1
|
Jin J, Mao X, Zhang D. A differential diagnosis method for systemic CAEBV and the prospect of EBV-related immune cell markers via flow cytometry. Ann Med 2024; 56:2329136. [PMID: 38502913 PMCID: PMC10953786 DOI: 10.1080/07853890.2024.2329136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 02/23/2024] [Indexed: 03/21/2024] Open
Abstract
Chronic active Epstein-Barr virus (CAEBV) infection of the T-cell or Natural killer (NK)-cell type, systemic form (systemic CAEBV or sCAEBV) was defined by the WHO in 2017 as an EBV-related lymphoproliferative disorder and is listed as an EBV-positive T-cell and NK-cell proliferation. The clinical manifestations and prognoses are heterogeneous. This makes systemic CAEBV indistinguishable from other EBV-positive T-cell and NK-cell proliferations. Early diagnosis of systemic CAEBV and early hematopoietic stem cell transplantation can improve patient prognosis. At present, the diagnosis of systemic CAEBV relies mainly on age, clinical manifestations, and cell lineage, incurring missed diagnosis, misdiagnosis, long diagnosis time, and inability to identify high-risk systemic CAEBV early. The diagnostic methods for systemic CAEBV are complicated and lack systematic description. The recent development of diagnostic procedures, including molecular biological and immunological techniques such as flow cytometry, has provided us with the ability to better understand the proliferation of other EBV-positive T cells and NK cells, but there is no definitive review of their value in diagnosing systemic CAEBV. This article summarizes the recent progress in systemic CAEBV differential diagnosis and the prospects of flow cytometry.
Collapse
Affiliation(s)
- Jie Jin
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xia Mao
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Donghua Zhang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
2
|
Zhao X, McCall CM, Block JG, Ondrejka SL, Thakral B, Wang SA, Al-Ghamdi Y, Tam W, Coffman B, Foucar K, Daneshpajouhnejad P, Bagg A, Lin F, Hsi ED. Expression of CD6 in Aggressive NK/T-cell Neoplasms and Assessment as a Potential Therapeutic Target: A Bone Marrow Pathology Group Study. CLINICAL LYMPHOMA, MYELOMA & LEUKEMIA 2024; 24:e808-e818. [PMID: 39089930 DOI: 10.1016/j.clml.2024.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/25/2024] [Accepted: 06/30/2024] [Indexed: 08/04/2024]
Abstract
BACKGROUND Aggressive NK/T-Cell neoplasms are rare hematological malignancies characterized by the abnormal proliferation of NK or NK-like T (NK/T) cells. CD6 is a transmembrane signal transducing receptor involved in lymphocyte activation and differentiation. This study aimed to investigate the CD6 expression in these malignancies and explore the potential of targeting CD6 in these diseases. MATERIALS AND METHODS We conducted a retrospective study with totally 41 cases to investigate the expression of CD6 by immunohistochemistry, including aggressive NK-cell leukemia/lymphoma (ANKLL: N = 10) and extranodal NK/T-cell lymphoma (ENKTL: N = 31). A novel ANKLL model was applied for proof-of-concept functional studies of a CD6 antibody-drug-conjugate (CD6-ADC) both in vitro and in animal trial. RESULTS CD6 was expressed in 68.3% (28/41) of cases (70% (7/10) of ANKLL and 67.7% (21/31) of ENKTL). The median overall survival (OS) for ANKLL and ENTKL cases was 1 and 12 months, respectively, with no significant difference in OS based on CD6 expression (p > 0.05, Kaplan-Meier with log-rank test). In vitro exposure of the CCANKL cell line, derived from an ANKL patient, to an anti-CD6ADC resulted in dose dependent induction of apoptosis. Furthermore, CCANKL engraftment in NSG mice could be blocked by treatment with the anti-CD6 ADC. CONCLUSION To date, this is the first report to explore the expression of CD6 in ANKLL and ENKTL and confirms its expression in the majority of cases. The in vitro and in vivo data support further investigation of CD6 as a potential therapeutic target in these aggressive NK/T-cell malignancies.
Collapse
Affiliation(s)
- Xiaoxian Zhao
- Department of Pathology, Wake Forest University School of Medicine, Winston Salem, NC; Department of Laboratory Medicine, Cleveland Clinic, Cleveland OH
| | | | | | - Sarah L Ondrejka
- Department of Laboratory Medicine, Cleveland Clinic, Cleveland OH
| | - Beenu Thakral
- Department of Hematopathology, MD Anderson Cancer Center, Houston, TX
| | - Sa A Wang
- Department of Hematopathology, MD Anderson Cancer Center, Houston, TX
| | - Yahya Al-Ghamdi
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York City, NY
| | - Wayne Tam
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York City, NY
| | - Brittany Coffman
- Department of Pathology, University of New Mexico, Albuquerque, NM
| | - Kathryn Foucar
- Department of Pathology, University of New Mexico, Albuquerque, NM
| | | | - Adam Bagg
- Department of Pathology, University of Pennsylvania, Philadelphia, PA
| | - Feng Lin
- Department of Inflammation & Immunity, Cleveland Clinic, Cleveland OH
| | - Eric D Hsi
- Department of Pathology, Wake Forest University School of Medicine, Winston Salem, NC; Department of Laboratory Medicine, Cleveland Clinic, Cleveland OH; Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN.
| |
Collapse
|
3
|
Iorgulescu JB, Medeiros LJ, Patel KP. Predictive and prognostic molecular biomarkers in lymphomas. Pathology 2024; 56:239-258. [PMID: 38216400 DOI: 10.1016/j.pathol.2023.12.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 01/14/2024]
Abstract
Recent advances in molecular diagnostics have markedly expanded our understanding of the genetic underpinnings of lymphomas and catalysed a transformation in not just how we classify lymphomas, but also how we treat, target, and monitor affected patients. Reflecting these advances, the World Health Organization Classification, International Consensus Classification, and National Comprehensive Cancer Network guidelines were recently updated to better integrate these molecular insights into clinical practice. We summarise here the molecular biomarkers of lymphomas with an emphasis on biomarkers that have well-supported prognostic and predictive utility, as well as emerging biomarkers that show promise for clinical practice. These biomarkers include: (1) diagnostic entity-defining genetic abnormalities [e.g., B-cell acute lymphoblastic leukaemia (B-ALL) with KMT2A rearrangement]; (2) molecular alterations that guide patients' prognoses (e.g., TP53 loss frequently conferring worse prognosis); (3) mutations that serve as the targets of, and often a source of acquired resistance to, small molecular inhibitors (e.g., ABL1 tyrosine kinase inhibitors for B-ALL BCR::ABL1, hindered by ABL1 kinase domain resistance mutations); (4) the growing incorporation of molecular measurable residual disease (MRD) in the management of lymphoma patients (e.g., molecular complete response and sequencing MRD-negative criteria in multiple myeloma). Altogether, our review spans the spectrum of lymphoma types, from the genetically defined subclasses of precursor B-cell lymphomas to the highly heterogeneous categories of small and large cell mature B-cell lymphomas, Hodgkin lymphomas, plasma cell neoplasms, and T/NK-cell lymphomas, and provides an expansive summary of our current understanding of their molecular pathology.
Collapse
Affiliation(s)
- J Bryan Iorgulescu
- Molecular Diagnostics Laboratory, Department of Hematopathology, Division of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - L Jeffrey Medeiros
- Molecular Diagnostics Laboratory, Department of Hematopathology, Division of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Keyur P Patel
- Molecular Diagnostics Laboratory, Department of Hematopathology, Division of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
4
|
Lewis NE, Zhou T, Dogan A. Biology and genetics of extranodal mature T-cell and NKcell lymphomas and lymphoproliferative disorders. Haematologica 2023; 108:3261-3277. [PMID: 38037802 PMCID: PMC10690927 DOI: 10.3324/haematol.2023.282718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 08/28/2023] [Indexed: 12/02/2023] Open
Abstract
The extranodal mature T-cell and NK-cell lymphomas and lymphoproliferative disorders represent a unique group of rare neoplasms with both overlapping and distinct clinicopathological, biological, and genomic features. Their predilection for specific sites, such as the gastrointestinal tract, aerodigestive tract, liver, spleen, and skin/soft tissues, underlies their classification. Recent genomic advances have furthered our understanding of the biology and pathogenesis of these diseases, which is critical for accurate diagnosis, prognostic assessment, and therapeutic decision-making. Here we review clinical, pathological, genomic, and biological features of the following extranodal mature T-cell and NK-cell lymphomas and lymphoproliferative disorders: primary intestinal T-cell and NK-cell neoplasms, hepatosplenic T-cell lymphoma, extranodal NK/T-cell lymphoma, nasal type, and subcutaneous panniculitis-like T-cell lymphoma.
Collapse
Affiliation(s)
- Natasha E. Lewis
- Hematopathology Service, Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Ting Zhou
- Molecular Diagnostic Laboratory, Department of Hematopathology, MD Anderson Cancer Center, Houston, TX, USA
| | - Ahmet Dogan
- Hematopathology Service, Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| |
Collapse
|
5
|
Zhang YH, Li Z, Zhao S, Zhang WY, Liu QL, Liu WP, Gao LM. Extranodal natural killer/T-cell lymphoma with hepatosplenic involvement: a retrospective study of a consecutive 14-year case series. Ann Hematol 2023; 102:2803-2813. [PMID: 37434096 DOI: 10.1007/s00277-023-05358-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 07/05/2023] [Indexed: 07/13/2023]
Abstract
Extranodal natural killer/T-cell lymphoma (ENKTL) with hepatosplenic involvement is rare, accounting for approximately 0.2% of ENKTL cases. The clinicopathologic features of ENKTL with hepatosplenic involvement are still poorly understood. Seven cases of ENKTL with hepatosplenic involvement were investigated retrospectively by clinical features, pathology, immunophenotype, genotype, Epstein-Barr virus (EBV) status, and survival analysis. The median age was 36 years; three patients (3/7) had a history of primary nasal ENKTL. Six cases (6/7) presented liver or spleen structures that were replaced by neoplasms, and the neoplastic cells displayed diffuse infiltration; one case (1/7) displayed neoplastic cells scattered in hepatic sinuses and portal areas. The cellular morphology and immunohistochemical features were similar to those of ENKTL involving other sites. Follow-up data were available in five of the seven patients. All five patients received first-line chemotherapy based on L-asparaginase. Three patients died, and two were still alive by the last follow-up. The median overall survival (OS) was 21 months. ENKTL with hepatosplenic involvement is rare, regardless of whether it is initial or secondary. There are two histopathologic patterns of ENKTL with hepatosplenic involvement, and L-asparaginase-based chemotherapy combined with AHSCT might yield good efficacy. Morphological features of ENKTL in the spleen and liver A The architecture of the spleen was affected, and dense infiltration of the neoplastic cells was observed in the left part; B Focal infiltration of the neoplastic cells was located in the red pulp; C Dense infiltration of the neoplastic cells in the liver, accompanied by fatty change of hepatocytes and congestion; D More neoplastic cells accumulated in sinusoidal region.
Collapse
Affiliation(s)
- Yue-Hua Zhang
- Department of Pathology, West China Hospital of Sichuan University, Chengdu, China
- Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Zheng Li
- Department of Pathology, West China Hospital of Sichuan University, Chengdu, China
- Ningbo Clinical Pathology Diagnosis Center, Ningbo, China
| | - Sha Zhao
- Department of Pathology, West China Hospital of Sichuan University, Chengdu, China
| | - Wen-Yan Zhang
- Department of Pathology, West China Hospital of Sichuan University, Chengdu, China
| | - Qing-Lin Liu
- Department of Pathology, West China Hospital of Sichuan University, Chengdu, China
| | - Wei-Ping Liu
- Department of Pathology, West China Hospital of Sichuan University, Chengdu, China.
| | - Li-Min Gao
- Department of Pathology, West China Hospital of Sichuan University, Chengdu, China.
| |
Collapse
|
6
|
Costa RDO, Pereira J, Lage LADPC, Baiocchi OCG. Extranodal NK-/T-cell lymphoma, nasal type: what advances have been made in the last decade? Front Oncol 2023; 13:1175545. [PMID: 37529691 PMCID: PMC10388588 DOI: 10.3389/fonc.2023.1175545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 06/26/2023] [Indexed: 08/03/2023] Open
Abstract
Extranodal NK-/T-cell lymphoma (ENKTCL) is a rare and highly aggressive malignancy with significant racial and geographic variations worldwide. In addition to the formerly "nasal-type" initial description, these lymphomas are predominantly extranodal in origin and typically cause vascular damage and tissue destruction, and although not fully understood, Epstein-Barr virus (EBV) has an important role in its pathogenesis. Initial assessment must include a hematopathology review of representative and viable tumor areas without necrosis for adequate immunohistochemistry studies, including EBV-encoded small RNA (EBER) in situ hybridization (ISH). Positron emission tomography with 18-fluorodeoxyglucose (18F-FDG-PET/CT) for accurate staging is essential, and most patients will have localized disease (IE/IIE) at diagnosis. Apart from other T-cell malignancies, the best treatment even for localized cases is combined modality therapy (chemotherapy plus radiotherapy) with non-anthracycline-based regimens. For advanced-stage disease, l-asparaginase-containing regimens have shown improved survival, but relapsed and refractory cases have very poor outcomes. Nowadays, even with a better understanding of pathogenic pathways, up-front therapy is completely based on chemotherapy and radiotherapy, and treatment-related mortality is not low. Future strategies targeting signaling pathways and immunotherapy are evolving, but we need to better identify those patients with dismal outcomes in a pre-emptive way. Given the rarity of the disease, international collaborations are urgently needed, and clinical trials are the way to change the future.
Collapse
Affiliation(s)
- Renata de Oliveira Costa
- Department of Hematology, Faculdade de Ciências Médicas de Santos (FCMS), Centro Universitário Lusíadas (Unilus), Santos, São Paulo, Brazil
- Hospital Alemao Osvaldo Cruz (HAOC), São Paulo, Brazil
| | - Juliana Pereira
- Hospital Alemao Osvaldo Cruz (HAOC), São Paulo, Brazil
- Department of Hematology, Hemotherapy and Cell Therapy, Faculdade de Medicina da Universidade de Sao Paulo (FM-USP), São Paulo, Brazil
- Laboratory of Medical Investigation in Pathogenesis and Directed Therapy in Onco-Immuno-Hematology (LIM-31), University of Sao Paulo (USP), São Paulo, Brazil
| | - Luís Alberto de Pádua Covas Lage
- Department of Hematology, Hemotherapy and Cell Therapy, Faculdade de Medicina da Universidade de Sao Paulo (FM-USP), São Paulo, Brazil
- Laboratory of Medical Investigation in Pathogenesis and Directed Therapy in Onco-Immuno-Hematology (LIM-31), University of Sao Paulo (USP), São Paulo, Brazil
| | - Otávio César Guimarães Baiocchi
- Hospital Alemao Osvaldo Cruz (HAOC), São Paulo, Brazil
- Department of Hematology, Universidade Federal de Sao Paulo (Unifesp), São Paulo, Brazil
| |
Collapse
|
7
|
Semenzato G, Calabretto G, Barilà G, Gasparini VR, Teramo A, Zambello R. Not all LGL leukemias are created equal. Blood Rev 2023; 60:101058. [PMID: 36870881 DOI: 10.1016/j.blre.2023.101058] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/15/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023]
Abstract
Large Granular Lymphocyte (LGL) Leukemia is a rare, heterogeneous even more that once thought, chronic lymphoproliferative disorder characterized by the clonal expansion of T- or NK-LGLs that requires appropriate immunophenotypic and molecular characterization. As in many other hematological conditions, genomic features are taking research efforts one step further and are also becoming instrumental in refining discrete subsets of LGL disorders. In particular, STAT3 and STAT5B mutations may be harbored in leukemic cells and their presence has been linked to diagnosis of LGL disorders. On clinical grounds, a correlation has been established in CD8+ T-LGLL patients between STAT3 mutations and clinical features, in particular neutropenia that favors the onset of severe infections. Revisiting biological aspects, clinical features as well as current and predictable emerging treatments of these disorders, we will herein discuss why appropriate dissection of different disease variants is needed to better manage patients with LGL disorders.
Collapse
Affiliation(s)
- Gianpietro Semenzato
- University of Padova, Department of Medicine, Hematology Unit, Italy; Veneto Institute of Molecular Medicine, Padova, Italy.
| | - Giulia Calabretto
- University of Padova, Department of Medicine, Hematology Unit, Italy; Veneto Institute of Molecular Medicine, Padova, Italy
| | - Gregorio Barilà
- University of Padova, Department of Medicine, Hematology Unit, Italy; Veneto Institute of Molecular Medicine, Padova, Italy
| | - Vanessa Rebecca Gasparini
- University of Padova, Department of Medicine, Hematology Unit, Italy; Veneto Institute of Molecular Medicine, Padova, Italy
| | - Antonella Teramo
- University of Padova, Department of Medicine, Hematology Unit, Italy; Veneto Institute of Molecular Medicine, Padova, Italy.
| | - Renato Zambello
- University of Padova, Department of Medicine, Hematology Unit, Italy; Veneto Institute of Molecular Medicine, Padova, Italy.
| |
Collapse
|
8
|
Lewis NE, Sardana R, Dogan A. Mature T-cell and NK-cell lymphomas: updates on molecular genetic features. Int J Hematol 2023; 117:475-491. [PMID: 36637656 DOI: 10.1007/s12185-023-03537-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 12/15/2022] [Accepted: 01/06/2023] [Indexed: 01/14/2023]
Abstract
Mature T-cell and NK-cell lymphomas are a heterogeneous group of rare and typically aggressive neoplasms. Diagnosis and subclassification have historically relied primarily on the integration of clinical, histologic, and immunophenotypic features, which often overlap. The widespread application of a variety of genomic techniques in recent years has provided extensive insight into the pathobiology of these diseases, allowing for more precise diagnostic classification, improved prognostication, and development of novel therapies. In this review, we summarize the genomic features of the most common types of mature T-cell and NK-cell lymphomas with a particular focus on the contribution of genomics to biologic insight, classification, risk stratification, and select therapies in the context of the recently published International Consensus and updated World Health Organization classification systems.
Collapse
Affiliation(s)
- Natasha E Lewis
- Hematopathology Service, Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA.
| | - Rohan Sardana
- Hematopathology Service, Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Ahmet Dogan
- Hematopathology Service, Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| |
Collapse
|
9
|
Zanelli M, Parente P, Sanguedolce F, Zizzo M, Palicelli A, Bisagni A, Carosi I, Trombetta D, Mastracci L, Ricci L, Pancetti S, Martino G, Broggi G, Caltabiano R, Cavazza A, Ascani S. Intravascular NK/T-Cell Lymphoma: What We Know about This Diagnostically Challenging, Aggressive Disease. Cancers (Basel) 2022; 14:5458. [PMID: 36358876 PMCID: PMC9658079 DOI: 10.3390/cancers14215458] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/02/2022] [Accepted: 11/05/2022] [Indexed: 08/27/2023] Open
Abstract
Intravascular lymphoma is a form of lymphoid malignancy characterized by neoplastic cells growing almost exclusively within the lumina of small- to medium-sized blood vessels. Most cases are of B-cell origin with rare cases of natural killer or T-cell lineage. Extranodal sites are affected, mainly the skin and central nervous system, although any organ may be involved. Intravascular NK/T-cell lymphoma deserves special attention because of its clinicopathologic features and the need for adequate immunophenotyping combined with clonality test for a proper diagnosis. Moreover, intravascular NK/T-cell lymphoma is strongly linked to Epstein-Barr virus (EBV), which is considered to play a role in tumorigenesis and to be responsible for the aggressive behavior of the disease. In this paper, we review the current knowledge on this rare lymphoma and, in particular, the most recent advances about its molecular landscape. The main distinguishing features with other EBV-related entities, such as extranodal NK/T-cell lymphoma, EBV-positive primary nodal T/NK-cell lymphoma, and aggressive NK-cell leukemia, are discussed to help pathologists obtain the correct diagnosis and consequently develop an adequate and prompt therapy response.
Collapse
Affiliation(s)
- Magda Zanelli
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
| | - Paola Parente
- Pathology Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy
| | | | - Maurizio Zizzo
- Surgical Oncology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
| | - Andrea Palicelli
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
| | - Alessandra Bisagni
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
| | - Illuminato Carosi
- Pathology Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy
| | - Domenico Trombetta
- Laboratory Oncology, Fondazione IRCCS Casa Sollievo della Sofferenza San Giovanni Rotondo, 71013 San Giovanni Rotondo, Italy
| | - Luca Mastracci
- Anatomic Pathology, Ospedale Policlinico San Martino IRCCS Genova, 16132 Genova, Italy
| | - Linda Ricci
- Pathology Unit, Azienda Ospedaliera Santa Maria di Terni, University of Perugia, 05100 Terni, Italy
| | - Saverio Pancetti
- Pathology Unit, Humanitas University, Pieve Emanuele, 20072 Milan, Italy
- Pathology Unit, Humanitas Research Hospital-IRCCS, Rozzano, 20089 Milan, Italy
| | - Giovanni Martino
- Pathology Unit, Azienda Ospedaliera Santa Maria di Terni, University of Perugia, 05100 Terni, Italy
| | - Giuseppe Broggi
- Department of Medical and Surgical Sciences and Advanced Technologies “G.F. Ingrassia” Anatomic Pathology, University of Catania, 95123 Catania, Italy
| | - Rosario Caltabiano
- Department of Medical and Surgical Sciences and Advanced Technologies “G.F. Ingrassia” Anatomic Pathology, University of Catania, 95123 Catania, Italy
| | - Alberto Cavazza
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
| | - Stefano Ascani
- Pathology Unit, Azienda Ospedaliera Santa Maria di Terni, University of Perugia, 05100 Terni, Italy
| |
Collapse
|
10
|
Genetic profiling and biomarkers in peripheral T-cell lymphomas: current role in the diagnostic work-up. Mod Pathol 2022; 35:306-318. [PMID: 34584212 DOI: 10.1038/s41379-021-00937-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/15/2021] [Accepted: 09/16/2021] [Indexed: 11/08/2022]
Abstract
Peripheral T-cell lymphomas are a heterogeneous, and usually aggressive, group of mature T-cell neoplasms with overlapping clinical, morphologic and immunologic features. A large subset of these neoplasms remains unclassifiable with current diagnostic methods ("not otherwise specified"). Genetic profiling and other molecular tools have emerged as widely applied and transformative technologies for discerning the biology of lymphomas and other hematopoietic neoplasms. Although the application of these technologies to peripheral T-cell lymphomas has lagged behind B-cell lymphomas and other cancers, molecular profiling has provided novel prognostic and diagnostic markers as well as an opportunity to understand the biologic mechanisms involved in the pathogenesis of these neoplasms. Some biomarkers are more prevalent in specific T-cell lymphoma subsets and are being used currently in the diagnosis and/or risk stratification of patients with peripheral T-cell lymphomas. Other biomarkers, while promising, need to be validated in larger clinical studies. In this review, we present a summary of our current understanding of the molecular profiles of the major types of peripheral T-cell lymphoma. We particularly focus on the use of biomarkers, including those that can be detected by conventional immunohistochemical studies and those that contribute to the diagnosis, classification, or risk stratification of these neoplasms.
Collapse
|
11
|
Shafiee A, Shamsi S, Kohandel Gargari O, Beiky M, Allahkarami MM, Miyanaji AB, Aghajanian S, Mozhgani SH. EBV associated T- and NK-cell lymphoproliferative diseases: A comprehensive overview of clinical manifestations and novel therapeutic insights. Rev Med Virol 2022; 32:e2328. [PMID: 35122349 DOI: 10.1002/rmv.2328] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/27/2021] [Accepted: 01/13/2022] [Indexed: 11/09/2022]
Abstract
EBV is a ubiquitous virus that infects nearly all people around the world. Most infected people are asymptomatic and do not show serious sequelae, while others may develop Epstein-Barr virus (EBV)-positive T and NK-cell lymphoproliferations characterised by EBV-infected T or NK cells. These disorders are more common in Asian and Latin American people, suggesting genetic predisposition as a contributing factor. The revised WHO classification classifies the lymphoproliferative diseases as: extranodal NK/T-cell lymphoma nasal type (ENKTL), aggressive NK-cell leukemia (ANKL), primary EBV-positive nodal T or NK cell lymphoma (NNKTL), systemic EBV-positive T-cell lymphoproliferative disease of childhood (STCLC), systemic chronic active EBV infection (sys CAEBV), hydroa-vacciniforme (HV) and severe mosquito bite allergy (SMBA). Recent advances in the molecular pathogenesis of these diseases have led to the development of new therapeutic strategies. Due to the infrequency of the diseases and broad clinicopathological overlap, the diagnosis and classification are challenging for both clinicians and pathologists. In this article, we aim to review the recent pathological findings which can be helpful for designing new drugs, clinical presentations and differential diagnoses, and suggested therapeutic interventions to provide a better understanding of these rare disorders.
Collapse
Affiliation(s)
- Arman Shafiee
- Student Research Committee, Alborz University of Medical Sciences, Karaj, Iran
| | - Sahel Shamsi
- Student Research Committee, Alborz University of Medical Sciences, Karaj, Iran
| | | | - Maryam Beiky
- Student Research Committee, Alborz University of Medical Sciences, Karaj, Iran
| | | | | | - Sepehr Aghajanian
- Student Research Committee, Alborz University of Medical Sciences, Karaj, Iran
| | - Sayed-Hamidreza Mozhgani
- Department of Microbiology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran.,Non-communicable Disease Research Center, Alborz University of Medical Sciences, Karaj, Iran
| |
Collapse
|
12
|
The Pathologic and Genetic Characteristics of Extranodal NK/T-Cell Lymphoma. Life (Basel) 2022; 12:life12010073. [PMID: 35054466 PMCID: PMC8781285 DOI: 10.3390/life12010073] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/01/2022] [Accepted: 01/03/2022] [Indexed: 12/14/2022] Open
Abstract
Extranodal NK/T-cell lymphoma is a neoplasm of NK cells or cytotoxic T cells presenting in extranodal sites, most often in the nasal cavity. The typical immunophenotypes are cCD3+, sCD3-, CD4-, CD5-, CD8-, CD16-, and CD56+ with the expression of cytotoxic molecules. Tumor subsets express NK cell receptors, CD95/CD95L, CD30, MYC, and PDL1. Virtually all the tumor cells harbor the EBV genome, which plays a key role in lymphomagenesis as an epigenetic driver. EBV-encoded oncoproteins modulate the host-cell epigenetic machinery, reprogramming the viral and host epigenomes using host epigenetic modifiers. NGS analysis revealed the mutational landscape of ENKTL, predominantly involving the JAK-STAT pathway, epigenetic modifications, the RNA helicase family, the RAS/MAP kinase pathway, and tumor suppressors, which indicate an important role of these pathways and this group of genes in the lymphomagenesis of ENKTL. Recently, three molecular subtypes were proposed, the tumor-suppressor/immune-modulator (TSIM), MGA-BRDT (MB), and HDAC9-EP300-ARID1A (HEA) subtypes, and they are well-correlated with the cell of origin, EBV pattern, genomic alterations, and clinical outcomes. A future investigation into the function and interaction of discovered genes would be very helpful for better understanding the molecular pathogenesis of ENKTL and establishing better treatment strategies.
Collapse
|
13
|
Yang R, Ai Y, Liu C, Lu X. Aggressive Natural Killer Cell Leukemia in an Adolescent Patient: A Case Report and Literature Review. Front Pediatr 2022; 10:829927. [PMID: 35676895 PMCID: PMC9168658 DOI: 10.3389/fped.2022.829927] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 03/28/2022] [Indexed: 12/16/2022] Open
Abstract
Aggressive natural killer cell leukemia (ANKL) is a rare malignant tumor, especially uncommon in children. ANKL has very aggressive clinical course and bad prognosis and is usually caused by Epstein-Barr virus infection. ANKL often has clinical manifestations of hemophagocytic lymphohistiocytosis (HLH) and can be easily treated as HLH, which might complicate this aggressive disease. Here we report an ANKL in adolescent whose clinical presentation was highly aggressive and response to L-asparaginase containing chemotherapy was very bad. Early-onset Flow cytometry of peripheral blood and bone marrow help make the diagnosis.
Collapse
Affiliation(s)
- Rong Yang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China.,Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yuan Ai
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China.,Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Chuan Liu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China.,Department of Radiology, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Xiaoxi Lu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China.,Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
14
|
Peng XH, Zhang LS, Li LJ, Guo XJ, Liu Y. Aggressive natural killer cell leukemia with skin manifestation associated with hemophagocytic lymphohistiocytosis: A case report. World J Clin Cases 2021; 9:10708-10714. [PMID: 35005005 PMCID: PMC8686140 DOI: 10.12998/wjcc.v9.i34.10708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 07/08/2021] [Accepted: 08/23/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Aggressive natural killer cell leukemia (ANKL) is a rare natural killer cell neoplasm characterized by systemic infiltration of Epstein–Barr virus and rapidly progressive clinical course. ANKL can be accompanied with hemophagocytic lymphohistiocytosis (HLH). Here, we report a case of ANKL with rare skin lesions as an earlier manifestation, accompanied with HLH, and review the literature in terms of etiology, clinical manifestation, diagnosis and treatment.
CASE SUMMARY A 30-year-old woman from Northwest China presented with the clinical characteristics of jaundice, fever, erythema, splenomegaly, progressive hemocytopenia, liver failure, quantities of abnormal cells in bone marrow, and associated HLH. The immunophenotypes of abnormal cells were positive for CD2, cCD3, CD7, CD56, CD38 and negative for sCD3, CD8 and CD117. The diagnosis of ANKL complicated with HLH was confirmed. Following the initial diagnosis and supplementary treatment, the patient received chemotherapy with VDLP regimen (vincristine, daunorubicin, L-asparaginase and prednisone). However, the patient had severe adverse reactions and complication such as severe hematochezia, neutropenia, and multiple organ dysfunction syndrome, and died a few days later.
CONCLUSION This is the first reported case of ANKL with rare skin lesions as an earlier manifestation and associated with HLH.
Collapse
Affiliation(s)
- Xiao-Huan Peng
- Department of Hematology, Second Hospital of Lanzhou University, Lanzhou 730030, Gansu Province, China
| | - Lian-Sheng Zhang
- Department of Hematology, Second Hospital of Lanzhou University, Lanzhou 730030, Gansu Province, China
| | - Li-Juan Li
- Department of Hematology, Second Hospital of Lanzhou University, Lanzhou 730030, Gansu Province, China
| | - Xiao-Jia Guo
- Department of Hematology, Second Hospital of Lanzhou University, Lanzhou 730030, Gansu Province, China
| | - Yang Liu
- Department of Hematology, Second Hospital of Lanzhou University, Lanzhou 730030, Gansu Province, China
| |
Collapse
|
15
|
Bigas A, Rodriguez-Sevilla JJ, Espinosa L, Gallardo F. Recent advances in T-cell lymphoid neoplasms. Exp Hematol 2021; 106:3-18. [PMID: 34879258 DOI: 10.1016/j.exphem.2021.12.191] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 11/29/2021] [Accepted: 12/02/2021] [Indexed: 12/14/2022]
Abstract
T Cells comprise many subtypes of specified lymphocytes, and their differentiation and function take place in different tissues. This cellular diversity is also observed in the multiple ways T-cell transformation gives rise to a variety of T-cell neoplasms. This review covers the main types of T-cell malignancies and their specific characteristics, emphasizing recent advances at the cellular and molecular levels as well as differences and commonalities among them.
Collapse
Affiliation(s)
- Anna Bigas
- Program in Cancer Research, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), CIBERONC, Barcelona, Spain; Institut Josep Carreras contra la Leucemia, Barcelona, Spain.
| | | | - Lluis Espinosa
- Program in Cancer Research, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), CIBERONC, Barcelona, Spain
| | - Fernando Gallardo
- Dermatology Department, Parc de Salut Mar-Hospital del Mar, Barcelona, Spain.
| |
Collapse
|
16
|
Epstein-Barr Virus-Associated T- and NK-Cell Lymphoproliferative Diseases: A Review of Clinical and Pathological Features. Cancers (Basel) 2021; 13:cancers13133315. [PMID: 34282778 PMCID: PMC8268319 DOI: 10.3390/cancers13133315] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/23/2021] [Accepted: 06/29/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary In most Epstein–Barr virus (EBV)-infected individuals, the virus establishes a lifelong latent infection with no specific clinical manifestation. However, EBV primary infection and secondary reactivation may cause various EBV-associated lymphoproliferative disorders (LPD), including hematologic malignancies. Among them, EBV-positive T/NK LPD are uncommon diseases defined by the proliferation of T- or NK-cells infected by EBV, more commonly encountered in Asians and Latin Americans. They encompass a spectrum of disorders ranging from indolent reactive lesions to malignant and aggressive diseases. Despite novel insights from high-throughput molecular studies, the pathogenesis of these disorders is not well understood, and EBV-positive T/NK LPD diagnoses remain challenging due to their rarity and considerable overlap. Indeed, this article discusses new insights into EBV-positive T/NK LPD and focuses on diagnosis challenges, describing the difficulties to clarify the borders between overlapping LPD subtypes. Abstract Epstein–Barr virus (EBV) is a ubiquitous virus detected in up to 95% of the general population. Most people are asymptomatic, while some may develop a wide range of EBV-associated lymphoproliferative disorders (LPD). Among them, EBV-positive T/NK LPD are uncommon diseases defined by the proliferation of T- or NK-cells infected by EBV. The 2017 World Health Organization (WHO) classification recognizes the following entities characterized by different outcomes: chronic active EBV infection of T- or NK-cell types (cutaneous and systemic forms), systemic EBV-positive T-cell lymphoma of childhood, EBV-positive aggressive NK-cell leukemia, extra nodal NK/T-cell lymphoma nasal type, and the new provisional entity known as primary EBV-positive nodal T/NK-cell lymphoma. In addition, EBV associated-hemophagocytic lymphohistiocytosis is part of EBV-positive T/NK LPD, but has not been included in the WHO classification due to its reactive nature. Despite novel insights from high-throughput molecular studies, EBV-positive NK/T-cell LPD diagnoses remain challenging, especially because of their rarity and overlap. Until now, an accurate EBV-positive NK/T LPD diagnosis has been based on its clinical presentation and course correlated with its histological features. This review aims to summarize clinical, pathological and molecular features of EBV-positive T/NK LPD subtypes and to provide an overview of new understandings regarding these rare disorders.
Collapse
|
17
|
EBV and the Pathogenesis of NK/T Cell Lymphoma. Cancers (Basel) 2021; 13:cancers13061414. [PMID: 33808787 PMCID: PMC8003370 DOI: 10.3390/cancers13061414] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/13/2021] [Accepted: 03/17/2021] [Indexed: 12/23/2022] Open
Abstract
Epstein-Barr virus (EBV) is a ubiquitous gamma herpes virus with tropism for B cells. EBV is linked to the pathogenesis of B cell, T cell and NK cell lymphoproliferations, with extranodal NK/T cell lymphoma, nasal type (ENKTCL) being the prototype of an EBV-driven lymphoma. ENKTCL is an aggressive neoplasm, particularly widespread in East Asia and the native population of Latin America, which suggests a strong genetic predisposition. The link between ENKTCL and different populations has been partially explored. EBV genome sequencing analysis recognized two types of strains and identified variants of the latent membrane protein 1 (LMP1), which revealed different oncogenic potential. In general, most ENKTCL patients carry EBV type A with LMP1 wild type, although the LMP1 variant with a 30 base pair deletion is also common, especially in the EBV type B, where it is necessary for oncogenic transformation. Contemporary high-throughput mutational analyses have discovered recurrent gene mutations leading to activation of the JAK-STAT pathway, and mutations in other genes such as BCOR, DDX3X and TP53. The genomic landscape in ENKTCL highlights mechanisms of lymphomagenesis, such as immune response evasion, secondary to alterations in signaling pathways or epigenetics that directly or indirectly interfere with oncogenes or tumor suppressor genes. This overview discusses the most important findings of EBV pathogenesis and genetics in ENKTCL.
Collapse
|
18
|
Kennedy VE, Ruiz-Cordero R, Jangam D, Wen KW, Dunavin N, Ohgami RS, Bhargava P, Ai W, Fakhri B. A Case of EBV-Negative Aggressive NK-cell Leukemia: Use of Next-Generation Sequencing in Demystifying a Diagnostic Dilemma and Guiding Clinical Care. CLINICAL LYMPHOMA MYELOMA & LEUKEMIA 2021; 21:e583-e587. [PMID: 33814335 DOI: 10.1016/j.clml.2021.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 02/20/2021] [Indexed: 11/28/2022]
Affiliation(s)
- Vanessa E Kennedy
- Department of Medicine, University of California, San Francisco, CA.
| | | | - Diwash Jangam
- Department of Pathology, Stanford University, Stanford, CA
| | - Kwun Wah Wen
- Department of Pathology, University of California, San Francisco, CA
| | - Neil Dunavin
- Department of Medicine, University of California, San Francisco, CA
| | - Robert S Ohgami
- Department of Pathology, University of California, San Francisco, CA
| | - Parul Bhargava
- Department of Pathology, University of California, San Francisco, CA
| | - Weiyun Ai
- Department of Medicine, University of California, San Francisco, CA
| | - Bita Fakhri
- Department of Medicine, University of California, San Francisco, CA
| |
Collapse
|
19
|
Abstract
Aggressive natural killer-cell leukemia (ANKL) is a rare, lethal disease with pathologic features that are underdescribed in the literature, particularly in Western nations. In addition, although data on the molecular pathogenesis of ANKL has been reported, evaluation of such data in a clinicopathologic context remains limited. Patients diagnosed with ANKL were identified retrospectively. Detailed demographic and clinicopathologic data were analyzed. We assessed novel markers by immunohistochemistry and performed targeted next-generation sequencing analysis. The study group included 9 men and 3 women with a median age at diagnosis of 47.5 years (range, 20 to 75 y). Two distinct patterns of bone marrow involvement were identified: interstitial and sinusoidal. The neoplastic cells were positive for CD56 and CD94, and negative for surface CD3, CD5, and CD57 in all cases assessed. They were also positive for CD2 (10/12), c-MYC (6/8), BCL2 (6/8), CD16 (5/7), EBER (9/12), CD7 (6/11), pSTAT3 (3/8), CD8 (2/6), PD-L1 (2/8), CD4 (2/11), CD8 (2/6), and CD158 (1/5). Aberrant p53 expression was identified in most (7/8) cases; p53 was strongly expressed in 4 cases. Conventional cytogenetic analysis showed clonal abnormalities in 5 of 12 cases. TP53 mutations were detected in 3 of 6 cases, whereas ASXL1 and TET2 mutations were each detected in 2 of 6 cases. Patients had very poor outcomes despite intensive chemotherapy, with a median survival of 2 months. ANKL exhibits 2 distinct patterns of tissue involvement. Neoplastic cells in ANKL are commonly positive for c-MYC and EBER, and they have a high frequency of p53 overexpression, frequently with corresponding TP53 mutations.
Collapse
|
20
|
Sejic N, George LC, Tierney RJ, Chang C, Kondrashova O, MacKinnon RN, Lan P, Bell AI, Lessene G, Long HM, Strasser A, Shannon-Lowe C, Kelly GL. BCL-XL inhibition by BH3-mimetic drugs induces apoptosis in models of Epstein-Barr virus-associated T/NK-cell lymphoma. Blood Adv 2020; 4:4775-4787. [PMID: 33017468 PMCID: PMC7556124 DOI: 10.1182/bloodadvances.2020002446] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 08/26/2020] [Indexed: 12/15/2022] Open
Abstract
Epstein-Barr virus (EBV)-associated T- and natural killer (NK)-cell malignancies, such as extranodal NK-/T-cell lymphoma (ENKTL), exhibit high chemoresistance and, accordingly, such patients have a poor prognosis. The rare nature of such cancers and nonmalignant T/NK lymphoproliferative disorders, such as chronic active EBV (CAEBV), has limited our understanding of the pathogenesis of these diseases. Here, we characterize a panel of ENKTL- and CAEBV-derived cell lines that had been established from human tumors to be used as preclinical models of these diseases. These cell lines were interleukin-2 dependent and found to carry EBV in a latency II gene-expression pattern. All cell lines demonstrated resistance to cell death induction by DNA damage-inducing agents, the current standard of care for patients with these malignancies. This resistance was not correlated with the function of the multidrug efflux pump, P-glycoprotein. However, apoptotic cell death could be consistently induced following treatment with A-1331852, a BH3-mimetic drug that specifically inhibits the prosurvival protein BCL-XL. A-1331852-induced apoptosis was most efficacious when prosurvival MCL-1 was additionally targeted, either by BH3-mimetics or genetic deletion. Xenograft models established from the ENKTL cell line SNK6 provided evidence that A-1331852 treatment could be therapeutically beneficial in vivo. The data here suggest that therapeutic targeting of BCL-XL would be effective for patients with EBV-driven T/NK proliferative diseases, however, MCL-1 could be a potential resistance factor.
Collapse
Affiliation(s)
- Nenad Sejic
- The Walter and Eliza Hall Institute for Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
- Institute of Immunology and Immunotherapy and
| | - Lindsay C George
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Rosemary J Tierney
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Catherine Chang
- The Walter and Eliza Hall Institute for Medical Research, Parkville, VIC, Australia
| | - Olga Kondrashova
- The Walter and Eliza Hall Institute for Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
- QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Ruth N MacKinnon
- Victorian Cancer Cytogenetics Service, St. Vincent's Hospital Melbourne, Fitzroy, VIC, Australia; and
- Department of Medicine (St. Vincent's) and
| | - Ping Lan
- The Walter and Eliza Hall Institute for Medical Research, Parkville, VIC, Australia
| | - Andrew I Bell
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Guillaume Lessene
- The Walter and Eliza Hall Institute for Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
- Department of Pharmacology and Therapeutics, The University of Melbourne, Parkville, VIC, Australia
| | | | - Andreas Strasser
- The Walter and Eliza Hall Institute for Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | | | - Gemma L Kelly
- The Walter and Eliza Hall Institute for Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
21
|
Aggressive NK Cell Leukemia: Current State of the Art. Cancers (Basel) 2020; 12:cancers12102900. [PMID: 33050313 PMCID: PMC7600035 DOI: 10.3390/cancers12102900] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/18/2020] [Accepted: 09/29/2020] [Indexed: 12/16/2022] Open
Abstract
Simple Summary Aggressive natural killer cell leukemia (ANKL) is a rare, lethal disease that presents many diagnostic and therapeutic challenges. Recent studies have shed new light on the salient features of its molecular pathogenesis and provided further insight into the clinicopathologic spectrum of this disease. This review presents a state-of-the-art overview of ANKL, spanning its historical evolution as a distinct entity, pathobiology, and potential therapeutic vulnerabilities. Abstract Aggressive natural killer (NK) cell leukemia (ANKL) is a rare disease with a grave prognosis. Patients commonly present acutely with fever, constitutional symptoms, hepatosplenomegaly, and often disseminated intravascular coagulation or hemophagocytic syndrome. This acute clinical presentation and the variable pathologic and immunophenotypic features of ANKL overlap with other diagnostic entities, making it challenging to establish a timely and accurate diagnosis of ANKL. Since its original recognition in 1986, substantial progress in understanding this disease using traditional pathologic approaches has improved diagnostic accuracy. This progress, in turn, has facilitated the performance of recent high-throughput studies that have yielded insights into pathogenesis. Molecular abnormalities that occur in ANKL can be divided into three major groups: JAK/STAT pathway activation, epigenetic dysregulation, and impairment of TP53 and DNA repair. These high-throughput data also have provided potential therapeutic targets that promise to improve therapy and outcomes for patients with ANKL. In this review, we provide a historical context of the conception and evolution of ANKL as a disease entity, we highlight advances in diagnostic criteria to recognize this disease, and we review recent understanding of pathogenesis as well as biomarker discoveries that are providing groundwork for innovative therapies.
Collapse
|
22
|
Gao J, Zhang Y, Yaseen NR, Fang Y, Lu X, Sukhanova M, Chen Q, Chen YH. Comprehensive molecular genetic studies of Epstein-Barr virus-negative aggressive Natural killer-cell leukemia/lymphoma. Hum Pathol 2020; 105:20-30. [PMID: 32890601 DOI: 10.1016/j.humpath.2020.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/22/2020] [Accepted: 08/25/2020] [Indexed: 11/25/2022]
Abstract
EBV-negative aggressive NK-cell leukemia/lymphoma (ANKL) is a recently recognized, rare NK-cell neoplasm that preferentially affects non-Asians and has a fulminant clinical course. Little is known about the genetic alterations of this disease. In this study, we performed comprehensive molecular genetic studies, including chromosomal analysis, fluorescence in situ hybridization, single nucleotide polymorphism (SNP) microarray, and next-generation sequencing (NGS), on 4 patients diagnosed in our institution. The results demonstrated that our EBV-negative ANKLs have highly complex genomic profiles characterized by near-triploid/near-tetraploid karyotype (3 of 3) with numerous structural abnormalities, inactivation of TP53 (3 of 3), overexpression of c-Myc (4 of 4), strong expression of PD-L1 in neoplastic cells (2 of 4), and gain of the 11q23-ter region (2 of 2). Our study provides important insights of EBV-negative ANKL, which share many of the genetic features with their EBV-positive counterpart. The strong expression of Programmed death-ligand 1 (PD-L1) suggests that immune checkpoint inhibitors may be further explored as a potential therapeutic option for this highly aggressive, chemotherapy-resistant NK-cell neoplasm.
Collapse
Affiliation(s)
- Juehua Gao
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| | - Yanming Zhang
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Nabeel R Yaseen
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Yuqiang Fang
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Xinyan Lu
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Madina Sukhanova
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Qing Chen
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Yi-Hua Chen
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| |
Collapse
|
23
|
Allogeneic stem cell transplantation for patients with aggressive NK-cell leukemia. Bone Marrow Transplant 2020; 56:347-356. [PMID: 32778688 DOI: 10.1038/s41409-020-01009-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/18/2020] [Accepted: 07/21/2020] [Indexed: 11/08/2022]
Abstract
Aggressive NK-cell leukemia (ANKL) has a fulminant clinical course with a poor prognosis. Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is currently the only curative treatment. Using the Japanese transplant registry data, the outcomes of 59 ANKL patients who underwent first allo-HSCT were analyzed. Twenty-nine patients received stem cells from cord blood (CB), 18 from peripheral blood, and 12 from bone marrow. At the time of transplant 21 patients had complete response (CR), and 7 partial response (PR), but 31 without response. The 1-year and 5-year overall survival (OS) were 33.9% and 27.3%, respectively. The 1-year cumulative incidences of relapse or progression was 55.5%, and that of non-relapse mortality was 12.1%. The OS was significantly better for patients with CR or PR at the time of allo-HSCT (P = 0.046), which was equivalent to that for patients who experienced primary induction failure at the time of allo-HSCT but achieved CR afterwards (40.6% versus 32.0% at 5 years; P = 0.95). Patients receiving CB had a significantly better OS than those receiving stem cells from others (37.3% versus 16.2% at 5 years; P = 0.04). Patients achieving event-free survival at 12 months after allo-HSCT had good outcomes with 5-year OS of 85.2%.
Collapse
|
24
|
Li H, Lyu W. Intestinal NK/T cell lymphoma: A case report. World J Gastroenterol 2020; 26:3989-3997. [PMID: 32774072 PMCID: PMC7385560 DOI: 10.3748/wjg.v26.i27.3989] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/09/2020] [Accepted: 06/23/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The incidence of intestinal NK/T cell lymphoma (NKTCL) is extremely low, and the clinical symptoms are atypical, which makes it difficult to distinguish this disorder from Crohn's disease (CD), T lymphocyte proliferative disease, and other immune disorders. The misdiagnosis rate is high, and the patient's prognosis is poor.
CASE SUMMARY In this case, the patient had repeated high fever, colonoscopy revealed multiple ulcers, and the initial diagnosis was CD. The patient’s condition did not improve after treatment with hormones and infliximab, and she eventually died. Positron emission tomographic-computed tomographic and B-ultrasound were performed in our hospital and showed that multiple lymph nodes were enlarged. Immunohistochemi-stry showed that CD3 and Epstein-Barr virus encoded RNA expression was positive. Colonoscopy, tissue biopsy, and histopathology showed intestinal focal mucosal infiltration of heterotypic lymphocytes with an abnormal immune phenotype. On the basis of the patient’s medical history, auxiliary examination, and pathological findings, digestive physicians and pathologists gave the diagnosis of NKTCL.
CONCLUSION Clinicians need to improve their comprehensive knowledge of NKTCL, and combination of clinical symptoms, histological characteristics, as well as colonoscopy biopsies should be considered to improve the diagnosis and thereby reduce misdiagnosis.
Collapse
Affiliation(s)
- Hui Li
- Department of Gastroenterology, Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310000, Zhejiang Province, China
| | - Wen Lyu
- Department of Gastroenterology, Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310000, Zhejiang Province, China
| |
Collapse
|
25
|
Saleem A, Natkunam Y. Extranodal NK/T-Cell Lymphomas: The Role of Natural Killer Cells and EBV in Lymphomagenesis. Int J Mol Sci 2020; 21:E1501. [PMID: 32098335 PMCID: PMC7073055 DOI: 10.3390/ijms21041501] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 02/15/2020] [Accepted: 02/18/2020] [Indexed: 02/07/2023] Open
Abstract
Keywords: NK cells, extranodal NK/T-cell lymphoma, EBV.
Collapse
Affiliation(s)
| | - Yasodha Natkunam
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA;
| |
Collapse
|
26
|
Ayee R, Ofori MEO, Wright E, Quaye O. Epstein Barr Virus Associated Lymphomas and Epithelia Cancers in Humans. J Cancer 2020; 11:1737-1750. [PMID: 32194785 PMCID: PMC7052849 DOI: 10.7150/jca.37282] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 12/01/2019] [Indexed: 02/06/2023] Open
Abstract
Epstein Barr virus (EBV) is a cosmopolitan oncogenic virus, infecting about 90% of the world's population and it is associated to tumors originating from both epithelia and hematopoietic cells. Transmission of the virus is mainly through oral secretions; however, transmission through organ transplantation and blood transfusion has been reported. In order to evade immune recognition, EBV establishes latent infection in B lymphocytes where it expresses limited sets of proteins called EBV transcription programs (ETPs), including six nuclear antigens (EBNAs), three latent membrane proteins (LMP), and untranslated RNA called EBV encoded RNA (EBER), shown to efficiently transform B cells into lymphoblastic cells. These programs undergo different patterns of expression which determine the occurrence of distinct types of latency in the pathogenesis of a particular tumor. Hematopoietic cell derived tumors include but not limited to Burkitt's lymphoma, Hodgkin lymphoma, post-transplant lymphoproliferative disorders, and natural killer (NK)/T cell lymphoma. EBV undergoes lytic infection in epithelia cells for amplification of the viral particle for transmission where it expresses lytic stage genes. However, for reasons yet to be unveiled, EBV switches from the expression of lytic stage genes to the expression of ETPs in epithelia cells. The expression of the ETPs lead to the transformation of epithelia cells into permanently proliferating cells, resulting in epithelia cell derived malignancies such as nasopharyngeal cancer, gastric cancer, and breast cancer. In this review, we have summarized the current updates on EBV associated epithelial and B cell-derived malignancies, and the role of EBV latency gene products in the pathogenesis of the cancers, and have suggested areas for future studies when considering therapeutic measures.
Collapse
Affiliation(s)
- Richmond Ayee
- Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Legon, Accra, Ghana
- West African Center for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Legon, Accra, Ghana
| | | | - Edward Wright
- Department of Biochemistry, University of Sussex, Brighton, U.K
| | - Osbourne Quaye
- Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Legon, Accra, Ghana
- West African Center for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Legon, Accra, Ghana
| |
Collapse
|
27
|
Soderquist CR, Bhagat G. Gastrointestinal T- and NK-cell lymphomas and indolent lymphoproliferative disorders. Semin Diagn Pathol 2020; 37:11-23. [DOI: 10.1053/j.semdp.2019.08.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
28
|
Abstract
Mature T-cell and NK-cell leukemias represent a clinically heterogeneous group of diseases, ranging from indolent expansions of large granular lymphocytes, to aggressive diseases that are associated with a fulminant clinical course. Recent advances in genomic methodologies have massively increased the understanding of the pathogenesis of this group of diseases. While the entities are genetically heterogeneous, JAK-STAT pathway activation appears to be important across these disorders. The identification of constitutively activated pathways and the emergence of novel targeted pharmaceutical agents raise the expectation that more effective therapies will be identified for these disorders in the coming years.
Collapse
Affiliation(s)
| | - Kojo S J Elenitoba-Johnson
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19102, United States.
| |
Collapse
|
29
|
Montes-Mojarro IA, Kim WY, Fend F, Quintanilla-Martinez L. Epstein - Barr virus positive T and NK-cell lymphoproliferations: Morphological features and differential diagnosis. Semin Diagn Pathol 2019; 37:32-46. [PMID: 31889602 DOI: 10.1053/j.semdp.2019.12.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The spectrum of Epstein-Barr virus (EBV)-positive T and NK-cell lymphoproliferations is broad and ranges from reactive self-limited disorders to neoplastic processes with a fulminant clinical course. EBV plays an important role promoting lymphomagenesis, although the precise mechanisms remain elusive. EBV-positive lymphoproliferative disorders (LPD) are more common in East Asia (China, Japan, Korea and Taiwan), and Latin America suggesting a strong genetic predisposition. The revised 2016 World Health Organization (WHO) lymphoma classification recognizes the following malignant NK- and T-cell lymphomas; extranodal NK/T-cell lymphoma, nasal type (ENKTCL), aggressive NK-cell leukemia (ANKL), and the provisional entity within the group of peripheral T-cell lymphoma, not otherwise specified (PTCL, NOS) "primary EBV-positive nodal T or NK cell lymphoma". Disorders presenting mainly in children and young adults include chronic active EBV infection (CAEBV) - systemic and cutaneous forms - which are not considered malignant disorders but were included in the WHO classification for the first time because of the differential diagnosis with other T- or NK-cell lymphomas. CAEBV, cutaneous form, includes hydroa vacciniforme-like LPD (HV-LPD) and severe mosquito bite allergy (SMBA). Finally, systemic EBV-positive T-cell lymphoma of childhood was recognized as lymphoma because of its fulminant clinical course. Given the shared pathogenesis of these disorders, overlapping features are common demanding a close clinical, morphological and molecular correlation for an accurate diagnosis. This review summarizes the clinical, histopathological and molecular features of EBV-associated T and NK-cell LPD, highlighting the main features that might aid in the differential diagnosis.
Collapse
Affiliation(s)
- Ivonne A Montes-Mojarro
- Institute of Pathology and Neuropathology and Comprehensive Cancer Center Tübingen, University Hospital Tübingen, Eberhard-Karls-University, Tübingen, Germany
| | - Wook Youn Kim
- Institute of Pathology and Neuropathology and Comprehensive Cancer Center Tübingen, University Hospital Tübingen, Eberhard-Karls-University, Tübingen, Germany; Department of Pathology, Konkuk University School of Medicine, Seoul, Republic of Korea
| | - Falko Fend
- Institute of Pathology and Neuropathology and Comprehensive Cancer Center Tübingen, University Hospital Tübingen, Eberhard-Karls-University, Tübingen, Germany
| | - Leticia Quintanilla-Martinez
- Institute of Pathology and Neuropathology and Comprehensive Cancer Center Tübingen, University Hospital Tübingen, Eberhard-Karls-University, Tübingen, Germany.
| |
Collapse
|
30
|
Cohen JI, Iwatsuki K, Ko YH, Kimura H, Manoli I, Ohshima K, Pittaluga S, Quintanilla-Martinez L, Jaffe ES. Epstein-Barr virus NK and T cell lymphoproliferative disease: report of a 2018 international meeting. Leuk Lymphoma 2019; 61:808-819. [PMID: 31833428 DOI: 10.1080/10428194.2019.1699080] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Epstein-Barr virus (EBV) normally infects B cells, but in some persons the virus infects T or NK cells. Infection of B cells can result in infectious mononucleosis, and the virus is associated with several B cell malignancies including Hodgkin lymphoma, Burkitt lymphoma, and diffuse large B cell lymphoma. Infection of T or NK cells with EBV is associated with extranodal NK/T cell lymphoma, aggressive NK-cell leukemia, systemic EBV-associated T-cell lymphoma, and chronic active EBV disease, which in some cases can include hydroa vacciniforme-like lymphoproliferative disease and severe mosquito bite allergy. While NK and T cell lymphoproliferative disease is more common in Asia and Latin America, increasing numbers of cases are being reported from the United States and Europe. This review focuses on classification, clinical findings, pathogenesis, and recent genetic advances in NK and T cell lymphoproliferative diseases associated with EBV.
Collapse
Affiliation(s)
- Jeffrey I Cohen
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Keiji Iwatsuki
- Department of Dermatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Young-Hyeh Ko
- Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Hiroshi Kimura
- Department of Virology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Irini Manoli
- Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Koichi Ohshima
- Department of Pathology, Kurume University School of Medicine, Niigata University, Niigata, Japan
| | - Stefania Pittaluga
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | | | - Elaine S Jaffe
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
31
|
Epstein-Barr virus-associated T- and NK-cell lymphoproliferative diseases: an update and diagnostic approach. Pathology 2019; 52:111-127. [PMID: 31767131 DOI: 10.1016/j.pathol.2019.09.011] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 09/11/2019] [Accepted: 09/12/2019] [Indexed: 11/21/2022]
Abstract
Epstein-Barr virus (EBV)-positive T-cell and natural killer (NK)-cell lymphoproliferative diseases (EBV-TNKLPD) are a group of uncommon disorders characterised by EBV infection of T- and NK-cells. As a group, EBV-TNKLPD are more commonly encountered in Asians and Native Americans from Central and South America compared to Western populations. They encompass a spectrum of entities that range from non-neoplastic lesions such as EBV-associated haemophagocytic lymphohistiocytosis (EBV-HLH) to more chronic conditions with variable outcomes such as chronic active EBV infections (CAEBV) of T- and NK-cell type (cutaneous and systemic forms) and malignant diseases such as systemic EBV-positive T-cell lymphoma of childhood, aggressive NK-cell leukaemia, extranodal NK/T-cell lymphoma, nasal-type, and primary EBV-positive nodal T/NK-cell lymphoma. Due to their rarity, broad clinicopathological spectrum and significant morphological and immunophenotypic overlap, the diagnosis and precise classification of EBV-TNKLPD often pose a challenge to clinicians and pathologists. Correct classification of this group of rare diseases relies heavily on the age of onset, disease presentation, duration of symptoms and cell of origin (T- vs NK-cell lineage). In this review, we provide an update on the clinicopathological and molecular features of the various EBV-TNKLPD entities occurring in non-immunocompromised patients and present a practical algorithmic approach for the general pathologist who is confronted with these disorders in routine clinical practice.
Collapse
|
32
|
Abstract
Although about 90% of the world's population is infected by EBV only a small subset of the related infections result in neoplastic transformation. EBV is a versatile oncogenic agent involved in a multitude of hematopoietic, epithelial, and mesenchymal neoplasms, but the precise role of EBV in the pathogenesis of many of the associated lymphoid/histiocytic proliferations remains hypothetical or not completely understood. Additional studies and use of evolving technologies such as high-throughput next-generation sequencing may help address this knowledge gap and may lead to enhanced diagnostic assessment and the development of potential therapeutic interventions.
Collapse
|
33
|
Xavier AC, Suzuki R. Treatment and prognosis of mature (non-anaplastic) T- and NK-cell lymphomas in childhood, adolescents, and young adults. Br J Haematol 2019; 185:1086-1098. [PMID: 30706440 DOI: 10.1111/bjh.15772] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Paediatric non-Hodgkin lymphomas (pNHL) are a diverse group of malignancies characterised by nodal and/or extranodal involvement. Less common pNHL forms include those derived from mature T- and natural killer (NK) cells. Much of our current understanding of paediatric mature (non-anaplastic) T/NK-cell lymphomas with respect to pathogenesis, diagnosis and treatment is extrapolated from adult literature. At the Sixth International Symposium on Childhood, Adolescent and Young Adult Non-Hodgkin Lymphoma, convened September 26-29, 2018 in Rotterdam, The Netherlands, some important aspects on diagnosis and outcomes of mature (non-anaplastic) T/NK-cell lymphoma in children and adolescents were discussed and will be reviewed in here.
Collapse
Affiliation(s)
- Ana C Xavier
- Division of Hematology/Oncology, Department of Pediatrics, Children's of Alabama/University of Alabama at Birmingham, Birmingham, AL, USA
| | - Ritsuro Suzuki
- Department of Haematology/Oncology, Shimane University Hospital, Izumo, Japan
| |
Collapse
|
34
|
Kim WY, Montes-Mojarro IA, Fend F, Quintanilla-Martinez L. Epstein-Barr Virus-Associated T and NK-Cell Lymphoproliferative Diseases. Front Pediatr 2019; 7:71. [PMID: 30931288 PMCID: PMC6428722 DOI: 10.3389/fped.2019.00071] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 02/21/2019] [Indexed: 12/14/2022] Open
Abstract
EBV-associated T and NK-cell lymphoproliferative diseases (EBV-T/NK LPDs) are characterized by the transformation and proliferation of EBV-infected T or NK cells. The 2016 revised World Health Organization classification recognizes the following EBV-positive lymphoproliferative disorders (LPD): chronic active EBV infection (CAEBV) of T- and NK-cell type (cutaneous and systemic forms), systemic EBV-positive T-cell lymphoma of childhood, aggressive NK-cell leukemia, extranodal NK/T-cell lymphoma, nasal type, and the new provisional entity primary EBV-positive nodal T/NK-cell lymphoma. EBV-associated hemophagocytic lymphohistiocytosis (HLH), although not included in the WHO classification because it is a reactive, inflammatory disease, is included in this review because it can be life-threatening and may have overlapping features with other EBV+ T/NK LPDs. EBV+ T/NK LPDs are rare diseases difficult to diagnose and manage properly, because some LPDs have unusual presentations, and discrepancies between clinical and histological findings might be encountered. Furthermore, EBV+ T/NK disorders share some clinico-pathological features, and may evolve into other categories during the clinical course, including malignant transformation of CAEBV. Here, we review the EBV+ T/NK LPDs in terms of their definitions, clinical features, histology, immunophenotype, molecular findings, and pathogenesis. This review aims to increase our understanding and awareness of the differential diagnosis among the different EBV+ T/NK LPDs. New insights into the genetic characteristics of these disorders will also be discussed.
Collapse
Affiliation(s)
- Wook Youn Kim
- Institute of Pathology and Neuropathology and Comprehensive Cancer Center Tübingen, University Hospital Tübingen, Eberhard-Karls-University, Tübingen, Germany.,Department of Pathology, Konkuk University School of Medicine, Seoul, South Korea
| | - Ivonne A Montes-Mojarro
- Institute of Pathology and Neuropathology and Comprehensive Cancer Center Tübingen, University Hospital Tübingen, Eberhard-Karls-University, Tübingen, Germany
| | - Falko Fend
- Institute of Pathology and Neuropathology and Comprehensive Cancer Center Tübingen, University Hospital Tübingen, Eberhard-Karls-University, Tübingen, Germany
| | - Leticia Quintanilla-Martinez
- Institute of Pathology and Neuropathology and Comprehensive Cancer Center Tübingen, University Hospital Tübingen, Eberhard-Karls-University, Tübingen, Germany
| |
Collapse
|
35
|
Iqbal J, Amador C, McKeithan TW, Chan WC. Molecular and Genomic Landscape of Peripheral T-Cell Lymphoma. Cancer Treat Res 2019; 176:31-68. [PMID: 30596212 DOI: 10.1007/978-3-319-99716-2_2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Peripheral T-cell lymphoma (PTCL) is an uncommon group of lymphoma covering a diverse spectrum of entities. Little was known regarding the molecular and genomic landscapes of these diseases until recently but the knowledge is still quite spotty with many rarer types of PTCL remain largely unexplored. In this chapter, the recent findings from gene expression profiling (GEP) studies, including profiling data on microRNA, where available, will be presented with emphasis on the implication on molecular diagnosis, prognostication, and the identification of new entities (PTCL-GATA3 and PTCL-TBX21) in the PTCL-NOS group. Recent studies using next-generation sequencing have unraveled the mutational landscape in a number of PTCL entities leading to a marked improvement in the understanding of their pathogenesis and biology. While many mutations are shared among PTCL entities, the frequency varies and certain mutations are quite unique to a specific entity. For example, TET2 is often mutated but this is particularly frequent (70-80%) in angioimmunoblastic T-cell lymphoma (AITL) and IDH2 R172 mutations appear to be unique for AITL. In general, chromatin modifiers and molecular components in the CD28/T-cell receptor signaling pathways are frequently mutated. The major findings will be summarized in this chapter correlating with GEP data and clinical features where appropriate. The mutational landscape of cutaneous T-cell lymphoma, specifically on mycosis fungoides and Sezary syndrome, will also be discussed.
Collapse
Affiliation(s)
- Javeed Iqbal
- Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, US
| | - Catalina Amador
- Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, US
| | - Timothy W McKeithan
- Department of Pathology, City of Hope National Medical Center, Duarte, CA, USA
| | - Wing C Chan
- Department of Pathology, City of Hope National Medical Center, Duarte, CA, USA.
| |
Collapse
|
36
|
Abstract
NK-cell malignancies are rare aggressive diseases associated with poor clinical outcome. There is a significant geographic variation in their incidence. At least a part of the reason for that is the fact that Epstein-Barr virus plays an important role in pathogenesis, and importantly, the plasma viral titer reflects disease burden and response to therapy. Extranodal NK/T-cell lymphoma, nasal type (ENKL), is the most common disease subtype in NK-cell malignancies. Conventional anthracycline-based chemotherapy was historically used for ENKL, only to produce dismal outcome. More recently, concurrent chemoradiation therapy for early-stage disease and non-anthracycline-based L-asparaginase containing chemotherapy have been studied, showing improved clinical response and survival, with long-term survival rates of 60-70% and 50-60%, respectively. Stem cell transplant can provide long-term disease control in recurrent or refractory disease settings, but the role of frontline use of such approach is yet to be determined. Several novel therapeutic approaches have shown promising results, and enrollment to clinical trials is the essential key to improve the treatment outcome in the future.
Collapse
Affiliation(s)
- Dai Chihara
- Department of Internal Medicine, The University of New Mexico, Albuquerque, NM, USA
| | - Yasuhiro Oki
- Department of Lymphoma/Myeloma, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA.
| |
Collapse
|
37
|
Matutes E. The 2017 WHO update on mature T- and natural killer (NK) cell neoplasms. Int J Lab Hematol 2018; 40 Suppl 1:97-103. [PMID: 29741263 DOI: 10.1111/ijlh.12817] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 03/01/2018] [Indexed: 01/07/2023]
Abstract
Over the last decade, there has been a significant body of information regarding the biology of the lymphoid neoplasms. This clearly supports the need for updating the 2008 WHO (World Health Organization) classification of haematopoietic and lymphoid tumours. The 2017 WHO classification is not a new edition but an update and revision of the 4th edition. New provisional entities but not new definitive entities are included, and novel molecular data in most of the entities and changes in the nomenclature in few of them have been incorporated. In the context of the mature T- and NK-cell neoplasms, the most relevant updates concern to: 1-dysregulation of the JAK/STAT pathway due to gene mutations which are common to various aggressive and indolent neoplasms; 2-incorporation of new molecular players that are relevant to the pathogenesis of these neoplasms and/or have prognostic implications; 3-inclusion of new provisional entities within the subgroups of anaplastic, primarily intestinal and cutaneous lymphomas such as breast implant-associated anaplastic large cell lymphoma, indolent T-cell lymphoproliferative disorder of the gastrointestinal tract and primary cutaneous acral CD8+ T-cell lymphoma; 4-identification of poor prognostic subtypes of peripheral T-cell lymphomas not otherwise specified (PTCL, NOS) characterized by overexpression of certain genes and of a subgroup PTCL, NOS with a T follicular phenotype that now is included together with angioimmunoblastic T-cell lymphoma under the umbrella of lymphomas with a T follicular helper phenotype; and 5-refinement on the designation and definition of already established entities. A review of the major changes will be outlined.
Collapse
Affiliation(s)
- E Matutes
- Haematopathology Unit, Hospital Clinic, Barcelona University, Barcelona, Spain
| |
Collapse
|
38
|
Yamaguchi M, Oguchi M, Suzuki R. Extranodal NK/T-cell lymphoma: Updates in biology and management strategies. Best Pract Res Clin Haematol 2018; 31:315-321. [PMID: 30213402 DOI: 10.1016/j.beha.2018.07.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 06/15/2018] [Accepted: 07/02/2018] [Indexed: 12/21/2022]
Abstract
Extranodal NK/T-cell lymphoma, nasal type (ENKL), is a rare lymphoma subtype of peripheral T/NK-cell lymphoma that is very common in East Asia and Latin America. Two-thirds of patients have localized disease in the nasal cavity or adjacent sites. Large retrospective studies have revealed the clinicopathologic features of ENKL patients, identified risk factors for short survival time, and developed prognostic models. Next-generation sequencing studies have provided a comprehensive list of recurrent mutations in ENKL. Since the early 2000s, disease-specific therapeutic approaches have been developed, and the standard of care for ENKL has markedly changed. Non-anthracycline-containing chemotherapy with or without radiotherapy is the current standard approach for ENKL treatment. Emerging therapies, including the use of immune checkpoint inhibitors, are being investigated.
Collapse
Affiliation(s)
- Motoko Yamaguchi
- Department of Hematology and Oncology, Mie University Graduate School of Medicine, Tsu, Japan.
| | - Masahiko Oguchi
- Department of Radiation Oncology, Cancer Institute Hospital of the Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Ritsuro Suzuki
- Department of Oncology/Hematology, Shimane University Hospital, Izumo, Japan
| |
Collapse
|
39
|
de Mel S, Soon GST, Mok Y, Chung TH, Jeyasekharan AD, Chng WJ, Ng SB. The Genomics and Molecular Biology of Natural Killer/T-Cell Lymphoma: Opportunities for Translation. Int J Mol Sci 2018; 19:E1931. [PMID: 29966370 PMCID: PMC6073933 DOI: 10.3390/ijms19071931] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 06/23/2018] [Accepted: 06/25/2018] [Indexed: 01/03/2023] Open
Abstract
Extranodal NK/T-cell lymphoma, nasal type (ENKTL), is an aggressive malignancy with a poor prognosis. While the introduction of L-asparaginase in the treatment of this disease has significantly improved the prognosis, the outcome of patients relapsing after asparaginase-based chemotherapy, which occurs in up to 50% of patients with disseminated disease, remains dismal. There is hence an urgent need for effective targeted therapy especially in the relapsed/refractory setting. Gene expression profiling studies have provided new perspectives on the molecular biology, ontogeny and classification of ENKTL and further identified dysregulated signaling pathways such as Janus associated kinase (/Signal Transducer and activation of transcription (JAK/STAT), Platelet derived growth factor (PDGF), Aurora Kinase and NF-κB, which are under evaluation as therapeutic targets. Copy number analyses have highlighted potential tumor suppressor genes such as PR Domain Zinc Finger Protein 1 (PRDM1) and protein tyrosine phosphatase kappa (PTPRK) while next generation sequencing studies have identified recurrently mutated genes in pro-survival and anti-apoptotic pathways. The discovery of epigenetic dysregulation and aberrant microRNA activity has broadened our understanding of the biology of ENKTL. Importantly, immunotherapy via Programmed Cell Death -1 (PD-1) and Programmed Cell Death Ligand1 (PD-L1) checkpoint signaling inhibition is emerging as an attractive therapeutic strategy in ENKTL. Herein, we present an overview of the molecular biology and genomic landscape of ENKTL with a focus on the most promising translational opportunities.
Collapse
Affiliation(s)
- Sanjay de Mel
- Department of Haematology-Oncology, National University Cancer Institute of Singapore, National University Health System, Singapore 110974, Singapore.
| | - Gwyneth Shook-Ting Soon
- Department of Pathology, National University Hospital, National University Health System, Singapore 110974, Singapore.
| | - Yingting Mok
- Department of Pathology, National University Hospital, National University Health System, Singapore 110974, Singapore.
| | - Tae-Hoon Chung
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 110974, Singapore.
| | - Anand D Jeyasekharan
- Department of Haematology-Oncology, National University Cancer Institute of Singapore, National University Health System, Singapore 110974, Singapore.
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 110974, Singapore.
| | - Wee-Joo Chng
- Department of Haematology-Oncology, National University Cancer Institute of Singapore, National University Health System, Singapore 110974, Singapore.
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 110974, Singapore.
| | - Siok-Bian Ng
- Department of Pathology, National University Hospital, National University Health System, Singapore 110974, Singapore.
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 110974, Singapore.
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119074, Singapore.
| |
Collapse
|
40
|
Rezk SA, Zhao X, Weiss LM. Epstein-Barr virus (EBV)-associated lymphoid proliferations, a 2018 update. Hum Pathol 2018; 79:18-41. [PMID: 29885408 DOI: 10.1016/j.humpath.2018.05.020] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 05/14/2018] [Accepted: 05/29/2018] [Indexed: 12/12/2022]
Abstract
Epstein-Barr virus (EBV) has been linked to many human neoplasms including hematopoietic, epithelial, and mesenchymal tumors. Since our original review of EBV-associated lymphoproliferative disorders in 2007, many advances and developments have been reported. In this review, we will examine the recent advances in EBV-associated lymphoid/histiocytic proliferations, dividing them into reactive, B cell, T/NK cell, immunodeficiency-related, and histiocytic/dendritic cell proliferations.
Collapse
Affiliation(s)
- Sherif A Rezk
- Department of Pathology & Laboratory Medicine, University of California Irvine (UCI) Medical Center, Orange, 92868, CA.
| | - Xiaohui Zhao
- Department of Pathology & Laboratory Medicine, University of California Irvine (UCI) Medical Center, Orange, 92868, CA
| | - Lawrence M Weiss
- Department of Pathology & Laboratory Medicine, University of California Irvine (UCI) Medical Center, Orange, 92868, CA; NeoGenomics Laboratories, Aliso Viejo, 92656, CA
| |
Collapse
|
41
|
Dufva O, Kankainen M, Kelkka T, Sekiguchi N, Awad SA, Eldfors S, Yadav B, Kuusanmäki H, Malani D, Andersson EI, Pietarinen P, Saikko L, Kovanen PE, Ojala T, Lee DA, Loughran TP, Nakazawa H, Suzumiya J, Suzuki R, Ko YH, Kim WS, Chuang SS, Aittokallio T, Chan WC, Ohshima K, Ishida F, Mustjoki S. Aggressive natural killer-cell leukemia mutational landscape and drug profiling highlight JAK-STAT signaling as therapeutic target. Nat Commun 2018; 9:1567. [PMID: 29674644 PMCID: PMC5908809 DOI: 10.1038/s41467-018-03987-2] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 03/26/2018] [Indexed: 12/30/2022] Open
Abstract
Aggressive natural killer-cell (NK-cell) leukemia (ANKL) is an extremely aggressive malignancy with dismal prognosis and lack of targeted therapies. Here, we elucidate the molecular pathogenesis of ANKL using a combination of genomic and drug sensitivity profiling. We study 14 ANKL patients using whole-exome sequencing (WES) and identify mutations in STAT3 (21%) and RAS-MAPK pathway genes (21%) as well as in DDX3X (29%) and epigenetic modifiers (50%). Additional alterations include JAK-STAT copy gains and tyrosine phosphatase mutations, which we show recurrent also in extranodal NK/T-cell lymphoma, nasal type (NKTCL) through integration of public genomic data. Drug sensitivity profiling further demonstrates the role of the JAK-STAT pathway in the pathogenesis of NK-cell malignancies, identifying NK cells to be highly sensitive to JAK and BCL2 inhibition compared to other hematopoietic cell lineages. Our results provide insight into ANKL genetics and a framework for application of targeted therapies in NK-cell malignancies. Aggressive natural killer-cell leukemia (ANKL) has few targeted therapies. Here ANKL patients are reported to harbor STAT3, RAS-MAPK pathway, DDX3X and epigenetic modifier mutations; and drug sensitivity profiling uncovers the importance of the JAK-STAT pathway, revealing potential ANKL therapeutic targets.
Collapse
Affiliation(s)
- Olli Dufva
- Hematology Research Unit Helsinki, University of Helsinki and Department of Hematology, Helsinki University Hospital Comprehensive Cancer Center, FIN-00290, Helsinki, Finland
| | - Matti Kankainen
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, FIN-00014, Helsinki, Finland.,Medical and Clinical Genetics, University of Helsinki and Helsinki University Hospital, FIN-00290, Helsinki, Finland
| | - Tiina Kelkka
- Hematology Research Unit Helsinki, University of Helsinki and Department of Hematology, Helsinki University Hospital Comprehensive Cancer Center, FIN-00290, Helsinki, Finland
| | - Nodoka Sekiguchi
- Department of Comprehensive Cancer Therapy, Shinshu University School of Medicine, Matsumoto, 390-8621, Japan
| | - Shady Adnan Awad
- Hematology Research Unit Helsinki, University of Helsinki and Department of Hematology, Helsinki University Hospital Comprehensive Cancer Center, FIN-00290, Helsinki, Finland
| | - Samuli Eldfors
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, FIN-00014, Helsinki, Finland
| | - Bhagwan Yadav
- Hematology Research Unit Helsinki, University of Helsinki and Department of Hematology, Helsinki University Hospital Comprehensive Cancer Center, FIN-00290, Helsinki, Finland
| | - Heikki Kuusanmäki
- Hematology Research Unit Helsinki, University of Helsinki and Department of Hematology, Helsinki University Hospital Comprehensive Cancer Center, FIN-00290, Helsinki, Finland.,Institute for Molecular Medicine Finland (FIMM), University of Helsinki, FIN-00014, Helsinki, Finland
| | - Disha Malani
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, FIN-00014, Helsinki, Finland
| | - Emma I Andersson
- Hematology Research Unit Helsinki, University of Helsinki and Department of Hematology, Helsinki University Hospital Comprehensive Cancer Center, FIN-00290, Helsinki, Finland
| | - Paavo Pietarinen
- Hematology Research Unit Helsinki, University of Helsinki and Department of Hematology, Helsinki University Hospital Comprehensive Cancer Center, FIN-00290, Helsinki, Finland
| | - Leena Saikko
- Department of Pathology, HUSLAB and Haartman Institute, University of Helsinki and Helsinki University Hospital, FIN-00290, Helsinki, Finland
| | - Panu E Kovanen
- Department of Pathology, HUSLAB and Haartman Institute, University of Helsinki and Helsinki University Hospital, FIN-00290, Helsinki, Finland
| | - Teija Ojala
- Pharmacology, Faculty of Medicine, University of Helsinki, FIN-00014, Helsinki, Finland
| | - Dean A Lee
- Nationwide Children's Hospital, Division of Hematology, Oncology, and BMT, Columbus, OH, 43205, USA
| | - Thomas P Loughran
- Department of Medicine, University of Virginia, Charlottesville, VA, 22908-0334, USA
| | - Hideyuki Nakazawa
- Division of Hematology, Internal Medicine, Shinshu University School of Medicine, Matsumoto, 390-8621, Japan
| | - Junji Suzumiya
- Department of Oncology/Hematology, Shimane University Hospital, Izumo, 693-8501, Japan
| | - Ritsuro Suzuki
- Department of Oncology/Hematology, Shimane University Hospital, Izumo, 693-8501, Japan
| | - Young Hyeh Ko
- Department of Pathology, Samsung Medical Center, Seoul, 0635, South Korea
| | - Won Seog Kim
- Sungkyunkwan University School of Medicine, Samsung Medical Center, Seoul, 0635, South Korea
| | - Shih-Sung Chuang
- Department of Pathology, Chi-Mei Medical Center, Tainan, 71004, Taiwan
| | - Tero Aittokallio
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, FIN-00014, Helsinki, Finland
| | - Wing C Chan
- Department of Pathology, City of Hope National Medical Center, Duarte, CA, 91010, USA
| | - Koichi Ohshima
- Department of Pathology, Kurume University School of Medicine, Kurume, 830-0011, Japan
| | - Fumihiro Ishida
- Department of Biomedical Laboratory Sciences, Shinshu University School of Medicine, Matsumoto, 390-8621, Japan
| | - Satu Mustjoki
- Hematology Research Unit Helsinki, University of Helsinki and Department of Hematology, Helsinki University Hospital Comprehensive Cancer Center, FIN-00290, Helsinki, Finland. .,Department of Clinical Chemistry, University of Helsinki, FIN-00014, Helsinki, Finland.
| |
Collapse
|
42
|
Abstract
The contribution of Epstein-Barr virus (EBV) to the development of specific types of benign lymphoproliferations and malignant lymphomas has been extensively studied since the discovery of the virus over the last 50 years. The importance and better understanding of the EBV-associated lymphoproliferative disorders (LPD) of B, T or natural killer (NK) cell type has resulted in the recognition of new entities like EBV+ mucocutaneous ulcer or the addition of chronic active EBV (CAEBV) infection in the revised 2016 World Health Organization (WHO) lymphoma classification. In this article, we review the definitions, morphology, pathogenesis, and evolving concepts of the various EBV-associated disorders including EBV+ diffuse large B-cell lymphoma, not otherwise specified (DLBCL, NOS), EBV+ mucocutaneous ulcer, DLBCL associated with chronic inflammation, fibrin-associated DLBCL, lymphomatoid granulomatosis, the EBV+ T and NK-cell LPD of childhood, aggressive NK leukaemia, extranodal NK/T-cell lymphoma, nasal type, and the new provisional entity of primary EBV+ nodal T- or NK-cell lymphoma. The current knowledge regarding the pathogenesis of B-cell lymphomas that can be EBV-associated including Burkitt lymphoma, plasmablastic lymphoma and classic Hodgkin lymphoma will be also explored.
Collapse
|
43
|
Yang CF, Hsu CY, Ho DMT. Aggressive natural killer (NK)-cell leukaemia and extranodal NK/T-cell lymphoma are two distinct diseases that differ in their clinical presentation and cytogenetic findings. Histopathology 2018; 72:955-964. [PMID: 29314186 DOI: 10.1111/his.13463] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Accepted: 12/31/2017] [Indexed: 12/12/2022]
Abstract
AIMS Aggressive natural killer (NK)-cell leukaemia (ANKCL) and extranodal NK/T-cell lymphoma (ENKTCL) with secondary bone marrow involvement are rare bone marrow NK/T-cell neoplasms and share similar features. This study aimed to distinguish these two entities. METHODS AND RESULTS We studied bone marrow NK/T-cell neoplasms by classifying them into those with no extramedullary mass (group 1, eight cases) and those with extramedullary mass (group 2, 13 cases). The two groups showed similar clinical presentations and pathological features. Fever and cytopenia were the most common clinical presentations in both groups. The neoplastic cells varied from small and relatively monotonous cells to large pleomorphic cells. In six cases (two in group 1, and four in group 2), the neoplastic infiltrate was inconspicuous, consisting of ≤10% of marrow cells in the interstitium, which were hardly identified by haematoxylin and eosin staining alone. Nearly all patients rapidly died, regardless of the neoplastic infiltrate volume. All of the group 1 patients fulfilled the World Health Organisation 2017 diagnostic criteria of ANKCL, and their survival was significantly worse than that of the group 2 patients (P = 0.035). In addition, there was a significant association between being in group 1 and chromosome 7 abnormalities. Chromosome 6q deletion, which is commonly reported in ENKTCL, was seen in two of our group 2 patients, and was not observed in any of our group 1 patients. CONCLUSION ANKCL with no extramedullary mass should be distinguished from ENKTCL with bone marrow involvement, as the former shows distinct outcomes and genetic features.
Collapse
Affiliation(s)
- Ching-Fen Yang
- Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Chih-Yi Hsu
- Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,School of Medicine, National Yang-Ming University, Taipei, Taiwan.,College of Nursing, National Taipei University of Nursing and Health Sciences, Taipei, Taiwan
| | - Donald M-T Ho
- Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Department of Pathology and Laboratory Medicine, Cheng Hsin General Hospital, Taipei, Taiwan
| |
Collapse
|
44
|
|
45
|
Abstract
Aggressive NK cell leukemia (ANKL) is a rare malignant lymphoproliferative disorder of mature NK cells closely associated with Epstein-Barr virus (EBV) and more common in East Asia than in other areas. Significant variations exist in the morphology of ANKL tumor cells, from typical large granular lymphocyte morphology to highly atypical features with basophilic cytoplasm containing azurophilc granules. The main involved sites are hepatosplenic lesions, bone marrow and peripheral blood, and nasal or skin lesions are infrequent. A fever and liver dysfunction with an often rapidly progressive course are the main clinical symptoms, including hemophagocytic syndrome and disseminated intravascular coagulation. Although the outcome had been dismal for decades, with a median survival of less than three months, the introduction of combined chemotherapy including L-asparaginase and allogeneic hematopoietic cell transplantation has helped achieve a complete response and potential cure for some patients. With the advent of next-generation sequencing technologies, molecular alterations of ANKL have been elucidated, and dysfunctions in several signaling pathways, including the JAK/STAT pathway, have been identified. Novel target approaches to managing these abnormalities might help improve the prognosis of patients with ANKL.
Collapse
Affiliation(s)
- Fumihiro Ishida
- Department of Biomedical Laboratory Sciences, Shinshu University School of Medicine, Matsumoto, Japan
| |
Collapse
|
46
|
Tang YT, Wang D, Luo H, Xiao M, Zhou HS, Liu D, Ling SP, Wang N, Hu XL, Luo Y, Mao X, Ao QL, Huang J, Zhang W, Sheng LS, Zhu LJ, Shang Z, Gao LL, Zhang PL, Zhou M, Zhou KG, Qiu LG, Liu QF, Zhang HY, Li JY, Jin J, Fu L, Zhao WL, Chen JP, Du X, Huang G, Wang QF, Zhou JF, Huang L. Aggressive NK-cell leukemia: clinical subtypes, molecular features, and treatment outcomes. Blood Cancer J 2017; 7:660. [PMID: 29263371 PMCID: PMC5802497 DOI: 10.1038/s41408-017-0021-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 10/01/2017] [Accepted: 10/10/2017] [Indexed: 12/29/2022] Open
Affiliation(s)
- Y-T Tang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - D Wang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - H Luo
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - M Xiao
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - H-S Zhou
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - D Liu
- Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - S-P Ling
- Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - N Wang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - X-L Hu
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Y Luo
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - X Mao
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Q-L Ao
- Department of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - J Huang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - W Zhang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - L-S Sheng
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - L-J Zhu
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Z Shang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - L-L Gao
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - P-L Zhang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - M Zhou
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - K-G Zhou
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - L-G Qiu
- Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjing, China
| | - Q-F Liu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - H-Y Zhang
- Department of Hematology, Peking University Shenzhen Hospital, Shenzhen, China
| | - J-Y Li
- Department of Hematology, the First Affiliated Hospital of Nanjing Medical University and Jiangsu Province Hospital, Nanjing, China
| | - J Jin
- Department of Hematology, the First Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, China
| | - L Fu
- Department of Hematology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - W-L Zhao
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, Shanghai Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - J-P Chen
- Department of Hematology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - X Du
- Department of Hematology, Guangdong General Hospital and Guangdong Academy of Medical Sciences, Guangzhou, China
| | - G Huang
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,Division of Pathology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Q-F Wang
- Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China.,Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - J-F Zhou
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjing, China.,Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - L Huang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China. .,Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
47
|
CD56-Negative Aggressive NK Cell Leukemia Relapsing as Multiple Cranial Nerve Palsies: Case Report and Literature Review. Case Rep Hematol 2017; 2017:3724017. [PMID: 29163992 PMCID: PMC5661071 DOI: 10.1155/2017/3724017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 09/06/2017] [Indexed: 11/21/2022] Open
Abstract
Background Aggressive natural killer cell leukemia (ANKL) is extremely rare and habitually manifests as a systemic disease with multiorgan failure that rapidly evolves to death. The neoplastic natural killer (NK) cells usually harbor the Epstein-Barr virus (EBV) with a latent viral infection pattern type II; they often have a cytoplasmic CD3ε+ and surface CD3−, CD2+, and CD56+ immunophenotype, and they show complex genetic abnormalities affecting multiple tumor suppressor genes and oncogenes. We present a rare case of CD56-negative ANKL and review the clinical and laboratorial criteria for the diagnosis, as well as the available therapies. Case Presentation A European 36-year-old male presented with acute onset fever, pallor, weakness, and jaundice. He had hepatosplenomegaly, severe pancytopenia, hepatic cytolysis, and very high serum lactic dehydrogenase levels. The bone marrow studies resulted in the diagnosis of an EBV-positive, CD56-negative ANKL. The patient failed to respond to gemcitabine and cisplatin-based polychemotherapy, dying three months later with leukemic meningitis and multiple cranial nerves palsies. Conclusions The diagnosis of ANKL is difficult and requires both clinical suspicion and an extensive laboratorial approach. Absence of CD56 expression on the neoplastic NK cells may impose difficulties in the diagnosis, which requires morphological, immunophenotypic, histopathological, immunohistochemical, cytogenetic, and molecular studies.
Collapse
|
48
|
Huang L, Liu D, Wang N, Ling S, Tang Y, Wu J, Hao L, Luo H, Hu X, Sheng L, Zhu L, Wang D, Luo Y, Shang Z, Xiao M, Mao X, Zhou K, Cao L, Dong L, Zheng X, Sui P, He J, Mo S, Yan J, Ao Q, Qiu L, Zhou H, Liu Q, Zhang H, Li J, Jin J, Fu L, Zhao W, Chen J, Du X, Qing G, Liu H, Liu X, Huang G, Ma D, Zhou J, Wang QF. Integrated genomic analysis identifies deregulated JAK/STAT-MYC-biosynthesis axis in aggressive NK-cell leukemia. Cell Res 2017; 28:172-186. [PMID: 29148541 DOI: 10.1038/cr.2017.146] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 07/16/2017] [Accepted: 08/30/2017] [Indexed: 12/21/2022] Open
Abstract
Aggressive NK-cell leukemia (ANKL) is a rare form of NK cell neoplasm that is more prevalent among people from Asia and Central and South America. Patients usually die within days to months, even after receiving prompt therapeutic management. Here we performed the first comprehensive study of ANKL by integrating whole genome, transcriptome and targeted sequencing, cytokine array as well as functional assays. Mutations in the JAK-STAT pathway were identified in 48% (14/29) of ANKL patients, while the extracellular STAT3 stimulator IL10 was elevated by an average of 56-fold (P < 0.0001) in the plasma of all patients examined. Additional frequently mutated genes included TP53 (34%), TET2 (28%), CREBBP (21%) and MLL2 (21%). Patient NK leukemia cells showed prominent activation of STAT3 phosphorylation, MYC expression and transcriptional activities in multiple metabolic pathways. Functionally, STAT3 activation and MYC expression were critical for the proliferation and survival of ANKL cells. STAT signaling regulated the MYC transcription program, and both STAT signaling and MYC transcription were required to maintain the activation of nucleotide synthesis and glycolysis. Collectively, the JAK-STAT pathway represents a major target for genomic alterations and IL10 stimulation in ANKL. This newly discovered JAK/STAT-MYC-biosynthesis axis may provide opportunities for the development of novel therapeutic strategies in treating this subtype of leukemia.
Collapse
Affiliation(s)
- Liang Huang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Dan Liu
- Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Na Wang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Shaoping Ling
- Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China.,Genome Wisdom Inc., Beijing 100195, China
| | - Yuting Tang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Jun Wu
- Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Lingtong Hao
- Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China.,Genome Wisdom Inc., Beijing 100195, China
| | - Hui Luo
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Xuelian Hu
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Lingshuang Sheng
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Lijun Zhu
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Di Wang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yi Luo
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Zhen Shang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Min Xiao
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Xia Mao
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Kuangguo Zhou
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Lihua Cao
- Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China.,Genome Wisdom Inc., Beijing 100195, China
| | - Lili Dong
- Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Xinchang Zheng
- Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Pinpin Sui
- Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianlin He
- Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Shanlan Mo
- Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jin Yan
- Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Qilin Ao
- Department of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Lugui Qiu
- Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Hongsheng Zhou
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Qifa Liu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Hongyu Zhang
- Department of Hematology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, China
| | - Jianyong Li
- Department of Hematology, the First Affiliated Hospital of Nanjing Medical University and Jiangsu Province Hospital, Nanjing, Jiangsu 210029, China
| | - Jie Jin
- Department of Hematology, the First Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, Zhejiang 310003, China
| | - Li Fu
- Department of Hematology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Weili Zhao
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, Shanghai Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jieping Chen
- Department of Hematology, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Xin Du
- Department of Hematology, Guangdong General Hospital and Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, China
| | - Guoliang Qing
- Medical Research Institute, Wuhan University, Wuhan, Hubei 430071, China
| | - Hudan Liu
- Medical Research Institute, Wuhan University, Wuhan, Hubei 430071, China
| | - Xin Liu
- Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Gang Huang
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.,Division of Pathology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Ding Ma
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.,Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Jianfeng Zhou
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.,Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China.,Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Qian-Fei Wang
- Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China.,Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
49
|
Shannon-Lowe C, Rickinson AB, Bell AI. Epstein-Barr virus-associated lymphomas. Philos Trans R Soc Lond B Biol Sci 2017; 372:20160271. [PMID: 28893938 PMCID: PMC5597738 DOI: 10.1098/rstb.2016.0271] [Citation(s) in RCA: 247] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/09/2017] [Indexed: 02/06/2023] Open
Abstract
Epstein-Barr virus (EBV), originally discovered through its association with Burkitt lymphoma, is now aetiologically linked to a remarkably wide range of lymphoproliferative lesions and malignant lymphomas of B-, T- and NK-cell origin. Some occur as rare accidents of virus persistence in the B lymphoid system, while others arise as a result of viral entry into unnatural target cells. The early finding that EBV is a potent B-cell growth transforming agent hinted at a simple oncogenic mechanism by which this virus could promote lymphomagenesis. In reality, the pathogenesis of EBV-associated lymphomas involves a complex interplay between different patterns of viral gene expression and cellular genetic changes. Here we review recent developments in our understanding of EBV-associated lymphomagenesis in both the immunocompetent and immunocompromised host.This article is part of the themed issue 'Human oncogenic viruses'.
Collapse
Affiliation(s)
- Claire Shannon-Lowe
- Institute of Immunology and Immunotherapy, The Medical School, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Alan B Rickinson
- Institute of Immunology and Immunotherapy, The Medical School, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Andrew I Bell
- Institute for Cancer and Genomic Sciences, The Medical School, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| |
Collapse
|
50
|
Clinicopathologic Characterization of Aggressive Natural Killer Cell Leukemia Involving Different Tissue Sites. Am J Surg Pathol 2017; 40:836-46. [PMID: 26975038 DOI: 10.1097/pas.0000000000000634] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Aggressive natural killer cell leukemia (ANKL) is a rare disease with an extremely aggressive clinical course. The etiology of ANKL is unclear with few genetic/epigenetic aberrations described to date. Moreover, misdiagnosis of ANKL is a frequent problem. Clinicopathologic characteristics of 35 retrospective cases of ANKL were investigated with the aim of improving diagnosis and to find the genetic/epigenetic aberrations associated with ANKL etiology. Because of the relatively low number of leukemic cells in the peripheral blood and bone marrow, diagnosis of ANKL can be missed; therefore, it is important to perform biopsy on solid tissues, if necessary. We describe the pathology of ANKL in the lymph nodes, bone marrow, spleen, liver, and skin, with focus on diagnosis and differentiated diagnosis. We observed young male predominance in our cohort, and the clinical course was more aggressive than reported previously. Low lactate dehydrogenase (<712 IU/L), chemotherapy or L-asparaginase administration were found to be associated with more favorable outcomes. SH2 domains of STAT5B and STAT3 also were screened for the presence of activating mutations. Moreover, CpG island methylation status of HACE1, a candidate tumor-suppressor gene, was determined in ANKL samples. We observed activating STAT5B mutations (1/5) and hypermethylation of HACE1 (3/4) in ANKL cases, suggesting that these aberrations may contribute to ANKL pathogenesis.
Collapse
|