1
|
Werny MJ, Meirer F, Weckhuysen BM. Visualizing the Structure, Composition and Activity of Single Catalyst Particles for Olefin Polymerization and Polyolefin Decomposition. Angew Chem Int Ed Engl 2024; 63:e202306033. [PMID: 37782261 DOI: 10.1002/anie.202306033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 09/29/2023] [Accepted: 10/02/2023] [Indexed: 10/03/2023]
Abstract
The structural and morphological characterization of individual catalyst particles for olefin polymerization, as well as for the reverse process of polyolefin decomposition, can provide an improved understanding for how these catalyst materials operate under relevant reaction conditions. In this review, we discuss an emerging analytical toolbox of 2D and 3D chemical imaging techniques that is suitable for investigating the chemistry and reactivity of related catalyst systems. While synchrotron-based X-ray microscopy still provides unparalleled spatial resolutions in 2D and 3D, a number of laboratory-based techniques, most notably focused ion beam-scanning electron microscopy, confocal fluorescence microscopy, infrared photoinduced force microscopy and laboratory-based X-ray nano-computed tomography, have helped to significantly expand the arsenal of analytical tools available to scientists in heterogeneous catalysis and polymer science. In terms of future research, the review outlines the role and impact of in situ and operando (spectro-)microscopy experiments, involving sophisticated reactors as well as online reactant and product analysis, to obtain real-time information on the formation, decomposition, and mobility of polymer phases within single catalyst particles. Furthermore, the potential of fluorescence microscopy, X-ray microscopy and optical microscopy is highlighted for the high-throughput characterization of olefin polymerization and polyolefin decomposition catalysts. By combining these chemical imaging techniques with, for example, chemical staining methodologies, selective probe molecules as well as particle sorting approaches, representative structure-activity relationships can be derived at the level of single catalyst particles.
Collapse
Affiliation(s)
- Maximilian J Werny
- Inorganic Chemistry and Catalysis, Institute for Sustainable and Circular Chemistry and Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584, CG Utrecht, The Netherlands
- Dutch Polymer Institute (DPI), P.O. Box 902, 5600, AX Eindhoven, The Netherlands
| | - Florian Meirer
- Inorganic Chemistry and Catalysis, Institute for Sustainable and Circular Chemistry and Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584, CG Utrecht, The Netherlands
| | - Bert M Weckhuysen
- Inorganic Chemistry and Catalysis, Institute for Sustainable and Circular Chemistry and Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584, CG Utrecht, The Netherlands
| |
Collapse
|
2
|
Zhang C, Eraky H, Tan S, Hitchcock A, Higgins D. In Situ Studies of Copper-Based CO 2 Reduction Electrocatalysts by Scanning Transmission Soft X-ray Microscopy. ACS NANO 2023; 17:21337-21348. [PMID: 37906612 DOI: 10.1021/acsnano.3c05964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
A microfluidic-enabled electrochemical device has been developed to investigate electrochemically active nanomaterials under reaction conditions using in situ scanning transmission soft X-ray microscopy (STXM). In situ STXM measurements were conducted on electrodeposited Cu catalysts under electrochemical CO2 reduction (CO2R) conditions. The study provides detailed, quantitative results about the changes in the morphology and chemical structure of the catalytic nanoparticles as a function of applied potentials. The deposited Cu nanoparticles initially contain both Cu(0) and Cu(I). As an increasingly cathodic potential is applied, the Cu(I) species gradually convert to Cu(0) over the potential range of +0.4 to 0 V versus the reversible hydrogen electrode (VRHE). During this process, Cu(I) particles of various sizes are converted to metallic Cu at different reaction rates and at slightly different potentials, indicating a degree of heterogeneity in the electrochemical response of discrete particles. At CO2R relevant potentials, only metallic Cu is observed, and the morphology of the particles is fairly stable within the spatial resolution limits of STXM (∼40 nm). We also report in situ STXM studies of a working electrode with relatively thick Cu-based electrodeposits. The spatially resolved chemical analysis identifies that Cu-oxide species can persist under CO2R conditions, but only when the catalytic nanoparticles are electronically isolated from the working electrode and therefore are catalytically irrelevant. In summary, in situ STXM is presented as a technique to gain advanced morphological and spatially resolved chemical structure insights into electrochemically active nanomaterials, which was used to provide improved understanding regarding Cu nanomaterial catalysts under CO2 reduction conditions.
Collapse
Affiliation(s)
- Chunyang Zhang
- Chemical Engineering, McMaster University, Hamilton, Ontario, Canada, L8S 4M1
- Chemistry & Chemical Biology, McMaster University, Hamilton, Ontario, Canada, L8S 4M1
| | - Haytham Eraky
- Chemistry & Chemical Biology, McMaster University, Hamilton, Ontario, Canada, L8S 4M1
| | - Shunquan Tan
- Chemical Engineering, McMaster University, Hamilton, Ontario, Canada, L8S 4M1
| | - Adam Hitchcock
- Chemistry & Chemical Biology, McMaster University, Hamilton, Ontario, Canada, L8S 4M1
| | - Drew Higgins
- Chemical Engineering, McMaster University, Hamilton, Ontario, Canada, L8S 4M1
| |
Collapse
|
3
|
Chen Z, Fan Q, Zhou J, Wang X, Huang M, Jiang H, Cölfen H. Toward Understanding the Formation Mechanism and OER Catalytic Mechanism of Hydroxides by In Situ and Operando Techniques. Angew Chem Int Ed Engl 2023:e202309293. [PMID: 37650657 DOI: 10.1002/anie.202309293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/09/2023] [Accepted: 08/30/2023] [Indexed: 09/01/2023]
Abstract
Developing efficient and affordable electrocatalysts for the sluggish oxygen evolution reaction (OER) remains a significant barrier that needs to be overcome for the practical applications of hydrogen production via water electrolysis, transforming CO2 to value-added chemicals, and metal-air batteries. Recently, hydroxides have shown promise as electrocatalysts for OER. In situ or operando techniques are particularly indispensable for monitoring the key intermediates together with understanding the reaction process, which is extremely important for revealing the formation/OER catalytic mechanism of hydroxides and preparing cost-effective electrocatalysts for OER. However, there is a lack of comprehensive discussion on the current status and challenges of studying these mechanisms using in situ or operando techniques, which hinders our ability to identify and address the obstacles present in this field. This review offers an overview of in situ or operando techniques, outlining their capabilities, advantages, and disadvantages. Recent findings related to the formation mechanism and OER catalytic mechanism of hydroxides revealed by in situ or operando techniques are also discussed in detail. Additionally, some current challenges in this field are concluded and appropriate solution strategies are provided.
Collapse
Affiliation(s)
- Zongkun Chen
- University of Konstanz, Universitätsstraße 10, 78457, Konstanz, Germany
- Current address: Max Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, 45470, Mülheim an der, Ruhr, Germany
| | - Qiqi Fan
- University of Konstanz, Universitätsstraße 10, 78457, Konstanz, Germany
| | - Jian Zhou
- University of Konstanz, Universitätsstraße 10, 78457, Konstanz, Germany
| | - Xingkun Wang
- Laboratory of Functional Membrane Material and Membrane Technology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101, Qingdao, P. R. China
| | - Minghua Huang
- School of Materials Science and Engineering, Ocean University of China, 266100, Qingdao, P. R. China
| | - Heqing Jiang
- Laboratory of Functional Membrane Material and Membrane Technology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101, Qingdao, P. R. China
| | - Helmut Cölfen
- University of Konstanz, Universitätsstraße 10, 78457, Konstanz, Germany
| |
Collapse
|
4
|
Rongpipi S, Barnes WJ, Siemianowski O, Del Mundo JT, Wang C, Freychet G, Zhernenkov M, Anderson CT, Gomez EW, Gomez ED. Measuring calcium content in plants using NEXAFS spectroscopy. FRONTIERS IN PLANT SCIENCE 2023; 14:1212126. [PMID: 37662163 PMCID: PMC10468975 DOI: 10.3389/fpls.2023.1212126] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 07/20/2023] [Indexed: 09/05/2023]
Abstract
Calcium is important for the growth and development of plants. It serves crucial functions in cell wall and cell membrane structure and serves as a secondary messenger in signaling pathways relevant to nutrient and immunity responses. Thus, measuring calcium levels in plants is important for studies of plant biology and for technology development in food, agriculture, energy, and forest industries. Often, calcium in plants has been measured through techniques such as atomic absorption spectrophotometry (AAS), inductively coupled plasma-mass spectrometry (ICP-MS), and electrophysiology. These techniques, however, require large sample sizes, chemical extraction of samples or have limited spatial resolution. Here, we used near-edge X-ray absorption fine structure (NEXAFS) spectroscopy at the calcium L- and K-edges to measure the calcium to carbon mass ratio with spatial resolution in plant samples without requiring chemical extraction or large sample sizes. We demonstrate that the integrated absorbance at the calcium L-edge and the edge jump in the fluorescence yield at the calcium K-edge can be used to quantify the calcium content as the calcium mass fraction, and validate this approach with onion epidermal peels and ICP-MS. We also used NEXAFS to estimate the calcium mass ratio in hypocotyls of a model plant, Arabidopsis thaliana, which has a cell wall composition that is similar to that of onion epidermal peels. These results show that NEXAFS spectroscopy performed at the calcium edge provides an approach to quantify calcium levels within plants, which is crucial for understanding plant physiology and advancing plant-based materials.
Collapse
Affiliation(s)
- Sintu Rongpipi
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, United States
| | - William J. Barnes
- Department of Biology, The Pennsylvania State University, University Park, PA, United States
| | - Oskar Siemianowski
- Department of Biology, The Pennsylvania State University, University Park, PA, United States
| | - Joshua T. Del Mundo
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, United States
| | - Cheng Wang
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Guillaume Freychet
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY, United States
| | - Mikhail Zhernenkov
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY, United States
| | - Charles T. Anderson
- Department of Biology, The Pennsylvania State University, University Park, PA, United States
| | - Esther W. Gomez
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, United States
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, United States
| | - Enrique D. Gomez
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, United States
- Department of Materials Science and Engineering and Materials Research Institute, The Pennsylvania State University, University Park, PA, United States
| |
Collapse
|
5
|
Grote L, Seyrich M, Döhrmann R, Harouna-Mayer SY, Mancini F, Kaziukenas E, Fernandez-Cuesta I, A Zito C, Vasylieva O, Wittwer F, Odstrčzil M, Mogos N, Landmann M, Schroer CG, Koziej D. Imaging Cu 2O nanocube hollowing in solution by quantitative in situ X-ray ptychography. Nat Commun 2022; 13:4971. [PMID: 36038564 PMCID: PMC9424245 DOI: 10.1038/s41467-022-32373-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 07/22/2022] [Indexed: 11/24/2022] Open
Abstract
Understanding morphological changes of nanoparticles in solution is essential to tailor the functionality of devices used in energy generation and storage. However, we lack experimental methods that can visualize these processes in solution, or in electrolyte, and provide three-dimensional information. Here, we show how X-ray ptychography enables in situ nano-imaging of the formation and hollowing of nanoparticles in solution at 155 °C. We simultaneously image the growth of about 100 nanocubes with a spatial resolution of 66 nm. The quantitative phase images give access to the third dimension, allowing to additionally study particle thickness. We reveal that the substrate hinders their out-of-plane growth, thus the nanocubes are in fact nanocuboids. Moreover, we observe that the reduction of Cu2O to Cu triggers the hollowing of the nanocuboids. We critically assess the interaction of X-rays with the liquid sample. Our method enables detailed in-solution imaging for a wide range of reaction conditions.
Collapse
Affiliation(s)
- Lukas Grote
- University of Hamburg, Institute for Nanostructure and Solid-State Physics, Center for Hybrid Nanostructures, Luruper Chaussee 149, 22761, Hamburg, Germany
- Center for X-ray and Nano Science CXNS, Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607, Hamburg, Germany
| | - Martin Seyrich
- University of Hamburg, Institute for Nanostructure and Solid-State Physics, Center for Hybrid Nanostructures, Luruper Chaussee 149, 22761, Hamburg, Germany
- Center for X-ray and Nano Science CXNS, Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607, Hamburg, Germany
| | - Ralph Döhrmann
- Center for X-ray and Nano Science CXNS, Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607, Hamburg, Germany
| | - Sani Y Harouna-Mayer
- University of Hamburg, Institute for Nanostructure and Solid-State Physics, Center for Hybrid Nanostructures, Luruper Chaussee 149, 22761, Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, Hamburg, Germany
| | - Federica Mancini
- University of Hamburg, Institute for Nanostructure and Solid-State Physics, Center for Hybrid Nanostructures, Luruper Chaussee 149, 22761, Hamburg, Germany
- Institute of Science and Technology for Ceramics (ISTEC), National Research Council (CNR), Via Granarolo 64, 48018, Faenza (RA), Italy
| | - Emilis Kaziukenas
- University of Hamburg, Institute for Nanostructure and Solid-State Physics, Center for Hybrid Nanostructures, Luruper Chaussee 149, 22761, Hamburg, Germany
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Wilberforce Road, Cambridge, CB3 0WA, UK
| | - Irene Fernandez-Cuesta
- The Hamburg Centre for Ultrafast Imaging, Hamburg, Germany
- Department of Physics, University of Hamburg, Luruper Chaussee 149, 22761, Hamburg, Germany
| | - Cecilia A Zito
- University of Hamburg, Institute for Nanostructure and Solid-State Physics, Center for Hybrid Nanostructures, Luruper Chaussee 149, 22761, Hamburg, Germany
- São Paulo State University UNESP, Rua Cristóvão Colombo, 2265, 15054000, São José do Rio Preto, Brazil
| | - Olga Vasylieva
- University of Hamburg, Institute for Nanostructure and Solid-State Physics, Center for Hybrid Nanostructures, Luruper Chaussee 149, 22761, Hamburg, Germany
| | - Felix Wittwer
- University of Hamburg, Institute for Nanostructure and Solid-State Physics, Center for Hybrid Nanostructures, Luruper Chaussee 149, 22761, Hamburg, Germany
- Center for X-ray and Nano Science CXNS, Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607, Hamburg, Germany
| | - Michal Odstrčzil
- Paul Scherrer Institute, Forschungsstrasse 111, 5232, Villigen PSI, Switzerland
- Carl Zeiss SMT, Carl-Zeiss-Straße 22, 73447, Oberkochen, Germany
| | - Natnael Mogos
- University of Hamburg, Institute for Nanostructure and Solid-State Physics, Center for Hybrid Nanostructures, Luruper Chaussee 149, 22761, Hamburg, Germany
| | - Mirko Landmann
- Center for X-ray and Nano Science CXNS, Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607, Hamburg, Germany
| | - Christian G Schroer
- University of Hamburg, Institute for Nanostructure and Solid-State Physics, Center for Hybrid Nanostructures, Luruper Chaussee 149, 22761, Hamburg, Germany
- Center for X-ray and Nano Science CXNS, Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607, Hamburg, Germany
- Helmholtz Imaging Platform, Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607, Hamburg, Germany
| | - Dorota Koziej
- University of Hamburg, Institute for Nanostructure and Solid-State Physics, Center for Hybrid Nanostructures, Luruper Chaussee 149, 22761, Hamburg, Germany.
- The Hamburg Centre for Ultrafast Imaging, Hamburg, Germany.
| |
Collapse
|
6
|
Ishiguro N, Takahashi Y. Method for restoration of X-ray absorption fine structure in sparse spectroscopic ptychography. J Appl Crystallogr 2022. [DOI: 10.1107/s1600576722006380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The spectroscopic ptychography method, a technique combining X-ray ptychography imaging and X-ray absorption spectroscopy, is one of the most promising and powerful tools for studying the chemical states and morphological structures of bulk materials at high resolutions. However, this technique still requires long measurement periods because of insufficient coherent X-ray intensity. Although the improvements in hardware represent a critical solution, breakthroughs in software for experiments and analyses are also required. This paper proposes a novel method for restoring the spectrum structures from spectroscopic ptychography measurements with reduced energy points, by utilizing the Kramers–Kronig relationship. First, a numerical simulation is performed of the spectrum restoration for the extended X-ray absorption fine structure (EXAFS) oscillation from the thinned theoretical absorption and phase spectra. Then, this algorithm is extended by binning the noise removal to handle actual experimental spectral data. Spectrum restoration for the experimental EXAFS data obtained from spectroscopic ptychography measurements is also successfully demonstrated. The proposed restoration will help shorten the time required for spectroscopic ptychography single measurements and increase the throughput of the entire experiment under limited time resources.
Collapse
|
7
|
Sample Environment for Operando Hard X-ray Tomography—An Enabling Technology for Multimodal Characterization in Heterogeneous Catalysis. Catalysts 2021. [DOI: 10.3390/catal11040459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Structure–activity relations in heterogeneous catalysis can be revealed through in situ and operando measurements of catalysts in their active state. While hard X-ray tomography is an ideal method for non-invasive, multimodal 3D structural characterization on the micron to nm scale, performing tomography under controlled gas and temperature conditions is challenging. Here, we present a flexible sample environment for operando hard X-ray tomography at synchrotron radiation sources. The setup features are discussed, with demonstrations of operando powder X-ray diffraction tomography (XRD-CT) and energy-dispersive tomographic X-ray absorption spectroscopy (ED-XAS-CT). Catalysts for CO2 methanation and partial oxidation of methane are shown as case studies. The setup can be adapted for different hard X-ray microscopy, spectroscopy, or scattering synchrotron radiation beamlines, is compatible with absorption, diffraction, fluorescence, and phase-contrast imaging, and can operate with scanning focused beam or full-field acquisition mode. We present an accessible methodology for operando hard X-ray tomography studies, which offer a unique source of 3D spatially resolved characterization data unavailable to contemporary methods.
Collapse
|
8
|
Gosse C, Stanescu S, Frederick J, Lefrançois S, Vecchiola A, Moskura M, Swaraj S, Belkhou R, Watts B, Haltebourg P, Blot C, Daillant J, Guenoun P, Chevallard C. A pressure-actuated flow cell for soft X-ray spectromicroscopy in liquid media. LAB ON A CHIP 2020; 20:3213-3229. [PMID: 32735308 DOI: 10.1039/c9lc01127g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We present and fully characterize a flow cell dedicated to imaging in liquid at the nanoscale. Its use as a routine sample environment for soft X-ray spectromicroscopy is demonstrated, in particular through the spectral analysis of inorganic particles in water. The care taken in delineating the fluidic pathways and the precision associated with pressure actuation ensure the efficiency of fluid renewal under the beam, which in turn guarantees a successful utilization of this microfluidic tool for in situ kinetic studies. The assembly of the described flow cell necessitates no sophisticated microfabrication and can be easily implemented in any laboratory. Furthermore, the design principles we relied on are transposable to all microscopies involving strongly absorbed radiation (e.g. X-ray, electron), as well as to all kinds of X-ray diffraction/scattering techniques.
Collapse
Affiliation(s)
- Charlie Gosse
- Laboratoire de Photonique et de Nanostructures, LPN-CNRS, Route de Nozay, 91460 Marcoussis, France.
| | - Stefan Stanescu
- Synchrotron Soleil, L'Orme des Merisiers, Saint-Aubin - BP 48, 91192 Gif-sur-Yvette Cedex, France
| | - Joni Frederick
- Laboratoire de Photonique et de Nanostructures, LPN-CNRS, Route de Nozay, 91460 Marcoussis, France. and Université Paris-Saclay, CEA, CNRS, NIMBE, 91191, Gif-sur-Yvette, France.
| | - Stéphane Lefrançois
- Synchrotron Soleil, L'Orme des Merisiers, Saint-Aubin - BP 48, 91192 Gif-sur-Yvette Cedex, France
| | - Aymeric Vecchiola
- Laboratoire de Photonique et de Nanostructures, LPN-CNRS, Route de Nozay, 91460 Marcoussis, France. and Université Paris-Saclay, CEA, CNRS, NIMBE, 91191, Gif-sur-Yvette, France.
| | - Mélanie Moskura
- Université Paris-Saclay, CEA, CNRS, NIMBE, 91191, Gif-sur-Yvette, France.
| | - Sufal Swaraj
- Synchrotron Soleil, L'Orme des Merisiers, Saint-Aubin - BP 48, 91192 Gif-sur-Yvette Cedex, France
| | - Rachid Belkhou
- Synchrotron Soleil, L'Orme des Merisiers, Saint-Aubin - BP 48, 91192 Gif-sur-Yvette Cedex, France
| | - Benjamin Watts
- Photon Science Division, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - Patrick Haltebourg
- Université Paris-Saclay, CEA, CNRS, NIMBE, 91191, Gif-sur-Yvette, France.
| | - Christian Blot
- Université Paris-Saclay, CEA, CNRS, NIMBE, 91191, Gif-sur-Yvette, France.
| | - Jean Daillant
- Synchrotron Soleil, L'Orme des Merisiers, Saint-Aubin - BP 48, 91192 Gif-sur-Yvette Cedex, France and Université Paris-Saclay, CEA, CNRS, NIMBE, 91191, Gif-sur-Yvette, France.
| | - Patrick Guenoun
- Université Paris-Saclay, CEA, CNRS, NIMBE, 91191, Gif-sur-Yvette, France.
| | - Corinne Chevallard
- Université Paris-Saclay, CEA, CNRS, NIMBE, 91191, Gif-sur-Yvette, France.
| |
Collapse
|
9
|
Abstract
We review oxygen K-edge X-ray absorption spectra of both molecules and solids. We start with an overview of the main experimental aspects of oxygen K-edge X-ray absorption measurements including X-ray sources, monochromators, and detection schemes. Many recent oxygen K-edge studies combine X-ray absorption with time and spatially resolved measurements and/or operando conditions. The main theoretical and conceptual approximations for the simulation of oxygen K-edges are discussed in the Theory section. We subsequently discuss oxygen atoms and ions, binary molecules, water, and larger molecules containing oxygen, including biomolecular systems. The largest part of the review deals with the experimental results for solid oxides, starting from s- and p-electron oxides. Examples of theoretical simulations for these oxides are introduced in order to show how accurate a DFT description can be in the case of s and p electron overlap. We discuss the general analysis of the 3d transition metal oxides including discussions of the crystal field effect and the effects and trends in oxidation state and covalency. In addition to the general concepts, we give a systematic overview of the oxygen K-edges element by element, for the s-, p-, d-, and f-electron systems.
Collapse
Affiliation(s)
- Federica Frati
- Inorganic
chemistry and catalysis, Debye Institute for Nanomaterials Science, Utrecht University, 3584CG Utrecht, The Netherlands
| | | | - Frank M. F. de Groot
- Inorganic
chemistry and catalysis, Debye Institute for Nanomaterials Science, Utrecht University, 3584CG Utrecht, The Netherlands
| |
Collapse
|
10
|
Moreau LM, Herve A, Straub MD, Russo DR, Abergel RJ, Alayoglu S, Arnold J, Braun A, Deblonde GJP, Liu Y, Lohrey TD, Olive DT, Qiao Y, Rees JA, Shuh DK, Teat SJ, Booth CH, Minasian SG. Structural properties of ultra-small thorium and uranium dioxide nanoparticles embedded in a covalent organic framework. Chem Sci 2020; 11:4648-4668. [PMID: 34122920 PMCID: PMC8159168 DOI: 10.1039/c9sc06117g] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 04/13/2020] [Indexed: 01/23/2023] Open
Abstract
We report the structural properties of ultra-small ThO2 and UO2 nanoparticles (NPs), which were synthesized without strong binding surface ligands by employing a covalent organic framework (COF-5) as an inert template. The resultant NPs were used to observe how structural properties are affected by decreasing grain size within bulk actinide oxides, which has implications for understanding the behavior of nuclear fuel materials. Through a comprehensive characterization strategy, we gain insight regarding how structure at the NP surface differs from the interior. Characterization using electron microscopy and small-angle X-ray scattering indicates that growth of the ThO2 and UO2 NPs was confined by the pores of the COF template, resulting in sub-3 nm particles. X-ray absorption fine structure spectroscopy results indicate that the NPs are best described as ThO2 and UO2 materials with unpassivated surfaces. The surface layers of these particles compensate for high surface energy by exhibiting a broader distribution of Th-O and U-O bond distances despite retaining average bond lengths that are characteristic of bulk ThO2 and UO2. The combined synthesis and physical characterization efforts provide a detailed picture of actinide oxide structure at the nanoscale, which remains highly underexplored compared to transition metal counterparts.
Collapse
Affiliation(s)
- Liane M Moreau
- Lawrence Berkeley National Laboratory Berkeley CA 94720 USA
| | | | - Mark D Straub
- Lawrence Berkeley National Laboratory Berkeley CA 94720 USA
- University of California Berkeley CA 94720 USA
| | - Dominic R Russo
- Lawrence Berkeley National Laboratory Berkeley CA 94720 USA
- University of California Berkeley CA 94720 USA
| | - Rebecca J Abergel
- Lawrence Berkeley National Laboratory Berkeley CA 94720 USA
- University of California Berkeley CA 94720 USA
| | - Selim Alayoglu
- Lawrence Berkeley National Laboratory Berkeley CA 94720 USA
| | - John Arnold
- Lawrence Berkeley National Laboratory Berkeley CA 94720 USA
- University of California Berkeley CA 94720 USA
| | - Augustin Braun
- Lawrence Berkeley National Laboratory Berkeley CA 94720 USA
| | | | | | - Trevor D Lohrey
- Lawrence Berkeley National Laboratory Berkeley CA 94720 USA
- University of California Berkeley CA 94720 USA
| | - Daniel T Olive
- Lawrence Berkeley National Laboratory Berkeley CA 94720 USA
- Los Alamos National Laboratory Los Alamos NM 87545 USA
| | - Yusen Qiao
- Lawrence Berkeley National Laboratory Berkeley CA 94720 USA
- University of Pennsylvania Philadelphia PA 19104 USA
| | - Julian A Rees
- Lawrence Berkeley National Laboratory Berkeley CA 94720 USA
| | - David K Shuh
- Lawrence Berkeley National Laboratory Berkeley CA 94720 USA
| | - Simon J Teat
- Lawrence Berkeley National Laboratory Berkeley CA 94720 USA
| | - Corwin H Booth
- Lawrence Berkeley National Laboratory Berkeley CA 94720 USA
| | | |
Collapse
|
11
|
Gogate MR. New perspectives on the nature and imaging of active site in small metallic particles: I. Geometric effects. CHEM ENG COMMUN 2019. [DOI: 10.1080/00986445.2019.1692002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
12
|
Wang L, Schmid M, Sambur JB. Single nanoparticle photoelectrochemistry: What is next? J Chem Phys 2019; 151:180901. [PMID: 31731844 DOI: 10.1063/1.5124710] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Semiconductor photoelectrochemistry is a fascinating field that deals with the chemistry and physics of photodriven reactions at solid/liquid interfaces. The interdisciplinary field attracts (electro)chemists, materials scientists, spectroscopists, and theorists to study fundamental and applied problems such as carrier dynamics at illuminated electrode/electrolyte interfaces and solar energy conversion to electricity or chemical fuels. In the pursuit of practical photoelectrochemical energy conversion systems, researchers are exploring inexpensive, solution-processed semiconductor nanomaterials as light absorbers. Harnessing the enormous potential of nanomaterials for energy conversion applications requires a fundamental understanding of charge carrier generation, separation, transport, and interfacial charge transfer at heterogeneous nanoscale interfaces. Our current understanding of these processes is derived mainly from ensemble-average measurements of nanoparticle electrodes that report on the average behavior of trillions of nanoparticles. Ensemble-average measurements conceal how nanoparticle heterogeneity (e.g., differences in particle size, shape, and surface structure) contributes to the overall photoelectrochemical response. This perspective article focuses on the emerging area of single particle photoelectrochemistry, which has opened up an exciting new frontier: direct investigations of photodriven reactions on individual nanomaterials, with the ability to elucidate the role of particle-dependent properties on the photoelectrochemical behavior. Here, we (1) review the basic principles of photoelectrochemical cells, (2) point out the potential advantages and differences between bulk and nanoelectrodes, (3) introduce approaches to single nanoparticle photoelectrochemistry and highlight key findings, and (4) provide our perspective on future research directions.
Collapse
Affiliation(s)
- Li Wang
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, USA
| | - Merranda Schmid
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, USA
| | - Justin B Sambur
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, USA
| |
Collapse
|
13
|
Montoro Bustos AR, Pettibone JM, Murphy KE. Characterization of Nanoparticles: Advances. NANOPARTICLE DESIGN AND CHARACTERIZATION FOR CATALYTIC APPLICATIONS IN SUSTAINABLE CHEMISTRY 2019. [DOI: 10.1039/9781788016292-00037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Over the past two decades, the unique properties of engineered nanoparticles (NPs) have placed them at the centre of revolutionary advancements in many sectors of science, technology and commerce. Multi-technique and multi-disciplinary analytical approaches are required to identify, quantify, and characterize the chemical composition, size and size distribution, surface properties and the number and concentration of NPs. In this chapter, an overview of the recent advances in the characterization of NPs will be presented.
Collapse
Affiliation(s)
- A. R. Montoro Bustos
- National Institute of Standards and Technology 100 Bureau Drive Gaithersburg MD 20899-1070 USA
| | - J. M. Pettibone
- National Institute of Standards and Technology 100 Bureau Drive Gaithersburg MD 20899-1070 USA
| | - K. E. Murphy
- National Institute of Standards and Technology 100 Bureau Drive Gaithersburg MD 20899-1070 USA
| |
Collapse
|
14
|
van der Hoeven JES, van der Wee EB, de Winter DAM, Hermes M, Liu Y, Fokkema J, Bransen M, van Huis MA, Gerritsen HC, de Jongh PE, van Blaaderen A. Bridging the gap: 3D real-space characterization of colloidal assemblies via FIB-SEM tomography. NANOSCALE 2019; 11:5304-5316. [PMID: 30843546 DOI: 10.1039/c8nr09753d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Insight in the structure of nanoparticle assemblies up to a single particle level is key to understand the collective properties of these assemblies, which critically depend on the individual particle positions and orientations. However, the characterization of large, micron sized assemblies containing small, 10-500 nanometer, sized colloids is highly challenging and cannot easily be done with the conventional light, electron or X-ray microscopy techniques. Here, we demonstrate that focused ion beam-scanning electron microscopy (FIB-SEM) tomography in combination with image processing enables quantitative real-space studies of ordered and disordered particle assemblies too large for conventional transmission electron tomography, containing particles too small for confocal microscopy. First, we demonstrate the high resolution structural analysis of spherical nanoparticle assemblies, containing small anisotropic gold nanoparticles. Herein, FIB-SEM tomography allows the characterization of assembly dimensions which are inaccessible to conventional transmission electron microscopy. Next, we show that FIB-SEM tomography is capable of characterizing much larger ordered and disordered assemblies containing silica colloids with a diameter close to the resolution limit of confocal microscopes. We determined both the position and the orientation of each individual (nano)particle in the assemblies by using recently developed particle tracking routines. Such high precision structural information is essential in the understanding and design of the collective properties of new nanoparticle based materials and processes.
Collapse
Affiliation(s)
- Jessi E S van der Hoeven
- Soft Condensed Matter and Biophysics, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, 3584 CC Utrecht, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Schmidt JE, Ye X, van Ravenhorst IK, Oord R, Shapiro DA, Yu Y, Bare SR, Meirer F, Poplawsky JD, Weckhuysen BM. Probing the Location and Speciation of Elements in Zeolites with Correlated Atom Probe Tomography and Scanning Transmission X-Ray Microscopy. ChemCatChem 2019; 11:488-494. [PMID: 31123533 PMCID: PMC6519228 DOI: 10.1002/cctc.201801378] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Indexed: 01/22/2023]
Abstract
Characterizing materials at nanoscale resolution to provide new insights into structure property performance relationships continues to be a challenging research target due to the inherently low signal from small sample volumes, and is even more difficult for nonconductive materials, such as zeolites. Herein, we present the characterization of a single Cu-exchanged zeolite crystal, namely Cu-SSZ-13, used for NOX reduction in automotive emissions, that was subject to a simulated 135,000-mile aging. By correlating Atom Probe Tomography (APT), a single atom microscopy method, and Scanning Transmission X-ray Microscopy (STXM), which produces high spatial resolution X-ray Absorption Near Edge Spectroscopy (XANES) maps, we show that a spatially non-uniform proportion of the Al was removed from the zeolite framework. The techniques reveal that this degradation is heterogeneous at length scales from micrometers to tens of nanometers, providing complementary insight into the long-term deactivation of this catalyst system.
Collapse
Affiliation(s)
- Joel E. Schmidt
- Debye Institute for Nanomaterials Science, Faculty of ScienceUtrecht UniversityUtrecht3584 CGNetherlands
| | - Xinwei Ye
- Debye Institute for Nanomaterials Science, Faculty of ScienceUtrecht UniversityUtrecht3584 CGNetherlands
- School of Materials Science and Engineering Key Laboratory of Advanced Energy Materials Chemistry (MOE) Collaborative Innovation Center of Chemical Science and EngineeringNankai UniversityTianjin300350P.R. China
| | - Ilse K. van Ravenhorst
- Debye Institute for Nanomaterials Science, Faculty of ScienceUtrecht UniversityUtrecht3584 CGNetherlands
| | - Ramon Oord
- Debye Institute for Nanomaterials Science, Faculty of ScienceUtrecht UniversityUtrecht3584 CGNetherlands
| | - David A. Shapiro
- Advanced Light SourceLawrence Berkeley National LaboratoryBerkeley CA94720USA
| | - Young‐Sang Yu
- Advanced Light SourceLawrence Berkeley National LaboratoryBerkeley CA94720USA
| | - Simon R. Bare
- SLAC National Accelerator LaboratoryMenlo Park CA94025USA
| | - Florian Meirer
- Debye Institute for Nanomaterials Science, Faculty of ScienceUtrecht UniversityUtrecht3584 CGNetherlands
| | - Jonathan D. Poplawsky
- Center for Nanophase Materials SciencesOak Ridge National LaboratoryOak RidgeTN 37831USA
| | - Bert M. Weckhuysen
- Debye Institute for Nanomaterials Science, Faculty of ScienceUtrecht UniversityUtrecht3584 CGNetherlands
| |
Collapse
|
16
|
Yao S, Xiao D, Ma D. Observing How Fischer-Tropsch Synthesis Catalysts Work at the Nanoscale via Operando STXM. Chem 2018. [DOI: 10.1016/j.chempr.2018.10.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
17
|
Schmidt JE, Peng L, Poplawsky JD, Weckhuysen BM. Nanoskalige chemische Bildgebung von Zeolithen durch Atomsondentomographie. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201712952] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Joel E. Schmidt
- Debye Institute for Nanomaterials ScienceUtrecht University Universiteitsweg 99 3584 CG Utrecht Niederlande
| | - Linqing Peng
- Grinnell College 1115 8th Ave Grinnell, IA 50112 USA
| | - Jonathan D. Poplawsky
- Center for Nanophase Materials SciencesOak Ridge National Laboratory Oak Ridge TN 37831-6064 USA
| | - Bert M. Weckhuysen
- Debye Institute for Nanomaterials ScienceUtrecht University Universiteitsweg 99 3584 CG Utrecht Niederlande
| |
Collapse
|
18
|
Schmidt JE, Peng L, Poplawsky JD, Weckhuysen BM. Nanoscale Chemical Imaging of Zeolites Using Atom Probe Tomography. Angew Chem Int Ed Engl 2018; 57:10422-10435. [PMID: 29718553 PMCID: PMC6519151 DOI: 10.1002/anie.201712952] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Indexed: 11/11/2022]
Abstract
Understanding structure-composition-property relationships in zeolite-based materials is critical to engineering improved solid catalysts. However, this can be difficult to realize as even single zeolite crystals can exhibit heterogeneities spanning several orders of magnitude, with consequences for, for example, reactivity, diffusion as well as stability. Great progress has been made in characterizing these porous solids using tomographic techniques, though each method has an ultimate spatial resolution limitation. Atom probe tomography (APT) is the only technique so far capable of producing 3D compositional reconstructions with sub-nanometer-scale resolution, and has only recently been applied to zeolite-based catalysts. Herein, we discuss the use of APT to study zeolites, including the critical aspects of sample preparation, data collection, assignment of mass spectral peaks including the predominant CO peak, the limitations of spatial resolution for the recovery of crystallographic information, and proper data analysis. All sections are illustrated with examples from recent literature, as well as previously unpublished data and analyses to demonstrate practical strategies to overcome potential pitfalls in applying APT to zeolites, thereby highlighting new insights gained from the APT method.
Collapse
Affiliation(s)
- Joel E Schmidt
- Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584, CG, Utrecht, The Netherlands
| | - Linqing Peng
- Grinnell College, 1115 8th Ave, Grinnell, IA, 50112, USA
| | - Jonathan D Poplawsky
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6064, USA
| | - Bert M Weckhuysen
- Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584, CG, Utrecht, The Netherlands
| |
Collapse
|
19
|
|
20
|
Sharma A, Varshney M, Nanda SS, Shin HJ, Kim N, Yi DK, Chae KH, Ok Won S. Structural, electronic structure and antibacterial properties of graphene-oxide nano-sheets. Chem Phys Lett 2018. [DOI: 10.1016/j.cplett.2018.03.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
21
|
Pacold JI, Altman AB, Knight KB, Holliday KS, Kristo MJ, Minasian SG, Tyliszczak T, Booth CH, Shuh DK. Development of small particle speciation for nuclear forensics by soft X-ray scanning transmission spectromicroscopy. Analyst 2018; 143:1349-1357. [PMID: 29479614 DOI: 10.1039/c7an01838j] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Synchrotron radiation spectromicroscopy provides a combination of submicron spatial resolution and chemical sensitivity that is well-suited to analysis of heterogeneous nuclear materials. The chemical and physical characteristics determined by scanning transmission X-ray microscopy (STXM) are complementary to information obtained from standard radiochemical analysis methods. In addition, microscopic quantities of radioactive material can be characterized rapidly by STXM with minimal sample handling and intrusion, especially in the case of particulate materials. The STXM can accommodate a diverse range of samples including wet materials, complex mixtures, and small quantities of material contained in a larger matrix. In these cases, the inventory of species present in a sample is likely to carry information on its process history; STXM has the demonstrated capability to identify contaminants and sample matrices. Operating in the soft X-ray regime provides particular sensitivity to the chemical state of specimens containing low-Z materials, via the K-edges of light elements. Here, recent developments in forensics-themed spectromicroscopy, sample preparation, and data acquisition methods at the Molecular Environmental Science Beamline 11.0.2 of the Advanced Light Source are described. Results from several initial studies are presented, demonstrating the capability to identify the distribution of the species present in heterogeneous uranium-bearing materials. Future opportunities for STXM forensic studies and potential methodology development are discussed.
Collapse
Affiliation(s)
- J I Pacold
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
van Oversteeg CHM, Doan HQ, de Groot FMF, Cuk T. In situ X-ray absorption spectroscopy of transition metal based water oxidation catalysts. Chem Soc Rev 2018; 46:102-125. [PMID: 27834973 DOI: 10.1039/c6cs00230g] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
X-ray absorption studies of the geometric and electronic structure of primarily heterogeneous Co, Ni, and Mn based water oxidation catalysts are reviewed. The X-ray absorption near edge and extended X-ray absorption fine structure studies of the metal K-edge, characterize the metal oxidation state, metal-oxygen bond distance, metal-metal distance, and degree of disorder of the catalysts. These properties guide the coordination environment of the transition metal oxide radical that localizes surface holes and is required to oxidize water. The catalysts are investigated both as-prepared, in their native state, and under reaction conditions, while transition metal oxide radicals are generated. The findings of many experiments are summarized in tables. The advantages of future X-ray experiments on water oxidation catalysts, which include the limited data available of the oxygen K-edge, metal L-edge, and resonant inelastic X-ray scattering, are discussed.
Collapse
Affiliation(s)
| | - Hoang Q Doan
- Department of Chemistry, University of California - Berkeley, 419 Latimer Hall, Berkeley, CA 94720, USA.
| | - Frank M F de Groot
- Department of Chemistry, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands.
| | - Tanja Cuk
- Department of Chemistry, University of California - Berkeley, 419 Latimer Hall, Berkeley, CA 94720, USA.
| |
Collapse
|
23
|
Iron Biochemistry is Correlated with Amyloid Plaque Morphology in an Established Mouse Model of Alzheimer's Disease. Cell Chem Biol 2017; 24:1205-1215.e3. [PMID: 28890316 DOI: 10.1016/j.chembiol.2017.07.014] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 01/19/2017] [Accepted: 07/28/2017] [Indexed: 11/21/2022]
Abstract
A signature characteristic of Alzheimer's disease (AD) is aggregation of amyloid-beta (Aβ) fibrils in the brain. Nevertheless, the links between Aβ and AD pathology remain incompletely understood. It has been proposed that neurotoxicity arising from aggregation of the Aβ1-42 peptide can in part be explained by metal ion binding interactions. Using advanced X-ray microscopy techniques at sub-micron resolution, we investigated relationships between iron biochemistry and AD pathology in intact cortex from an established mouse model over-producing Aβ. We found a direct correlation of amyloid plaque morphology with iron, and evidence for the formation of an iron-amyloid complex. We also show that iron biomineral deposits in the cortical tissue contain the mineral magnetite, and provide evidence that Aβ-induced chemical reduction of iron could occur in vivo. Our observations point to the specific role of iron in amyloid deposition and AD pathology, and may impact development of iron-modifying therapeutics for AD.
Collapse
|
24
|
Luo C, Wang C, Wu X, Zhang J, Chu J. In Situ Transmission Electron Microscopy Characterization and Manipulation of Two-Dimensional Layered Materials beyond Graphene. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2017; 13:1604259. [PMID: 28783241 DOI: 10.1002/smll.201604259] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Revised: 06/22/2017] [Indexed: 06/07/2023]
Abstract
Two-dimensional (2D) ultra-thin materials beyond graphene with rich physical properties and unique layered structures are promising for applications in electronics, chemistry, energy, and bioscience, etc. The interaction mechanisms among the structures, chemical compositions and physical properties of 2D layered materials are critical for fundamental nanosciences and the practical fabrication of next-generation nanodevices. Transmission electron microscopy (TEM), with its high spatial resolution and versatile external fields, is undoubtedly a powerful tool for the static characterization and dynamic manipulation of nanomaterials and nanodevices at the atomic scale. The rapid development of thin-film and precision microelectromechanical systems (MEMS) techniques allows 2D layered materials and nanodevices to be probed and engineered inside TEM under external stimuli such as thermal, electrical, mechanical, liquid/gas environmental, optical, and magnetic fields at the nanoscale. Such advanced technologies leverage the traditional static TEM characterization into an in situ and interactive manipulation of 2D layered materials without sacrificing the resolution or the high vacuum chamber environment, facilitating exploration of the intrinsic structure-property relationship of 2D layered materials. In this Review, the dynamic properties tailored and observed by the most advanced and unprecedented in situ TEM technology are introduced. The challenges in spatial, time and energy resolution are discussed also.
Collapse
Affiliation(s)
- Chen Luo
- Shanghai Key Laboratory of Multidimensional Information Processing, State Key Laboratory of Transducer Technology, Department of Electrical Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China
| | - Chaolun Wang
- Shanghai Key Laboratory of Multidimensional Information Processing, State Key Laboratory of Transducer Technology, Department of Electrical Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China
| | - Xing Wu
- Shanghai Key Laboratory of Multidimensional Information Processing, State Key Laboratory of Transducer Technology, Department of Electrical Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China
| | - Jian Zhang
- Shanghai Key Laboratory of Multidimensional Information Processing, State Key Laboratory of Transducer Technology, Department of Electrical Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China
| | - Junhao Chu
- Shanghai Key Laboratory of Multidimensional Information Processing, State Key Laboratory of Transducer Technology, Department of Electrical Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China
| |
Collapse
|
25
|
Baier S, Damsgaard CD, Klumpp M, Reinhardt J, Sheppard T, Balogh Z, Kasama T, Benzi F, Wagner JB, Schwieger W, Schroer CG, Grunwaldt JD. Stability of a Bifunctional Cu-Based Core@Zeolite Shell Catalyst for Dimethyl Ether Synthesis Under Redox Conditions Studied by Environmental Transmission Electron Microscopy and In Situ X-Ray Ptychography. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2017; 23:501-512. [PMID: 28376946 DOI: 10.1017/s1431927617000332] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
When using bifunctional core@shell catalysts, the stability of both the shell and core-shell interface is crucial for catalytic applications. In the present study, we elucidate the stability of a CuO/ZnO/Al2O3@ZSM-5 core@shell material, used for one-stage synthesis of dimethyl ether from synthesis gas. The catalyst stability was studied in a hierarchical manner by complementary environmental transmission electron microscopy (ETEM), scanning electron microscopy (SEM) and in situ hard X-ray ptychography with a specially designed in situ cell. Both reductive activation and reoxidation were applied. The core-shell interface was found to be stable during reducing and oxidizing treatment at 250°C as observed by ETEM and in situ X-ray ptychography, although strong changes occurred in the core on a 10 nm scale due to the reduction of copper oxide to metallic copper particles. At 350°C, in situ X-ray ptychography indicated the occurrence of structural changes also on the µm scale, i.e. the core material and parts of the shell undergo restructuring. Nevertheless, the crucial core-shell interface required for full bifunctionality appeared to remain stable. This study demonstrates the potential of these correlative in situ microscopy techniques for hierarchically designed catalysts.
Collapse
Affiliation(s)
- Sina Baier
- 1Institute for Chemical Technology and Polymer Chemistry,Karlsruhe Institute of Technology,76131 Karlsruhe,Germany
| | - Christian D Damsgaard
- 2Center for Electron Nanoscopy,Technical University of Denmark,2800 Kgs. Lyngby,Denmark
| | - Michael Klumpp
- 4Institute of Chemical Reaction Engineering,Friedrich-Alexander University Erlangen-Nürnberg (FAU),91058 Erlangen,Germany
| | - Juliane Reinhardt
- 5Deutsches Elektronen-Synchrotron DESY,Notkestr. 85,22607 Hamburg,Germany
| | - Thomas Sheppard
- 1Institute for Chemical Technology and Polymer Chemistry,Karlsruhe Institute of Technology,76131 Karlsruhe,Germany
| | - Zoltan Balogh
- 2Center for Electron Nanoscopy,Technical University of Denmark,2800 Kgs. Lyngby,Denmark
| | - Takeshi Kasama
- 2Center for Electron Nanoscopy,Technical University of Denmark,2800 Kgs. Lyngby,Denmark
| | - Federico Benzi
- 1Institute for Chemical Technology and Polymer Chemistry,Karlsruhe Institute of Technology,76131 Karlsruhe,Germany
| | - Jakob B Wagner
- 2Center for Electron Nanoscopy,Technical University of Denmark,2800 Kgs. Lyngby,Denmark
| | - Wilhelm Schwieger
- 4Institute of Chemical Reaction Engineering,Friedrich-Alexander University Erlangen-Nürnberg (FAU),91058 Erlangen,Germany
| | | | - Jan-Dierk Grunwaldt
- 1Institute for Chemical Technology and Polymer Chemistry,Karlsruhe Institute of Technology,76131 Karlsruhe,Germany
| |
Collapse
|
26
|
Altman AB, Pemmaraju CD, Alayoglu S, Arnold J, Booth CH, Braun A, Bunker CE, Herve A, Minasian SG, Prendergast D, Shuh DK, Tyliszczak T. Chemical and Morphological Inhomogeneity of Aluminum Metal and Oxides from Soft X-ray Spectromicroscopy. Inorg Chem 2017; 56:5710-5719. [PMID: 28471186 DOI: 10.1021/acs.inorgchem.7b00280] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Oxygen and aluminum K-edge X-ray absorption spectroscopy (XAS), imaging from a scanning transmission X-ray microscope (STXM), and first-principles calculations were used to probe the composition and morphology of bulk aluminum metal, α- and γ-Al2O3, and several types of aluminum nanoparticles. The imaging results agreed with earlier transmission electron microscopy studies that showed a 2 to 5 nm thick layer of Al2O3 on all the Al surfaces. Spectral interpretations were guided by examination of the calculated transition energies, which agreed well with the spectroscopic measurements. Features observed in the experimental O and Al K-edge XAS were used to determine the chemical structure and phase of the Al2O3 on the aluminum surfaces. For unprotected 18 and 100 nm Al nanoparticles, this analysis revealed an oxide layer that was similar to γ-Al2O3 and comprised of both tetrahedral and octahedral Al coordination sites. For oleic acid-protected Al nanoparticles, only tetrahedral Al oxide coordination sites were observed. The results were correlated to trends in the reactivity of the different materials, which suggests that the structures of different Al2O3 layers have an important role in the accessibility of the underlying Al metal toward further oxidation. Combined, the Al K-edge XAS and STXM results provided detailed chemical information that was not obtained from powder X-ray diffraction or imaging from a transmission electron microscope.
Collapse
Affiliation(s)
- Alison B Altman
- Department of Chemistry, University of California , Berkeley, California 94720, United States
| | | | | | - John Arnold
- Department of Chemistry, University of California , Berkeley, California 94720, United States
| | | | | | - Christopher E Bunker
- Air Force Research Laboratory, Propulsion Directorate, Wright-Patterson Air Force Base , Dayton, Ohio 45433, United States
| | | | | | | | | | | |
Collapse
|
27
|
Reinhardt J, Hoppe R, Hofmann G, Damsgaard CD, Patommel J, Baumbach C, Baier S, Rochet A, Grunwaldt JD, Falkenberg G, Schroer CG. Beamstop-based low-background ptychography to image weakly scattering objects. Ultramicroscopy 2016; 173:52-57. [PMID: 27912167 DOI: 10.1016/j.ultramic.2016.11.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 10/28/2016] [Accepted: 11/08/2016] [Indexed: 11/29/2022]
Abstract
In recent years, X-ray ptychography has been established as a valuable tool for high-resolution imaging. Nevertheless, the spatial resolution and sensitivity in coherent diffraction imaging are limited by the signal that is detected over noise and over background scattering. Especially, coherent imaging of weakly scattering specimens suffers from incoherent background that is generated by the interaction of the central beam with matter along its propagation path in particular close to and inside of the detector. Common countermeasures entail evacuated flight tubes or detector-side beamstops, which improve the experimental setup in terms of background reduction or better coverage of high dynamic range in the diffraction patterns. Here, we discuss an alternative approach: we combine two ptychographic scans with and without beamstop and reconstruct them simultaneously taking advantage of the complementary information contained in the two scans. We experimentally demonstrate the potential of this scheme for hard X-ray ptychography by imaging a weakly scattering object composed of catalytic nanoparticles and provide the analysis of the signal-to-background ratio in the diffraction patterns.
Collapse
Affiliation(s)
| | - Robert Hoppe
- Institute of Structural Physics, Technische Universität Dresden, D-01062 Dresden, Germany
| | - Georg Hofmann
- Institute for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology, D-76131 Karlsruhe, Germany
| | - Christian D Damsgaard
- Center for Electron Nanoscopy and Department of Physics, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Jens Patommel
- Institute of Structural Physics, Technische Universität Dresden, D-01062 Dresden, Germany
| | - Christoph Baumbach
- Institute of Structural Physics, Technische Universität Dresden, D-01062 Dresden, Germany
| | - Sina Baier
- Institute for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology, D-76131 Karlsruhe, Germany
| | - Amélie Rochet
- Institute for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology, D-76131 Karlsruhe, Germany
| | - Jan-Dierk Grunwaldt
- Institute for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology, D-76131 Karlsruhe, Germany
| | | | - Christian G Schroer
- Deutsches Elektronen-Synchrotron DESY, D-22607 Hamburg, Germany; Department Physik, Universität Hamburg, Luruper Chaussee 149, D-22761 Hamburg, Germany
| |
Collapse
|
28
|
Wu J, Shan H, Chen W, Gu X, Tao P, Song C, Shang W, Deng T. In Situ Environmental TEM in Imaging Gas and Liquid Phase Chemical Reactions for Materials Research. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2016; 28:9686-9712. [PMID: 27628711 DOI: 10.1002/adma.201602519] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 06/10/2016] [Indexed: 05/26/2023]
Abstract
Gas and liquid phase chemical reactions cover a broad range of research areas in materials science and engineering, including the synthesis of nanomaterials and application of nanomaterials, for example, in the areas of sensing, energy storage and conversion, catalysis, and bio-related applications. Environmental transmission electron microscopy (ETEM) provides a unique opportunity for monitoring gas and liquid phase reactions because it enables the observation of those reactions at the ultra-high spatial resolution, which is not achievable through other techniques. Here, the fundamental science and technology developments of gas and liquid phase TEM that facilitate the mechanistic study of the gas and liquid phase chemical reactions are discussed. Combined with other characterization tools integrated in TEM, unprecedented material behaviors and reaction mechanisms are observed through the use of the in situ gas and liquid phase TEM. These observations and also the recent applications in this emerging area are described. The current challenges in the imaging process are also discussed, including the imaging speed, imaging resolution, and data management.
Collapse
Affiliation(s)
- Jianbo Wu
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Rd., Shanghai, 200240, People's Republic of China
| | - Hao Shan
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Rd., Shanghai, 200240, People's Republic of China
| | - Wenlong Chen
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Rd., Shanghai, 200240, People's Republic of China
| | - Xin Gu
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Rd., Shanghai, 200240, People's Republic of China
| | - Peng Tao
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Rd., Shanghai, 200240, People's Republic of China
| | - Chengyi Song
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Rd., Shanghai, 200240, People's Republic of China
| | - Wen Shang
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Rd., Shanghai, 200240, People's Republic of China
| | - Tao Deng
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Rd., Shanghai, 200240, People's Republic of China
| |
Collapse
|
29
|
Bock DC, Pelliccione CJ, Zhang W, Wang J, Knehr KW, Wang J, Wang F, West AC, Marschilok AC, Takeuchi KJ, Takeuchi ES. Dispersion of Nanocrystalline Fe3O4 within Composite Electrodes: Insights on Battery-Related Electrochemistry. ACS APPLIED MATERIALS & INTERFACES 2016; 8:11418-11430. [PMID: 27096464 DOI: 10.1021/acsami.6b01134] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Aggregation of nanosized materials in composite lithium-ion-battery electrodes can be a significant factor influencing electrochemical behavior. In this study, aggregation was controlled in magnetite, Fe3O4, composite electrodes via oleic acid capping and subsequent dispersion in a carbon black matrix. A heat treatment process was effective in the removal of the oleic acid capping agent while preserving a high degree of Fe3O4 dispersion. Electrochemical testing showed that Fe3O4 dispersion is initially beneficial in delivering a higher functional capacity, in agreement with continuum model simulations. However, increased capacity fade upon extended cycling was observed for the dispersed Fe3O4 composites relative to the aggregated Fe3O4 composites. X-ray absorption spectroscopy measurements of electrodes post cycling indicated that the dispersed Fe3O4 electrodes are more oxidized in the discharged state, consistent with reduced reversibility compared with the aggregated sample. Higher charge-transfer resistance for the dispersed sample after cycling suggests increased surface-film formation on the dispersed, high-surface-area nanocrystalline Fe3O4 compared to the aggregated materials. This study provides insight into the specific effects of aggregation on electrochemistry through a multiscale view of mechanisms for magnetite composite electrodes.
Collapse
Affiliation(s)
- David C Bock
- Brookhaven National Laboratory , Upton, New York 11973, United States
| | | | - Wei Zhang
- Brookhaven National Laboratory , Upton, New York 11973, United States
| | - Jiajun Wang
- Brookhaven National Laboratory , Upton, New York 11973, United States
| | - K W Knehr
- Department of Chemical Engineering, Columbia University , New York, New York 10027, United States
| | - Jun Wang
- Brookhaven National Laboratory , Upton, New York 11973, United States
| | - Feng Wang
- Brookhaven National Laboratory , Upton, New York 11973, United States
| | - Alan C West
- Department of Chemical Engineering, Columbia University , New York, New York 10027, United States
| | | | | | - Esther S Takeuchi
- Brookhaven National Laboratory , Upton, New York 11973, United States
| |
Collapse
|
30
|
Baier S, Damsgaard CD, Scholz M, Benzi F, Rochet A, Hoppe R, Scherer T, Shi J, Wittstock A, Weinhausen B, Wagner JB, Schroer CG, Grunwaldt JD. In Situ Ptychography of Heterogeneous Catalysts using Hard X-Rays: High Resolution Imaging at Ambient Pressure and Elevated Temperature. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2016; 22:178-188. [PMID: 26914998 DOI: 10.1017/s1431927615015573] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
A new closed cell is presented for in situ X-ray ptychography which allows studies under gas flow and at elevated temperature. In order to gain complementary information by transmission and scanning electron microscopy, the cell makes use of a Protochips E-chipTM which contains a small, thin electron transparent window and allows heating. Two gold-based systems, 50 nm gold particles and nanoporous gold as a relevant catalyst sample, were used for studying the feasibility of the cell. Measurements showing a resolution around 40 nm have been achieved under a flow of synthetic air and during heating up to temperatures of 933 K. An elevated temperature exhibited little influence on image quality and resolution. With this study, the potential of in situ hard X-ray ptychography for investigating annealing processes of real catalyst samples is demonstrated. Furthermore, the possibility to use the same sample holder for ex situ electron microscopy before and after the in situ study underlines the unique possibilities available with this combination of electron microscopy and X-ray microscopy on the same sample.
Collapse
Affiliation(s)
- Sina Baier
- 1Institute for Chemical Technology and Polymer Chemistry,Karlsruhe Institute of Technology,76131 Karlsruhe,Germany
| | - Christian D Damsgaard
- 2Center for Electron Nanoscopy,Technical University of Denmark,2800 Kgs. Lyngby,Denmark
| | - Maria Scholz
- 4Deutsches Elektronen-Synchrotron DESY,Notkestr. 85,22607 Hamburg,Germany
| | - Federico Benzi
- 1Institute for Chemical Technology and Polymer Chemistry,Karlsruhe Institute of Technology,76131 Karlsruhe,Germany
| | - Amélie Rochet
- 1Institute for Chemical Technology and Polymer Chemistry,Karlsruhe Institute of Technology,76131 Karlsruhe,Germany
| | - Robert Hoppe
- 5Institute of Structural Physics,Technische Universität Dresden,01062 Dresden,Germany
| | - Torsten Scherer
- 6Institute of Nanotechnology,Karlsruhe Institute of Technology,76021 Karlsruhe,Germany
| | - Junjie Shi
- 8Angewandte und Physikalische Chemie,University of Bremen,28359 Bremen,Germany
| | - Arne Wittstock
- 8Angewandte und Physikalische Chemie,University of Bremen,28359 Bremen,Germany
| | | | - Jakob B Wagner
- 2Center for Electron Nanoscopy,Technical University of Denmark,2800 Kgs. Lyngby,Denmark
| | | | - Jan-Dierk Grunwaldt
- 1Institute for Chemical Technology and Polymer Chemistry,Karlsruhe Institute of Technology,76131 Karlsruhe,Germany
| |
Collapse
|
31
|
Cats KH, Andrews JC, Stéphan O, March K, Karunakaran C, Meirer F, de Groot FMF, Weckhuysen BM. Active phase distribution changes within a catalyst particle during Fischer–Tropsch synthesis as revealed by multi-scale microscopy. Catal Sci Technol 2016. [DOI: 10.1039/c5cy01524c] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new combination of three chemical imaging methods has been developed and applied to fresh and spent co-based Fischer–Tropsch catalysts.
Collapse
Affiliation(s)
- K. H. Cats
- Inorganic Chemistry and Catalysis
- Debye Institute for Nanomaterials Science
- Utrecht University
- 3584 CG Utrecht
- The Netherlands
| | - J. C. Andrews
- Stanford Synchrotron Light Source
- SLAC National Accelerator Laboratory
- Menlo Park
- USA
| | - O. Stéphan
- Laboratoire de Physique des Solides
- Université Paris Sud
- 91405 Orsay
- France
| | - K. March
- Laboratoire de Physique des Solides
- Université Paris Sud
- 91405 Orsay
- France
| | | | - F. Meirer
- Inorganic Chemistry and Catalysis
- Debye Institute for Nanomaterials Science
- Utrecht University
- 3584 CG Utrecht
- The Netherlands
| | - F. M. F. de Groot
- Inorganic Chemistry and Catalysis
- Debye Institute for Nanomaterials Science
- Utrecht University
- 3584 CG Utrecht
- The Netherlands
| | - B. M. Weckhuysen
- Inorganic Chemistry and Catalysis
- Debye Institute for Nanomaterials Science
- Utrecht University
- 3584 CG Utrecht
- The Netherlands
| |
Collapse
|
32
|
Hong K, Cho H, Schoenlein RW, Kim TK, Huse N. Element-specific characterization of transient electronic structure of solvated Fe(II) complexes with time-resolved soft X-ray absorption spectroscopy. Acc Chem Res 2015; 48:2957-66. [PMID: 26488127 DOI: 10.1021/acs.accounts.5b00154] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Polypyridyl transition-metal complexes are an intriguing class of compounds due to the relatively facile chemical designs and variations in ligand-field strengths that allow for spin-state changes and hence electronic configurations in response to external perturbations such as pressure and light. Light-activated spin-conversion complexes have possible applications in a variety of molecular-based devices, and ultrafast excited-state evolution in these complexes is of fundamental interest for understanding of the origins of spin-state conversion in metal complexes. Knowledge of the interplay of structure and valence charge distributions is important to understand which degrees of freedom drive spin-conversion and which respond in a favorable (or unfavorable) manner. To track the response of the constituent components, various types of time-resolved X-ray probe methods have been utilized for a broad range of chemical and biological systems relevant to catalysis, solar energy conversions, and functional molecular devices. In particular, transient soft X-ray spectroscopy of solvated molecules can offer complementary information on the detailed electronic structures and valence charge distributions of photoinduced intermediate species: First-row transition-metal L-edges consist of 2p-3d transitions, which directly probe the unoccupied valence density of states and feature lifetime broadening in the range of 100 meV, making them sensitive spectral probes of metal-ligand interactions. In this Account, we present some of our recent progress in employing picosecond and femtosecond soft X-ray pulses from synchrotron sources to investigate element specific valence charge distributions and spin-state evolutions in Fe(II) polypyridyl complexes via core-level transitions. Our results on transient L-edge spectroscopy of Fe(II) complexes clearly show that the reduction in σ-donation is compensated by significant attenuation of π-backbonding upon spin-crossover. This underscores the important information contained in transient metal L-edge spectroscopy on changes in the 3d orbitals including oxidation states, orbital symmetries, and covalency, which largely define the chemistry of these complexes. In addition, ligand K-edge spectroscopy reveals the "ligand view" of the valence charge density by probing 1s-2p core-level transitions at the K-edge of light elements such as nitrogen, carbon, and oxygen. In the case of Fe(II) spin-conversion complexes, additional details of the metal-ligand interactions can be obtained by this type of X-ray spectroscopy. With new initiatives in and construction of X-ray free-electron laser sources, we expect time-resolved soft X-ray spectroscopy to pave a new way to study electronic and molecular dynamics of functional materials, thereby answering many interesting scientific questions in inorganic chemistry and material science.
Collapse
Affiliation(s)
- Kiryong Hong
- Department
of Chemistry and Chemistry Institute of Functional Materials, Pusan National University, Busan 609-735, Republic of Korea
| | - Hana Cho
- Department
of Chemistry and Chemistry Institute of Functional Materials, Pusan National University, Busan 609-735, Republic of Korea
- Ultrafast
X-ray Science Laboratory, Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Center
for Inorganic Analysis, Division of Metrology for Quality of Life, Korea Research Institute of Standard and Science, Daejeon 305-340, Republic of Korea
| | - Robert W. Schoenlein
- Ultrafast
X-ray Science Laboratory, Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Tae Kyu Kim
- Department
of Chemistry and Chemistry Institute of Functional Materials, Pusan National University, Busan 609-735, Republic of Korea
| | - Nils Huse
- Department of
Physics, University of Hamburg, Max Planck Institute
for the Structure and Dynamics of Matter, and Center for Free-Electron Laser Science, 22761 Hamburg, Germany
| |
Collapse
|
33
|
Cicmil D, Meeuwissen J, Vantomme A, Wang J, van Ravenhorst IK, van der Bij HE, Muñoz-Murillo A, Weckhuysen BM. Polyethylene with Reverse Co-monomer Incorporation: From an Industrial Serendipitous Discovery to Fundamental Understanding. Angew Chem Int Ed Engl 2015; 54:13073-9. [PMID: 26349452 PMCID: PMC4643190 DOI: 10.1002/anie.201506718] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 08/17/2015] [Indexed: 12/04/2022]
Abstract
A triethylaluminium(TEAl)-modified Phillips ethylene polymerisation Cr/Ti/SiO2 catalyst has been developed with two distinct active regions positioned respectively in the inner core and outer shell of the catalyst particle. DRIFTS, EPR, UV-Vis-NIR DRS, STXM, SEM-EDX and GPC-IR studies revealed that the catalyst produces simultaneously two different polymers, i.e., low molecular weight linear-chain polyethylene in the Ti-abundant catalyst particle shell and high molecular weight short-chain branched polyethylene in the Ti-scarce catalyst particle core. Co-monomers for the short-chain branched polymer were generated in situ within the TEAl-impregnated confined space of the Ti-scarce catalyst particle core in close proximity to the active sites that produced the high molecular weight polymer. These results demonstrate that the catalyst particle architecture directly affects polymer composition, offering the perspective of making high-performance polyethylene from a single reactor system using this modified Phillips catalyst.
Collapse
Affiliation(s)
- Dimitrije Cicmil
- Inorganic Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht (The Netherlands)
| | - Jurjen Meeuwissen
- Refining & Chemicals, Total Research and Technology Feluy, Zone Industrielle C, 7181 Seneffe (Belgium)
| | - Aurélien Vantomme
- Refining & Chemicals, Total Research and Technology Feluy, Zone Industrielle C, 7181 Seneffe (Belgium)
| | - Jian Wang
- Soft X-ray Spectromicroscopy, Canadian Light Source Inc., 44 Innovation Boulevard, SK S7N 2V3 Saskatoon (Canada)
| | - Ilse K van Ravenhorst
- Inorganic Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht (The Netherlands)
| | - Hendrik E van der Bij
- Inorganic Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht (The Netherlands)
| | - Ara Muñoz-Murillo
- Inorganic Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht (The Netherlands)
| | - Bert M Weckhuysen
- Inorganic Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht (The Netherlands).
| |
Collapse
|
34
|
Cicmil D, Meeuwissen J, Vantomme A, Wang J, van Ravenhorst IK, van der Bij HE, Muñoz-Murillo A, Weckhuysen BM. Polyethylene with Reverse Co-monomer Incorporation: From an Industrial Serendipitous Discovery to Fundamental Understanding. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201506718] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
35
|
Gross E, Somorjai GA. Molecular catalysis science: Nanoparticle synthesis and instrument development for studies under reaction conditions. J Catal 2015. [DOI: 10.1016/j.jcat.2014.12.031] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
36
|
Xie Z, Liu Z, Wang Y, Jin Z. Applied catalysis for sustainable development of chemical industry in China. Natl Sci Rev 2015. [DOI: 10.1093/nsr/nwv019] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Abstract
Progressing green chemical technologies is significant to the sustainable development of chemical industry in China, as the energy and environment problems increasingly became great challenges to the whole society. The scientific connotation of sustainable energy chemical engineering can be generalized as green carbon/hydrogen science which means optimization of carbon/hydrogen atom economics based on high efficient catalysis and low-carbon emission. This review illustrated recent advances in developing sustainable technologies for applied catalysis in chemical industry of China, including the fields of high efficient conversion of heavy oil, green petrochemical catalytic technologies, clean utilization of coal and natural gas, promoting sustainable resources and clean energy, etc. Moreover, from the view of industrial point, some important common scientific problems were discussed and summarized, such as the relation between molecular diffusion and catalyzing efficiency, homogeneous catalysis in heterogeneous catalysts, in situ or operando characterization of industrial catalysis, etc., aiming to supplying a forward roadmap to academia and/or industry.
Collapse
Affiliation(s)
- Zaiku Xie
- China Petroleum & Chemical Corporation, Beijing 100728, China
| | - Zhicheng Liu
- Sinopec Shanghai Research Institute of Petrochemical Technology, Shanghai 201208, China
| | - Yangdong Wang
- Sinopec Shanghai Research Institute of Petrochemical Technology, Shanghai 201208, China
| | - Zhonghao Jin
- Sinopec Shanghai Research Institute of Petrochemical Technology, Shanghai 201208, China
| |
Collapse
|
37
|
Goode AE, Porter AE, Ryan MP, McComb DW. Correlative electron and X-ray microscopy: probing chemistry and bonding with high spatial resolution. NANOSCALE 2015; 7:1534-1548. [PMID: 25532909 DOI: 10.1039/c4nr05922k] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Two powerful and complementary techniques for chemical characterisation of nanoscale systems are electron energy-loss spectroscopy in the scanning transmission electron microscope, and X-ray absorption spectroscopy in the scanning transmission X-ray microscope. A correlative approach to spectro-microscopy may not only bridge the gaps in spatial and spectral resolution which exist between the two instruments, but also offer unique opportunities for nanoscale characterisation. This review will discuss the similarities of the two spectroscopy techniques and the state of the art for each microscope. Case studies have been selected to illustrate the benefits and limitations of correlative electron and X-ray microscopy techniques. In situ techniques and radiation damage are also discussed.
Collapse
Affiliation(s)
- Angela E Goode
- Department of Materials, Imperial College London, London SW7 2AZ, UK.
| | | | | | | |
Collapse
|
38
|
Shi H, Lercher JA, Yu XY. Sailing into uncharted waters: recent advances in the in situ monitoring of catalytic processes in aqueous environments. Catal Sci Technol 2015. [DOI: 10.1039/c4cy01720j] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review presents recent advances inin situstudies of catalytic processes in the aqueous environment with an outlook of mesoscale imaging.
Collapse
Affiliation(s)
- Hui Shi
- Fundamental and Computer Sciences Directorate
- Pacific Northwest National Laboratory (PNNL)
- Richland
- USA
| | - Johannes A. Lercher
- Fundamental and Computer Sciences Directorate
- Pacific Northwest National Laboratory (PNNL)
- Richland
- USA
- Department of Chemistry
| | - Xiao-Ying Yu
- Fundamental and Computer Sciences Directorate
- Pacific Northwest National Laboratory (PNNL)
- Richland
- USA
| |
Collapse
|
39
|
van der Bij HE, Cicmil D, Wang J, Meirer F, de Groot FMF, Weckhuysen BM. Aluminum-Phosphate Binder Formation in Zeolites as Probed with X-ray Absorption Microscopy. J Am Chem Soc 2014; 136:17774-87. [DOI: 10.1021/ja508545m] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hendrik E. van der Bij
- Inorganic
Chemistry and Catalysis group, Debye Institute for Nanomaterials Science, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Dimitrije Cicmil
- Inorganic
Chemistry and Catalysis group, Debye Institute for Nanomaterials Science, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Jian Wang
- Canadian
Light Source, Inc., University of Saskatchewan, Saskatoon, Saskatchewan S7N 2V3, Canada
| | - Florian Meirer
- Inorganic
Chemistry and Catalysis group, Debye Institute for Nanomaterials Science, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Frank M. F. de Groot
- Inorganic
Chemistry and Catalysis group, Debye Institute for Nanomaterials Science, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Bert M. Weckhuysen
- Inorganic
Chemistry and Catalysis group, Debye Institute for Nanomaterials Science, Utrecht University, 3584 CG Utrecht, The Netherlands
| |
Collapse
|
40
|
Drisdell WS, Kortright JB. Gas cell for in situ soft X-ray transmission-absorption spectroscopy of materials. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2014; 85:074103. [PMID: 25085154 DOI: 10.1063/1.4890816] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
A simple gas cell design, constructed primarily from commercially available components, enables in situ soft X-ray transmission-absorption spectroscopy of materials in contact with gas at ambient temperature. The cell has a minimum X-ray path length of 1 mm and can hold gas pressures up to ~300 Torr, and could support higher pressures with simple modifications. The design enables cycling between vacuum and gas environments without interrupting the X-ray beam, and can be fully sealed to allow for measurements of air-sensitive samples. The cell can attach to the downstream port of any appropriate synchrotron beamline, and offers a robust and versatile method for in situ measurements of certain materials. The construction and operation of the cell are discussed, as well as sample preparation and proper spectral analysis, illustrated by examples of spectral measurements. Potential areas for improvement and modification for specialized applications are also mentioned.
Collapse
Affiliation(s)
- W S Drisdell
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - J B Kortright
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| |
Collapse
|
41
|
Harris WM, Brinkman KS, Lin Y, Su D, Cocco AP, Nakajo A, DeGostin MB, Chen-Wiegart YCK, Wang J, Chen F, Chu YS, Chiu WKS. Characterization of 3D interconnected microstructural network in mixed ionic and electronic conducting ceramic composites. NANOSCALE 2014; 6:4480-4485. [PMID: 24615571 DOI: 10.1039/c3nr06684c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The microstructure and connectivity of the ionic and electronic conductive phases in composite ceramic membranes are directly related to device performance. Transmission electron microscopy (TEM) including chemical mapping combined with X-ray nanotomography (XNT) have been used to characterize the composition and 3-D microstructure of a MIEC composite model system consisting of a Ce0.8Gd0.2O2 (GDC) oxygen ion conductive phase and a CoFe2O4 (CFO) electronic conductive phase. The microstructural data is discussed, including the composition and distribution of an emergent phase which takes the form of isolated and distinct regions. Performance implications are considered with regards to the design of new material systems which evolve under non-equilibrium operating conditions.
Collapse
|
42
|
Affiliation(s)
- Justin B. Sambur
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14850;
| | - Peng Chen
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14850;
| |
Collapse
|
43
|
Chen P, Zhou X, Andoy NM, Han KS, Choudhary E, Zou N, Chen G, Shen H. Spatiotemporal catalytic dynamics within single nanocatalysts revealed by single-molecule microscopy. Chem Soc Rev 2014; 43:1107-17. [DOI: 10.1039/c3cs60215j] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
44
|
Jacobs G, Ma W, Gao P, Todic B, Bhatelia T, Bukur DB, Davis BH. The application of synchrotron methods in characterizing iron and cobalt Fischer–Tropsch synthesis catalysts. Catal Today 2013. [DOI: 10.1016/j.cattod.2013.05.011] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
45
|
Andrews JC, Weckhuysen BM. Hard X-ray spectroscopic nano-imaging of hierarchical functional materials at work. Chemphyschem 2013; 14:3655-66. [PMID: 24038941 DOI: 10.1002/cphc.201300529] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Indexed: 11/11/2022]
Abstract
Heterogeneous catalysts often consist of an active metal (oxide) in close contact with a support material and various promoter elements. Although macroscopic properties, such as activity, selectivity and stability, can be assessed with catalyst performance testing, the development of relevant, preferably quantitative structure-performance relationships require the use of advanced characterisation methods. Spectroscopic imaging in the hard X-ray region with nanometer-scale resolution has very recently emerged as a powerful approach to elucidate the hierarchical structure and related chemistry of catalytic solids in action under realistic reaction conditions. This X-ray-based chemical imaging method benefits from the combination of high resolution (∼30 nm) with large X-ray penetration and depth of focus, and the possibility for probing large areas with mosaic imaging. These capabilities make it possible to obtain spatial and temporal information on chemical changes in catalytic solids as well as a wide variety of other functional materials, such as fuel cells and batteries, in their full complexity and integrity. In this concept article we provide details on the method and setup of full-field hard X-ray spectroscopic imaging, illustrate its potential for spatiotemporal chemical imaging by making use of recent showcases, outline the pros and cons of this experimental approach and discuss some future directions for hierarchical functional materials research.
Collapse
Affiliation(s)
- Joy C Andrews
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park CA 94025 (USA).
| | | |
Collapse
|
46
|
Tamenori Y. Electron yield soft X-ray photoabsorption spectroscopy under normal ambient-pressure conditions. JOURNAL OF SYNCHROTRON RADIATION 2013; 20:419-25. [PMID: 23592620 PMCID: PMC4034694 DOI: 10.1107/s0909049513003592] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Accepted: 02/05/2013] [Indexed: 05/23/2023]
Abstract
Ambient-pressure soft X-ray photoabsorption spectroscopy (XAS) was demonstrated to be applicable to the chemical analysis of hydrated transition-metal compounds. For this purpose, even under ambient-pressure conditions, electron yield detection XAS (EY-XAS), based on a simple drain-current set-up, was used to overcome a weakness in fluorescence yield detection XAS (FY-XAS), which does not give a pure soft XAS. The feasibility of EY-XAS was investigated and it was clarified that the EY-XAS under ambient-pressure conditions corresponds to the mixed data of the total EY and conversion EY spectra. Normal ambient-pressure EY-XAS analysis was applied to anhydrous (CoCl2) and to hydrated (CoCl2·6H2O) cobalt chloride at the Co L23-edge. The present measurements demonstrated the ability to unambiguously distinguish the different chemical states of cobalt ions, relying upon spectral differences that indicate octahedral/quasi-octahedral structural changes as a result of hydration/dehydration reactions.
Collapse
Affiliation(s)
- Yusuke Tamenori
- Japan Synchrotron Radiation Research Institute/SPring-8, 1-1-1 Kouto, Sayo, Hyogo 679-5198, Japan
| |
Collapse
|
47
|
Bordiga S, Groppo E, Agostini G, van Bokhoven JA, Lamberti C. Reactivity of Surface Species in Heterogeneous Catalysts Probed by In Situ X-ray Absorption Techniques. Chem Rev 2013; 113:1736-850. [DOI: 10.1021/cr2000898] [Citation(s) in RCA: 488] [Impact Index Per Article: 44.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Silvia Bordiga
- Department of Chemistry and NIS Centre of Excellence, Università di Torino and INSTM Reference Center, Via P. Giuria 7, 10125 Torino, Italy
| | - Elena Groppo
- Department of Chemistry and NIS Centre of Excellence, Università di Torino and INSTM Reference Center, Via P. Giuria 7, 10125 Torino, Italy
| | - Giovanni Agostini
- Department of Chemistry and NIS Centre of Excellence, Università di Torino and INSTM Reference Center, Via P. Giuria 7, 10125 Torino, Italy
| | - Jeroen A. van Bokhoven
- ETH Zurich, Institute for Chemical and Bioengineering, HCI E127 8093 Zurich, Switzerland
- Laboratory for Catalysis and Sustainable Chemistry (LSK) Swiss Light Source, Paul Scherrer Instituteaul Scherrer Institute, Villigen, Switzerland
| | - Carlo Lamberti
- Department of Chemistry and NIS Centre of Excellence, Università di Torino and INSTM Reference Center, Via P. Giuria 7, 10125 Torino, Italy
| |
Collapse
|
48
|
|
49
|
Zhang B, Su H, Gu X, Zhang Y, Wang P, Li X, Zhang X, Wang H, Yang X, Zeng S. Trapping the catalyst working state by amber-inspired hybrid material to reveal the cobalt nanostructure evolution in clean liquid fuel synthesis. Catal Sci Technol 2013. [DOI: 10.1039/c3cy00366c] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
50
|
Marcelli A, Innocenzi P, Malfatti L, Newton MA, Rau JV, Ritter E, Schade U, Xu W. IR and X-ray time-resolved simultaneous experiments: an opportunity to investigate the dynamics of complex systems and non-equilibrium phenomena using third-generation synchrotron radiation sources. JOURNAL OF SYNCHROTRON RADIATION 2012; 19:892-904. [PMID: 23093747 DOI: 10.1107/s0909049512041106] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Accepted: 09/30/2012] [Indexed: 06/01/2023]
Abstract
Third-generation storage rings are modern facilities working with high currents and designed to host powerful radiation sources, like undulators and wigglers, and to deliver high-brilliance beams to users. Many experiments at high spatial resolution, such as spectromicroscopy at the nanometre scale and with high temporal resolution to investigate kinetics down to the picosecond regime, are now possible. The next frontier is certainly the combination of different methods in a unique set-up with the ultimate available spatial and temporal resolutions. In the last decade much synchrotron-based research has exploited the advantage of complementary information provided by time-resolved X-ray techniques and optical methods in the UV/Vis and IR domains. New time-resolved and concurrent approaches are necessary to characterize complex systems where physical-chemical phenomena occur under the same experimental conditions, for example to detect kinetic intermediates via complementary but independent observations. In this contribution we present scientific cases from original works and literature reviews to support the proposed IR/X-ray simultaneous approach, with both probes exploiting synchrotron radiation sources. In addition, simple experimental layouts that may take advantage of the high brilliance and the wide spectral distribution of the synchrotron radiation emission will be given for specific researches or applications to investigate dynamic processes and non-equilibrium phenomena occurring in many condensed matter and biological systems, of great interest for both fundamental research and technological applications.
Collapse
|