1
|
Termite F, Archilei S, D’Ambrosio F, Petrucci L, Viceconti N, Iaccarino R, Liguori A, Gasbarrini A, Miele L. Gut Microbiota at the Crossroad of Hepatic Oxidative Stress and MASLD. Antioxidants (Basel) 2025; 14:56. [PMID: 39857390 PMCID: PMC11759774 DOI: 10.3390/antiox14010056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 12/30/2024] [Accepted: 01/02/2025] [Indexed: 01/27/2025] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a prevalent chronic liver condition marked by excessive lipid accumulation in hepatic tissue. This disorder can lead to a range of pathological outcomes, including metabolic dysfunction-associated steatohepatitis (MASH) and cirrhosis. Despite extensive research, the molecular mechanisms driving MASLD initiation and progression remain incompletely understood. Oxidative stress and lipid peroxidation are pivotal in the "multiple parallel hit model", contributing to hepatic cell death and tissue damage. Gut microbiota plays a substantial role in modulating hepatic oxidative stress through multiple pathways: impairing the intestinal barrier, which results in bacterial translocation and chronic hepatic inflammation; modifying bile acid structure, which impacts signaling cascades involved in lipidic metabolism; influencing hepatocytes' ferroptosis, a form of programmed cell death; regulating trimethylamine N-oxide (TMAO) metabolism; and activating platelet function, both recently identified as pathogenetic factors in MASH progression. Moreover, various exogenous factors impact gut microbiota and its involvement in MASLD-related oxidative stress, such as air pollution, physical activity, cigarette smoke, alcohol, and dietary patterns. This manuscript aims to provide a state-of-the-art overview focused on the intricate interplay between gut microbiota, lipid peroxidation, and MASLD pathogenesis, offering insights into potential strategies to prevent disease progression and its associated complications.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Luca Miele
- CEMAD Digestive Diseases Center, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Università Cattolica del Sacro Cuore, Largo A. Gemelli 8, 00168 Rome, Italy (S.A.)
| |
Collapse
|
2
|
Ding J, Liu Y, Li Y, Huang Y, Li S, Wang F, Chen D, Lu B, Lin N. Insights into the accumulation and hepatobiliary transport of bisphenols (BPs) in liver and bile. ENVIRONMENTAL RESEARCH 2024; 263:120251. [PMID: 39476930 DOI: 10.1016/j.envres.2024.120251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/11/2024] [Accepted: 10/27/2024] [Indexed: 11/03/2024]
Abstract
Bisphenols (BPs) are widely distributed in daily life as typical endocrine disruptors. In this study, we examined the distribution of bisphenol A (BPA) and BPA alternatives in liver (n = 149) and bile (n = 102) tissues from the patients with liver cancer, and calculated the hepatobiliary transport efficiency of BPs (TB-L). Seven BPs were detected in both liver (median: 0.859 ng/g; range: 0.0200-26.7 ng/g) and bile (median: 0.307 ng/mL; range: 0.0200-26.7 ng/mL), and BPA was the predominant in both liver (mean: 1.89 ng/g) and bile (mean: 1.65 ng/mL). The TB-L of BPs was reported for the first time and found to be negatively correlated with the molecular weight and Log Kow of BPs. Furthermore, BPA and ∑BPs in liver showed a significant negative correlation with age, and a significant difference was found in BPs in liver and bile in hepatocellular carcinoma patients with different genders (p < 0.05). For liver function indicators, levels of BPs showed significant positive correlation with γ-glutamyl transferase (GGT) and alanine aminotransferase (ALT), especially BPBP levels in bile. This suggests that BPs may have some correlation with hepatocellular carcinoma. This is the first report on distribution characteristics of BPs in the liver and bile of hepatocellular carcinoma patients, and is the first study to report the hepatobiliary transport efficiency of BPs. The results should contribute to the understanding of BPs accumulation in the liver and bile and further relationship with hepatocellular carcinoma.
Collapse
Affiliation(s)
- Jie Ding
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Ying Liu
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, 510632, China; School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China
| | - Yanjie Li
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Yongheng Huang
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Shibo Li
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, 510632, China
| | - Fei Wang
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, 510632, China.
| | - Da Chen
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, 510632, China
| | - Bin Lu
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Nan Lin
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| |
Collapse
|
3
|
Lopez VA, Lim JJ, Seguin RP, Dempsey JL, Kunzman G, Cui JY, Xu L. Oral exposure to benzalkonium chlorides in male and female mice reveals alteration of the gut microbiome and bile acid profile. Toxicol Sci 2024; 202:265-277. [PMID: 39363503 PMCID: PMC11589104 DOI: 10.1093/toxsci/kfae116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024] Open
Abstract
Benzalkonium chlorides (BACs) are commonly used disinfectants in a variety of consumer and food-processing settings, and the COVID-19 pandemic has led to increased usage of BACs. The prevalence of BACs raises the concern that BAC exposure could disrupt the gastrointestinal microbiota, thus interfering with the beneficial functions of the microbes. We hypothesize that BAC exposure can alter the gut microbiome diversity and composition, which will disrupt bile acid (BA) homeostasis along the gut-liver axis. In this study, male and female mice were exposed orally to d7-C12- and d7-C16-BACs at 120 µg/g/d for 1 wk. UPLC-MS/MS analysis of liver, blood, and fecal samples of BAC-treated mice demonstrated the absorption and metabolism of BACs. Both parent BACs and their metabolites were detected in all exposed samples. Additionally, 16S rRNA sequencing was carried out on the bacterial DNA isolated from the cecum intestinal content. For female mice, and to a lesser extent in males, we found that treatment with either d7-C12- or d7-C16-BAC led to decreased alpha diversity and differential composition of gut bacteria with notably decreased actinobacteria phylum. Lastly, through a targeted BA quantitation analysis, we observed decreases in secondary BAs in BAC-treated mice, which was more pronounced in the female mice. This finding is supported by decreases in bacteria known to metabolize primary BAs into secondary BAs, such as the families of Ruminococcaceae and Lachnospiraceae. Together, these data signify the potential impact of BACs on human health through disturbance of the gut microbiome and gut-liver interactions.
Collapse
Affiliation(s)
- Vanessa A Lopez
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195, United States
| | - Joe J Lim
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98195, United States
| | - Ryan P Seguin
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195, United States
| | - Joseph L Dempsey
- Division of Gastroenterology, Department of Medicine, University of Washington, Seattle, WA 98195, United States
| | - Gabrielle Kunzman
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195, United States
| | - Julia Y Cui
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98195, United States
| | - Libin Xu
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195, United States
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98195, United States
| |
Collapse
|
4
|
Barish S, Lin SJ, Maroofian R, Gezdirici A, Alhebby H, Trimouille A, Biderman Waberski M, Mitani T, Huber I, Tveten K, Holla ØL, Busk ØL, Houlden H, Ghayoor Karimiani E, Beiraghi Toosi M, Shervin Badv R, Najarzadeh Torbati P, Eghbal F, Akhondian J, Al Safar A, Alswaid A, Zifarelli G, Bauer P, Marafi D, Fatih JM, Huang K, Petree C, Calame DG, von der Lippe C, Alkuraya FS, Wali S, Lupski JR, Varshney GK, Posey JE, Pehlivan D. Homozygous variants in WDR83OS lead to a neurodevelopmental disorder with hypercholanemia. Am J Hum Genet 2024; 111:2566-2581. [PMID: 39471804 PMCID: PMC11568760 DOI: 10.1016/j.ajhg.2024.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 10/01/2024] [Accepted: 10/03/2024] [Indexed: 11/01/2024] Open
Abstract
WD repeat domain 83 opposite strand (WDR83OS) encodes the 106-aa (amino acid) protein Asterix, which heterodimerizes with CCDC47 to form the PAT (protein associated with ER translocon) complex. This complex functions as a chaperone for large proteins containing transmembrane domains to ensure proper folding. Until recently, little was known about the role of WDR83OS or CCDC47 in human disease traits. However, biallelic variants in CCDC47 were identified in four unrelated families with trichohepatoneurodevelopmental syndrome, characterized by a neurodevelopmental disorder (NDD) with liver dysfunction. Three affected siblings in an additional family share a homozygous truncating WDR83OS variant and a phenotype of NDD, dysmorphic features, and liver dysfunction. Using family-based rare variant analyses of exome sequencing (ES) data and case matching through GeneMatcher, we describe the clinical phenotypes of 11 additional individuals in eight unrelated families (nine unrelated families, 14 individuals in total) with biallelic putative truncating variants in WDR83OS. Consistent clinical features include NDD (14/14), facial dysmorphism (13/14), intractable itching (9/14), and elevated bile acids (5/6). Whereas bile acids were significantly elevated in 5/6 of individuals tested, bilirubin was normal and liver enzymes were normal to mildly elevated in all 14 individuals. In three of six individuals for whom longitudinal data were available, we observed a progressive reduction in relative head circumference. A zebrafish model lacking Wdr83os function further supports its role in the nervous system, craniofacial development, and lipid absorption. Taken together, our data support a disease-gene association between biallelic loss-of-function of WDR83OS and a neurological disease trait with hypercholanemia.
Collapse
Affiliation(s)
- Scott Barish
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sheng-Jia Lin
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Reza Maroofian
- Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Alper Gezdirici
- Department of Medical Genetics, Basaksehir Cam and Sakura City Hospital, Istanbul 34480, Turkey
| | - Hamoud Alhebby
- Division of Gastroenterology, Department of Pediatrics, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Aurélien Trimouille
- Department of Medical Genetics, University Hospital of Bordeaux, 33076 Bordeaux, France; INSERM U1211, Laboratoire Maladies Rares: Génétique et Métabolisme, Bordeaux University, Bordeaux, France
| | | | - Tadahiro Mitani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ilka Huber
- Department of Pediatrics, Sørlandet Hospital, Arendal, Norway
| | - Kristian Tveten
- Department of Medical Genetics, Telemark Hospital Trust, Skien, Norway
| | - Øystein L Holla
- Department of Medical Genetics, Telemark Hospital Trust, Skien, Norway
| | - Øyvind L Busk
- Department of Medical Genetics, Telemark Hospital Trust, Skien, Norway
| | - Henry Houlden
- Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Ehsan Ghayoor Karimiani
- Molecular and Clinical Sciences Institute, St. George's, University of London, Cranmer Terrace, London SW17 0RE, UK
| | - Mehran Beiraghi Toosi
- Department of Pediatric Diseases, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reza Shervin Badv
- Children's Medical Center, Pediatrics Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Fatemeh Eghbal
- Department of Medical Genetics, Next Generation Genetic Polyclinic, Mashhad, Iran
| | - Javad Akhondian
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ayat Al Safar
- College of Medicine, Imam Abdulrahman bin Faisal University, Dammam, Saudi Arabia; Department of Paediatrics, King Fahd Hospital of University, Al-khobar, Saudi Arabia
| | - Abdulrahman Alswaid
- King Saud Bin Abdulaziz University for Health Sciences, Department of Pediatrics, MC 1940, King Abdullah Specialized Children's Hospital, Riyadh, Saudi Arabia
| | | | - Peter Bauer
- CENTOGENE GmbH, Am Strande 7, 18055 Rostock, Germany
| | - Dana Marafi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Department of Pediatrics, Faculty of Medicine, Kuwait University, P.O. Box 24923, Safat 13110, Kuwait
| | - Jawid M Fatih
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Kevin Huang
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Cassidy Petree
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Daniel G Calame
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Section of Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA; Texas Children's Hospital, Houston, TX 77030, USA
| | | | - Fowzan S Alkuraya
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Sami Wali
- Division of Gastroenterology, Department of Pediatrics, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Texas Children's Hospital, Houston, TX 77030, USA; The Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Gaurav K Varshney
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Jennifer E Posey
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Davut Pehlivan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Section of Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA; Texas Children's Hospital, Houston, TX 77030, USA.
| |
Collapse
|
5
|
Zhao J, Liu L, Cao YY, Gao X, Targher G, Byrne CD, Sun DQ, Zheng MH. MAFLD as part of systemic metabolic dysregulation. Hepatol Int 2024; 18:834-847. [PMID: 38594474 DOI: 10.1007/s12072-024-10660-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/11/2024] [Indexed: 04/11/2024]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is one of the most common chronic liver diseases worldwide. In recent years, a new terminology and definition of metabolic dysfunction-associated fatty liver disease (MAFLD) has been proposed. Compared to the NAFLD definition, MAFLD better emphasizes the pathogenic role of metabolic dysfunction in the development and progression of this highly prevalent condition. Metabolic disorders, including overweight/obesity, type 2 diabetes mellitus (T2DM), atherogenic dyslipidemia and hypertension, are often associated with systemic organ dysfunctions, thereby suggesting that multiple organ damage can occur in MAFLD. Substantial epidemiological evidence indicates that MAFLD is not only associated with an increased risk of liver-related complications, but also increases the risk of developing several extra-hepatic diseases, including new-onset T2DM, adverse cardiovascular and renal outcomes, and some common endocrine diseases. We have summarized the current literature on the adverse effect of MAFLD on the development of multiple extrahepatic (cardiometabolic and endocrine) complications and examined the role of different metabolic pathways and organ systems in the progression of MAFLD, thus providing new insights into the role of MAFLD as a multisystem metabolic disorder. Our narrative review aimed to provide insights into potential mechanisms underlying the known associations between MAFLD and extrahepatic diseases, as part of MAFLD as a multisystem disease, in order to help focus areas for future drug development targeting not only liver disease but also the risk of extrahepatic complications.
Collapse
Affiliation(s)
- Jing Zhao
- Urologic Nephrology Center, Jiangnan University Medical Center, Wuxi, China
- Affiliated Wuxi Clinical College of Nantong University, Wuxi, China
- Wuxi No. 2 People's Hospital, Wuxi, China
| | - Lu Liu
- Urologic Nephrology Center, Jiangnan University Medical Center, Wuxi, China
- Affiliated Wuxi Clinical College of Nantong University, Wuxi, China
- Wuxi No. 2 People's Hospital, Wuxi, China
| | - Ying-Ying Cao
- MAFLD Research Center, Department of Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Diagnosis and Treatment for the Development of Chronic Liver Disease in Zhejiang Province, Wenzhou, Zhejiang, China
| | - Xin Gao
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Giovanni Targher
- Department of Medicine, University of Verona, Verona, Italy
- Metabolic Diseases Research Unit, IRCCS Sacro Cuore-Don Calabria Hospital, Negrar di Valpolicella, Italy
| | - Christopher D Byrne
- Southampton National Institute for Health and Care Research Biomedical Research Centre, University Hospital Southampton, and University of Southampton, Southampton General Hospital, Southampton, UK
| | - Dan-Qin Sun
- Urologic Nephrology Center, Jiangnan University Medical Center, Wuxi, China.
- Affiliated Wuxi Clinical College of Nantong University, Wuxi, China.
- Wuxi No. 2 People's Hospital, Wuxi, China.
| | - Ming-Hua Zheng
- MAFLD Research Center, Department of Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
- Key Laboratory of Diagnosis and Treatment for the Development of Chronic Liver Disease in Zhejiang Province, Wenzhou, Zhejiang, China.
| |
Collapse
|
6
|
Kwon SJ, Kim YS, Tak J, Lee SG, Lee EB, Kim SG. Hepatic Gα13 ablation shifts region-specific colonic inflammatory status by modulating the bile acid synthetic pathway in mice. Sci Rep 2024; 14:19580. [PMID: 39179591 PMCID: PMC11344048 DOI: 10.1038/s41598-024-70254-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 08/14/2024] [Indexed: 08/26/2024] Open
Abstract
Inflammatory bowel disease is defined by inflammation and immune dysregulation. This study investigated the effects of Gα13 liver-specific knockout (LKO) on proximal and distal colons of dextran sodium sulfate (DSS)-induced mice in conjunction with a high-fat diet (HFD). HFD improved body weight gain and disease activity index scores. Gα13LKO exerted no improvement. In the proximal colon, HFD augmented the DSS effect on Il6, which was not observed in Gα13LKO mice. In the distal colon, HFD plus DSS oppositely fortified an increase in Tnfa and Cxcl10 mRNA in Gα13LKO but not WT. Il6 levels remained unchanged. Bioinformatic approaches using Gα13LKO livers displayed bile acid and cholesterol metabolism-related gene sets. Cholic acid and chenodeoxycholic acid levels were increased in the liver of mice treated with DSS, which was reversed by Gα13LKO. Notably, mice treated with DSS showed a reduction in hepatic ABCB11, CYP7B1, CYP7A1, and CYP8B1, which was reversed by Gα13LKO. Overall, feeding HFD augments the effect of DSS on Il6 in the proximal colon of WT, but not Gα13LKO mice, and enhances DSS effect on Tnfa and Cxcl10 in the distal colon of Gα13LKO mice, suggesting site-specific changes in the inflammatory cytokines, potentially resulting from changes in BA synthesis and excretion.
Collapse
Affiliation(s)
- Soon Jae Kwon
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University-Seoul, Goyang-si, Gyeonggi-do, 10326, Republic of Korea
| | - Yun Seok Kim
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Jihoon Tak
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University-Seoul, Goyang-si, Gyeonggi-do, 10326, Republic of Korea
| | - Sang Gil Lee
- Research and Development Institute, A Pharma Inc., Goyang-si, Gyeonggi-do, Republic of Korea
| | - Eun Byul Lee
- Research and Development Institute, A Pharma Inc., Goyang-si, Gyeonggi-do, Republic of Korea
| | - Sang Geon Kim
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University-Seoul, Goyang-si, Gyeonggi-do, 10326, Republic of Korea.
| |
Collapse
|
7
|
Fu Y, Mackowiak B, Lin YH, Maccioni L, Lehner T, Pan H, Guan Y, Godlewski G, Lu H, Chen C, Wei S, Feng D, Paloczi J, Zhou H, Pacher P, Zhang L, Kunos G, Gao B. Coordinated action of a gut-liver pathway drives alcohol detoxification and consumption. Nat Metab 2024; 6:1380-1396. [PMID: 38902331 DOI: 10.1038/s42255-024-01063-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 05/07/2024] [Indexed: 06/22/2024]
Abstract
Alcohol use disorder (AUD) affects millions of people worldwide, causing extensive morbidity and mortality with limited pharmacological treatments. The liver is considered as the principal site for the detoxification of ethanol metabolite, acetaldehyde (AcH), by aldehyde dehydrogenase 2 (ALDH2) and as a target for AUD treatment, however, our recent data indicate that the liver only plays a partial role in clearing systemic AcH. Here we show that a liver-gut axis, rather than liver alone, synergistically drives systemic AcH clearance and voluntary alcohol drinking. Mechanistically, we find that after ethanol intake, a substantial proportion of AcH generated in the liver is excreted via the bile into the gastrointestinal tract where AcH is further metabolized by gut ALDH2. Modulating bile flow significantly affects serum AcH level and drinking behaviour. Thus, combined targeting of liver and gut ALDH2, and manipulation of bile flow and secretion are potential therapeutic strategies to treat AUD.
Collapse
Affiliation(s)
- Yaojie Fu
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Bryan Mackowiak
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Yu-Hong Lin
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Luca Maccioni
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Taylor Lehner
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Hongna Pan
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Yukun Guan
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Grzegorz Godlewski
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Hongkun Lu
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Cheng Chen
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Shoupeng Wei
- Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Dechun Feng
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Janos Paloczi
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Huiping Zhou
- Department of Microbiology and Immunology, Virginia Commonwealth University and Richmond Veterans Affairs Medical Center, Richmond, VA, USA
| | - Pal Pacher
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Li Zhang
- Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - George Kunos
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Bin Gao
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
8
|
Lopez VA, Lim JL, Seguin RP, Dempsey JL, Kunzman G, Cui JY, Xu L. Oral Exposure to Benzalkonium Chlorides in Male and Female Mice Reveals Sex-Dependent Alteration of the Gut Microbiome and Bile Acid Profile. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.13.593991. [PMID: 38798482 PMCID: PMC11118417 DOI: 10.1101/2024.05.13.593991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Benzalkonium chlorides (BACs) are commonly used disinfectants in a variety of consumer and food-processing settings, and the COVID-19 pandemic has led to increased usage of BACs. The prevalence of BACs raises the concern that BAC exposure could disrupt the gastrointestinal microbiota, thus interfering with the beneficial functions of the microbes. We hypothesize that BAC exposure can alter the gut microbiome diversity and composition, which will disrupt bile acid homeostasis along the gut-liver axis. In this study, male and female mice were exposed orally to d 7 -C12- and d 7 -C16-BACs at 120 µg/g/day for one week. UPLC-MS/MS analysis of liver, blood, and fecal samples of BAC-treated mice demonstrated the absorption and metabolism of BACs. Both parent BACs and their metabolites were detected in all exposed samples. Additionally, 16S rRNA sequencing was carried out on the bacterial DNA isolated from the cecum intestinal content. For female mice, and to a lesser extent in males, we found that treatment with either d 7 -C12- or d 7 -C16-BAC led to decreased alpha diversity and differential composition of gut bacteria with notably decreased actinobacteria phylum. Lastly, through a targeted bile acid quantitation analysis, we observed decreases in secondary bile acids in BAC-treated mice, which was more pronounced in the female mice. This finding is supported by decreases in bacteria known to metabolize primary bile acids into secondary bile acids, such as the families of Ruminococcaceae and Lachnospiraceae. Together, these data signify the potential impact of BACs on human health through disturbance of the gut microbiome and gut-liver interactions.
Collapse
|
9
|
Plümers R, Dreier J, Knabbe C, Steinmann E, Todt D, Vollmer T. Kinetics of Hepatitis E Virus Infections in Asymptomatic Persons. Emerg Infect Dis 2024; 30:934-940. [PMID: 38666600 PMCID: PMC11060471 DOI: 10.3201/eid3005.231764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024] Open
Abstract
To determine the kinetics of hepatitis E virus (HEV) in asymptomatic persons and to evaluate viral load doubling time and half-life, we retrospectively tested samples retained from 32 HEV RNA-positive asymptomatic blood donors in Germany. Close-meshed monitoring of viral load and seroconversion in intervals of ≈4 days provided more information about the kinetics of asymptomatic HEV infections. We determined that a typical median infection began with PCR-detectable viremia at 36 days and a maximum viral load of 2.0 × 104 IU/mL. Viremia doubled in 2.4 days and had a half-life of 1.6 days. HEV IgM started to rise on about day 33 and peaked on day 36; IgG started to rise on about day 32 and peaked on day 53. Although HEV IgG titers remained stable, IgM titers became undetectable in 40% of donors. Knowledge of the dynamics of HEV viremia is useful for assessing the risk for transfusion-transmitted hepatitis E.
Collapse
|
10
|
Liu Y, Peng L, Li Y, Lu X, Wang F, Chen D, Lin N. Effect of liver cancer on the accumulation and hepatobiliary transport of per- and polyfluoroalkyl substances. JOURNAL OF HAZARDOUS MATERIALS 2024; 468:133743. [PMID: 38377901 DOI: 10.1016/j.jhazmat.2024.133743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 01/30/2024] [Accepted: 02/05/2024] [Indexed: 02/22/2024]
Abstract
In this study, we examined the distribution of per- and polyfluoroalkyl substances (PFASs) in liver and bile tissues from the patients with liver cancer (n = 202) and healthy controls (n = 30), and calculated the hepatobiliary transport efficiency (TB-L) of PFASs. Among 21 PFASs, 13 PFASs were frequently detected in the liver (median: 8.80-16.3 ng/g) and bile (median: 11.03-14.26 ng/mL) samples. PFAS concentrations in liver were positively correlated with age, with higher levels of PFASs in the older. Variance analysis showed that gender and BMI (Body Mass Index) have an important impact on the distribution of PFASs. A U-shaped trend in TB-L of PFASs with the increasing of carbon chain length was found for the first time, and the TB-L of most PFASs in the control was higher than that of those in cases (p < 0.05), suggesting that hepatic injury would affect their transport. PFASs were positively associated with liver injury biomarkers, including γ-glutamyl transferase (GGT), alanine aminotransferase (ALT), and total bilirubin (TB) levels (p < 0.05). This is the first study on examining the hepatobiliary transport characteristics of PFASs, which may help understand the connection between PFAS accumulation and liver cancer risk.
Collapse
Affiliation(s)
- Ying Liu
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China; School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Lin Peng
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China; State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, the Hong Kong Special Administrative Region of China
| | - Yanjie Li
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Xingwen Lu
- School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Fei Wang
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China.
| | - Da Chen
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Nan Lin
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China.
| |
Collapse
|
11
|
Keuter L, Wolbeck A, Kasimir M, Schürmann L, Behrens M, Humpf HU. Structural Impact of Steroidal Glycoalkaloids: Barrier Integrity, Permeability, Metabolism, and Uptake in Intestinal Cells. Mol Nutr Food Res 2024; 68:e2300639. [PMID: 38389193 DOI: 10.1002/mnfr.202300639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 01/24/2024] [Indexed: 02/24/2024]
Abstract
SCOPE Potato tubers represent an essential food component all over the world and an important supplier of carbohydrates, fiber, and valuable proteins. However, besides their health promoting effects, potatoes contain α-solanine and α-chaconine, which are toxic steroidal glycoalkaloids (SGAs). Other solanaceous plants like eggplants and tomatoes produce SGAs as well, different in their chemical structure. This study aims to investigate toxic effects (cholinesterase inhibition, membrane, and barrier disruption), permeability, metabolism, and structure-activity relationships of SGAs. METHODS AND RESULTS α-solanine, α-chaconine, α-solasonine, α-solamargine, α-tomatine, and their respective aglycones solanidine, solasodine, and tomatidine are analyzed using Ellman assay, cellular impedance spectroscopy, cell extraction, and Caco-2 intestinal model. Additionally, metabolism is analyzed by HPLC-MS techniques. The study observes dependencies of barrier disrupting potential and cellular uptake on the carbohydrate moiety of SGAs, while permeability and acetylcholinesterase (AChE) inhibition are dominated by the steroid backbone. SGAs show low permeabilities across Caco-2 monolayers in subtoxic concentrations. In contrast, their respective aglycones reveal higher permeabilities, but are extensively metabolized. CONCLUSION Besides structure-activity relationships, this study provides new information on the overall effects of steroidal alkaloids on intestinal cells and closes a gap of knowledge for the metabolic pathway from oral uptake to final excretion.
Collapse
Affiliation(s)
- Lucas Keuter
- Institute of Food Chemistry, University of Münster, Corrensstr. 45, 48149, Münster, Germany
| | - Alessa Wolbeck
- Institute of Food Chemistry, University of Münster, Corrensstr. 45, 48149, Münster, Germany
| | - Matthias Kasimir
- Institute of Food Chemistry, University of Münster, Corrensstr. 45, 48149, Münster, Germany
| | - Lina Schürmann
- Institute of Food Chemistry, University of Münster, Corrensstr. 45, 48149, Münster, Germany
| | - Matthias Behrens
- Institute of Food Chemistry, University of Münster, Corrensstr. 45, 48149, Münster, Germany
| | - Hans-Ulrich Humpf
- Institute of Food Chemistry, University of Münster, Corrensstr. 45, 48149, Münster, Germany
| |
Collapse
|
12
|
McMillan AS, Foley MH, Perkins CE, Theriot CM. Loss of Bacteroides thetaiotaomicron bile acid-altering enzymes impacts bacterial fitness and the global metabolic transcriptome. Microbiol Spectr 2024; 12:e0357623. [PMID: 38018975 PMCID: PMC10783122 DOI: 10.1128/spectrum.03576-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 10/27/2023] [Indexed: 11/30/2023] Open
Abstract
IMPORTANCE Recent work on bile salt hydrolases (BSHs) in Gram-negative bacteria, such as Bacteroides, has primarily focused on how they can impact host physiology. However, the benefits bile acid metabolism confers to the bacterium that performs it are not well understood. In this study, we set out to define if and how Bacteroides thetaiotaomicron (B. theta) uses its BSHs and hydroxysteroid dehydrogenase to modify bile acids to provide a fitness advantage for itself in vitro and in vivo. Genes encoding bile acid-altering enzymes were able to impact how B. theta responds to nutrient limitation in the presence of bile acids, specifically carbohydrate metabolism, affecting many polysaccharide utilization loci. This suggests that B. theta may be able to shift its metabolism, specifically its ability to target different complex glycans including host mucin, when it comes into contact with specific bile acids in the gut.
Collapse
Affiliation(s)
- Arthur S. McMillan
- Department of Biological Sciences, Genetics Program, College of Science, North Carolina State University, Raleigh, North Carolina, USA
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| | - Matthew H. Foley
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, North Carolina, USA
| | - Caroline E. Perkins
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| | - Casey M. Theriot
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
13
|
McMillan AS, Theriot CM. Bile acids impact the microbiota, host, and C. difficile dynamics providing insight into mechanisms of efficacy of FMTs and microbiota-focused therapeutics. Gut Microbes 2024; 16:2393766. [PMID: 39224076 PMCID: PMC11376424 DOI: 10.1080/19490976.2024.2393766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024] Open
Abstract
Clostridioides difficile is a major nosocomial pathogen, causing significant morbidity and mortality worldwide. Antibiotic usage, a major risk factor for Clostridioides difficile infection (CDI), disrupts the gut microbiota, allowing C. difficile to proliferate and cause infection, and can often lead to recurrent CDI (rCDI). Fecal microbiota transplantation (FMT) and live biotherapeutic products (LBPs) have emerged as effective treatments for rCDI and aim to restore colonization resistance provided by a healthy gut microbiota. However, much is still unknown about the mechanisms mediating their success. Bile acids, extensively modified by gut microbes, affect C. difficile's germination, growth, and toxin production while also shaping the gut microbiota and influencing host immune responses. Additionally, microbial interactions, such as nutrient competition and cross-feeding, contribute to colonization resistance against C. difficile and may contribute to the success of microbiota-focused therapeutics. Bile acids as well as other microbial mediated interactions could have implications for other diseases being treated with microbiota-focused therapeutics. This review focuses on the intricate interplay between bile acid modifications, microbial ecology, and host responses with a focus on C. difficile, hoping to shed light on how to move forward with the development of new microbiota mediated therapeutic strategies to combat rCDI and other intestinal diseases.
Collapse
Affiliation(s)
- Arthur S. McMillan
- Genetics Program, Department of Biological Sciences, College of Science, North Carolina State University, Raleigh, NC, USA
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Casey M. Theriot
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
14
|
Czuba LC, Malhotra K, Enthoven L, Fay EE, Moreni SL, Mao J, Shi Y, Huang W, Totah RA, Isoherranen N, Hebert MF. CYP2D6 Activity Is Correlated with Changes in Plasma Concentrations of Taurocholic Acid during Pregnancy and Postpartum in CYP2D6 Extensive Metabolizers. Drug Metab Dispos 2023; 51:1474-1482. [PMID: 37550070 PMCID: PMC10586507 DOI: 10.1124/dmd.123.001358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/23/2023] [Accepted: 07/28/2023] [Indexed: 08/09/2023] Open
Abstract
Cytochrome P450 2D6 (CYP2D6) is involved in the metabolism of >20% of marketed drugs. CYP2D6 expression and activity exhibit high interindividual variability and is induced during pregnancy. The farnesoid X receptor (FXR) is a transcriptional regulator of CYP2D6 that is activated by bile acids. In pregnancy, elevated plasma bile acid concentrations are associated with maternal and fetal risks. However, modest changes in bile acid concentrations may occur during healthy pregnancy, thereby altering FXR signaling. A previous study demonstrated that hepatic tissue concentrations of bile acids positively correlated with the hepatic mRNA expression of CYP2D6. This study sought to characterize the plasma bile acid metabolome in healthy women (n = 47) during midpregnancy (25-28 weeks gestation) and ≥3 months postpartum and to determine if plasma bile acids correlate with CYP2D6 activity. It is hypothesized that during pregnancy, plasma bile acids would favor less hydrophobic bile acids (cholic acid vs. chenodeoxycholic acid) and that plasma concentrations of cholic acid and its conjugates would positively correlate with the urinary ratio of dextrorphan/dextromethorphan. At 25-28 weeks gestation, taurine-conjugated bile acids comprised 23% of the quantified serum bile acids compared with 7% ≥3 months postpartum. Taurocholic acid positively associated with the urinary ratio of dextrorphan/dextromethorphan, a biomarker of CYP2D6 activity. Collectively, these results confirm that the bile acid plasma metabolome differs between pregnancy and postpartum and provide evidence that taurocholic acid may impact CYP2D6 activity during pregnancy. SIGNIFICANCE STATEMENT: Bile acid homeostasis is altered in pregnancy, and plasma concentrations of taurocholic acid positively correlate with CYP2D6 activity. Differences between plasma and/or tissue concentrations of farnesoid X receptor ligands such as bile acids may contribute to the high interindividual variability in CYP2D6 expression and activity.
Collapse
Affiliation(s)
- Lindsay C Czuba
- Department of Pharmaceutics, School of Pharmacy (L.C.C., W.H., N.I.), Department of Pharmacy, School of Pharmacy (K.M., L.E., M.F.H.), Department of Obstetrics and Gynecology, School of Medicine (E.E.F., S.L.M., J.M., M.F.H.), and Department of Medicinal Chemistry, School of Pharmacy (Y.S., R.A.T.), University of Washington, Seattle, Washington
| | - Karan Malhotra
- Department of Pharmaceutics, School of Pharmacy (L.C.C., W.H., N.I.), Department of Pharmacy, School of Pharmacy (K.M., L.E., M.F.H.), Department of Obstetrics and Gynecology, School of Medicine (E.E.F., S.L.M., J.M., M.F.H.), and Department of Medicinal Chemistry, School of Pharmacy (Y.S., R.A.T.), University of Washington, Seattle, Washington
| | - Luke Enthoven
- Department of Pharmaceutics, School of Pharmacy (L.C.C., W.H., N.I.), Department of Pharmacy, School of Pharmacy (K.M., L.E., M.F.H.), Department of Obstetrics and Gynecology, School of Medicine (E.E.F., S.L.M., J.M., M.F.H.), and Department of Medicinal Chemistry, School of Pharmacy (Y.S., R.A.T.), University of Washington, Seattle, Washington
| | - Emily E Fay
- Department of Pharmaceutics, School of Pharmacy (L.C.C., W.H., N.I.), Department of Pharmacy, School of Pharmacy (K.M., L.E., M.F.H.), Department of Obstetrics and Gynecology, School of Medicine (E.E.F., S.L.M., J.M., M.F.H.), and Department of Medicinal Chemistry, School of Pharmacy (Y.S., R.A.T.), University of Washington, Seattle, Washington
| | - Sue L Moreni
- Department of Pharmaceutics, School of Pharmacy (L.C.C., W.H., N.I.), Department of Pharmacy, School of Pharmacy (K.M., L.E., M.F.H.), Department of Obstetrics and Gynecology, School of Medicine (E.E.F., S.L.M., J.M., M.F.H.), and Department of Medicinal Chemistry, School of Pharmacy (Y.S., R.A.T.), University of Washington, Seattle, Washington
| | - Jennie Mao
- Department of Pharmaceutics, School of Pharmacy (L.C.C., W.H., N.I.), Department of Pharmacy, School of Pharmacy (K.M., L.E., M.F.H.), Department of Obstetrics and Gynecology, School of Medicine (E.E.F., S.L.M., J.M., M.F.H.), and Department of Medicinal Chemistry, School of Pharmacy (Y.S., R.A.T.), University of Washington, Seattle, Washington
| | - Yuanyuan Shi
- Department of Pharmaceutics, School of Pharmacy (L.C.C., W.H., N.I.), Department of Pharmacy, School of Pharmacy (K.M., L.E., M.F.H.), Department of Obstetrics and Gynecology, School of Medicine (E.E.F., S.L.M., J.M., M.F.H.), and Department of Medicinal Chemistry, School of Pharmacy (Y.S., R.A.T.), University of Washington, Seattle, Washington
| | - Weize Huang
- Department of Pharmaceutics, School of Pharmacy (L.C.C., W.H., N.I.), Department of Pharmacy, School of Pharmacy (K.M., L.E., M.F.H.), Department of Obstetrics and Gynecology, School of Medicine (E.E.F., S.L.M., J.M., M.F.H.), and Department of Medicinal Chemistry, School of Pharmacy (Y.S., R.A.T.), University of Washington, Seattle, Washington
| | - Rheem A Totah
- Department of Pharmaceutics, School of Pharmacy (L.C.C., W.H., N.I.), Department of Pharmacy, School of Pharmacy (K.M., L.E., M.F.H.), Department of Obstetrics and Gynecology, School of Medicine (E.E.F., S.L.M., J.M., M.F.H.), and Department of Medicinal Chemistry, School of Pharmacy (Y.S., R.A.T.), University of Washington, Seattle, Washington
| | - Nina Isoherranen
- Department of Pharmaceutics, School of Pharmacy (L.C.C., W.H., N.I.), Department of Pharmacy, School of Pharmacy (K.M., L.E., M.F.H.), Department of Obstetrics and Gynecology, School of Medicine (E.E.F., S.L.M., J.M., M.F.H.), and Department of Medicinal Chemistry, School of Pharmacy (Y.S., R.A.T.), University of Washington, Seattle, Washington
| | - Mary F Hebert
- Department of Pharmaceutics, School of Pharmacy (L.C.C., W.H., N.I.), Department of Pharmacy, School of Pharmacy (K.M., L.E., M.F.H.), Department of Obstetrics and Gynecology, School of Medicine (E.E.F., S.L.M., J.M., M.F.H.), and Department of Medicinal Chemistry, School of Pharmacy (Y.S., R.A.T.), University of Washington, Seattle, Washington
| |
Collapse
|
15
|
Majait S, Meessen ECE, Vaz FM, Kemper EM, van Nierop S, Olde Damink SW, Schaap FG, Romijn JA, Nieuwdorp M, Verrips A, Knop FK, Soeters MR. Characterization of Postprandial Bile Acid Profiles and Glucose Metabolism in Cerebrotendinous Xanthomatosis. Nutrients 2023; 15:4625. [PMID: 37960277 PMCID: PMC10648145 DOI: 10.3390/nu15214625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/17/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
Cerebrotendinous xanthomatosis (CTX) is a rare inherited disease characterized by sterol 27-hydroxylase (CYP27A1) deficiency and, thus, a lack of bile acid synthesis with a marked accumulation of 7α-hydroxylated bile acid precursors. In addition to their renowned lipid-emulgating role, bile acids have been shown to stimulate secretion of the glucose-lowering and satiety-promoting gut hormone glucagon-like peptide 1 (GLP-1). In this paper, we examined postprandial bile acid, glucose, insulin, GLP-1 and fibroblast growth factor 19 (FGF19) plasma profiles in patients with CTX and matched healthy controls. Seven patients and seven age, gender and body mass index matched controls were included and subjected to a 4 h mixed meal test with regular blood sampling. CTX patients withdrew from chenodeoxycholic acid (CDCA) and statin therapy three weeks prior to the test. Postprandial levels of total bile acids were significantly lower in CTX patients and consisted of residual CDCA with low amounts of ursodeoxycholic acid (UDCA). The postprandial plasma glucose peak concentration occurred later in CTX patients compared to controls, and patients' insulin levels remained elevated for a longer time. Postprandial GLP-1 levels were slightly higher in CTX subjects whereas postprandial FGF19 levels were lower in CTX subjects. This novel characterization of CTX patients reveals very low circulating bile acid levels and FGF19 levels, aberrant postprandial glucose and insulin profiles, and elevated postprandial GLP-1 responses.
Collapse
Affiliation(s)
- Soumia Majait
- Department of Pharmacy and Clinical Pharmacology, Amsterdam UMC Location University of Amsterdam, 1105 AZ Amsterdam, The Netherlands;
| | - Emma C. E. Meessen
- Department of Endocrinology and Metabolism, Amsterdam UMC Location University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (E.C.E.M.); (S.v.N.)
| | - Frederic Maxime Vaz
- Department of Clinical Chemistry and Pediatrics, Amsterdam UMC Location University of Amsterdam, Laboratory Genetic Metabolic Diseases, Emma Children’s Hospital, 1105 AZ Amsterdam, The Netherlands;
- Inborn Errors of Metabolism, Amsterdam Gastroenterology Endocrinology Metabolism, 1105 AZ Amsterdam, The Netherlands
- Core Facility Metabolomics, Amsterdam UMC location University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - E. Marleen Kemper
- Department of Experimental Vascular Medicine, Amsterdam University Medical Center, 1105 AZ Amsterdam, The Netherlands;
| | - Samuel van Nierop
- Department of Endocrinology and Metabolism, Amsterdam UMC Location University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (E.C.E.M.); (S.v.N.)
| | - Steven W. Olde Damink
- Department of Surgery, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, 6229 ER Maastricht, The Netherlands; (S.W.O.D.); (F.G.S.)
- Department of General, Visceral and Transplantation Surgery, RWTH University Hospital Aachen, 52074 Aachen, Germany
| | - Frank G. Schaap
- Department of Surgery, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, 6229 ER Maastricht, The Netherlands; (S.W.O.D.); (F.G.S.)
- Department of General, Visceral and Transplantation Surgery, RWTH University Hospital Aachen, 52074 Aachen, Germany
| | - Johannes A. Romijn
- Department of Internal Medicine, Amsterdam UMC Location University of Amsterdam, 1012 WX Amsterdam, The Netherlands;
| | - Max Nieuwdorp
- Department of Vascular Medicine, Amsterdam UMC Location University of Amsterdam, 1105 AZ Amsterdam, The Netherlands;
| | - Aad Verrips
- Department of Neurology, Canisius Wilhelmina Hospital, 6532 SZ Nijmegen, The Netherlands;
| | - Filip Krag Knop
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, 2900 Hellerup, Denmark;
- Steno Diabetes Center Copenhagen, 2730 Herlev, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 1353 Copenhagen, Denmark
| | - Maarten R. Soeters
- Department of Endocrinology and Metabolism, Amsterdam UMC Location University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (E.C.E.M.); (S.v.N.)
| |
Collapse
|
16
|
Manthei A, López-Gámez G, Martín-Belloso O, Elez-Martínez P, Soliva-Fortuny R. Relationship between Physicochemical, Techno-Functional and Health-Promoting Properties of Fiber-Rich Fruit and Vegetable By-Products and Their Enhancement by Emerging Technologies. Foods 2023; 12:3720. [PMID: 37893613 PMCID: PMC10606636 DOI: 10.3390/foods12203720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/20/2023] [Accepted: 10/06/2023] [Indexed: 10/29/2023] Open
Abstract
The preparation and processing of fruits and vegetables produce high amounts of underutilized fractions, such as pomace and peel, which present a risk to the environment but constitute a valuable source of dietary fiber (DF) and bioactive compounds. The utilization of these fiber-rich products as functional food ingredients demands the application of treatments to improve their techno-functional properties, such as oil and water binding, and health-related properties, such as fermentability, adsorption, and retardation capacities of glucose, cholesterol, and bile acids. The enhancement of health-promoting properties is strongly connected with certain structural and techno-functional characteristics, such as the soluble DF content, presence of hydrophobic groups, and viscosity. Novel physical, environmentally friendly technologies, such as ultrasound (US), high-pressure processing (HPP), extrusion, and microwave, have been found to have higher potential than chemical and comminution techniques in causing desirable structural alterations of the DF network that lead to the improvement of techno-functionality and health promotion. The application of enzymes was related to higher soluble DF content, which might be associated with improved DF properties. Combined physical and enzymatic treatments can aid solubilization and modifications, but their benefit needs to be evaluated for each DF source and the desired outcome.
Collapse
Affiliation(s)
| | | | | | | | - Robert Soliva-Fortuny
- Department of Food Technology, Engineering and Science, University of Lleida/Agrotecnio-CeRCA Center, Av. Alcalde Rovira Roure, 191, 25198 Lleida, Spain; (A.M.)
| |
Collapse
|
17
|
Xiang T, Deng Z, Yang C, Tan J, Dou C, Luo F, Chen Y. Bile acid metabolism regulatory network orchestrates bone homeostasis. Pharmacol Res 2023; 196:106943. [PMID: 37777075 DOI: 10.1016/j.phrs.2023.106943] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/18/2023] [Accepted: 09/28/2023] [Indexed: 10/02/2023]
Abstract
Bile acids (BAs), synthesized in the liver and modified by the gut microbiota, have been widely appreciated not only as simple lipid emulsifiers, but also as complex metabolic regulators and momentous signaling molecules, which play prominent roles in the complex interaction among several metabolic systems. Recent studies have drawn us eyes on the diverse physiological functions of BAs, to enlarge the knowledge about the "gut-bone" axis due to the participation about the gut microbiota-derived BAs to modulate bone homeostasis at physiological and pathological stations. In this review, we have summarized the metabolic processes of BAs and highlighted the crucial roles of BAs targeting bile acid-activated receptors, promoting the proliferation and differentiation of osteoblasts (OBs), inhibiting the activity of osteoclasts (OCs), as well as reducing articular cartilage degradation, thus facilitating bone repair. In addition, we have also focused on the bidirectional effects of BA signaling networks in coordinating the dynamic balance of bone matrix and demonstrated the promising effects of BAs on the development or treatment for pathological bone diseases. In a word, further clinical applications targeting BA metabolism or modulating gut metabolome and related derivatives may be developed as effective therapeutic strategies for bone destruction diseases.
Collapse
Affiliation(s)
- Tingwen Xiang
- Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China; College of Basic Medical Science, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Zihan Deng
- Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Chuan Yang
- Department of Biomedical Materials Science, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Jiulin Tan
- Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Ce Dou
- Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China.
| | - Fei Luo
- Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China.
| | - Yueqi Chen
- Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China.
| |
Collapse
|
18
|
McMillan AS, Foley MH, Perkins CE, Theriot CM. Loss of Bacteroides thetaiotaomicron bile acid altering enzymes impact bacterial fitness and the global metabolic transcriptome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.27.546749. [PMID: 37425690 PMCID: PMC10327073 DOI: 10.1101/2023.06.27.546749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Bacteroides thetaiotaomicron (B. theta) is a Gram-negative gut bacterium that encodes enzymes that alter the bile acid pool in the gut. Primary bile acids are synthesized by the host liver and are modified by gut bacteria. B. theta encodes two bile salt hydrolases (BSHs), as well as a hydroxysteroid dehydrogenase (HSDH). We hypothesize that B. theta modifies the bile acid pool in the gut to provide a fitness advantage for itself. To investigate each gene's role, different combinations of genes encoding bile acid altering enzymes (bshA, bshB, and hsdhA) were knocked out by allelic exchange, including a triple KO. Bacterial growth and membrane integrity assays were done in the presence and absence of bile acids. To explore if B. theta's response to nutrient limitation changes due to the presence of bile acid altering enzymes, RNASeq analysis of WT and triple KO strains in the presence and absence of bile acids was done. WT B. theta is more sensitive to deconjugated bile acids (CA, CDCA, and DCA) compared to the triple KO, which also decreased membrane integrity. The presence of bshB is detrimental to growth in conjugated forms of CDCA and DCA. RNA-Seq analysis also showed bile acid exposure impacts multiple metabolic pathways in B. theta, but DCA significantly increases expression of many genes in carbohydrate metabolism, specifically those in polysaccharide utilization loci or PULs, in nutrient limited conditions. This study suggests that bile acids B. theta encounters in the gut may signal the bacteria to increase or decrease its utilization of carbohydrates. Further study looking at the interactions between bacteria, bile acids, and the host may inform rationally designed probiotics and diets to ameliorate inflammation and disease. Importance Recent work on BSHs in Gram-negative bacteria, such as Bacteroides, has primarily focused on how they can impact host physiology. However, the benefits bile acid metabolism confers to the bacterium that performs it is not well understood. In this study we set out to define if and how B. theta uses its BSHs and HSDH to modify bile acids to provide a fitness advantage for itself in vitro and in vivo. Genes encoding bile acid altering enzymes were able to impact how B. theta responds to nutrient limitation in the presence of bile acids, specifically carbohydrate metabolism, affecting many polysaccharide utilization loci (PULs). This suggests that B. theta may be able to shift its metabolism, specifically its ability to target different complex glycans including host mucin, when it comes into contact with specific bile acids in the gut. This work will aid in our understanding of how to rationally manipulate the bile acid pool and the microbiota to exploit carbohydrate metabolism in the context of inflammation and other GI diseases.
Collapse
Affiliation(s)
- Arthur S. McMillan
- Genetics Program, Department of Biological Sciences, College of Science
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Matthew H. Foley
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC, USA
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Caroline E. Perkins
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Casey M. Theriot
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, United States of America
| |
Collapse
|
19
|
Zhu F, Zheng S, Zhao M, Shi F, Zheng L, Wang H. The regulatory role of bile acid microbiota in the progression of liver cirrhosis. Front Pharmacol 2023; 14:1214685. [PMID: 37416060 PMCID: PMC10320161 DOI: 10.3389/fphar.2023.1214685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 06/12/2023] [Indexed: 07/08/2023] Open
Abstract
Bile acids (BAs) are synthesized in liver tissue from cholesterol and are an important endocrine regulator and signaling molecule in the liver and intestine. It maintains BAs homeostasis, and the integrity of intestinal barrier function, and regulates enterohepatic circulation in vivo by modulating farnesoid X receptors (FXR) and membrane receptors. Cirrhosis and its associated complications can lead to changes in the composition of intestinal micro-ecosystem, resulting in dysbiosis of the intestinal microbiota. These changes may be related to the altered composition of BAs. The BAs transported to the intestinal cavity through the enterohepatic circulation are hydrolyzed and oxidized by intestinal microorganisms, resulting in changes in their physicochemical properties, which can also lead to dysbiosis of intestinal microbiota and overgrowth of pathogenic bacteria, induction of inflammation, and damage to the intestinal barrier, thus aggravating the progression of cirrhosis. In this paper, we review the discussion of BAs synthesis pathway and signal transduction, the bidirectional regulation of bile acids and intestinal microbiota, and further explore the role of reduced total bile acid concentration and dysregulated intestinal microbiota ratio in the development of cirrhosis, in order to provide a new theoretical basis for the clinical treatment of cirrhosis and its complications.
Collapse
Affiliation(s)
- Feng Zhu
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Shudan Zheng
- First Clinical School of Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Mei Zhao
- First Clinical School of Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Fan Shi
- First Clinical School of Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Lihong Zheng
- Department of Gastroenterology, Fourth Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Haiqiang Wang
- Department of Gastroenterology, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
20
|
In Vitro Characterization of Limosilactobacillus reuteri Lac Ib01 (OL468126.1) Isolated from Traditional Sheep Dry Sausage and Evaluation of the Activity of Arthrospira platensis or Phycocyanin on Its Growth-Promoting Ability. FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9030248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
The positive impact of probiotic strains on human health is more evident than ever. To achieve the beneficial health effects and desirable functional properties of probiotics, sufficient numbers of these microorganisms must reach the intestinal tract with high survival rates. The purpose of this study was to identify and characterize a novel strain of Limosilactobacillus reuteri isolated from traditional sheep dry sausage and evaluate its growth-promoting ability with the addition of Arthrospira platensis or phycocyanin extract. In vitro experimental approaches were conducted to determine the physiological features of the candidate probiotic isolate, including biochemical identification, 16S rRNA gene sequencing, tolerance assays to acid and bile salts, antimicrobial activities, adherence ability, and antiproliferative assays. The effects of A. platensis or phycocyanin (0, 1, 5, and 8 mg/mL) on the growth of probiotic cultures were studied after 0, 24, 48, and 72 h. Our results showed that the isolated Limosilactobacillus reuteri (OL468126.1) possesses desirable characteristics as a probiotic candidate and can, therefore, be used as an ingredient in functional foods. Furthermore, A. platensis and phycocyanin extract have great potential for enhancing the growth and prolonging the stationary phase of isolated probiotics. Our findings showed that phycocyanin extract not only plays the role of a natural pigment but also acts as a growth promoter of probiotics.
Collapse
|
21
|
Frisch K, Mortensen FV, Munk OL, Gormsen LC, Alstrup AKO. N-(4-[ 18F]fluorobenzyl)cholylglycine, a potential tracer for positron emission tomography of enterohepatic circulation and drug-induced inhibition of ileal bile acid transport. A proof-of-concept PET/CT study in pigs. Nucl Med Biol 2022; 114-115:49-57. [PMID: 36095922 DOI: 10.1016/j.nucmedbio.2022.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 08/09/2022] [Accepted: 08/25/2022] [Indexed: 12/27/2022]
Abstract
INTRODUCTION Enterohepatic circulation (EHC) of conjugated bile acids is an important physiological process crucial for bile acids to function as detergents and signal carriers. Perturbation of the EHC by disease or drugs may lead to serious and life-threatening liver and gastrointestinal disorders. In this proof-of-concept study in pigs, we investigate the potential of N-(4-[18F]fluorobenzyl)cholylglycine ([18F]FBCGly) as tracer for quantitative positron emission tomography (PET) of the EHC of conjugated bile acids. METHODS The biodistribution of [18F]FBCGly was investigated by PET/CT in domestic pigs following intravenous and intraileal administration of the tracer. Hepatic kinetics were estimated from PET and blood data using a 2-tissue compartmental model and dual-input of [18F]FBCGly. The ileal uptake of [18F]FBCGly was investigated with co-injection of nifedipine and endogenous cholyltaurine. Dosimetry was estimated from the PET data using the Olinda 2.0 software. Blood, bile and urine samples were analyzed for possible fluorine-18 labelled metabolites of [18F]FBCGly. RESULTS [18F]FBCGly was rapidly taken up by the liver and excreted into bile, and underwent EHC without being metabolized. Both nifedipine and endogenous cholyltaurine inhibited the ileal uptake of [18F]FBCGly. The flow-dependent hepatic uptake clearance was estimated to median 1.2 mL blood/min/mL liver tissue. The mean residence time of [18F]FBCGly in hepatocytes was 4.0 ± 1.1 min. Critical organs for [18F]FBCGly were the gallbladder wall (0.94 mGy/MBq) and the small intestine (0.50 mGy/MBq). The effective dose for [18F]FBCGly was 36 μSv/MBq. CONCLUSION We have shown that [18F]FBCGly undergoes EHC in pigs without being metabolized and that its ileal uptake is inhibited by nifedipine and endogenous bile acids. Combined with our previous findings in rats, we believe that [18F]FBCGly has potential as PET tracer for assessment of EHC of conjugated bile acids under physiological conditions as well as conditions with perturbed hepatic and ileal bile acid transport.
Collapse
Affiliation(s)
- Kim Frisch
- Department of Nuclear Medicine and PET Centre, Aarhus University Hospital, Aarhus, Denmark.
| | - Frank Viborg Mortensen
- Department of Surgical Gastroenterology, Aarhus University Hospital, Aarhus, Denmark; Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Ole Lajord Munk
- Department of Nuclear Medicine and PET Centre, Aarhus University Hospital, Aarhus, Denmark; Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Lars Christian Gormsen
- Department of Nuclear Medicine and PET Centre, Aarhus University Hospital, Aarhus, Denmark; Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Aage Kristian Olsen Alstrup
- Department of Nuclear Medicine and PET Centre, Aarhus University Hospital, Aarhus, Denmark; Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
22
|
Zhou M, Wang D, Li X, Cao Y, Yi C, Wiredu Ocansey DK, Zhou Y, Mao F. Farnesoid-X receptor as a therapeutic target for inflammatory bowel disease and colorectal cancer. Front Pharmacol 2022; 13:1016836. [PMID: 36278234 PMCID: PMC9583386 DOI: 10.3389/fphar.2022.1016836] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 09/20/2022] [Indexed: 12/09/2022] Open
Abstract
Farnesoid-X receptor (FXR), as a nuclear receptor activated by bile acids, is a vital molecule involved in bile acid metabolism. Due to its expression in immune cells, FXR has a significant effect on the function of immune cells and the release of chemokines when immune cells sense changes in bile acids. In addition to its regulation by ligands, FXR is also controlled by post-translational modification (PTM) activities such as acetylation, SUMOylation, and methylation. Due to the high expression of FXR in the liver and intestine, it significantly influences intestinal homeostasis under the action of enterohepatic circulation. Thus, FXR protects the intestinal barrier, resists bacterial infection, reduces oxidative stress, inhibits inflammatory reactions, and also acts as a tumor suppressor to impair the multiplication and invasion of tumor cells. These potentials provide new perspectives on the treatment of intestinal conditions, including inflammatory bowel disease (IBD) and its associated colorectal cancer (CRC). Moreover, FXR agonists on the market have certain organizational heterogeneity and may be used in combination with other drugs to achieve a greater therapeutic effect. This review summarizes current data on the role of FXR in bile acid metabolism, regulation of immune cells, and effects of the PTM of FXR. The functions of FXR in intestinal homeostasis and potential application in the treatment of IBD and CRC are discussed.
Collapse
Affiliation(s)
- Mengjiao Zhou
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Danfeng Wang
- Nanjing Jiangning Hospital, Nanjing, Jiangsu, China
| | - Xiang Li
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Ying Cao
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Chengxue Yi
- School of Medical Technology, Zhenjiang College, Zhenjiang, Jiangsu, China
| | - Dickson Kofi Wiredu Ocansey
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
- Directorate of University Health Services, University of Cape Coast, Cape Coast, Ghana
| | - Yuling Zhou
- Nanjing Jiangning Hospital, Nanjing, Jiangsu, China
- *Correspondence: Yuling Zhou, ; Fei Mao,
| | - Fei Mao
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
- *Correspondence: Yuling Zhou, ; Fei Mao,
| |
Collapse
|
23
|
Yang B, Huang S, Yang N, Cao A, Zhao L, Zhang J, Zhao G, Ma Q. Porcine bile acids promote the utilization of fat and vitamin A under low-fat diets. Front Nutr 2022; 9:1005195. [PMID: 36245518 PMCID: PMC9554479 DOI: 10.3389/fnut.2022.1005195] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 09/15/2022] [Indexed: 11/16/2022] Open
Abstract
Fat-soluble vitamin malabsorption may occur due to low dietary fat content, even in the presence of an adequate supply of fat-soluble vitamins. Bile acids (BAs) have been confirmed as emulsifiers to promote fat absorption in high-fat diets. However, there are no direct evidence of exogenous BAs promoting the utilization of fat-soluble vitamins associated with fat absorption in vitro and in vivo. Therefore, we chose laying hens as model animals, as their diet usually does not contain much fat, to expand the study of BAs. BAs were investigated in vitro for emulsification, simulated intestinal digestion, and release rate of fat-soluble vitamins. Subsequently, a total of 450 healthy 45-week-old Hy-Line Gray laying hens were chosen for an 84-day feeding trial. They were divided into five treatments, feeding diets supplemented with 0, 30, 60, 90, and 120 mg/kg BAs, respectively. No extra fat was added to the basic diet (crude fat was 3.23%). In vitro, BAs effectively emulsified the water-oil interface. Moreover, BAs promoted the hydrolysis of fat by lipase to release more fatty acids. Although BAs increased the release rates of vitamins A, D, and E from vegetable oils, BAs improved for the digestion of vitamin A more effectively. Dietary supplementation of 60 mg/kg BAs in laying hens markedly improved the laying performance. The total number of follicles in ovaries increased in 30 and 60 mg/kg BAs groups. Both the crude fat and total energy utilization rates of BAs groups were improved. Lipase and lipoprotein lipase activities were enhanced in the small intestine in 60, 90, and 120 mg/kg BAs groups. Furthermore, we observed an increase in vitamin A content in the liver and serum of laying hens in the 60, 90, and 120 mg/kg BAs groups. The serum IgA content in the 90 and 120 mg/kg BAs groups was significantly improved. A decrease in serum malondialdehyde levels and an increase in glutathione peroxidase activity were also observed in BAs groups. The present study concluded that BAs promoted the absorption of vitamin A by promoting the absorption of fat even under low-fat diets, thereupon improving the reproduction and health of model animals.
Collapse
Affiliation(s)
- Bowen Yang
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Shimeng Huang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Ning Yang
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Aizhi Cao
- Dezhou Key Laboratory for Applied Bile Acid Research, Shandong Longchang Animal Health Product Co., Ltd., Dezhou, China
| | - Lihong Zhao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jianyun Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Guoxian Zhao
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
| | - Qiugang Ma
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
24
|
Cai J, Rimal B, Jiang C, Chiang JYL, Patterson AD. Bile acid metabolism and signaling, the microbiota, and metabolic disease. Pharmacol Ther 2022; 237:108238. [PMID: 35792223 DOI: 10.1016/j.pharmthera.2022.108238] [Citation(s) in RCA: 148] [Impact Index Per Article: 49.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/13/2022] [Accepted: 06/27/2022] [Indexed: 11/24/2022]
Abstract
The diversity, composition, and function of the bacterial community inhabiting the human gastrointestinal tract contributes to host health through its role in producing energy or signaling molecules that regulate metabolic and immunologic functions. Bile acids are potent metabolic and immune signaling molecules synthesized from cholesterol in the liver and then transported to the intestine where they can undergo metabolism by gut bacteria. The combination of host- and microbiota-derived enzymatic activities contribute to the composition of the bile acid pool and thus there can be great diversity in bile acid composition that depends in part on the differences in the gut bacteria species. Bile acids can profoundly impact host metabolic and immunological functions by activating different bile acid receptors to regulate signaling pathways that control a broad range of complex symbiotic metabolic networks, including glucose, lipid, steroid and xenobiotic metabolism, and modulation of energy homeostasis. Disruption of bile acid signaling due to perturbation of the gut microbiota or dysregulation of the gut microbiota-host interaction is associated with the pathogenesis and progression of metabolic disorders. The metabolic and immunological roles of bile acids in human health have led to novel therapeutic approaches to manipulate the bile acid pool size, composition, and function by targeting one or multiple components of the microbiota-bile acid-bile acid receptor axis.
Collapse
Affiliation(s)
- Jingwei Cai
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Bipin Rimal
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Changtao Jiang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, and the Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, PR China
| | - John Y L Chiang
- Department of Integrative Medical Sciences, College of Medicine, Northeast Ohio Medical University, Rootstown, OH, USA
| | - Andrew D Patterson
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, USA.
| |
Collapse
|
25
|
Sparagon WJ, Gentry EC, Minich JJ, Vollbrecht L, Laurens LML, Allen EE, Sims NA, Dorrestein PC, Kelly LW, Nelson CE. Fine scale transitions of the microbiota and metabolome along the gastrointestinal tract of herbivorous fishes. Anim Microbiome 2022; 4:33. [PMID: 35606844 PMCID: PMC9128220 DOI: 10.1186/s42523-022-00182-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 04/06/2022] [Indexed: 02/07/2023] Open
Abstract
Background Gut microorganisms aid in the digestion of food by providing exogenous metabolic pathways to break down organic compounds. An integration of longitudinal microbial and chemical data is necessary to illuminate how gut microorganisms supplement the energetic and nutritional requirements of animals. Although mammalian gut systems are well-studied in this capacity, the role of microbes in the breakdown and utilization of recalcitrant marine macroalgae in herbivorous fish is relatively understudied and an emerging priority for bioproduct extraction. Here we use a comprehensive survey of the marine herbivorous fish gut microbial ecosystem via parallel 16S rRNA gene amplicon profiling (microbiota) and untargeted tandem mass spectrometry (metabolomes) to demonstrate consistent transitions among 8 gut subsections across five fish of the genus of Kyphosus. Results Integration of microbial phylogenetic and chemical diversity data reveals that microbial communities and metabolomes covaried and differentiated continuously from stomach to hindgut, with the midgut containing multiple distinct and previously uncharacterized microenvironments and a distinct hindgut community dominated by obligate anaerobes. This differentiation was driven primarily by anaerobic gut endosymbionts of the classes Bacteroidia and Clostridia changing in concert with bile acids, small peptides, and phospholipids: bile acid deconjugation associated with early midgut microbiota, small peptide production associated with midgut microbiota, and phospholipid production associated with hindgut microbiota. Conclusions The combination of microbial and untargeted metabolomic data at high spatial resolution provides a new view of the diverse fish gut microenvironment and serves as a foundation to understand functional partitioning of microbial activities that contribute to the digestion of complex macroalgae in herbivorous marine fish. Supplementary Information The online version contains supplementary material available at 10.1186/s42523-022-00182-z.
Collapse
Affiliation(s)
- Wesley J Sparagon
- Daniel K. Inouye Center for Microbial Oceanography: Research and Education, Department of Oceanography and Sea Grant College Program, University of Hawai'i at Mānoa, 1950 East West Road, Honolulu, HI, 96822, USA.
| | - Emily C Gentry
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA.,Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Jeremiah J Minich
- The Plant Molecular and Cellular Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Lisa Vollbrecht
- Ocean Era, Natural Energy Laboratory of Hawai'i, Kailua-Kona, HI, USA
| | - Lieve M L Laurens
- Biosciences Center, Bioenergy Science and Technology Directorate, National Renewable Energy Laboratory, Golden, CO, USA
| | - Eric E Allen
- Molecular Biology Section, Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA.,Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| | - Neil A Sims
- Ocean Era, Natural Energy Laboratory of Hawai'i, Kailua-Kona, HI, USA
| | - Pieter C Dorrestein
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA.,Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Linda Wegley Kelly
- The Plant Molecular and Cellular Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Craig E Nelson
- Daniel K. Inouye Center for Microbial Oceanography: Research and Education, Department of Oceanography and Sea Grant College Program, University of Hawai'i at Mānoa, 1950 East West Road, Honolulu, HI, 96822, USA
| |
Collapse
|
26
|
Shen D, Zeng Y, Zhang W, Li Y, Zhu J, Liu Z, Yan Z, Huang JA. Chenodeoxycholic acid inhibits lung adenocarcinoma progression via the integrin α5β1/FAK/p53 signaling pathway. Eur J Pharmacol 2022; 923:174925. [PMID: 35364069 DOI: 10.1016/j.ejphar.2022.174925] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 03/23/2022] [Accepted: 03/23/2022] [Indexed: 12/25/2022]
Abstract
BACKGROUND Lung cancer is the leading cause of cancer-associated death worldwide and is classified into non-small cell lung cancer (NSCLC) and small-cell lung cancer (SCLC). NSCLC accounts for approximately 80%-85% of all lung cancer cases. Chenodeoxycholic acid (CDCA), a primary bile acid, has been reported to inhibit carcinoma cell proliferation. Here, we aimed to determine the effects and mechanism of action of CDCA against lung adenocarcinoma (LUAD). METHODS Western blotting and quantitative real-time polymerase chain reaction were used to evaluate the protein and mRNA expression levels in LUAD cell lines, respectively. Cell Counting Kit-8 and clone formation assays were performed to evaluate the proliferation ability of different cell types in vitro. Tumor cell motility was evaluated using Transwell assays. The transcriptional profile of A549 cells treated with CDCA was determined through RNA sequencing analysis. A xenograft model was established to evaluate the effects of CDCA on LUAD progression in vivo. RESULTS CDCA inhibited LUAD cell proliferation, migration, and invasion. Furthermore, it promoted apoptosis in LUAD cells. Mechanistically, CDCA inhibited the integrin α5β1 signaling pathway in LUAD cells by inhibiting the expression of the α5 and β1 subunits of integrin and phosphorylated FAK. Moreover, CDCA induced an increase in the levels of p53, a downstream gene of the integrin α5β1/FAK pathway. In addition, CDCA significantly decreased tumor volume in mice without inducing significant toxicity. CONCLUSIONS Our findings indicate that CDCA attenuates LUAD pathogenesis in vitro and in vivo via the integrin α5β1/FAK/p53 axis.
Collapse
Affiliation(s)
- Dan Shen
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China; Institute of Respiratory Diseases, Soochow University, Suzhou, 215006, China; Suzhou Key Laboratory for Respiratory Diseases, Suzhou, 215006, China
| | - Yuanyuan Zeng
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China; Institute of Respiratory Diseases, Soochow University, Suzhou, 215006, China; Suzhou Key Laboratory for Respiratory Diseases, Suzhou, 215006, China
| | - Weijie Zhang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China; Institute of Respiratory Diseases, Soochow University, Suzhou, 215006, China
| | - Yue Li
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China; Institute of Respiratory Diseases, Soochow University, Suzhou, 215006, China
| | - Jianjie Zhu
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China; Institute of Respiratory Diseases, Soochow University, Suzhou, 215006, China; Suzhou Key Laboratory for Respiratory Diseases, Suzhou, 215006, China
| | - Zeyi Liu
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China; Institute of Respiratory Diseases, Soochow University, Suzhou, 215006, China; Suzhou Key Laboratory for Respiratory Diseases, Suzhou, 215006, China.
| | - Zhaowei Yan
- Department of Pharmacy, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China.
| | - Jian-An Huang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China; Institute of Respiratory Diseases, Soochow University, Suzhou, 215006, China; Suzhou Key Laboratory for Respiratory Diseases, Suzhou, 215006, China.
| |
Collapse
|
27
|
Weng ZB, Chen YR, Lv JT, Wang MX, Chen ZY, Zhou W, Shen XC, Zhan LB, Wang F. A Review of Bile Acid Metabolism and Signaling in Cognitive Dysfunction-Related Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4289383. [PMID: 35308170 PMCID: PMC8933076 DOI: 10.1155/2022/4289383] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/14/2021] [Accepted: 02/23/2022] [Indexed: 12/12/2022]
Abstract
Bile acids are commonly known as one of the vital metabolites derived from cholesterol. The role of bile acids in glycolipid metabolism and their mechanisms in liver and cholestatic diseases have been well studied. In addition, bile acids also serve as ligands of signal molecules such as FXR, TGR5, and S1PR2 to regulate some physiological processes in vivo. Recent studies have found that bile acids signaling may also play a critical role in the central nervous system. Evidence showed that some bile acids have exhibited neuroprotective effects in experimental animal models and clinical trials of many cognitive dysfunction-related diseases. Besides, alterations in bile acid metabolisms well as the expression of different bile acid receptors have been discovered as possible biomarkers for prognosis tools in multiple cognitive dysfunction-related diseases. This review summarizes biosynthesis and regulation of bile acids, receptor classification and characteristics, receptor agonists and signaling transduction, and recent findings in cognitive dysfunction-related diseases.
Collapse
Affiliation(s)
- Ze-Bin Weng
- School of Traditional Chinese Medicine & School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yuan-Rong Chen
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, China
| | - Jin-Tao Lv
- School of Traditional Chinese Medicine & School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Min-Xin Wang
- School of Traditional Chinese Medicine & School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zheng-Yuan Chen
- School of Traditional Chinese Medicine & School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Wen Zhou
- School of Traditional Chinese Medicine & School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xin-Chun Shen
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, China
| | - Li-Bin Zhan
- The Innovation Engineering Technology Center of Chinese Medicine, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Fang Wang
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, China
| |
Collapse
|
28
|
Cao H, Zhou Z, Hu Z, Wei C, Li J, Wang L, Liu G, Zhang J, Wang Y, Wang T, Liang Y. Effect of Enterohepatic Circulation on the Accumulation of Per- and Polyfluoroalkyl Substances: Evidence from Experimental and Computational Studies. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:3214-3224. [PMID: 35138827 DOI: 10.1021/acs.est.1c07176] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The pharmacokinetic characteristics of per- and polyfluoroalkyl substances (PFAS) affect their distribution and bioaccumulation in biological systems. The enterohepatic circulation leads to reabsorption of certain chemicals from bile back into blood and the liver and thus influences their elimination, yet its influence on PFAS bioaccumulation remains unclear. We explored the role of enterohepatic circulation in PFAS bioaccumulation by examining tissue distribution of various PFAS in wild fish and a rat model. Computational models were used to determine the reabsorbed fractions of PFAS by calculating binding affinities of PFAS for key transporter proteins of enterohepatic circulation. The results indicated that higher concentrations were observed in blood, the liver, and bile compared to other tissues for some PFAS in fish. Furthermore, exposure to a PFAS mixture on the rat model showed that the reabsorption phenomenon appeared during 8-12 h for most long-chain PFAS. Molecular docking calculations suggest that PFAS can bind to key transporter proteins via electrostatic and hydrophobic interactions. Further regression analysis adds support to the hypothesis that binding affinity of the apical sodium-dependent bile acid transporter is the most important variable to predict the human half-lives of PFAS. This study demonstrated the critical role of enterohepatic circulation in reabsorption, distribution, and accumulation of PFAS.
Collapse
Affiliation(s)
- Huiming Cao
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Institute of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Zhen Zhou
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Institute of Environment and Health, Jianghan University, Wuhan 430056, China
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, School of Chemical and Environmental Engineering, Jianghan University, Wuhan 430056, China
| | - Zhe Hu
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Cuiyun Wei
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Institute of Environment and Health, Jianghan University, Wuhan 430056, China
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Jie Li
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Ling Wang
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Institute of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Guangliang Liu
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Institute of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Jie Zhang
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Yawei Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Thanh Wang
- MTM Research Centre, School of Science and Technology, Örebro University, Örebro 70182, Sweden
| | - Yong Liang
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Institute of Environment and Health, Jianghan University, Wuhan 430056, China
| |
Collapse
|
29
|
Ahrodia T, Das S, Bakshi S, Das B. Structure, functions, and diversity of the healthy human microbiome. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2022; 191:53-82. [DOI: 10.1016/bs.pmbts.2022.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
30
|
Simbrunner B, Trauner M, Reiberger T. Review article: therapeutic aspects of bile acid signalling in the gut-liver axis. Aliment Pharmacol Ther 2021; 54:1243-1262. [PMID: 34555862 PMCID: PMC9290708 DOI: 10.1111/apt.16602] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 08/29/2021] [Accepted: 08/31/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND Bile acids are important endocrine modulators of intestinal and hepatic signalling cascades orchestrating critical pathophysiological processes in various liver diseases. Increasing knowledge on bile acid signalling has stimulated the development of synthetic ligands of nuclear bile acid receptors and other bile acid analogues. AIM This review summarises important aspects of bile acid-mediated crosstalk between the gut and the liver ("gut-liver axis") as well as recent findings from experimental and clinical studies. METHODS We performed a literature review on bile acid signalling, and therapeutic applications in chronic liver disease. RESULTS Intestinal and hepatic bile acid signalling pathways maintain bile acid homeostasis. Perturbations of bile acid-mediated gut-liver crosstalk dysregulate transcriptional networks involved in inflammation, fibrosis and endothelial dysfunction. Bile acids induce enterohepatic feedback signalling by the release of intestinal hormones, and regulate enterohepatic circulation. Importantly, bile acid signalling plays a central role in maintaining intestinal barrier integrity and antibacterial defense, which is particularly relevant in cirrhosis, where bacterial translocation has a profound impact on disease progression. The nuclear bile acid farnesoid X receptor (FXR) is a central intersection in bile acid signalling and has emerged as a relevant therapeutic target. CONCLUSIONS Experimental evidence suggests that bile acid signalling improves the intestinal barrier and protects against bacterial translocation in cirrhosis. FXR agonists have displayed efficacy for the treatment of cholestatic and metabolic liver disease in randomised controlled clinical trials. However, similar effects remain to be shown in advanced liver disease, particularly in patients with decompensated cirrhosis.
Collapse
Affiliation(s)
- Benedikt Simbrunner
- Division of Gastroenterology and HepatologyDepartment of Internal Medicine IIIMedical University of ViennaViennaAustria,Vienna Hepatic Hemodynamic LabMedical University of ViennaViennaAustria,Christian‐Doppler Laboratory for Portal Hypertension and Liver FibrosisMedical University of ViennaViennaAustria
| | - Michael Trauner
- Division of Gastroenterology and HepatologyDepartment of Internal Medicine IIIMedical University of ViennaViennaAustria
| | - Thomas Reiberger
- Division of Gastroenterology and HepatologyDepartment of Internal Medicine IIIMedical University of ViennaViennaAustria,Vienna Hepatic Hemodynamic LabMedical University of ViennaViennaAustria,Christian‐Doppler Laboratory for Portal Hypertension and Liver FibrosisMedical University of ViennaViennaAustria
| |
Collapse
|
31
|
Song I, Gotoh Y, Ogura Y, Hayashi T, Fukiya S, Yokota A. Comparative Genomic and Physiological Analysis against Clostridium scindens Reveals Eubacterium sp. c-25 as an Atypical Deoxycholic Acid Producer of the Human Gut Microbiota. Microorganisms 2021; 9:microorganisms9112254. [PMID: 34835380 PMCID: PMC8623032 DOI: 10.3390/microorganisms9112254] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/22/2021] [Accepted: 10/22/2021] [Indexed: 12/27/2022] Open
Abstract
The human gut houses bile acid 7α-dehydroxylating bacteria that produce secondary bile acids such as deoxycholic acid (DCA) from host-derived bile acids through enzymes encoded by the bai operon. While recent metagenomic studies suggest that these bacteria are highly diverse and abundant, very few DCA producers have been identified. Here, we investigated the physiology and determined the complete genome sequence of Eubacterium sp. c-25, a DCA producer that was isolated from human feces in the 1980s. Culture experiments showed a preference for neutral to slightly alkaline pH in both growth and DCA production. Genomic analyses revealed that c-25 is phylogenetically distinct from known DCA producers and possesses a multi-cluster arrangement of predicted bile-acid inducible (bai) genes that is considerably different from the typical bai operon structure. This arrangement is also found in other intestinal bacterial species, possibly indicative of unconfirmed 7α-dehydroxylation capabilities. Functionality of the predicted bai genes was supported by the induced expression of baiB, baiCD, and baiH in the presence of cholic acid substrate. Taken together, Eubacterium sp. c-25 is an atypical DCA producer with a novel bai gene cluster structure that may represent an unexplored genotype of DCA producers in the human gut.
Collapse
Affiliation(s)
- Isaiah Song
- Laboratory of Microbial Physiology, Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan; (I.S.); (A.Y.)
| | - Yasuhiro Gotoh
- Department of Bacteriology, Faculty of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan; (Y.G.); (T.H.)
| | - Yoshitoshi Ogura
- Department of Infectious Medicine, Kurume University School of Medicine, Kurume 830-0011, Japan;
| | - Tetsuya Hayashi
- Department of Bacteriology, Faculty of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan; (Y.G.); (T.H.)
| | - Satoru Fukiya
- Laboratory of Microbial Physiology, Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan; (I.S.); (A.Y.)
- Correspondence: ; Tel.: +81-11-706-2501
| | - Atsushi Yokota
- Laboratory of Microbial Physiology, Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan; (I.S.); (A.Y.)
| |
Collapse
|
32
|
Vageli DP, Doukas SG, Doukas PG, Judson BL. Bile reflux and hypopharyngeal cancer (Review). Oncol Rep 2021; 46:244. [PMID: 34558652 PMCID: PMC8485019 DOI: 10.3892/or.2021.8195] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 08/24/2021] [Indexed: 12/26/2022] Open
Abstract
Laryngopharyngeal reflux, a variant of gastroesophageal reflux disease, has been considered a risk factor in the development of hypopharyngeal cancer. Bile acids are frequently present in the gastroesophageal refluxate and their effect has been associated with inflammatory and neoplastic changes in the upper aerodigestive tract. Recent in vitro and in vivo studies have provided direct evidence of the role of acidic bile refluxate in hypopharyngeal carcinogenesis and documented the crucial role of NF-κB as a key mediator of early oncogenic molecular events in this process and also suggested a contribution of STAT3. Acidic bile can cause premalignant changes and invasive squamous cell cancer in the affected hypopharynx accompanied by DNA damage, elevated p53 expression and oncogenic mRNA and microRNA alterations, previously linked to head and neck cancer. Weakly acidic bile can also increase the risk for hypopharyngeal carcinogenesis by inducing DNA damage, exerting anti-apoptotic effects and causing precancerous lesions. The most important findings that strongly support bile reflux as an independent risk factor for hypopharyngeal cancer are presented in the current review and the underlying mechanisms are provided.
Collapse
Affiliation(s)
- Dimitra P Vageli
- The Yale Larynx Laboratory, Department of Surgery, Yale School of Medicine, New Haven, CT 06510, USA
| | - Sotirios G Doukas
- The Yale Larynx Laboratory, Department of Surgery, Yale School of Medicine, New Haven, CT 06510, USA
| | - Panagiotis G Doukas
- The Yale Larynx Laboratory, Department of Surgery, Yale School of Medicine, New Haven, CT 06510, USA
| | - Benjamin L Judson
- The Yale Larynx Laboratory, Department of Surgery, Yale School of Medicine, New Haven, CT 06510, USA
| |
Collapse
|
33
|
Gertzen CGW, Gohlke H, Häussinger D, Herebian D, Keitel V, Kubitz R, Mayatepek E, Schmitt L. The many facets of bile acids in the physiology and pathophysiology of the human liver. Biol Chem 2021; 402:1047-1062. [PMID: 34049433 DOI: 10.1515/hsz-2021-0156] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 05/14/2021] [Indexed: 12/12/2022]
Abstract
Bile acids perform vital functions in the human liver and are the essential component of bile. It is therefore not surprising that the biology of bile acids is extremely complex, regulated on different levels, and involves soluble and membrane receptors as well as transporters. Hereditary disorders of these proteins manifest in different pathophysiological processes that result in liver diseases of varying severity. In this review, we summarize our current knowledge of the physiology and pathophysiology of bile acids with an emphasis on recently established analytical approaches as well as the molecular mechanisms that underlie signaling and transport of bile acids. In this review, we will focus on ABC transporters of the canalicular membrane and their associated diseases. As the G protein-coupled receptor, TGR5, receives increasing attention, we have included aspects of this receptor and its interaction with bile acids.
Collapse
Affiliation(s)
- Christoph G W Gertzen
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Center for Structural Studies (CSS), Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Holger Gohlke
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- John von Neumann Institute for Computing (NIC), Jülich Supercomputing Centre (JSC), Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Institute of Bio- and Geosciences (IBG-4: Bioinformatics), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Dieter Häussinger
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Diran Herebian
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Verena Keitel
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Ralf Kubitz
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Ertan Mayatepek
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Lutz Schmitt
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
34
|
Nguyen HP, Van Do T. Digested soybean protein and taurine influence bile acid level, lipase activity, lipid digestibility, and growth performance of pompano (Trachinotus blochii). FISH PHYSIOLOGY AND BIOCHEMISTRY 2021; 47:1199-1209. [PMID: 34173184 DOI: 10.1007/s10695-021-00972-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 05/18/2021] [Indexed: 06/13/2023]
Abstract
This study aimed to examine the effects of dietary digested soybean protein (DSP) and taurine on bile acid (BA) level, lipase activity, lipid apparent digestibility coefficient (ADC), and growth performance of pompano (Trachinotus blochii). Five diets were formulated with fish meal (FM), defatted soybean meal (SBM), and the DSP as main dietary protein sources. The diets were denoted as follows: FMD (FM-based diet), SBMD (SBM-based diet), SBM+TD (SBM-based diet plus taurine), DSPD (DSP-based diet), and DSP+TD (DSP-based diet plus taurine). Fingerling pompano with an initial body weight (BW) of 21.4 g were stocked in 500-L tanks, with triplicate tanks per dietary treatment. For 8 weeks, the fish were hand-fed the experimental diets to apparent satiation twice daily. The results showed that the DSPD and DSP+TD groups had significantly higher final BW, weight gain, and specific growth rate, but lower feed conversion ratio, than the SBMD and SBM+TD groups, respectively (P < 0.05). There were no significant differences in growth and feed performances between fish fed DSP+TD and FMD. The gallbladder and anterior intestinal BA levels, anterior intestinal lipase activity, and lipid and protein ADCs were markedly increased in fish fed DSPD and DSP+TD compared to those fed SBMD (P < 0.05), and no significant differences were detected between the DSP+TD and FMD groups. The findings of the present study suggested that dietary DSP inclusion with taurine supplementation might effectively improve lipid digestion and this contributed to growth enhancement in pompano fed a soybean protein-based diet.
Collapse
Affiliation(s)
- Hung Phuc Nguyen
- Department of Human and Animal Physiology, Faculty of Biology, Hanoi National University of Education, Caugiay 11310, Hanoi, 10000, Vietnam.
| | - Thinh Van Do
- Centre for Aquaculture Biotechnology, Research Institute for Aquaculture No. 1, Tuson 16352, Bacninh, 16000, Vietnam
| |
Collapse
|
35
|
Tokuhara D. Role of the Gut Microbiota in Regulating Non-alcoholic Fatty Liver Disease in Children and Adolescents. Front Nutr 2021; 8:700058. [PMID: 34250000 PMCID: PMC8267179 DOI: 10.3389/fnut.2021.700058] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 06/04/2021] [Indexed: 01/18/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common form of chronic liver disease in children and adolescents. Although obesity is the leading cause of NAFLD, the etiologies of NAFLD are multifactorial (e.g., high-fat diet, a lack of exercise, gender, maternal obesity, the antibiotic use), and each of these factors leads to dysbiosis of the gut microbiota community. The gut microbiota is a key player in the development and regulation of the gut mucosal immune system as well as the regulation of both NAFLD and obesity. Dysbiosis of the gut microbiota promotes the development of NAFLD via alteration of gut-liver homeostasis, including disruption of the gut barrier, portal transport of bacterial endotoxin (lipopolysaccharide) to the liver, altered bile acid profiles, and decreased concentrations of short-chain fatty acids. In terms of prevention and treatment, conventional approaches (e.g., dietary and exercise interventions) against obesity and NAFLD have been confirmed to recover the dysbiosis and dysbiosis-mediated altered metabolism. In addition, increased understanding of the importance of gut microbiota-mediated homeostasis in the prevention of NAFLD suggests the potential effectiveness of gut microbiota-targeted preventive and therapeutic strategies (e.g., probiotics and fecal transplantation) against NAFLD in children and adolescents. This review comprehensively summarizes our current knowledge of the gut microbiota, focusing on its interaction with NAFLD and its potential therapeutic role in obese children and adolescents with this disorder.
Collapse
Affiliation(s)
- Daisuke Tokuhara
- Department of Pediatrics, Osaka City University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
36
|
Kroll T, Smits SHJ, Schmitt L. Monomeric bile acids modulate the ATPase activity of detergent-solubilized ABCB4/MDR3. J Lipid Res 2021; 62:100087. [PMID: 34022183 PMCID: PMC8233136 DOI: 10.1016/j.jlr.2021.100087] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/28/2021] [Accepted: 05/10/2021] [Indexed: 12/19/2022] Open
Abstract
ABCB4, also called multidrug-resistant protein 3 (MDR3), is an ATP binding cassette transporter located in the canalicular membrane of hepatocytes that specifically translocates phosphatidylcholine (PC) lipids from the cytoplasmic to the extracellular leaflet. Due to the harsh detergent effect of bile acids, PC lipids provided by ABCB4 are extracted into the bile. While it is well known that bile acids are the major extractor of PC lipids from the membrane into bile, it is unknown whether only PC lipid extraction is improved or whether bile acids also have a direct effect on ABCB4. Using in vitro experiments, we investigated the modulation of ATP hydrolysis of ABC by different bile acids commonly present in humans. We demonstrated that all tested bile acids stimulated ATPase activity except for taurolithocholic acid, which inhibited ATPase activity due to its hydrophobic nature. Additionally, we observed a nearly linear correlation between the critical micelle concentration and maximal stimulation by each bile acid, and that this modulation was maintained in the presence of PC lipids. This study revealed a large effect of 24-nor-ursodeoxycholic acid, suggesting a distinct mode of regulation of ATPase activity compared with other bile acids. In addition, it sheds light on the molecular cross talk of canalicular ABC transporters of the human liver.
Collapse
Affiliation(s)
- Tim Kroll
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Sander H J Smits
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Lutz Schmitt
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
37
|
Hepatic bile acid transport increases in the postprandial state: A functional 11C-CSar PET/CT study in healthy humans. JHEP Rep 2021; 3:100288. [PMID: 34095797 PMCID: PMC8165435 DOI: 10.1016/j.jhepr.2021.100288] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 03/21/2021] [Accepted: 03/24/2021] [Indexed: 12/22/2022] Open
Abstract
Background & Aims It is not known how hepatic bile acids transport kinetics changes postprandially in the intact liver. We used positron emission tomography (PET)/computed tomography (CT) with the tracer [N-methyl-11C]cholylsarcosine (11C-CSar), a synthetic sarcosine conjugate of cholic acid, to quantify fasting and postprandial hepatic bile acid transport kinetics in healthy human participants. Methods Six healthy human participants underwent dynamic liver 11C-CSar PET/CT (60 min) during fasting and from 15 min after ingestion of a standard liquid meal. Hepatobiliary secretion kinetics of 11C-CSar was calculated from PET data, blood samples (arterial and hepatic venous) and hepatic blood flow measured using indocyanine green infusion. Results In the postprandial state, hepatic blood perfusion increased on average by 30% (p <0.01), and the flow-independent hepatic intrinsic clearance of 11C-CSar from blood into bile increased by 17% from 1.82 (range, 1.59–2.05) to 2.13 (range, 1.75–2.50) ml blood/min/ml liver tissue (p = 0.042). The increased intrinsic clearance of 11C-CSar was not caused by changes in the basolateral clearance efficacy of 11C-CSar but rather by an upregulated apical transport, as shown by an increase in the rate constant for apical secretion of 11C-CSar from hepatocyte to bile from 0.40 (0.25–0.54) min−1 to 0.67 (0.36–0.98) min−1 (p = 0.03). This resulted in a 33% increase in the intrahepatic bile flow (p = 0.03). Conclusions The rate constant for the transport of bile acids from hepatocytes into biliary canaliculi and the bile flow increased significantly in the postprandial state. This reduced the mean 11C-CSar residence time in the hepatocytes. Lay summary Bile acids are important for digestion of dietary lipids including vitamins. We examined how the secretion of bile acids by the liver into the intestines changes after a standard liquid meal. The transport of bile acids from liver cells into bile and bile flow was increased after the meal. Following a meal, the active transport of bile acids from hepatocytes into bile is increased significantly. A meal also increases bile flow out of the liver. The postprandial changes are induced shortly after intake of a meal.
Collapse
|
38
|
Abstract
Bariatric and metabolic surgery has evolved from simple experimental procedures for a chronic problem associated with significant morbidity into a sophisticated multidisciplinary treatment modality rooted in biology and physiology. Although the complete mechanistic narrative of bariatric surgery cannot yet be written, significant advance in knowledge has been made in the past 2 decades. This article provides a brief overview of the most studied hypotheses and their supporting evidence. Ongoing research, especially in frontier areas, such as the microbiome, will continue to refine, and perhaps even revise, current mechanistic understanding.
Collapse
|
39
|
Kroll T, Prescher M, Smits SHJ, Schmitt L. Structure and Function of Hepatobiliary ATP Binding Cassette Transporters. Chem Rev 2020; 121:5240-5288. [PMID: 33201677 DOI: 10.1021/acs.chemrev.0c00659] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The liver is beyond any doubt the most important metabolic organ of the human body. This function requires an intensive crosstalk within liver cellular structures, but also with other organs. Membrane transport proteins are therefore of upmost importance as they represent the sensors and mediators that shuttle signals from outside to the inside of liver cells and/or vice versa. In this review, we summarize the known literature of liver transport proteins with a clear emphasis on functional and structural information on ATP binding cassette (ABC) transporters, which are expressed in the human liver. These primary active membrane transporters form one of the largest families of membrane proteins. In the liver, they play an essential role in for example bile formation or xenobiotic export. Our review provides a state of the art and comprehensive summary of the current knowledge of hepatobiliary ABC transporters. Clearly, our knowledge has improved with a breath-taking speed over the last few years and will expand further. Thus, this review will provide the status quo and will lay the foundation for new and exciting avenues in liver membrane transporter research.
Collapse
Affiliation(s)
- Tim Kroll
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Martin Prescher
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Sander H J Smits
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany.,Center for Structural Studies, Heinrich Heine University Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Lutz Schmitt
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| |
Collapse
|
40
|
Beaudoin JJ, Bezençon J, Sjöstedt N, Fallon JK, Brouwer KLR. Role of Organic Solute Transporter Alpha/Beta in Hepatotoxic Bile Acid Transport and Drug Interactions. Toxicol Sci 2020; 176:34-35. [PMID: 32294204 PMCID: PMC7357176 DOI: 10.1093/toxsci/kfaa052] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Organic solute transporter (OST) α/β is a key bile acid transporter expressed in various organs, including the liver under cholestatic conditions. However, little is known about the involvement of OSTα/β in bile acid-mediated drug-induced liver injury (DILI), a major safety concern in drug development. This study investigated whether OSTα/β preferentially transports more hepatotoxic, conjugated, primary bile acids and to what extent xenobiotics inhibit this transport. Kinetic studies with OSTα/β-overexpressing cells revealed that OSTα/β preferentially transported bile acids in the following order: taurochenodeoxycholate > glycochenodeoxycholate > taurocholate > glycocholate. The apparent half-maximal inhibitory concentrations for OSTα/β-mediated bile acid (5 µM) transport inhibition by fidaxomicin, troglitazone sulfate, and ethinyl estradiol were: 210, 334, and 1050 µM, respectively, for taurochenodeoxycholate; 97.6, 333, and 337 µM, respectively, for glycochenodeoxycholate; 140, 265, and 527 µM, respectively, for taurocholate; 59.8, 102, and 117 µM, respectively, for glycocholate. The potential role of OSTα/β in hepatocellular glycine-conjugated bile acid accumulation and cholestatic DILI was evaluated using sandwich-cultured human hepatocytes (SCHH). Treatment of SCHH with the farnesoid X receptor agonist chenodeoxycholate (100 µM) resulted in substantial OSTα/β induction, among other proteomic alterations, reducing glycochenodeoxycholate and glycocholate accumulation in cells+bile 4.0- and 4.5-fold, respectively. Treatment of SCHH with troglitazone and fidaxomicin together under cholestatic conditions resulted in increased hepatocellular toxicity compared with either compound alone, suggesting that OSTα/β inhibition may accentuate DILI. In conclusion, this study provides insights into the role of OSTα/β in preferential disposition of bile acids associated with hepatotoxicity, the impact of xenobiotics on OSTα/β-mediated bile acid transport, and the role of this transporter in SCHH and cholestatic DILI.
Collapse
Affiliation(s)
| | | | - Noora Sjöstedt
- Division of Pharmacotherapy and Experimental Therapeutics
| | - John K Fallon
- Division of Pharmacoengineering and Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599
| | | |
Collapse
|
41
|
Taurochenodeoxycholic Acid Inhibited AP-1 Activation via Stimulating Glucocorticoid Receptor. Molecules 2019; 24:molecules24244513. [PMID: 31835494 PMCID: PMC6943563 DOI: 10.3390/molecules24244513] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 11/30/2019] [Accepted: 12/07/2019] [Indexed: 12/26/2022] Open
Abstract
Taurochenodeoxycholic acid (TCDCA) as a primary bioactive substance of animal bile has been shown to exert good anti-inflammatory and immunomodulatory functions in adjuvant arthritis in rats. The anti-inflammatory and immunomodulatory properties of TCDCA have exhibited interesting similarities with the effects of glucocorticoids (GCs). To investigate the potential mechanisms of TCDCA in anti-inflammation and immunomodulation, we used a luciferase reporter assay to evaluate the activation of the glucocorticoid receptor (GR) stimulated by TCDCA. Our results showed that GR was activated by TCDCA in a concentration-dependent manner. Moreover, the elevated expressions of c-Fos and phosphorylated c-Jun induced by interleukin-1β (IL-1β) were reversed by TCDCA. The inhibition of TCDCA on the transactivation of activator protein-1 (AP-1) was observed as well. However, the suppression of TCDCA on the phosphorylation of c-Jun was blocked incompletely by GR inhibitor RU486. These results have indicated that the anti-inflammatory and immunomodulatory functions of TCDCA involve multiple pathways, with contributions from GR and its related AP-1 signaling pathway.
Collapse
|
42
|
Vázquez-Gómez S, Vázquez-Tato MP, Seijas JA, Meijide F, de Frutos S, Tato JV. Thermodynamics of the aggregation of the bile anions of obeticholic and chenodeoxycholic acids in aqueous solution. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.112092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
43
|
Clostridium scindens ATCC 35704: Integration of Nutritional Requirements, the Complete Genome Sequence, and Global Transcriptional Responses to Bile Acids. Appl Environ Microbiol 2019; 85:AEM.00052-19. [PMID: 30737348 DOI: 10.1128/aem.00052-19] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 01/30/2019] [Indexed: 01/13/2023] Open
Abstract
In the human gut, Clostridium scindens ATCC 35704 is a predominant bacterium and one of the major bile acid 7α-dehydroxylating anaerobes. While this organism is well-studied relative to bile acid metabolism, little is known about the basic nutrition and physiology of C. scindens ATCC 35704. To determine the amino acid and vitamin requirements of C. scindens, the leave-one-out (one amino acid group or vitamin) technique was used to eliminate the nonessential amino acids and vitamins. With this approach, the amino acid tryptophan and three vitamins (riboflavin, pantothenate, and pyridoxal) were found to be required for the growth of C. scindens In the newly developed defined medium, C. scindens fermented glucose mainly to ethanol, acetate, formate, and H2. The genome of C. scindens ATCC 35704 was completed through PacBio sequencing. Pathway analysis of the genome sequence coupled with transcriptome sequencing (RNA-Seq) under defined culture conditions revealed consistency with the growth requirements and end products of glucose metabolism. Induction with bile acids revealed complex and differential responses to cholic acid and deoxycholic acid, including the expression of potentially novel bile acid-inducible genes involved in cholic acid metabolism. Responses to toxic deoxycholic acid included expression of genes predicted to be involved in DNA repair, oxidative stress, cell wall maintenance/metabolism, chaperone synthesis, and downregulation of one-third of the genome. These analyses provide valuable insight into the overall biology of C. scindens which may be important in treatment of disease associated with increased colonic secondary bile acids.IMPORTANCE C. scindens is one of a few identified gut bacterial species capable of converting host cholic acid into disease-associated secondary bile acids such as deoxycholic acid. The current work represents an important advance in understanding the nutritional requirements and response to bile acids of the medically important human gut bacterium, C. scindens ATCC 35704. A defined medium has been developed which will further the understanding of bile acid metabolism in the context of growth substrates, cofactors, and other metabolites in the vertebrate gut. Analysis of the complete genome supports the nutritional requirements reported here. Genome-wide transcriptomic analysis of gene expression in the presence of cholic acid and deoxycholic acid provides a unique insight into the complex response of C. scindens ATCC 35704 to primary and secondary bile acids. Also revealed are genes with the potential to function in bile acid transport and metabolism.
Collapse
|
44
|
Deswal S, Tittal RK, Yadav P, Lal K, Vikas D. G, Kumar N. Cellulose‐Supported CuI‐Nanoparticles‐Mediated Green Synthesis of Trifluoromethylbenzoate‐Linked Triazoles for Pharmacological & DFT study. ChemistrySelect 2019. [DOI: 10.1002/slct.201803099] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Sonal Deswal
- Department of ChemistryNational Institute of Technology Kurukshetra- 136119, Haryana India
| | - Ram Kumar Tittal
- Department of ChemistryNational Institute of Technology Kurukshetra- 136119, Haryana India
| | - Pinki Yadav
- Department of ChemistryGuru Jambheshwar University of Science & Technology Hisar- 125001, Haryana India
| | - Kashmiri Lal
- Department of ChemistryGuru Jambheshwar University of Science & Technology Hisar- 125001, Haryana India
| | - Ghule Vikas D.
- Department of ChemistryNational Institute of Technology Kurukshetra- 136119, Haryana India
| | - Nikhil Kumar
- Department of ChemistryNational Institute of Technology Kurukshetra- 136119, Haryana India
| |
Collapse
|
45
|
Identification and quantification of oxo-bile acids in human faeces with liquid chromatography–mass spectrometry: A potent tool for human gut acidic sterolbiome studies. J Chromatogr A 2019; 1585:70-81. [DOI: 10.1016/j.chroma.2018.11.038] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 11/02/2018] [Accepted: 11/18/2018] [Indexed: 12/12/2022]
|
46
|
Wang C, Yang M, Zhao J, Li X, Xiao X, Zhang Y, Jin X, Liao M. Bile salt (glycochenodeoxycholate acid) induces cell survival and chemoresistance in hepatocellular carcinoma. J Cell Physiol 2018; 234:10899-10906. [PMID: 30548625 DOI: 10.1002/jcp.27905] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 10/24/2018] [Indexed: 12/15/2022]
Affiliation(s)
- Chengzhi Wang
- Key Laboratory of Nanobiological Technology of Chinese Ministry of Health, Xiangya Hospital, Central South University Changsha Hunan People's Republic of China
- Department of Nephrology Blood Purification Center, Xiangya Hospital, Central South University Changsha Hunan People's Republic of China
| | - Manyi Yang
- Key Laboratory of Nanobiological Technology of Chinese Ministry of Health, Xiangya Hospital, Central South University Changsha Hunan People's Republic of China
| | - Jinfeng Zhao
- Key Laboratory of Nanobiological Technology of Chinese Ministry of Health, Xiangya Hospital, Central South University Changsha Hunan People's Republic of China
| | - Xia Li
- Department of Nephrology Blood Purification Center, Xiangya Hospital, Central South University Changsha Hunan People's Republic of China
| | - Xiangcheng Xiao
- Department of Nephrology Blood Purification Center, Xiangya Hospital, Central South University Changsha Hunan People's Republic of China
| | - Yang Zhang
- Hepatobiliary and Enteric Surgery Center Xiangya Hospital, Central South University Changsha Hunan People's Republic of China
| | - Xin Jin
- Key Laboratory of Nanobiological Technology of Chinese Ministry of Health, Xiangya Hospital, Central South University Changsha Hunan People's Republic of China
| | - Mingmei Liao
- Key Laboratory of Nanobiological Technology of Chinese Ministry of Health, Xiangya Hospital, Central South University Changsha Hunan People's Republic of China
| |
Collapse
|
47
|
|
48
|
Identification of novel loci for pediatric cholestatic liver disease defined by KIF12, PPM1F, USP53, LSR, and WDR83OS pathogenic variants. Genet Med 2018; 21:1164-1172. [PMID: 30250217 DOI: 10.1038/s41436-018-0288-x] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 08/17/2018] [Indexed: 12/18/2022] Open
Abstract
PURPOSE Genetic testing in pediatric cholestasis can be very informative but genetic causes have not been fully characterized. METHODS Exome sequencing and positional mapping in seven families with cholestatic liver disease and negative clinical testing for known disease genes. RESULTS KIF12, which encodes a microtubule motor protein with a tentative role in cell polarity, was found to harbor three homozygous likely deleterious variants in three families with sclerosing cholangitis. KIF12 expression is dependent on HNF-1β, deficiency which is known to cause bile duct dysmorphogenesis associated with loss of KIF12 expression. In another extended family, we mapped an apparently novel syndrome of sclerosing cholangitis, short stature, hypothyroidism, and abnormal tongue pigmentation in two cousins to a homozygous variant in PPM1F (POPX2), a regulator of kinesin-mediated ciliary transport. In the fifth family, a syndrome of normal gamma glutamyltransferase (GGT) cholestasis and hearing loss was found to segregate with a homozygous truncating variant in USP53, which encodes an interactor with TJP2. In the sixth family, we mapped a novel syndrome of transient neonatal cholestasis, intellectual disability, and short stature to a homozygous variant in LSR, an important regulator of liver development. In the last family of three affected siblings, a novel syndrome of intractable itching, hypercholanemia, short stature, and intellectual disability was mapped to a single locus that contains a homozygous truncating variant in WDR83OS (C19orf56), known to interact with ATP13A2 and BSEP. CONCLUSION Our results expand the genetic heterogeneity of pediatric cholestatic liver disease and highlight the vulnerability of bile homeostasis to a wide range of molecular perturbations.
Collapse
|
49
|
Harris SC, Devendran S, Méndez- García C, Mythen SM, Wright CL, Fields CJ, Hernandez AG, Cann I, Hylemon PB, Ridlon JM. Bile acid oxidation by Eggerthella lenta strains C592 and DSM 2243 T. Gut Microbes 2018; 9:523-539. [PMID: 29617190 PMCID: PMC6287680 DOI: 10.1080/19490976.2018.1458180] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Strains of Eggerthella lenta are capable of oxidation-reduction reactions capable of oxidizing and epimerizing bile acid hydroxyl groups. Several genes encoding these enzymes, known as hydroxysteroid dehydrogenases (HSDH) have yet to be identified. It is also uncertain whether the products of E. lenta bile acid metabolism are further metabolized by other members of the gut microbiota. We characterized a novel human fecal isolate identified as E. lenta strain C592. The complete genome of E. lenta strain C592 was sequenced and comparative genomics with the type strain (DSM 2243) revealed high conservation, but some notable differences. E. lenta strain C592 falls into group III, possessing 3α, 3β, 7α, and 12α-hydroxysteroid dehydrogenase (HSDH) activity, as determined by mass spectrometry of thin layer chromatography (TLC) separated metabolites of primary and secondary bile acids. Incubation of E. lenta oxo-bile acid and iso-bile acid metabolites with whole-cells of the high-activity bile acid 7α-dehydroxylating bacterium, Clostridium scindens VPI 12708, resulted in minimal conversion of oxo-derivatives to lithocholic acid (LCA). Further, Iso-chenodeoxycholic acid (iso-CDCA; 3β,7α-dihydroxy-5β-cholan-24-oic acid) was not metabolized by C. scindens. We then located a gene encoding a novel 12α-HSDH in E. lenta DSM 2243, also encoded by strain C592, and the recombinant purified enzyme was characterized and substrate-specificity determined. Genomic analysis revealed genes encoding an Rnf complex (rnfABCDEG), an energy conserving hydrogenase (echABCDEF) complex, as well as what appears to be a complete Wood-Ljungdahl pathway. Our prediction that by changing the gas atmosphere from nitrogen to hydrogen, bile acid oxidation would be inhibited, was confirmed. These results suggest that E. lenta is an important bile acid metabolizing gut microbe and that the gas atmosphere may be an important and overlooked regulator of bile acid metabolism in the gut.
Collapse
Affiliation(s)
- Spencer C. Harris
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA, USA,McGuire Veterans Affairs, Richmond, VA, USA
| | - Saravanan Devendran
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA,Microbiome Metabolic Engineering Theme, Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | | | - Sean M. Mythen
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA,Microbiome Metabolic Engineering Theme, Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Chris L. Wright
- Keck Center for Biotechnology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Christopher J. Fields
- Keck Center for Biotechnology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Alvaro G. Hernandez
- Keck Center for Biotechnology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Isaac Cann
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA,Microbiome Metabolic Engineering Theme, Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA,Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA,Energy Biosciences Institute, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Phillip B. Hylemon
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA, USA,McGuire Veterans Affairs, Richmond, VA, USA
| | - Jason M. Ridlon
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA, USA,Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA,Microbiome Metabolic Engineering Theme, Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA,Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA,Cancer Center of Illinois, University of Illinois at Urbana-Champaign, Urbana, IL, USA,CONTACT Jason M. Ridlon Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL USA
| |
Collapse
|
50
|
Frisch K, Stimson DHR, Venkatachalam T, Pierens GK, Keiding S, Reutens D, Bhalla R. N-(4-[ 18F]fluorobenzyl)cholylglycine, a novel tracer for PET of enterohepatic circulation of bile acids: Radiosynthesis and proof-of-concept studies in rats. Nucl Med Biol 2018; 61:56-62. [PMID: 29783201 DOI: 10.1016/j.nucmedbio.2018.04.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 04/20/2018] [Accepted: 04/27/2018] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Enterohepatic circulation (EHC) of conjugated bile acids is an important physiological process crucial for regulation of intracellular concentrations of bile acids and their function as detergents and signal carriers. Only few bile acid-derived imaging agents have been synthesized and hitherto none have been evaluated for studies of EHC. We hypothesized that N-(4-[18F]fluorobenzyl)cholylglycine ([18F]FBCGly), a novel fluorine-18 labeled derivative of endogenous cholylglycine, would be a suitable tracer for PET of the EHC of conjugated bile acids, and we report here a radiosynthesis of [18F]FBCGly and a proof-of-concept study by PET/MR in rats. METHODS A radiosynthesis of [18F]FBCGly was developed based on reductive alkylation of glycine with 4-[18F]fluorobenzaldehyde followed by coupling to cholic acid. [18F]FBCGly was investigated in vivo by dynamic PET/MR in anesthetized rats; untreated or treated with cholyltaurine or rifampicin. Possible in vivo metabolites of [18F]FBCGly were investigated by analysis of blood and bile samples, and the stability of [18F]FBCGly towards enzymatic de-conjugation by Cholylglycine Hydrolase was tested in vitro. RESULTS [18F]FBCGly was produced with a radiochemical purity of 96% ± 1% and a non-decay corrected radiochemical yield of 1.0% ± 0.3% (mean ± SD; n = 12). PET/MR studies showed that i.v.-administrated [18F]FBCGly underwent EHC within 40-60 min with a rapid transhepatic transport from blood to bile. In untreated rats, the radioactivity concentration of [18F]FBCGly was approximately 15 times higher in bile than in liver tissue. Cholyltaurine and rifampicin inhibited the biliary secretion of [18F]FBCGly. No fluorine-18 metabolites of [18F]FBCGly were observed. CONCLUSION We have developed a radiosynthesis of a novel fluorine-18 labeled bile acid derivative, [18F]FBCGly, and shown by PET/MR that [18F]FBCGly undergoes continuous EHC in rats without metabolizing. This novel tracer may prove useful in PET studies on the effect of drugs or diseases on the EHC of conjugated bile acids.
Collapse
Affiliation(s)
- Kim Frisch
- Department of Nuclear Medicine & PET Centre, Aarhus University Hospital, Aarhus, Denmark.
| | - Damion H R Stimson
- Centre for Advanced Imaging, University of Queensland, St. Lucia, Brisbane, Australia
| | - Taracad Venkatachalam
- Centre for Advanced Imaging, University of Queensland, St. Lucia, Brisbane, Australia
| | - Gregory K Pierens
- Centre for Advanced Imaging, University of Queensland, St. Lucia, Brisbane, Australia
| | - Susanne Keiding
- Department of Nuclear Medicine & PET Centre, Aarhus University Hospital, Aarhus, Denmark; Department of Hepatology & Gastroenterology, Aarhus University Hospital, Aarhus, Denmark
| | - David Reutens
- Centre for Advanced Imaging, University of Queensland, St. Lucia, Brisbane, Australia
| | - Rajiv Bhalla
- Centre for Advanced Imaging, University of Queensland, St. Lucia, Brisbane, Australia
| |
Collapse
|