1
|
Li KR, Yu PL, Zheng QQ, Wang X, Fang X, Li LC, Xu CR. Spatiotemporal and genetic cell lineage tracing of endodermal organogenesis at single-cell resolution. Cell 2025; 188:796-813.e24. [PMID: 39824184 DOI: 10.1016/j.cell.2024.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 09/30/2024] [Accepted: 12/09/2024] [Indexed: 01/20/2025]
Abstract
During early mammalian development, the endoderm germ layer forms the foundation of the respiratory and digestive systems through complex patterning. This intricate process, guided by a series of cell fate decisions, remains only partially understood. Our study introduces innovative genetic tracing codes for 14 distinct endodermal regions using novel mouse strains. By integrating high-throughput and high-precision single-cell RNA sequencing with sophisticated imaging, we detailed the spatiotemporal and genetic lineage differentiation of the endoderm at single-cell resolution. We discovered an unexpected multipotentiality within early endodermal regions, allowing differentiation into various organ primordia. This research illuminates the complex and underestimated phenomenon where endodermal organs develop from multiple origins, prompting a reevaluation of traditional differentiation models. Our findings advance understanding in developmental biology and have significant implications for regenerative medicine and the development of advanced organoid models, providing insights into the intricate mechanisms that guide organogenesis.
Collapse
Affiliation(s)
- Ke-Ran Li
- State Key Laboratory of Female Fertility Promotion, Department of Medical Genetics, School of Basic Medical Sciences, Peking University, Beijing 100191, China; Department of Human Anatomy, Histology, and Embryology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Pei-Long Yu
- State Key Laboratory of Female Fertility Promotion, Department of Medical Genetics, School of Basic Medical Sciences, Peking University, Beijing 100191, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Qi-Qi Zheng
- PKU-Tsinghua-NIBS Graduate Program, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Xin Wang
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China; School of Life Sciences, Peking University, Beijing 100871, China
| | - Xuan Fang
- Department of Human Anatomy, Histology, and Embryology, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Lin-Chen Li
- Department of Human Anatomy, Histology, and Embryology, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Cheng-Ran Xu
- State Key Laboratory of Female Fertility Promotion, Department of Medical Genetics, School of Basic Medical Sciences, Peking University, Beijing 100191, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
2
|
Klein D, Palla G, Lange M, Klein M, Piran Z, Gander M, Meng-Papaxanthos L, Sterr M, Saber L, Jing C, Bastidas-Ponce A, Cota P, Tarquis-Medina M, Parikh S, Gold I, Lickert H, Bakhti M, Nitzan M, Cuturi M, Theis FJ. Mapping cells through time and space with moscot. Nature 2025:10.1038/s41586-024-08453-2. [PMID: 39843746 DOI: 10.1038/s41586-024-08453-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 11/25/2024] [Indexed: 01/24/2025]
Abstract
Single-cell genomic technologies enable the multimodal profiling of millions of cells across temporal and spatial dimensions. However, experimental limitations hinder the comprehensive measurement of cells under native temporal dynamics and in their native spatial tissue niche. Optimal transport has emerged as a powerful tool to address these constraints and has facilitated the recovery of the original cellular context1-4. Yet, most optimal transport applications are unable to incorporate multimodal information or scale to single-cell atlases. Here we introduce multi-omics single-cell optimal transport (moscot), a scalable framework for optimal transport in single-cell genomics that supports multimodality across all applications. We demonstrate the capability of moscot to efficiently reconstruct developmental trajectories of 1.7 million cells from mouse embryos across 20 time points. To illustrate the capability of moscot in space, we enrich spatial transcriptomic datasets by mapping multimodal information from single-cell profiles in a mouse liver sample and align multiple coronal sections of the mouse brain. We present moscot.spatiotemporal, an approach that leverages gene-expression data across both spatial and temporal dimensions to uncover the spatiotemporal dynamics of mouse embryogenesis. We also resolve endocrine-lineage relationships of delta and epsilon cells in a previously unpublished mouse, time-resolved pancreas development dataset using paired measurements of gene expression and chromatin accessibility. Our findings are confirmed through experimental validation of NEUROD2 as a regulator of epsilon progenitor cells in a model of human induced pluripotent stem cell islet cell differentiation. Moscot is available as open-source software, accompanied by extensive documentation.
Collapse
Affiliation(s)
- Dominik Klein
- Institute of Computational Biology, Helmholtz Center, Munich, Germany
- Department of Mathematics, Technical University of Munich, Garching, Germany
| | - Giovanni Palla
- Institute of Computational Biology, Helmholtz Center, Munich, Germany
- TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Marius Lange
- Institute of Computational Biology, Helmholtz Center, Munich, Germany
- Department of Mathematics, Technical University of Munich, Garching, Germany
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | | | - Zoe Piran
- School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Manuel Gander
- Institute of Computational Biology, Helmholtz Center, Munich, Germany
| | | | - Michael Sterr
- Institute of Diabetes and Regeneration Research, Helmholtz Center, Munich, Germany
- German Center for Diabetes Research, Neuherberg, Germany
| | - Lama Saber
- Institute of Diabetes and Regeneration Research, Helmholtz Center, Munich, Germany
- German Center for Diabetes Research, Neuherberg, Germany
- School of Medicine, Technical University of Munich, Munich, Germany
| | - Changying Jing
- Institute of Diabetes and Regeneration Research, Helmholtz Center, Munich, Germany
- German Center for Diabetes Research, Neuherberg, Germany
- Munich Medical Research School (MMRS), Ludwig Maximilian University (LMU), Munich, Germany
| | - Aimée Bastidas-Ponce
- Institute of Diabetes and Regeneration Research, Helmholtz Center, Munich, Germany
- German Center for Diabetes Research, Neuherberg, Germany
| | - Perla Cota
- Institute of Diabetes and Regeneration Research, Helmholtz Center, Munich, Germany
- German Center for Diabetes Research, Neuherberg, Germany
- School of Medicine, Technical University of Munich, Munich, Germany
| | - Marta Tarquis-Medina
- Institute of Diabetes and Regeneration Research, Helmholtz Center, Munich, Germany
- German Center for Diabetes Research, Neuherberg, Germany
| | - Shrey Parikh
- Institute of Computational Biology, Helmholtz Center, Munich, Germany
| | - Ilan Gold
- Institute of Computational Biology, Helmholtz Center, Munich, Germany
| | - Heiko Lickert
- Institute of Diabetes and Regeneration Research, Helmholtz Center, Munich, Germany.
- German Center for Diabetes Research, Neuherberg, Germany.
- School of Medicine, Technical University of Munich, Munich, Germany.
| | - Mostafa Bakhti
- Institute of Diabetes and Regeneration Research, Helmholtz Center, Munich, Germany
- German Center for Diabetes Research, Neuherberg, Germany
| | - Mor Nitzan
- School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel
- Racah Institute of Physics, The Hebrew University of Jerusalem, Jerusalem, Israel
- Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | | | - Fabian J Theis
- Institute of Computational Biology, Helmholtz Center, Munich, Germany.
- Department of Mathematics, Technical University of Munich, Garching, Germany.
- TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany.
| |
Collapse
|
3
|
Terzi Çizmecioğlu N. Roles and Regulation of H3K4 Methylation During Mammalian Early Embryogenesis and Embryonic Stem Cell Differentiation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1470:73-96. [PMID: 38231346 DOI: 10.1007/5584_2023_794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
From generation of germ cells, fertilization, and throughout early mammalian embryonic development, the chromatin undergoes significant alterations to enable precise regulation of gene expression and genome use. Methylation of histone 3 lysine 4 (H3K4) correlates with active regions of the genome, and it has emerged as a dynamic mark throughout this timeline. The pattern and the level of H3K4 methylation are regulated by methyltransferases and demethylases. These enzymes, as well as their protein partners, play important roles in early embryonic development and show phenotypes in embryonic stem cell self-renewal and differentiation. The various roles of H3K4 methylation are interpreted by dedicated chromatin reader proteins, linking this modification to broader molecular and cellular phenotypes. In this review, we discuss the regulation of different levels of H3K4 methylation, their distinct accumulation pattern, and downstream molecular roles with an early embryogenesis perspective.
Collapse
|
4
|
Ton MLN, Keitley D, Theeuwes B, Guibentif C, Ahnfelt-Rønne J, Andreassen TK, Calero-Nieto FJ, Imaz-Rosshandler I, Pijuan-Sala B, Nichols J, Benito-Gutiérrez È, Marioni JC, Göttgens B. An atlas of rabbit development as a model for single-cell comparative genomics. Nat Cell Biol 2023; 25:1061-1072. [PMID: 37322291 DOI: 10.1038/s41556-023-01174-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 05/23/2023] [Indexed: 06/17/2023]
Abstract
Traditionally, the mouse has been the favoured vertebrate model for biomedical research, due to its experimental and genetic tractability. However, non-rodent embryological studies highlight that many aspects of early mouse development, such as its egg-cylinder gastrulation and method of implantation, diverge from other mammals, thus complicating inferences about human development. Like the human embryo, rabbits develop as a flat-bilaminar disc. Here we constructed a morphological and molecular atlas of rabbit development. We report transcriptional and chromatin accessibility profiles for over 180,000 single cells and high-resolution histology sections from embryos spanning gastrulation, implantation, amniogenesis and early organogenesis. Using a neighbourhood comparison pipeline, we compare the transcriptional landscape of rabbit and mouse at the scale of the entire organism. We characterize the gene regulatory programmes underlying trophoblast differentiation and identify signalling interactions involving the yolk sac mesothelium during haematopoiesis. We demonstrate how the combination of both rabbit and mouse atlases can be leveraged to extract new biological insights from sparse macaque and human data. The datasets and computational pipelines reported here set a framework for a broader cross-species approach to decipher early mammalian development, and are readily adaptable to deploy single-cell comparative genomics more broadly across biomedical research.
Collapse
Affiliation(s)
- Mai-Linh Nu Ton
- Department of Haematology, University of Cambridge, Cambridge, UK
- Wellcome-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Daniel Keitley
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - Bart Theeuwes
- Department of Haematology, University of Cambridge, Cambridge, UK
- Wellcome-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Carolina Guibentif
- Inst. Biomedicine, Dept. Microbiology and Immunology, Sahlgrenska Center for Cancer Research, University of Gothenburg, Gothenburg, Sweden
| | | | | | - Fernando J Calero-Nieto
- Department of Haematology, University of Cambridge, Cambridge, UK
- Wellcome-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Ivan Imaz-Rosshandler
- Department of Haematology, University of Cambridge, Cambridge, UK
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Blanca Pijuan-Sala
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Jennifer Nichols
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | | | - John C Marioni
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK.
- European Molecular Biology Laboratory, European Bioinformatics Institute, Cambridge, UK.
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK.
| | - Berthold Göttgens
- Department of Haematology, University of Cambridge, Cambridge, UK.
- Wellcome-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK.
| |
Collapse
|
5
|
Dynamic network biomarker factors orchestrate cell-fate determination at tipping points during hESC differentiation. Innovation (N Y) 2022; 4:100364. [PMID: 36632190 PMCID: PMC9827382 DOI: 10.1016/j.xinn.2022.100364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
The generation of ectoderm, mesoderm, and endoderm layers is the most critical biological process during the gastrulation of embryo development. Such a differentiation process in human embryonic stem cells (hESCs) is an inherently nonlinear multi-stage dynamical process which contain multiple tipping points playing crucial roles in the cell-fate decision. However, the tipping points of the process are largely unknown, letting alone the understanding of the molecular regulation on these critical events. Here by designing a module-based dynamic network biomarker (M-DNB) model, we quantitatively pinpointed two tipping points of the differentiation of hESCs toward definitive endoderm, which leads to the identification of M-DNB factors (FOS, HSF1, MYCN, TP53, and MYC) of this process. We demonstrate that before the tipping points, M-DNB factors are able to maintain the cell states and orchestrate cell-fate determination during hESC (ES)-to-ME and ME-to-DE differentiation processes, which not only leads to better understanding of endodermal specification of hESCs but also reveals the power of the M-DNB model to identify critical transition points with their key factors in diverse biological processes, including cell differentiation and transdifferentiation dynamics.
Collapse
|
6
|
Mammalian gastrulation: signalling activity and transcriptional regulation of cell lineage differentiation and germ layer formation. Biochem Soc Trans 2022; 50:1619-1631. [DOI: 10.1042/bst20220256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 11/01/2022] [Accepted: 11/09/2022] [Indexed: 11/19/2022]
Abstract
The interplay of signalling input and downstream transcriptional activity is the key molecular attribute driving the differentiation of germ layer tissue and the specification of cell lineages within each germ layer during gastrulation. This review delves into the current understanding of signalling and transcriptional control of lineage development in the germ layers of mouse embryo and non-human primate embryos during gastrulation and highlights the inter-species conservation and divergence of the cellular and molecular mechanisms of germ layer development in the human embryo.
Collapse
|
7
|
Schumacher M, DelCurto-Wyffels H, Thomson J, Boles J. Fat Deposition and Fat Effects on Meat Quality—A Review. Animals (Basel) 2022; 12:ani12121550. [PMID: 35739885 PMCID: PMC9219498 DOI: 10.3390/ani12121550] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/01/2022] [Accepted: 06/13/2022] [Indexed: 01/12/2023] Open
Abstract
Simple Summary Animal fat deposition has a major impact on the meat yield from individual carcasses as well the perceived eating quality for consumers. Understanding the impact of livestock production practices on fat deposition and the molecular mechanisms activated will lead to a better understanding of finishing livestock. This enhanced understanding will also lead to the increased efficiency and improved sustainability of practices for livestock production. The impact of fat storage on physiological functions and health are also important. This review brings together both the production practices and the current understanding of molecular processes associated with fat deposition. Abstract Growth is frequently described as weight gain over time. Researchers have used this information in equations to predict carcass composition and estimate fat deposition. Diet, species, breed, and gender all influence fat deposition. Alterations in diets result in changes in fat deposition as well as the fatty acid profile of meat. Additionally, the amount and composition of the fat can affect lipid stability and flavor development upon cooking. Fat functions not only as a storage of energy and contributor of flavor compounds, but also participates in signaling that affects many aspects of the physiological functions of the animal. Transcription factors that are upregulated in response to excess energy to be stored are an important avenue of research to improve the understanding of fat deposition and thus, the efficiency of production. Additionally, further study of the inflammation associated with increased fat depots may lead to a better understanding of finishing animals, production efficiency, and overall health.
Collapse
|
8
|
Smith RJ, Zhang H, Hu SS, Yung T, Francis R, Lee L, Onaitis MW, Dirks PB, Zang C, Kim TH. Single-cell chromatin profiling of the primitive gut tube reveals regulatory dynamics underlying lineage fate decisions. Nat Commun 2022; 13:2965. [PMID: 35618699 PMCID: PMC9135761 DOI: 10.1038/s41467-022-30624-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 05/06/2022] [Indexed: 01/07/2023] Open
Abstract
Development of the gastrointestinal system occurs after gut tube closure, guided by spatial and temporal control of gene expression. However, it remains unclear what forces regulate these spatiotemporal gene expression patterns. Here we perform single-cell chromatin profiling of the primitive gut tube to reveal organ-specific chromatin patterns that reflect the anatomical patterns of distinct organs. We generate a comprehensive map of epigenomic changes throughout gut development, demonstrating that dynamic chromatin accessibility patterns associate with lineage-specific transcription factor binding events to regulate organ-specific gene expression. Additionally, we show that loss of Sox2 and Cdx2, foregut and hindgut lineage-specific transcription factors, respectively, leads to fate shifts in epigenomic patterns, linking transcription factor binding, chromatin accessibility, and lineage fate decisions in gut development. Notably, abnormal expression of Sox2 in the pancreas and intestine impairs lineage fate decisions in both development and adult homeostasis. Together, our findings define the chromatin and transcriptional mechanisms of organ identity and lineage plasticity in development and adult homeostasis.
Collapse
Affiliation(s)
- Ryan J Smith
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario, M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
| | - Hongpan Zhang
- Center for Public Health Genomics, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, USA
| | - Shengen Shawn Hu
- Center for Public Health Genomics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Theodora Yung
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario, M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
| | - Roshane Francis
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario, M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
| | - Lilian Lee
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario, M5G 0A4, Canada
| | - Mark W Onaitis
- Division of Cardiovascular and Thoracic Surgery, University of California San Diego Medical Center, San Diego, CA, USA
| | - Peter B Dirks
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario, M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
| | - Chongzhi Zang
- Center for Public Health Genomics, University of Virginia School of Medicine, Charlottesville, VA, USA.
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, USA.
- Department of Public Health Sciences, University of Virginia, Charlottesville, VA, USA.
| | - Tae-Hee Kim
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario, M5G 0A4, Canada.
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5S 1A8, Canada.
| |
Collapse
|
9
|
Hirota A, AlMusawi S, Nateri AS, Ordóñez-Morán P, Imajo M. Biomaterials for intestinal organoid technology and personalized disease modeling. Acta Biomater 2021; 132:272-287. [PMID: 34023456 DOI: 10.1016/j.actbio.2021.05.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 04/08/2021] [Accepted: 05/07/2021] [Indexed: 12/20/2022]
Abstract
Recent advances in intestinal organoid technologies have paved the way for in vitro recapitulation of the homeostatic renewal of adult tissues, tissue or organ morphogenesis during development, and pathogenesis of many disorders. In vitro modelling of individual patient diseases using organoid systems have been considered key in establishing rational design of personalized treatment strategies and in improving therapeutic outcomes. In addition, the transplantation of organoids into diseased tissues represents a novel approach to treat currently incurable diseases. Emerging evidence from intensive studies suggests that organoid systems' development and functional maturation depends on the presence of an extracellular matrix with suitable biophysical properties, where advanced synthetic hydrogels open new avenues for theoretical control of organoid phenotypes and potential applications of organoids in therapeutic purposes. In this review, we discuss the status, applications, challenges and perspectives of intestinal organoid systems emphasising on hydrogels and their properties suitable for intestinal organoid culture. We provide an overview of hydrogels used for intestinal organoid culture and key factors regulating their biological activity. The comparison of different hydrogels would be a theoretical basis for establishing design principles of synthetic niches directing intestinal cell fates and functions. STATEMENT OF SIGNIFICANCE: Intestinal organoid is an in vitro recapitulation of the gut, which self-organizes from intestinal stem cells and maintains many features of the native tissue. Since the development of this technology, intestinal organoid systems have made significant contribution to rapid progress in intestinal biology. Prevailing methodology for organoid culture, however, depends on animal-derived matrices and suffers from variability and potential risk for contamination of pathogens, limiting their therapeutic application. Synthetic scaffold matrices, hydrogels, might provide solutions to these issues and deepen our understanding on how intestinal cells sense and respond to key biophysical properties of the surrounding matrices. This review provides an overview of developing intestinal models and biomaterials, thereby leading to better understanding of current intestinal organoid systems for both biologists and materials scientists.
Collapse
Affiliation(s)
- Akira Hirota
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, N15, W7, Kita-ku, Sapporo 060-8638, Japan
| | - Shaikha AlMusawi
- Cancer Genetic and Stem Cell group, Translational Medical Sciences, School of Medicine, Biodiscovery Institute, Centre for Cancer Sciences, University of Nottingham, NG7 2RD, Nottingham, United Kingdom; Stem Cell biology and Cancer group, Translational Medical Sciences, School of Medicine, Biodiscovery Institute, Centre for Cancer Sciences, University of Nottingham, NG7 2RD, Nottingham, United Kingdom
| | - Abdolrahman S Nateri
- Cancer Genetic and Stem Cell group, Translational Medical Sciences, School of Medicine, Biodiscovery Institute, Centre for Cancer Sciences, University of Nottingham, NG7 2RD, Nottingham, United Kingdom
| | - Paloma Ordóñez-Morán
- Stem Cell biology and Cancer group, Translational Medical Sciences, School of Medicine, Biodiscovery Institute, Centre for Cancer Sciences, University of Nottingham, NG7 2RD, Nottingham, United Kingdom.
| | - Masamichi Imajo
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, N15, W7, Kita-ku, Sapporo 060-8638, Japan.
| |
Collapse
|
10
|
Ros-Rocher N, Pérez-Posada A, Leger MM, Ruiz-Trillo I. The origin of animals: an ancestral reconstruction of the unicellular-to-multicellular transition. Open Biol 2021; 11:200359. [PMID: 33622103 PMCID: PMC8061703 DOI: 10.1098/rsob.200359] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
How animals evolved from a single-celled ancestor, transitioning from a unicellular lifestyle to a coordinated multicellular entity, remains a fascinating question. Key events in this transition involved the emergence of processes related to cell adhesion, cell–cell communication and gene regulation. To understand how these capacities evolved, we need to reconstruct the features of both the last common multicellular ancestor of animals and the last unicellular ancestor of animals. In this review, we summarize recent advances in the characterization of these ancestors, inferred by comparative genomic analyses between the earliest branching animals and those radiating later, and between animals and their closest unicellular relatives. We also provide an updated hypothesis regarding the transition to animal multicellularity, which was likely gradual and involved the use of gene regulatory mechanisms in the emergence of early developmental and morphogenetic plans. Finally, we discuss some new avenues of research that will complement these studies in the coming years.
Collapse
Affiliation(s)
- Núria Ros-Rocher
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, 08003 Barcelona, Catalonia, Spain
| | - Alberto Pérez-Posada
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, 08003 Barcelona, Catalonia, Spain.,Centro Andaluz de Biología del Desarrollo (CSIC-Universidad Pablo de Olavide), Carretera de Utrera Km 1, 41013 Sevilla, Andalusia, Spain
| | - Michelle M Leger
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, 08003 Barcelona, Catalonia, Spain
| | - Iñaki Ruiz-Trillo
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, 08003 Barcelona, Catalonia, Spain.,Departament de Genètica, Microbiologia i Estadística, Institut de Recerca de la Biodiversitat, Universitat de Barcelona, Avinguda Diagonal 643, 08028 Barcelona, Catalonia, Spain.,ICREA, Passeig Lluís Companys 23, 08010 Barcelona, Catalonia, Spain
| |
Collapse
|
11
|
Single-cell patterning and axis characterization in the murine and human definitive endoderm. Cell Res 2020; 31:326-344. [PMID: 33106598 DOI: 10.1038/s41422-020-00426-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 09/28/2020] [Indexed: 12/20/2022] Open
Abstract
Defining the precise regionalization of specified definitive endoderm progenitors is critical for understanding the mechanisms underlying the generation and regeneration of respiratory and digestive organs, yet the patterning of endoderm progenitors remains unresolved, particularly in humans. We performed single-cell RNA sequencing on endoderm cells during the early somitogenesis stages in mice and humans. We developed molecular criteria to define four major endoderm regions (foregut, lip of anterior intestinal portal, midgut, and hindgut) and their developmental pathways. We identified the cell subpopulations in each region and their spatial distributions and characterized key molecular features along the body axes. Dorsal and ventral pancreatic progenitors appear to originate from the midgut population and follow distinct pathways to develop into an identical cell type. Finally, we described the generally conserved endoderm patterning in humans and clear differences in dorsal cell distribution between species. Our study comprehensively defines single-cell endoderm patterning and provides novel insights into the spatiotemporal process that drives establishment of early endoderm domains.
Collapse
|
12
|
Bardot ES, Hadjantonakis AK. Mouse gastrulation: Coordination of tissue patterning, specification and diversification of cell fate. Mech Dev 2020; 163:103617. [PMID: 32473204 PMCID: PMC7534585 DOI: 10.1016/j.mod.2020.103617] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 05/18/2020] [Accepted: 05/22/2020] [Indexed: 12/22/2022]
Abstract
During mouse embryonic development a mass of pluripotent epiblast tissue is transformed during gastrulation to generate the three definitive germ layers: endoderm, mesoderm, and ectoderm. During gastrulation, a spatiotemporally controlled sequence of events results in the generation of organ progenitors and positions them in a stereotypical fashion throughout the embryo. Key to the correct specification and differentiation of these cell fates is the establishment of an axial coordinate system along with the integration of multiple signals by individual epiblast cells to produce distinct outcomes. These signaling domains evolve as the anterior-posterior axis is established and the embryo grows in size. Gastrulation is initiated at the posteriorly positioned primitive streak, from which nascent mesoderm and endoderm progenitors ingress and begin to diversify. Advances in technology have facilitated the elaboration of landmark findings that originally described the epiblast fate map and signaling pathways required to execute those fates. Here we will discuss the current state of the field and reflect on how our understanding has shifted in recent years.
Collapse
Affiliation(s)
- Evan S Bardot
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA.
| | - Anna-Katerina Hadjantonakis
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
13
|
Kostouros A, Koliarakis I, Natsis K, Spandidos DA, Tsatsakis A, Tsiaoussis J. Large intestine embryogenesis: Molecular pathways and related disorders (Review). Int J Mol Med 2020; 46:27-57. [PMID: 32319546 PMCID: PMC7255481 DOI: 10.3892/ijmm.2020.4583] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 04/08/2020] [Indexed: 02/07/2023] Open
Abstract
The large intestine, part of the gastrointestinal tract (GI), is composed of all three germ layers, namely the endoderm, the mesoderm and the ectoderm, forming the epithelium, the smooth muscle layers and the enteric nervous system, respectively. Since gastrulation, these layers develop simultaneously during embryogenesis, signaling to each other continuously until adult age. Two invaginations, the anterior intestinal portal (AIP) and the caudal/posterior intestinal portal (CIP), elongate and fuse, creating the primitive gut tube, which is then patterned along the antero‑posterior (AP) axis and the radial (RAD) axis in the context of left‑right (LR) asymmetry. These events lead to the formation of three distinct regions, the foregut, midgut and hindgut. All the above‑mentioned phenomena are under strict control from various molecular pathways, which are critical for the normal intestinal development and function. Specifically, the intestinal epithelium constitutes a constantly developing tissue, deriving from the progenitor stem cells at the bottom of the intestinal crypt. Epithelial differentiation strongly depends on the crosstalk with the adjacent mesoderm. Major molecular pathways that are implicated in the embryogenesis of the large intestine include the canonical and non‑canonical wingless‑related integration site (Wnt), bone morphogenetic protein (BMP), Notch and hedgehog systems. The aberrant regulation of these pathways inevitably leads to several intestinal malformation syndromes, such as atresia, stenosis, or agangliosis. Novel theories, involving the regulation and homeostasis of intestinal stem cells, suggest an embryological basis for the pathogenesis of colorectal cancer (CRC). Thus, the present review article summarizes the diverse roles of these molecular factors in intestinal embryogenesis and related disorders.
Collapse
Affiliation(s)
- Antonios Kostouros
- Laboratory of Anatomy-Histology-Embryology, Medical School, University of Crete, 71110 Heraklion
| | - Ioannis Koliarakis
- Laboratory of Anatomy-Histology-Embryology, Medical School, University of Crete, 71110 Heraklion
| | - Konstantinos Natsis
- Department of Anatomy and Surgical Anatomy, Medical School, Aristotle University of Thessaloniki, 54124 Thessaloniki
| | | | - Aristidis Tsatsakis
- Laboratory of Toxicology, Medical School, University of Crete, 71409 Heraklion, Greece
| | - John Tsiaoussis
- Laboratory of Anatomy-Histology-Embryology, Medical School, University of Crete, 71110 Heraklion
| |
Collapse
|
14
|
Durel JF, Nerurkar NL. Mechanobiology of vertebrate gut morphogenesis. Curr Opin Genet Dev 2020; 63:45-52. [PMID: 32413823 DOI: 10.1016/j.gde.2020.04.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 04/09/2020] [Indexed: 01/15/2023]
Abstract
Approximately a century after D'Arcy Thompson's On Growth and Form, there continues to be widespread interest in the biophysical and mathematical basis of morphogenesis. Particularly over the past 20 years, this interest has led to great advances in our understanding of a broad range of processes in embryonic development through a quantitative, mechanically driven framework. Nowhere in vertebrate development is this more apparent than the development of endodermally derived organs. Here, we discuss recent advances in the study of gut development that have emerged primarily from mechanobiology-motivated approaches that span from gut tube morphogenesis and later organogenesis of the respiratory and gastrointestinal systems.
Collapse
Affiliation(s)
- John F Durel
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, United States
| | - Nandan L Nerurkar
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, United States; Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032, United States.
| |
Collapse
|
15
|
Maynard TM, Zohn IE, Moody SA, LaMantia AS. Suckling, Feeding, and Swallowing: Behaviors, Circuits, and Targets for Neurodevelopmental Pathology. Annu Rev Neurosci 2020; 43:315-336. [PMID: 32101484 DOI: 10.1146/annurev-neuro-100419-100636] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
All mammals must suckle and swallow at birth, and subsequently chew and swallow solid foods, for optimal growth and health. These initially innate behaviors depend critically upon coordinated development of the mouth, tongue, pharynx, and larynx as well as the cranial nerves that control these structures. Disrupted suckling, feeding, and swallowing from birth onward-perinatal dysphagia-is often associated with several neurodevelopmental disorders that subsequently alter complex behaviors. Apparently, a broad range of neurodevelopmental pathologic mechanisms also target oropharyngeal and cranial nerve differentiation. These aberrant mechanisms, including altered patterning, progenitor specification, and neurite growth, prefigure dysphagia and may then compromise circuits for additional behavioral capacities. Thus, perinatal dysphagia may be an early indicator of disrupted genetic and developmental programs that compromise neural circuits and yield a broad range of behavioral deficits in neurodevelopmental disorders.
Collapse
Affiliation(s)
- Thomas M Maynard
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, Virginia 24016, USA;
| | - Irene E Zohn
- Department of Pediatrics, George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA.,Center for Genetic Medicine Research, Children's National Health System, Washington, DC 20037, USA
| | - Sally A Moody
- Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA
| | - Anthony-S LaMantia
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, Virginia 24016, USA; .,Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia 24061, USA
| |
Collapse
|
16
|
Zhang L, Zhang S. Learning common and specific patterns from data of multiple interrelated biological scenarios with matrix factorization. Nucleic Acids Res 2020; 47:6606-6617. [PMID: 31175825 PMCID: PMC6649783 DOI: 10.1093/nar/gkz488] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 05/11/2019] [Accepted: 05/22/2019] [Indexed: 11/18/2022] Open
Abstract
High-throughput biological technologies (e.g. ChIP-seq, RNA-seq and single-cell RNA-seq) rapidly accelerate the accumulation of genome-wide omics data in diverse interrelated biological scenarios (e.g. cells, tissues and conditions). Integration and differential analysis are two common paradigms for exploring and analyzing such data. However, current integrative methods usually ignore the differential part, and typical differential analysis methods either fail to identify combinatorial patterns of difference or require matched dimensions of the data. Here, we propose a flexible framework CSMF to combine them into one paradigm to simultaneously reveal Common and Specific patterns via Matrix Factorization from data generated under interrelated biological scenarios. We demonstrate the effectiveness of CSMF with four representative applications including pairwise ChIP-seq data describing the chromatin modification map between K562 and Huvec cell lines; pairwise RNA-seq data representing the expression profiles of two different cancers; RNA-seq data of three breast cancer subtypes; and single-cell RNA-seq data of human embryonic stem cell differentiation at six time points. Extensive analysis yields novel insights into hidden combinatorial patterns in these multi-modal data. Results demonstrate that CSMF is a powerful tool to uncover common and specific patterns with significant biological implications from data of interrelated biological scenarios.
Collapse
Affiliation(s)
- Lihua Zhang
- NCMIS, CEMS, RCSDS, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China.,School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shihua Zhang
- NCMIS, CEMS, RCSDS, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China.,School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China
| |
Collapse
|
17
|
Addeo M, Buonaiuto S, Guerriero I, Amendola E, Visconte F, Marino A, De Angelis MT, Russo F, Roberto L, Marotta P, Russo NA, Iervolino A, Amodio F, De Felice M, Lucci V, Falco G. Insight into Nephrocan Function in Mouse Endoderm Patterning. Int J Mol Sci 2019; 21:ijms21010008. [PMID: 31861348 PMCID: PMC6981620 DOI: 10.3390/ijms21010008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 12/09/2019] [Accepted: 12/16/2019] [Indexed: 01/16/2023] Open
Abstract
Endoderm-derived organs as liver and pancreas are potential targets for regenerative therapies, and thus, there is great interest in understanding the pathways that regulate the induction and specification of this germ layer. Currently, the knowledge of molecular mechanisms that guide the in vivo endoderm specification is restricted by the lack of early endoderm specific markers. Nephrocan (Nepn) is a gene whose expression characterizes the early stages of murine endoderm specification (E7.5–11.5) and encodes a secreted N-glycosylated protein. In the present study, we report the identification of a new transcript variant that is generated through alternative splicing. The new variant was found to have differential and tissue specific expression in the adult mouse. In order to better understand Nepn role during endoderm specification, we generated Nepn knock-out (KO) mice. Nepn−/− mice were born at Mendelian ratios and displayed no evident phenotype compared to WT mice. In addition, we produced nullizygous mouse embryonic stem cell (mESC) line lacking Nepn by applying (CRISPR)/CRISPR-associated systems 9 (Cas9) and employed a differentiation protocol toward endoderm lineage. Our in vitro results revealed that Nepn loss affects the endoderm differentiation impairing the expression of posterior foregut-associated markers.
Collapse
Affiliation(s)
- Martina Addeo
- Istituto di Ricerche Genetiche “G. Salvatore”, Biogem s.c.ar.l, Ariano Irpino, 83031 Avellino, Italy; (M.A.); (I.G.); (M.T.D.A.); (F.R.); (L.R.); (N.A.R.); (P.M.); (F.A.); (A.I.)
- Dipartimento di Biologia, Università degli Studi di Napoli “Federico II”, 80126 Napoli, Italy; (S.B.); (A.M.); (E.A.)
| | - Silvia Buonaiuto
- Dipartimento di Biologia, Università degli Studi di Napoli “Federico II”, 80126 Napoli, Italy; (S.B.); (A.M.); (E.A.)
| | - Ilaria Guerriero
- Istituto di Ricerche Genetiche “G. Salvatore”, Biogem s.c.ar.l, Ariano Irpino, 83031 Avellino, Italy; (M.A.); (I.G.); (M.T.D.A.); (F.R.); (L.R.); (N.A.R.); (P.M.); (F.A.); (A.I.)
| | - Elena Amendola
- Dipartimento di Biologia, Università degli Studi di Napoli “Federico II”, 80126 Napoli, Italy; (S.B.); (A.M.); (E.A.)
- Istituto per l’Endocrinologia e l’Oncologia Sperimentale “G. Salvatore”, CNR, 80131 Napoli, Italy;
| | | | - Antonio Marino
- Dipartimento di Biologia, Università degli Studi di Napoli “Federico II”, 80126 Napoli, Italy; (S.B.); (A.M.); (E.A.)
| | - Maria Teresa De Angelis
- Istituto di Ricerche Genetiche “G. Salvatore”, Biogem s.c.ar.l, Ariano Irpino, 83031 Avellino, Italy; (M.A.); (I.G.); (M.T.D.A.); (F.R.); (L.R.); (N.A.R.); (P.M.); (F.A.); (A.I.)
| | - Filomena Russo
- Istituto di Ricerche Genetiche “G. Salvatore”, Biogem s.c.ar.l, Ariano Irpino, 83031 Avellino, Italy; (M.A.); (I.G.); (M.T.D.A.); (F.R.); (L.R.); (N.A.R.); (P.M.); (F.A.); (A.I.)
| | - Luca Roberto
- Istituto di Ricerche Genetiche “G. Salvatore”, Biogem s.c.ar.l, Ariano Irpino, 83031 Avellino, Italy; (M.A.); (I.G.); (M.T.D.A.); (F.R.); (L.R.); (N.A.R.); (P.M.); (F.A.); (A.I.)
| | - Pina Marotta
- Istituto di Ricerche Genetiche “G. Salvatore”, Biogem s.c.ar.l, Ariano Irpino, 83031 Avellino, Italy; (M.A.); (I.G.); (M.T.D.A.); (F.R.); (L.R.); (N.A.R.); (P.M.); (F.A.); (A.I.)
| | - Nicola Antonino Russo
- Istituto di Ricerche Genetiche “G. Salvatore”, Biogem s.c.ar.l, Ariano Irpino, 83031 Avellino, Italy; (M.A.); (I.G.); (M.T.D.A.); (F.R.); (L.R.); (N.A.R.); (P.M.); (F.A.); (A.I.)
| | - Anna Iervolino
- Istituto di Ricerche Genetiche “G. Salvatore”, Biogem s.c.ar.l, Ariano Irpino, 83031 Avellino, Italy; (M.A.); (I.G.); (M.T.D.A.); (F.R.); (L.R.); (N.A.R.); (P.M.); (F.A.); (A.I.)
| | - Federica Amodio
- Istituto di Ricerche Genetiche “G. Salvatore”, Biogem s.c.ar.l, Ariano Irpino, 83031 Avellino, Italy; (M.A.); (I.G.); (M.T.D.A.); (F.R.); (L.R.); (N.A.R.); (P.M.); (F.A.); (A.I.)
| | - Mario De Felice
- Istituto per l’Endocrinologia e l’Oncologia Sperimentale “G. Salvatore”, CNR, 80131 Napoli, Italy;
| | - Valeria Lucci
- Dipartimento di Biologia, Università degli Studi di Napoli “Federico II”, 80126 Napoli, Italy; (S.B.); (A.M.); (E.A.)
- Istituto per l’Endocrinologia e l’Oncologia Sperimentale “G. Salvatore”, CNR, 80131 Napoli, Italy;
- Correspondence: (V.L.); (G.F.); Tel.: +39-081-679083 (V.L.); +39-081-679092 (G.F.)
| | - Geppino Falco
- Istituto di Ricerche Genetiche “G. Salvatore”, Biogem s.c.ar.l, Ariano Irpino, 83031 Avellino, Italy; (M.A.); (I.G.); (M.T.D.A.); (F.R.); (L.R.); (N.A.R.); (P.M.); (F.A.); (A.I.)
- Dipartimento di Biologia, Università degli Studi di Napoli “Federico II”, 80126 Napoli, Italy; (S.B.); (A.M.); (E.A.)
- Istituto per l’Endocrinologia e l’Oncologia Sperimentale “G. Salvatore”, CNR, 80131 Napoli, Italy;
- Correspondence: (V.L.); (G.F.); Tel.: +39-081-679083 (V.L.); +39-081-679092 (G.F.)
| |
Collapse
|
18
|
Lv YQ, Wu J, Li XK, Zhang JS, Bellusci S. Role of FGF10/FGFR2b Signaling in Mouse Digestive Tract Development, Repair and Regeneration Following Injury. Front Cell Dev Biol 2019; 7:326. [PMID: 31921841 PMCID: PMC6914673 DOI: 10.3389/fcell.2019.00326] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 11/25/2019] [Indexed: 12/18/2022] Open
Abstract
During embryonic development, the rudimentary digestive tract is initially a tube-like structure. It is composed of epithelial cells surrounded by mesenchymal cells. Reciprocal epithelial–mesenchymal interactions progressively subdivide this primitive tube into distinct functional regions: the tongue, the pharynx, the esophagus, the stomach, the duodenum, the small intestine, the cecum, the large intestine, the colon, and the anus as well as the pancreas and the liver. Fibroblast growth factors (Fgfs) constitute a family of conserved small proteins playing crucial roles during organogenesis, homeostasis, and repair after injury. Among them, fibroblast growth factor 10 (Fgf10) has been reported to orchestrate epithelial–mesenchymal interactions during digestive tract development. In mice, loss of function of Fgf10 as well as its receptor fibroblast growth factor receptor 2b (Fgfr2b) lead to defective taste papillae in the tongue, underdeveloped and defective differentiation of the stomach, duodenal, cecal, and colonic atresias, anorectal malformation, as well as underdeveloped pancreas and liver. Fgf signaling through Fgfr2b receptor is also critical for the repair process after gut injury. In the adult mice, a malabsorption disorder called small bowel syndrome is triggered after massive small bowel resection (SBR). In wild-type mice, SBR leads to a regenerative process called gut adaptation characterized by an increase in the diameter of the remaining small intestine as well as by the presence of deeper crypts and longer villi, altogether leading to increased intestinal surface. Intestinal stem cells are key for this regeneration process. Induction of Fgf10 expression in the Paneth cells located in the crypt following SBR suggests a critical role for this growth factor in the process of gut adaptation.
Collapse
Affiliation(s)
- Yu-Qing Lv
- Key Laboratory of Interventional Pulmonology of Zhejiang Province, Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Institute of Life Sciences, Wenzhou University, Wenzhou, China
| | - Jin Wu
- Institute of Life Sciences, Wenzhou University, Wenzhou, China
| | - Xiao-Kun Li
- Key Laboratory of Interventional Pulmonology of Zhejiang Province, Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Institute of Life Sciences, Wenzhou University, Wenzhou, China
| | - Jin-San Zhang
- Key Laboratory of Interventional Pulmonology of Zhejiang Province, Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Institute of Life Sciences, Wenzhou University, Wenzhou, China
| | - Saverio Bellusci
- Key Laboratory of Interventional Pulmonology of Zhejiang Province, Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Institute of Life Sciences, Wenzhou University, Wenzhou, China.,Department of Internal Medicine II, Cardio-Pulmonary Institute, University of Giessen and Marburg Lung Center, Giessen, Germany
| |
Collapse
|
19
|
Sladitschek HL, Neveu PA. A gene regulatory network controls the balance between mesendoderm and ectoderm at pluripotency exit. Mol Syst Biol 2019; 15:e9043. [PMID: 31885203 PMCID: PMC6896232 DOI: 10.15252/msb.20199043] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 11/11/2019] [Accepted: 11/14/2019] [Indexed: 12/24/2022] Open
Abstract
During embryogenesis, differentiation of pluripotent cells into somatic cell types depends both on signaling cues and intrinsic gene expression programs. While the molecular underpinnings of pluripotency are well mapped, much less is known on how mouse embryonic stem cells (mESCs) differentiate. Using RNA-Seq profiling during specification to the three germ layers, we showed that mESCs switched on condition-specific gene expression programs from the onset of the differentiation procedure and that primed pluripotency did not constitute an obligatory intermediate state. After inferring the gene network controlling mESC differentiation, we tested the role of the highly connected nodes by deleting them in a triple knock-in Sox1-Brachyury-Eomes mESC line reporting on ectoderm, mesoderm, and endoderm fates. This led to the identification of regulators of mESC differentiation that acted at several levels: Sp1 as a global break on differentiation, Nr5a2 controlling ectoderm specification, and notably Fos:Jun and Zfp354c as opposite switches between ectoderm and mesendoderm fate.
Collapse
Affiliation(s)
- Hanna L Sladitschek
- European Molecular Biology LaboratoryCell Biology and Biophysics UnitHeidelbergGermany
- Present address:
Department of Molecular MedicineUniversity of Padua School of MedicinePaduaItaly
| | - Pierre A Neveu
- European Molecular Biology LaboratoryCell Biology and Biophysics UnitHeidelbergGermany
| |
Collapse
|
20
|
Kanamori M, Oikawa K, Tanemura K, Hara K. Mammalian germ cell migration during development, growth, and homeostasis. Reprod Med Biol 2019; 18:247-255. [PMID: 31312103 PMCID: PMC6613016 DOI: 10.1002/rmb2.12283] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 05/21/2019] [Accepted: 05/23/2019] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Germ cells represent one of the typical cell types that moves over a long period of time and large distance within the animal body. To continue its life cycle, germ cells must migrate to spatially distinct locations for proper development. Defects in such migration processes can result in infertility. Thus, for more than a century, the principles of germ cell migration have been a focus of interest in the field of reproductive biology. METHODS Based on published reports (mainly from rodents), investigations of germ cell migration before releasing from the body, including primordial germ cells (PGCs), gonocytes, spermatogonia, and immature spermatozoon, were summarized. MAIN FINDINGS Germ cells migrate with various patterns, with each migration step regulated by distinct mechanisms. During development, PGCs actively and passively migrate from the extraembryonic region toward genital ridges through the hindgut epithelium. After sex determination, male germline cells migrate heterogeneously in a developmental stage-dependent manner within the testis. CONCLUSION During migration, there are multiple gates that disallow germ cells from re-entering the proper developmental pathway after wandering off the original migration path. The presence of gates may ensure the robustness of germ cell development during development, growth, and homeostasis.
Collapse
Affiliation(s)
- Mizuho Kanamori
- Laboratory of Animal Reproduction and Development, Graduate School of Agricultural ScienceTohoku UniversitySendaiJapan
| | - Kenta Oikawa
- Laboratory of Animal Reproduction and Development, Graduate School of Agricultural ScienceTohoku UniversitySendaiJapan
| | - Kentaro Tanemura
- Laboratory of Animal Reproduction and Development, Graduate School of Agricultural ScienceTohoku UniversitySendaiJapan
| | - Kenshiro Hara
- Laboratory of Animal Reproduction and Development, Graduate School of Agricultural ScienceTohoku UniversitySendaiJapan
| |
Collapse
|
21
|
Nowotschin S, Hadjantonakis AK, Campbell K. The endoderm: a divergent cell lineage with many commonalities. Development 2019; 146:146/11/dev150920. [PMID: 31160415 PMCID: PMC6589075 DOI: 10.1242/dev.150920] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The endoderm is a progenitor tissue that, in humans, gives rise to the majority of internal organs. Over the past few decades, genetic studies have identified many of the upstream signals specifying endoderm identity in different model systems, revealing them to be divergent from invertebrates to vertebrates. However, more recent studies of the cell behaviours driving endodermal morphogenesis have revealed a surprising number of shared features, including cells undergoing epithelial-to-mesenchymal transitions (EMTs), collective cell migration, and mesenchymal-to-epithelial transitions (METs). In this Review, we highlight how cross-organismal studies of endoderm morphogenesis provide a useful perspective that can move our understanding of this fascinating tissue forward.
Collapse
Affiliation(s)
- Sonja Nowotschin
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Anna-Katerina Hadjantonakis
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Kyra Campbell
- Bateson Centre, Firth Court, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK .,Department of Biomedical Science, Firth Court, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| |
Collapse
|
22
|
Ang LT, Tan AKY, Autio MI, Goh SH, Choo SH, Lee KL, Tan J, Pan B, Lee JJH, Lum JJ, Lim CYY, Yeo IKX, Wong CJY, Liu M, Oh JLL, Chia CPL, Loh CH, Chen A, Chen Q, Weissman IL, Loh KM, Lim B. A Roadmap for Human Liver Differentiation from Pluripotent Stem Cells. Cell Rep 2019; 22:2190-2205. [PMID: 29466743 PMCID: PMC5854481 DOI: 10.1016/j.celrep.2018.01.087] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Revised: 12/08/2017] [Accepted: 01/29/2018] [Indexed: 01/02/2023] Open
Abstract
How are closely related lineages, including liver, pancreas, and intestines, diversified from a common endodermal origin? Here, we apply principles learned from developmental biology to rapidly reconstitute liver progenitors from human pluripotent stem cells (hPSCs). Mapping the formation of multiple endodermal lineages revealed how alternate endodermal fates (e.g., pancreas and intestines) are restricted during liver commitment. Human liver fate was encoded by combinations of inductive and repressive extracellular signals at different doses. However, these signaling combinations were temporally re-interpreted: cellular competence to respond to retinoid, WNT, TGF-β, and other signals sharply changed within 24 hr. Consequently, temporally dynamic manipulation of extracellular signals was imperative to suppress the production of unwanted cell fates across six consecutive developmental junctures. This efficiently generated 94.1% ± 7.35% TBX3+HNF4A+ human liver bud progenitors and 81.5% ± 3.2% FAH+ hepatocyte-like cells by days 6 and 18 of hPSC differentiation, respectively; the latter improved short-term survival in the Fah-/-Rag2-/-Il2rg-/- mouse model of liver failure.
Collapse
Affiliation(s)
- Lay Teng Ang
- Stem Cell & Regenerative Biology Group, Genome Institute of Singapore, A(∗)STAR, Singapore 138672, Singapore.
| | - Antson Kiat Yee Tan
- Stem Cell & Regenerative Biology Group, Genome Institute of Singapore, A(∗)STAR, Singapore 138672, Singapore
| | - Matias I Autio
- Human Genetics Group, Genome Institute of Singapore, A(∗)STAR, Singapore 138672, Singapore; Cardiovascular Research Institute, National University of Singapore, Singapore 117599, Singapore
| | - Su Hua Goh
- Stem Cell & Regenerative Biology Group, Genome Institute of Singapore, A(∗)STAR, Singapore 138672, Singapore
| | - Siew Hua Choo
- Stem Cell & Regenerative Biology Group, Genome Institute of Singapore, A(∗)STAR, Singapore 138672, Singapore
| | - Kian Leong Lee
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Jianmin Tan
- Stem Cell & Regenerative Biology Group, Genome Institute of Singapore, A(∗)STAR, Singapore 138672, Singapore
| | - Bangfen Pan
- Human Genetics Group, Genome Institute of Singapore, A(∗)STAR, Singapore 138672, Singapore; Cardiovascular Research Institute, National University of Singapore, Singapore 117599, Singapore
| | - Jane Jia Hui Lee
- Stem Cell & Regenerative Biology Group, Genome Institute of Singapore, A(∗)STAR, Singapore 138672, Singapore; School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Jen Jen Lum
- Stem Cell & Regenerative Biology Group, Genome Institute of Singapore, A(∗)STAR, Singapore 138672, Singapore; School of Engineering, Temasek Polytechnic, Singapore 529757, Singapore
| | - Christina Ying Yan Lim
- Stem Cell & Regenerative Biology Group, Genome Institute of Singapore, A(∗)STAR, Singapore 138672, Singapore
| | - Isabelle Kai Xin Yeo
- Stem Cell & Regenerative Biology Group, Genome Institute of Singapore, A(∗)STAR, Singapore 138672, Singapore; School of Engineering, Temasek Polytechnic, Singapore 529757, Singapore
| | - Chloe Jin Yee Wong
- Stem Cell & Regenerative Biology Group, Genome Institute of Singapore, A(∗)STAR, Singapore 138672, Singapore; School of Engineering, Temasek Polytechnic, Singapore 529757, Singapore
| | - Min Liu
- Humanized Mouse Unit, Institute of Molecular and Cell Biology, A(∗)STAR, Singapore 138673, Singapore
| | - Jueween Ling Li Oh
- Stem Cell & Regenerative Biology Group, Genome Institute of Singapore, A(∗)STAR, Singapore 138672, Singapore; School of Engineering, Temasek Polytechnic, Singapore 529757, Singapore
| | - Cheryl Pei Lynn Chia
- Stem Cell & Regenerative Biology Group, Genome Institute of Singapore, A(∗)STAR, Singapore 138672, Singapore; School of Engineering, Temasek Polytechnic, Singapore 529757, Singapore
| | - Chet Hong Loh
- Stem Cell & Regenerative Biology Group, Genome Institute of Singapore, A(∗)STAR, Singapore 138672, Singapore
| | - Angela Chen
- Stanford Institute for Stem Cell Biology & Regenerative Medicine, Department of Developmental Biology, Stanford-UC Berkeley Siebel Stem Cell Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Qingfeng Chen
- Humanized Mouse Unit, Institute of Molecular and Cell Biology, A(∗)STAR, Singapore 138673, Singapore; Department of Microbiology, Yong Yoo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Irving L Weissman
- Stanford Institute for Stem Cell Biology & Regenerative Medicine, Department of Developmental Biology, Stanford-UC Berkeley Siebel Stem Cell Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Kyle M Loh
- Stanford Institute for Stem Cell Biology & Regenerative Medicine, Department of Developmental Biology, Stanford-UC Berkeley Siebel Stem Cell Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Bing Lim
- Stem Cell & Regenerative Biology Group, Genome Institute of Singapore, A(∗)STAR, Singapore 138672, Singapore.
| |
Collapse
|
23
|
Cofre J, Saalfeld K, Abdelhay E. Cancer as an Embryological Phenomenon and Its Developmental Pathways: A Hypothesis regarding the Contribution of the Noncanonical Wnt Pathway. ScientificWorldJournal 2019; 2019:4714781. [PMID: 30940992 PMCID: PMC6421044 DOI: 10.1155/2019/4714781] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 12/18/2018] [Accepted: 01/29/2019] [Indexed: 02/07/2023] Open
Abstract
For gastrulation to occur in human embryos, a mechanism that simultaneously regulates many different processes, such as cell differentiation, proliferation, migration, and invasion, is required to consistently and effectively create a human being during embryonic morphogenesis. The striking similarities in the processes of cancer and gastrulation have prompted speculation regarding the developmental pathways involved in their regulation. One of the fundamental requirements for the developmental pathways in gastrulation and cancer is the ability to respond to environmental stimuli, and it has been proposed that the Kaiso and noncanonical Wnt pathways participate in the mechanisms regulating these developmental pathways. In particular, these pathways might also explain the notable differences in invasive capacity between cancers of endodermal and mesodermal origins and cancers of ectodermal origin. Nevertheless, the available information indicates that cancer is an abnormal state of adult human cells in which developmental pathways are reactivated in inappropriate temporal and spatial contexts.
Collapse
Affiliation(s)
- Jaime Cofre
- Laboratório de Embriologia Molecular e Câncer, Universidade Federal de Santa Catarina, Sala 313b, 88040-900 Florianópolis, SC, Brazil
| | - Kay Saalfeld
- Laboratório de Filogenia Animal, Universidade Federal de Santa Catarina, Brazil
| | - Eliana Abdelhay
- Divisão de Laboratórios do CEMO, Instituto Nacional do Câncer, Rio de Janeiro, Brazil
| |
Collapse
|
24
|
Pollard BS, Pollard HB. Induced pluripotent stem cells for treating cystic fibrosis: State of the science. Pediatr Pulmonol 2018; 53:S12-S29. [PMID: 30062693 DOI: 10.1002/ppul.24118] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 05/31/2018] [Indexed: 12/20/2022]
Abstract
Induced pluripotent stem cells (iPSCs) are a recently developed technology in which fully differentiated cells such as fibroblasts from individual CF patients can be repaired with [wildtype] CFTR, and reprogrammed to differentiate into fully differentiated cells characteristic of the proximal and distal airways. Here, we review properties of different epithelial cells in the airway, and the in vitro genetic roadmap which iPSCs follow as they are step-wise differentiated into either basal stem cells, for the proximal airway, or into Type II Alveolar cells for the distal airways. The central theme is that iPSC-derived basal stem cells, are penultimately dependent on NOTCH signaling for differentiation into club cells, goblet cells, ciliated cells, and neuroendocrine cells. Furthermore, given the proper matrix, these cellular progenies are also able to self-assemble into a fully functional pseudostratified squamous proximal airway epithelium. By contrast, club cells are reserve stem cells which are able to either differentiate into goblet or ciliated cells, but also to de-differentiate into basal stem cells. Variant club cells, located at the transition between airway and alveoli, may also be responsible for differentiation into Type II Alveolar cells, which then differentiate into Type I Alveolar cells for gas exchange in the distal airway. Using gene editing, the mutant CFTR gene in iPSCs from CF patients can be repaired, and fully functional epithelial cells can thus be generated through directed differentiation. However, there is a limitation in that the lung has other CFTR-dependent cells besides epithelial cells. Another limitation is that there are CFTR-dependent cells in other organs which would continue to contribute to CF disease. Furthermore, there are also bystander or modifier genes which affect disease outcome, not only in the lung, but specifically in other CF-affected organs. Finally, we discuss future personalized applications of the iPSC technology, many of which have already survived the "proof-of-principle" test. These include (i) patient-derived iPSCs used as a "lung-on-a-chip" tool for personalized drug discovery; (ii) replacement of mutant lung cells by wildtype lung cells in the living lung; and (iii) development of bio-artificial lungs. It is hoped that this review will give the reader a roadmap through the most complicated of the obstacles, and foster a guardedly optimistic view of how some of the remaining obstacles might one day be overcome.
Collapse
Affiliation(s)
| | - Harvey B Pollard
- Department of Cell Biology and Genetics, Uniformed Services University School of Medicine-America's Medical School, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| |
Collapse
|
25
|
Impact of Three-Dimentional Culture Systems on Hepatic Differentiation of Puripotent Stem Cells and Beyond. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018. [PMID: 30357683 DOI: 10.1007/978-981-13-0947-2_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
Generation of functional hepatocytes from human pluripotent stem cells (hPSCs) is a vital tool to produce large amounts of human hepatocytes, which hold a great promise for biomedical and regenerative medicine applications. Despite a tremendous progress in developing the differentiation protocols recapitulating the developmental signalling and stages, these resulting hepatocytes from hPSCs yet achieve maturation and functionality comparable to those primary hepatocytes. The absence of 3D milieu in the culture and differentiation of these hepatocytes may account for this, at least partly, thus developing an optimal 3D culture could be a step forward to achieve this aim. Hence, review focuses on current development of 3D culture systems for hepatic differentiation and maturation and the future perspectives of its application.
Collapse
|
26
|
Sibbritt T, Ip CK, Khoo P, Wilkie E, Jones V, Sun JQJ, Shen JX, Peng G, Han JJ, Jing N, Osteil P, Ramialison M, Tam PPL, Fossat N. A gene regulatory network anchored by LIM homeobox 1 for embryonic head development. Genesis 2018; 56:e23246. [DOI: 10.1002/dvg.23246] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 08/09/2018] [Accepted: 08/09/2018] [Indexed: 02/02/2023]
Affiliation(s)
- Tennille Sibbritt
- Embryology Unit, Children's Medical Research Institute The University of Sydney Sydney New South Wales Australia
- School of Medical Sciences, Faculty of Medicine and Health The University of Sydney Sydney New South Wales Australia
| | - Chi K. Ip
- Embryology Unit, Children's Medical Research Institute The University of Sydney Sydney New South Wales Australia
| | - Poh‐Lynn Khoo
- Embryology Unit, Children's Medical Research Institute The University of Sydney Sydney New South Wales Australia
| | - Emilie Wilkie
- Embryology Unit, Children's Medical Research Institute The University of Sydney Sydney New South Wales Australia
- Bioinformatics Unit, Children's Medical Research Institute The University of Sydney Sydney New South Wales Australia
| | - Vanessa Jones
- Embryology Unit, Children's Medical Research Institute The University of Sydney Sydney New South Wales Australia
| | - Jane Q. J. Sun
- Embryology Unit, Children's Medical Research Institute The University of Sydney Sydney New South Wales Australia
| | - Joanne X. Shen
- Embryology Unit, Children's Medical Research Institute The University of Sydney Sydney New South Wales Australia
| | - Guangdun Peng
- State Key Laboratory of Cell Biology Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences Shanghai China
| | - Jing‐Dong J. Han
- Key Laboratory of Computational Biology, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center for Genetics and Developmental Biology, Chinese Academy of Sciences‐Max Planck Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences Chinese Academy of Sciences Shanghai China
| | - Naihe Jing
- State Key Laboratory of Cell Biology Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences Shanghai China
- School of Life Science and Technology ShanghaiTech University Shanghai China
| | - Pierre Osteil
- Embryology Unit, Children's Medical Research Institute The University of Sydney Sydney New South Wales Australia
- School of Medical Sciences, Faculty of Medicine and Health The University of Sydney Sydney New South Wales Australia
| | - Mirana Ramialison
- Australian Regenerative Medicine Institute Monash University Melbourne Victoria Australia
| | - Patrick P. L. Tam
- Embryology Unit, Children's Medical Research Institute The University of Sydney Sydney New South Wales Australia
- School of Medical Sciences, Faculty of Medicine and Health The University of Sydney Sydney New South Wales Australia
| | - Nicolas Fossat
- Embryology Unit, Children's Medical Research Institute The University of Sydney Sydney New South Wales Australia
- School of Medical Sciences, Faculty of Medicine and Health The University of Sydney Sydney New South Wales Australia
| |
Collapse
|
27
|
Saberi S, Pournasr B, Farzaneh Z, Esmaeili M, Hosseini ME, Baharvand H, Mohammadi M. A simple and cost-efficient adherent culture platform for human gastric primary cells, as an in vitro model for Helicobacter pylori infection. Helicobacter 2018; 23:e12489. [PMID: 29774633 DOI: 10.1111/hel.12489] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND Most two- dimensional in vitro models for studying host- H. pylori interactions rely on tumor-derived cell lines, which harbor malignant alterations. The recent development of human gastric organoids has overcome this limitation and provides a highly sophisticated, yet costly, short-term model for H. pylori infection, with restricted use in low-budget centers. METHOD Tissue specimens from upper, middle, and lower stomachs of H. pylori-negative volunteers were collectively dispersed and cultured on mouse embryonic fibroblast (MEF) or collagen-coated plates. Gastric primary cells (GPCs) were evaluated by light microscopy, immunostaining, qRT-PCR and ELISA analysis of cellular secretions, before and after H. pylori infection. RESULTS The formation and long-term (up to 1 year) maintenance of GPCs was highly dependent on adherent inactivated MEF cells, cultured in enriched media. These cells were multipassageable and able to undergo stable freezer storage and subsequent revival. The cellular composition of GPCs included the combination of cytokeratin 18 (CK18) and E-cadherin (E-cad)-positive epithelial cells, MUC5AC-positive gastric cells, and leucine-rich repeat containing G protein-coupled receptor 5 (LGR5)-positive progenitor cells. These cells produced significant amounts of gastric pepsinogens I and II. GPCs also allowed for extended (up to 96 hours) H. pylori infection, during which they underwent morphological alterations (cellular vacuolation and elongation) and hyperproduction of gastric pepsinogens and inflammatory cytokines (IL-8 and TNF-α). CONCLUSION We, hereby, present a simple, consistent, and cost-efficient gastric cell culture system, which provides a suitable model for extended in vitro infection of H. pylori. This platform can be employed for a variety of gastric-related research.
Collapse
Affiliation(s)
- Samaneh Saberi
- HPGC Research Group, Department of Medical Biotechnology, Pasteur Institute of Iran, Tehran, Iran
| | - Behshad Pournasr
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Zahra Farzaneh
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Maryam Esmaeili
- HPGC Research Group, Department of Medical Biotechnology, Pasteur Institute of Iran, Tehran, Iran
| | - Mahmoud Eshagh Hosseini
- Gastroenterology Department, Amiralam Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Baharvand
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.,Department of Developmental Biology, University of Science and Culture, Tehran, Iran
| | - Marjan Mohammadi
- HPGC Research Group, Department of Medical Biotechnology, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
28
|
Self-assembly of embryonic and two extra-embryonic stem cell types into gastrulating embryo-like structures. Nat Cell Biol 2018; 20:979-989. [PMID: 30038254 DOI: 10.1038/s41556-018-0147-7] [Citation(s) in RCA: 210] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 06/20/2018] [Indexed: 02/08/2023]
Abstract
Embryonic stem cells can be incorporated into the developing embryo and its germ line, but, when cultured alone, their ability to generate embryonic structures is restricted. They can interact with trophoblast stem cells to generate structures that break symmetry and specify mesoderm, but their development is limited as the epithelial-mesenchymal transition of gastrulation cannot occur. Here, we describe a system that allows assembly of mouse embryonic, trophoblast and extra-embryonic endoderm stem cells into structures that acquire the embryo's architecture with all distinct embryonic and extra-embryonic compartments. Strikingly, such embryo-like structures develop to undertake the epithelial-mesenchymal transition, leading to mesoderm and then definitive endoderm specification. Spatial transcriptomic analyses demonstrate that these morphological transformations are underpinned by gene expression patterns characteristic of gastrulating embryos. This demonstrates the remarkable ability of three stem cell types to self-assemble in vitro into gastrulating embryo-like structures undertaking spatio-temporal events of the gastrulating mammalian embryo.
Collapse
|
29
|
Favarolo MB, López SL. Notch signaling in the division of germ layers in bilaterian embryos. Mech Dev 2018; 154:122-144. [PMID: 29940277 DOI: 10.1016/j.mod.2018.06.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 06/08/2018] [Accepted: 06/18/2018] [Indexed: 01/09/2023]
Abstract
Bilaterian embryos are triploblastic organisms which develop three complete germ layers (ectoderm, mesoderm, and endoderm). While the ectoderm develops mainly from the animal hemisphere, there is diversity in the location from where the endoderm and the mesoderm arise in relation to the animal-vegetal axis, ranging from endoderm being specified between the ectoderm and mesoderm in echinoderms, and the mesoderm being specified between the ectoderm and the endoderm in vertebrates. A common feature is that part of the mesoderm segregates from an ancient bipotential endomesodermal domain. The process of segregation is noisy during the initial steps but it is gradually refined. In this review, we discuss the role of the Notch pathway in the establishment and refinement of boundaries between germ layers in bilaterians, with special focus on its interaction with the Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- María Belén Favarolo
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Biología Celular y Neurociencias "Prof. E. De Robertis" (IBCN), Facultad de Medicina, Laboratorio de Embriología Molecular "Prof. Dr. Andrés E. Carrasco", Buenos Aires, Argentina
| | - Silvia L López
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Biología Celular y Neurociencias "Prof. E. De Robertis" (IBCN), Facultad de Medicina, Laboratorio de Embriología Molecular "Prof. Dr. Andrés E. Carrasco", Buenos Aires, Argentina.
| |
Collapse
|
30
|
Rothová M, Hölzenspies JJ, Livigni A, Villegas SN, Brickman JM. Differentiation of Mouse Embryonic Stem Cells into Ventral Foregut Precursors. ACTA ACUST UNITED AC 2018; 36:1G.3.1-1G.3.12. [DOI: 10.1002/9780470151808.sc01g03s36] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
| | | | - Alessandra Livigni
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, University of Edinburgh Edinburgh United Kingdom
| | - Santiago Nahuel Villegas
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, University of Edinburgh Edinburgh United Kingdom
- Instituto de Neurociencias, Consejo Superior de Investigaciones Cientificas, Universidad Miguel Hernandez de Elche Alicante Spain
| | - Joshua M. Brickman
- Centre (DanStem), University of Copenhagen Copenhagen Denmark
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, University of Edinburgh Edinburgh United Kingdom
| |
Collapse
|
31
|
Morgani SM, Metzger JJ, Nichols J, Siggia ED, Hadjantonakis AK. Micropattern differentiation of mouse pluripotent stem cells recapitulates embryo regionalized cell fate patterning. eLife 2018; 7:e32839. [PMID: 29412136 PMCID: PMC5807051 DOI: 10.7554/elife.32839] [Citation(s) in RCA: 131] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 02/02/2018] [Indexed: 12/29/2022] Open
Abstract
During gastrulation epiblast cells exit pluripotency as they specify and spatially arrange the three germ layers of the embryo. Similarly, human pluripotent stem cells (PSCs) undergo spatially organized fate specification on micropatterned surfaces. Since in vivo validation is not possible for the human, we developed a mouse PSC micropattern system and, with direct comparisons to mouse embryos, reveal the robust specification of distinct regional identities. BMP, WNT, ACTIVIN and FGF directed mouse epiblast-like cells to undergo an epithelial-to-mesenchymal transition and radially pattern posterior mesoderm fates. Conversely, WNT, ACTIVIN and FGF patterned anterior identities, including definitive endoderm. By contrast, epiblast stem cells, a developmentally advanced state, only specified anterior identities, but without patterning. The mouse micropattern system offers a robust scalable method to generate regionalized cell types present in vivo, resolve how signals promote distinct identities and generate patterns, and compare mechanisms operating in vivo and in vitro and across species.
Collapse
Affiliation(s)
- Sophie M Morgani
- Developmental Biology ProgramSloan Kettering Institute, Memorial Sloan Kettering Cancer CenterNew YorkUnited States
- Wellcome Trust-Medical Research Council Centre for Stem Cell ResearchUniversity of CambridgeCambridgeUnited Kingdom
| | - Jakob J Metzger
- Center for Studies in Physics and BiologyThe Rockefeller UniversityNew YorkUnited States
| | - Jennifer Nichols
- Wellcome Trust-Medical Research Council Centre for Stem Cell ResearchUniversity of CambridgeCambridgeUnited Kingdom
| | - Eric D Siggia
- Center for Studies in Physics and BiologyThe Rockefeller UniversityNew YorkUnited States
| | - Anna-Katerina Hadjantonakis
- Developmental Biology ProgramSloan Kettering Institute, Memorial Sloan Kettering Cancer CenterNew YorkUnited States
| |
Collapse
|
32
|
Kuo HH, Lin RJ, Hung JT, Hsieh CB, Hung TH, Lo FY, Ho MY, Yeh CT, Huang YL, Yu J, Yu AL. High expression FUT1 and B3GALT5 is an independent predictor of postoperative recurrence and survival in hepatocellular carcinoma. Sci Rep 2017; 7:10750. [PMID: 28883415 PMCID: PMC5589766 DOI: 10.1038/s41598-017-11136-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 08/14/2017] [Indexed: 02/07/2023] Open
Abstract
Cancer may arise from dedifferentiation of mature cells or maturation-arrested stem cells. Previously we reported that definitive endoderm from which liver was derived, expressed Globo H, SSEA-3 and SSEA-4. In this study, we examined the expression of their biosynthetic enzymes, FUT1, FUT2, B3GALT5 and ST3GAL2, in 135 hepatocellular carcinoma (HCC) tissues by qRT-PCR. High expression of either FUT1 or B3GALT5 was significantly associated with advanced stages and poor outcome. Kaplan Meier survival analysis showed significantly shorter relapse-free survival (RFS) for those with high expression of either FUT1 or B3GALT5 (P = 0.024 and 0.001, respectively) and shorter overall survival (OS) for those with high expression of B3GALT5 (P = 0.017). Combination of FUT1 and B3GALT5 revealed that high expression of both genes had poorer RFS and OS than the others (P < 0.001). Moreover, multivariable Cox regression analysis identified the combination of B3GALT5 and FUT1 as an independent predictor for RFS (HR: 2.370, 95% CI: 1.505-3.731, P < 0.001) and OS (HR: 2.153, 95% CI: 1.188-3.902, P = 0.012) in HCC. In addition, the presence of Globo H, SSEA-3 and SSEA-4 in some HCC tissues and their absence in normal liver was established by immunohistochemistry staining and mass spectrometric analysis.
Collapse
Affiliation(s)
- Huan-Hsien Kuo
- Institute of Stem Cell & Translational Cancer Research, Chang Gung Memorial Hospital at Linkou and Chang Gung University, Taoyuan, Taiwan
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, Taiwan
| | - Ruey-Jen Lin
- Institute of Stem Cell & Translational Cancer Research, Chang Gung Memorial Hospital at Linkou and Chang Gung University, Taoyuan, Taiwan
| | - Jung-Tung Hung
- Institute of Stem Cell & Translational Cancer Research, Chang Gung Memorial Hospital at Linkou and Chang Gung University, Taoyuan, Taiwan
| | - Chung-Bao Hsieh
- Division of General Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Tsai-Hsien Hung
- Institute of Stem Cell & Translational Cancer Research, Chang Gung Memorial Hospital at Linkou and Chang Gung University, Taoyuan, Taiwan
| | - Fei-Yun Lo
- Institute of Stem Cell & Translational Cancer Research, Chang Gung Memorial Hospital at Linkou and Chang Gung University, Taoyuan, Taiwan
| | - Ming-Yi Ho
- Institute of Stem Cell & Translational Cancer Research, Chang Gung Memorial Hospital at Linkou and Chang Gung University, Taoyuan, Taiwan
| | - Chau-Ting Yeh
- Liver Research Center, Department of Hepato-Gastroenterology, Chang Gung Memorial Hospital and College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yen-Lin Huang
- Department of Anatomic Pathology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - John Yu
- Institute of Stem Cell & Translational Cancer Research, Chang Gung Memorial Hospital at Linkou and Chang Gung University, Taoyuan, Taiwan.
| | - Alice L Yu
- Institute of Stem Cell & Translational Cancer Research, Chang Gung Memorial Hospital at Linkou and Chang Gung University, Taoyuan, Taiwan.
- Department of Pediatrics, University of California in San Diego, San Diego, CA, USA.
| |
Collapse
|
33
|
Chin AM, Hill DR, Aurora M, Spence JR. Morphogenesis and maturation of the embryonic and postnatal intestine. Semin Cell Dev Biol 2017; 66:81-93. [PMID: 28161556 DOI: 10.1016/j.semcdb.2017.01.011] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Revised: 01/28/2017] [Accepted: 01/30/2017] [Indexed: 12/12/2022]
Abstract
The intestine is a vital organ responsible for nutrient absorption, bile and waste excretion, and a major site of host immunity. In order to keep up with daily demands, the intestine has evolved a mechanism to expand the absorptive surface area by undergoing a morphogenetic process to generate finger-like units called villi. These villi house specialized cell types critical for both absorbing nutrients from food, and for protecting the host from commensal and pathogenic microbes present in the adult gut. In this review, we will discuss mechanisms that coordinate intestinal development, growth, and maturation of the small intestine, starting from the formation of the early gut tube, through villus morphogenesis and into early postnatal life when the intestine must adapt to the acquisition of nutrients through food intake, and to interactions with microbes.
Collapse
Affiliation(s)
- Alana M Chin
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - David R Hill
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Megan Aurora
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Jason R Spence
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States; Department of Internal Medicine, Division of Gastroenterology, University of Michigan Medical School, Ann Arbor, MI, United States; Center for Organogenesis, University of Michigan Medical School, Ann Arbor, MI, United States.
| |
Collapse
|
34
|
Cripto is essential to capture mouse epiblast stem cell and human embryonic stem cell pluripotency. Nat Commun 2016; 7:12589. [PMID: 27586544 PMCID: PMC5025790 DOI: 10.1038/ncomms12589] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 07/14/2016] [Indexed: 01/01/2023] Open
Abstract
Known molecular determinants of developmental plasticity are mainly transcription factors, while the extrinsic regulation of this process has been largely unexplored. Here we identify Cripto as one of the earliest epiblast markers and a key extracellular determinant of the naive and primed pluripotent states. We demonstrate that Cripto sustains mouse embryonic stem cell (ESC) self-renewal by modulating Wnt/β-catenin, whereas it maintains mouse epiblast stem cell (EpiSC) and human ESC pluripotency through Nodal/Smad2. Moreover, we provide unprecedented evidence that Cripto controls the metabolic reprogramming in ESCs to EpiSC transition. Remarkably, Cripto deficiency attenuates ESC lineage restriction in vitro and in vivo, and permits ESC transdifferentiation into trophectoderm lineage, suggesting that Cripto has earlier functions than previously recognized. All together, our studies provide novel insights into the current model of mammalian pluripotency and contribute to the understanding of the extrinsic regulation of the first cell lineage decision in the embryo. Stem cell plasticity is crucial for early embryo development and the differentiation of stem cells. Here, the authors show that the extracellular protein Cripto sustains mouse ESC self-renewal and maintains mouse EpiSC as well as human ESC pluripotency and controls the metabolic reprogramming in ESCs to EpiSC transition.
Collapse
|
35
|
Chu LF, Leng N, Zhang J, Hou Z, Mamott D, Vereide DT, Choi J, Kendziorski C, Stewart R, Thomson JA. Single-cell RNA-seq reveals novel regulators of human embryonic stem cell differentiation to definitive endoderm. Genome Biol 2016; 17:173. [PMID: 27534536 PMCID: PMC4989499 DOI: 10.1186/s13059-016-1033-x] [Citation(s) in RCA: 266] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Accepted: 07/27/2016] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Human pluripotent stem cells offer the best available model to study the underlying cellular and molecular mechanisms of human embryonic lineage specification. However, it is not fully understood how individual stem cells exit the pluripotent state and transition towards their respective progenitor states. RESULTS Here, we analyze the transcriptomes of human embryonic stem cell-derived lineage-specific progenitors by single-cell RNA-sequencing (scRNA-seq). We identify a definitive endoderm (DE) transcriptomic signature that leads us to pinpoint a critical time window when DE differentiation is enhanced by hypoxia. The molecular mechanisms governing the emergence of DE are further examined by time course scRNA-seq experiments, employing two new statistical tools to identify stage-specific genes over time (SCPattern) and to reconstruct the differentiation trajectory from the pluripotent state through mesendoderm to DE (Wave-Crest). Importantly, presumptive DE cells can be detected during the transitory phase from Brachyury (T) (+) mesendoderm toward a CXCR4 (+) DE state. Novel regulators are identified within this time window and are functionally validated on a screening platform with a T-2A-EGFP knock-in reporter engineered by CRISPR/Cas9. Through loss-of-function and gain-of-function experiments, we demonstrate that KLF8 plays a pivotal role modulating mesendoderm to DE differentiation. CONCLUSIONS We report the analysis of 1776 cells by scRNA-seq covering distinct human embryonic stem cell-derived progenitor states. By reconstructing a differentiation trajectory at single-cell resolution, novel regulators of the mesendoderm transition to DE are elucidated and validated. Our strategy of combining single-cell analysis and genetic approaches can be applied to uncover novel regulators governing cell fate decisions in a variety of systems.
Collapse
Affiliation(s)
- Li-Fang Chu
- Regenerative Biology, Morgridge Institute for Research, Madison, WI, 53715, USA.
| | - Ning Leng
- Regenerative Biology, Morgridge Institute for Research, Madison, WI, 53715, USA.,Present address: Genentech, Inc., South San Francisco, CA, USA
| | - Jue Zhang
- Regenerative Biology, Morgridge Institute for Research, Madison, WI, 53715, USA
| | - Zhonggang Hou
- Regenerative Biology, Morgridge Institute for Research, Madison, WI, 53715, USA.,Present address: Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Daniel Mamott
- Regenerative Biology, Morgridge Institute for Research, Madison, WI, 53715, USA
| | - David T Vereide
- Regenerative Biology, Morgridge Institute for Research, Madison, WI, 53715, USA
| | - Jeea Choi
- Department of Statistics, University of Wisconsin, Madison, WI, USA
| | - Christina Kendziorski
- Department of Biostatistics and Medical Informatics, University of Wisconsin, Madison, WI, USA
| | - Ron Stewart
- Regenerative Biology, Morgridge Institute for Research, Madison, WI, 53715, USA
| | - James A Thomson
- Regenerative Biology, Morgridge Institute for Research, Madison, WI, 53715, USA. .,Department of Cell & Regenerative Biology, University of Wisconsin-Madison, Madison, WI, USA. .,Department of Molecular, Cellular, & Developmental Biology, University of California, Santa Barbara, CA, USA.
| |
Collapse
|
36
|
Wang M, Yang X, Zhang P, Cai L, Yang X, Chen Y, Jing Y, Kong J, Yang X, Sun FL. Sustained Delivery Growth Factors with Polyethyleneimine-Modified Nanoparticles Promote Embryonic Stem Cells Differentiation and Liver Regeneration. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2016; 3:1500393. [PMID: 27818907 PMCID: PMC5071678 DOI: 10.1002/advs.201500393] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 02/24/2016] [Indexed: 05/17/2023]
Abstract
Stem-cell-derived hepatocyte transplantation is considered as a potential method for the therapy of acute and chronic liver failure. However, the low efficiency of differentiation into mature and functional hepatocytes remains a major challenge for clinical applications. By using polyethyleneimine-modified silica nanoparticles, this study develops a system for sustained delivery of growth factors, leading to induce hepatocyte-like cells (iHeps) from mouse embryonic stem cells (mESCs) and improve the expression of endoderm and hepatocyte-specific genes and proteins significantly, thus producing a higher population of functional hepatocytes in vitro. When transplanted into liver-injured mice after four weeks, mESC-derived definitive endoderm cells treated with this delivery system show higher integration efficiency into the host liver, differentiated into iHeps in vivo and significantly restored the injured liver. Therefore, these findings reveal the multiple advantages of functionalized nanoparticles to serve as efficient delivery platforms to promote stem cell differentiation in the regenerative medicine.
Collapse
Affiliation(s)
- Meiyan Wang
- Research Center for Translational Medicine at East Hospital School of Life Sciences and Technology Tongji University Shanghai 200120/200092 P.R. China
| | - Xiaomei Yang
- Research Center for Translational Medicine at East Hospital School of Life Sciences and Technology Tongji University Shanghai 200120/200092 P.R. China
| | - Peng Zhang
- Department of Pharmaceutics School of Pharmacy Fudan University Shanghai 201203 P. R. China
| | - Lei Cai
- Bio-X Institutes Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education) Shanghai Key Laboratory of Psychotic Disorders (No. 13dz2260500) Shanghai Jiaotong University Shanghai 200240 P.R. China
| | - Xibin Yang
- Research Center for Translational Medicine at East Hospital School of Life Sciences and Technology Tongji University Shanghai 200120/200092 P.R. China
| | - Youwei Chen
- Research Center for Translational Medicine at East Hospital School of Life Sciences and Technology Tongji University Shanghai 200120/200092 P.R. China
| | - Yuanya Jing
- Research Center for Translational Medicine at East Hospital School of Life Sciences and Technology Tongji University Shanghai 200120/200092 P.R. China
| | - Jilie Kong
- Department of Chemistry and Institutes of Biomedical Sciences Fudan University Shanghai 200433 P.R. China
| | - Xiaowei Yang
- School of Materials Science and Engineering Tongji University Shanghai 200092 P.R. China
| | - Fang-Lin Sun
- Research Center for Translational Medicine at East Hospital School of Life Sciences and Technology Tongji University Shanghai 200120/200092 P.R. China
| |
Collapse
|
37
|
Ogaki S, Omori H, Morooka M, Shiraki N, Ishida S, Kume S. Late stage definitive endodermal differentiation can be defined by Daf1 expression. BMC DEVELOPMENTAL BIOLOGY 2016; 16:19. [PMID: 27245320 PMCID: PMC4888667 DOI: 10.1186/s12861-016-0120-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 05/23/2016] [Indexed: 02/06/2023]
Abstract
Background Definitive endoderm (DE) gives rise to the respiratory apparatus and digestive tract. Sox17 and Cxcr4 are useful markers of the DE. Previously, we identified a novel DE marker, Decay accelerating factor 1(Daf1/CD55), by identifying DE specific genes from the expression profile of DE derived from mouse embryonic stem cells (ESCs) by microarray analysis, and in situ hybridization of early embryos. Daf1 is expressed in a subpopulation of E-cadherin + Cxcr4+ DE cells. The characteristics of the Daf1-expressing cells during DE differentiation has not been examined. Results In this report, we utilized the ESC differentiation system to examine the characteristics of Daf1-expressing DE cells. We found that Daf1 expression could discriminate late DE from early DE. Early DE cells are Daf1-negative (DE-) and late DE cells are Daf1-positive (DE+). We also found that Daf1+ late DE cells show low proliferative and low cell matrix adhesive characteristics. Furthermore, the purified SOX17low early DE cells gave rise to Daf1+ Sox17high late DE cells. Conclusion Daf1-expressing late definitive endoderm proliferates slowly and show low adhesive capacity. Electronic supplementary material The online version of this article (doi:10.1186/s12861-016-0120-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Soichiro Ogaki
- School of Life Science and Technology, Tokyo Institute of Technology, 4259-B-25 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8501, Japan.,Stem Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Honjo 2-2-1, Kumamoto, 860-0811, Japan.,Division of Pharmacology, National Institute of Health Science, 1-18-1 Kamiyoga Setagaya-ku, Tokyo, 158-8501, Japan
| | - Hisayoshi Omori
- Stem Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Honjo 2-2-1, Kumamoto, 860-0811, Japan
| | - Mayu Morooka
- Stem Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Honjo 2-2-1, Kumamoto, 860-0811, Japan
| | - Nobuaki Shiraki
- School of Life Science and Technology, Tokyo Institute of Technology, 4259-B-25 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8501, Japan
| | - Seiichi Ishida
- Division of Pharmacology, National Institute of Health Science, 1-18-1 Kamiyoga Setagaya-ku, Tokyo, 158-8501, Japan
| | - Shoen Kume
- School of Life Science and Technology, Tokyo Institute of Technology, 4259-B-25 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8501, Japan. .,Stem Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Honjo 2-2-1, Kumamoto, 860-0811, Japan.
| |
Collapse
|
38
|
Kim JH, Kim HW, Cha KJ, Han J, Jang YJ, Kim DS, Kim JH. Nanotopography Promotes Pancreatic Differentiation of Human Embryonic Stem Cells and Induced Pluripotent Stem Cells. ACS NANO 2016; 10:3342-55. [PMID: 26900863 DOI: 10.1021/acsnano.5b06985] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Although previous studies suggest that nanotopographical features influence properties and behaviors of stem cells, only a few studies have attempted to derive clinically useful somatic cells from human pluripotent stem cells using nanopatterned surfaces. In the present study, we report that polystyrene nanopore-patterned surfaces significantly promote the pancreatic differentiation of human embryonic and induced pluripotent stem cells. We compared different diameters of nanopores and showed that 200 nm nanopore-patterned surfaces highly upregulated the expression of PDX1, a critical transcription factor for pancreatic development, leading to an approximately 3-fold increase in the percentage of differentiating PDX1(+) pancreatic progenitors compared with control flat surfaces. Furthermore, in the presence of biochemical factors, 200 nm nanopore-patterned surfaces profoundly enhanced the derivation of pancreatic endocrine cells producing insulin, glucagon, or somatostatin. We also demonstrate that nanopore-patterned surface-induced upregulation of PDX1 is associated with downregulation of TAZ, suggesting the potential role of TAZ in nanopore-patterned surface-mediated mechanotransduction. Our study suggests that appropriate cytokine treatments combined with nanotopographical stimulation could be a powerful tool for deriving a high purity of desired cells from human pluripotent stem cells.
Collapse
Affiliation(s)
- Jong Hyun Kim
- Laboratory of Stem Cells and Tissue Regeneration, Department of Biotechnology, College of Life Sciences and Biotechnology, Science Campus, Korea University , 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea
| | - Hyung Woo Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH) , 77 Cheongam-Ro, Nam-gu, Pohang, Gyeongbuk 37673, Korea
| | - Kyoung Je Cha
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH) , 77 Cheongam-Ro, Nam-gu, Pohang, Gyeongbuk 37673, Korea
| | - Jiyou Han
- Laboratory of Stem Cells and Tissue Regeneration, Department of Biotechnology, College of Life Sciences and Biotechnology, Science Campus, Korea University , 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea
| | - Yu Jin Jang
- Laboratory of Stem Cells and Tissue Regeneration, Department of Biotechnology, College of Life Sciences and Biotechnology, Science Campus, Korea University , 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea
| | - Dong Sung Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH) , 77 Cheongam-Ro, Nam-gu, Pohang, Gyeongbuk 37673, Korea
| | - Jong-Hoon Kim
- Laboratory of Stem Cells and Tissue Regeneration, Department of Biotechnology, College of Life Sciences and Biotechnology, Science Campus, Korea University , 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea
| |
Collapse
|
39
|
Turner DA, Baillie‐Johnson P, Martinez Arias A. Organoids and the genetically encoded self-assembly of embryonic stem cells. Bioessays 2016; 38:181-91. [PMID: 26666846 PMCID: PMC4737349 DOI: 10.1002/bies.201500111] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Understanding the mechanisms of early embryonic patterning and the timely allocation of specific cells to embryonic regions and fates as well as their development into tissues and organs, is a fundamental problem in Developmental Biology. The classical explanation for this process had been built around the notion of positional information. Accordingly the programmed appearance of sources of Morphogens at localized positions within a field of cells directs their differentiation. Recently, the development of organs and tissues from unpatterned and initially identical stem cells (adult and embryonic) has challenged the need for positional information and even the integrity of the embryo, for pattern formation. Here we review the emerging area of organoid biology from the perspective of Developmental Biology. We argue that the events underlying the development of these systems are not purely linked to self-organization, as often suggested, but rather to a process of genetically encoded self-assembly where genetic programs encode and control the emergence of biological structures.
Collapse
Affiliation(s)
- David A. Turner
- Department of GeneticsUniversity of CambridgeCambridgeUnited Kingdom
| | | | | |
Collapse
|
40
|
Schröder SS, Tsikolia N, Weizbauer A, Hue I, Viebahn C. Paraxial Nodal Expression Reveals a Novel Conserved Structure of the Left-Right Organizer in Four Mammalian Species. Cells Tissues Organs 2016; 201:77-87. [PMID: 26741372 DOI: 10.1159/000440951] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/08/2015] [Indexed: 11/19/2022] Open
Abstract
Nodal activity in the left lateral plate mesoderm is a conserved sign of irreversible left-right asymmetry at early somite stages of the vertebrate embryo. An earlier, paraxial nodal domain accompanies the emergence and initial extension of the notochord and is either left-sided, as in the chick and pig, or symmetrical, as in the mouse and rabbit; intriguingly, this interspecific dichotomy is mirrored by divergent morphological features of the posterior notochord (also known as the left-right organizer), which is ventrally exposed to the yolk sac cavity and carries motile cilia in the latter 2 species only. By introducing the cattle embryo as a new model organism for early left-right patterning, we present data to establish 2 groups of mammals characterized by both the morphology of the left-right organizer and the dynamics of paraxial nodal expression: presence and absence of a ventrally open surface of the early (plate-like) posterior notochord correlates with a symmetrical (in mice and rabbits) versus an asymmetrical (in pigs and cattle) paraxial nodal expression domain next to the notochordal plate. High-resolution histological analysis reveals that the latter domain defines in all 4 mammals a novel 'parachordal' axial mesoderm compartment, the topography of which changes according to the specific regression of the similarly novel subchordal mesoderm during the initial phases of notochord development. In conclusion, the mammalian axial mesoderm compartment (1) shares critical conserved features despite the marked differences in early notochord morphology and early left-right patterning and (2) provides a dynamic topographical framework for nodal activity as part of the mammalian left-right organizer.
Collapse
Affiliation(s)
- Silke S Schröder
- Institute of Anatomy and Embryology, University Medical Centre Gx00F6;ttingen, Gx00F6;ttingen, Germany
| | | | | | | | | |
Collapse
|
41
|
Francis N, Moore M, Asan SG, Rutter GA, Burns C. Changes in microRNA expression during differentiation of embryonic and induced pluripotent stem cells to definitive endoderm. Gene Expr Patterns 2015; 19:70-82. [PMID: 26277621 PMCID: PMC6101203 DOI: 10.1016/j.gep.2015.08.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 07/10/2015] [Accepted: 08/10/2015] [Indexed: 01/01/2023]
Abstract
Pluripotent stem cells, including embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs), have the potential to treat type 1 diabetes through cell replacement therapy. However, the protocols used to generate insulin-expressing cells in vitro frequently result in cells which have an immature phenotype and are functionally restricted. MicroRNAs (miRNAs) are now known to be important in cell fate specification, and a unique miRNA signature characterises pancreatic development at the definitive endoderm stage. Several studies have described differences in miRNA expression between ESCs and iPSCs. Here we have used microarray analysis both to identify miRNAs up- or down-regulated upon endoderm formation, and also miRNAs differentially expressed between ESCs and iPSCs. Several miRNAs fulfilling both these criteria were identified, suggesting that differences in the expression of these miRNAs may affect the ability of pluripotent stem cells to differentiate into definitive endoderm. The expression of these miRNAs was validated by qRT-PCR, and the relationship between one of these miRNAs, miR-151a-5p, and its predicted target gene, SOX17, was investigated by luciferase assay, and suggested an interaction between miR-151a-5p and this key transcription factor. In conclusion, these findings demonstrate a unique miRNA expression pattern for definitive endoderm derived from both embryonic and induced pluripotent stem cells.
Collapse
Affiliation(s)
- Natalie Francis
- Endocrinology Section, Biotherapeutics Department, National Institute of Biological Standards and Control, Blanche Lane, South Mimms, Hertfordshire, EN6 3QG, UK; Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, ICTEM, du Cane Road, Imperial College London, W12 0MN, UK
| | - Melanie Moore
- Endocrinology Section, Biotherapeutics Department, National Institute of Biological Standards and Control, Blanche Lane, South Mimms, Hertfordshire, EN6 3QG, UK
| | - Simona G Asan
- Endocrinology Section, Biotherapeutics Department, National Institute of Biological Standards and Control, Blanche Lane, South Mimms, Hertfordshire, EN6 3QG, UK
| | - Guy A Rutter
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, ICTEM, du Cane Road, Imperial College London, W12 0MN, UK
| | - Chris Burns
- Endocrinology Section, Biotherapeutics Department, National Institute of Biological Standards and Control, Blanche Lane, South Mimms, Hertfordshire, EN6 3QG, UK.
| |
Collapse
|
42
|
Hannan NR, Sampaziotis F, Segeritz CP, Hanley NA, Vallier L. Generation of Distal Airway Epithelium from Multipotent Human Foregut Stem Cells. Stem Cells Dev 2015; 24:1680-90. [PMID: 25758640 PMCID: PMC4499787 DOI: 10.1089/scd.2014.0512] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 03/06/2015] [Indexed: 01/14/2023] Open
Abstract
Collectively, lung diseases are one of the largest causes of premature death worldwide and represent a major focus in the field of regenerative medicine. Despite significant progress, only few stem cell platforms are currently available for cell-based therapy, disease modeling, and drug screening in the context of pulmonary disorders. Human foregut stem cells (hFSCs) represent an advantageous progenitor cell type that can be used to amplify large quantities of cells for regenerative medicine applications and can be derived from any human pluripotent stem cell line. Here, we further demonstrate the application of hFSCs by generating a near homogeneous population of early pulmonary endoderm cells coexpressing NKX2.1 and FOXP2. These progenitors are then able to form cells that are representative of distal airway epithelium that express NKX2.1, GATA6, and cystic fibrosis transmembrane conductance regulator (CFTR) and secrete SFTPC. This culture system can be applied to hFSCs carrying the CFTR mutation Δf508, enabling the development of an in vitro model for cystic fibrosis. This platform is compatible with drug screening and functional validations of small molecules, which can reverse the phenotype associated with CFTR mutation. This is the first demonstration that multipotent endoderm stem cells can differentiate not only into both liver and pancreatic cells but also into lung endoderm. Furthermore, our study establishes a new approach for the generation of functional lung cells that can be used for disease modeling as well as for drug screening and the study of lung development.
Collapse
Affiliation(s)
- Nicholas R.F. Hannan
- Anne McLaren Laboratory for Regenerative Medicine, Department of Surgery, Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - Fotios Sampaziotis
- Anne McLaren Laboratory for Regenerative Medicine, Department of Surgery, Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - Charis-Patricia Segeritz
- Anne McLaren Laboratory for Regenerative Medicine, Department of Surgery, Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - Neil A. Hanley
- Faculty of Medical and Human Sciences, Centre for Endocrinology and Diabetes, Manchester Academic Health Sciences Centre, Institute of Human Development, University of Manchester, Manchester, United Kingdom
| | - Ludovic Vallier
- Anne McLaren Laboratory for Regenerative Medicine, Department of Surgery, Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
- Wellcome Trust Sanger Institute, Hinxton, United Kingdom
| |
Collapse
|
43
|
Kaufman-Francis K, Goh HN, Kojima Y, Studdert JB, Jones V, Power MD, Wilkie E, Teber E, Loebel DAF, Tam PPL. Differential response of epiblast stem cells to Nodal and Activin signalling: a paradigm of early endoderm development in the embryo. Philos Trans R Soc Lond B Biol Sci 2015; 369:rstb.2013.0550. [PMID: 25349457 DOI: 10.1098/rstb.2013.0550] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Mouse epiblast stem cells (EpiSCs) display temporal differences in the upregulation of Mixl1 expression during the initial steps of in vitro differentiation, which can be correlated with their propensity for endoderm differentiation. EpiSCs that upregulated Mixl1 rapidly during differentiation responded robustly to both Activin A and Nodal in generating foregut endoderm and precursors of pancreatic and hepatic tissues. By contrast, EpiSCs that delayed Mixl1 upregulation responded less effectively to Nodal and showed an overall suboptimal outcome of directed differentiation. The enhancement in endoderm potency in Mixl1-early cells may be accounted for by a rapid exit from the progenitor state and the efficient response to the induction of differentiation by Nodal. EpiSCs that readily differentiate into the endoderm cells are marked by a distinctive expression fingerprint of transforming growth factor (TGF)-β signalling pathway genes and genes related to the endoderm lineage. Nodal appears to elicit responses that are associated with transition to a mesenchymal phenotype, whereas Activin A promotes gene expression associated with maintenance of an epithelial phenotype. We postulate that the formation of definitive endoderm (DE) in embryoid bodies follows a similar process to germ layer formation from the epiblast, requiring an initial de-epithelialization event and subsequent re-epithelialization. Our results show that priming EpiSCs with the appropriate form of TGF-β signalling at the formative phase of endoderm differentiation impacts on the further progression into mature DE-derived lineages, and that this is influenced by the initial characteristics of the cell population. Our study also highlights that Activin A, which is commonly used as an in vitro surrogate for Nodal in differentiation protocols, does not elicit the same downstream effects as Nodal, and therefore may not effectively mimic events that take place in the mouse embryo.
Collapse
Affiliation(s)
- Keren Kaufman-Francis
- Embryology Unit, Children's Medical Research Institute, Westmead, New South Wales 2145, Australia
| | - Hwee Ngee Goh
- Embryology Unit, Children's Medical Research Institute, Westmead, New South Wales 2145, Australia
| | - Yoji Kojima
- Embryology Unit, Children's Medical Research Institute, Westmead, New South Wales 2145, Australia Institute of Integrated Cell-Material Science, Kyoto University, Kyoto 606-8501, Japan
| | - Joshua B Studdert
- Embryology Unit, Children's Medical Research Institute, Westmead, New South Wales 2145, Australia
| | - Vanessa Jones
- Embryology Unit, Children's Medical Research Institute, Westmead, New South Wales 2145, Australia
| | - Melinda D Power
- Embryology Unit, Children's Medical Research Institute, Westmead, New South Wales 2145, Australia
| | - Emilie Wilkie
- Embryology Unit, Children's Medical Research Institute, Westmead, New South Wales 2145, Australia Bioinformatics Group, Children's Medical Research Institute, Westmead, New South Wales 2145, Australia
| | - Erdahl Teber
- Bioinformatics Group, Children's Medical Research Institute, Westmead, New South Wales 2145, Australia
| | - David A F Loebel
- Embryology Unit, Children's Medical Research Institute, Westmead, New South Wales 2145, Australia Sydney Medical School, University of Sydney, Sydney, New South Wales 2008, Australia
| | - Patrick P L Tam
- Embryology Unit, Children's Medical Research Institute, Westmead, New South Wales 2145, Australia Sydney Medical School, University of Sydney, Sydney, New South Wales 2008, Australia
| |
Collapse
|
44
|
Viotti M, Foley AC, Hadjantonakis AK. Gutsy moves in mice: cellular and molecular dynamics of endoderm morphogenesis. Philos Trans R Soc Lond B Biol Sci 2015; 369:rstb.2013.0547. [PMID: 25349455 DOI: 10.1098/rstb.2013.0547] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Despite the importance of the gut and its accessory organs, our understanding of early endoderm development is still incomplete. Traditionally, endoderm has been difficult to study because of its small size and relative fragility. However, recent advances in live cell imaging technologies have dramatically expanded our understanding of this tissue, adding a new appreciation for the complex molecular and morphogenetic processes that mediate gut formation. Several spatially and molecularly distinct subpopulations have been shown to exist within the endoderm before the onset of gastrulation. Here, we review findings that have uncovered complex cell movements within the endodermal layer, before and during gastrulation, leading to the conclusion that cells from primitive endoderm contribute descendants directly to gut.
Collapse
Affiliation(s)
- Manuel Viotti
- Genentech Incorporated, South San Francisco, CA 94080, USA
| | - Ann C Foley
- Department of Bioengineering, Clemson University, Charleston, SC 29425, USA
| | | |
Collapse
|
45
|
Xinaris C, Brizi V, Remuzzi G. Organoid Models and Applications in Biomedical Research. Nephron Clin Pract 2015; 130:191-9. [DOI: 10.1159/000433566] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 05/25/2015] [Indexed: 11/19/2022] Open
|
46
|
|
47
|
Ghaedi M, Niklason LE, Williams J. Development of Lung Epithelium from Induced Pluripotent Stem Cells. CURRENT TRANSPLANTATION REPORTS 2015; 2:81-89. [PMID: 26052480 PMCID: PMC4452199 DOI: 10.1007/s40472-014-0039-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Considerable progress has been made in the field of in vitro development of alveolar epithelium from induced pluripotent stem cells. Patient specific derived alveolar cells could potentially populate tissue engineered lungs, provide a cell source for drug testing or function as a model for research into lung diseases. Induced to pluripotency through a variety of techniques, stem cells can be differentiated to alveolar epithelium through exposure to a variety of different culture conditions and growth media. The ultimate success of differentiated cells for translational medicine applications will depend on further advances in the understanding of the human lung developmental pathway, and successful application to in vitro culture. In this review will focus the major signaling pathways and molecules in lung development and the existing protocol for directed different ion of iPSC and hESC to cells resembling respiratory epithelium in vitro.
Collapse
Affiliation(s)
- Mahboobe Ghaedi
- Departments of Anesthesia and Biomedical Engineering, Yale University, New Haven, Connecticut, 06520, USA
| | - Laura E. Niklason
- Departments of Anesthesia and Biomedical Engineering, Yale University, New Haven, Connecticut, 06520, USA
| | - Jordana Williams
- Departments of Anesthesia and Biomedical Engineering, Yale University, New Haven, Connecticut, 06520, USA
| |
Collapse
|
48
|
van den Brink SC, Baillie-Johnson P, Balayo T, Hadjantonakis AK, Nowotschin S, Turner DA, Martinez Arias A. Symmetry breaking, germ layer specification and axial organisation in aggregates of mouse embryonic stem cells. Development 2015; 141:4231-42. [PMID: 25371360 PMCID: PMC4302915 DOI: 10.1242/dev.113001] [Citation(s) in RCA: 296] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Mouse embryonic stem cells (mESCs) are clonal populations derived from preimplantation mouse embryos that can be propagated in vitro and, when placed into blastocysts, contribute to all tissues of the embryo and integrate into the normal morphogenetic processes, i.e. they are pluripotent. However, although they can be steered to differentiate in vitro into all cell types of the organism, they cannot organise themselves into structures that resemble embryos. When aggregated into embryoid bodies they develop disorganised masses of different cell types with little spatial coherence. An exception to this rule is the emergence of retinas and anterior cortex-like structures under minimal culture conditions. These structures emerge from the cultures without any axial organisation. Here, we report that small aggregates of mESCs, of about 300 cells, self-organise into polarised structures that exhibit collective behaviours reminiscent of those that cells exhibit in early mouse embryos, including symmetry breaking, axial organisation, germ layer specification and cell behaviour, as well as axis elongation. The responses are signal specific and uncouple processes that in the embryo are tightly associated, such as specification of the anteroposterior axis and anterior neural development, or endoderm specification and axial elongation. We discuss the meaning and implications of these observations and the potential uses of these structures which, because of their behaviour, we suggest to call ‘gastruloids’.
Collapse
Affiliation(s)
| | | | - Tina Balayo
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
| | | | - Sonja Nowotschin
- Developmental Biology Program, Sloan-Kettering Institute, New York, NY 10065, USA
| | - David A Turner
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
| | | |
Collapse
|
49
|
Hou J, Wei W, Saund RS, Xiang P, Cunningham TJ, Yi Y, Alder O, Lu DYD, Savory JGA, Krentz NAJ, Montpetit R, Cullum R, Hofs N, Lohnes D, Humphries RK, Yamanaka Y, Duester G, Saijoh Y, Hoodless PA. A regulatory network controls nephrocan expression and midgut patterning. Development 2014; 141:3772-81. [PMID: 25209250 DOI: 10.1242/dev.108274] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Although many regulatory networks involved in defining definitive endoderm have been identified, the mechanisms through which these networks interact to pattern the endoderm are less well understood. To explore the mechanisms involved in midgut patterning, we dissected the transcriptional regulatory elements of nephrocan (Nepn), the earliest known midgut specific gene in mice. We observed that Nepn expression is dramatically reduced in Sox17(-/-) and Raldh2(-/-) embryos compared with wild-type embryos. We further show that Nepn is directly regulated by Sox17 and the retinoic acid (RA) receptor via two enhancer elements located upstream of the gene. Moreover, Nepn expression is modulated by Activin signaling, with high levels inhibiting and low levels enhancing RA-dependent expression. In Foxh1(-/-) embryos in which Nodal signaling is reduced, the Nepn expression domain is expanded into the anterior gut region, confirming that Nodal signaling can modulate its expression in vivo. Together, Sox17 is required for Nepn expression in the definitive endoderm, while RA signaling restricts expression to the midgut region. A balance of Nodal/Activin signaling regulates the anterior boundary of the midgut expression domain.
Collapse
Affiliation(s)
- Juan Hou
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, British Columbia, V5Z 1L3, Canada
| | - Wei Wei
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, British Columbia, V5Z 1L3, Canada
| | - Ranajeet S Saund
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT 84132-3401, USA
| | - Ping Xiang
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, British Columbia, V5Z 1L3, Canada
| | - Thomas J Cunningham
- Development, Aging and Regeneration Program, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037, USA
| | - Yuyin Yi
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, British Columbia, V5Z 1L3, Canada Cell and Developmental Biology Program, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Olivia Alder
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, British Columbia, V5Z 1L3, Canada
| | - Daphne Y D Lu
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, British Columbia, V5Z 1L3, Canada
| | - Joanne G A Savory
- Cellular and Molecular Medicine, University of Ottawa, Ottawa K1H 8M5, Canada
| | - Nicole A J Krentz
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, British Columbia, V5Z 1L3, Canada
| | - Rachel Montpetit
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, British Columbia, V5Z 1L3, Canada
| | - Rebecca Cullum
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, British Columbia, V5Z 1L3, Canada
| | - Nicole Hofs
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, British Columbia, V5Z 1L3, Canada
| | - David Lohnes
- Cellular and Molecular Medicine, University of Ottawa, Ottawa K1H 8M5, Canada
| | - R Keith Humphries
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, British Columbia, V5Z 1L3, Canada Experimental Medicine, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Yojiro Yamanaka
- Goodman Cancer Research Centre, Department of Human Genetics, McGill University, Montreal, Quebec H2W 1S6, Canada
| | - Gregg Duester
- Development, Aging and Regeneration Program, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037, USA
| | - Yukio Saijoh
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT 84132-3401, USA
| | - Pamela A Hoodless
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, British Columbia, V5Z 1L3, Canada Cell and Developmental Biology Program, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| |
Collapse
|
50
|
Xu H, Tsang KS, Wang Y, Chan JC, Xu G, Gao WQ. Unfolded protein response is required for the definitive endodermal specification of mouse embryonic stem cells via Smad2 and β-catenin signaling. J Biol Chem 2014; 289:26290-26301. [PMID: 25092289 DOI: 10.1074/jbc.m114.572560] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tremendous efforts have been made to elucidate the molecular mechanisms that control the specification of definitive endoderm cell fate in gene knockout mouse models and ES cell (ESC) differentiation models. However, the impact of the unfolded protein response (UPR), because of the stress of the endoplasmic reticulum on endodermal specification, is not well addressed. We employed UPR-inducing agents, thapsigargin and tunicamycin, in vitro to induce endodermal differentiation of mouse ESCs. Apart from the endodermal specification of ESCs, Western blotting demonstrated the enhanced phosphorylation of Smad2 and nuclear translocation of β-catenin in ESC-derived cells. The inclusion of the endoplasmic reticulum stress inhibitor tauroursodeoxycholic acid to the induction cultures prevented the differentiation of ESCs into definitive endodermal cells even when Activin A was supplemented. Also, the addition of the TGF-β inhibitor SB431542 and the Wnt/β-catenin antagonist IWP-2 negated the endodermal differentiation of ESCs mediated by thapsigargin and tunicamycin. These data suggest that the activation of the UPR appears to orchestrate the induction of the definitive endodermal cell fate of ESCs via both the Smad2 and β-catenin signaling pathways. The prospective regulatory machinery may be helpful for directing ESCs to differentiate into definitive endodermal cells for cellular therapy in the future.
Collapse
Affiliation(s)
- Huiming Xu
- State Key Laboratory of Oncogenes and Related Genes, Renji-MedX Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine and Shanghai Jiao Tong University, Shanghai 200127, China; School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200127, China and
| | - Kam Sze Tsang
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, The Prince of Wales Hospital, Shatin, Hong Kong, China
| | - Yonghui Wang
- State Key Laboratory of Oncogenes and Related Genes, Renji-MedX Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine and Shanghai Jiao Tong University, Shanghai 200127, China; School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200127, China and
| | - Juliana Cn Chan
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, The Prince of Wales Hospital, Shatin, Hong Kong, China; Li Ka Shing Institute of Health Sciences and The Chinese University of Hong Kong, The Prince of Wales Hospital, Shatin, Hong Kong, China
| | - Gang Xu
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, The Prince of Wales Hospital, Shatin, Hong Kong, China; Shenzhen Research Institute, The Chinese University of Hong Kong, The Prince of Wales Hospital, Shatin, Hong Kong, China; Li Ka Shing Institute of Health Sciences and The Chinese University of Hong Kong, The Prince of Wales Hospital, Shatin, Hong Kong, China.
| | - Wei-Qiang Gao
- State Key Laboratory of Oncogenes and Related Genes, Renji-MedX Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine and Shanghai Jiao Tong University, Shanghai 200127, China; School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200127, China and.
| |
Collapse
|