1
|
Leite-Aguiar R, Bello-Santos VG, Castro NG, Coutinho-Silva R, Savio LEB. Techniques for evaluating the ATP-gated ion channel P2X7 receptor function in macrophages and microglial cells. J Immunol Methods 2024; 532:113727. [PMID: 38997100 DOI: 10.1016/j.jim.2024.113727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/31/2024] [Accepted: 07/08/2024] [Indexed: 07/14/2024]
Abstract
Resident macrophages are tissue-specific innate immune cells acting as sentinels, constantly patrolling their assigned tissue to maintain homeostasis, and quickly responding to pathogenic invaders or molecular danger signals molecules when necessary. Adenosine triphosphate (ATP), when released to the extracellular medium, acts as a danger signal through specific purinergic receptors. Interaction of ATP with the purinergic receptor P2X7 activates macrophages and microglial cells in different pathological conditions, triggering inflammation. The highly expressed P2X7 receptor in these cells induces cell membrane permeabilization, inflammasome activation, cell death, and the production of inflammatory mediators, including cytokines and nitrogen and oxygen-reactive species. This review explores the techniques to evaluate the functional and molecular aspects of the P2X7 receptor, particularly in macrophages and microglial cells. Polymerase chain reaction (PCR), Western blotting, and immunocytochemistry or immunohistochemistry are essential for assessing gene and protein expression in these cell types. Evaluation of P2X7 receptor function involves the use of ATP and selective agonists and antagonists and diverse techniques, including electrophysiology, intracellular calcium measurements, ethidium bromide uptake, and propidium iodide cell viability assays. These techniques are crucial for studying the role of P2X7 receptors in immune responses, neuroinflammation, and various pathological conditions. Therefore, a comprehensive understanding of the functional and molecular aspects of the P2X7 receptor in macrophages and microglia is vital for unraveling its involvement in immune modulation and its potential as a therapeutic target. The methodologies presented and discussed herein offer valuable tools for researchers investigating the complexities of P2X7 receptor signaling in innate immune cells in health and disease.
Collapse
Affiliation(s)
- Raíssa Leite-Aguiar
- Laboratório de Imunofisiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | - Robson Coutinho-Silva
- Laboratório de Imunofisiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luiz Eduardo Baggio Savio
- Laboratório de Imunofisiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil..
| |
Collapse
|
2
|
Hernandez C, Gorska AM, Eugenin E. Mechanisms of HIV-mediated blood-brain barrier compromise and leukocyte transmigration under the current antiretroviral era. iScience 2024; 27:109236. [PMID: 38487019 PMCID: PMC10937838 DOI: 10.1016/j.isci.2024.109236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/18/2023] [Accepted: 02/09/2024] [Indexed: 03/17/2024] Open
Abstract
HIV-associated neurological compromise is observed in more than half of all people with HIV (PWH), even under antiretroviral therapy (ART). The mechanism has been associated with the early transmigration of HIV-infected monocytes across the BBB in a CCL2 and HIV replication-dependent manner. However, the mechanisms of chronic brain damage are unknown. We demonstrate that all PWH under ART have elevated circulating ATP levels that correlate with the onset of cognitive impairment even in the absence of a circulating virus. Serum ATP levels found in PWH with the most severe neurocognitive impairment trigger the transcellular migration of HIV-infected leukocytes across the BBB in a JAM-A and LFA-1-dependent manner. We propose that targeting transcellular leukocyte transmigration could reduce or prevent the devastating consequences of HIV within the brains of PWH under ART.
Collapse
Affiliation(s)
- Cristian Hernandez
- Department of Neurobiology, The University of Texas Medical Branch (UTMB), Galveston, TX, USA
| | - Anna Maria Gorska
- Department of Neurobiology, The University of Texas Medical Branch (UTMB), Galveston, TX, USA
- Department of Pathology, University of Oslo, Oslo, Norway
| | - Eliseo Eugenin
- Department of Neurobiology, The University of Texas Medical Branch (UTMB), Galveston, TX, USA
| |
Collapse
|
3
|
Aoki T, Wong V, Yin T, Nakamura E, Endo Y, Hayashida K, Robson SC, Nandurkar H, Diamond B, Kim SJ, Murao A, Wang P, Becker LB, Shinozaki K. Immune cell expression patterns of CD39/CD73 ectonucleotidases in rodent models of cardiac arrest and resuscitation. Front Immunol 2024; 15:1362858. [PMID: 38545102 PMCID: PMC10967020 DOI: 10.3389/fimmu.2024.1362858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 03/01/2024] [Indexed: 04/04/2024] Open
Abstract
Background Cardiac arrest (CA) is a significant public health concern. There is the high imminent mortality and survival in those who are resuscitated is substantively compromised by the post-CA syndrome (PCAS), characterized by multiorgan ischemia-reperfusion injury (IRI). The inflammatory response in PCAS is complex and involves various immune cell types, including lymphocytes and myeloid cells that have been shown to exacerbate organ IRI, such as myocardial infarction. Purinergic signaling, as regulated by CD39 and CD73, has emerged as centrally important in the context of organ-specific IRI. Hence, comprehensive understanding of such purinergic responses may be likewise imperative for improving outcomes in PCAS. Methods We have investigated alterations of immune cell populations after CA by utilizing rodent models of PCAS. Blood and spleen were collected after CA and resuscitation and underwent flow cytometry analysis to evaluate shifts in CD3+CD4+ helper T cells, CD3+CD8a+ cytotoxic T cells, and CD4/CD8a ratios. We then examined the expression of CD39 and CD73 across diverse cell types, including myeloid cells, T lymphocytes, and B lymphocytes. Results In both rat and mouse models, there were significant increases in the frequency of CD3+CD4+ T lymphocytes in PCAS (rat, P < 0.01; mouse, P < 0.001), with consequently elevated CD4/CD8a ratios in whole blood (both, P < 0.001). Moreover, CD39 and CD73 expression on blood leukocytes were markedly increased (rat, P < 0.05; mouse, P < 0.01 at 24h). Further analysis in the experimental mouse model revealed that CD11b+ myeloid cells, with significant increase in their population (P < 0.01), had high level of CD39 (88.80 ± 2.05 %) and increased expression of CD73 (P < 0.05). CD19+ B lymphocytes showed slight increases of CD39 (P < 0.05 at 2h) and CD73 (P < 0.05 at 2h), while, CD3+ T lymphocytes had decreased levels of them. These findings suggested a distinct patterns of expression of CD39 and CD73 in these specific immune cell populations after CA. Conclusions These data have provided comprehensive insights into the immune response after CA, highlighting high-level expressions of CD39 and CD73 in myeloid cells.
Collapse
Affiliation(s)
- Tomoaki Aoki
- Department of Emergency Med-Cardiopulmonary, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Vanessa Wong
- Department of Emergency Med-Cardiopulmonary, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
- State University of New York Downstate Medical Center, NY, United States
| | - Tai Yin
- Department of Emergency Med-Cardiopulmonary, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Eriko Nakamura
- Department of Emergency Med-Cardiopulmonary, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Yusuke Endo
- Department of Emergency Med-Cardiopulmonary, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Kei Hayashida
- Department of Emergency Med-Cardiopulmonary, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Simon C. Robson
- Department of Anesthesia, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Harshal Nandurkar
- Australian Centre for Blood Diseases, Monash University, Melbourne, VIC, Australia
| | - Betty Diamond
- Institutes of Molecular Medicine, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Sun Jung Kim
- Institutes of Molecular Medicine, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Atsushi Murao
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Ping Wang
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Lance B. Becker
- Department of Emergency Med-Cardiopulmonary, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
- Department of Emergency Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell Health, Hempstead, NY, United States
| | - Koichiro Shinozaki
- Department of Emergency Med-Cardiopulmonary, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
- Institutes of Molecular Medicine, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
- Department of Emergency Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell Health, Hempstead, NY, United States
- Department of Emergency & Critical Care Medicine, Kindai University Faculty of Medicine, Osaka, Japan
| |
Collapse
|
4
|
Thorstenberg ML, Martins MDA, Oliveira NF, Monteiro MMLV, Santos GRC, Pereira HMG, Savio LEB, Coutinho-Silva R, Silva CLM. Altered purinergic P2X7 and A 2B receptors signaling limits macrophage-mediated host defense in schistosomiasis. Biomed J 2024; 47:100713. [PMID: 38442854 DOI: 10.1016/j.bj.2024.100713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 01/05/2024] [Accepted: 02/25/2024] [Indexed: 03/07/2024] Open
Abstract
BACKGROUND The occurrence of co-infections during schistosomiasis, a neglected tropical disease, with other parasites have been reported suggesting an impaired host immune defense. Macrophage purinergic P2X7 receptor (P2X7R) plays an important role against intracellular pathogens. Therefore, we investigated the P2X7R-mediated phagocytosis and killing capacity of Leishmania amazonensis by macrophages during schistosomiasis in vitro and in vivo. METHODS Swiss and C57BL/6 (Wild type) and P2X7R-/- were randomized in two groups: control (uninfected) and Schistosoma mansoni-infected. Alternatively, control Swiss and S. mansoni-infected mice were also infected with L. amazonensis. RESULTS The pre-treatment of control macrophages with the P2X7R antagonist (A74003) or TGF-β reduced the phagocytosis index, mimicking the phenotype of cells from S. mansoni-infected mice and P2X7R-/- mice. Apyrase also reduced the phagocytosis index in the control group corroborating the role of ATP to macrophage activation. Moreover, l-arginine-nitric oxide pathway was compromised during schistosomiasis, which could explain the reduced killing capacity in response to ATP in vitro and in vivo. We found an increased extracellular nucleotide (ATP, ADP and AMP) hydrolysis along with an increased frequency of F4/80+ CD39+ macrophages from the S. mansoni-infected group. Moreover, the content of adenosine in the cell supernatant was higher in the S. mansoni-infected group in relation to controls. Schistosomiasis also increased the expression of macrophage adenosine A2BR. In good accordance, both ADA and the selective A2BR antagonist restored the phagocytosis index of macrophages from S. mansoni-infected group. CONCLUSIONS Altogether, the altered P2X7R and A2BR signaling limits the role of macrophages to host defense against L. amazonensis during schistosomiasis, potentially contributing to the pathophysiology and clinically relevant co-infections.
Collapse
Affiliation(s)
- Maria Luiza Thorstenberg
- Laboratory of Biochemical and Molecular Pharmacology, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Brazil
| | - Monique Daiane Andrade Martins
- Laboratory of Immunophysiology, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Brazil
| | - Nathália Ferreira Oliveira
- Laboratory of Biochemical and Molecular Pharmacology, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Brazil
| | - Matheus Macedo L V Monteiro
- Laboratory of Biochemical and Molecular Pharmacology, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Brazil
| | - Gustavo R C Santos
- Brazilian Doping Control Laboratory (LBCD - LADETEC / IQ), Universidade Federal do Rio de Janeiro, Brazil
| | | | - Luiz Eduardo Baggio Savio
- Laboratory of Immunophysiology, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Brazil
| | - Robson Coutinho-Silva
- Laboratory of Immunophysiology, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Brazil
| | - Claudia Lucia Martins Silva
- Laboratory of Biochemical and Molecular Pharmacology, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Brazil.
| |
Collapse
|
5
|
Bao X, Xie L. Targeting purinergic pathway to enhance radiotherapy-induced immunogenic cancer cell death. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2022; 41:222. [PMID: 35836249 PMCID: PMC9284706 DOI: 10.1186/s13046-022-02430-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 07/02/2022] [Indexed: 01/09/2023]
Abstract
Emerging evidence has demonstrated that radiotherapy (RT) can not only cause direct damage to cancer cells but also lead to immunogenic cell death (ICD), which involves the activation of host antitumor immune response in tumor immune microenvironment (TIME). RT-induced ICD comprises the release of damage-associated molecular patterns (DAMPs) from dying cancer cells that result in the activation of tumor-specific immunity to elicit long-term antitumor efficacy in both original and abscopal tumor sites. Adenosine triphosphate (ATP), as an important DAMP released by irradiated cancer cells and an essential factor within purinergic pathway, can be further hydrolyzed to adenosine (ADO) by two key ectonucleotidases, CD39 and CD73, to further modulate the antitumor immunity in TIME through purinergic signaling via the interaction to its specific receptors such as adenosine 2A receptor (A2AR) and A2BR widely expressed on the surface of the components in TIME, including cancer cells and many immune effector cells. In this review, we first introduced key components in purinergic pathway including ATP, ADO, their receptors, and essential ectonucleotidases. Then we reviewed the regulation of ATP and ADO levels and their main mechanisms by which they promote tumor growth and broadly suppress antitumor immunity through inhibiting the pro-inflammatory response of dendritic cells, cytotoxic T lymphocytes, and natural killer cells, while improving the anti-inflammatory response of regulatory T cells, macrophages, and myeloid-derived suppressor cells in TIME, especially after irradiation. Finally, we presented an overview of dozens of promising therapeutics including pharmacological antagonists and specific antibodies targeting ADO receptors and ectonucleotidases CD39 or CD73 investigated in the clinic for cancer treatment, especially focusing on the preclinical studies and clinical trials being explored for blocking the purinergic signaling to enhance RT as a combination antitumor therapeutic strategy, which has a robust potential to be translated to the clinic in the future.
Collapse
Affiliation(s)
- Xuhui Bao
- Institute of Therapeutic Cancer Vaccines, Fudan University Pudong Medical Center, 2800 Gongwei Rd, Shanghai, China. .,Department of Oncology, Fudan University Pudong Medical Center, Shanghai, China. .,Department of Pathology, Duke University Medical Center, Durham, NC, USA.
| | - Liyi Xie
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, 270 Dong An Rd, Shanghai, China. .,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
6
|
Romão PR, Teixeira PC, Schipper L, da Silva I, Santana Filho P, Júnior LCR, Peres A, Gonçalves da Fonseca S, Chagas Monteiro M, Lira FS, Andrey Cipriani Frade M, Comerlato J, Comerlato C, Sant'Anna FH, Bessel M, Abreu CM, Wendland EM, Dorneles GP. Viral load is associated with mitochondrial dysfunction and altered monocyte phenotype in acute severe SARS-CoV-2 infection. Int Immunopharmacol 2022; 108:108697. [PMID: 35405594 PMCID: PMC8920784 DOI: 10.1016/j.intimp.2022.108697] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/21/2022] [Accepted: 03/10/2022] [Indexed: 02/07/2023]
Abstract
Monocytes play a major role in the initial innate immune response to SARS-CoV-2. Although viral load may correlate with several clinical outcomes in COVID-19, much less is known regarding their impact on innate immune phenotype. We evaluated the monocyte phenotype and mitochondrial function in severe COVID-19 patients (n = 22) with different viral burden (determined by the median of viral load of the patients) at hospital admission. Severe COVID-19 patients presented lower frequency of CD14 + CD16- classical monocytes and CD39 expression on CD14 + monocytes, and higher frequency of CD14 + CD16 + intermediate and CD14-CD16 + nonclassical monocytes as compared to healthy controls independently of viral load. COVID-19 patients with high viral load exhibited increased GM-CSF, PGE-2 and lower IFN-α as compared to severe COVID-19 patients with low viral load (p < 0.05). CD14 + monocytes of COVID-19 patients with high viral load presented higher expression of PD-1 but lower HLA-DR on the cell surface than severe COVID-19 patients with low viral load. All COVID-19 patients presented decreased monocyte mitochondria membrane polarization, but high SARS-CoV-2 viral load was associated with increased mitochondrial reactive oxygen species. In this sense, higher viral load induces mitochondrial reactive oxygen species generation associated with exhaustion profile in CD14 + monocytes of severe COVID-19 patients. Altogether, these data shed light on new pathological mechanisms involving SARS-CoV-2 viral load on monocyte activation and mitochondrial function, which were associated with COVID-19 severity.
Collapse
Affiliation(s)
- Pedro Rt Romão
- Laboratory of Cellular and Molecular Immunology, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil; Graduate Program in Biosciences, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil.
| | - Paula C Teixeira
- Laboratory of Cellular and Molecular Immunology, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil; Graduate Program in Health Sciences, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
| | - Lucas Schipper
- Laboratory of Cellular and Molecular Immunology, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil; Graduate Program in Health Sciences, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
| | - Igor da Silva
- Laboratory of Cellular and Molecular Immunology, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
| | - Paulo Santana Filho
- Laboratory of Cellular and Molecular Immunology, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
| | - Luiz Carlos Rodrigues Júnior
- Graduate Program in Biosciences, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
| | - Alessandra Peres
- Laboratory of Cellular and Molecular Immunology, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil; Graduate Program in Biosciences, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
| | | | - Marta Chagas Monteiro
- Graduate Program in Pharmaceutical Science, Health Science Institute, Federal University of Pará/UFPA, Belém, Pará, Brazil
| | - Fabio S Lira
- Exercise and Immunometabolism Research Group, Postgraduation Program in Movement Sciences, Department of Physical Education, Universidade Estadual Paulista (UNESP), Presidente Prudente 19060-900, SP, Brazil
| | - Marco Andrey Cipriani Frade
- Dermatology Division, Department of Medical Clinics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | | | | | | | - Marina Bessel
- Hospital Moinhos de Vento, Porto Alegre, Rio Grande do Sul, Brazil
| | - Celina Monteiro Abreu
- Department of Molecular and Comparative Pathobiology, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Eliana M Wendland
- Graduate Program in Health Sciences, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil; Graduate Program in Pediatrics, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil.
| | - Gilson P Dorneles
- Laboratory of Cellular and Molecular Immunology, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil; Graduate Program in Health Sciences, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
| |
Collapse
|
7
|
The Ecto-5
′
nucleotidase/CD73 Mediates Leishmania amazonensis Survival in Macrophages. BIOMED RESEARCH INTERNATIONAL 2022; 2022:9928362. [PMID: 35187176 PMCID: PMC8856795 DOI: 10.1155/2022/9928362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 11/30/2021] [Accepted: 12/28/2021] [Indexed: 11/23/2022]
Abstract
Endogenous nucleotides produced by various group of cells under inflammatory conditions act as potential danger signals in vivo. Extracellularly released nucleotides such as ATP are rapidly hydrolyzed to adenosine by the coordinated ectonucleotidase activities of CD39 and CD73. Leishmania is an obligate intracellular parasite of macrophages and capable of modulating host immune response in order to survive and multiply within host cells. In this study, the activity of CD73 induced by Leishmania amazonensis in infected macrophages has been investigated and correlated with parasite survival and infection in vitro. For this, the expression of CD39 and CD73, by flow cytometry, in murine peritoneal macrophages infected with metacyclic promastigotes of L. amazonensis has been analyzed. Our results showed that L. amazonensis-infected macrophages, unlike LPS-treated macrophages, increased CD73 expression. It was also noted that when CD73 enzymatic activity was blocked by α, β-methyleneadenosine 5′-diphosphate sodium salt (APCP), macrophage parasitism was significantly decreased. Interestingly, these effects were not associated with the production of TNF-α, IL-10, or nitric oxide (NO). Together, these data demonstrate that L. amazonensis induces a regulatory phenotype in macrophages, which by activating the CD39/CD73 pathway allows parasite survival through the action of immunomodulatory adenosine receptors.
Collapse
|
8
|
Li X, Gao J, Tao J. Purinergic Signaling in the Regulation of Gout Flare and Resolution. Front Immunol 2021; 12:785425. [PMID: 34925366 PMCID: PMC8671294 DOI: 10.3389/fimmu.2021.785425] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 11/15/2021] [Indexed: 12/15/2022] Open
Abstract
Gout flares require monosodium urate (MSU) to activate the NLRP3 inflammasome and secrete sufficient IL-1β. However, MSU alone is not sufficient to cause a flare. This is supported by the evidence that most patients with hyperuricemia do not develop gout throughout their lives. Recent studies have shown that, besides MSU, various purine metabolites, including adenosine triphosphate, adenosine diphosphate, and adenosine bind to different purine receptors for regulating IL-1β secretion implicated in the pathogenesis of gout flares. Purine metabolites such as adenosine triphosphate mainly activate the NLRP3 inflammasome through P2X ion channel receptors, which stimulates IL-1β secretion and induces gout flares, while some purine metabolites such as adenosine diphosphate and adenosine mainly act on the G protein-coupled receptors exerting pro-inflammatory or anti-inflammatory effects to regulate the onset and resolution of a gout flare. Given that the purine signaling pathway exerts different regulatory effects on inflammation and that, during the inflammatory process of a gout flare, an altered expression of purine metabolites and their receptors was observed in response to the changes in the internal environment. Thus, the purine signaling pathway is involved in regulating gout flare and resolution. This study was conducted to review and elucidate the role of various purine metabolites and purinergic receptors during the process.
Collapse
Affiliation(s)
| | | | - Jinhui Tao
- Department of Rheumatology and Immunology, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| |
Collapse
|
9
|
Höppner J, Bruni C, Distler O, Robson SC, Burmester GR, Siegert E, Distler JHW. Purinergic signaling in systemic sclerosis. Rheumatology (Oxford) 2021; 61:2770-2782. [PMID: 34849624 DOI: 10.1093/rheumatology/keab859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 11/13/2022] Open
Abstract
Systemic sclerosis (SSc) is a chronic autoimmune rheumatic disease that involves numerous organs and presents major management challenges. The histopathologic hallmarks of SSc include vasculopathy, fibrosis and autoimmune phenomena involving both innate and adaptive immune systems. Purinergic signalling is a pathway that may be implicated in the pathophysiology of several of these disease manifestations. Extracellular purines are potent signalling mediators, which have been shown to be dysregulated in SSc. As examples, purines can exacerbate vasculopathy and provoke platelet dysfunction; as well as contributing to immune dysregulation. Elements of purinergic signalling further promote organ and tissue fibrosis in several disease models. Here, we provide an overview of extracellular purine metabolism in purinergic signalling and link disorders of these to the molecular pathology of SSc. We also discuss targeting the purinergic signalling and explore the translational applications for new therapeutic options in SSc.
Collapse
Affiliation(s)
- Jakob Höppner
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Cosimo Bruni
- Department of Experimental and Clinical Medicine, Division of Rheumatology, Careggi University Hospital, University of Florence, Florence, Italy.,Department of Rheumatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Oliver Distler
- Department of Rheumatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Simon C Robson
- Departments of Anesthesia and Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Gerd R Burmester
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Elise Siegert
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Berlin Institute of Health, Berlin, Germany
| | - Jörg H W Distler
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Erlangen, Germany
| |
Collapse
|
10
|
Kayama H, Okumura R, Takeda K. Interaction Between the Microbiota, Epithelia, and Immune Cells in the Intestine. Annu Rev Immunol 2021; 38:23-48. [PMID: 32340570 DOI: 10.1146/annurev-immunol-070119-115104] [Citation(s) in RCA: 338] [Impact Index Per Article: 112.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The gastrointestinal tract harbors numerous commensal bacteria, referred to as the microbiota, that benefit host health by digesting dietary components and eliminating pathogens. The intestinal microbiota maintains epithelial barrier integrity and shapes the mucosal immune system, balancing host defense and oral tolerance with microbial metabolites, components, and attachment to host cells. To avoid aberrant immune responses, epithelial cells segregate the intestinal microbiota from immune cells by constructing chemical and physical barriers, leading to the establishment of host-commensal mutualism. Furthermore, intestinal immune cells participate in the maintenance of a healthy microbiota community and reinforce epithelial barrier functions. Perturbations of the microbiota composition are commonly observed in patients with autoimmune diseases and chronic inflammatory disorders. An understanding of the intimate interactions between the intestinal microbiota, epithelial cells, and immune cells that are crucial for the maintenance of intestinal homeostasis might promote advances in diagnostic and therapeutic approaches for various diseases.
Collapse
Affiliation(s)
- Hisako Kayama
- Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan; , , .,WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan.,Institute for Advanced Co-Creation Studies, Osaka University, Suita, Osaka 565-0871, Japan
| | - Ryu Okumura
- Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan; , , .,WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| | - Kiyoshi Takeda
- Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan; , , .,WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
11
|
The Preventive Effect of the Phenotype of Tumour-Associated Macrophages, Regulated by CD39, on Colon Cancer in Mice. Int J Mol Sci 2021; 22:ijms22147478. [PMID: 34299098 PMCID: PMC8308112 DOI: 10.3390/ijms22147478] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/08/2021] [Accepted: 07/09/2021] [Indexed: 12/15/2022] Open
Abstract
Background: This study was designed to investigate the effect of cluster differentiation (CD)39 and CD73 inhibitors on the expresion of tumour-associated macrophages (TAMs), M1- versus M2-tumour phenotypes in mice with colon cancer. Methods: An in vitro study of co-culture with colon cancer cells and immune cells from the bone marrow (BM) of mice was performed. After the confirmation of the effect of polyoxotungstate (POM-1) as an inhibitor of CD39 on TAMs, the mice were randomly divided into a control group without POM-1 and a study group with POM-1, respectively, after subcutaneous injection of CT26 cells. On day 14 after the injection, the mice were sacrificed, and TAMs were evaluated using fluorescence-activated cell sorting. Results: In the in vitro study, the co-culture with POM-1 significantly increased the apoptosis of CT26 cells. The cell population from the co-culture with POM-1 showed significant increases in the expression of CD11b+ for myeloid cells, lymphocyte antigen 6 complex, locus C (Ly6C+) for monocytes, M1-tumour phenotypes from TAMs, and F4/80+ for macrophages. In the in vivo study, tumour growth in the study group with POM-1 was significantly limited, compared with the control group without POM-1. The expressions of Ly6C+ and major histocompatibility complex class II+ for M1-tumour phenotypes from TAMs on F4/80+ from the tumour tissue in the study group had significantly higher values compared with the control group. Conclusion: The inhibition of CD39 with POM-1 prevented the growth of colon cancer in mice, and it was associated with the increased expression of M1-tumour phenotypes from TAMs in the cancer tissue.
Collapse
|
12
|
Baghbani E, Noorolyai S, Shanehbandi D, Mokhtarzadeh A, Aghebati-Maleki L, Shahgoli VK, Brunetti O, Rahmani S, Shadbad MA, Baghbanzadeh A, Silvestris N, Baradaran B. Regulation of immune responses through CD39 and CD73 in cancer: Novel checkpoints. Life Sci 2021; 282:119826. [PMID: 34265363 DOI: 10.1016/j.lfs.2021.119826] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 06/22/2021] [Accepted: 07/05/2021] [Indexed: 02/07/2023]
Abstract
The immunosuppressive tumor microenvironment has been implicated in attenuating anti-tumoral immune responses and tumor growth in various cancers. Inhibitory immune checkpoints have been introduced as the primary culprits for developing the immunosuppressive tumor microenvironment. Therefore, a better understanding of the cross-talk between inhibitory immune checkpoints in the tumor microenvironment can pave the way for introducing novel approaches for treating affected patients. Growing evidence indicates that CD39 and CD73, as novel checkpoints, can transform adenosine triphosphate (ATP)-mediated pro-inflammatory tumor microenvironment into an adenosine-mediated immunosuppressive one via the purinergic signaling pathway. Indeed, enzymatic processes of CD39 and CD73 have crucial roles in adjusting the extent, intensity, and chemical properties of purinergic signals. This study aims to review the biological function of CD39 and CD73 and shed light on their significance in regulating anti-tumoral immune responses in various cancers.
Collapse
Affiliation(s)
- Elham Baghbani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saeed Noorolyai
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Dariush Shanehbandi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Vahid Khaze Shahgoli
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Cancer and Inflammation Research, Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Oronzo Brunetti
- Medical Oncology Unit, IRCCS Istituto Tumori "Giovanni Paolo II", Bari, Italy
| | - Shima Rahmani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdi Abdoli Shadbad
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Baghbanzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nicola Silvestris
- IRCCS Bari, Italy, Medical Oncology Unit, IRCCS Istituto Tumori "Giovanni Paolo II" of Bari, Bari, Italy; Department of Biomedical Sciences and Human Oncology DIMO, University of Bari, Bari, Italy.
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
13
|
Zou F, Tan J, Liu T, Liu B, Tang Y, Zhang H, Li J. The CD39 + HBV surface protein-targeted CAR-T and personalized tumor-reactive CD8 + T cells exhibit potent anti-HCC activity. Mol Ther 2021; 29:1794-1807. [PMID: 33484968 PMCID: PMC8116602 DOI: 10.1016/j.ymthe.2021.01.021] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 12/10/2020] [Accepted: 01/13/2021] [Indexed: 02/07/2023] Open
Abstract
CD39, expressed by tumor-infiltrating lymphocytes (TILs), is a marker to identify tumor-reactive T cells, which is frequently associated with stronger antitumor activity than bystander T cells in a variety of malignancies. Therefore, CD39 could be a promising marker for identifying the active antitumor immune cells used for cellular immunotherapy. To test this possibility, we constructed the hepatitis B virus (HBV) surface protein-specific chimeric antigen receptor T cells (HBVs-CAR-T cells) and generated the personalized tumor-reactive CD8+ T cells. We subsequently assessed their antitumor efficiency mainly with a co-culture system for autologous HBVs+ HCC organoid and T cells. We found that both CD39+ HBVs-CAR-T and CD39+ personalized tumor-reactive CD8+ T cells induced much more apoptosis in HCC organoids. Although the exhaustion status of CAR-T cells increased in CD39+ CAR-T cells, triple knockdown of PD-1, Tim-3, and Lag-3 with shRNAs further enhanced antitumor activity in CD39+ CAR-T cells. Furthermore, these CD39+ CAR-T cells exerted an increased secretion of interferon-γ and stronger antitumor effect in a patient-derived xenograft mouse model. Our findings demonstrated that CD39 could be a promising biomarker to enrich active immune cells and become an indicator marker for evaluating the prognosis of immunotherapy for HCC patients.
Collapse
Affiliation(s)
- Fan Zou
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510623, China; Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China; Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Guangzhou, Guangdong, China; Key Laboratory of Tropical Disease Control of Ministry of Education, Guangzhou, Guangdong 510080, China
| | - Jizhou Tan
- Department of Interventional Oncology, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Ting Liu
- Department of Interventional Oncology, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Bingfeng Liu
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China; Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Guangzhou, Guangdong, China; Key Laboratory of Tropical Disease Control of Ministry of Education, Guangzhou, Guangdong 510080, China
| | - Yaping Tang
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510623, China; Department of Neurobiology, Southwest Medical University, Luzhou, Sichuan 646000, China; Department of Imaging, Affiliated Hospital 3, Zhengzhou University, Zhengzhou 450052, China; Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Hui Zhang
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China; Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Guangzhou, Guangdong, China; Key Laboratory of Tropical Disease Control of Ministry of Education, Guangzhou, Guangdong 510080, China.
| | - Jiaping Li
- Department of Interventional Oncology, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China.
| |
Collapse
|
14
|
Wauters E, Van Mol P, Garg AD, Jansen S, Van Herck Y, Vanderbeke L, Bassez A, Boeckx B, Malengier-Devlies B, Timmerman A, Van Brussel T, Van Buyten T, Schepers R, Heylen E, Dauwe D, Dooms C, Gunst J, Hermans G, Meersseman P, Testelmans D, Yserbyt J, Tejpar S, De Wever W, Matthys P, Neyts J, Wauters J, Qian J, Lambrechts D. Discriminating mild from critical COVID-19 by innate and adaptive immune single-cell profiling of bronchoalveolar lavages. Cell Res 2021; 31:272-290. [PMID: 33473155 PMCID: PMC8027624 DOI: 10.1038/s41422-020-00455-9] [Citation(s) in RCA: 194] [Impact Index Per Article: 64.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 11/20/2020] [Indexed: 02/08/2023] Open
Abstract
How the innate and adaptive host immune system miscommunicate to worsen COVID-19 immunopathology has not been fully elucidated. Here, we perform single-cell deep-immune profiling of bronchoalveolar lavage (BAL) samples from 5 patients with mild and 26 with critical COVID-19 in comparison to BALs from non-COVID-19 pneumonia and normal lung. We use pseudotime inference to build T-cell and monocyte-to-macrophage trajectories and model gene expression changes along them. In mild COVID-19, CD8+ resident-memory (TRM) and CD4+ T-helper-17 (TH17) cells undergo active (presumably antigen-driven) expansion towards the end of the trajectory, and are characterized by good effector functions, while in critical COVID-19 they remain more naïve. Vice versa, CD4+ T-cells with T-helper-1 characteristics (TH1-like) and CD8+ T-cells expressing exhaustion markers (TEX-like) are enriched halfway their trajectories in mild COVID-19, where they also exhibit good effector functions, while in critical COVID-19 they show evidence of inflammation-associated stress at the end of their trajectories. Monocyte-to-macrophage trajectories show that chronic hyperinflammatory monocytes are enriched in critical COVID-19, while alveolar macrophages, otherwise characterized by anti-inflammatory and antigen-presenting characteristics, are depleted. In critical COVID-19, monocytes contribute to an ATP-purinergic signaling-inflammasome footprint that could enable COVID-19 associated fibrosis and worsen disease-severity. Finally, viral RNA-tracking reveals infected lung epithelial cells, and a significant proportion of neutrophils and macrophages that are involved in viral clearance.
Collapse
Affiliation(s)
- Els Wauters
- grid.5596.f0000 0001 0668 7884Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium ,grid.410569.f0000 0004 0626 3338Department of Pneumology, University Hospitals Leuven, Leuven, Belgium
| | - Pierre Van Mol
- grid.410569.f0000 0004 0626 3338Department of Pneumology, University Hospitals Leuven, Leuven, Belgium ,grid.5596.f0000 0001 0668 7884Laboratory of Translational Genetics, Department of Human Genetics, KU Leuven, Leuven, Belgium ,grid.511459.dVIB Center for Cancer Biology, VIB, Leuven, Belgium
| | - Abhishek Dinkarnath Garg
- grid.5596.f0000 0001 0668 7884Laboratory for Cell Stress & Immunity (CSI), Department of Cellular and Molecular Medicine (CMM), KU Leuven, Leuven, Belgium
| | - Sander Jansen
- grid.5596.f0000 0001 0668 7884Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Yannick Van Herck
- grid.5596.f0000 0001 0668 7884Laboratory of Experimental Oncology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Lore Vanderbeke
- grid.5596.f0000 0001 0668 7884Laboratory of Clinical Bacteriology and Mycology, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Ayse Bassez
- grid.5596.f0000 0001 0668 7884Laboratory of Translational Genetics, Department of Human Genetics, KU Leuven, Leuven, Belgium ,grid.511459.dVIB Center for Cancer Biology, VIB, Leuven, Belgium
| | - Bram Boeckx
- grid.5596.f0000 0001 0668 7884Laboratory of Translational Genetics, Department of Human Genetics, KU Leuven, Leuven, Belgium ,grid.511459.dVIB Center for Cancer Biology, VIB, Leuven, Belgium
| | - Bert Malengier-Devlies
- grid.5596.f0000 0001 0668 7884Laboratory of Immunobiology, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Anna Timmerman
- grid.5596.f0000 0001 0668 7884Laboratory of Translational Genetics, Department of Human Genetics, KU Leuven, Leuven, Belgium ,grid.511459.dVIB Center for Cancer Biology, VIB, Leuven, Belgium
| | - Thomas Van Brussel
- grid.5596.f0000 0001 0668 7884Laboratory of Translational Genetics, Department of Human Genetics, KU Leuven, Leuven, Belgium ,grid.511459.dVIB Center for Cancer Biology, VIB, Leuven, Belgium
| | - Tina Van Buyten
- grid.5596.f0000 0001 0668 7884Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Rogier Schepers
- grid.5596.f0000 0001 0668 7884Laboratory of Translational Genetics, Department of Human Genetics, KU Leuven, Leuven, Belgium ,grid.511459.dVIB Center for Cancer Biology, VIB, Leuven, Belgium
| | - Elisabeth Heylen
- grid.5596.f0000 0001 0668 7884Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Dieter Dauwe
- grid.5596.f0000 0001 0668 7884Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Christophe Dooms
- grid.5596.f0000 0001 0668 7884Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium ,grid.410569.f0000 0004 0626 3338Department of Pneumology, University Hospitals Leuven, Leuven, Belgium
| | - Jan Gunst
- grid.5596.f0000 0001 0668 7884Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Greet Hermans
- grid.5596.f0000 0001 0668 7884Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Philippe Meersseman
- grid.5596.f0000 0001 0668 7884Laboratory for Clinical Infectious and Inflammatory Disorders, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Dries Testelmans
- grid.5596.f0000 0001 0668 7884Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium ,grid.410569.f0000 0004 0626 3338Department of Pneumology, University Hospitals Leuven, Leuven, Belgium
| | - Jonas Yserbyt
- grid.5596.f0000 0001 0668 7884Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium ,grid.410569.f0000 0004 0626 3338Department of Pneumology, University Hospitals Leuven, Leuven, Belgium
| | - Sabine Tejpar
- grid.5596.f0000 0001 0668 7884Molecular Digestive Oncology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Walter De Wever
- grid.5596.f0000 0001 0668 7884Department of Imaging & Pathology, KU Leuven, Leuven, Belgium
| | - Patrick Matthys
- grid.5596.f0000 0001 0668 7884Laboratory of Immunobiology, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | | | - Johan Neyts
- grid.5596.f0000 0001 0668 7884Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Joost Wauters
- grid.5596.f0000 0001 0668 7884Laboratory for Clinical Infectious and Inflammatory Disorders, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Junbin Qian
- grid.13402.340000 0004 1759 700XDepartment of Gynecologic Oncology, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006 China
| | - Diether Lambrechts
- grid.5596.f0000 0001 0668 7884Laboratory of Translational Genetics, Department of Human Genetics, KU Leuven, Leuven, Belgium ,grid.511459.dVIB Center for Cancer Biology, VIB, Leuven, Belgium
| |
Collapse
|
15
|
Giuliani AL, Sarti AC, Di Virgilio F. Ectonucleotidases in Acute and Chronic Inflammation. Front Pharmacol 2021; 11:619458. [PMID: 33613285 PMCID: PMC7887318 DOI: 10.3389/fphar.2020.619458] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 12/21/2020] [Indexed: 12/16/2022] Open
Abstract
Ectonucleotidases are extracellular enzymes with a pivotal role in inflammation that hydrolyse extracellular purine and pyrimidine nucleotides, e.g., ATP, UTP, ADP, UDP, AMP and NAD+. Ectonucleotidases, expressed by virtually all cell types, immune cells included, either as plasma membrane-associated or secreted enzymes, are classified into four main families: 1) nucleoside triphosphate diphosphohydrolases (NTPDases), 2) nicotinamide adenine dinucleotide glycohydrolase (NAD glycohydrolase/ADP-ribosyl cyclase/cyclic ADP-ribose hydrolase 1), 3) ecto-5′-nucleotidase (NT5E), and 4) ecto-nucleotide pyrophosphatase/phosphodiesterases (NPPs). Concentration of ATP, UTP and NAD+ can be increased in the extracellular space thanks to un-regulated, e.g., cell damage or cell death, or regulated processes. Regulated processes include secretory exocytosis, connexin or pannexin hemichannels, ATP binding cassette (ABC) transporters, calcium homeostasis modulator (CALMH) channels, the ATP-gated P2X7 receptor, maxi-anion channels (MACs) and volume regulated ion channels (VRACs). Hydrolysis of extracellular purine nucleotides generates adenosine, an important immunosuppressant. Extracellular nucleotides and nucleosides initiate or dampen inflammation via P2 and P1 receptors, respectively. All these agents, depending on their level of expression or activation and on the agonist concentration, are potent modulators of inflammation and key promoters of host defences, immune cells activation, pathogen clearance, tissue repair and regeneration. Thus, their knowledge is of great importance for a full understanding of the pathophysiology of acute and chronic inflammatory diseases. A selection of these pathologies will be briefly discussed here.
Collapse
Affiliation(s)
- Anna Lisa Giuliani
- Section of Experimental Medicine, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Alba Clara Sarti
- Section of Experimental Medicine, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Francesco Di Virgilio
- Section of Experimental Medicine, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| |
Collapse
|
16
|
Zhang C, Qin J, Zhang S, Zhang N, Tan B, Siwko S, Zhang Y, Wang Q, Chen J, Qian M, Liu M, Du B. ADP/P2Y 1 aggravates inflammatory bowel disease through ERK5-mediated NLRP3 inflammasome activation. Mucosal Immunol 2020; 13:931-945. [PMID: 32518369 DOI: 10.1038/s41385-020-0307-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 04/30/2020] [Accepted: 05/15/2020] [Indexed: 02/04/2023]
Abstract
Inflammasomes are essential for inflammation and pathogen elimination in response to microbial infection and endogenous danger signals. However, the mechanism of inflammasome activation by endogenous danger signals mediated posttranslational modification and the connection between inflammasomes and inflammatory diseases remains elusive. In this study, we found that ADP was highly released from injured colonic tissue as a danger signal during inflammatory bowel disease. Consequently, extracellular ADP activated the NLRP3 inflammasome through P2Y1 receptor-mediated calcium signaling, which led to the maturation and secretion of IL-1β and further aggravation of experimental colitis. Genetic ablation or pharmacological blockade of the P2Y1 receptor significantly ameliorated DSS-induced colitis and endotoxic shock through reducing NLRP3 inflammasome activation. Moreover, ERK5-mediated tyrosine phosphorylation of ASC was essential for activation of the NLRP3 inflammasome. Thus, our study provides a novel theoretical basis for posttranslational modification of ASC in NLRP3 inflammasome activation and revealed that ADP/P2Y1 is a potential drug target for inflammatory bowel disease.
Collapse
Affiliation(s)
- Chengfei Zhang
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, 200241, China.,Department of Pathology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China
| | - Juliang Qin
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, 200241, China.,Joint Center for Translational Medicine, Fengxian District Central Hospital, No. 6600 Nanfeng Road, Fengxian District, Shanghai, 201499, China
| | - Su Zhang
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, 200241, China
| | - Na Zhang
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, 200241, China
| | - Binhe Tan
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, 200241, China
| | - Stefan Siwko
- Institute of Biosciences and Technology, Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center, Houston, TX, 77030, USA
| | - Ying Zhang
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, 200241, China
| | - Qin Wang
- Joint Center for Translational Medicine, Fengxian District Central Hospital, No. 6600 Nanfeng Road, Fengxian District, Shanghai, 201499, China
| | - Jinlian Chen
- Joint Center for Translational Medicine, Fengxian District Central Hospital, No. 6600 Nanfeng Road, Fengxian District, Shanghai, 201499, China
| | - Min Qian
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, 200241, China
| | - Mingyao Liu
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, 200241, China.
| | - Bing Du
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, 200241, China.
| |
Collapse
|
17
|
Zeng J, Ning Z, Wang Y, Xiong H. Implications of CD39 in immune-related diseases. Int Immunopharmacol 2020; 89:107055. [PMID: 33045579 DOI: 10.1016/j.intimp.2020.107055] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/10/2020] [Accepted: 09/26/2020] [Indexed: 02/07/2023]
Abstract
Extracellular adenosine triphosphate (eATP) mediates pro-inflammatory responses by recruiting and activating inflammatory cells. CD39 can hydrolyze eATP into adenosine monophosphate (AMP), while CD73 can convert AMP into the immunosuppressive nucleoside adenosine (ADO). CD39 is a rate-limiting enzyme in this cascade, which is regarded as an immunological switch shifting the ATP-mediated pro-inflammatory environment to the ADO- mediated anti-inflammatory status. The CD39 expression can be detected in a wide spectrum of immunocytes, which is under the influence of environmental and genetic factors. It is increasingly suggested that, CD39 participates in some pathophysiological processes, like inflammatory bowel disease (IBD), sepsis, multiple sclerosis (MS), allergic diseases, ischemia-reperfusion (I/R) injury, systemic lupus erythematosus (SLE), diabetes and cancer. Here, we focus on the current understanding of CD39 in immunity, and comprehensively illustrate the diverse CD39 functions within a variety of disorders.
Collapse
Affiliation(s)
- Jianrui Zeng
- Institute of Immunology and Molecular Medicine, Jining Medical University, Shandong 272067, China
| | - Zhaochen Ning
- Institute of Immunology and Molecular Medicine, Jining Medical University, Shandong 272067, China
| | - Yuzhong Wang
- Department of Neurology and Central Laboratory, Affiliated Hospital of Jining Medical University, Shandong 272000, China.
| | - Huabao Xiong
- Institute of Immunology and Molecular Medicine, Jining Medical University, Shandong 272067, China.
| |
Collapse
|
18
|
Conversion of extracellular ATP into adenosine: a master switch in renal health and disease. Nat Rev Nephrol 2020; 16:509-524. [PMID: 32641760 DOI: 10.1038/s41581-020-0304-7] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/01/2020] [Indexed: 12/22/2022]
Abstract
ATP and its ultimate degradation product adenosine are potent extracellular signalling molecules that elicit a variety of pathophysiological functions in the kidney through the activation of P2 and P1 purinergic receptors, respectively. Extracellular purines can modulate immune responses, balancing inflammatory processes and immunosuppression; indeed, alterations in extracellular nucleotide and adenosine signalling determine outcomes of inflammation and healing processes. The functional activities of ectonucleotidases such as CD39 and CD73, which hydrolyse pro-inflammatory ATP to generate immunosuppressive adenosine, are therefore pivotal in acute inflammation. Protracted inflammation may result in aberrant adenosinergic signalling, which serves to sustain inflammasome activation and worsen fibrotic reactions. Alterations in the expression of ectonucleotidases on various immune cells, such as regulatory T cells and macrophages, as well as components of the renal vasculature, control purinergic receptor-mediated effects on target tissues within the kidney. The role of CD39 as a rheostat that can have an impact on purinergic signalling in both acute and chronic inflammation is increasingly supported by the literature, as detailed in this Review. Better understanding of these purinergic processes and development of novel drugs targeting these pathways could lead to effective therapies for the management of acute and chronic kidney disease.
Collapse
|
19
|
Kayama H, Takeda K. Manipulation of epithelial integrity and mucosal immunity by host and microbiota-derived metabolites. Eur J Immunol 2020; 50:921-931. [PMID: 32511746 DOI: 10.1002/eji.201948478] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/08/2020] [Accepted: 06/04/2020] [Indexed: 12/16/2022]
Abstract
The human intestinal tract contains a large number of microbes, their metabolites, and potentially harmful food antigens. The intestinal epithelium separates the mucosa where immune cells are located from luminal microbes by expressing various factors that assemble into physical and chemical barriers. In addition to epithelial cells, immune cells are essential for enforcing mucosal barriers through production of inflammatory and anti-inflammatory mediators. Intestinal microbiota, represented by gut ecological communities of living microorganisms, influences maturation and homeostasis of host immune system and contributes to the maintenance of the epithelial integrity with small molecules derived from their metabolism, termed metabolites. In turn, immune cells receive signals from microbiota, and may play key role in maintenance of a healthy bacterial composition and reinforcement of epithelial barrier functions, leading to the establishment of a host-bacterial mutualism. Alterations in the microbiota community and metabolome profiles are observed in patients with various disorders including inflammatory bowel disease. In this review, we will discuss physiological functions of the microbiota and its metabolites in regulating host immune system and reinforcing epithelial barrier functions. Further understanding of these processes will aid in identification of novel therapeutic targets and subsequent development of therapeutic interventions in a range of chronic inflammatory diseases.
Collapse
Affiliation(s)
- Hisako Kayama
- Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Osaka, Japan.,WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan.,Institute for Advanced Co-Creation Studies, Osaka University, Osaka, Japan
| | - Kiyoshi Takeda
- Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Osaka, Japan.,WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan.,Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka, Japan
| |
Collapse
|
20
|
Savio LEB, de Andrade Mello P, Santos SACS, de Sousa JC, Oliveira SDS, Minshall RD, Kurtenbach E, Wu Y, Longhi MS, Robson SC, Coutinho-Silva R. P2X7 receptor activation increases expression of caveolin-1 and formation of macrophage lipid rafts, thereby boosting CD39 activity. J Cell Sci 2020; 133:jcs.237560. [PMID: 32005701 DOI: 10.1242/jcs.237560] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 01/28/2020] [Indexed: 12/14/2022] Open
Abstract
Macrophages are tissue-resident immune cells that are crucial for the initiation and maintenance of immune responses. Purinergic signaling modulates macrophage activity and impacts cellular plasticity. The ATP-activated purinergic receptor P2X7 (also known as P2RX7) has pro-inflammatory properties, which contribute to macrophage activation. P2X7 receptor signaling is, in turn, modulated by ectonucleotidases, such as CD39 (also known as ENTPD1), expressed in caveolae and lipid rafts. Here, we examined P2X7 receptor activity and determined impacts on ectonucleotidase localization and function in macrophages primed with lipopolysaccharide (LPS). First, we verified that ATP boosts CD39 activity and caveolin-1 protein expression in LPS-primed macrophages. Drugs that disrupt cholesterol-enriched domains - such as nystatin and methyl-β-cyclodextrin - decreased CD39 enzymatic activity in all circumstances. We noted that CD39 colocalized with lipid raft markers (flotillin-2 and caveolin-1) in macrophages that had been primed with LPS followed by treatment with ATP. P2X7 receptor inhibition blocked these ATP-mediated increases in caveolin-1 expression and inhibited the colocalization with CD39. Further, we found that STAT3 activation is significantly attenuated caveolin-1-deficient macrophages treated with LPS or LPS+BzATP. Taken together, our data suggest that P2X7 receptor triggers the initiation of lipid raft-dependent mechanisms that upregulates CD39 activity and could contribute to limit macrophage responses restoring homeostasis.
Collapse
Affiliation(s)
- Luiz Eduardo Baggio Savio
- Laboratory of Immunophysiology, Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, 21941-902 Rio de Janeiro, Brazil
| | - Paola de Andrade Mello
- Departments of Medicine and Anesthesia, Beth Israel Deaconess Medical Center, Harvard Medical School, Harvard University, Boston, MA 02215, USA
| | - Stephanie Alexia Cristina Silva Santos
- Laboratory of Molecular Biology and Biochemistry of Proteins, Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, 21941-902 Rio de Janeiro, Brazil
| | - Júlia Costa de Sousa
- Laboratory of Molecular Biology and Biochemistry of Proteins, Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, 21941-902 Rio de Janeiro, Brazil
| | - Suellen D S Oliveira
- Departments of Anesthesiology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Richard D Minshall
- Departments of Anesthesiology, University of Illinois at Chicago, Chicago, IL 60612, USA.,Departments of Pharmacology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Eleonora Kurtenbach
- Laboratory of Molecular Biology and Biochemistry of Proteins, Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, 21941-902 Rio de Janeiro, Brazil
| | - Yan Wu
- Departments of Medicine and Anesthesia, Beth Israel Deaconess Medical Center, Harvard Medical School, Harvard University, Boston, MA 02215, USA
| | - Maria Serena Longhi
- Departments of Medicine and Anesthesia, Beth Israel Deaconess Medical Center, Harvard Medical School, Harvard University, Boston, MA 02215, USA
| | - Simon C Robson
- Departments of Medicine and Anesthesia, Beth Israel Deaconess Medical Center, Harvard Medical School, Harvard University, Boston, MA 02215, USA
| | - Robson Coutinho-Silva
- Laboratory of Immunophysiology, Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, 21941-902 Rio de Janeiro, Brazil
| |
Collapse
|
21
|
Sandoval-Talamantes AK, Gómez-González BA, Uriarte-Mayorga DF, Martínez-Guzman MA, Wheber-Hidalgo KA, Alvarado-Navarro A. Neurotransmitters, neuropeptides and their receptors interact with immune response in healthy and psoriatic skin. Neuropeptides 2020; 79:102004. [PMID: 31902596 DOI: 10.1016/j.npep.2019.102004] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 12/22/2019] [Accepted: 12/22/2019] [Indexed: 02/06/2023]
Abstract
Psoriasis is a chronic inflammatory disease with a multifactorial origin that affects the skin. It is characterized by keratinocyte hyperproliferation, which results in erythemato-squamous plaques. Just as the immune system plays a fundamental role in psoriasis physiopathology, the nervous system maintains the inflammatory process through the neuropeptides and neurotransmitters synthesis, as histamine, serotonin, calcitonin gene-related peptide, nerve growth factor, vasoactive intestinal peptide, substance P, adenosine, glucagon-like peptide, somatostatin and pituitary adenylate cyclase polypeptide. In patients with psoriasis, the systemic or in situ expression of these chemical mediators and their receptors are altered, which affects the clinical activity of patients due to its link to the immune system, provoking neurogenic inflammation. It is important to establish the role of the nervous system since it could represent a therapeutic alternative for psoriasis patients. The aim of this review is to offer a detailed review of the current literature about the neuropeptides and neurotransmitters involved in the physiopathology of psoriasis.
Collapse
Affiliation(s)
- Ana Karen Sandoval-Talamantes
- Centro de Reabilitación Infantil Teletón de Occidente, Copal 4575, Col. Arboledas del Sur, 44980 Guadalajara, Jalisco, México
| | - B A Gómez-González
- Instituto Dermatológico de Jalisco "Dr. José Barba Rubio", Av. Federalismo Norte 3102, Col. Atemajac del Valle, 45190 Zapopan, Jalisco, México
| | - D F Uriarte-Mayorga
- Instituto Dermatológico de Jalisco "Dr. José Barba Rubio", Av. Federalismo Norte 3102, Col. Atemajac del Valle, 45190 Zapopan, Jalisco, México
| | - M A Martínez-Guzman
- Unima Diagnósticos de México, Paseo de los Mosqueteros 4181, Col. Villa Universitaria, 45110 Zapopan, Jalisco, México
| | - Katia Alejandra Wheber-Hidalgo
- Instituto Dermatológico de Jalisco "Dr. José Barba Rubio", Av. Federalismo Norte 3102, Col. Atemajac del Valle, 45190 Zapopan, Jalisco, México
| | - Anabell Alvarado-Navarro
- Centro de Investigación en Inmunología y dermatología, Universidad de Guadalajara, México, Sierra Mojada 950, Col. Independencia, 44340, Guadalajara, Jalisco, México.
| |
Collapse
|
22
|
Zhao R, Qiao J, Zhang X, Zhao Y, Meng X, Sun D, Peng X. Toll-Like Receptor-Mediated Activation of CD39 Internalization in BMDCs Leads to Extracellular ATP Accumulation and Facilitates P2X7 Receptor Activation. Front Immunol 2019; 10:2524. [PMID: 31736956 PMCID: PMC6834529 DOI: 10.3389/fimmu.2019.02524] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 10/10/2019] [Indexed: 12/19/2022] Open
Abstract
Toll-like receptors (TLRs) trigger innate immune responses through their recognition of conserved molecular ligands of either endogenous or microbial origin. Although activation, function, and signaling pathways of TLRs were already well-studied, their precise function in specific cell types, especially innate immune cells, needs to be further clarified. In this study, we showed that when significantly decreased amounts of membrane CD39, an adenosine triphosphate (ATP)-degrading enzyme, were detected in lipopolysaccharide (LPS)-treated bone marrow-derived dendritic cells (BMDCs), Cd39 mRNA expression, and whole-cell CD39 expression were at the same levels as those in untreated BMDCs. Further experiments demonstrated that the downregulation of membrane CD39 expression in LPS-treated BMDCs was mediated by endocytosis, leading to membrane-exposed CD39 downregulation, which was positively associated with decreased enzymatic activity in ATP metabolism and increased extracellular ATP accumulation. The accumulated ATP promoted intracellular calcium accumulation and IL-1β production in BMDCs through P2X7 signaling activation. Further research revealed that not only LPS but also other TLR ligands, excluding polyI:C, induced CD39 internalization in BMDCs and that the MyD88 pathway was critical in this process. The results suggested that the activation of CD39 internalization in DCs induced by a TLR ligand caused increased ATP accumulation, leading to P2X7 receptor activation that mediated a proinflammatory effect. Considering the strong modulatory effect of extracellular ATP accumulation on the immune response and inflammation, the manipulation of membrane CD39 expression on DCs may have implications on the regulation and treatment of inflammatory responses.
Collapse
Affiliation(s)
- Ronglan Zhao
- Department of Laboratory Medicine, Weifang Medical University, Weifang, China.,Institutional Key Laboratory of Clinical Laboratory Diagnostics, 12th 5-Year Project of Shandong Province, Weifang Medical University, Weifang, China
| | - Jinjuan Qiao
- Department of Laboratory Medicine, Weifang Medical University, Weifang, China.,Institutional Key Laboratory of Clinical Laboratory Diagnostics, 12th 5-Year Project of Shandong Province, Weifang Medical University, Weifang, China
| | - Xumei Zhang
- Department of Pathology, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Yansong Zhao
- Department of Ophthalmology, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Xiangying Meng
- Department of Laboratory Medicine, Weifang Medical University, Weifang, China.,Institutional Key Laboratory of Clinical Laboratory Diagnostics, 12th 5-Year Project of Shandong Province, Weifang Medical University, Weifang, China
| | - Deming Sun
- Department of Ophthalmology, David Geffen School of Medicine at UCLA, Doheny Eye Institute, Los Angeles, CA, United States
| | - Xiaoxiang Peng
- Department of Laboratory Medicine, Weifang Medical University, Weifang, China.,Institutional Key Laboratory of Clinical Laboratory Diagnostics, 12th 5-Year Project of Shandong Province, Weifang Medical University, Weifang, China
| |
Collapse
|
23
|
Rothweiler S, Feldbrügge L, Jiang ZG, Csizmadia E, Longhi MS, Vaid K, Enjyoji K, Popov YV, Robson SC. Selective deletion of ENTPD1/CD39 in macrophages exacerbates biliary fibrosis in a mouse model of sclerosing cholangitis. Purinergic Signal 2019; 15:375-385. [PMID: 31243614 PMCID: PMC6737175 DOI: 10.1007/s11302-019-09664-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Accepted: 06/04/2019] [Indexed: 12/11/2022] Open
Abstract
Purinergic signaling is important in the activation and differentiation of macrophages, which play divergent roles in the pathophysiology of liver fibrosis. The ectonucleotidase CD39 is known to modulate the immunoregulatory phenotype of macrophages, but whether this specifically impacts cholestatic liver injury is unknown. Here, we investigated the role of macrophage-expressed CD39 on the development of biliary injury and fibrosis in a mouse model of sclerosing cholangitis. Myeloid-specific CD39-deficient mice (LysMCreCd39fl/fl) were generated. Global CD39 null (Cd39-/-), wild-type (WT), LysMCreCd39fl/fl, and Cd39fl/fl control mice were exposed to 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) to induce biliary fibrosis. Hepatic hydroxyproline levels, liver histology, immunohistochemistry, mRNA expression levels, and serum biochemistry were then assessed. Following 3 weeks of DDC-feeding, Cd39-/- mice exhibited more severe fibrosis, when compared to WT mice as reflected by morphology and increased liver collagen content. Myeloid-specific CD39 deletion in LysMCreCd39fl/fl mice recapitulated the phenotype of global Cd39-/-, after exposure to DDC, and resulted in similar worsening of liver fibrosis when compared to Cd39fl/fl control animals. Further, DDC-treated LysMCreCd39fl/fl mice exhibited elevated serum levels of transaminases and total bilirubin, as well as increased hepatic expression of the profibrogenic genes Tgf-β1, Tnf-α, and α-Sma. However, no clear differences were observed in the expression of macrophage-elaborated specific cytokines between LysMCreCd39fl/fl and Cd39fl/fl animals subjected to biliary injury. Our results in the DDC-induced biliary type liver fibrosis model suggest that loss of CD39 expression on myeloid cells largely accounts for the exacerbated sclerosing cholangitis in global CD39 knockouts. These findings indicate that macrophage expressed CD39 protects from biliary liver injury and fibrosis and support a potential therapeutic target for human hepatobiliary diseases.
Collapse
Affiliation(s)
- Sonja Rothweiler
- Division of Gastroenterology and Hepatology, Beth Israel Deaconess Medical Center and Harvard Medical School, 330 Brookline Avenue, Dana 501, Boston, MA, 02115, USA
| | - Linda Feldbrügge
- Division of Gastroenterology and Hepatology, Beth Israel Deaconess Medical Center and Harvard Medical School, 330 Brookline Avenue, Dana 501, Boston, MA, 02115, USA
- Department of Surgery, Charité Universitätsmedizin, Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, 13353, Berlin, Germany
| | - Zhenghui Gordon Jiang
- Division of Gastroenterology and Hepatology, Beth Israel Deaconess Medical Center and Harvard Medical School, 330 Brookline Avenue, Dana 501, Boston, MA, 02115, USA
| | - Eva Csizmadia
- Division of Gastroenterology and Hepatology, Beth Israel Deaconess Medical Center and Harvard Medical School, 330 Brookline Avenue, Dana 501, Boston, MA, 02115, USA
| | - Maria Serena Longhi
- Division of Gastroenterology and Hepatology, Beth Israel Deaconess Medical Center and Harvard Medical School, 330 Brookline Avenue, Dana 501, Boston, MA, 02115, USA
| | - Kahini Vaid
- Division of Gastroenterology and Hepatology, Beth Israel Deaconess Medical Center and Harvard Medical School, 330 Brookline Avenue, Dana 501, Boston, MA, 02115, USA
| | - Keiichi Enjyoji
- Division of Gastroenterology and Hepatology, Beth Israel Deaconess Medical Center and Harvard Medical School, 330 Brookline Avenue, Dana 501, Boston, MA, 02115, USA
| | - Yury V Popov
- Division of Gastroenterology and Hepatology, Beth Israel Deaconess Medical Center and Harvard Medical School, 330 Brookline Avenue, Dana 501, Boston, MA, 02115, USA.
| | - Simon C Robson
- Division of Gastroenterology and Hepatology, Beth Israel Deaconess Medical Center and Harvard Medical School, 330 Brookline Avenue, Dana 501, Boston, MA, 02115, USA.
| |
Collapse
|
24
|
Li S, Chen X, Wang N, Li J, Feng Y, Sun J. Identification and characterization of ecto-nucleoside triphosphate diphosphohydrolase 1 (CD39) involved in regulating extracellular ATP-mediated innate immune responses in Japanese flounder (Paralichthys olivaceus). Mol Immunol 2019; 112:10-21. [PMID: 31075558 DOI: 10.1016/j.molimm.2019.04.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 04/28/2019] [Accepted: 04/28/2019] [Indexed: 12/17/2022]
Abstract
Extracellular adenosine triphosphate (eATP), released following inflammatory stimulation or infection, is a potent signaling molecule in activating innate immune responses in fish. However, the regulation of eATP-mediated innate immunity in fish remains unknown. Ecto-nucleoside triphosphate diphosphohydrolase 1 (CD39) is a critical molecular switch for controlling the ATP levels in the extracellular space. CD39 plays a key role in regulating eATP-activated innate immune responses through the phosphohydrolysis of pro-inflammatory eATP to inactive AMP. Here, we identified and characterized a CD39 homolog (namely, poCD39) in the Japanese flounder Paralichthys olivaceus and analyzed its regulatory role in eATP-mediated innate immunity. Real-time quantitative PCR analysis revealed that poCD39 is ubiquitously present in all tested normal tissues with dominant expression in enriched Japanese flounder head kidney macrophages (HKMs). Immune challenge experiments demonstrated that poCD39 expression was upregulated by inflammatory stimulation and Edwardsiella tarda infection. Biochemical and immunofluorescence analysis revealed that poCD39 is a functional glycosylated membrane protein for the hydrolysis of eATP. Inhibition of poCD939 activity with the ecto-NTPDase inhibitor ARL 67156 resulted in increased IL-1beta gene expression and ROS production in Japanese flounder HKMs. In contrast, overexpression of poCD39 in Japanese flounder FG-9307 cells reduced eATP-induced pro-inflammatory cytokine IL-1beta gene expression. Finally, poCD39 expression was significantly induced by eATP stimulation in the HKMs, suggesting that eATP may provide a feedback mechanism for transcriptional regulation of fish CD39. Taken together, we identified and characterized a functional fish CD39 protein involved in regulating eATP-mediated innate immune responses in fish.
Collapse
Affiliation(s)
- Shuo Li
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 393 West Binshui Road, Xiqing District, Tianjin 300387, China.
| | - Xiaoli Chen
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 393 West Binshui Road, Xiqing District, Tianjin 300387, China
| | - Nan Wang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 393 West Binshui Road, Xiqing District, Tianjin 300387, China
| | - Jiafang Li
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 393 West Binshui Road, Xiqing District, Tianjin 300387, China
| | - Yu Feng
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 393 West Binshui Road, Xiqing District, Tianjin 300387, China
| | - Jinsheng Sun
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 393 West Binshui Road, Xiqing District, Tianjin 300387, China.
| |
Collapse
|
25
|
De Marchi E, Orioli E, Pegoraro A, Sangaletti S, Portararo P, Curti A, Colombo MP, Di Virgilio F, Adinolfi E. The P2X7 receptor modulates immune cells infiltration, ectonucleotidases expression and extracellular ATP levels in the tumor microenvironment. Oncogene 2019; 38:3636-3650. [PMID: 30655604 PMCID: PMC6756114 DOI: 10.1038/s41388-019-0684-y] [Citation(s) in RCA: 136] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 12/06/2018] [Accepted: 12/23/2018] [Indexed: 01/22/2023]
Abstract
In the tumor microenvironment (TME) ATP and its receptor P2X7 exert a pivotal influence on cancer growth and tumor-host interactions. Here we analyzed the different effect of P2X7 genetic deficiency versus its antagonism on response against P2X7-expressing implanted tumors. We focused on immune cell expression of ATP degrading enzymes CD39 and CD73 and in vivo measured TME's ATP. The immune infiltrate of tumors growing in P2X7 null mice shows a decrease in CD8+ cells and an increased number of Tregs, overexpressing the fitness markers OX40, PD-1, and CD73. A similar Treg phenotype is also present in the spleen of tumor-bearing P2X7 null mice and it is paralleled by a decrease in proinflammatory cytokines and an increase in TGF-β. Differently, systemic administration of the P2X7 blocker A740003 in wild-type mice left unaltered the number of tumor-infiltrating CD8+ and Treg lymphocytes but increased CD4+ effector cells and decreased their expression of CD39 and CD73. P2X7 blockade did not affect spleen immune cell composition or ectonucleotidase expression but increased circulating INF-γ. Augmented CD73 in P2X7 null mice was mirrored by a decrease in TME ATP concentration and nucleotide reduced secretion from immune cells. On the contrary, TME ATP levels remained unaltered upon P2X7 antagonism, owing to release of ATP from cancerous cells and diminished ectonucleotidase expression by CD4+ and dendritic cells. These data point at P2X7 receptor as a key determinant of TME composition due to its combined action on immune cell infiltrate, ectonucleotidases, and ATP release.
Collapse
MESH Headings
- 5'-Nucleotidase/metabolism
- Adenosine Triphosphate/metabolism
- Animals
- Antigens, Differentiation/metabolism
- CD4-Positive T-Lymphocytes/pathology
- CD8-Positive T-Lymphocytes/pathology
- Cell Line, Tumor
- Lymphocytes, Tumor-Infiltrating/drug effects
- Lymphocytes, Tumor-Infiltrating/metabolism
- Lymphocytes, Tumor-Infiltrating/pathology
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Mutant Strains
- Programmed Cell Death 1 Receptor/metabolism
- Purinergic P2X Receptor Antagonists/pharmacology
- Receptors, Purinergic P2X7/genetics
- Receptors, Purinergic P2X7/metabolism
- T-Lymphocytes, Regulatory/pathology
- Tumor Microenvironment/immunology
Collapse
Affiliation(s)
- Elena De Marchi
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, University of Ferrara, Via Luigi Borsari, 46, 44121, Ferrara, Italy
| | - Elisa Orioli
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, University of Ferrara, Via Luigi Borsari, 46, 44121, Ferrara, Italy
| | - Anna Pegoraro
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, University of Ferrara, Via Luigi Borsari, 46, 44121, Ferrara, Italy
| | - Sabina Sangaletti
- Department of Experimental Oncology, Molecular Immunology Unit, Istituto Nazionale dei Tumori (IRCCS), Via Amadeo, 42, 20133, Milan, Italy
| | - Paola Portararo
- Department of Experimental Oncology, Molecular Immunology Unit, Istituto Nazionale dei Tumori (IRCCS), Via Amadeo, 42, 20133, Milan, Italy
| | - Antonio Curti
- Department of Experimental, Diagnostic and Specialty Medicine, Institute of Hematology L. and A. Seràgnoli, S. Orsola-Malpighi Hospital, University of Bologna, via Massarenti, 9, 40138, Bologna, Italy
| | - Mario Paolo Colombo
- Department of Experimental Oncology, Molecular Immunology Unit, Istituto Nazionale dei Tumori (IRCCS), Via Amadeo, 42, 20133, Milan, Italy
| | - Francesco Di Virgilio
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, University of Ferrara, Via Luigi Borsari, 46, 44121, Ferrara, Italy
| | - Elena Adinolfi
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, University of Ferrara, Via Luigi Borsari, 46, 44121, Ferrara, Italy.
| |
Collapse
|
26
|
Yadav V, Chi L, Zhao R, Tourdot BE, Yalavarthi S, Jacobs BN, Banka A, Liao H, Koonse S, Anyanwu AC, Visovatti SH, Holinstat MA, Kahlenberg JM, Knight JS, Pinsky DJ, Kanthi Y. Ectonucleotidase tri(di)phosphohydrolase-1 (ENTPD-1) disrupts inflammasome/interleukin 1β-driven venous thrombosis. J Clin Invest 2019; 129:2872-2877. [PMID: 30990798 DOI: 10.1172/jci124804] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Deep vein thrombosis (DVT), caused by alterations in venous homeostasis is the third most common cause of cardiovascular mortality; however, key molecular determinants in venous thrombosis have not been fully elucidated. Several lines of evidence indicate that DVT occurs at the intersection of dysregulated inflammation and coagulation. The enzyme ectonucleoside tri(di)phosphohydrolase (ENTPD1, also known as CD39) is a vascular ecto-apyrase on the surface of leukocytes and the endothelium that inhibits intravascular inflammation and thrombosis by hydrolysis of phosphodiester bonds from nucleotides released by activated cells. Here, we evaluated the contribution of CD39 to venous thrombosis in a restricted-flow model of murine inferior vena cava stenosis. CD39-deficiency conferred a >2-fold increase in venous thrombogenesis, characterized by increased leukocyte engagement, neutrophil extracellular trap formation, fibrin, and local activation of tissue factor in the thrombotic milieu. This was orchestrated by increased phosphorylation of the p65 subunit of NFκB, activation of the NLRP3 inflammasome, and interleukin-1β (IL-1β) release in CD39-deficient mice. Substantiating these findings, an IL-1β-neutralizing antibody attenuated the thrombosis risk in CD39-deficient mice. These data demonstrate that IL-1β is a key accelerant of venous thrombo-inflammation, which can be suppressed by CD39. CD39 inhibits in vivo crosstalk between inflammation and coagulation pathways, and is a critical vascular checkpoint in venous thrombosis.
Collapse
Affiliation(s)
- Vinita Yadav
- Division of Cardiovascular Medicine, Frankel Cardiovascular Center
| | - Liguo Chi
- Division of Cardiovascular Medicine, Frankel Cardiovascular Center
| | - Raymond Zhao
- Division of Cardiovascular Medicine, Frankel Cardiovascular Center
| | | | | | - Benjamin N Jacobs
- Department of Surgery, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Alison Banka
- Division of Cardiovascular Medicine, Frankel Cardiovascular Center.,Department of Chemical Engineering, University of Michigan College of Engineering, Ann Arbor, Michigan, USA
| | - Hui Liao
- Division of Cardiovascular Medicine, Frankel Cardiovascular Center
| | - Sharon Koonse
- Division of Cardiovascular Medicine, Frankel Cardiovascular Center
| | - Anuli C Anyanwu
- Division of Cardiovascular Medicine, Frankel Cardiovascular Center.,Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | | | | | | | | | - David J Pinsky
- Division of Cardiovascular Medicine, Frankel Cardiovascular Center.,Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Yogendra Kanthi
- Division of Cardiovascular Medicine, Frankel Cardiovascular Center.,Section of Cardiology, Ann Arbor Veterans Health System, Ann Arbor, Michigan, USA
| |
Collapse
|
27
|
Raczkowski F, Rissiek A, Ricklefs I, Heiss K, Schumacher V, Wundenberg K, Haag F, Koch-Nolte F, Tolosa E, Mittrücker HW. CD39 is upregulated during activation of mouse and human T cells and attenuates the immune response to Listeria monocytogenes. PLoS One 2018; 13:e0197151. [PMID: 29742141 PMCID: PMC5942830 DOI: 10.1371/journal.pone.0197151] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 04/27/2018] [Indexed: 11/26/2022] Open
Abstract
The ectoenzymes CD39 and CD73 degrade extracellular ATP to adenosine. ATP is released by stressed or damaged cells and provides pro-inflammatory signals to immune cells through P2 receptors. Adenosine, on the other hand, suppresses immune cells by stimulating P1 receptors. Thus, CD39 and CD73 can shape the quality of immune responses. Here we demonstrate that upregulation of CD39 is a consistent feature of activated conventional CD4+ and CD8+ T cells. Following stimulation in vitro, CD4+ and CD8+ T cells from human blood gained surface expression of CD39 but displayed only low levels of CD73. Activated human T cells from inflamed joints largely presented with a CD39+CD73— phenotype. In line, in spleens of mice with acute Listeria monocytogenes, listeria-specific CD4+ and CD8+ T cells acquired a CD39+CD73— phenotype. To test the function of CD39 in control of bacterial infection, CD39-deficient (CD39-/-) mice were infected with L. monocytogenes. CD39-/- mice showed better initial control of L. monocytogenes, which was associated with enhanced production of inflammatory cytokines. In the late stage of infection, CD39-/- mice accumulated more listeria-specific CD8+ T cells in the spleen than wildtype animals suggesting that CD39 attenuates the CD8+ T-cell response to infection. In conclusion, our results demonstrate that CD39 is upregulated on conventional CD4+ and CD8+ T cells at sites of acute infection and inflammation, and that CD39 dampens responses to bacterial infection.
Collapse
Affiliation(s)
- Friederike Raczkowski
- Institute for Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anne Rissiek
- Institute for Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Isabell Ricklefs
- Institute for Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Kirsten Heiss
- Institute for Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Valéa Schumacher
- Institute for Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Kira Wundenberg
- Institute for Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Friedrich Haag
- Institute for Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Friedrich Koch-Nolte
- Institute for Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Eva Tolosa
- Institute for Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hans-Willi Mittrücker
- Institute for Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- * E-mail:
| |
Collapse
|
28
|
Haskó G, Antonioli L, Cronstein BN. Adenosine metabolism, immunity and joint health. Biochem Pharmacol 2018; 151:307-313. [PMID: 29427624 PMCID: PMC5899962 DOI: 10.1016/j.bcp.2018.02.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 02/02/2018] [Indexed: 12/19/2022]
Abstract
The purine nucleoside adenosine is a present in most body fluids where it regulates a wide variety of physiologic and pharmacologic processes. Adenosine mediates its effects through activating 4 G protein-coupled receptors expressed on the cell membrane: A1, A2A, A2B, and A3. The adenosine receptors are widely distributed in the body, and tissues with high expression include immune tissues, cartilage, bone, heart, and brain. Here we review the source and metabolism of adenosine and the role of adenosine in regulating immunity and cartilage biology.
Collapse
Affiliation(s)
- György Haskó
- Department of Anesthesiology, Columbia University, New York, NY 10032, USA
| | - Luca Antonioli
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | | |
Collapse
|
29
|
Manica A, Da Silva AM, Cardoso AM, Moreno M, Leal DB, Dutra Da Silva A, Schetinger MRC, Morsch VMM, Bagatini MD. High levels of extracellular ATP lead to chronic inflammatory response in melanoma patients. J Cell Biochem 2018; 119:3980-3988. [PMID: 29227546 DOI: 10.1002/jcb.26551] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 11/27/2017] [Indexed: 12/20/2022]
Abstract
Skin cancer represents a serious public health problem and melanoma is considered the most significant due to its high metastasis capacity. Evasion mechanisms are the main characteristic of these tumor cells to escape of immune response. Extracellular nucleotides and nucleosides play an important role in inflammatory and immune responses. In this study, we analyzed the expression and activity of purinergic system enzymes in platelets and lymphocytes, ATP levels quantification, as well the level of pro and anti-inflammatory interleukins in the serum of 23 patients with surgical melanoma removal (CM group) and 23 control subjects (CT group). Results showed a decrease in ATP, ADP, and AMP hydrolysis and an increase in ATP levels quantification in CM group. The pro-inflammatory cytokines were elevated in CM group when compared to CT group. These results suggest an inflammatory process, even after surgical removal, due to elevated extracellular ATP levels. Besides, CM group displayed an increase in IL-10 levels and an increased in ADA activity in platelets and lymphocytes. Once adenosine and IL-10 are anti-inflammatory molecules, these results indicate a down-regulation of immune system front to malignant process. The alteration in nucleotide and nucleoside hydrolysis reinforces the purinergic systems role in this cancer. Therefore, even after surgical removal, the purinergic system can develop a chronic inflammatory micro-environment that can influence directly on relapse or metastasis.
Collapse
Affiliation(s)
- Aline Manica
- Campus Santa Maria, Federal University of Santa Maria, Santa Maria RS, Brazil
| | | | | | - Marcelo Moreno
- Campus Chapecó, Community University of Chapecó Region, Chapecó, Santa Catarina, Brazil
| | | | | | | | | | | |
Collapse
|
30
|
Roy C, Tabiasco J, Caillon A, Delneste Y, Merot J, Favre J, Guihot AL, Martin L, Nascimento DC, Ryffel B, Robson SC, Sévigny J, Henrion D, Kauffenstein G. Loss of vascular expression of nucleoside triphosphate diphosphohydrolase-1/CD39 in hypertension. Purinergic Signal 2017; 14:73-82. [PMID: 29236227 DOI: 10.1007/s11302-017-9597-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 11/29/2017] [Indexed: 12/21/2022] Open
Abstract
Ectonucleoside triphosphate diphosphohydrolase-1, the major vascular/immune ectonucleotidase, exerts anti-thrombotic and immunomodulatory actions by hydrolyzing extracellular nucleotides (danger signals). Hypertension is characterized by vascular wall remodeling, endothelial dysfunction, and immune infiltration. Here our aim was to investigate the impact of arterial hypertension on CD39 expression and activity in mice. Arterial expression of CD39 was determined by reverse transcription quantitative real-time PCR in experimental models of hypertension, including angiotensin II (AngII)-treated mice (1 mg/kg/day, 21 days), deoxycorticosterone acetate-salt mice (1% salt and uninephrectomy, 21 days), and spontaneously hypertensive rats. A decrease in CD39 expression occurred in the resistance and conductance arteries of hypertensive animals with no effect on lymphoid organs. In AngII-treated mice, a decrease in CD39 protein levels (Western blot) was corroborated by reduced arterial nucleotidase activity, as evaluated by fluorescent (etheno)-ADP hydrolysis. Moreover, serum-soluble ADPase activity, supported by CD39, was significantly decreased in AngII-treated mice. Experiments were conducted in vitro on vascular cells to determine the elements underlying this downregulation. We found that CD39 transcription was reduced by proinflammatory cytokines interleukin (IL)-1β and tumor necrosis factor alpha on vascular smooth muscle cells and by IL-6 and anti-inflammatory and profibrotic cytokine transforming growth factor beta 1 on endothelial cells. In addition, CD39 expression was downregulated by mechanical stretch on vascular cells. Arterial expression and activity of CD39 were decreased in hypertension as a result of both a proinflammatory environment and mechanical strain exerted on vascular cells. Reduced ectonucleotidase activity may alter the vascular condition, thus enhancing arterial damage, remodeling, or thrombotic events.
Collapse
Affiliation(s)
- Charlotte Roy
- MITOVASC Institute - UMR CNRS 6015 INSERM U1083 University of Angers, Angers, France
| | - Julie Tabiasco
- CNRS UMR 6299, INSERM 892, CRCNA, University of Angers, Angers, France
| | - Antoine Caillon
- MITOVASC Institute - UMR CNRS 6015 INSERM U1083 University of Angers, Angers, France
| | - Yves Delneste
- CNRS UMR 6299, INSERM 892, CRCNA, University of Angers, Angers, France.,University Hospital of Angers, Angers, France
| | - Jean Merot
- L'institut du thorax, INSERM, CNRS, UNIV Nantes, Nantes, France
| | - Julie Favre
- MITOVASC Institute - UMR CNRS 6015 INSERM U1083 University of Angers, Angers, France
| | - Anne Laure Guihot
- MITOVASC Institute - UMR CNRS 6015 INSERM U1083 University of Angers, Angers, France
| | - Ludovic Martin
- MITOVASC Institute - UMR CNRS 6015 INSERM U1083 University of Angers, Angers, France.,University Hospital of Angers, Angers, France
| | - Daniele C Nascimento
- CNRS, UMR 7355, Orleans, France.,CNRS UMR 7355, INEM, University of Orleans, Orleans, France
| | - Bernhard Ryffel
- CNRS, UMR 7355, Orleans, France.,CNRS UMR 7355, INEM, University of Orleans, Orleans, France
| | - Simon C Robson
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Harvard University, Boston, MA, USA
| | - Jean Sévigny
- Département de microbiologie-infectiologie et d'immunologie, Faculté de Médecine, Université Laval, Québec City, QC, G1V 0A6, Canada.,Centre de recherche du CHU de Québec - Université Laval, Québec City, QC, G1V 4G2, Canada
| | - Daniel Henrion
- MITOVASC Institute - UMR CNRS 6015 INSERM U1083 University of Angers, Angers, France.,University Hospital of Angers, Angers, France
| | - Gilles Kauffenstein
- MITOVASC Institute - UMR CNRS 6015 INSERM U1083 University of Angers, Angers, France. .,University Hospital of Angers, Angers, France.
| |
Collapse
|
31
|
Pimenta-dos-Reis G, Torres EJL, Quintana PG, Vidal LO, dos Santos BAF, Lin CS, Heise N, Persechini PM, Schachter J. POM-1 inhibits P2 receptors and exhibits anti-inflammatory effects in macrophages. Purinergic Signal 2017; 13:611-627. [PMID: 29022161 PMCID: PMC5714851 DOI: 10.1007/s11302-017-9588-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Accepted: 10/02/2017] [Indexed: 10/18/2022] Open
Abstract
Extracellular nucleotides can modulate the immunological response by activating purinergic receptors (P2Rs) on the cell surface of macrophages, dendritic, and other immune cells. In particular, the activation of P2X7R can induce release of cytokines and cell death as well as the uptake of large molecules through the cell membrane by a mechanism still poorly understood. Polyoxotungstate-1 (POM-1) has been proposed as a potent inhibitor of ecto-nucleotidases, enzymes that hydrolyze extracellular nucleotides, regulating the activity of P2Rs. However, the potential impact of POM-1 on P2Rs has not been evaluated. Here, we used fluorescent dye uptake, cytoplasmic free Ca2+ concentration measurement, patch-clamp recordings, scanning electron microscopy, and quantification of inflammatory mediators to investigate the effects of POM-1 on P2Rs of murine macrophages. We observed that POM-1 blocks the P2YR-dependent cytoplasmic Ca2+ increase and has partial effects on the cytoplasmic Ca2+, increasing dependence on P2XRs. POM-1 can inhibit the events related with ATP-dependent inflammasome activation, anionic dye uptake, and also the opening of large conductance channels, which are associated with P2X7R-dependent pannexin-1 activation. On the other hand, this compound has no effects on cationic fluorescent dye uptake, apoptosis, and bleb formation, also dependent on P2X7R. Moreover, POM-1 can be considered an anti-inflammatory compound, because it prevents TNF-α and nitric oxide release from LPS-treated macrophages.
Collapse
Affiliation(s)
- Gabriela Pimenta-dos-Reis
- Instituto de Biofísica Carlos Chagas Filho da Universidade Federal de Rio de Janeiro, Rio de Janeiro, Brazil
| | - Eduardo José Lopes Torres
- Laboratório de Helmintologia Romero Lascasas Porto, Departamento de Microbiologia, Imunologia e Parasitologia. Faculdade de Ciências Médicas, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Paula Gabriela Quintana
- Instituto de Biofísica Carlos Chagas Filho da Universidade Federal de Rio de Janeiro, Rio de Janeiro, Brazil
| | - Lincon Onorio Vidal
- Instituto de Biofísica Carlos Chagas Filho da Universidade Federal de Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Chuan-Sheng Lin
- Microbiota Research Center, Chang Gung University, Taoyuan, Taiwan
- Center for Molecular and Clinical Immunology, Chang Gung University, Taoyuan, Taiwan
| | - Norton Heise
- Instituto de Biofísica Carlos Chagas Filho da Universidade Federal de Rio de Janeiro, Rio de Janeiro, Brazil
| | - Pedro Muanis Persechini
- Instituto de Biofísica Carlos Chagas Filho da Universidade Federal de Rio de Janeiro, Rio de Janeiro, Brazil
| | - Julieta Schachter
- Microbiota Research Center, Chang Gung University, Taoyuan, Taiwan
- Polo Xerem, Universidade Federal de Rio de Janeiro, Estrada de Xerém No. 27, Xerém, Duque de Caxias, Rio de Janeiro, 25245-390 Brazil
| |
Collapse
|
32
|
Zhou Y, Tan CY, Mo ZJ, Gao QL, He D, Li J, Huang RF, Li YB, Guo CF, Guo Q, Wang LJ, Yang GT, Zhang HQ. P2X7 receptor in spinal tuberculosis: Gene polymorphisms and protein levels in Chinese Han population. INFECTION GENETICS AND EVOLUTION 2017; 57:138-144. [PMID: 29158203 DOI: 10.1016/j.meegid.2017.11.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Revised: 11/11/2017] [Accepted: 11/16/2017] [Indexed: 12/12/2022]
Abstract
Spinal tuberculosis (TB) accounts for 1%-5% of all TB infections. Host genetic variation influences susceptibility to Mycobacterium tuberculosis (MTB). P2X7 receptor (P2X7R) expressed on cells has been identified as a regulatory molecule in cell death/apoptosis, killing of intercellular pathogens, and bone turnover. This study investigated the P2X7 gene polymorphisms and protein levels in spinal TB. P2X7 gene -762C>T and 489C>T polymorphisms were genotyped. The expression of P2X7R in bone or intervertebral disc (ID) tissues was analyzed by Western blot assay. The -762C>T and 489C>T polymorphisms were associated with susceptibility to spinal TB. Having the -762CC genotype and -762C allele increased the risk of developing spinal TB (CC vs. TT: P=0.031, OR [95%CI]=1.865 [1.053-3.304]; C vs. T: P=0.028, OR [95%CI]=1.355 [1.034-1.775]). The presence of the 489T allele was associated with an increased risk of developing spinal TB (TT vs. CC: P=0.004, OR [95%CI]=2.248 [1.283-3.939]; CT vs. CC: P=0.044, OR [95%CI]=1.755 [1.011-3.047]; T vs. C: P=0.004, OR [95%CI]=1.482 [1.134-1.936]; TT+CT vs. CC: P=0.010, OR [95%CI]=1.967 [1.171-3.304]; TT vs. CT+CC: P=0.037, OR [95%CI]=1.489 [1.023-2.167]). The expression of P2X7R in TB-induced bone lesions increased significantly among spinal TB patients (t=0.011). Carrying the P2X7 -762CC genotype and 489T allele is associated with an increased risk of developing spinal TB in a Southern Chinese Han population.
Collapse
Affiliation(s)
- Ying Zhou
- Department of Laboratory Medicine, The People's Hospital of Guangxi Autonomous Region, Nanning, China
| | - Chun-Yan Tan
- Department of Laboratory Medicine, The People's Hospital of Guangxi Autonomous Region, Nanning, China
| | - Zhi-Jiang Mo
- Department of Pharmacy, The People's Hospital of Guangxi Autonomous Region, Nanning, China
| | - Qi-le Gao
- Department of Spine Surgery, Xiangya Spinal Surgery Center, Xiangya Hospital, Central South University, Changsha, China.
| | - Dan He
- Department of Neurology, The First Hospital of Changsha, Changsha, China
| | - Jiong Li
- Department of Spine Surgery, Xiangya Spinal Surgery Center, Xiangya Hospital, Central South University, Changsha, China
| | - Rong-Fu Huang
- Department of Clinical Laboratory, The Second Affiliated Hospital, Fujian Medical University, Quanzhou, China
| | - Yan-Bing Li
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, China
| | - Chao-Feng Guo
- Department of Spine Surgery, Xiangya Spinal Surgery Center, Xiangya Hospital, Central South University, Changsha, China
| | - Qiang Guo
- Department of Spine Surgery, Xiangya Spinal Surgery Center, Xiangya Hospital, Central South University, Changsha, China
| | - Long-Jie Wang
- Department of Spine Surgery, Xiangya Spinal Surgery Center, Xiangya Hospital, Central South University, Changsha, China
| | - Guan-Teng Yang
- Department of Spine Surgery, Xiangya Spinal Surgery Center, Xiangya Hospital, Central South University, Changsha, China
| | - Hong-Qi Zhang
- Department of Spine Surgery, Xiangya Spinal Surgery Center, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
33
|
Costales MG, Alam MS, Cavanaugh C, Williams KM. Extracellular adenosine produced by ecto-5'-nucleotidase (CD73) regulates macrophage pro-inflammatory responses, nitric oxide production, and favors Salmonella persistence. Nitric Oxide 2017; 72:7-15. [PMID: 29108754 DOI: 10.1016/j.niox.2017.11.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 09/21/2017] [Accepted: 11/02/2017] [Indexed: 12/24/2022]
Abstract
Surface enzymes CD39 (nucleoside triphosphate dephosphorylase) and CD73 (ecto-5'-nucleotidase) mediate the synthesis of extracellular adenosine that can regulate immune responses. Adenosine produced by CD39/CD73 acts via adenosine receptors (ARs). CD73 is expressed by a variety of cell types and mediates anti-inflammatory responses. Because efficient innate immune responses are required for clearance of Salmonella infection, we investigated the role of CD73 in macrophage function, including phagocytosis, intracellular killing of Salmonella, and anti-bacterial pro-inflammatory responses to Salmonella-whole cell lysate (ST-WCL) or Salmonella infection. Additionally, RAW 264.7 macrophage mRNA expression of CD39, CD73, and all ARs were measured by qPCR after ST-WCL treatment. Pro-inflammatory cytokine mRNA and nitric oxide (NO) production were quantitated in the ST-WCL treated macrophage with and without CD73-inhibitor (APCP) treatment. Phagocytosis and intracellular killing by peritoneal macrophages from CD73-deficent mice were also evaluated using E. coli BioParticles® and GFP-Salmonella infection, respectively. CD73, CD39, and A2BAR mRNA were predominantly expressed in RAW cells. ST-WCL treatment significantly reduced CD73 expression, suggesting endogenous down-regulation of CD73, and an enhanced pro-inflammatory response. ST-WCL treated and CD73-inhibited macrophages produced more NO and a higher level of pro-inflammatory cytokines than CD73-competent macrophages (e.g. IL-1β, TNF-α). Phagocytosis of E. coli BioParticles® was significantly higher in the macrophages treated with APCP and in the peritoneal macrophages from CD73-deficent mice as compared to APCP-untreated, and CD73-competent macrophages. Internalized bacteria were more efficiently cleared from macrophages in the absence of CD73, as observed by fluorescence-microscopy and Salmonella-DNA measurement by qPCR from the infected cells. CD73 down-regulation or CD73-inhibition of macrophages during Salmonella infection can enhance the production of pro-inflammatory cytokines and NO production, improving intracellular killing and host survivability. Extracellular adenosine synthesized by CD73 suppresses antibacterial responses of macrophages, which may weaken macrophage function and impair innate immune responses to Salmonella infection.
Collapse
Affiliation(s)
- Matthew G Costales
- Immunobiology Branch, Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, US Food and Drug Administration (FDA), Laurel, MD 20708, USA
| | - Mohammad Samiul Alam
- Immunobiology Branch, Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, US Food and Drug Administration (FDA), Laurel, MD 20708, USA.
| | - Christopher Cavanaugh
- Immunobiology Branch, Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, US Food and Drug Administration (FDA), Laurel, MD 20708, USA
| | - Kristina M Williams
- Immunobiology Branch, Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, US Food and Drug Administration (FDA), Laurel, MD 20708, USA
| |
Collapse
|
34
|
Marconato DG, Gusmão MADN, Melo J, Castro JMDA, Macedo GC, Vasconcelos EG, Faria-Pinto P. Antischistosome antibodies change NTPDase 1 activity from macrophages. Parasite Immunol 2017; 39. [DOI: 10.1111/pim.12487] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 08/25/2017] [Indexed: 11/30/2022]
Affiliation(s)
- D. G. Marconato
- Department of Biochemistry; Institute of Biological Sciences; Federal University of Juiz de Fora; Juiz de Fora MG Brazil
| | - M. A. do N. Gusmão
- Department of Biochemistry; Institute of Biological Sciences; Federal University of Juiz de Fora; Juiz de Fora MG Brazil
| | - J. Melo
- Department of Immunology, Parasitology and Microbiology; Institute of Biological Sciences; Federal University of Juiz de Fora; Juiz de Fora MG Brazil
| | - J. M. de A. Castro
- Department of Immunology, Parasitology and Microbiology; Institute of Biological Sciences; Federal University of Juiz de Fora; Juiz de Fora MG Brazil
| | - G. C. Macedo
- Department of Immunology, Parasitology and Microbiology; Institute of Biological Sciences; Federal University of Juiz de Fora; Juiz de Fora MG Brazil
| | - E. G. Vasconcelos
- Department of Biochemistry; Institute of Biological Sciences; Federal University of Juiz de Fora; Juiz de Fora MG Brazil
| | - P. Faria-Pinto
- Department of Biochemistry; Institute of Biological Sciences; Federal University of Juiz de Fora; Juiz de Fora MG Brazil
| |
Collapse
|
35
|
Savio LEB, de Andrade Mello P, Figliuolo VR, de Avelar Almeida TF, Santana PT, Oliveira SD, Silva CL, Feldbrügge L, Csizmadia E, Minshall RD, Longhi MS, Wu Y, Robson SC, Coutinho-Silva R. CD39 limits P2X7 receptor inflammatory signaling and attenuates sepsis-induced liver injury. J Hepatol 2017; 67:716-726. [PMID: 28554875 PMCID: PMC5875702 DOI: 10.1016/j.jhep.2017.05.021] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 05/16/2017] [Accepted: 05/17/2017] [Indexed: 12/18/2022]
Abstract
BACKGROUND & AIMS The severity of sepsis can be linked to excessive inflammatory responses resulting in hepatic injury. P2X7 receptor activation by extracellular ATP (eATP) exacerbates inflammation by augmenting cytokine production; while CD39 (ENTPD1) scavenges eATP to generate adenosine, thereby limiting P2X7 activation and resulting in A2A receptor stimulation. We aim to determine how the functional interaction of P2X7 receptor and CD39 control the macrophage response, and consequently impact on sepsis and liver injury. METHODS Sepsis was induced by cecal ligation and puncture in C57BL/6 wild-type (WT) and CD39-/- mice. Several in vitro assays were performed using peritoneal or bone marrow derived macrophages to determine CD39 ectonucleotidase activity and its role in sepsis-induced liver injury. RESULTS CD39 expression in macrophages limits ATP-P2X7 receptor pro-inflammatory signaling. P2X7 receptor paradoxically boosts CD39 activity. Inhibition and/or deletion of P2X7 receptor in LPS-primed macrophages attenuates cytokine production and inflammatory signaling as well as preventing ATP-induced increases in CD39 activity. Septic CD39-/- mice exhibit higher levels of inflammatory cytokines and show more pronounced liver injury than WT mice. Pharmacological P2X7 blockade largely prevents tissue damage, cell apoptosis, cytokine production, and the activation of inflammatory signaling pathways in the liver from septic WT, while only attenuating these outcomes in CD39-/- mice. Furthermore, the combination of P2X7 blockade with adenosine A2A receptor stimulation completely inhibits cytokine production, the activation of inflammatory signaling pathways, and protects septic CD39-/- mice against liver injury. CONCLUSIONS CD39 attenuates sepsis-associated liver injury by scavenging eATP and ultimately generating adenosine. We propose boosting of CD39 would suppress P2X7 responses and trigger adenosinergic signaling to limit systemic inflammation and restore liver homeostasis during the acute phase of sepsis. Lay summary: CD39 expression in macrophages limits P2X7-mediated pro-inflammatory responses, scavenging extracellular ATP and ultimately generating adenosine. CD39 genetic deletion exacerbates sepsis-induced experimental liver injury. Combinations of a P2X7 antagonist and adenosine A2A receptor agonist are hepatoprotective during the acute phase of abdominal sepsis.
Collapse
Affiliation(s)
- Luiz Eduardo Baggio Savio
- Laboratory of Immunophysiology, Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil,Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Harvard University, Boston, MA, USA
| | - Paola de Andrade Mello
- Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Harvard University, Boston, MA, USA,Faculty of Pharmacy, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Vanessa R. Figliuolo
- Laboratory of Immunophysiology, Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Thiago F. de Avelar Almeida
- Laboratory of Immunophysiology, Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Patrícia T. Santana
- Laboratory of Immunophysiology, Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Suellen D.S. Oliveira
- Laboratory of Immunophysiology, Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil,Departments of Anesthesiology and Pharmacology, University of Illinois, Chicago, IL, USA
| | - Claudia L.M. Silva
- Laboratory of Molecular and Biochemical Pharmacology, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Linda Feldbrügge
- Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Harvard University, Boston, MA, USA
| | - Eva Csizmadia
- Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Harvard University, Boston, MA, USA
| | - Richard D. Minshall
- Departments of Anesthesiology and Pharmacology, University of Illinois, Chicago, IL, USA
| | - Maria Serena Longhi
- Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Harvard University, Boston, MA, USA
| | - Yan Wu
- Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Harvard University, Boston, MA, USA
| | - Simon C. Robson
- Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Harvard University, Boston, MA, USA,Corresponding authors. Address: Division of Gastroenterology and Liver Center, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Harvard University, Office E/CLS 612, 3 Blackfan Circle, Boston, MA 02215, USA. Tel.: +1 617 735 2921; fax: +1 617 735 2930. (S.C. Robson) or Instituto de Biofísica Carlos Chagas Filho – Universidade Federal do Rio de Janeiro, Edifício do Centro de Ciências da Saúde, Bloco G. Av. Carlos Chagas Filho, 373. Cidade Universitária, Ilha do Fundão, Rio de Janeiro, RJ 21941-902, Brazil. Tel.: +55 21 3938 6565; fax: +55 21 2280 8193 (R. Coutinho-Silva). (S.C. Robson), (R. Coutinho-Silva)
| | - Robson Coutinho-Silva
- Laboratory of Immunophysiology, Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
36
|
Dias DA, de Barros Penteado B, Dos Santos LD, Dos Santos PM, Arruda CCP, Schetinger MRC, Leal DBR, Dos Santos Jaques JA. Characterization of ectonucleoside triphosphate diphosphohydrolase (E-NTPDase; EC 3.6.1.5) activity in mouse peritoneal cavity cells. Cell Biochem Funct 2017; 35:358-363. [PMID: 28871607 DOI: 10.1002/cbf.3281] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 07/05/2017] [Accepted: 07/05/2017] [Indexed: 12/20/2022]
Abstract
This study aimed to characterize the activity of ectonucleoside triphosphate diphosphohydrolase (E-NTPDase; EC 3.6.1.5) in peritoneal cavity cells from BALB/c mice. E-NTPDase was activated in the presence of both calcium (1.5mM) and magnesium (1.5mM) ions. However, the activity was higher in the presence of Ca2+ . A pH of 8.5 and temperature of 37°C were the optimum conditions for catalysis. The apparent Km values were 0.51mM and 0.66mM for the hydrolysis of adenosine triphosphate (ATP) and adenosine diphosphate (ADP), respectively. The Vmax values were 136.4 and 120.8 nmol Pi/min/mg of protein for ATPase and ADPase activity, respectively. Nucleotide hydrolysis was inhibited in the presence of sodium azide (20mM, ATP: P < .05; ADP: P < .001), sodium fluoride (20mM; ATP and ADP: P < .001), and suramin (0.3mM; ATP: P < .01; ADP: P < .05), which is a known profile for NTPDase inhibition. Although all of the diphosphate and triphosphate nucleotides that were tested were hydrolyzed, enzyme activity was increased when adenine nucleotides were used as substrates. Finally, we stress that knowledge of the E-NTPDase catalytic biochemical properties in mouse peritoneal cavity cells is indispensable for properly determining its activity, as well as to fully understand the immune response profile in both healthy and sick cells.
Collapse
Affiliation(s)
- Dhébora Albuquerque Dias
- Laboratório de Bioquímica Geral e de Microrganismos, Instituto de Biociências, Universidade Federal de Mato Grosso do Sul, Campo Grande, MS, Brazil.,Programa de Pós-Graduação em Farmácia, Faculdade de Farmácia Alimentos e Nutrição, Universidade Federal de Mato Grosso do Sul, Campo Grande, MS, Brazil
| | - Bruna de Barros Penteado
- Laboratório de Bioquímica Geral e de Microrganismos, Instituto de Biociências, Universidade Federal de Mato Grosso do Sul, Campo Grande, MS, Brazil.,Programa de Pós-Graduação em Farmácia, Faculdade de Farmácia Alimentos e Nutrição, Universidade Federal de Mato Grosso do Sul, Campo Grande, MS, Brazil
| | - Lucas Derbocio Dos Santos
- Laboratório de Bioquímica Geral e de Microrganismos, Instituto de Biociências, Universidade Federal de Mato Grosso do Sul, Campo Grande, MS, Brazil.,Programa de Pós-Graduação em Farmácia, Faculdade de Farmácia Alimentos e Nutrição, Universidade Federal de Mato Grosso do Sul, Campo Grande, MS, Brazil
| | | | - Carla Cardozo Pinto Arruda
- Programa de Pós-Graduação em Farmácia, Faculdade de Farmácia Alimentos e Nutrição, Universidade Federal de Mato Grosso do Sul, Campo Grande, MS, Brazil.,Laboratório de Parasitologia Humana, Instituto de Biociências, Universidade Federal de Mato Grosso do Sul, Campo Grande, MS, Brazil
| | - Maria Rosa Chitolina Schetinger
- Laboratório de Enzimologia Toxicológica, Departamento de Bioquímica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Daniela Bitencourt Rosa Leal
- Laboratório de Imunobiologia Experimental e Aplicada, Departamento de Microbiologia e Parasitologia, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Jeandre Augusto Dos Santos Jaques
- Laboratório de Bioquímica Geral e de Microrganismos, Instituto de Biociências, Universidade Federal de Mato Grosso do Sul, Campo Grande, MS, Brazil.,Programa de Pós-Graduação em Farmácia, Faculdade de Farmácia Alimentos e Nutrição, Universidade Federal de Mato Grosso do Sul, Campo Grande, MS, Brazil
| |
Collapse
|
37
|
Allan ERO, Campden RI, Ewanchuk BW, Tailor P, Balce DR, McKenna NT, Greene CJ, Warren AL, Reinheckel T, Yates RM. A role for cathepsin Z in neuroinflammation provides mechanistic support for an epigenetic risk factor in multiple sclerosis. J Neuroinflammation 2017; 14:103. [PMID: 28486971 PMCID: PMC5424360 DOI: 10.1186/s12974-017-0874-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Accepted: 04/26/2017] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Hypomethylation of the cathepsin Z locus has been proposed as an epigenetic risk factor for multiple sclerosis (MS). Cathepsin Z is a unique lysosomal cysteine cathepsin expressed primarily by antigen presenting cells. While cathepsin Z expression has been associated with neuroinflammatory disorders, a role for cathepsin Z in mediating neuroinflammation has not been previously established. METHODS Experimental autoimmune encephalomyelitis (EAE) was induced in both wildtype mice and mice deficient in cathepsin Z. The effects of cathepsin Z-deficiency on the processing and presentation of the autoantigen myelin oligodendrocyte glycoprotein, and on the production of IL-1β and IL-18 were determined in vitro from cells derived from wildtype and cathepsin Z-deficient mice. The effects of cathepsin Z-deficiency on CD4+ T cell activation, migration, and infiltration to the CNS were determined in vivo. Statistical analyses of parametric data were performed by one-way ANOVA followed by Tukey post-hoc tests, or by an unpaired Student's t test. EAE clinical scoring was analyzed using the Mann-Whitney U test. RESULTS We showed that mice deficient in cathepsin Z have reduced neuroinflammation and dramatically lowered circulating levels of IL-1β during EAE. Deficiency in cathepsin Z did not impact either the processing or the presentation of MOG, or MOG- specific CD4+ T cell activation and trafficking. Consistently, we found that cathepsin Z-deficiency reduced the efficiency of antigen presenting cells to secrete IL-1β, which in turn reduced the ability of mice to generate Th17 responses-critical steps in the pathogenesis of EAE and MS. CONCLUSION Together, these data support a novel role for cathepsin Z in the propagation of IL-1β-driven neuroinflammation.
Collapse
Affiliation(s)
- Euan R O Allan
- Snyder Institute for Chronic Disease, University of Calgary, Calgary, AB, T2N 4 N1, Canada
| | - Rhiannon I Campden
- Snyder Institute for Chronic Disease, University of Calgary, Calgary, AB, T2N 4 N1, Canada.,Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Calgary, 3330 Hospital Drive NW, HRIC 4AA10, Calgary, AB, T2N 4 N1, Canada
| | - Benjamin W Ewanchuk
- Snyder Institute for Chronic Disease, University of Calgary, Calgary, AB, T2N 4 N1, Canada.,Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Calgary, 3330 Hospital Drive NW, HRIC 4AA10, Calgary, AB, T2N 4 N1, Canada
| | - Pankaj Tailor
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Calgary, 3330 Hospital Drive NW, HRIC 4AA10, Calgary, AB, T2N 4 N1, Canada
| | - Dale R Balce
- Snyder Institute for Chronic Disease, University of Calgary, Calgary, AB, T2N 4 N1, Canada.,Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Calgary, 3330 Hospital Drive NW, HRIC 4AA10, Calgary, AB, T2N 4 N1, Canada
| | - Neil T McKenna
- Snyder Institute for Chronic Disease, University of Calgary, Calgary, AB, T2N 4 N1, Canada.,Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Calgary, 3330 Hospital Drive NW, HRIC 4AA10, Calgary, AB, T2N 4 N1, Canada
| | - Catherine J Greene
- Snyder Institute for Chronic Disease, University of Calgary, Calgary, AB, T2N 4 N1, Canada.,Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Calgary, 3330 Hospital Drive NW, HRIC 4AA10, Calgary, AB, T2N 4 N1, Canada
| | - Amy L Warren
- Department of Veterinary Clinical and Diagnostic Services, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, T2N 4 N1, Canada
| | - Thomas Reinheckel
- Institute of Molecular Medicine and Cell Research, Faculty of Medicine, Albert-Ludwigs-University, D-79104, Freiburg, Germany.,BIOSS Centre for Biological Signalling Studies, Albert-Ludwigs-University, D-79104, Freiburg, Germany
| | - Robin M Yates
- Snyder Institute for Chronic Disease, University of Calgary, Calgary, AB, T2N 4 N1, Canada. .,Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Calgary, 3330 Hospital Drive NW, HRIC 4AA10, Calgary, AB, T2N 4 N1, Canada.
| |
Collapse
|
38
|
De Giorgi M, Enjyoji K, Jiang G, Csizmadia E, Mitsuhashi S, Gumina RJ, Smolenski RT, Robson SC. Complete deletion of Cd39 is atheroprotective in apolipoprotein E-deficient mice. J Lipid Res 2017; 58:1292-1305. [PMID: 28487312 PMCID: PMC5496028 DOI: 10.1194/jlr.m072132] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 04/28/2017] [Indexed: 02/07/2023] Open
Abstract
Cd39 scavenges extracellular ATP and ADP, ultimately generating adenosine, a nucleoside, which has anti-inflammatory effects in the vasculature. We have evaluated the role of Cd39 in the development of atherosclerosis in hyperlipidemic mice. ApoE KO (Cd39+/+/ApoE−/−) and Cd39/ApoE double KO (DKO) (Cd39−/−/ApoE−/−) mice were maintained on chow or Western diet for up to 20 weeks before evaluation of atherosclerotic lesions. We found that DKO mice exhibited significantly fewer atherosclerotic lesions than ApoE KO mice, irrespective of diet. Analyses of plaque composition revealed diminished foam cells in the fatty streaks and smaller necrotic cores in advanced lesions of DKO mice, when compared with those in ApoE KO mice. This atheroprotective phenotype was associated with impaired platelet reactivity to ADP in vitro and prolonged platelet survival, suggesting decreased platelet activation in vivo. Further studies with either genetic deletion or pharmacological inhibition of Cd39 in macrophages revealed increased cholesterol efflux mediated via ABCA1 to ApoA1. This phenomenon was associated with elevated plasma HDL levels in DKO mice. Our findings indicate that complete deletion of Cd39 paradoxically attenuates development of atherosclerosis in hyperlipidemic mice. We propose that this phenotype occurs, at least in part, from diminished platelet activation, increased plasma HDL levels, and enhanced cholesterol efflux and indicates the complexity of purinergic signaling in atherosclerosis.
Collapse
Affiliation(s)
- Marco De Giorgi
- Transplant Institute and Hepatology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA
| | - Keiichi Enjyoji
- Transplant Institute and Hepatology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA
| | - Gordon Jiang
- Transplant Institute and Hepatology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA
| | - Eva Csizmadia
- Transplant Institute and Hepatology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA
| | - Shuji Mitsuhashi
- Transplant Institute and Hepatology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA
| | - Richard J Gumina
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | | | - Simon C Robson
- Transplant Institute and Hepatology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA.
| |
Collapse
|
39
|
Methionine and methionine sulfoxide treatment induces M1/classical macrophage polarization and modulates oxidative stress and purinergic signaling parameters. Mol Cell Biochem 2016; 424:69-78. [DOI: 10.1007/s11010-016-2843-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 10/06/2016] [Indexed: 12/17/2022]
|
40
|
Savio LEB, Andrade MGJ, de Andrade Mello P, Santana PT, Moreira-Souza ACA, Kolling J, Longoni A, Feldbrügge L, Wu Y, Wyse ATS, Robson SC, Coutinho-Silva R. P2X7 Receptor Signaling Contributes to Sepsis-Associated Brain Dysfunction. Mol Neurobiol 2016; 54:6459-6470. [PMID: 27730511 DOI: 10.1007/s12035-016-0168-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Accepted: 09/27/2016] [Indexed: 12/11/2022]
Abstract
Sepsis results in unfettered inflammation, tissue damage, and multiple organ failure. Diffuse brain dysfunction and neurological manifestations secondary to sepsis are termed sepsis-associated encephalopathy (SAE). Extracellular nucleotides, proinflammatory cytokines, and oxidative stress reactions are associated with delirium and brain injury, and might be linked to the pathophysiology of SAE. P2X7 receptor activation by extracellular ATP leads to maturation and release of IL-1β by immune cells, which stimulates the production of oxygen reactive species. Hence, we sought to investigate the role of purinergic signaling by P2X7 in a model of sepsis. We also determined how this process is regulated by the ectonucleotidase CD39, a scavenger of extracellular nucleotides. Wild type (WT), P2X7 receptor (P2X7-/-), or CD39 (CD39-/-) deficient mice underwent sham laparotomy or CLP induced by ligation and puncture of the cecum. We noted that genetic deletion of P2X7 receptor decreased markers of oxidative stress in murine brains 24 h after sepsis induction. The pharmacological inhibition or genetic ablation of the P2X7 receptor attenuated the IL-1β and IL-6 production in the brain from septic mice. Furthermore, our results suggest a crucial role for the enzyme CD39 in limiting P2X7 receptor proinflammatory responses since CD39-/- septic mice exhibited higher levels of IL-1β in the brain. We have also demonstrated that P2X7 receptor blockade diminished STAT3 activation in cerebral cortex and hippocampus from septic mice, indicating association of ATP-P2X7-STAT3 signaling axis in SAE during sepsis. Our findings suggest that P2X7 receptor might serve as a suitable therapeutic target to ameliorate brain damage in sepsis.
Collapse
Affiliation(s)
- Luiz Eduardo Baggio Savio
- Laboratory of Immunophysiology, Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,Department of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Harvard University, Boston, MA, USA
| | - Mariana G Juste Andrade
- Laboratory of Immunophysiology, Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Paola de Andrade Mello
- Department of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Harvard University, Boston, MA, USA.,Laboratory of Biochemical and Cytological Analysis, Faculty of Pharmacy, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Patrícia Teixeira Santana
- Laboratory of Immunophysiology, Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Janaína Kolling
- Laboratory of Neuroprotection and Metabolic Diseases, Department of Biochemistry, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Aline Longoni
- Laboratory of Neuroprotection and Metabolic Diseases, Department of Biochemistry, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Linda Feldbrügge
- Department of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Harvard University, Boston, MA, USA
| | - Yan Wu
- Department of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Harvard University, Boston, MA, USA
| | - Angela T S Wyse
- Laboratory of Neuroprotection and Metabolic Diseases, Department of Biochemistry, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Simon C Robson
- Department of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Harvard University, Boston, MA, USA
| | - Robson Coutinho-Silva
- Laboratory of Immunophysiology, Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil. .,Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Edifício do Centro de Ciências da Saúde, Bloco G. Av. Carlos Chagas Filho, 373, Cidade Universitária, Ilha do Fundão, Rio de Janeiro, RJ, 21941-902, Brazil.
| |
Collapse
|
41
|
Takenaka MC, Robson S, Quintana FJ. Regulation of the T Cell Response by CD39. Trends Immunol 2016; 37:427-439. [PMID: 27236363 DOI: 10.1016/j.it.2016.04.009] [Citation(s) in RCA: 127] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Revised: 04/22/2016] [Accepted: 04/25/2016] [Indexed: 12/22/2022]
Abstract
The ectonucleoside triphosphate diphosphohydrolase 1 (ENTPD1, or CD39) catalyzes the phosphohydrolysis of extracellular ATP (eATP) and ADP (eADP) released under conditions of inflammatory stress and cell injury. CD39 generates AMP, which is in turn used by the ecto-5'-nucleotidase CD73 to synthesize adenosine. These ectonucleotidases have a major impact on the dynamic equilibrium of proinflammatory eATP and ADP nucleotides versus immunosuppressive adenosine nucleosides. Indeed, CD39 plays a dominant role in the purinergic regulation of inflammation and the immune response because its expression is influenced by genetic and environmental factors. We review the specific role of CD39 in the kinetic regulation of cellular immune responses in the evolution of disease. We focus on the effects of CD39 on T cells and explore potential clinical applications in autoimmunity, chronic infections, and cancer.
Collapse
Affiliation(s)
- Maisa C Takenaka
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Simon Robson
- Divisions of Gastroenterology, Hepatology, and Transplantation, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| | - Francisco J Quintana
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA.
| |
Collapse
|
42
|
Geraghty NJ, Watson D, Adhikary SR, Sluyter R. P2X7 receptor in skin biology and diseases. World J Dermatol 2016; 5:72-83. [DOI: 10.5314/wjd.v5.i2.72] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 11/23/2015] [Accepted: 01/29/2016] [Indexed: 02/06/2023] Open
Abstract
The P2X7 receptor is a trimeric ligand-gated cation channel present on immune and other cells. Activation of this receptor by its natural ligand extracellular adenosine triphosphate results in a variety of downstream responses, including the release of pro-inflammatory mediators and cell death. In normal skin, P2X7 is present on keratinocytes, Langerhans cells and fibroblasts, while the presence of this receptor on other cutaneous cells is mainly inferred from studies of equivalent cell types present in other tissues. Mast cells in normal skin however express negligible amounts of P2X7, which can be upregulated in cutaneous disease. This review discusses the potential significance of P2X7 in skin biology, and the role of this receptor in inflammatory skin disorders such as irritant and chronic dermatitis, psoriasis, graft-versus-host disease, as well is in wound healing, transplantation and skin cancer.
Collapse
|
43
|
Tsai SH, Takeda K. Regulation of allergic inflammation by the ectoenzyme E-NPP3 (CD203c) on basophils and mast cells. Semin Immunopathol 2016; 38:571-9. [PMID: 27130555 DOI: 10.1007/s00281-016-0564-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 04/26/2016] [Indexed: 01/16/2023]
Abstract
Adenosine 5'-triphosphate (ATP) is released from dying or damaged cells, as well as from activated cells. Once secreted, extracellular ATP induces several immune responses via P2X and P2Y receptors. Basophils and mast cells release ATP upon FcεRI-crosslinking, and ATP activates basophils and mast cells in an autocrine manner. Nucleotide-converting ectoenzymes, such as E-NTPD1, E-NTPD7, and E-NPP3, inhibit ATP-dependent immune responses by hydrolyzing ATP, thereby contributing to immune response regulation. E-NPP3 is a well-known activation marker for human basophils. E-NPP3's physiologic function has recently been disclosed in mice. E-NPP3 is rapidly induced on basophils and mast cells after FcεRI-crosslinking and hydrolyzes extracellular ATP on cell surfaces to prevent ATP-dependent excess activation of basophils and mast cells. In the absence of E-NPP3, basophils and mast cells are overactivated and mice suffer from severe chronic allergic inflammation. Thus, the ATP-hydrolyzing ectoenzymes E-NPP3 has a nonnegligible role in the regulation of basophil- and mast cell-mediated allergic responses.
Collapse
Affiliation(s)
- Shih Han Tsai
- Laboratory of Immune Regulation, Department of Microbiology and Immunology, Graduate School of Medicine, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Kiyoshi Takeda
- Laboratory of Immune Regulation, Department of Microbiology and Immunology, Graduate School of Medicine, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, 565-0871, Japan. .,Core Research for Evolutional Science and Technology, Japan Agency for Medical Research and Development, Tokyo, 100-0004, Japan.
| |
Collapse
|
44
|
d'Almeida SM, Kauffenstein G, Roy C, Basset L, Papargyris L, Henrion D, Catros V, Ifrah N, Descamps P, Croue A, Jeannin P, Grégoire M, Delneste Y, Tabiasco J. The ecto-ATPDase CD39 is involved in the acquisition of the immunoregulatory phenotype by M-CSF-macrophages and ovarian cancer tumor-associated macrophages: Regulatory role of IL-27. Oncoimmunology 2016; 5:e1178025. [PMID: 27622030 DOI: 10.1080/2162402x.2016.1178025] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 04/06/2016] [Accepted: 04/06/2016] [Indexed: 12/18/2022] Open
Abstract
Tumor-associated macrophages (TAM) are immunosuppressive cells that can massively accumulate in the tumor microenvironment. In patients with ovarian cancer, their density is correlated with poor prognosis. Targeting mediators that control the generation or the differentiation of immunoregulatory macrophages represents a therapeutic challenge to overcome tumor-associated immunosuppression. The ectonucleotidase CD39 hydrolyzes ATP into extracellular adenosine that exhibits potent immunosuppressive properties when signaling through the A2A adenosine receptor. We report here that CD14(+) CD163(+) TAM isolated from ovarian cancer patients and macrophages generated in vitro with M-CSF, express high levels of the membrane ectonucleotidase CD39 compared to classically activated macrophages. The CD39 inhibitor POM-1 and adenosine deaminase (ADA) diminished some of the immunosuppressive functions of CD14(high) CD163(high) CD39(high) macrophages, such as IL-10 secretion. We identified the cytokine IL-27, secreted by tumor-infiltrating neutrophils, located close to infiltrating CD163(+) macrophages, as a major rheostat of CD39 expression and consequently, on the acquisition of immunoregulatory properties by macrophages. Accordingly, the depletion of IL-27 downregulated CD39 and PD-L1 expression as well as IL-10 secretion by M-CSF-macrophages. Collectively, these data suggest that CD39, drived by IL-27 and CD115 ligands in ovarian cancer, maintains the immunosuppressive phenotype of TAM. This work brings new information on the acquisition of immunosuppressive properties by tumor-infiltrating macrophages.
Collapse
Affiliation(s)
- Sènan M d'Almeida
- CRCNA, INSERM, CNRS, Université de Nantes, Université d'Angers, Angers, France; LabEx ImmunoGraftOnco, Angers, France; Equipe labellisée Ligue contre le Cancer, Angers, France
| | | | - Charlotte Roy
- BNMI, INSERM, CNRS, Université d'Angers , Angers, France
| | - Laetitia Basset
- CRCNA, INSERM, CNRS, Université de Nantes, Université d'Angers, Angers, France; LabEx ImmunoGraftOnco, Angers, France; Equipe labellisée Ligue contre le Cancer, Angers, France
| | - Loukas Papargyris
- CRCNA, INSERM, CNRS, Université de Nantes, Université d'Angers, Angers, France; LabEx ImmunoGraftOnco, Angers, France; Equipe labellisée Ligue contre le Cancer, Angers, France
| | - Daniel Henrion
- BNMI, INSERM, CNRS, Université d'Angers , Angers, France
| | - Véronique Catros
- INSERM, Université de Rennes 1, CRB santé de Rennes , Rennes, France
| | - Norbert Ifrah
- CRCNA, INSERM, CNRS, Université de Nantes, Université d'Angers, Angers, France; LabEx ImmunoGraftOnco, Angers, France; Equipe labellisée Ligue contre le Cancer, Angers, France; Services des maladies du sang, CHU Angers, Angers, France
| | | | - Anne Croue
- Laboratoire de Pathologie Cellulaire et Tissulaire, CHU Angers , Angers, France
| | - Pascale Jeannin
- CRCNA, INSERM, CNRS, Université de Nantes, Université d'Angers, Angers, France; LabEx ImmunoGraftOnco, Angers, France; Equipe labellisée Ligue contre le Cancer, Angers, France; Laboratoire d'Immunologie et d'Allergologie, CHU Angers, Angers, France
| | - Marc Grégoire
- LabEx ImmunoGraftOnco, Angers, France; CRCNA, INSERM, CNRS, Université d'Angers, Université de Nantes, Nantes, France
| | - Yves Delneste
- CRCNA, INSERM, CNRS, Université de Nantes, Université d'Angers, Angers, France; LabEx ImmunoGraftOnco, Angers, France; Equipe labellisée Ligue contre le Cancer, Angers, France; Laboratoire d'Immunologie et d'Allergologie, CHU Angers, Angers, France
| | - Julie Tabiasco
- CRCNA, INSERM, CNRS, Université de Nantes, Université d'Angers, Angers, France; LabEx ImmunoGraftOnco, Angers, France; Equipe labellisée Ligue contre le Cancer, Angers, France
| |
Collapse
|
45
|
Novitskaya T, Chepurko E, Covarrubias R, Novitskiy S, Ryzhov SV, Feoktistov I, Gumina RJ. Extracellular nucleotide regulation and signaling in cardiac fibrosis. J Mol Cell Cardiol 2016; 93:47-56. [PMID: 26891859 DOI: 10.1016/j.yjmcc.2016.02.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 02/03/2016] [Accepted: 02/10/2016] [Indexed: 02/06/2023]
Abstract
Following myocardial infarction, purinergic nucleotides and nucleosides are released via non-specific and specific mechanisms in response to cellular activation, stress, or injury. These extracellular nucleotides are potent mediators of physiologic and pathologic responses, contributing to the inflammatory and fibrotic milieu within the injured myocardium. Via autocrine or paracrine signaling, cell-specific effects occur through differentially expressed purinergic receptors of the P2X, P2Y, and P1 families. Nucleotide activation of the ionotropic (ligand-gated) purine receptors (P2X) and several of the metabotropic (G-protein-coupled) purine receptors (P2Y) or adenosine activation of the P1 receptors can have profound effects on inflammatory cell function, fibroblast function, and cardiomyocyte function. Extracellular nucleotidases that hydrolyze released nucleotides regulate the magnitude and duration of purinergic signaling. While there are numerous studies on the role of the purinergic signaling pathway in cardiovascular disease, the extent to which the purinergic signaling pathway modulates cardiac fibrosis is incompletely understood. Here we provide an overview of the current understanding of how the purinergic signaling pathway modulates cardiac fibroblast function and myocardial fibrosis.
Collapse
Affiliation(s)
- Tatiana Novitskaya
- Division of Cardiovascular Medicine, Vanderbilt University, Nashville, TN, USA
| | - Elena Chepurko
- Division of Cardiovascular Medicine, Vanderbilt University, Nashville, TN, USA
| | - Roman Covarrubias
- Division of Cardiovascular Medicine, Vanderbilt University, Nashville, TN, USA
| | - Sergey Novitskiy
- Department of Cancer Biology, Vanderbilt University, Nashville, TN, USA
| | | | - Igor Feoktistov
- Division of Cardiovascular Medicine, Vanderbilt University, Nashville, TN, USA
| | - Richard J Gumina
- Division of Cardiovascular Medicine, Vanderbilt University, Nashville, TN, USA; Department of Pharmacology, Vanderbilt University, Nashville, TN, USA; Department of Pathology, Immunology and Microbiology, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
46
|
Lazar Z, Müllner N, Lucattelli M, Ayata CK, Cicko S, Yegutkin GG, De Cunto G, Müller T, Meyer A, Hossfeld M, Sorichter S, Horvath I, Virchow CJ, Robson SC, Lungarella G, Idzko M. NTPDase1/CD39 and aberrant purinergic signalling in the pathogenesis of COPD. Eur Respir J 2016; 47:254-63. [PMID: 26541524 DOI: 10.1183/13993003.02144-2014] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 08/05/2015] [Indexed: 01/06/2023]
Abstract
Purinergic receptor activation via extracellular ATP is involved in the pathogenesis of chronic obstructive pulmonary disease (COPD). Nucleoside triphosphate diphosphohydrolase-1/CD39 hydrolyses extracellular ATP and modulates P2 receptor signalling.We aimed to investigate the expression and function of CD39 in the pathogenesis of cigarette smoke-induced lung inflammation in patients and preclinical mouse models. CD39 expression and soluble ATPase activity were quantified in sputum and bronchoalveolar lavage fluid (BALF) cells in nonsmokers, smokers and COPD patients or mice with cigarette smoke-induced lung inflammation. In mice, pulmonary ATP and cytokine concentrations, inflammation and emphysema were analysed in the presence or absence of CD39.Following acute cigarette smoke exposure CD39 was upregulated in BALF cells in smokers with further increases in COPD patients. Acute cigarette smoke exposure induced CD39 upregulation in murine lungs and BALF cells, and ATP degradation was accelerated in airway fluids. CD39 inhibition and deficiency led to augmented lung inflammation; treatment with ATPase during cigarette smoke exposure prevented emphysema.Pulmonary CD39 expression and activity are increased in COPD. CD39 deficiency leads to enhanced emphysema in mice, while external administration of a functional CD39 analogue partially rescues the phenotype. The compensatory upregulation of pulmonary CD39 might serve as a protective mechanism in cigarette smoke-induced lung damage.
Collapse
Affiliation(s)
- Zsofia Lazar
- Dept of Pulmonology, University Hospital Freiburg, Freiburg, Germany Dept of Pulmonology, Semmelweis University, Budapest, Hungary These authors contributed equally
| | - Nina Müllner
- Dept of Pulmonology, University Hospital Freiburg, Freiburg, Germany These authors contributed equally
| | - Monica Lucattelli
- Dept of Life Sciences, University of Siena, Siena, Italy These authors contributed equally
| | - Cemil Korcan Ayata
- Dept of Pulmonology, University Hospital Freiburg, Freiburg, Germany These authors contributed equally
| | - Sanja Cicko
- Dept of Pulmonology, University Hospital Freiburg, Freiburg, Germany
| | | | | | - Tobias Müller
- Dept of Pulmonology, University Hospital Freiburg, Freiburg, Germany
| | - Anja Meyer
- Dept of Pulmonology, University Hospital Freiburg, Freiburg, Germany
| | - Madelon Hossfeld
- Dept of Pulmonology, University Hospital Freiburg, Freiburg, Germany
| | - Stephan Sorichter
- Dept of Pulmonology, University Hospital Freiburg, Freiburg, Germany
| | - Ildiko Horvath
- Dept of Pulmonology, Semmelweis University, Budapest, Hungary
| | | | - Simon C Robson
- Division of Gastroenterology, Dept of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | | | - Marco Idzko
- Dept of Pulmonology, University Hospital Freiburg, Freiburg, Germany
| |
Collapse
|
47
|
Single Nucleotide Polymorphisms in P2X7 Gene Are Associated with Serum Immunoglobulin G Responses to Mycobacterium tuberculosis in Tuberculosis Patients. DISEASE MARKERS 2015; 2015:671272. [PMID: 26798189 PMCID: PMC4698936 DOI: 10.1155/2015/671272] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 10/14/2015] [Accepted: 10/18/2015] [Indexed: 01/12/2023]
Abstract
Objective. Our study investigated the association between single nucleotide polymorphisms (SNPs) in P2X7 gene and serum immunoglobulin G (IgG) responses to mycobacterium tuberculosis (MTB) in TB patients. Methods. A total of 103 TB patients were enrolled as case group and 87 healthy individuals at same geographical region as control group. The SNP detection of 1513A>C and -762T>C was performed using PCR-RFLP, and the levels of serum IgG responses to MTB in all subjects were determined. Results. AC and CC of 1513A>C and TC and CC of -762T>C had higher frequencies in case group than in control group. TB patients carrying TC and CC of -762T>C had higher positive rate of IgG responses to MTB than those carrying TT. Additionally, patients carrying TC and CC of -762T>C had more MTB in sputum than those carrying TT. Conclusion. P2X7 SNPs, 1513A>C and -762T>C, may be associated with the susceptibility to tuberculosis, and -762T>C SNP may contribute to the development of MTB. The mutant genotype of -762T>C (TC and CC) may lower human capability of phagocytosis to MTB, leading to an increased morbidity of TB.
Collapse
|
48
|
Pérez-Flores G, Lévesque SA, Pacheco J, Vaca L, Lacroix S, Pérez-Cornejo P, Arreola J. The P2X7/P2X4 interaction shapes the purinergic response in murine macrophages. Biochem Biophys Res Commun 2015; 467:484-90. [DOI: 10.1016/j.bbrc.2015.10.025] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Accepted: 10/05/2015] [Indexed: 01/01/2023]
|
49
|
Won KJ, Park SW, Lee S, Kong IK, Chae JI, Kim B, Lee EJ, Kim DK. A New Triggering Receptor Expressed on Myeloid Cells (TREM) Family Member, TLT-6, is Involved in Activation and Proliferation of Macrophages. Immune Netw 2015; 15:232-40. [PMID: 26557807 PMCID: PMC4637344 DOI: 10.4110/in.2015.15.5.232] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 09/25/2015] [Accepted: 10/02/2015] [Indexed: 01/24/2023] Open
Abstract
The triggering receptor expressed on myeloid cells (TREM) family, which is abundantly expressed in myeloid lineage cells, plays a pivotal role in innate and adaptive immune response. In this study, we aimed to identify a novel receptor expressed on hematopoietic stem cells (HSCs) by using in silico bioinformatics and to characterize the identified receptor. We thus found the TREM-like transcript (TLT)-6, a new member of TREM family. TLT-6 has a single immunoglobulin domain in the extracellular region and a long cytoplasmic region containing 2 immunoreceptor tyrosine-based inhibitory motif-like domains. TLT-6 transcript was expressed in HSCs, monocytes and macrophages. TLT-6 protein was up-regulated on the surface of bone marrow-derived and peritoneal macrophages by lipopolysaccharide stimulation. TLT-6 exerted anti-proliferative effects in macrophages. Our results demonstrate that TLT-6 may regulate the activation and proliferation of macrophages.
Collapse
Affiliation(s)
- Kyung-Jong Won
- Department of Physiology, School of Medicine, Konkuk University, Chungju 27478, Korea
| | - Sung-Won Park
- Departmet of Biomedical Science, College of Life Science, CHA University, Seongnam 13496, Korea
| | - Seunghoon Lee
- National Institute of Animal Science, RDA, Wanju 55365, Korea
| | - Il-Keun Kong
- Department of Animal Sciences, Division of Applied Life Science, Gyeongsang National University, Jinju 52828, Korea
| | - Jung-Il Chae
- Department of Oral Pharmacology, School of Dentistry and Institute of Dental Bioscience, BK21 plus, Chonbuk National University, Jeonju 54907, Korea
| | - Bokyung Kim
- Department of Physiology, School of Medicine, Konkuk University, Chungju 27478, Korea
| | | | | |
Collapse
|
50
|
Lu W, Hu H, Sévigny J, Gabelt BT, Kaufman PL, Johnson EC, Morrison JC, Zode GS, Sheffield VC, Zhang X, Laties AM, Mitchell CH. Rat, mouse, and primate models of chronic glaucoma show sustained elevation of extracellular ATP and altered purinergic signaling in the posterior eye. Invest Ophthalmol Vis Sci 2015; 56:3075-83. [PMID: 26024091 DOI: 10.1167/iovs.14-15891] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
PURPOSE The cellular mechanisms linking elevated IOP with glaucomatous damage remain unresolved. Mechanical strains and short-term increases in IOP can trigger ATP release from retinal neurons and astrocytes, but the response to chronic IOP elevation is unknown. As excess extracellular ATP can increase inflammation and damage neurons, we asked if sustained IOP elevation was associated with a sustained increase in extracellular ATP in the posterior eye. METHODS No ideal animal model of chronic glaucoma exists, so three different models were used. Tg-Myoc(Y437H) mice were examined at 40 weeks, while IOP was elevated in rats following injection of hypertonic saline into episcleral veins and in cynomolgus monkeys by laser photocoagulation of the trabecular meshwork. The ATP levels were measured using the luciferin-luciferase assay while levels of NTPDase1 were assessed using qPCR, immunoblots, and immunohistochemistry. RESULTS The ATP levels were elevated in the vitreal humor of rats, mice, and primates after a sustained period of IOP elevation. The ecto-ATPase NTPDase1 was elevated in optic nerve head astrocytes exposed to extracellular ATP for an extended period. NTPDase1 was also elevated in the retinal tissue of rats, mice, and primates, and in the optic nerve of rats, with chronic elevation in IOP. CONCLUSIONS A sustained elevation in extracellular ATP, and upregulation of NTPDase1, occurs in the posterior eye of rat, mouse, and primate models of chronic glaucoma. This suggests the elevation in extracellular ATP may be sustained in chronic glaucoma, and implies a role for altered purinergic signaling in the disease.
Collapse
Affiliation(s)
- Wennan Lu
- Department of Anatomy and Cell Biology, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - HuiLing Hu
- Department of Physiology, University of Pennsylvania, Philadelphia, Pennsylvania, United States 3State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Jean Sévigny
- Département de Microbiologie-Infectiologie et D'immunologie, Faculté de Médecine, Université Laval, and Centre de Recherche du CHU de Québec, Québec, Québec, Canada
| | - B'Ann T Gabelt
- Department of Ophthalmology and Visual Sciences, University of Wisconsin, Madison, Wisconsin, United States
| | - Paul L Kaufman
- Department of Ophthalmology and Visual Sciences, University of Wisconsin, Madison, Wisconsin, United States
| | - Elaine C Johnson
- Kenneth C. Swan Ocular Neurobiology Laboratory, Casey Eye Institute, Oregon Health and Science University, Portland, Oregon, United States
| | - John C Morrison
- Kenneth C. Swan Ocular Neurobiology Laboratory, Casey Eye Institute, Oregon Health and Science University, Portland, Oregon, United States
| | - Gulab S Zode
- Howard Hughes Medical Institute, University of Iowa, Iowa City, Iowa, United States 8Department of Cell Biology and Immunology, University of North Texas Health Science Center, Fort Worth, Texas, United States
| | - Val C Sheffield
- Howard Hughes Medical Institute, University of Iowa, Iowa City, Iowa, United States
| | - Xiulan Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Alan M Laties
- Department of Ophthalmology, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Claire H Mitchell
- Department of Anatomy and Cell Biology, University of Pennsylvania, Philadelphia, Pennsylvania, United States 2Department of Physiology, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| |
Collapse
|