA, Hackley VA, Daar IO, Cho TJ. Polyethyleneimine/polyethylene glycol-conjugated gold nanoparticles as nanoscale positive/negative controls in nanotoxicology: testing in frog embryo teratogenesis assay- Xenopus and mammalian tissue culture system. Nanotoxicology 2023; 17:94-115. [PMID: 36919473 PMCID: PMC10471858 DOI: 10.1080/17435390.2023.2187322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 12/20/2022] [Accepted: 02/28/2023] [Indexed: 03/16/2023]
Abstract
Despite the great potential of using positively charged gold nanoparticles (AuNPs) in nanomedicine, no systematic studies have been reported on their synthesis optimization or colloidal stability under physiological conditions until a group at the National Institute of Standards and Technology recently succeeded in producing remarkably stable polyethyleneimine (PEI)-coated AuNPs (Au-PEI). This improved version of Au-PEI (Au-PEI25kB) has increased the demand for toxicity and teratogenicity information for applications in nanomedicine and nanotoxicology. In vitro assays for Au-PEI25kB in various cell lines showed substantial active cytotoxicity. For advanced toxicity research, the frog embryo teratogenesis assay-Xenopus (FETAX) method was employed in this study. We observed that positively-charged Au-PEI25kB exhibited significant toxicity and teratogenicity, whereas polyethylene glycol conjugated AuNPs (Au-PEG) used as comparable negative controls did not. There is a characteristic avidity of Au-PEI25kB for the jelly coat, the chorionic envelope (also known as vitelline membrane) and the cytoplasmic membrane, as well as a barrier effect of the chorionic envelope observed with Au-PEG. To circumvent these characteristics, an injection-mediated FETAX approach was utilized. Like treatment with the FETAX method, the injection of Au-PEI25kB severely impaired embryo development. Notably, the survival/concentration curve that was steep when the standard FETAX approach was employed became gradual in the injection-mediated FETAX. These results suggest that Au-PEI25kB may be a good candidate as a nanoscale positive control material for nanoparticle analysis in toxicology and teratology.
Collapse
Affiliation(s)
- Yoo-Seok Hwang
- National Cancer Institute, Frederick, Maryland 21702, United States
| | - Daeho So
- National Cancer Institute, Frederick, Maryland 21702, United States
| | - Moonsup Lee
- National Cancer Institute, Frederick, Maryland 21702, United States
| | - Jaeho Yoon
- National Cancer Institute, Frederick, Maryland 21702, United States
| | - Vytas Reipa
- Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Alessandro Tona
- Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Feng Yi
- Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Bryant C. Nelson
- Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - David A. LaVan
- Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Vincent A. Hackley
- Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Ira O. Daar
- National Cancer Institute, Frederick, Maryland 21702, United States
| | - Tae Joon Cho
- Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| |
Collapse
|
16
|
Qin J, Chen X, Wang R, Tian Z, Li Y, Shu S. Reactive oxygen species-responsive HET0016 prodrug-loaded liposomes attenuate neuroinflammation and improve neurological deficit in a rat model of juvenile traumatic brain injury. Front Neurosci 2023; 17:1153349. [PMID: 37034179 PMCID: PMC10073507 DOI: 10.3389/fnins.2023.1153349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 03/06/2023] [Indexed: 04/11/2023] Open
Abstract
The arachidonic acid pathway metabolite 20-hydroxyeicosatetraenoic acid (20-HETE) contributes to ischemia/reperfusion brain injury. Inhibition of 20-HETE formation can protect the developing brain from global ischemia. In previous studies, we have found that treatment with the 20-HETE synthesis inhibitor N-hydroxy-N-4-butyl-2-methylphenylformamidine (HET0016) can protect the immature brain from traumatic brain injury (TBI), but its hydrophobic nature limits its full potential. We designed a reactive oxygen species-responsive HET0016 prodrug, which consists of a thioketal link between HET0016 and stearyl alcohol (HET-TK-SA), and used the nanoprodrug strategy to successfully synthesize liposomes HET0016 prodrug liposomes (HPLs) to facilitate the application of HET0016 in protection from TBI. HPLs demonstrated spherical shape, size of about 127.8 nm, a zeta potential of -28.8 mv, a narrow particle size distribution and good stability. Male rats at postnatal day 16-17 underwent controlled cortical impact (CCI) followed by intravenous injection with vehicle or HET0016 (1 mg/kg, 2 h post-injury, once/day for 3 days). The results of the in vivo demonstrated that HPLs has good biosafety and can pass through the blood-brain barrier. Not only that compared with HET0016, HPLs better-inhibited inflammation and improved neuronal degeneration, which further led to lesion volume reduction, upgraded behavioral task performance, and ameliorated the degree of TBI impairment. Our results demonstrated HPLs could be a new strategy for juvenile TBI therapy.
Collapse
Affiliation(s)
- Jun Qin
- Department of Anesthesiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaoli Chen
- Department of Anesthesiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Rui Wang
- College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Zedan Tian
- Department of Anesthesiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yang Li
- College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Shiyu Shu
- Department of Anesthesiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- *Correspondence: Shiyu Shu,
| |
Collapse
|
17
|
Asma ST, Acaroz U, Imre K, Morar A, Shah SRA, Hussain SZ, Arslan-Acaroz D, Demirbas H, Hajrulai-Musliu Z, Istanbullugil FR, Soleimanzadeh A, Morozov D, Zhu K, Herman V, Ayad A, Athanassiou C, Ince S. Natural Products/Bioactive Compounds as a Source of Anticancer Drugs. Cancers (Basel) 2022; 14:6203. [PMID: 36551687 PMCID: PMC9777303 DOI: 10.3390/cancers14246203] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/08/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Cancer is one of the major deadly diseases globally. The alarming rise in the mortality rate due to this disease attracks attention towards discovering potent anticancer agents to overcome its mortality rate. The discovery of novel and effective anticancer agents from natural sources has been the main point of interest in pharmaceutical research because of attractive natural therapeutic agents with an immense chemical diversity in species of animals, plants, and microorganisms. More than 60% of contemporary anticancer drugs, in one form or another, have originated from natural sources. Plants and microbial species are chosen based on their composition, ecology, phytochemical, and ethnopharmacological properties. Plants and their derivatives have played a significant role in producing effective anticancer agents. Some plant derivatives include vincristine, vinblastine, irinotecan, topotecan, etoposide, podophyllotoxin, and paclitaxel. Based on their particular activity, a number of other plant-derived bioactive compounds are in the clinical development phase against cancer, such as gimatecan, elomotecan, etc. Additionally, the conjugation of natural compounds with anti-cancerous drugs, or some polymeric carriers particularly targeted to epitopes on the site of interest to tumors, can generate effective targeted treatment therapies. Cognizance from such pharmaceutical research studies would yield alternative drug development strategies through natural sources which could be economical, more reliable, and safe to use.
Collapse
Affiliation(s)
- Syeda Tasmia Asma
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Afyon Kocatepe University, Afyonkarahisar 03200, Turkey
| | - Ulas Acaroz
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Afyon Kocatepe University, Afyonkarahisar 03200, Turkey
- ACR Bio Food and Biochemistry Research and Development, Afyonkarahisar 03200, Turkey
| | - Kálmán Imre
- Department of Animal Production and Veterinary Public Health, Faculty of Veterinary Medicine, University of Life Sciences “King Mihai I” from Timișoara, 300645 Timisoara, Romania
| | - Adriana Morar
- Department of Animal Production and Veterinary Public Health, Faculty of Veterinary Medicine, University of Life Sciences “King Mihai I” from Timișoara, 300645 Timisoara, Romania
| | - Syed Rizwan Ali Shah
- Department of Animal Nutrition and Nutritional Diseases, Faculty of Veterinary Medicine, Afyon Kocatepe University, Afyonkarahisar 03200, Turkey
| | - Syed Zajif Hussain
- Department of Chemistry and Chemical Engineering, SBA School of Science & Engineering (SBASSE), Lahore University of Management Sciences (LUMS), Lahore 54792, Pakistan
| | - Damla Arslan-Acaroz
- ACR Bio Food and Biochemistry Research and Development, Afyonkarahisar 03200, Turkey
- Department of Biochemistry, Faculty of Veterinary Medicine, Afyon Kocatepe University, Afyonkarahisar 03200, Turkey
| | - Hayri Demirbas
- Department of Neurology, Faculty of Medicine, Afyonkarahisar Health Sciences University, Afyonkarahisar 03030, Turkey
| | - Zehra Hajrulai-Musliu
- Department of Chemistry, Faculty of Veterinary Medicine, Ss. Cyril and Methodius University of Skopje, 1000 Skopje, North Macedonia
| | - Fatih Ramazan Istanbullugil
- Department of Chemistry and Technology, Faculty of Veterinary Medicine, Kyrgyz-Turkish Manas University, Bishkek KG-720038, Kyrgyzstan
| | - Ali Soleimanzadeh
- Department of Theriogenology, Faculty of Veterinary Medicine, Urmia University, Urmia 5756151818, Iran
| | - Dmitry Morozov
- Department of Epizootology and Infectious Diseases, Vitebsk State Academy of Veterinary Medicine, 210026 Vitebsk, Belarus
| | - Kui Zhu
- National Center for Veterinary Drug Safety Evaluation, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Viorel Herman
- Department of Infectious Disease and Preventive Medicine, Faculty of Veterinary Medicine, University of Life Sciences “King Mihai I” from Timișoara, 300645 Timisoara, Romania
| | - Abdelhanine Ayad
- Department of Physical Biology and Chemistry, Faculty of Nature and Life Sciences, Université de Bejaia, Bejaia 06000, Algeria
| | - Christos Athanassiou
- Laboratory of Entomology and Agriculture Zoology, Department of Agriculture, Crop Production and Rural Environment, University of Thessaly, 38446 Volos, Greece
| | - Sinan Ince
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Afyon Kocatepe University, Afyonkarahisar 03200, Turkey
| |
Collapse
|
18
|
Costantini E, Di Nicola M, Marchioni M, Aielli L, Reale M, Schips L. Effects of Curcumin and Lactoferrin to Inhibit the Growth and Migration of Prostatic Cancer Cells. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:16193. [PMID: 36498267 PMCID: PMC9737629 DOI: 10.3390/ijerph192316193] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/25/2022] [Accepted: 12/01/2022] [Indexed: 05/14/2023]
Abstract
Prostate cancer remains one of the main causes of death for men worldwide. Despite recent advances in cancer treatment, patients develop resistance after an initial period of optimal efficacy. Nowadays, it is accepted that natural compounds can result in health benefits with a preventive or adjuvant effect. The purpose of this study was to evaluate the effects of curcumin (CU), a bioactive compound in the spice turmeric, and lactoferrin (LF), a natural glycoprotein with immunomodulatory properties, on DU145 and PC3. Prostate cancer cells were cultured with and without LF (175 μM) and CU (2.5 μg/mL and 5 μg/mL), alone and in combination. Cell viability, migration ability, death receptors (DRs), and integrins (α3, β1) gene expression were evaluated, as well as human annexin V quantification and Akt phosphorylation. Differences among cells group, defined according to the treatment used, were assessed with ANOVA. The results showed that the effects of CU and LF are different between the two prostatic cell lines analyzed. In DU145, a reduction in cell proliferation and migration is reported both in the presence of single and combined treatments. In PC3 cells, there is a significant reduction in proliferation in the presence of CU alone, while the inhibition of migration is mainly related to the LF treatment and its combination with CU, compared to untreated cells. Moreover, the reduction in gene expression of integrins and Akt pathway activation were observed mostly in the presence of the CU and LF combination, including the upregulation of DR and annexin V levels, with greater significance for the DU145 cells. In conclusion, our results suggest that CU and LF may have a potentially beneficial effect, mainly when administered in combination, leading to a reduction in cancer cells' aggressiveness.
Collapse
Affiliation(s)
- Erica Costantini
- Department of Medicine and Aging Sciences, University “G. d’Annunzio”, Via dei Vestini, 66100 Chieti, Italy
| | - Marta Di Nicola
- Department of Medical, Oral and Biotechnological Sciences, University “G. d’Annunzio”, Via dei Vestini, 66100 Chieti, Italy; (M.D.N.); (L.S.)
| | - Michele Marchioni
- Department of Medical, Oral and Biotechnological Sciences, University “G. d’Annunzio”, Via dei Vestini, 66100 Chieti, Italy; (M.D.N.); (L.S.)
| | - Lisa Aielli
- Department of Innovative Technologies in Medicine and Dentistry, University “G. d’Annunzio”, Via dei Vestini, 66100 Chieti, Italy; (L.A.); (M.R.)
| | - Marcella Reale
- Department of Innovative Technologies in Medicine and Dentistry, University “G. d’Annunzio”, Via dei Vestini, 66100 Chieti, Italy; (L.A.); (M.R.)
| | - Luigi Schips
- Department of Medical, Oral and Biotechnological Sciences, University “G. d’Annunzio”, Via dei Vestini, 66100 Chieti, Italy; (M.D.N.); (L.S.)
| |
Collapse
|
19
|
Zhang C, Kang T, Wang X, Song J, Zhang J, Li G. Stimuli-responsive platinum and ruthenium complexes for lung cancer therapy. Front Pharmacol 2022; 13:1035217. [PMID: 36324675 PMCID: PMC9618881 DOI: 10.3389/fphar.2022.1035217] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/04/2022] [Indexed: 11/13/2022] Open
Abstract
Lung cancer is the most common cause of cancer-related deaths worldwide. More efficient treatments are desperately needed. For decades, the success of platinum-based anticancer drugs has promoted the exploration of metal-based agents. Four ruthenium-based complexes have also entered clinical trials as candidates of anticancer metallodrugs. However, systemic toxicity, severe side effects and drug-resistance impeded their applications and efficacy. Stimuli-responsiveness of Pt- and Ru-based complexes provide a great chance to weaken the side effects and strengthen the clinical efficacy in drug design. This review provides an overview on the stimuli-responsive Pt- and Ru-based metallic anticancer drugs for lung cancer. They are categorized as endo-stimuli-responsive, exo-stimuli-responsive, and dual-stimuli-responsive prodrugs based on the nature of stimuli. We describe various representative examples of structure, response mechanism, and potential medical applications in lung cancer. In the end, we discuss the future opportunities and challenges in this field.
Collapse
Affiliation(s)
- Cheng Zhang
- The Department of Thoracic Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Tong Kang
- Department of Dermatology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Xinyi Wang
- The Department of Thoracic Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Jiaqi Song
- Department of Biophysics, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Jia Zhang
- The Department of Thoracic Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
- *Correspondence: Jia Zhang, ; Guanying Li,
| | - Guanying Li
- Department of Biophysics, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an, Shaanxi, China
- *Correspondence: Jia Zhang, ; Guanying Li,
| |
Collapse
|
20
|
Glycoconjugation of Quinoline Derivatives Using the C-6 Position in Sugars as a Strategy for Improving the Selectivity and Cytotoxicity of Functionalized Compounds. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27206918. [PMID: 36296513 PMCID: PMC9607644 DOI: 10.3390/molecules27206918] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/10/2022] [Accepted: 10/13/2022] [Indexed: 11/19/2022]
Abstract
Based on the Warburg effect and the increased demand for glucose by tumor cells, a targeted drug delivery strategy was developed. A series of new glycoconjugates with increased ability to interact with GLUT transporters, responsible for the transport of sugars to cancer cells, were synthesized. Glycoconjugation was performed using the C-6 position in the sugar unit, as the least involved in the formation of hydrogen bonds with various aminoacids residues of the transporter. The carbohydrate moiety was connected with the 8-hydroxyquinoline scaffold via a 1,2,3-triazole linker. For the obtained compounds, several in vitro biological tests were performed using HCT-116 and MCF-7 cancer cells as well as NHDF-Neo healthy cells. The highest cytotoxicity of both cancer cell lines in the MTT test was noted for glycoconjugates in which the triazole-quinoline was attached through the triazole nitrogen atom to the d-glucose unit directly to the carbon at the C-6 position. These compounds were more selective than the analogous glycoconjugates formed by the C-1 anomeric position of d-glucose. Experiments with an EDG inhibitor have shown that GLUTs can be involved in the transport of glycoconjugates. The results of apoptosis and cell cycle analyses by flow cytometry confirmed that the new type of glycoconjugates shows pro-apoptotic properties, without significantly affecting changes in the distribution of the cell cycle. Moreover, glycoconjugates were able to decrease the clonogenic potential of cancer cells, inhibit the migration capacity of cells and intercalate with DNA.
Collapse
|
21
|
Liu G, Lu D, Zhu S, Hao M, Yang X, Wang X, Zhang Y. A new self-immolative colistin prodrug with dual targeting functionalities and reduced toxicity for the treatment of intracellular bacterial infections. J Biomed Mater Res A 2022; 110:1590-1598. [PMID: 35593460 DOI: 10.1002/jbm.a.37410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 04/26/2022] [Accepted: 05/05/2022] [Indexed: 11/08/2022]
Abstract
Colistin is a potent antibiotic but its severe side effects including nephrotoxicity and neurotoxicity are the roadblock for their wide use in clinics. To solve this problem, we synthesized a new prodrug, mannose-maltose-colistin conjugate, termed MMCC that can reversibly mask the five amines of colistin that are primarily responsible for the toxicity. The deliberated design of disulfide-based self-immolative linker warranted the reversibly release of the pristine amines of colistin on demand without sacrificing antimicrobial efficacy. Once MMCC was delivered in cells, reducing agents cleaves the disulfide bond and release the pristine amines. The targeting ligands of maltose and mannose were grafted on colistin conjugate for targeting delivery of colistin to bacteria and macrophages, respectively. Taken together, MMCC as a new class of antimicrobial biomaterials, demonstrates its great potential for the treatment of intracellular bacterial infections.
Collapse
Affiliation(s)
- Gengqi Liu
- School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering (Ministry of Education), Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, P. R. China
| | - Di Lu
- School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering (Ministry of Education), Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, P. R. China
| | - Shiyu Zhu
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, P. R. China
| | - Minchao Hao
- School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering (Ministry of Education), Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, P. R. China
| | - Xingyue Yang
- School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering (Ministry of Education), Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, P. R. China
| | - Xiaojian Wang
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, P. R. China
| | - Yumiao Zhang
- School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering (Ministry of Education), Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, P. R. China
| |
Collapse
|
22
|
Thermal release of quinoliniums and simple alkenes from their photocycloadducts by a retro-Diels–Alder reaction. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.154011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
23
|
ALPER M. Antiproliferative and antioxidant potential of methanol extracts of aerial parts of Colchicum boissieri and Colchicum balansae. INTERNATIONAL JOURNAL OF SECONDARY METABOLITE 2022. [DOI: 10.21448/ijsm.1056920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
24
|
Targeting Transporters for Drug Delivery to the Brain: Can We Do Better? Pharm Res 2022; 39:1415-1455. [PMID: 35359241 PMCID: PMC9246765 DOI: 10.1007/s11095-022-03241-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 03/21/2022] [Indexed: 12/11/2022]
Abstract
Limited drug delivery to the brain is one of the major reasons for high failure rates of central nervous system (CNS) drug candidates. The blood–brain barrier (BBB) with its tight junctions, membrane transporters, receptors and metabolizing enzymes is a main player in drug delivery to the brain, restricting the entrance of the drugs and other xenobiotics. Current knowledge about the uptake transporters expressed at the BBB and brain parenchymal cells has been used for delivery of CNS drugs to the brain via targeting transporters. Although many transporter-utilizing (pro)drugs and nanocarriers have been developed to improve the uptake of drugs to the brain, their success rate of translation from preclinical development to humans is negligible. In the present review, we provide a systematic summary of the current progress in development of transporter-utilizing (pro)drugs and nanocarriers for delivery of drugs to the brain. In addition, we applied CNS pharmacokinetic concepts for evaluation of the limitations and gaps in investigation of the developed transporter-utilizing (pro)drugs and nanocarriers. Finally, we give recommendations for a rational development of transporter-utilizing drug delivery systems targeting the brain based on CNS pharmacokinetic principles.
Collapse
|
25
|
Verma N, Tiwari A, Bajpai J, Bajpai AK. Swelling triggered release of cisplatin from gelatin coated gold nanoparticles. INORG NANO-MET CHEM 2022. [DOI: 10.1080/24701556.2021.2025396] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Nishi Verma
- Department of Chemistry, Government V.Y.T.PG Autonomous College, Durg, CG, India
| | - Alka Tiwari
- Department of Chemistry, Government V.Y.T.PG Autonomous College, Durg, CG, India
| | - Jaya Bajpai
- Department of Chemistry, Government Science College, Bose Memorial Research Lab, Jabalpur, MP, India
| | - Anil Kumar Bajpai
- Department of Chemistry, Government Science College, Bose Memorial Research Lab, Jabalpur, MP, India
| |
Collapse
|
26
|
Synthesis and Preliminary Evaluation of the Cytotoxicity of Potential Metabolites of Quinoline Glycoconjugates. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27031040. [PMID: 35164304 PMCID: PMC8838273 DOI: 10.3390/molecules27031040] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/28/2022] [Accepted: 01/31/2022] [Indexed: 12/12/2022]
Abstract
The design of prodrugs is one of the important strategies for selective anti-cancer therapies. When designing prodrugs, attention is paid to the possibility of their targeting tumor-specific markers such as proteins responsible for glucose uptake. That is why glycoconjugation of biologically active compounds is a frequently used strategy. Glycoconjugates consisting of three basic building blocks: a sugar unit, a linker containing a 1,2,3-triazole ring, and an 8-hydroxyquinoline fragment was described earlier. It is not known whether their cytotoxicity is due to whole glycoconjugates action or their metabolites. To check the biological activity of products that can be released from glycoconjugates under the action of hydrolytic enzymes, the synthetically obtained potential metabolites were tested in vitro for the inhibition of proliferation of HCT-116, MCF-7, and NHDF-Neo cell lines using the MTT assay. Research shows that for the full activity of glycoconjugates, the presence of all three building blocks in the structure of a potential drug is necessary. For selected derivatives, additional tests of targeted drug delivery to tumor cells were carried out using polymer nanocarriers in which they are encapsulated. This approach significantly lowered the determined IC50 values of the tested compounds and improved their selectivity and effectiveness.
Collapse
|
27
|
Merlin JPJ, Li X. Role of Nanotechnology and Their Perspectives in the Treatment of Kidney Diseases. Front Genet 2022; 12:817974. [PMID: 35069707 PMCID: PMC8766413 DOI: 10.3389/fgene.2021.817974] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 12/06/2021] [Indexed: 12/12/2022] Open
Abstract
Nanoparticles (NPs) are differing in particle size, charge, shape, and compatibility of targeting ligands, which are linked to improved pharmacologic characteristics, targetability, and bioavailability. Researchers are now tasked with developing a solution for enhanced renal treatment that is free of side effects and delivers the medicine to the active spot. A growing number of nano-based medication delivery devices are being used to treat renal disorders. Kidney disease management and treatment are currently causing a substantial global burden. Renal problems are multistep processes involving the accumulation of a wide range of molecular and genetic alterations that have been related to a variety of kidney diseases. Renal filtration is a key channel for drug elimination in the kidney, as well as a burgeoning topic of nanomedicine. Although the use of nanotechnology in the treatment of renal illnesses is still in its early phases, it offers a lot of potentials. In this review, we summarized the properties of the kidney and characteristics of drug delivery systems, which affect a drug’s ability should focus on the kidney and highlight the possibilities, problems, and opportunities.
Collapse
Affiliation(s)
- J P Jose Merlin
- Department of Internal Medicine, Mayo Clinic, Rochester, MN, United States
| | - Xiaogang Li
- Department of Internal Medicine, Mayo Clinic, Rochester, MN, United States.,Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
28
|
Ma X, Wang C, Dong Z, Hu C, Feng L. Lipids coated CaCO3-PDA nanoparticles as a versatile nanocarrier to enable pH-responsive dual modal imaging guided combination cancer therapy. J Mater Chem B 2022; 10:4096-4104. [DOI: 10.1039/d2tb00022a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Development of an intelligent and versatile delivery system to achieve tumor targeted delivery and controlled release of diverse functional moieties is of great significance to realize precise cancer theranostics. In...
Collapse
|
29
|
Gavriel A, Sambrook M, Russell AT, Hayes W. Recent advances in self-immolative linkers and their applications in polymeric reporting systems. Polym Chem 2022. [DOI: 10.1039/d2py00414c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Interest in self-immolative chemistry has grown over the past decade with more research groups harnessing the versatility to control the release of a compound from a larger chemical entity, given...
Collapse
|
30
|
Huvelle S, Le Saux T, Jullien L, Schmidt F. A double-triggered self-immolative spacer for increased selectivity of molecular release. Org Biomol Chem 2021; 20:240-246. [PMID: 34897358 DOI: 10.1039/d1ob02124a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A self-immolative spacer based on dissymmetrical N,N'-bis-carbamate aniline is introduced to liberate a substrate from a precursor after dual activation. The proof of principle of its exclusive selectivity for substrate liberation has been conducted on a profluorophore.
Collapse
Affiliation(s)
- Steve Huvelle
- i-CleHS, UMR 8060, Chimie ParisTech - PSL, Paris, Île-de-France, France
| | - Thomas Le Saux
- PASTEUR, Département de chimie, École normale supérieure, PSL University, Sorbonne Université, CNRS, 24, rue Lhomond, 75005 Paris, France.
| | - Ludovic Jullien
- PASTEUR, Département de chimie, École normale supérieure, PSL University, Sorbonne Université, CNRS, 24, rue Lhomond, 75005 Paris, France.
| | - Frédéric Schmidt
- Institut Curie, PSL University, CNRS UMR 3666 - INSERM U1143, 26 rue d'Ulm, 75248 PARIS CEDEX 05, FRANCE.
| |
Collapse
|
31
|
Muthiah G, Jaiswal A. Can the Union of Prodrug Therapy and Nanomedicine Lead to Better Cancer Management? ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202100074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Giredhar Muthiah
- School of Basic Sciences Indian Institute of Technology Mandi Kamand Mandi Himachal Pradesh 175075 India
| | - Amit Jaiswal
- School of Basic Sciences Indian Institute of Technology Mandi Kamand Mandi Himachal Pradesh 175075 India
| |
Collapse
|
32
|
Gao P, Nicolas J, Ha-Duong T. Supramolecular Organization of Polymer Prodrug Nanoparticles Revealed by Coarse-Grained Simulations. J Am Chem Soc 2021; 143:17412-17423. [PMID: 34644073 DOI: 10.1021/jacs.1c05332] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Drug-polymer conjugates that can self-assemble into nanoparticles are promising drug delivery systems that improve the drug bioavailability and allow their controlled release. However, despite the possibility of reaching high drug loadings, the efficiency of the drug release, mediated by cleavage of the drug-polymer linker, is a key parameter to obtain significant anticancer activity. To overcome the limitations of experimental characterizations and to gain a better understanding of such systems, we conducted a coarse-grained molecular dynamics simulation study on four representative drug-polymer conjugates obtained by the "drug-initiated" method and studied their supramolecular organization upon self-assembly. The prodrugs were composed of either a gemcitabine or a paclitaxel anticancer drug, either a propanoate or a diglycolate linker, and a polyisoprene chain. Our simulations gave crucial information concerning the spatial organization of the different components (e.g., drug, linker, polymer, etc.) into the nanoparticles and revealed that the linkers are not fully accessible to the solvent. Notably, some cleavage sites were either poorly hydrated or partially solvated. These observations might account for the low efficiency of drug release from the nanoparticles, particularly when the linker is too short and/or not hydrophilic/solvated enough. We believe that our theoretical study could be adapted to other types of polymer prodrugs and could guide the design of new polymer prodrug nanoparticles with improved drug release efficiency.
Collapse
Affiliation(s)
- Ping Gao
- Université Paris-Saclay, CNRS, BioCIS, Châtenay-Malabry 92290, France.,Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, Châtenay-Malabry 92290, France
| | - Julien Nicolas
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, Châtenay-Malabry 92290, France
| | - Tâp Ha-Duong
- Université Paris-Saclay, CNRS, BioCIS, Châtenay-Malabry 92290, France
| |
Collapse
|
33
|
Humer D, Spadiut O. Enzyme prodrug therapy: cytotoxic potential of paracetamol turnover with recombinant horseradish peroxidase. MONATSHEFTE FUR CHEMIE 2021; 152:1389-1397. [PMID: 34759433 PMCID: PMC8542555 DOI: 10.1007/s00706-021-02848-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 09/06/2021] [Indexed: 11/05/2022]
Abstract
Targeted cancer treatment is a promising, less invasive alternative to chemotherapy as it is precisely directed against tumor cells whilst leaving healthy tissue unaffected. The plant-derived enzyme horseradish peroxidase (HRP) can be used for enzyme prodrug cancer therapy with indole-3-acetic acid or the analgesic paracetamol (acetaminophen). Oxidation of paracetamol by HRP in the presence of hydrogen peroxide leads to N-acetyl-p-benzoquinone imine and polymer formation via a radical reaction mechanism. N-acetyl-p-benzoquinone imine binds to DNA and proteins, resulting in severe cytotoxicity. However, plant HRP is not suitable for this application since the foreign glycosylation pattern is recognized by the human immune system, causing rapid clearance from the body. Furthermore, plant-derived HRP is a mixture of isoenzymes with a heterogeneous composition. Here, we investigated the reaction of paracetamol with defined recombinant HRP variants produced in E. coli, as well as plant HRP, and found that they are equally effective in paracetamol oxidation at a concentration ≥ 400 µM. At low paracetamol concentrations, however, recombinant HRP seems to be more efficient in paracetamol oxidation. Yet upon treatment of HCT-116 colon carcinoma and FaDu squamous carcinoma cells with HRP-paracetamol no cytotoxic effect was observed, neither in the presence nor absence of hydrogen peroxide. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s00706-021-02848-x.
Collapse
Affiliation(s)
- Diana Humer
- TU Wien, Institute of Chemical, Environmental and Bioscience Engineering, Research Area Biochemical Engineering, Gumpendorfer Straße 1a, 1060 Vienna, Austria
| | - Oliver Spadiut
- TU Wien, Institute of Chemical, Environmental and Bioscience Engineering, Research Area Biochemical Engineering, Gumpendorfer Straße 1a, 1060 Vienna, Austria
| |
Collapse
|
34
|
Fairhall JM, Camilli JC, Gibson BH, Hook S, Gamble AB. EGFR-targeted prodrug activation using bioorthogonal alkene-azide click-and-release chemistry. Bioorg Med Chem 2021; 46:116361. [PMID: 34411983 DOI: 10.1016/j.bmc.2021.116361] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 08/03/2021] [Indexed: 12/24/2022]
Abstract
Epidermal growth factor receptor (EGFR) is overexpressed in many cancers and therefore serves as an excellent target for prodrug activation. Functionalised trans-cyclooctenes (TCO) were conjugated to an EGFR antibody (cetuximab), providing a reagent for pre-targeting and localisation of the bioorthogonal reagent. The TCOs react with a 4-azidobenzyl carbamate doxorubicin prodrug via a [3 + 2]-cycloaddition and subsequent self-immolation leads to release of doxorubicin (click-and-release). In vitro cell-based assays demonstrated proof-of-concept, that cetuximab conjugated to highly strained TCO (AB-d-TCO) could bind to the EGFR in a melanoma cell line, and selectively activate the doxorubicin prodrug. In a non-EGFR expressing melanoma cell line, no significant prodrug activation was observed. In vivo experiments using this combination of AB-d-TCO and the azido-doxorubicin prodrug in a murine melanoma model revealed no significant anti-tumour activity or increased survival, suggesting there was insufficient prodrug activation and drug release at the tumour site.
Collapse
Affiliation(s)
| | - Júlia C Camilli
- School of Pharmacy, University of Otago, Dunedin 9054, New Zealand
| | - Blake H Gibson
- School of Pharmacy, University of Otago, Dunedin 9054, New Zealand
| | - Sarah Hook
- School of Pharmacy, University of Otago, Dunedin 9054, New Zealand
| | - Allan B Gamble
- School of Pharmacy, University of Otago, Dunedin 9054, New Zealand.
| |
Collapse
|
35
|
Gavriel AG, Leroux F, Khurana GS, Lewis VG, Chippindale AM, Sambrook MR, Hayes W, Russell AT. Self-Immolative System for Disclosure of Reactive Electrophilic Alkylating Agents: Understanding the Role of the Reporter Group. J Org Chem 2021; 86:10263-10279. [PMID: 34292742 PMCID: PMC8389931 DOI: 10.1021/acs.joc.1c00996] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
The development of
stable, efficient chemoselective self-immolative
systems, for use in applications such as sensors, requires the optimization
of the reactivity and degradation characteristics of the self-immolative
unit. In this paper, we describe the effect that the structure of
the reporter group has upon the self-immolative efficacy of a prototype
system designed for the disclosure of electrophilic alkylating agents.
The amine of the reporter group (a nitroaniline unit) was a constituent
part of a carbamate that functioned as the self-immolative unit. The
number and position of substituents on the nitroaniline unit were
found to play a key role in the rate of self-immolative degradation
and release of the reporter group. The position of the nitro substituent
(meta- vs para-) and the methyl
groups in the ortho-position relative to the carbamate
exhibited an influence on the rate of elimination and stability of
the self-immolative system. The ortho-methyl substituents
imparted a twist on the N–C (aromatic) bond leading to increased
resonance of the amine nitrogen’s lone pair into the carbonyl
moiety and a decrease of the leaving character of the carbamate group;
concomitantly, this may also make it a less electron-withdrawing group
and lead to less acidification of the eliminated β-hydrogen.
Collapse
Affiliation(s)
- Alexander G Gavriel
- Department of Chemistry, University of Reading, Whiteknights, Reading RG6 6AD, U.K
| | - Flavien Leroux
- Department of Chemistry, University of Reading, Whiteknights, Reading RG6 6AD, U.K
| | - Gurjeet S Khurana
- Department of Chemistry, University of Reading, Whiteknights, Reading RG6 6AD, U.K
| | - Viliyana G Lewis
- Department of Chemistry, University of Reading, Whiteknights, Reading RG6 6AD, U.K
| | - Ann M Chippindale
- Department of Chemistry, University of Reading, Whiteknights, Reading RG6 6AD, U.K
| | - Mark R Sambrook
- CBR Division, Defence Science & Technology Laboratory (Dstl), Porton Down, Salisbury, Wiltshire SP4 0JQ, U.K
| | - Wayne Hayes
- Department of Chemistry, University of Reading, Whiteknights, Reading RG6 6AD, U.K
| | - Andrew T Russell
- Department of Chemistry, University of Reading, Whiteknights, Reading RG6 6AD, U.K
| |
Collapse
|
36
|
Mignani S, Shi X, Guidolin K, Zheng G, Karpus A, Majoral JP. Clinical diagonal translation of nanoparticles: Case studies in dendrimer nanomedicine. J Control Release 2021; 337:356-370. [PMID: 34311026 DOI: 10.1016/j.jconrel.2021.07.036] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 07/19/2021] [Accepted: 07/21/2021] [Indexed: 12/12/2022]
Abstract
Among the numerous nanomedicine formulations, dendrimers have emerged as original, efficient, carefully assembled, hyperbranched, polymeric nanoparticles based on synthetic monomers. Dendrimers are used either as nanocarriers of drugs or as drugs themselves. When used as drug carriers, dendrimers are considered 'best-in-class agents', modifying and enhancing the pharmacokinetic and pharmacodynamic properties of the active entities encapsulated or conjugated with the dendrimers. When used as drugs themselves, dendrimers represent a novel category of "first-in-class" drugs. The purpose of this original review is to analyse the different strategies involved in the development, application, and impact of dendrimers as drugs. We examine a selection of nanoparticles that use multifunctional elements and demonstrate clinical multifunctionality, and we extend these principles to applications in dendrimer nanomedicine design. Finally, for practical consideration, the concepts of vertical and diagonal translation are introduced as potential strategies to facilitate dendrimer development.
Collapse
Affiliation(s)
- Serge Mignani
- Université Paris Descartes, PRES Sorbonne Paris Cité, CNRS UMR 860, Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologique, 45, rue des Saints Peres, 75006 Paris, France; CQM - Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
| | - Xiangyang Shi
- CQM - Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal; College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, PR China
| | - Keegan Guidolin
- Department of Surgery, University of Toronto, Toronto, Canada; Princess Margaret Cancer Centre, Toronto, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, Canada
| | - Gang Zheng
- Princess Margaret Cancer Centre, Toronto, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, Canada
| | - Andrii Karpus
- Laboratoire de Chimie de Coordination du CNRS, 205 route de Narbonne, 31077 Toulouse Cedex 4, France; Université Toulouse 118 route de Narbonne, 31077 Toulouse Cedex 4, France
| | - Jean-Pierre Majoral
- Laboratoire de Chimie de Coordination du CNRS, 205 route de Narbonne, 31077 Toulouse Cedex 4, France; Université Toulouse 118 route de Narbonne, 31077 Toulouse Cedex 4, France.
| |
Collapse
|
37
|
Alemayehu YA, Ilhami FB, Manayia AH, Cheng CC. Mercury-containing supramolecular micelles with highly sensitive pH-responsiveness for selective cancer therapy. Acta Biomater 2021; 129:235-244. [PMID: 34087441 DOI: 10.1016/j.actbio.2021.05.044] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 05/19/2021] [Accepted: 05/21/2021] [Indexed: 02/07/2023]
Abstract
Construction and manipulation of metal-based supramolecular polymers-which are based on a combination of nucleobase hydrogen bonding interactions and functional metal ions-to obtain the desired physicochemical properties and achieve the efficacy and safety required for biomedical applications remain extremely challenging. We successfully designed and synthesized a new mercury-based supramolecular polymer, Hg-BU-PPG, containing an oligomeric polypropylene glycol backbone and pH-sensitive uracil-mercury-uracil (U-Hg-U) linkages. This multifunctional metallo-supramolecular material spontaneously self-organizes into nanosized spherical micelles in aqueous solution. The micelles possess several attractive properties, including desired long-term structural stability in serum-rich conditions, unique fluorescence behavior and highly sensitive, well-controlled pH-responsiveness. Interestingly, Hg-BU-PPG micelles exhibited strong, selective cytotoxic effects towards cancer cells in vitro, without harming normal cells. The highly selective cytotoxicity can be attributed to rapid dissociation of the U-Hg-U complexes within the micelles in the mildly acidic intracellular pH of cancer cells, followed by release of inherently toxic mercury ions. Importantly, fluorescence microscopy and flow cytometry clearly demonstrated that Hg-BU-PPG selectively entered the cancer cells via endocytosis and rapidly promoted massive apoptotic cell death. In contrast, internalization of Hg-BU-PPG by normal cells was limited, resulting in high biocompatibility and no cytotoxic effects. Thus, this newly discovered 'cytotoxicity-concealing' supramolecular system could represent a viable route to enhance the safety and efficacy of cancer therapy and bioimaging via a strategy that does not require incorporation of anticancer drugs and fluorescent probes. STATEMENT OF SIGNIFICANCE: We report a significant breakthrough in the construction of mercury-containing supramolecular polymers, namely the creation of multifunctional micelles with unique chemical and physical properties conferred by pH-sensitive uracil-mercury-uracil (U-Hg-U) linkages and tunable structural and dynamical features due to the presence of hydrogen-bonded uracil moieties. Importantly, in vitro experiments clearly demonstrated that introduction of the U-Hg-U complexes into the micelles not only improved the efficiency of selective uptake via endocytosis into cancer cells, but also accelerated the induction of massive apoptotic cell death. Thus, this work provides crucial new insight for the development of metallo-supramolecular polymeric micelles that may substantially enhance the safety and efficacy of cancer therapy and bioimaging without requiring incorporation of anticancer drugs or fluorescent probes.
Collapse
|
38
|
Wang N, Brickute D, Braga M, Barnes C, Lu H, Allott L, Aboagye EO. Novel Non-Congeneric Derivatives of the Choline Kinase Alpha Inhibitor ICL-CCIC-0019. Pharmaceutics 2021; 13:1078. [PMID: 34371769 PMCID: PMC8309005 DOI: 10.3390/pharmaceutics13071078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/06/2021] [Accepted: 07/09/2021] [Indexed: 01/07/2023] Open
Abstract
Choline kinase alpha (CHKA) is a promising target for the development of cancer therapeutics. We have previously reported ICL-CCIC-0019, a potent CHKA inhibitor with high cellular activity but with some unfavorable pharmacological properties. In this work, we present an active analogue of ICL-CCIC-0019 bearing a piperazine handle (CK146) to facilitate further structural elaboration of the pharmacophore and thus improve the biological profile. Two different strategies were evaluated in this study: (1) a prodrug approach whereby selective CHKA inhibition could be achieved through modulating the activity of CK146, via the incorporation of an ε-(Ac) Lys motif, cleavable by elevated levels of histone deacetylase (HDAC) and cathepsin L (CTSL) in tumour cells; (2) a prostate-specific membrane antigen (PSMA) receptor targeted delivery strategy. Prodrug (CK145) and PSMA-targeted (CK147) derivatives were successfully synthesized and evaluated in vitro. While the exploitation of CK146 in those two strategies did not deliver the expected results, important and informative structure-activity relationships were observed and have been reported.
Collapse
Affiliation(s)
- Ning Wang
- Comprehensive Cancer Imaging Centre, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Hammersmith Hospital, London W12 0NN, UK; (N.W.); (D.B.); (M.B.); (C.B.); (H.L.)
| | - Diana Brickute
- Comprehensive Cancer Imaging Centre, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Hammersmith Hospital, London W12 0NN, UK; (N.W.); (D.B.); (M.B.); (C.B.); (H.L.)
| | - Marta Braga
- Comprehensive Cancer Imaging Centre, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Hammersmith Hospital, London W12 0NN, UK; (N.W.); (D.B.); (M.B.); (C.B.); (H.L.)
| | - Chris Barnes
- Comprehensive Cancer Imaging Centre, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Hammersmith Hospital, London W12 0NN, UK; (N.W.); (D.B.); (M.B.); (C.B.); (H.L.)
| | - Haonan Lu
- Comprehensive Cancer Imaging Centre, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Hammersmith Hospital, London W12 0NN, UK; (N.W.); (D.B.); (M.B.); (C.B.); (H.L.)
| | - Louis Allott
- Comprehensive Cancer Imaging Centre, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Hammersmith Hospital, London W12 0NN, UK; (N.W.); (D.B.); (M.B.); (C.B.); (H.L.)
- Positron Emission Tomography Research Centre, Faculty of Health Sciences, University of Hull, Kingston upon Hull HU6 7RX, UK
| | - Eric O. Aboagye
- Comprehensive Cancer Imaging Centre, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Hammersmith Hospital, London W12 0NN, UK; (N.W.); (D.B.); (M.B.); (C.B.); (H.L.)
| |
Collapse
|
39
|
Sarpong-Kumankomah S, Gailer J. Application of a Novel Metallomics Tool to Probe the Fate of Metal-Based Anticancer Drugs in Blood Plasma: Potential, Challenges and Prospects. Curr Top Med Chem 2021; 21:48-58. [PMID: 32600232 DOI: 10.2174/1568026620666200628023540] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/20/2020] [Accepted: 05/27/2020] [Indexed: 12/17/2022]
Abstract
Although metallodrugs are used to treat a variety of human disorders and exhibit a remarkable diversity of therapeutic properties, they constitute only a tiny minority of all medicinal drugs that are currently on the market. This undesirable situation must be partially attributed to our general lack of understanding the fate of metallodrugs in the extremely ligand-rich environment of the bloodstream. The challenge of gaining insight into these bioinorganic processes can be overcome by the application of 'metallomics tools', which involve the analysis of biological fluids (e.g., blood plasma) with a separation method in conjunction with multi-element specific detectors. To this end, we have developed a metallomics tool that is based on size-exclusion chromatography (SEC) hyphenated to an inductively coupled plasma atomic emission spectrometer (ICP-AES). After the successful application of SEC-ICPAES to analyze plasma for endogenous copper, iron and zinc-metalloproteins, it was subsequently applied to probe the metabolism of a variety of metal-based anticancer drugs in plasma. The versatility of this metallomics tool is exemplified by the fact that it has provided insight into the metabolism of individual Pt-based drugs, the modulation of the metabolism of cisplatin by sulfur-containing compounds, the metabolism of two metal-based drugs that contain different metals as well as a bimetallic anticancer drug, which contained two different metals. After adding pharmacologically relevant doses of metallodrugs to plasma, the temporal analysis of aliquots by SEC-ICP-AES allows to observe metal-protein adducts, metallodrug-derived degradation products and the parent metallodrug(s). This unique capability allows to obtain comprehensive insight into the fate of metal-based drugs in plasma and can be extended to in vivo studies. Thus, the application of this metallomics tool to probe the fate of novel metalcomplexes that exert the desired biological activity in plasma has the potential to advance more of these to animal/preclinical studies to fully explore the potential that metallodrugs inherently offer.
Collapse
Affiliation(s)
| | - Jürgen Gailer
- Department of Chemistry, Faculty of Science, University of Calgary, Calgary, Canada
| |
Collapse
|
40
|
Lu N, Xi L, Zha Z, Wang Y, Han X, Ge Z. Acid-responsive endosomolytic polymeric nanoparticles with amplification of intracellular oxidative stress for prodrug delivery and activation. Biomater Sci 2021; 9:4613-4629. [PMID: 34190224 DOI: 10.1039/d1bm00159k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Prodrug strategy especially in the field of chemotherapy of cancers possesses significant advantages reducing the side toxicity of anticancer drugs. However, high-efficiency delivery and in situ activation of prodrugs for tumor growth suppression are still a great challenge. Herein, we report rationally engineered pH-responsive endosomolytic polymeric micelles for the delivery of an oxidation-activable prodrug into the cytoplasm of cancer cells and amplification of intracellular oxidative stress for further prodrug activation. The prepared block copolymers consist of a poly(ethylene glycol) (PEG) block and a segment grafted by endosomolytic moieties and acetal linkage-connected cinnamaldehyde groups. The amphiphilic diblock copolymers can self-assemble to form micelles in water for loading the oxidation-activable phenylboronic pinacol ester-caged camptothecin prodrug (ProCPT). The obtained micelles can release free cinnamaldehyde under acidic conditions in tumor tissues and endo/lysosomes followed by efficient endosomal escape, which further induces enhancement of intracellular reactive oxygen species (ROS) to activate the prodrugs. Simultaneously, intracellular glutathione (GSH) can be reduced by quinone methide that was produced during prodrug activation. The ProCPT-loaded micelles can finally achieve efficient tumor accumulation and retention as well as effective tumor growth inhibition. More importantly, hematological and pathological analysis of toxicity reveals that the ProCPT-loaded micelles do not cause obvious toxic side effects toward important organs of mice. A positive immunomodulatory microenvironment in tumor tissue and serum can be detected after treatment with ProCPT-loaded micelles. Therefore, the endosomolytic ProCPT-loaded micelles exert synergistic therapeutic effects toward tumors through amplification of intracellular oxidative stress and activation of the prodrugs.
Collapse
Affiliation(s)
- Nannan Lu
- Department of Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei 230001, Anhui, China.
| | - Longchang Xi
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, Anhui, China.
| | - Zengshi Zha
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, Anhui, China.
| | - Yuheng Wang
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, Anhui, China.
| | - Xinghua Han
- Department of Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei 230001, Anhui, China.
| | - Zhishen Ge
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, Anhui, China.
| |
Collapse
|
41
|
Shieh P, Hill MR, Zhang W, Kristufek SL, Johnson JA. Clip Chemistry: Diverse (Bio)(macro)molecular and Material Function through Breaking Covalent Bonds. Chem Rev 2021; 121:7059-7121. [PMID: 33823111 DOI: 10.1021/acs.chemrev.0c01282] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In the two decades since the introduction of the "click chemistry" concept, the toolbox of "click reactions" has continually expanded, enabling chemists, materials scientists, and biologists to rapidly and selectively build complexity for their applications of interest. Similarly, selective and efficient covalent bond breaking reactions have provided and will continue to provide transformative advances. Here, we review key examples and applications of efficient, selective covalent bond cleavage reactions, which we refer to herein as "clip reactions." The strategic application of clip reactions offers opportunities to tailor the compositions and structures of complex (bio)(macro)molecular systems with exquisite control. Working in concert, click chemistry and clip chemistry offer scientists and engineers powerful methods to address next-generation challenges across the chemical sciences.
Collapse
Affiliation(s)
- Peyton Shieh
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Megan R Hill
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Wenxu Zhang
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Samantha L Kristufek
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Jeremiah A Johnson
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
42
|
Liu G, Jiang Z, Lovell JF, Zhang L, Zhang Y. Design of a Thiol-Responsive, Traceless Prodrug with Rapid Self-Immolation for Cancer Chemotherapy. ACS APPLIED BIO MATERIALS 2021; 4:4982-4989. [PMID: 35007046 DOI: 10.1021/acsabm.1c00247] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Prodrugs can be formed by chemical modification of the existing active pharmaceutical ingredients (APIs); however, this often sacrifices their functional efficacy. Self-immolative linkers have recently attracted attention, as they can be designed to release pristine APIs. Herein, we report a strategy to generate a self-immolative prodrug (SIP) that can release pristine doxorubicin (DOX). Compared to conventional linkers, the key SIP DOX (KSIP-DOX) developed here can rapidly and quantitatively release the API due to its strong leaving group after reduction by thiol groups, which are present in tumors. KSIP-DOX has enhanced cellular uptake and improved anticancer efficacy, demonstrating its utility for cancer treatment.
Collapse
Affiliation(s)
- Gengqi Liu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300350, P. R. China
| | - Zhen Jiang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300350, P. R. China
| | - Jonathan F Lovell
- Department of Biomedical Engineering, The State University of New York at Buffalo, Buffalo, New York 14260, United States
| | - Lei Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300350, P. R. China
| | - Yumiao Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300350, P. R. China
| |
Collapse
|
43
|
Gairola K, Gururani S, Bahuguna A, Garia V, Pujari R, Dubey SK. Natural products targeting cancer stem cells: Implications for cancer chemoprevention and therapeutics. J Food Biochem 2021; 45:e13772. [PMID: 34028051 DOI: 10.1111/jfbc.13772] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 04/06/2021] [Accepted: 05/03/2021] [Indexed: 12/14/2022]
Abstract
Cancer, being the leading cause of death in the globe, has been one of the major thrust areas of research worldwide. In a new paradigm about neoplastic transformations, the initiation and recurrence of disease is attributed to few mutated cells in bulk of tumor called cancer stem cells (CSCs). CSCs have capacity of self-renewal and differentiation, which are known for resistance to radio and chemotherapy leading to recurrence of the disease even after treatment. Most of traditional drugs implicated in cancer therapy targeting primary tumors have substantial toxicity to the physiological system and have not been efficient in targeting these CSCs leading to poor prognosis. Targeting these CSCs in bulk of tumor might be novel strategy for cancer chemoprevention and therapeutics. Diet-derived interventions and diverse natural products are known to target these CSCs and related signaling pathways, namely, Wnt, Notch, and Hedgehog pathways, which are implicated for CSC self-renewal. PRACTICAL APPLICATIONS: Cancer remains a global challenge even in this century. Poor prognosis, survival rate, and recurrence of the disease have been the major concerns in traditional cancer therapy regimes. Targeting cancer stem cells might be novel strategy for elimination and cure of the chronic disease as they are known to modulate all stages of carcinogenesis and responsible for recurrence and resistance to chemotherapy and radiotherapy. The evidence support that natural products might inhibit, delay, or reverse the process of tumorigenesis and modulate the different signaling pathways implicated for cancer stem cells self-renewal and differentiation. Natural products have minimal toxicity compared to traditional cancer therapy drugs since they have long been utilized in our food habits without any major side effects reported. Thus, targeting cancer stem cells with natural product might be a novel strategy for drug development in cancer chemoprevention and therapeutics.
Collapse
Affiliation(s)
- Kanchan Gairola
- Department of Biochemistry, G. B. Pant University of Agriculture and Technology, Pantnagar, India
| | - Shriya Gururani
- Department of Biochemistry, G. B. Pant University of Agriculture and Technology, Pantnagar, India
| | - Ananya Bahuguna
- Department of Biochemistry, G. B. Pant University of Agriculture and Technology, Pantnagar, India
| | - Vaishali Garia
- Department of Biochemistry, G. B. Pant University of Agriculture and Technology, Pantnagar, India
| | - Rohit Pujari
- Department of Biochemistry, G. B. Pant University of Agriculture and Technology, Pantnagar, India
| | - Shiv K Dubey
- Department of Biochemistry, G. B. Pant University of Agriculture and Technology, Pantnagar, India
| |
Collapse
|
44
|
Bulanadi JC, Xue A, Gong X, Bean PA, Julovi SM, de Campo L, Smith RC, Moghaddam MJ. Biomimetic Gemcitabine-Lipid Prodrug Nanoparticles for Pancreatic Cancer. Chempluschem 2021; 85:1283-1291. [PMID: 32543086 DOI: 10.1002/cplu.202000253] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/15/2020] [Indexed: 12/18/2022]
Abstract
Gemcitabine (Gem) is a key drug for pancreatic cancer, yet limited by high systemic toxicity, low bioavailability and poor pharmacokinetic profiles. To overcome these limitations, Gem prodrug amphiphiles were synthesised with oleyl, linoleyl and phytanyl chains. Self-assembly and lyotropic mesophase behaviour of these amphiphiles were examined using polarised optical microscopy and Synchrotron SAXS (SSAXS). Gem-phytanyl was found to form liquid crystalline inverse cubic mesophase. This prodrug was combined with phospholipids and cholesterol to create biomimetic Gem-lipid prodrug nanoparticles (Gem-LPNP), verified by SSAXS and cryo-TEM to form liposomes. In vitro testing of the Gem-LPNP in several pancreatic cancer cell lines showed lower toxicity than Gem. However, in a cell line-derived pancreatic cancer mouse model Gem-LPNP displayed greater tumour growth inhibition than Gem using a fraction (<6 %) of the clinical dose and without any systemic toxicity. The easy production, improved efficacy and low toxicity of Gem-LPNP represents a promising new nanomedicine for pancreatic cancer.
Collapse
Affiliation(s)
- Jerikho C Bulanadi
- CSIRO Manufacturing, P.O. BOX 52, North Ryde, NSW, 1670, Australia.,Cancer Surgery and Metabolism Group, University of Sydney, Kolling Institute of Medical Research, Royal North Shore Hospital, St Leonards, NSW, 2065, Australia
| | - Aiqun Xue
- Cancer Surgery and Metabolism Group, University of Sydney, Kolling Institute of Medical Research, Royal North Shore Hospital, St Leonards, NSW, 2065, Australia
| | - Xiaojuan Gong
- CSIRO Manufacturing, P.O. BOX 52, North Ryde, NSW, 1670, Australia.,NanoMed Pty Ltd., 2/11-13 Orion Road, Lane Cove West, NSW, 2066, Australia
| | - Penelope A Bean
- CSIRO Manufacturing, P.O. BOX 52, North Ryde, NSW, 1670, Australia.,NanoMed Pty Ltd., 2/11-13 Orion Road, Lane Cove West, NSW, 2066, Australia
| | - Sohel M Julovi
- Cancer Surgery and Metabolism Group, University of Sydney, Kolling Institute of Medical Research, Royal North Shore Hospital, St Leonards, NSW, 2065, Australia
| | | | - Ross C Smith
- Cancer Surgery and Metabolism Group, University of Sydney, Kolling Institute of Medical Research, Royal North Shore Hospital, St Leonards, NSW, 2065, Australia.,NanoMed Pty Ltd., 2/11-13 Orion Road, Lane Cove West, NSW, 2066, Australia
| | - Minoo J Moghaddam
- CSIRO Manufacturing, P.O. BOX 52, North Ryde, NSW, 1670, Australia.,NanoMed Pty Ltd., 2/11-13 Orion Road, Lane Cove West, NSW, 2066, Australia
| |
Collapse
|
45
|
Chen KJ, Plaunt AJ, Leifer FG, Kang JY, Cipolla D. Recent advances in prodrug-based nanoparticle therapeutics. Eur J Pharm Biopharm 2021; 165:219-243. [PMID: 33979661 DOI: 10.1016/j.ejpb.2021.04.025] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 03/10/2021] [Accepted: 04/26/2021] [Indexed: 12/17/2022]
Abstract
Extensive research into prodrug modification of active pharmaceutical ingredients and nanoparticle drug delivery systems has led to unprecedented levels of control over the pharmacological properties of drugs and resulted in the approval of many prodrug or nanoparticle-based therapies. In recent years, the combination of these two strategies into prodrug-based nanoparticle drug delivery systems (PNDDS) has been explored as a way to further advance nanomedicine and identify novel therapies for difficult-to-treat indications. Many of the PNDDS currently in the clinical development pipeline are expected to enter the market in the coming years, making the rapidly evolving field of PNDDS highly relevant to pharmaceutical scientists. This review paper is intended to introduce PNDDS to the novice reader while also updating those working in the field with a comprehensive summary of recent efforts. To that end, first, an overview of FDA-approved prodrugs is provided to familiarize the reader with their advantages over traditional small molecule drugs and to describe the chemistries that can be used to create them. Because this article is part of a themed issue on nanoparticles, only a brief introduction to nanoparticle-based drug delivery systems is provided summarizing their successful application and unfulfilled opportunities. Finally, the review's centerpiece is a detailed discussion of rationally designed PNDDS formulations in development that successfully leverage the strengths of prodrug and nanoparticle approaches to yield highly effective therapeutic options for the treatment of many diseases.
Collapse
|
46
|
Edupuganti VVSR, Tyndall JDA, Gamble AB. Self-immolative Linkers in Prodrugs and Antibody Drug Conjugates in Cancer Treatment. Recent Pat Anticancer Drug Discov 2021; 16:479-497. [PMID: 33966624 DOI: 10.2174/1574892816666210509001139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/09/2021] [Accepted: 03/02/2021] [Indexed: 12/09/2022]
Abstract
BACKGROUND The design of anti-cancer therapies with high anti-tumour efficacy and reduced toxicity continues to be challenging. Anti-cancer prodrug and antibody-drug-conjugate (ADC) strategies that can specifically and efficiently deliver cytotoxic compounds to cancer cells have been used to overcome some of the challenges. Key to the success of many of these strategies is a self-immolative linker, which after activation can release the drug payload. Various types of triggerable self-immolative linkers are used in prodrugs and ADCs to improve their efficacy and safety. OBJECTIVE Numerous patents have reported the significance of self-immolative linkers in prodrugs and ADCs in cancer treatment. Based on the recent patent literature, we summarise methods for designing the site-specific activation of non-toxic prodrugs and ADCs in order to improve selectivity for killing cancer cells. METHODS In this review, an integrated view of the potential use of prodrugs and ADCs in cancer treatment are provided. This review presents recent patents and related publications over the past ten years to 2020. RESULTS The recent patent literature has been summarised for a wide variety of self-immolative PABC linkers, which are cleaved by factors including responding to the difference between the extracellular and intracellular environments (pH, ROS, glutathione), by over-expressed enzymes (cathepsin, plasmin, β-glucuronidase) or bioorthogonal activation. The mechanism for self-immolation involves the linker undergoing a 1,4- or 1,6-elimination (via electron cascade) or intramolecular cyclisation to release cytotoxic drug at the targeted site. CONCLUSION This review provides the commonly used strategies from recent patent literature in the development of prodrugs based on targeted cancer therapy and antibody-drug conjugates, which show promising results in therapeutic applications.
Collapse
Affiliation(s)
| | - Joel D A Tyndall
- School of Pharmacy, University of Otago, Dunedin, 9054. New Zealand
| | - Allan B Gamble
- School of Pharmacy, University of Otago, Dunedin, 9054. New Zealand
| |
Collapse
|
47
|
|
48
|
Pratsinis A, Uhl P, Bolten JS, Hauswirth P, Schenk SH, Urban S, Mier W, Witzigmann D, Huwyler J. Virus-Derived Peptides for Hepatic Enzyme Delivery. Mol Pharm 2021; 18:2004-2014. [PMID: 33844553 DOI: 10.1021/acs.molpharmaceut.0c01222] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Recently, a lipopeptide derived from the hepatitis B virus (HBV) large surface protein has been developed as an HBV entry inhibitor. This lipopeptide, called MyrcludexB (MyrB), selectively binds to the sodium taurocholate cotransporting polypeptide (NTCP) on the basolateral membrane of hepatocytes. Here, the feasibility of coupling therapeutic enzymes to MyrB was investigated for the development of enzyme delivery strategies. Hepatotropic targeting shall enable enzyme prodrug therapies and detoxification procedures. Here, horseradish peroxidase (HRP) was conjugated to MyrB via maleimide chemistry, and coupling was validated by SDS-PAGE and reversed-phase HPLC. The specificity of the target recognition of HRP-MyrB could be shown in an NTCP-overexpressing liver parenchymal cell line, as demonstrated by competitive inhibition with an excess of free MyrB and displayed a strong linear dependency on the applied HRP-MyrB concentration. In vivo studies in zebrafish embryos revealed a dominating interaction of HRP-MyrB with scavenger endothelial cells vs xenografted NTCP expressing mammalian cells. In mice, radiolabeled 125I-HRP-MyrBy, as well as the non-NTCP targeted control HRP-peptide-construct (125I-HRP-alaMyrBy) demonstrated a strong liver accumulation confirming the nonspecific interaction with scavenger cells. Still, MyrB conjugation to HRP resulted in an increased and NTCP-mediated hepatotropism, as revealed by competitive inhibition. In conclusion, the model enzyme HRP was successfully conjugated to MyrB to achieve NTCP-specific targeting in vitro with the potential for ex vivo diagnostic applications. In vivo, target specificity was reduced by non-NTCP-mediated interactions. Nonetheless, tissue distribution experiments in zebrafish embryos provide mechanistic insight into underlying scavenging processes indicating partial involvement of stabilin receptors.
Collapse
Affiliation(s)
- Anna Pratsinis
- Department of Pharmaceutical Sciences, University of Basel, Basel 4056, Switzerland
| | - Philipp Uhl
- Department of Nuclear Medicine, Heidelberg University Hospital, Heidelberg 69120, Germany
| | - Jan Stephan Bolten
- Department of Pharmaceutical Sciences, University of Basel, Basel 4056, Switzerland
| | - Patrick Hauswirth
- Department of Pharmaceutical Sciences, University of Basel, Basel 4056, Switzerland
| | - Susanne Heidi Schenk
- Department of Pharmaceutical Sciences, University of Basel, Basel 4056, Switzerland
| | - Stephan Urban
- Department of Infectious Diseases, Heidelberg University Hospital, Heidelberg 69120, Germany
| | - Walter Mier
- Department of Nuclear Medicine, Heidelberg University Hospital, Heidelberg 69120, Germany
| | - Dominik Witzigmann
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada.,NanoMedicines Innovation Network (NMIN), University of British Columbia, Vancouver, British ColumbiaV6T 1Z3, Canada
| | - Jörg Huwyler
- Department of Pharmaceutical Sciences, University of Basel, Basel 4056, Switzerland
| |
Collapse
|
49
|
The YfkO Nitroreductase from Bacillus Licheniformis on Gold-Coated Superparamagnetic Nanoparticles: Towards a Novel Directed Enzyme Prodrug Therapy Approach. Pharmaceutics 2021; 13:pharmaceutics13040517. [PMID: 33918536 PMCID: PMC8070144 DOI: 10.3390/pharmaceutics13040517] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 03/25/2021] [Accepted: 03/26/2021] [Indexed: 11/17/2022] Open
Abstract
The bacterial nitroreductase NfnB has been the focus of a great deal of research for its use in directed enzyme prodrug therapy in combination with the nitroreductase prodrug CB1954 with this combination of enzyme and prodrug even entering clinical trials. Despite some promising results, there are major limitations to this research, such as the fact that the lowest reported Km for this enzyme far exceeds the maximum dosage of CB1954. Due to these limitations, new enzymes are now being investigated for their potential use in directed enzyme prodrug therapy. One such enzyme that has proved promising is the YfkO nitroreductase from Bacillus Licheniformis. Upon investigation, the YfkO nitroreductase was shown to have a much lower Km (below the maximum dosage) than that of NfnB as well as the fact that when reacting with the prodrug it produces a much more favourable ratio of enzymatic products than NfnB, forming more of the desired 4-hydroxylamine derivative of CB1954.
Collapse
|
50
|
Mathuber M, Gutmann M, La Franca M, Vician P, Laemmerer A, Moser P, Keppler BK, Berger W, Kowol CR. Development of a cobalt(iii)-based ponatinib prodrug system. Inorg Chem Front 2021; 8:2468-2485. [PMID: 34046181 PMCID: PMC8129988 DOI: 10.1039/d1qi00211b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 03/17/2021] [Indexed: 12/22/2022]
Abstract
Receptor tyrosine kinase inhibitors have become a central part of modern targeted cancer therapy. However, their curative potential is distinctly limited by both rapid resistance development and severe adverse effects. Consequently, tumor-specific drug activation based on prodrug designs, exploiting tumor-specific properties such as hypoxic oxygen conditions, is a feasible strategy to widen the therapeutic window. After proof-of-principal molecular docking studies, we have synthesized two cobalt(iii) complexes using a derivative of the clinically approved Abelson (ABL) kinase and fibroblast growth factor receptor (FGFR) inhibitor ponatinib. Acetylacetone (acac) or methylacetylacetone (Meacac) have been used as ancillary ligands to modulate the reduction potential. The ponatinib derivative, characterized by an ethylenediamine moiety instead of the piperazine ring, exhibited comparable cell-free target kinase inhibition potency. Hypoxia-dependent release of the ligand from the cobalt(iii) complexes was proven by changed fluorescence properties, enhanced downstream signaling inhibition and increased in vitro anticancer activity in BCR-ABL- and FGFR-driven cancer models. Respective tumor-inhibiting in vivo effects in the BCR-ABL-driven K-562 leukemia model were restricted to the cobalt(iii) complex with the higher reduction potential and confirmed in a FGFR-driven urothelial carcinoma xenograft model. Summarizing, we here present for the first time hypoxia-activatable prodrugs of the clinically approved tyrosine kinase inhibitor ponatinib and a correlation of the in vivo activity with their reduction potential.
Collapse
Affiliation(s)
- Marlene Mathuber
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna Waehringer Straße 42 1090 Vienna Austria
| | - Michael Gutmann
- Institute of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna Borschkegasse 8A 1090 Vienna Austria
| | - Mery La Franca
- Institute of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna Borschkegasse 8A 1090 Vienna Austria
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo via Archirafi 32 90123 Palermo Italy
| | - Petra Vician
- Institute of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna Borschkegasse 8A 1090 Vienna Austria
| | - Anna Laemmerer
- Institute of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna Borschkegasse 8A 1090 Vienna Austria
- Research Cluster "Translational Cancer Therapy Research", University of Vienna and Medical University of Vienna 1090 Vienna Austria
| | - Patrick Moser
- Institute of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna Borschkegasse 8A 1090 Vienna Austria
| | - Bernhard K Keppler
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna Waehringer Straße 42 1090 Vienna Austria
- Research Cluster "Translational Cancer Therapy Research", University of Vienna and Medical University of Vienna 1090 Vienna Austria
| | - Walter Berger
- Institute of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna Borschkegasse 8A 1090 Vienna Austria
- Research Cluster "Translational Cancer Therapy Research", University of Vienna and Medical University of Vienna 1090 Vienna Austria
| | - Christian R Kowol
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna Waehringer Straße 42 1090 Vienna Austria
- Research Cluster "Translational Cancer Therapy Research", University of Vienna and Medical University of Vienna 1090 Vienna Austria
| |
Collapse
|