1
|
Schwarz M, Simbrunner B, Jachs M, Hartl L, Balcar L, Bauer DJM, Semmler G, Hofer BS, Scheiner B, Pinter M, Stättermayer AF, Trauner M, Reiberger T, Mandorfer M. High histamine levels are associated with acute-on-chronic liver failure and liver-related death in patients with advanced chronic liver disease. Liver Int 2024; 44:2904-2914. [PMID: 39136222 DOI: 10.1111/liv.16056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 06/20/2024] [Accepted: 07/22/2024] [Indexed: 10/25/2024]
Abstract
BACKGROUND AND AIMS The role of histamine in advanced chronic liver disease (ACLD) is poorly understood. We investigated plasma histamine levels across ACLD stages and their prognostic value. METHODS We included patients with evidence of ACLD, defined by portal hypertension (hepatic venous pressure gradient [HVPG] ≥6 mmHg) and/or a liver stiffness measurement by transient elastography ≥10 kPa, who underwent HVPG measurement between 2017 and 2020. Acute-on-chronic liver failure (ACLF) and/or liver-related death were defined as composite endpoint. RESULTS Of 251 patients, 82.5% had clinically significant portal hypertension (median HVPG: 17 mmHg [interquartile range (IQR) 12-21]) and 135 patients (53.8%) were decompensated at baseline. Median plasma histamine was 8.5 nmol/L (IQR: 6.4-11.5), 37.1% of patients showed elevated values (>9.9 nmol/L). Histamine levels did not differ significantly across Child-Turcotte-Pugh (CTP) stages nor strata of model for end-stage liver disease (MELD) or HVPG. Histamine levels correlated with markers of circulatory dysfunction (i.e. sodium, renin and aldosterone). During a median follow-up of 29.2 months, 68 patients developed ACLF or liver-related death. In univariate as well as in multivariate analysis (adjusting for age, sex, HVPG as well as either MELD, clinical stage, and serum albumin or CTP and serum sodium), elevated histamine levels remained associated with the composite endpoint. CTP-based multivariate model adjusted sub-distribution hazard ratio (asHR): 1.010 (95% CI: 1.004-1.021), p < .001; MELD-based multivariate model asHR: 1.030 (95% CI: 1.017-1.040), p < .001. CONCLUSION High levels of histamine were linked to circulatory dysfunction in ACLD patients and independently associated with increased risks of ACLF or liver-related death. Further mechanistic studies on the link between histamine signalling and development of hyperdynamic circulation and ACLF are warranted.
Collapse
Affiliation(s)
- Michael Schwarz
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria
- Vienna Hepatic Hemodynamic Lab, Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Benedikt Simbrunner
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria
- Vienna Hepatic Hemodynamic Lab, Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Christian-Doppler Laboratory for Portal Hypertension and Liver Fibrosis, Medical University of Vienna, Vienna, Austria
| | - Mathias Jachs
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria
- Vienna Hepatic Hemodynamic Lab, Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Lukas Hartl
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria
- Vienna Hepatic Hemodynamic Lab, Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Lorenz Balcar
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria
- Vienna Hepatic Hemodynamic Lab, Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - David J M Bauer
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria
- Vienna Hepatic Hemodynamic Lab, Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Georg Semmler
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria
- Vienna Hepatic Hemodynamic Lab, Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Benedikt S Hofer
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria
- Vienna Hepatic Hemodynamic Lab, Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Christian-Doppler Laboratory for Portal Hypertension and Liver Fibrosis, Medical University of Vienna, Vienna, Austria
| | - Bernhard Scheiner
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria
- Vienna Hepatic Hemodynamic Lab, Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Matthias Pinter
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria
- Vienna Hepatic Hemodynamic Lab, Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Albert F Stättermayer
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria
- Vienna Hepatic Hemodynamic Lab, Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Michael Trauner
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Thomas Reiberger
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria
- Vienna Hepatic Hemodynamic Lab, Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Christian-Doppler Laboratory for Portal Hypertension and Liver Fibrosis, Medical University of Vienna, Vienna, Austria
| | - Mattias Mandorfer
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria
- Vienna Hepatic Hemodynamic Lab, Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
2
|
Gupta V, Sehrawat TS, Pinzani M, Strazzabosco M. Portal Fibrosis and the Ductular Reaction: Pathophysiological Role in the Progression of Liver Disease and Translational Opportunities. Gastroenterology 2024:S0016-5085(24)05455-6. [PMID: 39251168 DOI: 10.1053/j.gastro.2024.07.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/27/2024] [Accepted: 07/20/2024] [Indexed: 09/11/2024]
Abstract
A consistent feature of chronic liver diseases and the hallmark of pathologic repair is the so-called "ductular reaction." This is a histologic abnormality characterized by an expansion of dysmorphic cholangiocytes inside and around portal spaces infiltrated by inflammatory, mesenchymal, and vascular cells. The ductular reaction is a highly regulated response based on the reactivation of morphogenetic signaling mechanisms and a complex crosstalk among a multitude of cell types. The nature and mechanism of these exchanges determine the difference between healthy regenerative liver repair and pathologic repair. An orchestrated signaling among cell types directs mesenchymal cells to deposit a specific extracellular matrix with distinct physical and biochemical properties defined as portal fibrosis. Progression of fibrosis leads to vast architectural and vascular changes known as "liver cirrhosis." The signals regulating the ecology of this microenvironment are just beginning to be addressed. Contrary to the tumor microenvironment, immune modulation inside this "benign" microenvironment is scarcely known. One of the reasons for this is that both the ductular reaction and portal fibrosis have been primarily considered a manifestation of cholestatic liver disease, whereas this phenomenon is also present, albeit with distinctive features, in all chronic human liver diseases. Novel human-derived cellular models and progress in "omics" technologies are increasing our knowledge at a fast pace. Most importantly, this knowledge is on the edge of generating new diagnostic and therapeutic advances. Here, we will critically review the latest advances, in terms of mechanisms, pathophysiology, and treatment prospects. In addition, we will delineate future avenues of research, including innovative translational opportunities.
Collapse
Affiliation(s)
- Vikas Gupta
- Liver Center and Section of Digestive Diseases, Department of Internal Medicine, Yale University, New Haven, Connecticut
| | - Tejasav S Sehrawat
- Liver Center and Section of Digestive Diseases, Department of Internal Medicine, Yale University, New Haven, Connecticut
| | - Massimo Pinzani
- University College London Institute for Liver and Digestive Health, Royal Free Hospital, London, UK; University of Pittsburgh Medical Center-Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione, Palermo, Italy
| | - Mario Strazzabosco
- Liver Center and Section of Digestive Diseases, Department of Internal Medicine, Yale University, New Haven, Connecticut.
| |
Collapse
|
3
|
Cornillet M, Geanon D, Bergquist A, Björkström NK. Immunobiology of primary sclerosing cholangitis. Hepatology 2024:01515467-990000000-01014. [PMID: 39226402 DOI: 10.1097/hep.0000000000001080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 08/21/2024] [Indexed: 09/05/2024]
Abstract
Primary sclerosing cholangitis (PSC) is a chronic inflammatory progressive cholestatic liver disease. Genetic risk factors, the presence of autoantibodies, the strong clinical link with inflammatory bowel disease, and associations with other autoimmune disorders all suggest a pivotal role for the immune system in PSC pathogenesis. In this review, we provide a comprehensive overview of recent immunobiology insights in PSC. A particular emphasis is given to immunological concepts such as tissue residency and knowledge gained from novel technologies, including single-cell RNA sequencing and spatial transcriptomics. This review of the immunobiological landscape of PSC covers major immune cell types known to be enriched in PSC-diseased livers as well as recently described cell types whose biliary localization and contribution to PSC immunopathogenesis remain incompletely described. Finally, we emphasize the importance of time and space in relation to PSC heterogeneity as a key consideration for future studies interrogating the role of the immune system in PSC.
Collapse
Affiliation(s)
- Martin Cornillet
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Daniel Geanon
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Annika Bergquist
- Unit of Gastroenterology, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Niklas K Björkström
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
4
|
Jiang X, Otterdal K, Chung BK, Maucourant C, Rønneberg JD, Zimmer CL, Øgaard J, Boichuk Y, Holm S, Geanon D, Schneditz G, Bergquist A, Björkström NK, Melum E. Cholangiocytes Modulate CD100 Expression in the Liver and Facilitate Pathogenic T-Helper 17 Cell Differentiation. Gastroenterology 2024; 166:667-679. [PMID: 37995866 DOI: 10.1053/j.gastro.2023.11.283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 10/18/2023] [Accepted: 11/08/2023] [Indexed: 11/25/2023]
Abstract
BACKGROUND & AIMS Chronic inflammation surrounding bile ducts contributes to the disease pathogenesis of most cholangiopathies. Poor efficacy of immunosuppression in these conditions suggests biliary-specific pathologic principles. Here we performed biliary niche specific functional interpretation of a causal mutation (CD100 K849T) of primary sclerosing cholangitis (PSC) to understand related pathogenic mechanisms. METHODS Biopsy specimens of explanted livers and endoscopy-guided sampling were used to assess the CD100 expression by spatial transcriptomics, immune imaging, and high-dimensional flow cytometry. To model pathogenic cholangiocyte-immune cell interaction, splenocytes from mutation-specific mice were cocultured with cholangiocytes. Pathogenic pathways were pinpointed by RNA sequencing analysis of cocultured cells and cross-validated in patient materials. RESULTS CD100 is mainly expressed by immune cells in the liver and shows a unique pattern around PSC bile ducts with RNA-level colocalization but poor detection at the protein level. This appears to be due to CD100 cleavage as soluble CD100 is increased. Immunophenotyping suggests biliary-infiltrating T cells as the major source of soluble CD100, which is further supported by reduced surface CD100 on T cells and increased metalloproteinases in cholangiocytes after coculturing. Pathogenic T cells that adhered to cholangiocytes up-regulated genes in the T-helper 17 cell differentiation pathway, and the CD100 mutation boosted this process. Consistently, T-helper 17 cells dominate biliary-resident CD4 T cells in patients. CONCLUSIONS CD100 exerts its functional impact through cholangiocyte-immune cell cross talk and underscores an active, proinflammatory role of cholangiocytes that can be relevant to novel treatment approaches.
Collapse
Affiliation(s)
- Xiaojun Jiang
- Norwegian PSC Research Center, Division of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital Rikshospitalet, Oslo, Norway; Research Institute of Internal Medicine, Division of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Kari Otterdal
- Research Institute of Internal Medicine, Division of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Brian K Chung
- Norwegian PSC Research Center, Division of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital Rikshospitalet, Oslo, Norway; Research Institute of Internal Medicine, Division of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital Rikshospitalet, Oslo, Norway; Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Christopher Maucourant
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Jørgen D Rønneberg
- Norwegian PSC Research Center, Division of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital Rikshospitalet, Oslo, Norway; Research Institute of Internal Medicine, Division of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital Rikshospitalet, Oslo, Norway; Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Christine L Zimmer
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Jonas Øgaard
- Norwegian PSC Research Center, Division of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital Rikshospitalet, Oslo, Norway; Research Institute of Internal Medicine, Division of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Yuliia Boichuk
- Norwegian PSC Research Center, Division of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital Rikshospitalet, Oslo, Norway; Research Institute of Internal Medicine, Division of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Sverre Holm
- Research Institute of Internal Medicine, Division of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Daniel Geanon
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Georg Schneditz
- Norwegian PSC Research Center, Division of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital Rikshospitalet, Oslo, Norway; Research Institute of Internal Medicine, Division of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Annika Bergquist
- Department of Gastroenterology and Hepatology, Karolinska University Hospital Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Niklas K Björkström
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Espen Melum
- Norwegian PSC Research Center, Division of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital Rikshospitalet, Oslo, Norway; Research Institute of Internal Medicine, Division of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital Rikshospitalet, Oslo, Norway; Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway; Section of Gastroenterology, Department of Transplantation Medicine, Division of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital Rikshospitalet, Oslo, Norway; Hybrid Technology Hub-Centre of Excellence, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway.
| |
Collapse
|
5
|
Hardesty J, Hawthorne M, Day L, Warner J, Warner D, Gritsenko M, Asghar A, Stolz A, Morgan T, McClain C, Jacobs J, Kirpich IA. Steroid responsiveness in alcohol-associated hepatitis is linked to glucocorticoid metabolism, mitochondrial repair, and heat shock proteins. Hepatol Commun 2024; 8:e0393. [PMID: 38437061 PMCID: PMC10914234 DOI: 10.1097/hc9.0000000000000393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 12/15/2023] [Indexed: 03/06/2024] Open
Abstract
BACKGROUND Alcohol-associated hepatitis (AH) is one of the clinical presentations of alcohol-associated liver disease. AH has poor prognosis, and corticosteroids remain the mainstay of drug therapy. However, ~40% of patients do not respond to this treatment, and the mechanisms underlying the altered response to corticosteroids are not understood. The current study aimed to identify changes in hepatic protein expression associated with responsiveness to corticosteroids and prognosis in patients with AH. METHODS Patients with AH were enrolled based on the National Institute on Alcohol Abuse and Alcoholism inclusion criteria for acute AH and further confirmed by a diagnostic liver biopsy. Proteomic analysis was conducted on liver samples acquired from patients with AH grouped as nonresponders (AH-NR, n = 7) and responders (AH-R, n = 14) to corticosteroids, and nonalcohol-associated liver disease controls (n = 10). The definition of responders was based on the clinical prognostic model, the Lille Score, where a score < 0.45 classified patients as AH-R and a score > 0.45 as AH-NR. Primary outcomes used to assess steroid response were Lille Score (eg, improved liver function) and survival at 24 weeks. RESULTS Reduced levels of the glucocorticoid receptor and its transcriptional co-activator, glucocorticoid modulatory element-binding protein 2, were observed in the hepatic proteome of AH-NR versus AH-R. The corticosteroid metabolizing enzyme, 11-beta-hydroxysteroid dehydrogenase 1, was increased in AH-NR versus AH-R along with elevated mitochondrial DNA repair enzymes, while several proteins of the heat shock pathway were reduced. Analysis of differentially expressed proteins in AH-NR who survived 24 weeks relative to AH-NR nonsurvivors revealed several protein expression changes, including increased levels of acute phase proteins, elevated coagulation factors, and reduced mast cell markers. CONCLUSIONS This study identified hepatic proteomic changes that may predict responsiveness to corticosteroids and mortality in patients with AH.
Collapse
Affiliation(s)
- Josiah Hardesty
- Department of Medicine, Division of Gastroenterology, Hepatology, and Nutrition, University of Louisville, Louisville, Kentucky, USA
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Meghan Hawthorne
- Department of Medicine, Division of Gastroenterology, Hepatology, and Nutrition, University of Louisville, Louisville, Kentucky, USA
| | - Le Day
- Department of Biological Sciences, Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Jeffrey Warner
- Department of Medicine, Division of Gastroenterology, Hepatology, and Nutrition, University of Louisville, Louisville, Kentucky, USA
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Dennis Warner
- Department of Medicine, Division of Gastroenterology, Hepatology, and Nutrition, University of Louisville, Louisville, Kentucky, USA
| | - Marina Gritsenko
- Department of Biological Sciences, Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Aliya Asghar
- Department of Medicine and Research Services, Medicine and Research Services, VA Long Beach Healthcare System, Long Beach, California, USA
| | - Andrew Stolz
- Department of Medicine, Division of Gastrointestinal and Liver Disease, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Timothy Morgan
- Department of Medicine and Research Services, Medicine and Research Services, VA Long Beach Healthcare System, Long Beach, California, USA
| | - Craig McClain
- Department of Medicine, Division of Gastroenterology, Hepatology, and Nutrition, University of Louisville, Louisville, Kentucky, USA
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, Kentucky, USA
- Robley Rex Veterans Medical Center, Louisville, Kentucky, USA
- Department of Medicine, University of Louisville Alcohol Center, University of Louisville School of Medicine, Louisville, Kentucky, USA
- Department of Medicine, University of Louisville Hepatobiology and Toxicology Center, University of Louisville School of Medicine, Louisville, Kentucky USA
| | - Jon Jacobs
- Department of Biological Sciences, Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Irina A. Kirpich
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, Kentucky, USA
- Department of Medicine, University of Louisville Alcohol Center, University of Louisville School of Medicine, Louisville, Kentucky, USA
- Department of Medicine, University of Louisville Hepatobiology and Toxicology Center, University of Louisville School of Medicine, Louisville, Kentucky USA
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, KY, USA
| |
Collapse
|
6
|
Kou E, Zhang X, Dong B, Wang B, Zhu Y. Combination of H1 and H2 Histamine Receptor Antagonists: Current Knowledge and Perspectives of a Classic Treatment Strategy. Life (Basel) 2024; 14:164. [PMID: 38398673 PMCID: PMC10890042 DOI: 10.3390/life14020164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/19/2024] [Accepted: 01/20/2024] [Indexed: 02/25/2024] Open
Abstract
Histamine receptor antagonists, which can bind to specific histamine receptors on target cells, exhibit substantial therapeutic efficacy in managing a variety of histamine-mediated disorders. Notably, histamine H1 and H2 receptor antagonists have been extensively investigated and universally acknowledged as recommended treatment agents for numerous allergic diseases and acid-related disorders, respectively. Historically, the combination of H1 and H2 receptor antagonists has been considered a classic treatment strategy, demonstrating relatively superior efficacy compared with single-drug therapies in the treatment of diverse histamine-mediated diseases. The latest emerging studies have additionally suggested the underlying roles of histamine and H1R and H2R in the development of anxiety disorders, arthritic diseases, and postexercise hypotension. Nevertheless, there is still a lack of systematic reviews on the clinical efficacy of combination therapy, greatly limiting our understanding of its clinical application. Here, we present a comprehensive overview of the current knowledge and perspectives regarding the combination of H1 and H2 histamine receptor antagonists in various histamine-mediated disorders. Furthermore, we critically analyze the adverse effects and limitations associated with combination therapy while suggesting potential solutions. Our review can offer a systematic summary and promising insights into the in-depth and effective application of the combination of H1 and H2 receptor antagonists.
Collapse
Affiliation(s)
- Erwen Kou
- Department of Dermatology, Naval Medical Center, Naval Medical University, Shanghai 200052, China; (E.K.); (B.D.)
| | - Xiaobei Zhang
- Department of Pharmacy, Naval Medical Center, Naval Medical University, Shanghai 200052, China;
| | - Baiping Dong
- Department of Dermatology, Naval Medical Center, Naval Medical University, Shanghai 200052, China; (E.K.); (B.D.)
| | - Bo Wang
- Department of Dermatology, Naval Medical Center, Naval Medical University, Shanghai 200052, China; (E.K.); (B.D.)
| | - Yuanjie Zhu
- Department of Dermatology, Naval Medical Center, Naval Medical University, Shanghai 200052, China; (E.K.); (B.D.)
| |
Collapse
|
7
|
Ceci L, Gaudio E, Kennedy L. Cellular Interactions and Crosstalk Facilitating Biliary Fibrosis in Cholestasis. Cell Mol Gastroenterol Hepatol 2024; 17:553-565. [PMID: 38216052 PMCID: PMC10883986 DOI: 10.1016/j.jcmgh.2024.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/05/2024] [Accepted: 01/08/2024] [Indexed: 01/14/2024]
Abstract
Biliary fibrosis is seen in cholangiopathies, including primary biliary cholangitis (PBC) and primary sclerosing cholangitis (PSC). In PBC and PSC, biliary fibrosis is associated with worse outcomes and histologic scores. Within the liver, both hepatic stellate cells (HSCs) and portal fibroblasts (PFs) contribute to biliary fibrosis, but their roles can differ. PFs reside near the bile ducts and may be the first responders to biliary damage, whereas HSCs may be recruited later and initiate bridging fibrosis. Indeed, different models of biliary fibrosis can activate PFs and HSCs to varying degrees. The portal niche can be composed of cholangiocytes, HSCs, PFs, endothelial cells, and various immune cells, and interactions between these cell types drive biliary fibrosis. In this review, we discuss the mechanisms of biliary fibrosis and the roles of PFs and HSCs in this process. We will also evaluate cellular interactions and mechanisms that contribute to biliary fibrosis in different models and highlight future perspectives and potential therapeutics.
Collapse
Affiliation(s)
- Ludovica Ceci
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza, University of Rome, Italy
| | - Eugenio Gaudio
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza, University of Rome, Italy
| | - Lindsey Kennedy
- Department of Research, Richard L. Roudebush VA Medical Center, Indianapolis, Indiana; Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana.
| |
Collapse
|
8
|
Chen J, Zhang S. The Role of Inflammation in Cholestatic Liver Injury. J Inflamm Res 2023; 16:4527-4540. [PMID: 37854312 PMCID: PMC10581020 DOI: 10.2147/jir.s430730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 10/06/2023] [Indexed: 10/20/2023] Open
Abstract
Cholestasis is a common clinical event in which bile formation and excretion are blocked, leading to retention of bile acids or bile salts; whether it occurs intra- or extrahepatically, primary or secondary, its pathogenesis is still unclear and is influenced by a combination of factors. In a variety of inflammatory and immune cells such as neutrophils, macrophages (intrahepatic macrophages are also known as Kupffer cells), mast cells, NK cells, and even T cells in humoral immunity and B cells in cellular immunity, inflammation can be a "second strike" against cholestatic liver injury. These cells, stimulated by a variety of factors such as bile acids, inflammatory chemokines, and complement, can be activated and accumulate in the cholestatic liver, and with the involvement of inflammatory mediators and modulation by cytokines, can lead to destruction of hepatocytes and bile duct epithelial cells and exacerbate (and occasionally retard) the progression of cholestatic liver disease. In this paper, we summarized the new research advances proposed so far regarding the relationship between inflammation and cholestasis, aiming to provide reference for researchers and clinicians in the field of cholestatic liver injury research.
Collapse
Affiliation(s)
- Jie Chen
- Chongqing Key Laboratory of Infectious Diseases and Parasitic Diseases, Department of Infectious Diseases, the First Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Shujun Zhang
- Chongqing Key Laboratory of Infectious Diseases and Parasitic Diseases, Department of Infectious Diseases, the First Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| |
Collapse
|
9
|
Abstract
Chronic liver diseases such as nonalcoholic fatty liver disease (NAFLD) or viral hepatitis are characterized by persistent inflammation and subsequent liver fibrosis. Liver fibrosis critically determines long-term morbidity (for example, cirrhosis or liver cancer) and mortality in NAFLD and nonalcoholic steatohepatitis (NASH). Inflammation represents the concerted response of various hepatic cell types to hepatocellular death and inflammatory signals, which are related to intrahepatic injury pathways or extrahepatic mediators from the gut-liver axis and the circulation. Single-cell technologies have revealed the heterogeneity of immune cell activation concerning disease states and the spatial organization within the liver, including resident and recruited macrophages, neutrophils as mediators of tissue repair, auto-aggressive features of T cells as well as various innate lymphoid cell and unconventional T cell populations. Inflammatory responses drive the activation of hepatic stellate cells (HSCs), and HSC subsets, in turn, modulate immune mechanisms via chemokines and cytokines or transdifferentiate into matrix-producing myofibroblasts. Current advances in understanding the pathogenesis of inflammation and fibrosis in the liver, mainly focused on NAFLD or NASH owing to the high unmet medical need, have led to the identification of several therapeutic targets. In this Review, we summarize the inflammatory mediators and cells in the diseased liver, fibrogenic pathways and their therapeutic implications.
Collapse
Affiliation(s)
- Linda Hammerich
- Department of Hepatology and Gastroenterology, Campus Virchow-Klinikum and Campus Charité Mitte, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Frank Tacke
- Department of Hepatology and Gastroenterology, Campus Virchow-Klinikum and Campus Charité Mitte, Charité - Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
10
|
Bernard JK, Marakovits C, Smith LG, Francis H. Mast Cell and Innate Immune Cell Communication in Cholestatic Liver Disease. Semin Liver Dis 2023; 43:226-233. [PMID: 37268012 DOI: 10.1055/a-2104-9034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Mast cells (MCs) contribute to the pathogenesis of cholestatic liver diseases (primary sclerosing cholangitis [PSC] and primary biliary cholangitis [PBC]). PSC and PBC are immune-mediated, chronic inflammatory diseases, characterized by bile duct inflammation and stricturing, advancing to hepatobiliary cirrhosis. MCs are tissue resident immune cells that may promote hepatic injury, inflammation, and fibrosis formation by either direct or indirect interactions with other innate immune cells (neutrophils, macrophages/Kupffer cells, dendritic cells, natural killer, and innate lymphoid cells). The activation of these innate immune cells, usually through the degranulation of MCs, promotes antigen uptake and presentation to adaptive immune cells, exacerbating liver injury. In conclusion, dysregulation of MC-innate immune cell communications during liver injury and inflammation can lead to chronic liver injury and cancer.
Collapse
Grants
- IK6BX005226 Hickam Endowed Chair, Gastroenterology, Medicine, Indiana University, the Indiana University Health - Indiana University School of Medicine Strategic Research Initiative
- 1I01BX003031 Hickam Endowed Chair, Gastroenterology, Medicine, Indiana University, the Indiana University Health - Indiana University School of Medicine Strategic Research Initiative
- DK108959 United States Department of Veteran's Affairs, Biomedical Laboratory Research and Development Service
- DK119421 United States Department of Veteran's Affairs, Biomedical Laboratory Research and Development Service
Collapse
Affiliation(s)
- Jessica K Bernard
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Corinn Marakovits
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Leah G Smith
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Heather Francis
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
- Department of Research, Richard L. Roudebush VA Medical Center, Indianapolis, Indiana
| |
Collapse
|
11
|
Meadows V, Marakovits C, Ekser B, Kundu D, Zhou T, Kyritsi K, Pham L, Chen L, Kennedy L, Ceci L, Wu N, Carpino G, Zhang W, Isidan A, Meyer A, Owen T, Gaudio E, Onori P, Alpini G, Francis H. Loss of apical sodium bile acid transporter alters bile acid circulation and reduces biliary damage in cholangitis. Am J Physiol Gastrointest Liver Physiol 2023; 324:G60-G77. [PMID: 36410025 PMCID: PMC9799145 DOI: 10.1152/ajpgi.00112.2022] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022]
Abstract
Primary sclerosing cholangitis (PSC) is characterized by increased ductular reaction (DR), liver fibrosis, hepatic total bile acid (TBA) levels, and mast cell (MC) infiltration. Apical sodium BA transporter (ASBT) expression increases in cholestasis, and ileal inhibition reduces PSC phenotypes. FVB/NJ and multidrug-resistant 2 knockout (Mdr2-/-) mice were treated with control or ASBT Vivo-Morpholino (VM). We measured 1) ASBT expression and MC presence in liver/ileum; 2) liver damage/DR; 3) hepatic fibrosis/inflammation; 4) biliary inflammation/histamine serum content; and 5) gut barrier integrity/hepatic bacterial translocation. TBA/BA composition was measured in cholangiocyte/hepatocyte supernatants, intestine, liver, serum, and feces. Shotgun analysis was performed to ascertain microbiome changes. In vitro, cholangiocytes were treated with BAs ± ASBT VM, and histamine content and farnesoid X receptor (FXR) signaling were determined. Treated cholangiocytes were cocultured with MCs, and FXR signaling, inflammation, and MC activation were measured. Human patients were evaluated for ASBT/MC expression and histamine/TBA content in bile. Control patient- and PSC patient-derived three-dimensional (3-D) organoids were generated; ASBT, chymase, histamine, and fibroblast growth factor-19 (FGF19) were evaluated. ASBT VM in Mdr2-/- mice decreased 1) biliary ASBT expression, 2) PSC phenotypes, 3) hepatic TBA, and 4) gut barrier integrity compared with control. We found alterations between wild-type (WT) and Mdr2-/- mouse microbiome, and ASBT/MC and bile histamine content increased in cholestatic patients. BA-stimulated cholangiocytes increased MC activation/FXR signaling via ASBT, and human PSC-derived 3-D organoids secrete histamine/FGF19. Inhibition of hepatic ASBT ameliorates cholestatic phenotypes by reducing cholehepatic BA signaling, biliary inflammation, and histamine levels. ASBT regulation of hepatic BA signaling offers a therapeutic avenue for PSC.NEW & NOTEWORTHY We evaluated knockdown of the apical sodium bile acid transporter (ASBT) using Vivo-Morpholino in Mdr2KO mice. ASBT inhibition decreases primary sclerosing cholangitis (PSC) pathogenesis by reducing hepatic mast cell infiltration, altering bile acid species/cholehepatic shunt, and regulating gut inflammation/dysbiosis. Since a large cohort of PSC patients present with IBD, this study is clinically important. We validated findings in human PSC and PSC-IBD along with studies in novel human 3-D organoids formed from human PSC livers.
Collapse
Affiliation(s)
- Vik Meadows
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Corinn Marakovits
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Burcin Ekser
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - Debjyoti Kundu
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Tianhao Zhou
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Konstantina Kyritsi
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Linh Pham
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Lixian Chen
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Lindsey Kennedy
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
- Richard L. Roudebush Department of Veterans Affairs Medical Center, Indianapolis, Indiana
| | - Ludovica Ceci
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Rome, Italy
| | - Nan Wu
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Guido Carpino
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico," Rome, Italy
| | - Wenjun Zhang
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - Abdulkadir Isidan
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - Alison Meyer
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Travis Owen
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Eugenio Gaudio
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Rome, Italy
| | - Paolo Onori
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Rome, Italy
| | - Gianfranco Alpini
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
- Richard L. Roudebush Department of Veterans Affairs Medical Center, Indianapolis, Indiana
| | - Heather Francis
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
- Richard L. Roudebush Department of Veterans Affairs Medical Center, Indianapolis, Indiana
| |
Collapse
|
12
|
Li B, Wang H, Zhang Y, Liu Y, Zhou T, Zhou B, Zhang Y, Chen R, Xing J, He L, Salinas JM, Koyama S, Meng F, Wan Y. Current Perspectives of Neuroendocrine Regulation in Liver Fibrosis. Cells 2022; 11:cells11233783. [PMID: 36497043 PMCID: PMC9736734 DOI: 10.3390/cells11233783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/06/2022] [Accepted: 11/19/2022] [Indexed: 11/29/2022] Open
Abstract
Liver fibrosis is a complicated process that involves different cell types and pathological factors. The excessive accumulation of extracellular matrix (ECM) and the formation of fibrotic scar disrupt the tissue homeostasis of the liver, eventually leading to cirrhosis and even liver failure. Myofibroblasts derived from hepatic stellate cells (HSCs) contribute to the development of liver fibrosis by producing ECM in the area of injuries. It has been reported that the secretion of the neuroendocrine hormone in chronic liver injury is different from a healthy liver. Activated HSCs and cholangiocytes express specific receptors in response to these neuropeptides released from the neuroendocrine system and other neuroendocrine cells. Neuroendocrine hormones and their receptors form a complicated network that regulates hepatic inflammation, which controls the progression of liver fibrosis. This review summarizes neuroendocrine regulation in liver fibrosis from three aspects. The first part describes the mechanisms of liver fibrosis. The second part presents the neuroendocrine sources and neuroendocrine compartments in the liver. The third section discusses the effects of various neuroendocrine factors, such as substance P (SP), melatonin, as well as α-calcitonin gene-related peptide (α-CGRP), on liver fibrosis and the potential therapeutic interventions for liver fibrosis.
Collapse
Affiliation(s)
- Bowen Li
- School of Basic Medical Science, Southwest Medical University, Luzhou 646000, China
| | - Hui Wang
- School of Basic Medical Science, Southwest Medical University, Luzhou 646000, China
| | - Yudian Zhang
- School of Basic Medical Science, Southwest Medical University, Luzhou 646000, China
| | - Ying Liu
- School of Basic Medical Science, Southwest Medical University, Luzhou 646000, China
| | - Tiejun Zhou
- Department of Pathology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Bingru Zhou
- School of Basic Medical Science, Southwest Medical University, Luzhou 646000, China
| | - Ying Zhang
- School of Basic Medical Science, Southwest Medical University, Luzhou 646000, China
| | - Rong Chen
- School of Basic Medical Science, Southwest Medical University, Luzhou 646000, China
| | - Juan Xing
- School of Basic Medical Science, Southwest Medical University, Luzhou 646000, China
| | - Longfei He
- School of Basic Medical Science, Southwest Medical University, Luzhou 646000, China
| | - Jennifer Mata Salinas
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Richard L. Roudebush VA Medical Center, Indianapolis, IN 46202, USA
| | - Sachiko Koyama
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Richard L. Roudebush VA Medical Center, Indianapolis, IN 46202, USA
| | - Fanyin Meng
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Richard L. Roudebush VA Medical Center, Indianapolis, IN 46202, USA
- Correspondence: (F.M.); (Y.W.)
| | - Ying Wan
- School of Basic Medical Science, Southwest Medical University, Luzhou 646000, China
- Correspondence: (F.M.); (Y.W.)
| |
Collapse
|
13
|
Menkü Özdemir FD, Üstün GG, Kősemehmetoğlu K, İspirli M, Boynuyoğun E, Uzun H. Comparison of Cromolyn Sodium, Montelukast, and Zafirlukast Prophylaxis for Capsular Contracture. Plast Reconstr Surg 2022; 150:1005e-1014e. [PMID: 35994348 DOI: 10.1097/prs.0000000000009653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Capsular contracture is the most common complication following breast augmentation. Recently, prophylaxis studies aiming to inhibit the release of profibrotic substances to prevent capsular contracture have gained in importance. This study investigated the effects of cromolyn sodium, montelukast, and zafirlukast on capsular contracture in a rat model. METHODS Thirty female Wistar albino rats were randomly divided into five groups: control, sham, cromolyn sodium, montelukast, and zafirlukast. Intraperitoneal injections were administered daily to the sham (1 ml per day), cromolyn sodium (10 mg/kg per day), montelukast (10 mg/kg per day), and zafirlukast (1.25 mg/kg per day) groups 1 month before surgery. Miniature breast implants were then placed on the backs of the rats in each group. Injections were continued for the next 3 months. The rats were subsequently killed, and the capsules were harvested and assessed histopathologically. The histopathologic outcomes were acute inflammation status, inflammation severity, synovial metaplasia, foreign body reaction, mast cell count, and capsular thickness. RESULTS The cromolyn sodium, montelukast, and zafirlukast groups had less acute inflammation and lower mean inflammation severity scores, foreign body reaction occurrence, mast cell counts, and capsular thickness than the control and sham groups ( p < 0.05). These parameters were better in the cromolyn sodium group than in the montelukast and zafirlukast groups ( p < 0.05). CONCLUSIONS Cromolyn sodium appears to inhibit capsular contracture more efficiently than montelukast and zafirlukast. This report may be a pioneer study for the prophylactic use of cromolyn sodium in capsular contracture. CLINICAL RELEVANCE STATEMENT The prophylactic administration of cromolyn sodium appears to reduce capsular contracture more efficiently than that of montelukast and zafirlukast. This report might constitute a pioneer study for the prophylactic use of cromolyn sodium in capsular contracture.
Collapse
Affiliation(s)
- Fethiye Damla Menkü Özdemir
- From the Departments of Plastic Reconstructive and Aesthetic Surgery, Pathology, and Pharmacology, Hacettepe University Faculty of Medicine
| | - Galip Gencay Üstün
- From the Departments of Plastic Reconstructive and Aesthetic Surgery, Pathology, and Pharmacology, Hacettepe University Faculty of Medicine
| | - Kemal Kősemehmetoğlu
- From the Departments of Plastic Reconstructive and Aesthetic Surgery, Pathology, and Pharmacology, Hacettepe University Faculty of Medicine
| | - Mukaddes İspirli
- From the Departments of Plastic Reconstructive and Aesthetic Surgery, Pathology, and Pharmacology, Hacettepe University Faculty of Medicine
| | - Etkin Boynuyoğun
- From the Departments of Plastic Reconstructive and Aesthetic Surgery, Pathology, and Pharmacology, Hacettepe University Faculty of Medicine
| | - Hakan Uzun
- From the Departments of Plastic Reconstructive and Aesthetic Surgery, Pathology, and Pharmacology, Hacettepe University Faculty of Medicine
| |
Collapse
|
14
|
Huang S, Wu H, Luo F, Zhang B, Li T, Yang Z, Ren B, Yin W, Wu D, Tai S. Exploring the role of mast cells in the progression of liver disease. Front Physiol 2022; 13:964887. [PMID: 36176778 PMCID: PMC9513450 DOI: 10.3389/fphys.2022.964887] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 07/28/2022] [Indexed: 11/22/2022] Open
Abstract
In addition to being associated with allergic diseases, parasites, bacteria, and venoms, a growing body of research indicates that mast cells and their mediators can regulate liver disease progression. When mast cells are activated, they degranulate and release many mediators, such as histamine, tryptase, chymase, transforming growth factor-β1 (TGF-β1), tumor necrosis factor–α(TNF-α), interleukins cytokines, and other substances that mediate the progression of liver disease. This article reviews the role of mast cells and their secretory mediators in developing hepatitis, cirrhosis and hepatocellular carcinoma (HCC) and their essential role in immunotherapy. Targeting MC infiltration may be a novel therapeutic option for improving liver disease progression.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Dehai Wu
- *Correspondence: Sheng Tai, ; Dehai Wu,
| | - Sheng Tai
- *Correspondence: Sheng Tai, ; Dehai Wu,
| |
Collapse
|
15
|
Krajewska NM, Fiancette R, Oo YH. Interplay between Mast Cells and Regulatory T Cells in Immune-Mediated Cholangiopathies. Int J Mol Sci 2022; 23:5872. [PMID: 35682552 PMCID: PMC9180565 DOI: 10.3390/ijms23115872] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/17/2022] [Accepted: 05/20/2022] [Indexed: 01/10/2023] Open
Abstract
Immune-mediated cholangiopathies are characterised by the destruction of small and large bile ducts causing bile acid stasis, which leads to subsequent inflammation, fibrosis, and eventual cirrhosis of the liver tissue. A breakdown of peripheral hepatic immune tolerance is a key feature of these diseases. Regulatory T cells (Tregs) are a major anti-inflammatory immune cell subset, and their quantities and functional capacity are impaired in autoimmune liver diseases. Tregs can undergo phenotypic reprogramming towards pro-inflammatory Th1 and Th17 profiles. The inflamed hepatic microenvironment influences and can impede normal Treg suppressive functions. Mast cell (MC) infiltration increases during liver inflammation, and active MCs have been shown to be an important source of pro-inflammatory mediators, thus driving pathogenesis. By influencing the microenvironment, MCs can indirectly manipulate Treg functions and inhibit their suppressive and proliferative activity. In addition, direct cell-to-cell interactions have been identified between MCs and Tregs. It is critical to consider the effects of MCs on the inflammatory milieu of the liver and their influence on Treg functions. This review will focus on the roles and crosstalk of Tregs and MCs during autoimmune cholangiopathy pathogenesis progression.
Collapse
Affiliation(s)
- Natalia M. Krajewska
- Centre for Liver and Gastrointestinal Research & NIHR Birmingham Liver Biomedical Research Unit, Institute of Biomedical Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, UK;
- Centre for Rare Diseases, European Reference Network Rare Liver Centre, University Hospital Birmingham NHS Foundation Trust, Birmingham B15 2TH, UK
| | - Rémi Fiancette
- Centre for Liver and Gastrointestinal Research & NIHR Birmingham Liver Biomedical Research Unit, Institute of Biomedical Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, UK;
- Centre for Rare Diseases, European Reference Network Rare Liver Centre, University Hospital Birmingham NHS Foundation Trust, Birmingham B15 2TH, UK
| | - Ye H. Oo
- Centre for Liver and Gastrointestinal Research & NIHR Birmingham Liver Biomedical Research Unit, Institute of Biomedical Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, UK;
- Centre for Rare Diseases, European Reference Network Rare Liver Centre, University Hospital Birmingham NHS Foundation Trust, Birmingham B15 2TH, UK
- Advanced Cellular Therapy Facility, University of Birmingham, Birmingham B15 2TT, UK
- Liver Transplant and Hepatobiliary Unit, Queen Elizabeth Hospital, University Hospital Birmingham NHS Foundation Trust, Birmingham B15 2TH, UK
| |
Collapse
|
16
|
Mast Cells in Immune-Mediated Cholangitis and Cholangiocarcinoma. Cells 2022; 11:cells11030375. [PMID: 35159185 PMCID: PMC8834285 DOI: 10.3390/cells11030375] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/13/2022] [Accepted: 01/17/2022] [Indexed: 02/04/2023] Open
Abstract
Cholestasis, which is impaired bile flow from the liver into the intestine, can be caused by cholangitis and/or bile duct obstruction. Cholangitis can arise from bacterial infections and cholelithiasis, however, immune-mediated cholangitis in primary biliary cholangitis (PBC) and primary sclerosing cholangitis (PSC) is characterized by a strong immune response targeting the biliary epithelial cells (BECs). Persistent biliary inflammation further represents a risk for biliary neoplasia, cholangiocarcinoma (CCA) by driving chronic cellular stress in the BECs. Currently, immune-mediated cholangitis is considered a Th1-Th17-dominant disease, however, the presence of Th2-related mast cells (MCs) in tissue samples from PBC, PSC and CCA patients has been described, showing that these MCs are active players in these diseases. Here, we reviewed and discussed experimental and clinical data supporting a pro-fibrotic role for MCs in immune-mediated cholangitis as well as their participation in supporting tumor growth acting as angiogenesis promoters. Thus, although MCs have classically been identified as downstream effectors of Th2 responses in allergies and parasitic infections, evidence suggests that these MCs are relevant players in biliary inflammation and neoplasia. The availability of strategies to prevent MCs’ activation represents a therapeutic opportunity in biliary diseases.
Collapse
|
17
|
Meadows V, Baiocchi L, Kundu D, Sato K, Fuentes Y, Wu C, Chakraborty S, Glaser S, Alpini G, Kennedy L, Francis H. Biliary Epithelial Senescence in Liver Disease: There Will Be SASP. Front Mol Biosci 2022; 8:803098. [PMID: 34993234 PMCID: PMC8724525 DOI: 10.3389/fmolb.2021.803098] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 11/23/2021] [Indexed: 12/12/2022] Open
Abstract
Cellular senescence is a pathophysiological phenomenon in which proliferative cells enter cell cycle arrest following DNA damage and other stress signals. Natural, permanent DNA damage can occur after repetitive cell division; however, acute stress or other injuries can push cells into premature senescence and eventually a senescence-associated secretory phenotype (SASP). In recent years, there has been increased evidence for the role of premature senescence in disease progression including diabetes, cardiac diseases, and end-stage liver diseases including cholestasis. Liver size and function change with aging, and presumably with increasing cellular senescence, so it is important to understand the mechanisms by which cellular senescence affects the functional nature of the liver in health and disease. As well, cells in a SASP state secrete a multitude of inflammatory and pro-fibrogenic factors that modulate the microenvironment. Cellular SASP and the associated, secreted factors have been implicated in the progression of liver diseases, such as cholestatic injury that target the biliary epithelial cells (i.e., cholangiocytes) lining the bile ducts. Indeed, cholangiocyte senescence/SASP is proposed to be a driver of disease phenotypes in a variety of liver injuries. Within this review, we will discuss the impact of cholangiocyte senescence and SASP in the pathogenesis of cholestatic disorders.
Collapse
Affiliation(s)
- Vik Meadows
- Hepatology and Gastroenterology, Medicine, Indiana University, Indianapolis, IN, United States
| | | | - Debjyoti Kundu
- Hepatology and Gastroenterology, Medicine, Indiana University, Indianapolis, IN, United States
| | - Keisaku Sato
- Hepatology and Gastroenterology, Medicine, Indiana University, Indianapolis, IN, United States
| | - Yessenia Fuentes
- Clinical and Translational Sciences Institute, STEM GEHCS Program, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Chaodong Wu
- Department of Nutrition, Texas A&M University, College Station, TX, United States
| | - Sanjukta Chakraborty
- Department of Medical Physiology, Texas A&M University College of Medicine, Bryan, TX, United States
| | - Shannon Glaser
- Department of Medical Physiology, Texas A&M University College of Medicine, Bryan, TX, United States
| | - Gianfranco Alpini
- Hepatology and Gastroenterology, Medicine, Indiana University, Indianapolis, IN, United States.,Richard L. Roudebush VA Medical Center, Indianapolis, IN, United States
| | - Lindsey Kennedy
- Hepatology and Gastroenterology, Medicine, Indiana University, Indianapolis, IN, United States.,Richard L. Roudebush VA Medical Center, Indianapolis, IN, United States
| | - Heather Francis
- Hepatology and Gastroenterology, Medicine, Indiana University, Indianapolis, IN, United States.,Richard L. Roudebush VA Medical Center, Indianapolis, IN, United States
| |
Collapse
|
18
|
Pham L, Kennedy L, Baiocchi L, Meadows V, Ekser B, Kundu D, Zhou T, Sato K, Glaser S, Ceci L, Alpini G, Francis H. Mast cells in liver disease progression: An update on current studies and implications. Hepatology 2022; 75:213-218. [PMID: 34435373 PMCID: PMC9276201 DOI: 10.1002/hep.32121] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/24/2021] [Accepted: 08/23/2021] [Indexed: 12/12/2022]
Affiliation(s)
- Linh Pham
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA,Department of Science and Mathematics, Texas A&M University–Central Texas, Killeen, Texas, USA
| | - Lindsey Kennedy
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA,Richard L. Roudebush VA Medical Center, Indianapolis, Indiana, USA
| | | | - Vik Meadows
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Burcin Ekser
- Division of Transplant Surgery, Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Debjyoti Kundu
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Tianhao Zhou
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Keisaku Sato
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Shannon Glaser
- Department of Medical Physiology, Texas A&M Health Science Center, Bryan, Texas, USA
| | - Ludovica Ceci
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Gianfranco Alpini
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA,Richard L. Roudebush VA Medical Center, Indianapolis, Indiana, USA
| | - Heather Francis
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA,Richard L. Roudebush VA Medical Center, Indianapolis, Indiana, USA
| |
Collapse
|
19
|
|
20
|
Wang YJ, Downey MA, Choi S, Shoup TM, Elmaleh DR. Cromolyn platform suppresses fibrosis and inflammation, promotes microglial phagocytosis and neurite outgrowth. Sci Rep 2021; 11:22161. [PMID: 34772945 PMCID: PMC8589953 DOI: 10.1038/s41598-021-00465-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 10/07/2021] [Indexed: 12/18/2022] Open
Abstract
Neurodegenerative diseases are characterized by chronic neuroinflammation and may perpetuate ongoing fibrotic reactions within the central nervous system. Unfortunately, there is no therapeutic available that treats neurodegenerative inflammation and its sequelae. Here we utilize cromolyn, a mast cell inhibitor with anti-inflammatory capabilities, and its fluorinated analogue F-cromolyn to study fibrosis-related protein regulation and secretion downstream of neuroinflammation and their ability to promote microglial phagocytosis and neurite outgrowth. In this report, RNA-seq analysis shows that administration of the pro-inflammatory cytokine TNF-α to HMC3 human microglia results in a robust upregulation of fibrosis-associated genes. Subsequent treatment with cromolyn and F-cromolyn resulted in reduced secretion of collagen XVIII, fibronectin, and tenascin-c. Additionally, we show that cromolyn and F-cromolyn reduce pro-inflammatory proteins PLP1, PELP1, HSP90, IL-2, GRO-α, Eotaxin, and VEGF-Α, while promoting secretion of anti-inflammatory IL-4 in HMC3 microglia. Furthermore, cromolyn and F-cromolyn augment neurite outgrowth in PC12 neuronal cells in concert with nerve growth factor. Treatment also differentially altered secretion of neurogenesis-related proteins TTL, PROX1, Rab35, and CSDE1 in HMC3 microglia. Finally, iPSC-derived human microglia more readily phagocytose Aβ42 with cromolyn and F-cromolyn relative to controls. We propose the cromolyn platform targets multiple proteins upstream of PI3K/Akt/mTOR, NF-κB, and GSK-3β signaling pathways to affect cytokine, chemokine, and fibrosis-related protein expression.
Collapse
Affiliation(s)
| | | | - Sungwoon Choi
- Department of New Drug Discovery, Chungnam National University, Daejeon, South Korea
| | - Timothy M Shoup
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02129-2060, USA
| | - David R Elmaleh
- AZTherapies, Inc., Boston, MA, USA.
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02129-2060, USA.
| |
Collapse
|
21
|
Rohr-Udilova N, Tsuchiya K, Timelthaler G, Salzmann M, Meischl T, Wöran K, Stift J, Herac M, Schulte-Hermann R, Peck-Radosavljevic M, Sieghart W, Eferl R, Jensen-Jarolim E, Trauner M, Pinter M. Morphometric Analysis of Mast Cells in Tumor Predicts Recurrence of Hepatocellular Carcinoma After Liver Transplantation. Hepatol Commun 2021; 5:1939-1952. [PMID: 34558826 PMCID: PMC8557312 DOI: 10.1002/hep4.1770] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/10/2021] [Accepted: 05/23/2021] [Indexed: 12/19/2022] Open
Abstract
Tumor-infiltrating immune cells are relevant prognostic and immunotherapeutic targets in hepatocellular carcinoma (HCC). Mast cells play a key role in allergic response but may also be involved in anticancer immunity. Digital morphometric analysis of patient tissue sections has become increasingly available for clinical routine and provides unbiased quantitative data. Here, we apply morphometric analysis of mast cells to retrospectively evaluate their relevance for HCC recurrence in patients after orthotopic liver transplantation (OLT). A total of 173 patients underwent OLT for HCC at the Medical University of Vienna (21 women, 152 men; 55.2 ± 7.9 years; 74 beyond Milan criteria, 49 beyond up-to-7 criteria for liver transplantation). Tissue arrays from tumors and corresponding surrounding tissues were immunohistochemically stained for mast cell tryptase. Mast cells were quantified by digital tissue morphometric analysis and correlated with HCC recurrence. Mast cells were detected in 93% of HCC tumors and in all available surrounding liver tissues. Tumor tissues revealed lower mast cell density than corresponding surrounding tissues (P < 0.0001). Patients lacking intratumoral mast cells (iMCs) displayed larger tumors and higher tumor recurrence rates both in the whole cohort (hazard ratio [HR], 2.74; 95% confidence interval [CI], 1.09-6.93; P = 0.029) and in patients beyond transplant criteria (Milan HR, 2.81; 95% CI, 1.04-7.62; P = 0.01; up-to-7 HR, 3.58; 95% CI, 1.17-10.92; P = 0.02). Notably, high iMC identified additional patients at low risk classified outside the Milan and up-to-7 criteria, whereas low iMC identified additional patients at high risk classified within the alpha-fetoprotein French and Metroticket criteria. iMCs independently predicted tumor recurrence in a multivariate Cox regression analysis (Milan HR, 2.38; 95% CI, 1.16-4.91; P = 0.019; up-to-7 HR, 2.21; 95% CI, 1.05-4.62; P = 0.035). Conclusion: Hepatic mast cells might be implicated in antitumor immunity in HCC. Morphometric analysis of iMCs refines prognosis of HCC recurrence after liver transplantation.
Collapse
Affiliation(s)
- Nataliya Rohr-Udilova
- Division of Gastroenterology and HepatologyDepartment of Internal Medicine IIIMedical University of ViennaViennaAustria
| | - Kaoru Tsuchiya
- Division of Gastroenterology and HepatologyDepartment of Internal Medicine IIIMedical University of ViennaViennaAustria.,Department of Gastroenterology and HepatologyMusashino Red Cross HospitalTokyoJapan
| | - Gerald Timelthaler
- Institute of Cancer ResearchInternal Medicine IMedical University of Vienna and Comprehensive Cancer CenterViennaAustria
| | - Martina Salzmann
- Institute of Pathophysiology and Allergy ResearchCenter of Pathophysiology, Infectiology, and ImmunologyMedical University of ViennaViennaAustria
| | - Tobias Meischl
- Division of Gastroenterology and HepatologyDepartment of Internal Medicine IIIMedical University of ViennaViennaAustria
| | - Katharina Wöran
- Clinical Institute of PathologyMedical University of ViennaViennaAustria
| | - Judith Stift
- Clinical Institute of PathologyMedical University of ViennaViennaAustria
| | - Merima Herac
- Clinical Institute of PathologyMedical University of ViennaViennaAustria
| | - Rolf Schulte-Hermann
- Institute of Cancer ResearchInternal Medicine IMedical University of Vienna and Comprehensive Cancer CenterViennaAustria
| | - Markus Peck-Radosavljevic
- Internal Medicine and Gastroenterology, Central Admission, and First AidPublic Hospital Klagenfurt am WoertherseeKlagenfurtAustria
| | | | - Robert Eferl
- Institute of Cancer ResearchInternal Medicine IMedical University of Vienna and Comprehensive Cancer CenterViennaAustria
| | - Erika Jensen-Jarolim
- Institute of Pathophysiology and Allergy ResearchCenter of Pathophysiology, Infectiology, and ImmunologyMedical University of ViennaViennaAustria.,Comparative MedicineInteruniversity Messerli Research Institute of the University of Veterinary Medicine ViennaMedical University of Vienna and University of ViennaViennaAustria
| | - Michael Trauner
- Division of Gastroenterology and HepatologyDepartment of Internal Medicine IIIMedical University of ViennaViennaAustria
| | - Matthias Pinter
- Division of Gastroenterology and HepatologyDepartment of Internal Medicine IIIMedical University of ViennaViennaAustria
| |
Collapse
|
22
|
Meadows V, Kennedy L, Ekser B, Kyritsi K, Kundu D, Zhou T, Chen L, Pham L, Wu N, Demieville J, Hargrove L, Glaser S, Alpini G, Francis H. Mast Cells Regulate Ductular Reaction and Intestinal Inflammation in Cholestasis Through Farnesoid X Receptor Signaling. Hepatology 2021; 74:2684-2698. [PMID: 34164827 PMCID: PMC9337218 DOI: 10.1002/hep.32028] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 06/08/2021] [Accepted: 06/17/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIMS Cholestasis is characterized by increased total bile acid (TBA) levels, which are regulated by farnesoid X receptor (FXR)/FGF15. Patients with primary sclerosing cholangitis (PSC) typically present with inflammatory bowel disease (IBD). Mast cells (MCs) (i) express FXR and (ii) infiltrate the liver during cholestasis promoting liver fibrosis. In bile-duct-ligated (BDL) MC-deficient mice (B6.Cg-KitW-sh /HNihrJaeBsmJ [KitW-sh ]), ductular reaction (DR) and liver fibrosis decrease compared with BDL wild type, and MC injection exacerbates liver damage in normal mice. APPROACH AND RESULTS In this study, we demonstrated that MC-FXR regulates biliary FXR/FGF15, DR, and hepatic fibrosis and alters intestinal FXR/FGF15. We found increased MC number and biliary FXR expression in patients with liver injury compared with control. Histamine and FGF19 serum levels and small heterodimer partner expression increase in patients PSC and PSC-IBD compared with healthy controls. MC injection increased liver damage, DR, inflammation, biliary senescence/senescence-associated secretory phenotype (SASP), fibrosis, and histamine in KitW-sh mice. Inhibition of MC-FXR before injection reduced these parameters. BDL and KitW-sh mice injected with MCs displayed increased TBA content, biliary FXR/FGF15, and intestinal inflammation, which decreased in BDL KitW-sh and KitW-sh mice injected with MC-FXR. MCs increased ileal FXR/FGF15 expression in KitW-sh mice that was reduced following FXR inhibition. BDL and multidrug resistance 2/ATP-binding cassette family 2 member 4 knockout (Mdr2-/- ) mice, models of PSC, displayed increased intestinal MC infiltration and FXR/FGF15 expression. These were reduced following MC stabilization with cromolyn sodium in Mdr2-/- mice. In vitro, MC-FXR inhibition decreased biliary proliferation/SASP/FGF and hepatic stellate cell activation. CONCLUSIONS Our studies demonstrate that MC-FXR plays a key role in liver damage and DR, including TBA regulation through alteration of intestinal and biliary FXR/FGF15 signaling.
Collapse
Affiliation(s)
- Vik Meadows
- Richard L. Roudebush VA Medical Center, Indiana University School of Medicine, Indianapolis, IN,Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Lindsey Kennedy
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Burcin Ekser
- Division of Transplant Surgery, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN
| | - Konstantina Kyritsi
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Debjyoti Kundu
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Tianhao Zhou
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Lixian Chen
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Linh Pham
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Nan Wu
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Jennifer Demieville
- Department of Medical Physiology, Texas A&M University College of Medicine, Bryan, TX
| | - Laura Hargrove
- Department of Medical Physiology, Texas A&M University College of Medicine, Bryan, TX
| | - Shannon Glaser
- Department of Medical Physiology, Texas A&M University College of Medicine, Bryan, TX
| | - Gianfranco Alpini
- Richard L. Roudebush VA Medical Center, Indiana University School of Medicine, Indianapolis, IN,Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Heather Francis
- Richard L. Roudebush VA Medical Center, Indiana University School of Medicine, Indianapolis, IN,Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| |
Collapse
|
23
|
Kennedy L, Meadows V, Sybenga A, Demieville J, Chen L, Hargrove L, Ekser B, Dar W, Ceci L, Kundu D, Kyritsi K, Pham L, Zhou T, Glaser S, Meng F, Alpini G, Francis H. Mast Cells Promote Nonalcoholic Fatty Liver Disease Phenotypes and Microvesicular Steatosis in Mice Fed a Western Diet. Hepatology 2021; 74:164-182. [PMID: 33434322 PMCID: PMC9271361 DOI: 10.1002/hep.31713] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 12/16/2020] [Accepted: 12/17/2020] [Indexed: 01/11/2023]
Abstract
BACKGROUND AND AIMS Nonalcoholic fatty liver disease (NAFLD) is simple steatosis but can develop into nonalcoholic steatohepatitis (NASH), characterized by liver inflammation, fibrosis, and microvesicular steatosis. Mast cells (MCs) infiltrate the liver during cholestasis and promote ductular reaction (DR), biliary senescence, and liver fibrosis. We aimed to determine the effects of MC depletion during NAFLD/NASH. APPROACH AND RESULTS Wild-type (WT) and KitW-sh (MC-deficient) mice were fed a control diet (CD) or a Western diet (WD) for 16 weeks; select WT and KitW-sh WD mice received tail vein injections of MCs 2 times per week for 2 weeks prior to sacrifice. Human samples were collected from normal, NAFLD, or NASH mice. Cholangiocytes from WT WD mice and human NASH have increased insulin-like growth factor 1 expression that promotes MC migration/activation. Enhanced MC presence was noted in WT WD mice and human NASH, along with increased DR. WT WD mice had significantly increased steatosis, DR/biliary senescence, inflammation, liver fibrosis, and angiogenesis compared to WT CD mice, which was significantly reduced in KitW-sh WD mice. Loss of MCs prominently reduced microvesicular steatosis in zone 1 hepatocytes. MC injection promoted WD-induced biliary and liver damage and specifically up-regulated microvesicular steatosis in zone 1 hepatocytes. Aldehyde dehydrogenase 1 family, member A3 (ALDH1A3) expression is reduced in WT WD mice and human NASH but increased in KitW-sh WD mice. MicroRNA 144-3 prime (miR-144-3p) expression was increased in WT WD mice and human NASH but reduced in KitW-sh WD mice and was found to target ALDH1A3. CONCLUSIONS MCs promote WD-induced biliary and liver damage and may promote microvesicular steatosis development during NAFLD progression to NASH through miR-144-3p/ALDH1A3 signaling. Inhibition of MC activation may be a therapeutic option for NAFLD/NASH treatment.
Collapse
Affiliation(s)
- Lindsey Kennedy
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Vik Meadows
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Amelia Sybenga
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN
| | - Jennifer Demieville
- Central Texas Veterans Health Care System, Texas A&M University College of Medicine, Bryan, TX
| | - Lixian Chen
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Laura Hargrove
- Department of Medical Physiology, Texas A&M University College of Medicine, Bryan, TX
| | - Burcin Ekser
- Department of Transplant Surgery, Indiana University School of Medicine, Indianapolis, IN
| | - Wasim Dar
- Division of Immunology and Organ Transplantation, Department of Surgery, University of Texas Health Science Center at Houston, Houston, TX
| | - Ludovica Ceci
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Debjyoti Kundu
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Konstantina Kyritsi
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Linh Pham
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Tianhao Zhou
- Department of Medical Physiology, Texas A&M University College of Medicine, Bryan, TX
| | - Shannon Glaser
- Department of Medical Physiology, Texas A&M University College of Medicine, Bryan, TX
| | - Fanyin Meng
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN,Richard L. Roudebush VA Medical Center, Indiana University School of Medicine, Indianapolis, IN
| | - Gianfranco Alpini
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN,Richard L. Roudebush VA Medical Center, Indiana University School of Medicine, Indianapolis, IN
| | - Heather Francis
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN,Richard L. Roudebush VA Medical Center, Indiana University School of Medicine, Indianapolis, IN
| |
Collapse
|
24
|
Hananeh WM, Al Ghbari F, Al Rukibat R, Al Zghoul M, Ismail ZB. Effects of fake and original perfumes on the presence, numbers, and distribution of mast cells in selected tissues in rats. Open Vet J 2021; 11:277-282. [PMID: 34307084 PMCID: PMC8288742 DOI: 10.5455/ovj.2021.v11.i2.11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 05/14/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Perfumes, whether original or fake, are considered of great economic value. However, overzealous use of perfumes could be associated with local or systemic side effects. Aim: This study was conducted to investigate the effects of daily use of original and fake perfumes on numbers and distribution of mast cells in several organs and tissues of Wistar rats. Methods: Three different kinds of original perfumes coded as O1, O2, and O3 and their fake counterparts coded as F1, F2, and F3 were applied once daily directly on the skin of rats for 28 consecutive days. At the end of the study, representative tissue samples were taken and processed for histopathological examination using Hematoxylin and Eosin, toluidine blue, and Wright’s stains. Results: A significant (p < 0.05) elevation in mast cell count was observed in F3, O3, F1, and F2 compared to the control group. The majority of mast cells were distributed in the hepatic perivascular tissues, peribronchial and pleural tissues. There was a significant (p < 0.05) elevation in mast cell count in along the interalveolar wall, peribronchial area, and pleura tissues in F1 and O3 groups. Conclusion: Results of this study indicated that repeated use of both original and fake perfumes was associated with an increased number of mast cells in different body organs and tissues.
Collapse
Affiliation(s)
- Wael M Hananeh
- Department of Veterinary Pathology and Public Health. Faculty of Veterinary Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Fatima Al Ghbari
- Department of Veterinary Pathology and Public Health. Faculty of Veterinary Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Raida Al Rukibat
- Department of Veterinary Pathology and Public Health. Faculty of Veterinary Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Mohammad Al Zghoul
- Department of Basic Veterinary Medical Sciences, Faculty of Veterinary Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Zuhair Bani Ismail
- Department of Veterinary Clinical Sciences, Faculty of Veterinary Medicine, Jordan University of Science and Technology, Irbid, Jordan
| |
Collapse
|
25
|
Kyritsi K, Kennedy L, Meadows V, Hargrove L, Demieville J, Pham L, Sybenga A, Kundu D, Cerritos K, Meng F, Alpini G, Francis H. Mast Cells Induce Ductular Reaction Mimicking Liver Injury in Mice Through Mast Cell-Derived Transforming Growth Factor Beta 1 Signaling. Hepatology 2021; 73:2397-2410. [PMID: 32761972 PMCID: PMC7864988 DOI: 10.1002/hep.31497] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/15/2020] [Accepted: 06/28/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND AIMS Following liver injury, mast cells (MCs) migrate into the liver and are activated in patients with cholestasis. Inhibition of MC mediators decreases ductular reaction (DR) and liver fibrosis. Transforming growth factor beta 1 (TGF-β1) contributes to fibrosis and promotes liver disease. Our aim was to demonstrate that reintroduction of MCs induces cholestatic injury through TGF-β1. APPROACH AND RESULTS Wild-type, KitW-sh (MC-deficient), and multidrug resistance transporter 2/ABC transporter B family member 2 knockout mice lacking l-histidine decarboxylase were injected with vehicle or PKH26-tagged murine MCs pretreated with 0.01% dimethyl sulfoxide (DMSO) or the TGF-β1 receptor inhibitor (TGF-βRi), LY2109761 (10 μM) 3 days before sacrifice. Hepatic damage was assessed by hematoxylin and eosin (H&E) and serum chemistry. Injected MCs were detected in liver, spleen, and lung by immunofluorescence (IF). DR was measured by cytokeratin 19 (CK-19) immunohistochemistry and F4/80 staining coupled with real-time quantitative PCR (qPCR) for interleukin (IL)-1β, IL-33, and F4/80; biliary senescence was evaluated by IF or qPCR for p16, p18, and p21. Fibrosis was evaluated by sirius red/fast green staining and IF for synaptophysin 9 (SYP-9), desmin, and alpha smooth muscle actin (α-SMA). TGF-β1 secretion/expression was measured by enzyme immunoassay and qPCR. Angiogenesis was detected by IF for von Willebrand factor and vascular endothelial growth factor C qPCR. In vitro, MC-TGF-β1 expression/secretion were measured after TGF-βRi treatment; conditioned medium was collected. Cholangiocytes and hepatic stellate cells (HSCs) were treated with MC-conditioned medium, and biliary proliferation/senescence was measured by 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium and qPCR; HSC activation evaluated for α-SMA, SYP-9, and collagen type-1a expression. MC injection recapitulates cholestatic liver injury characterized by increased DR, fibrosis/TGF-β1 secretion, and angiogenesis. Injection of MC-TGF-βRi reversed these parameters. In vitro, MCs induce biliary proliferation/senescence and HSC activation that was reversed with MCs lacking TGF-β1. CONCLUSIONS Our study demonstrates that reintroduction of MCs mimics cholestatic liver injury and that MC-derived TGF-β1 may be a target in chronic cholestatic liver disease.
Collapse
Affiliation(s)
- Konstantina Kyritsi
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine Research
| | - Lindsey Kennedy
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine Research
| | - Vik Meadows
- Richard L. Roudebush VA Medical Center, Indiana University School of Medicine Research,Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine Research
| | - Laura Hargrove
- Texas A&M University Health Science Center, Texas A&M University-Central Texas
| | | | - Linh Pham
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine Research
| | | | - Debjyoti Kundu
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine Research
| | - Karla Cerritos
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine Research
| | - Fanyin Meng
- Richard L. Roudebush VA Medical Center, Indiana University School of Medicine Research,Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine Research
| | - Gianfranco Alpini
- Richard L. Roudebush VA Medical Center, Indiana University School of Medicine Research,Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine Research
| | - Heather Francis
- Richard L. Roudebush VA Medical Center, Indiana University School of Medicine Research,Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine Research
| |
Collapse
|
26
|
Chen Z, Zhang T, Mao K, Shao X, Xu Y, Zhu M, Zhou H, Wang Q, Li Z, Xie Y, Yuan X, Ying L, Zhang M, Hu J, Mou S. A single-cell survey of the human glomerulonephritis. J Cell Mol Med 2021; 25:4684-4695. [PMID: 33754492 PMCID: PMC8107090 DOI: 10.1111/jcmm.16407] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 01/08/2021] [Accepted: 02/08/2021] [Indexed: 12/12/2022] Open
Abstract
Glomerulonephritis is the one of the major causes of the end-stage kidney disease, whereas the pathological process of glomerulonephritis is still not completely understood. Single-cell RNA sequencing (scRNA-seq) emerges to be a powerful tool to evaluate the full heterogeneity of kidney diseases. To reveal cellular gene expression profiles of glomerulonephritis, we performed scRNA-seq of 2 human kidney transplantation donor samples, 4 human glomerulonephritis samples, 1 human malignant hypertension (MH) sample and 1 human chronic interstitial nephritis (CIN) sample, all tissues were taken from the biopsy. After filtering the cells with < 200 genes and > 10% mitochondria (MT) genes, the resulting 14 932 cells can be divided into 20 cell clusters, consistently with the previous report, in disease samples dramatic immune cells infiltration was found, among which a proximal tubule (PT) subset characterized by wnt-β catenin activation and a natural killer T (NKT) subset high expressing LTB were found. Furthermore, in the cluster of the podocyte, three glomerulonephritis related genes named FXYD5, CD74 and B2M were found. Compared with the mesangial of donor, the gene CLIC1 and RPS26 were up-regulated in mesangial of IgA nephropathy(IgAN), whereas the gene JUNB was up-regulated in podocyte of IgAN in comparison with that of donor. Meanwhile, some membranous nephropathy (MN) high expressed genes such as HLA-DRB5, HLA-DQA2, IFNG, CCL2 and NR4A2, which involve in highest enrichment pathway, display the cellular-specific expression style, whereas monocyte marker of lupus nephritis (LN) named TNFSF13B was also found and interferon alpha/beta signalling pathway was enriched in B and NKT of LN comparing with donor. By scRNA-seq, we first defined the podocyte markers of glomerulonephritis and specific markers in IgA, MN and LN were found at cellular level. Furthermore, the critical role of interferon alpha/beta signalling pathway was enriched in B and NKT of LN was declared.
Collapse
Affiliation(s)
- Zhejun Chen
- Department of Nephrology, Molecular Cell Laboratory for Kidney Disease, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ting Zhang
- Shanghai Institute of Immunology, Department of Microbiology and Immunology, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, China
| | - Kaiqiong Mao
- Shanghai Institute of Immunology, Department of Microbiology and Immunology, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, China
| | - Xinghua Shao
- Department of Nephrology, Molecular Cell Laboratory for Kidney Disease, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yao Xu
- Department of Nephrology, Molecular Cell Laboratory for Kidney Disease, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Minyan Zhu
- Department of Nephrology, Molecular Cell Laboratory for Kidney Disease, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hang Zhou
- Department of Nephrology, Molecular Cell Laboratory for Kidney Disease, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qin Wang
- Department of Nephrology, Molecular Cell Laboratory for Kidney Disease, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhenyuan Li
- Department of Nephrology, Molecular Cell Laboratory for Kidney Disease, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - YuanYuan Xie
- Department of Nephrology, Molecular Cell Laboratory for Kidney Disease, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaodong Yuan
- Transplantation Center of Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Liang Ying
- Transplantation Center of Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ming Zhang
- Transplantation Center of Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jiajia Hu
- Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shan Mou
- Department of Nephrology, Molecular Cell Laboratory for Kidney Disease, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
27
|
Dual Pharmacological Targeting of HDACs and PDE5 Inhibits Liver Disease Progression in a Mouse Model of Biliary Inflammation and Fibrosis. Cancers (Basel) 2020; 12:cancers12123748. [PMID: 33322158 PMCID: PMC7763137 DOI: 10.3390/cancers12123748] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 12/10/2020] [Indexed: 01/18/2023] Open
Abstract
Simple Summary Chronic liver injury and inflammation leads to excessive deposition of extracellular matrix, known as liver fibrosis, and the distortion of the hepatic parenchyma. Liver fibrosis may progress to cirrhosis, a condition in which hepatic function is impaired and most cases of liver tumors occur. Currently, there are no effective therapies to inhibit and reverse the progression of liver fibrosis, and therefore, chronic liver disease remains a global health problem. In this study we have tested the efficacy of a new class of molecules that simultaneously target two molecular pathways known to be involved in the pathogenesis of hepatic fibrosis. In a clinically relevant mouse model of liver injury and inflammation we show that the combined inhibition of histones deacetylases and the cyclic guanosine monophosphate (cGMP) phosphodiesterase phosphodiesterase 5 (PDE5) results in potent anti-inflammatory and anti-fibrotic effects. Our findings open new avenues for the treatment of liver fibrosis and therefore, the prevention of hepatic carcinogenesis. Abstract Liver fibrosis, a common hallmark of chronic liver disease (CLD), is characterized by the accumulation of extracellular matrix secreted by activated hepatic fibroblasts and stellate cells (HSC). Fibrogenesis involves multiple cellular and molecular processes and is intimately linked to chronic hepatic inflammation. Importantly, it has been shown to promote the loss of liver function and liver carcinogenesis. No effective therapies for liver fibrosis are currently available. We examined the anti-fibrogenic potential of a new drug (CM414) that simultaneously inhibits histone deacetylases (HDACs), more precisely HDAC1, 2, and 3 (Class I) and HDAC6 (Class II) and stimulates the cyclic guanosine monophosphate (cGMP)-protein kinase G (PKG) pathway activity through phosphodiesterase 5 (PDE5) inhibition, two mechanisms independently involved in liver fibrosis. To this end, we treated Mdr2-KO mice, a clinically relevant model of liver inflammation and fibrosis, with our dual HDAC/PDE5 inhibitor CM414. We observed a decrease in the expression of fibrogenic markers and collagen deposition, together with a marked reduction in inflammation. No signs of hepatic or systemic toxicity were recorded. Mechanistic studies in cultured human HSC and cholangiocytes (LX2 and H69 cell lines, respectively) demonstrated that CM414 inhibited pro-fibrogenic and inflammatory responses, including those triggered by transforming growth factor β (TGFβ). Our study supports the notion that simultaneous targeting of pro-inflammatory and fibrogenic mechanisms controlled by HDACs and PDE5 with a single molecule, such as CM414, can be a new disease-modifying strategy.
Collapse
|
28
|
Angioni R, Calì B, Vigneswara V, Crescenzi M, Merino A, Sánchez-Rodríguez R, Liboni C, Hoogduijn MJ, Newsome PN, Muraca M, Russo FP, Viola A. Administration of Human MSC-Derived Extracellular Vesicles for the Treatment of Primary Sclerosing Cholangitis: Preclinical Data in MDR2 Knockout Mice. Int J Mol Sci 2020; 21:E8874. [PMID: 33238629 PMCID: PMC7700340 DOI: 10.3390/ijms21228874] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/05/2020] [Accepted: 11/11/2020] [Indexed: 12/12/2022] Open
Abstract
Primary Sclerosing Cholangitis (PSC) is a progressive liver disease for which there is no effective medical therapy. PSC belongs to the family of immune-mediated biliary disorders and it is characterized by persistent biliary inflammation and fibrosis. Here, we explored the possibility of using extracellular vesicles (EVs) derived from human, bone marrow mesenchymal stromal cells (MSCs) to target liver inflammation and reduce fibrosis in a mouse model of PSC. Five-week-old male FVB.129P2-Abcb4tm1Bor mice were intraperitoneally injected with either 100 µL of EVs (± 9.1 × 109 particles/mL) or PBS, once a week, for three consecutive weeks. One week after the last injection, mice were sacrificed and liver and blood collected for flow cytometry analysis and transaminase quantification. In FVB.129P2-Abcb4tm1Bor mice, EV administration resulted in reduced serum levels of alkaline phosphatase (ALP), bile acid (BA), and alanine aminotransferase (ALT), as well as in decreased liver fibrosis. Mechanistically, we observed that EVs reduce liver accumulation of both granulocytes and T cells and dampen VCAM-1 expression. Further analysis revealed that the therapeutic effect of EVs is accompanied by the inhibition of NFkB activation in proximity of the portal triad. Our pre-clinical experiments suggest that EVs isolated from MSCs may represent an effective therapeutic strategy to treat patients suffering from PSC.
Collapse
Affiliation(s)
- Roberta Angioni
- Department of Biomedical Sciences, University of Padova and Fondazione Istituto di Ricerca Pediatrica—Città della Speranza, 35127 Padova, Italy; (R.A.); (B.C.); (R.S.-R.); (C.L.)
| | - Bianca Calì
- Department of Biomedical Sciences, University of Padova and Fondazione Istituto di Ricerca Pediatrica—Città della Speranza, 35127 Padova, Italy; (R.A.); (B.C.); (R.S.-R.); (C.L.)
| | - Vasanthy Vigneswara
- National Institute for Health Research Biomedical Research Centre at University Hospitals Birmingham NHS Foundation Trust and the University of Birmingham; Centre for Liver and GI Research, Institute of Immunology and Immunotherapy, University of Birmingham; Liver Unit, University Hospitals Birmingham NHS Foundation Trust, Birmingham B15 2TH, UK; (V.V.); (P.N.N.)
| | - Marika Crescenzi
- Department of Surgery, Oncology and Gastroenterology—DiSCOG, Gastroenterology and Multivisceral Transplant Unit, 35128 Padova, Italy; (M.C.); (F.P.R.)
| | - Ana Merino
- Nephrology and Transplantation, Department of Internal Medicine, Erasmus Medical Center, 3015 CN Rotterdam, The Netherlands; (A.M.); (M.J.H.)
| | - Ricardo Sánchez-Rodríguez
- Department of Biomedical Sciences, University of Padova and Fondazione Istituto di Ricerca Pediatrica—Città della Speranza, 35127 Padova, Italy; (R.A.); (B.C.); (R.S.-R.); (C.L.)
| | - Cristina Liboni
- Department of Biomedical Sciences, University of Padova and Fondazione Istituto di Ricerca Pediatrica—Città della Speranza, 35127 Padova, Italy; (R.A.); (B.C.); (R.S.-R.); (C.L.)
| | - Martin J. Hoogduijn
- Nephrology and Transplantation, Department of Internal Medicine, Erasmus Medical Center, 3015 CN Rotterdam, The Netherlands; (A.M.); (M.J.H.)
| | - Philip Noel Newsome
- National Institute for Health Research Biomedical Research Centre at University Hospitals Birmingham NHS Foundation Trust and the University of Birmingham; Centre for Liver and GI Research, Institute of Immunology and Immunotherapy, University of Birmingham; Liver Unit, University Hospitals Birmingham NHS Foundation Trust, Birmingham B15 2TH, UK; (V.V.); (P.N.N.)
| | - Maurizio Muraca
- Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Padova, and Stem Cell and Regenerative Medicine Laboratory, Department of Women’s and Children’s Health, University of Padova, 35128 Padova, Italy;
| | - Francesco Paolo Russo
- Department of Surgery, Oncology and Gastroenterology—DiSCOG, Gastroenterology and Multivisceral Transplant Unit, 35128 Padova, Italy; (M.C.); (F.P.R.)
| | - Antonella Viola
- Department of Biomedical Sciences, University of Padova and Fondazione Istituto di Ricerca Pediatrica—Città della Speranza, 35127 Padova, Italy; (R.A.); (B.C.); (R.S.-R.); (C.L.)
| |
Collapse
|
29
|
Kundu D, Kennedy L, Meadows V, Baiocchi L, Alpini G, Francis H. The Dynamic Interplay Between Mast Cells, Aging/Cellular Senescence, and Liver Disease. Gene Expr 2020; 20:77-88. [PMID: 32727636 PMCID: PMC7650013 DOI: 10.3727/105221620x15960509906371] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mast cells are key players in acute immune responses that are evidenced by degranulation leading to a heightened allergic response. Activation of mast cells can trigger a number of different pathways contributing to metabolic conditions and disease progression. Aging results in irreversible physiological changes affecting all organs, including the liver. The liver undergoes senescence, changes in protein expression, and cell signaling phenotypes during aging, which regulate disease progression. Cellular senescence contributes to the age-related changes. Unsurprisingly, mast cells also undergo age-related changes in number, localization, and activation throughout their lifetime, which adversely affects the etiology and progression of many physiological conditions including liver diseases. In this review, we discuss the role of mast cells during aging, including features of aging (e.g., senescence) in the context of biliary diseases such as primary biliary cholangitis and primary sclerosing cholangitis and nonalcoholic fatty liver disease.
Collapse
Affiliation(s)
- Debjyoti Kundu
- *Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Lindsey Kennedy
- *Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Vik Meadows
- *Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Leonardo Baiocchi
- †Department of Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Gianfranco Alpini
- *Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
- ‡Richard L. Roudebush VA Medical Center, Indianapolis, IN, USA
| | - Heather Francis
- *Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
- ‡Richard L. Roudebush VA Medical Center, Indianapolis, IN, USA
| |
Collapse
|
30
|
Petrescu AD, Grant S, Williams E, Frampton G, Reinhart EH, Nguyen A, An S, McMillin M, DeMorrow S. Ghrelin reverses ductular reaction and hepatic fibrosis in a rodent model of cholestasis. Sci Rep 2020; 10:16024. [PMID: 32994489 PMCID: PMC7525536 DOI: 10.1038/s41598-020-72681-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 09/06/2020] [Indexed: 12/20/2022] Open
Abstract
The orexigenic peptide ghrelin (Ghr) stimulates hunger signals in the hypothalamus via growth hormone secretagogue receptor (GHS-R1a). Gastric Ghr is synthetized as a preprohormone which is proteolytically cleaved, and acylated by a membrane-bound acyl transferase (MBOAT). Circulating Ghr is reduced in cholestatic injuries, however Ghr's role in cholestasis is poorly understood. We investigated Ghr's effects on biliary hyperplasia and hepatic fibrosis in Mdr2-knockout (Mdr2KO) mice, a recognized model of cholestasis. Serum, stomach and liver were collected from Mdr2KO and FVBN control mice treated with Ghr, des-octanoyl-ghrelin (DG) or vehicle. Mdr2KO mice had lower expression of Ghr and MBOAT in the stomach, and lower levels of circulating Ghr compared to WT-controls. Treatment of Mdr2KO mice with Ghr improved plasma transaminases, reduced biliary and fibrosis markers. In the liver, GHS-R1a mRNA was expressed predominantly in cholangiocytes. Ghr but not DG, decreased cell proliferation via AMPK activation in cholangiocytes in vitro. AMPK inhibitors prevented Ghr-induced FOXO1 nuclear translocation and negative regulation of cell proliferation. Ghr treatment reduced ductular reaction and hepatic fibrosis in Mdr2KO mice, regulating cholangiocyte proliferation via GHS-R1a, a G-protein coupled receptor which causes increased intracellular Ca2+ and activation of AMPK and FOXO1, maintaining a low rate of cholangiocyte proliferation.
Collapse
Affiliation(s)
- Anca D Petrescu
- Central Texas Veterans Health Care System, Temple, TX, 76504, USA
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Stephanie Grant
- Central Texas Veterans Health Care System, Temple, TX, 76504, USA
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Elaina Williams
- Central Texas Veterans Health Care System, Temple, TX, 76504, USA
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Gabriel Frampton
- Department of Internal Medicine, Dell Medical School, The University of Texas at Austin, Austin, TX, 78701, USA
| | - Evan H Reinhart
- Department of Internal Medicine, Baylor Scott & White Health, Temple, TX, 76502, USA
| | - Amy Nguyen
- University of Mary Hardin-Baylor, Belton, TX, 76513, USA
| | - Suyeon An
- Central Texas Veterans Health Care System, Temple, TX, 76504, USA
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Matthew McMillin
- Central Texas Veterans Health Care System, Temple, TX, 76504, USA
- Department of Internal Medicine, Dell Medical School, The University of Texas at Austin, Austin, TX, 78701, USA
| | - Sharon DeMorrow
- Central Texas Veterans Health Care System, Temple, TX, 76504, USA.
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX, 78712, USA.
- Department of Internal Medicine, Dell Medical School, The University of Texas at Austin, Austin, TX, 78701, USA.
| |
Collapse
|
31
|
Biliary damage and liver fibrosis are ameliorated in a novel mouse model lacking l-histidine decarboxylase/histamine signaling. J Transl Med 2020; 100:837-848. [PMID: 32054995 PMCID: PMC7286781 DOI: 10.1038/s41374-020-0405-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 01/15/2020] [Accepted: 01/18/2020] [Indexed: 02/07/2023] Open
Abstract
Primary sclerosing cholangitis (PSC) is characterized by biliary damage and fibrosis. Multidrug resistance-2 gene knockout (Mdr2-/-) mice and PSC patients have increased histamine (HA) levels (synthesized by l-histidine decarboxylase, HDC) and HA receptor (HR) expression. Cholestatic HDC-/- mice display ameliorated biliary damage and hepatic fibrosis. The current study evaluated the effects of knockout of HDC-/- in Mdr2-/- mice (DKO) on biliary damage and hepatic fibrosis. WT, Mdr2-/- mice, and homozygous DKO mice were used. Selected DKO mice were treated with HA. We evaluated liver damage along with HDC expression and HA serum levels. Changes in ductular reaction were evaluated along with liver fibrosis, inflammation and bile acid signaling pathways. The expression of H1HR/PKC-α/TGF-β1 and H2HR/pERK/VEGF-C was determined. In vitro, cholangiocyte lines were treated with HA with/without H1/H2 inhibitors before measuring: H1/H2HR, TGF-β1, and VEGF-C expression. Knockout of HDC ameliorates hepatic damage, ductular reaction, fibrosis, inflammation, bile acid signaling and H1HR/PKC-α/TGF-β1 and H2HR/pERK/VEGF-C signaling. Reactivation of the HDC/HA axis increased these parameters. In vitro, stimulation with HA increased HR expression and PKC-α, TGF-β1, and VEGF-C expression, which was reduced with HR inhibitors. Our data demonstrate the key role for the HDC/HA axis in the management of PSC progression.
Collapse
|
32
|
Kennedy L, Meadows V, Kyritsi K, Pham L, Kundu D, Kulkarni R, Cerritos K, Demieville J, Hargrove L, Glaser S, Zhou T, Jaeger V, Alpini G, Francis H. Amelioration of Large Bile Duct Damage by Histamine-2 Receptor Vivo-Morpholino Treatment. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 190:1018-1029. [PMID: 32142732 DOI: 10.1016/j.ajpath.2020.01.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/22/2020] [Accepted: 01/23/2020] [Indexed: 02/08/2023]
Abstract
Histamine binds to one of the four G-protein-coupled receptors expressed by large cholangiocytes and increases large cholangiocyte proliferation via histamine-2 receptor (H2HR), which is increased in patients with primary sclerosing cholangitis (PSC). Ranitidine decreases liver damage in Mdr2-/- (ATP binding cassette subfamily B member 4 null) mice. We targeted hepatic H2HR in Mdr2-/- mice using vivo-morpholino. Wild-type and Mdr2-/- mice were treated with mismatch or H2HR vivo-morpholino by tail vein injection for 1 week. Liver damage, mast cell (MC) activation, biliary H2HR, and histamine serum levels were studied. MC markers were determined by quantitative real-time PCR for chymase and c-kit. Intrahepatic biliary mass was detected by cytokeratin-19 and F4/80 to evaluate inflammation. Biliary senescence was determined by immunofluorescence and senescence-associated β-galactosidase staining. Hepatic fibrosis was evaluated by staining for desmin, Sirius Red/Fast Green, and vimentin. Immunofluorescence for transforming growth factor-β1, vascular endothelial growth factor-A/C, and cAMP/ERK expression was performed. Transforming growth factor-β1 and vascular endothelial growth factor-A secretion was measured in serum and/or cholangiocyte supernatant. Treatment with H2HR vivo-morpholino in Mdr2-/--mice decreased hepatic damage; H2HR protein expression and MC presence or activation; large intrahepatic bile duct mass, inflammation and senescence; and fibrosis, angiogenesis, and cAMP/phospho-ERK expression. Inhibition of H2HR signaling ameliorates large ductal PSC-induced damage. The H2HR axis may be targeted in treating PSC.
Collapse
Affiliation(s)
- Lindsey Kennedy
- Office of Research, Richard L. Roudebush Veterans Affairs Medical Center, Indianapolis, Indiana; Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Vik Meadows
- Office of Research, Richard L. Roudebush Veterans Affairs Medical Center, Indianapolis, Indiana; Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Konstantina Kyritsi
- Office of Research, Richard L. Roudebush Veterans Affairs Medical Center, Indianapolis, Indiana; Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Linh Pham
- Office of Research, Richard L. Roudebush Veterans Affairs Medical Center, Indianapolis, Indiana; Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana; Department of Medical Science & Mathematics, Texas A&M University, College Station, Texas
| | - Debjyoti Kundu
- Office of Research, Richard L. Roudebush Veterans Affairs Medical Center, Indianapolis, Indiana; Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Rewa Kulkarni
- Office of Research, Richard L. Roudebush Veterans Affairs Medical Center, Indianapolis, Indiana; Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Karla Cerritos
- Office of Research, Richard L. Roudebush Veterans Affairs Medical Center, Indianapolis, Indiana; Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Jennifer Demieville
- Research Department, Central Texas Veterans Health Care System, Temple, Texas
| | - Laura Hargrove
- Department of Physiology, Texas A&M University, College Station, Texas
| | - Shannon Glaser
- Department of Physiology, Texas A&M University, College Station, Texas
| | - Tianhao Zhou
- Department of Physiology, Texas A&M University, College Station, Texas
| | - Victoria Jaeger
- Department of Physiology, Texas A&M University, College Station, Texas
| | - Gianfranco Alpini
- Office of Research, Richard L. Roudebush Veterans Affairs Medical Center, Indianapolis, Indiana; Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Heather Francis
- Office of Research, Richard L. Roudebush Veterans Affairs Medical Center, Indianapolis, Indiana; Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana.
| |
Collapse
|
33
|
Sato K, Francis H, Zhou T, Meng F, Kennedy L, Ekser B, Baiocchi L, Onori P, Mancinelli R, Gaudio E, Franchitto A, Glaser S, Alpini G. Neuroendocrine Changes in Cholangiocarcinoma Growth. Cells 2020; 9:E436. [PMID: 32069926 PMCID: PMC7072848 DOI: 10.3390/cells9020436] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 02/09/2020] [Accepted: 02/11/2020] [Indexed: 02/06/2023] Open
Abstract
Cholangiocarcinoma (CCA) is a highly aggressive malignancy that emerges from the biliary tree. There are three major classes of CCA-intrahepatic, hilar (perihilar), or distal (extrahepatic)-according to the location of tumor development. Although CCA tumors are mainly derived from biliary epithelia (i.e., cholangiocytes), CCA can be originated from other cells, such as hepatic progenitor cells and hepatocytes. This heterogeneity of CCA may be responsible for poor survival rates of patients, limited effects of chemotherapy and radiotherapy, and the lack of treatment options and novel therapies. Previous studies have identified a number of neuroendocrine mediators, such as hormones, neuropeptides, and neurotransmitters, as well as corresponding receptors. The mediator/receptor signaling pathways play a vital role in cholangiocyte proliferation, as well as CCA progression and metastases. Agonists or antagonists for candidate pathways may lead to the development of novel therapies for CCA patients. However, effects of mediators may differ between healthy or cancerous cholangiocytes, or between different subtypes of receptors. This review summarizes current understandings of neuroendocrine mediators and their functional roles in CCA.
Collapse
Affiliation(s)
- Keisaku Sato
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Heather Francis
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Richard L. Roudebush VA Medical Center, Indianapolis, IN 46202, USA
| | - Tianhao Zhou
- Department of Medical Physiology, Texas A&M University College of Medicine, Bryan, TX 77807, USA
| | - Fanyin Meng
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Richard L. Roudebush VA Medical Center, Indianapolis, IN 46202, USA
| | - Lindsey Kennedy
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Burcin Ekser
- Division of Transplant Surgery, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Leonardo Baiocchi
- Liver Unit, Department of Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Paolo Onori
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Romina Mancinelli
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Eugenio Gaudio
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, 00185 Rome, Italy
| | | | - Shannon Glaser
- Department of Medical Physiology, Texas A&M University College of Medicine, Bryan, TX 77807, USA
| | - Gianfranco Alpini
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Richard L. Roudebush VA Medical Center, Indianapolis, IN 46202, USA
| |
Collapse
|
34
|
Pinto C, Ninfole E, Benedetti A, Maroni L, Marzioni M. Aging-Related Molecular Pathways in Chronic Cholestatic Conditions. Front Med (Lausanne) 2020; 6:332. [PMID: 32039217 PMCID: PMC6985088 DOI: 10.3389/fmed.2019.00332] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 12/20/2019] [Indexed: 12/12/2022] Open
Abstract
Aging is commonly defined as the time-dependent functional decline of organs and tissues. Average life expectancy has increased considerably over the past century and is estimated to increase even further, consequently also the interest in understanding the aging processes. Although aging is not a disease, it is the major risk factor for the development of many chronic diseases. Pathologies, such as Primary Biliary Cholangitis (PBC) and Primary Sclerosing Cholangitis (PSC) are cholestatic liver diseases characterized by chronic inflammation, biliary damage and ultimately liver fibrosis, targeting specifically cholangiocytes. To date, the influence of aging in these biliary diseases is not fully understood. Currently, liver transplantation is the only solution because of lacking in efficiently therapies. Although liver cells have a high regenerative capacity, they undergo extensive molecular changes in response to aging. Following time-dependent damage induced by aging, the cells initially activate protective compensatory processes that, if hyperstimulated, can lead to the decline of regenerative ability and the development of pathologies. Recent studies have introduced novel therapeutic tools for cholangiopathies that have showed to have promising potential as novel therapies for PSC and PBC and for the development of new drugs. The recent advancements in understanding of molecular aging have undoubtedly the potential to unveil new pathways for selective drug treatments, but further studies are needed to deepen their knowledge.
Collapse
Affiliation(s)
- Claudio Pinto
- Department of Gastroenterology and Hepatology, Università Politecnica delle Marche, Ancona, Italy
| | - Elisabetta Ninfole
- Department of Gastroenterology and Hepatology, Università Politecnica delle Marche, Ancona, Italy
| | - Antonio Benedetti
- Department of Gastroenterology and Hepatology, Università Politecnica delle Marche, Ancona, Italy
| | - Luca Maroni
- Department of Gastroenterology and Hepatology, Università Politecnica delle Marche, Ancona, Italy
| | - Marco Marzioni
- Department of Gastroenterology and Hepatology, Università Politecnica delle Marche, Ancona, Italy
| |
Collapse
|
35
|
El Ayadi A, Jay JW, Prasai A. Current Approaches Targeting the Wound Healing Phases to Attenuate Fibrosis and Scarring. Int J Mol Sci 2020; 21:ijms21031105. [PMID: 32046094 PMCID: PMC7037118 DOI: 10.3390/ijms21031105] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 01/20/2020] [Accepted: 02/04/2020] [Indexed: 02/06/2023] Open
Abstract
Cutaneous fibrosis results from suboptimal wound healing following significant tissue injury such as severe burns, trauma, and major surgeries. Pathologic skin fibrosis results in scars that are disfiguring, limit normal movement, and prevent patient recovery and reintegration into society. While various therapeutic strategies have been used to accelerate wound healing and decrease the incidence of scarring, recent studies have targeted the molecular regulators of each phase of wound healing, including the inflammatory, proliferative, and remodeling phases. Here, we reviewed the most recent literature elucidating molecular pathways that can be targeted to reduce fibrosis with a particular focus on post-burn scarring. Current research targeting inflammatory mediators, the epithelial to mesenchymal transition, and regulators of myofibroblast differentiation shows promising results. However, a multimodal approach addressing all three phases of wound healing may provide the best therapeutic outcome.
Collapse
|
36
|
Meadows V, Kennedy L, Hargrove L, Demieville J, Meng F, Virani S, Reinhart E, Kyritsi K, Invernizzi P, Yang Z, Wu N, Liangpunsakul S, Alpini G, Francis H. Downregulation of hepatic stem cell factor by Vivo-Morpholino treatment inhibits mast cell migration and decreases biliary damage/senescence and liver fibrosis in Mdr2 -/- mice. Biochim Biophys Acta Mol Basis Dis 2019; 1865:165557. [PMID: 31521820 PMCID: PMC6878979 DOI: 10.1016/j.bbadis.2019.165557] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 09/06/2019] [Accepted: 09/11/2019] [Indexed: 12/12/2022]
Abstract
Primary sclerosing cholangitis (PSC) is characterized by increased mast cell (MC) infiltration, biliary damage and hepatic fibrosis. Cholangiocytes secrete stem cell factor (SCF), which is a chemoattractant for c-kit expressed on MCs. We aimed to determine if blocking SCF inhibits MC migration, biliary damage and hepatic fibrosis. METHODS FVB/NJ and Mdr2-/- mice were treated with Mismatch or SCF Vivo-Morpholinos. We measured (i) SCF expression and secretion; (ii) hepatic damage; (iii) MC migration/activation and histamine signaling; (iv) ductular reaction and biliary senescence; and (v) hepatic fibrosis. In human PSC patients, SCF expression and secretion were measured. In vitro, cholangiocytes were evaluated for SCF expression and secretion. Biliary proliferation/senescence was measured in cholangiocytes pretreated with 0.1% BSA or the SCF inhibitor, ISK03. Cultured HSCs were stimulated with cholangiocyte supernatant and activation measured. MC migration was determined with cholangiocytes pretreated with BSA or ISK03 loaded into the bottom of Boyden chambers and MCs into top chamber. RESULTS Biliary SCF expression and SCF serum levels increase in human PSC. Cholangiocytes, but not hepatocytes, from SCF Mismatch Mdr2-/- mice have increased SCF expression and secretion. Inhibition of SCF in Mdr2-/- mice reduced (i) hepatic damage; (ii) MC migration; (iii) histamine and SCF serum levels; and (iv) ductular reaction/biliary senescence/hepatic fibrosis. In vitro, cholangiocytes express and secrete SCF. Blocking biliary SCF decreased MC migration, biliary proliferation/senescence, and HSC activation. CONCLUSION Cholangiocytes secrete increased levels of SCF inducing MC migration, contributing to biliary damage/hepatic fibrosis. Targeting MC infiltration may be an option to ameliorate PSC progression.
Collapse
Affiliation(s)
- Vik Meadows
- Research, Central Texas Veterans Health Care System, United States of America; Department of Medical Physiology, Texas A&M University College of Medicine, United States of America
| | - Lindsey Kennedy
- Department of Medical Physiology, Texas A&M University College of Medicine, United States of America
| | - Laura Hargrove
- Department of Medical Physiology, Texas A&M University College of Medicine, United States of America
| | - Jennifer Demieville
- Research, Central Texas Veterans Health Care System, United States of America
| | - Fanyin Meng
- Research, Central Texas Veterans Health Care System, United States of America
| | - Shohaib Virani
- Department of Medical Physiology, Texas A&M University College of Medicine, United States of America
| | - Evan Reinhart
- Department of Medical Physiology, Texas A&M University College of Medicine, United States of America
| | - Konstantina Kyritsi
- Department of Medical Physiology, Texas A&M University College of Medicine, United States of America
| | | | - Zhihong Yang
- Richard L. Roudebush VA Medical Center, Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, United States of America
| | - Nan Wu
- Richard L. Roudebush VA Medical Center, Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, United States of America
| | - Suthat Liangpunsakul
- Richard L. Roudebush VA Medical Center, Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, United States of America
| | - Gianfranco Alpini
- Research, Central Texas Veterans Health Care System, United States of America; Department of Medical Physiology, Texas A&M University College of Medicine, United States of America
| | - Heather Francis
- Research, Central Texas Veterans Health Care System, United States of America; Department of Medical Physiology, Texas A&M University College of Medicine, United States of America.
| |
Collapse
|
37
|
Weiskirchen R, Meurer SK, Liedtke C, Huber M. Mast Cells in Liver Fibrogenesis. Cells 2019; 8:E1429. [PMID: 31766207 PMCID: PMC6912398 DOI: 10.3390/cells8111429] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 11/05/2019] [Accepted: 11/10/2019] [Indexed: 01/10/2023] Open
Abstract
Mast cells (MCs) are immune cells of the myeloid lineage that are present in the connective tissue throughout the body and in mucosa tissue. They originate from hematopoietic stem cells in the bone marrow and circulate as MC progenitors in the blood. After migration to various tissues, they differentiate into their mature form, which is characterized by a phenotype containing large granules enriched in a variety of bioactive compounds, including histamine and heparin. These cells can be activated in a receptor-dependent and -independent manner. Particularly, the activation of the high-affinity immunoglobulin E (IgE) receptor, also known as FcεRI, that is expressed on the surface of MCs provoke specific signaling cascades that leads to intracellular calcium influx, activation of different transcription factors, degranulation, and cytokine production. Therefore, MCs modulate many aspects in physiological and pathological conditions, including wound healing, defense against pathogens, immune tolerance, allergy, anaphylaxis, autoimmune defects, inflammation, and infectious and other disorders. In the liver, MCs are mainly associated with connective tissue located in the surrounding of the hepatic arteries, veins, and bile ducts. Recent work has demonstrated a significant increase in MC number during hepatic injury, suggesting an important role of these cells in liver disease and progression. In the present review, we summarize aspects of MC function and mediators in experimental liver injury, their interaction with other hepatic cell types, and their contribution to the pathogenesis of fibrosis.
Collapse
Affiliation(s)
- Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), University Hospital, RWTH Aachen University, D-52074 Aachen, Germany;
| | - Steffen K. Meurer
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), University Hospital, RWTH Aachen University, D-52074 Aachen, Germany;
| | - Christian Liedtke
- Department of Internal Medicine III, University Hospital, RWTH Aachen University, D-52074 Aachen, Germany;
| | - Michael Huber
- Institute of Biochemistry and Molecular Immunology, Medical Faculty, RWTH Aachen University, D-52074 Aachen, Germany
| |
Collapse
|
38
|
Shearn CT, Fennimore B, Orlicky DJ, Gao YR, Saba LM, Battista KD, Aivazidis S, Assiri M, Harris PS, Michel C, Merrill GF, Schmidt EE, Colgan SP, Petersen DR. Cholestatic liver disease results increased production of reactive aldehydes and an atypical periportal hepatic antioxidant response. Free Radic Biol Med 2019; 143:101-114. [PMID: 31377417 PMCID: PMC6848778 DOI: 10.1016/j.freeradbiomed.2019.07.036] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 06/30/2019] [Accepted: 07/31/2019] [Indexed: 01/22/2023]
Abstract
Cholangiopathies such as primary sclerosing cholangitis (PSC) are chronic liver diseases characterized by increased cholestasis, biliary inflammation and oxidative stress. The objective of this study was to elucidate the impact of cholestatic injury on oxidative stress-related factors. Using hepatic tissue and whole cell liver extracts (LE) isolated from 11-week old C57BL/6J (WT) and Mdr2KO mice, inflammation and oxidative stress was assessed. Concurrently, specific targets of carbonylation were assessed in LE prepared from murine groups as well as from normal and human patients with end-stage PSC. Identified carbonylated proteins were further evaluated using bioinformatics analyses. Picrosirius red staining revealed extensive fibrosis in Mdr2KO liver, and fibrosis colocalized with increased periportal inflammatory cells and both acrolein and 4-HNE staining. Western blot analysis revealed elevated periportal expression of antioxidant proteins Cbr3, GSTμ, Prdx5, TrxR1 and HO-1 but not GCLC, GSTπ or catalase in the Mdr2KO group when compared to WT. From immunohistochemical analysis, increased periportal reactive aldehyde production colocalized with elevated staining of Cbr3, GSTμ and TrxR1 but surprisingly not with Nrf2. Mass spectrometric analysis revealed an increase in carbonylated proteins in the Mdr2KO and PSC groups compared to respective controls. Gene ontology and KEGG pathway analysis of carbonylated proteins revealed a propensity for increased carbonylation of proteins broadly involved in metabolic processes as well more specifically in Rab-mediated signal transduction, lysosomes and the large ribosomal subunit in human PSC. Western blot analysis of Rab-GTPase expression revealed no significant differences in Mdr2KO mice when compared to WT livers. In contrast, PSC tissue exhibited decreased levels of Rabs 4, 5 and increased abundance of Rabs 6 and 9a protein. Results herein reveal that cholestasis induces stage-dependent increases in periportal oxidative stress responses and protein carbonylation, potentially contributing to pathogenesis in Mdr2KO. Furthermore, during early stage cholestasis, there is cell-specific upregulation of some but not all, antioxidant proteins.
Collapse
Affiliation(s)
- Colin T Shearn
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, United States.
| | - Blair Fennimore
- Department of Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, United States
| | - David J Orlicky
- Department of Pathology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, United States
| | - Yue R Gao
- Department of Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, United States
| | - Laura M Saba
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, United States
| | - Kayla D Battista
- Department of Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, United States
| | - Stefanos Aivazidis
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, United States
| | - Mohammed Assiri
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, United States
| | - Peter S Harris
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, United States
| | - Cole Michel
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, United States
| | - Gary F Merrill
- Department of Biochemistry and Biophysics, Oregon State University, Corvalis, OR, 97331, United States
| | - Edward E Schmidt
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, 59717, United States
| | - Sean P Colgan
- Department of Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, United States
| | - Dennis R Petersen
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, United States
| |
Collapse
|
39
|
Jalan-Sakrikar N, De Assuncao TM, Shi G, Aseem S, Chi C, Shah VH, Huebert RC. Proteasomal Degradation of Enhancer of Zeste Homologue 2 in Cholangiocytes Promotes Biliary Fibrosis. Hepatology 2019; 70:1674-1689. [PMID: 31070797 PMCID: PMC6819212 DOI: 10.1002/hep.30706] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Accepted: 05/03/2019] [Indexed: 12/13/2022]
Abstract
During biliary disease, cholangiocytes become activated by various pathological stimuli, including transforming growth factor β (TGF-β). The result is an epigenetically regulated transcriptional program leading to a pro-fibrogenic microenvironment, activation of hepatic stellate cells (HSCs), and progression of biliary fibrosis. This study evaluated how TGF-β signaling intersects with epigenetic machinery in cholangiocytes to support fibrogenic gene transcription. We performed RNA sequencing in cholangiocytes with or without TGF-β. Ingenuity pathway analysis identified "HSC Activation" as the highly up-regulated pathway, including overexpression of fibronectin 1 (FN), connective tissue growth factor, and other genes. Bioinformatics identified enhancer of zeste homologue 2 (EZH2) as an epigenetic regulator of the cholangiocyte TGF-β response. EZH2 overexpression suppressed TGF-β-induced FN protein in vitro, suggesting FN as a direct target of EZH2-based repression. Chromatin immunoprecipitation assays identified an FN promoter element in which EZH2-mediated tri-methylation of lysine 27 on histone 3 is diminished by TGF-β. TGF-β also caused a 50% reduction in EZH2 protein levels. Proteasome inhibition rescued EZH2 protein and led to reduced FN production. Immunoprecipitation followed by mass spectrometry identified ubiquitin protein ligase E3 component N-recognin 4 in complex with EZH2, which was validated by western blotting in vitro. Ubiquitin mutation studies suggested K63-based ubiquitin linkage and chain elongation on EZH2 in response to TGF-β. A deletion mutant of EZH2, lacking its N-terminal domain, abrogates both TGF-β-stimulated EZH2 degradation and FN release. In vivo, cholangiocyte-selective knockout of EZH2 exacerbates bile duct ligation-induced fibrosis whereas MDR2-/- mice are protected from fibrosis by the proteasome inhibitor bortezomib. Conclusion: TGF-β regulates proteasomal degradation of EZH2 through N-terminal, K63-linked ubiquitination in cholangiocytes and activates transcription of a fibrogenic gene program that supports biliary fibrosis.
Collapse
Affiliation(s)
- Nidhi Jalan-Sakrikar
- Division of Gastroenterology and Hepatology, Mayo Clinic and Foundation, Rochester, MN.,Gastroenterology Research Unit, Mayo Clinic and Foundation, Rochester, MN
| | - Thiago M. De Assuncao
- Division of Gastroenterology and Hepatology, Mayo Clinic and Foundation, Rochester, MN.,Gastroenterology Research Unit, Mayo Clinic and Foundation, Rochester, MN
| | - Guang Shi
- Division of Gastroenterology and Hepatology, Mayo Clinic and Foundation, Rochester, MN.,Gastroenterology Research Unit, Mayo Clinic and Foundation, Rochester, MN
| | - SayedObaidullah Aseem
- Division of Gastroenterology and Hepatology, Mayo Clinic and Foundation, Rochester, MN.,Gastroenterology Research Unit, Mayo Clinic and Foundation, Rochester, MN
| | - Cheng Chi
- Division of Gastroenterology and Hepatology, Mayo Clinic and Foundation, Rochester, MN.,Gastroenterology Research Unit, Mayo Clinic and Foundation, Rochester, MN
| | - Vijay H. Shah
- Division of Gastroenterology and Hepatology, Mayo Clinic and Foundation, Rochester, MN.,Gastroenterology Research Unit, Mayo Clinic and Foundation, Rochester, MN.,Center for Cell Signaling in Gastroenterology; Mayo Clinic and Foundation, Rochester, MN
| | - Robert C. Huebert
- Division of Gastroenterology and Hepatology, Mayo Clinic and Foundation, Rochester, MN.,Gastroenterology Research Unit, Mayo Clinic and Foundation, Rochester, MN.,Center for Cell Signaling in Gastroenterology; Mayo Clinic and Foundation, Rochester, MN
| |
Collapse
|
40
|
Fouassier L, Marzioni M, Afonso MB, Dooley S, Gaston K, Giannelli G, Rodrigues CMP, Lozano E, Mancarella S, Segatto O, Vaquero J, Marin JJG, Coulouarn C. Signalling networks in cholangiocarcinoma: Molecular pathogenesis, targeted therapies and drug resistance. Liver Int 2019; 39 Suppl 1:43-62. [PMID: 30903728 DOI: 10.1111/liv.14102] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 02/25/2019] [Accepted: 02/27/2019] [Indexed: 12/13/2022]
Abstract
Cholangiocarcinoma (CCA) is a deadly disease. While surgery may attain cure in a minor fraction of cases, therapeutic options in either the adjuvant or advanced setting are limited. The possibility of advancing the efficacy of therapeutic approaches to CCA relies on understanding its molecular pathogenesis and developing rational therapies aimed at interfering with oncogenic signalling networks that drive and sustain cholangiocarcinogenesis. These efforts are complicated by the intricate biology of CCA, which integrates not only the driving force of tumour cell-intrinsic alterations at the genetic and epigenetic level but also pro-tumorigenic cues conveyed to CCA cells by different cell types present in the rich tumour stroma. Herein, we review our current understanding of the mechanistic bases underpinning the activation of major oncogenic pathways causative of CCA pathogenesis. We subsequently discuss how this knowledge is being exploited to implement rationale-based and genotype-matched therapeutic approaches that predictably will radically transform CCA clinical management in the next decade. We conclude by highlighting the mechanisms of therapeutic resistance in CCA and reviewing innovative approaches to combat resistance at the preclinical and clinical level.
Collapse
Affiliation(s)
- Laura Fouassier
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine (CRSA), Paris, France
| | - Marco Marzioni
- Clinic of Gastroenterology and Hepatology, Università Politecnica delle Marche, Ospedali Riuniti - University Hospital, Ancona, Italy
| | - Marta B Afonso
- Research Institute for Medicines (iMed.ULisboa), Universidade de Lisboa, Lisbon, Portugal
| | - Steven Dooley
- Department of Medicine II, Molecular Hepatology Section, Heidelberg University, Mannheim, Germany
| | - Kevin Gaston
- Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Queen's Medical Centre, Nottingham, UK
| | - Gianluigi Giannelli
- National Institute of Gastroenterology "Saverio de Bellis", Research Hospital, Bari, Italy
| | - Cecilia M P Rodrigues
- Research Institute for Medicines (iMed.ULisboa), Universidade de Lisboa, Lisbon, Portugal
| | - Elisa Lozano
- Experimental Hepatology and Drug Targeting (HEVEFARM), IBSAL, University of Salamanca, Salamanca, Spain
| | - Serena Mancarella
- National Institute of Gastroenterology "Saverio de Bellis", Research Hospital, Bari, Italy
| | - Oreste Segatto
- Unit of Oncogenomics and Epigenetics, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Javier Vaquero
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine (CRSA), Paris, France.,Sorbonne Université, CNRS, Ecole Polytech., Univ. Paris-Sud, Observatoire de Paris, Université Paris-Saclay, PSL Research University, Paris, France
| | - Jose J G Marin
- Experimental Hepatology and Drug Targeting (HEVEFARM), IBSAL, University of Salamanca, Salamanca, Spain
| | - Cédric Coulouarn
- Inserm, Univ Rennes, Inra, Institut NuMeCan (Nutrition Metabolisms and Cancer), Rennes, France
| |
Collapse
|
41
|
Sato K, Glaser S, Kennedy L, Liangpunsakul S, Meng F, Francis H, Alpini G. Preclinical insights into cholangiopathies: disease modeling and emerging therapeutic targets. Expert Opin Ther Targets 2019; 23:461-472. [PMID: 30990740 DOI: 10.1080/14728222.2019.1608950] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION The common predominant clinical features of cholangiopathies such as primary sclerosing cholangitis (PSC), primary biliary cholangitis (PBC), and biliary atresia (BA) are biliary damage/senescence and liver fibrosis. Curative therapies are lacking, and liver transplantation is the only option. An understanding of the mechanisms and pathogenesis is needed to develop novel therapies. Previous studies have developed various disease-based research models and have identified candidate therapeutic targets. Areas covered: This review summarizes recent studies performed in preclinical models of cholangiopathies and the current understanding of the pathophysiology representing potential targets for novel therapies. A literature search was conducted in PubMed using the combination of the searched term 'cholangiopathies' with one or two keywords including 'model', 'cholangiocyte', 'animal', or 'fibrosis'. Papers published within five years were obtained. Expert opinion: Access to appropriate research models is a key challenge in cholangiopathy research; establishing more appropriate models for PBC is an important goal. Several preclinical studies have demonstrated promising results and have led to novel therapeutic approaches, especially for PSC. Further studies on the pathophysiology of PBC and BA are necessary to identify candidate targets. Innovative therapeutic approaches such as stem cell transplantation have been introduced, and those therapies could be applied to PSC, PBC, and BA.
Collapse
Affiliation(s)
- Keisaku Sato
- a Indiana Center for Liver Research, Division of Gastroenterology & Hepatology, Department of Medicine , Indiana University School of Medicine , Indianapolis , IN , USA.,b Richard L. Roudebush VA Medical Center , Indianapolis , IN , USA
| | - Shannon Glaser
- c Department of Medical Physiology , Texas A&M University Collage of Medicine , Temple , TX , USA
| | - Lindsey Kennedy
- a Indiana Center for Liver Research, Division of Gastroenterology & Hepatology, Department of Medicine , Indiana University School of Medicine , Indianapolis , IN , USA.,b Richard L. Roudebush VA Medical Center , Indianapolis , IN , USA
| | - Suthat Liangpunsakul
- a Indiana Center for Liver Research, Division of Gastroenterology & Hepatology, Department of Medicine , Indiana University School of Medicine , Indianapolis , IN , USA.,b Richard L. Roudebush VA Medical Center , Indianapolis , IN , USA
| | - Fanyin Meng
- a Indiana Center for Liver Research, Division of Gastroenterology & Hepatology, Department of Medicine , Indiana University School of Medicine , Indianapolis , IN , USA.,b Richard L. Roudebush VA Medical Center , Indianapolis , IN , USA
| | - Heather Francis
- a Indiana Center for Liver Research, Division of Gastroenterology & Hepatology, Department of Medicine , Indiana University School of Medicine , Indianapolis , IN , USA.,b Richard L. Roudebush VA Medical Center , Indianapolis , IN , USA
| | - Gianfranco Alpini
- a Indiana Center for Liver Research, Division of Gastroenterology & Hepatology, Department of Medicine , Indiana University School of Medicine , Indianapolis , IN , USA.,b Richard L. Roudebush VA Medical Center , Indianapolis , IN , USA
| |
Collapse
|
42
|
Baiocchi L, Zhou T, Liangpunsakul S, Lenci I, Santopaolo F, Meng F, Kennedy L, Glaser S, Francis H, Alpini G. Dual Role of Bile Acids on the Biliary Epithelium: Friend or Foe? Int J Mol Sci 2019; 20:ijms20081869. [PMID: 31014010 PMCID: PMC6514722 DOI: 10.3390/ijms20081869] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 04/11/2019] [Accepted: 04/13/2019] [Indexed: 12/12/2022] Open
Abstract
Bile acids are a family of amphipathic compounds predominantly known for their role in solubilizing and absorbing hydrophobic compounds (including liposoluble vitamins) in the intestine. Bile acids also are key signaling molecules and inflammatory agents that activate transcriptional factors and cell signaling pathways that regulate lipid, glucose, and energy metabolism in various human disorders, including chronic liver diseases. However, in the last decade increased awareness has been founded on the physiological and chemical heterogeneity of this category of compounds and their possible beneficial or injurious effects on the biliary tree. In this review, we provide an update on the current understanding of the molecular mechanism involving bile acid and biliary epithelium. The last achievements of the research in this field are summarized, focusing on the molecular aspects and the elements with relevance regarding human liver diseases.
Collapse
Affiliation(s)
- Leonardo Baiocchi
- Liver Unit, Department of Medicine, University of Rome "Tor Vergata", Viale Oxford 81, 00133 Rome, Italy.
| | - Tianhao Zhou
- Department of Medical Physiology, Texas A&M University, College of Medicine 702 SW HK Dodgen Loop, Temple, TX 76504, USA.
| | - Suthat Liangpunsakul
- Richard L. Roudebush VA Medical Center and Indiana University, Gastroenterology, Medicine 1481 W 10th street, Dedication Wing⁻Room C-7151, Indianapolis, IN 46202, USA.
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, 1481 W 10th street, Indianapolis, IN 46202, USA.
| | - Ilaria Lenci
- Liver Unit, Department of Medicine, University of Rome "Tor Vergata", Viale Oxford 81, 00133 Rome, Italy.
| | - Francesco Santopaolo
- Liver Unit, Department of Medicine, University of Rome "Tor Vergata", Viale Oxford 81, 00133 Rome, Italy.
| | - Fanyin Meng
- Richard L. Roudebush VA Medical Center and Indiana University, Gastroenterology, Medicine 1481 W 10th street, Dedication Wing⁻Room C-7151, Indianapolis, IN 46202, USA.
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, 1481 W 10th street, Indianapolis, IN 46202, USA.
| | - Lindsey Kennedy
- Richard L. Roudebush VA Medical Center and Indiana University, Gastroenterology, Medicine 1481 W 10th street, Dedication Wing⁻Room C-7151, Indianapolis, IN 46202, USA.
| | - Shannon Glaser
- Department of Medical Physiology, Texas A&M University, College of Medicine 702 SW HK Dodgen Loop, Temple, TX 76504, USA.
| | - Heather Francis
- Richard L. Roudebush VA Medical Center and Indiana University, Gastroenterology, Medicine 1481 W 10th street, Dedication Wing⁻Room C-7151, Indianapolis, IN 46202, USA.
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, 1481 W 10th street, Indianapolis, IN 46202, USA.
| | - Gianfranco Alpini
- Richard L. Roudebush VA Medical Center and Indiana University, Gastroenterology, Medicine 1481 W 10th street, Dedication Wing⁻Room C-7151, Indianapolis, IN 46202, USA.
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, 1481 W 10th street, Indianapolis, IN 46202, USA.
| |
Collapse
|
43
|
Altered gut-liver axis in liver diseases. LIVER RESEARCH 2019. [DOI: 10.1016/j.livres.2019.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
44
|
Tolefree JA, Garcia AJ, Farrell J, Meadows V, Kennedy L, Hargrove L, Demieville J, Francis N, Mirabel J, Francis H. Alcoholic liver disease and mast cells: What's your gut got to do with it? LIVER RESEARCH 2019. [DOI: 10.1016/j.livres.2019.02.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
45
|
Abstract
Fibrosis is a medical condition characterized by an excessive deposition of extracellular matrix compounds such as collagen in tissues. Fibrotic lesions are present in many diseases and can affect all organs. The excessive extracellular matrix accumulation in these conditions can often have serious consequences and in many cases be life-threatening. A typical event seen in many fibrotic conditions is a profound accumulation of mast cells (MCs), suggesting that these cells can contribute to the pathology. Indeed, there is now substantialv evidence pointing to an important role of MCs in fibrotic disease. However, investigations from various clinical settings and different animal models have arrived at partly contradictory conclusions as to how MCs affect fibrosis, with many studies suggesting a detrimental role of MCs whereas others suggest that MCs can be protective. Here, we review the current knowledge of how MCs can affect fibrosis.
Collapse
Affiliation(s)
- Peter Bradding
- Department of Infection, Immunity and Inflammation, Institute for Lung Health, University of Leicester, Leicester, UK
| | - Gunnar Pejler
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden.,Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
46
|
Liu J, Yang Y, Zheng C, Chen G, Shen Z, Zheng S, Dong R. Correlation of Interleukin-33/ST2 Receptor and Liver Fibrosis Progression in Biliary Atresia Patients. Front Pediatr 2019; 7:403. [PMID: 31632941 PMCID: PMC6781650 DOI: 10.3389/fped.2019.00403] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 09/18/2019] [Indexed: 12/12/2022] Open
Abstract
Background/Aims: Biliary Atresia (BA) is a devastating pediatric liver disease and characterized by aggressive liver fibrosis progression. The Interleukin-33 (IL-33)/ST2 receptor signaling axis has been demonstrated to be involved in several autoimmune and liver diseases. Since immune dysregulation is a contributor to BA pathogenesis, we aimed to investigate the role of IL-33/ST2 receptor in the progression of liver fibrosis in BA patients. Materials and Methods: The study included 36 BA patients (18 good- and 18 poor-prognosis BA patients); and 8 cholestasis infants as the control group. Patients' information and clinical data were retrospectively collected and compared. Liver fibrosis stage was determined by Masson's trichrome staining. Gene expression levels of IL-33, ST2 receptor, and TFG-β1 were detected by quantitative real-time PCR. MC count, IL-33, TGF-β1, and Interleukin-13 (IL-13) expressions were evaluated by immunohistochemistry. Serum IL-33 expression level was detected by enzyme-linked immunosorbent assay. Co-expression of MC and ST2 receptor was detected by immunofluorescence. In vitro mast cell was cultured with IL-33 stimulation, and ST2 receptor and TGF-β1 expressions were detected. Results: Compared with cholestasis control, BA patients had significantly higher GGT level and Masson score. Expression levels of IL-33, TGF-β1, and IL-13 were significantly increased in BA patients compared to control group, especially in poor-prognosis BA patients. Co-expression of ST2 receptor and MC was found in BA liver tissues. The MC count was markedly higher in BA patients especially in poor-prognosis subgroup. Serum IL-33 level was significantly elevated in poor-prognosis BA patients and related to a higher Masson score. In vitro mast cell culture exhibited significant upregulation of ST2 receptor and TGF-β1 mRNA expression after IL-33 stimulation. Conclusions: IL-33/ST2 receptor signaling axis is correlated with liver fibrosis progression in BA patients, and mast cells participates in this process. These indicate potential prognostic evaluation factors for BA patients and can help in the postoperative management to achieve better long-term prognosis in BA patients.
Collapse
Affiliation(s)
- Jia Liu
- Shanghai Key Laboratory of Birth Defect, Department of Pediatric Surgery, Children's Hospital of Fudan University, Shanghai, China
| | - YiFan Yang
- Shanghai Key Laboratory of Birth Defect, Department of Pediatric Surgery, Children's Hospital of Fudan University, Shanghai, China
| | - Chao Zheng
- Shanghai Key Laboratory of Birth Defect, Department of Pediatric Surgery, Children's Hospital of Fudan University, Shanghai, China
| | - Gong Chen
- Shanghai Key Laboratory of Birth Defect, Department of Pediatric Surgery, Children's Hospital of Fudan University, Shanghai, China
| | - Zhen Shen
- Shanghai Key Laboratory of Birth Defect, Department of Pediatric Surgery, Children's Hospital of Fudan University, Shanghai, China
| | - Shan Zheng
- Shanghai Key Laboratory of Birth Defect, Department of Pediatric Surgery, Children's Hospital of Fudan University, Shanghai, China
| | - Rui Dong
- Shanghai Key Laboratory of Birth Defect, Department of Pediatric Surgery, Children's Hospital of Fudan University, Shanghai, China
| |
Collapse
|
47
|
Ngo Nyekel F, Pacreau E, Benadda S, Msallam R, Åbrink M, Pejler G, Davoust J, Benhamou M, Charles N, Launay P, Blank U, Gautier G. Mast Cell Degranulation Exacerbates Skin Rejection by Enhancing Neutrophil Recruitment. Front Immunol 2018; 9:2690. [PMID: 30515167 PMCID: PMC6255985 DOI: 10.3389/fimmu.2018.02690] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 10/31/2018] [Indexed: 12/16/2022] Open
Abstract
Recent evidences indicate an important role of tissue inflammatory responses by innate immune cells in allograft acceptance and survival. Here we investigated the role of mast cells (MC) in an acute male to female skin allograft rejection model using red MC and basophil (RMB) mice enabling conditional MC depletion. Kinetic analysis showed that MCs markedly accelerate skin rejection. They induced an early inflammatory response through degranulation and boosted local synthesis of KC, MIP-2, and TNF. This enhanced early neutrophil infiltration compared to a female-female graft-associated repair response. The uncontrolled neutrophil influx accelerated rejection as antibody-mediated depletion of neutrophils delayed skin rejection. Administration of cromolyn, a MC stabilizer and to a lesser extent ketotifen, a histamine type I receptor antagonist, and absence of MCPT4 chymase also delayed graft rejection. Together our data indicate that mediators contained in secretory granules of MC promote an inflammatory response with enhanced neutrophil infiltration that accelerate graft rejection.
Collapse
Affiliation(s)
- Flavie Ngo Nyekel
- INSERM UMRS 1149, Paris, France.,CNRS ERL8252, Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, Laboratoire D'excellence INFLAMEX, Paris, France
| | - Emeline Pacreau
- INSERM UMRS 1149, Paris, France.,CNRS ERL8252, Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, Laboratoire D'excellence INFLAMEX, Paris, France
| | - Samira Benadda
- INSERM UMRS 1149, Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, Laboratoire D'excellence INFLAMEX, Paris, France
| | - Rasha Msallam
- Institut Necker Enfants Malades, INSERM U1151, CNRS, UMR8253, Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
| | - Magnus Åbrink
- Section of Immunology, Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, VHC, Uppsala, Sweden
| | - Gunnar Pejler
- Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden.,Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Jean Davoust
- Institut Necker Enfants Malades, INSERM U1151, CNRS, UMR8253, Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Marc Benhamou
- INSERM UMRS 1149, Paris, France.,CNRS ERL8252, Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, Laboratoire D'excellence INFLAMEX, Paris, France
| | - Nicolas Charles
- INSERM UMRS 1149, Paris, France.,CNRS ERL8252, Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, Laboratoire D'excellence INFLAMEX, Paris, France
| | - Pierre Launay
- INSERM UMRS 1149, Paris, France.,CNRS ERL8252, Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, Laboratoire D'excellence INFLAMEX, Paris, France
| | - Ulrich Blank
- INSERM UMRS 1149, Paris, France.,CNRS ERL8252, Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, Laboratoire D'excellence INFLAMEX, Paris, France
| | - Gregory Gautier
- INSERM UMRS 1149, Paris, France.,CNRS ERL8252, Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, Laboratoire D'excellence INFLAMEX, Paris, France
| |
Collapse
|
48
|
Ursodeoxycholate inhibits mast cell activation and reverses biliary injury and fibrosis in Mdr2 -/- mice and human primary sclerosing cholangitis. J Transl Med 2018; 98:1465-1477. [PMID: 30143751 PMCID: PMC6214746 DOI: 10.1038/s41374-018-0101-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Revised: 05/10/2018] [Accepted: 05/12/2018] [Indexed: 02/07/2023] Open
Abstract
Ursodeoxycholic acid (UDCA) is used to treat biliary disorders; and, bile acids alter mast cell (MC) histamine release. MCs infiltrate Mdr2-/- mice liver (model of primary sclerosing cholangitis (PSC)). MC-derived histamine increases inflammation, hepatic stellate cell (HSC) activation and fibrosis. The objective was to determine the effects of UDCA treatment on MC infiltration, biliary damage, inflammation and fibrosis in Mdr2-/- mice and human PSC. Wild-type and Mdr2-/- mice were fed bile acid control diet or UDCA (0.5% wt/wt). Human samples were collected from control and PSC patients treated with placebo or UDCA (15 mg/kg/BW). MC infiltration was measured by immunhistochemistry and quantitative polymerase chain reaction (qPCR) for c-Kit, chymase, and tryptase. The HDC/histamine/histamine receptor (HR)-axis was evaluated by EIA and qPCR. Intrahepatic bile duct mass (IBDM) and biliary proliferation was evaluated by CK-19 and Ki-67 staining. Fibrosis was detected by immunostaining and qPCR for fibrotic markers. Inflammatory components were measured by qPCR. HSC activation was measured by SYP-9 staining. Inflammation was detected by qPCR for CD68. In vitro, MCs were treated with UDCA (40 μM) prior to HA secretion evaluation and coculturing with cholangiocytes or HSCs. BrDU incorporation and fibrosis by qPCR was performed. UDCA reduced MC number, the HDC/histamine/HR-axis, IBDM, HSC activation, inflammation, and fibrosis in Mdr2-/- mice and PSC patients. In vitro, UDCA decreases MC-histamine release, which was restored by blocking ASBT and FXRβ. Proliferation and fibrosis decreased after treatment with UDCA-treated MCs. We conclude that UDCA acts on MCs reducing histamine levels and decreases the inflammatory/hyperplastic/fibrotic reaction seen in PSC. Ursodeoxycholic acid (UDCA) is used to treat biliary disorders; and, bile acids alter mast cell (MC) histamine release. Following liver injury like primary sclerosing cholangitis in mice and humans, MCs infiltrate. MC-derived histamine increases biliary damage, fibrosis, and inflammation. UDCA treatment decreases these parameters via reduced MC activation.
Collapse
|
49
|
Mastocytosis-derived extracellular vesicles exhibit a mast cell signature, transfer KIT to stellate cells, and promote their activation. Proc Natl Acad Sci U S A 2018; 115:E10692-E10701. [PMID: 30352845 DOI: 10.1073/pnas.1809938115] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Extracellular vesicles (EVs) have been implicated in the development and progression of hematological malignancies. We thus examined serum samples from patients with systemic mastocytosis (SM) and found EVs with a mast cell signature including the presence of tryptase, FcεRI, MRGX2, and KIT. The concentration of these EVs correlated with parameters of disease including levels of serum tryptase, IL-6, and alkaline phosphatase and physical findings including hepatosplenomegaly. Given reports that EVs from one cell type may influence another cell's behavior, we asked whether SM-EVs might affect hepatic stellate cells (HSCs), based on the abnormal liver pathology associated with mastocytosis. We found that KIT was transferred from SM-EVs into an HSC line eliciting proliferation, cytokine production, and differentiation, processes that have been associated with liver pathology. These effects were reduced by KIT inhibition or neutralization and recapitulated by enforced expression of KIT or constitutively active D816V-KIT, a gain-of-function variant associated with SM. Furthermore, HSCs in liver from mice injected with SM-EVs had increased expression of α-SMA and human KIT, particularly around portal areas, compared with mice injected with EVs from normal individuals, suggesting that SM-EVs can also initiate HSC activation in vivo. Our data are thus consistent with the conclusion that SM-EVs have the potential to influence cells outside the hematological compartment and that therapeutic approaches for treatment of SM may be effective in part through inhibition of effects of EVs on target tissues, findings important both to understanding complex disease pathology and in developing interventional agents for the treatment of hematologic diseases.
Collapse
|
50
|
Wu N, Meng F, Zhou T, Venter J, Giang TK, Kyritsi K, Wu C, Alvaro D, Onori P, Mancinelli R, Gaudio E, Francis H, Alpini G, Glaser S, Franchitto A. The Secretin/Secretin Receptor Axis Modulates Ductular Reaction and Liver Fibrosis through Changes in Transforming Growth Factor-β1-Mediated Biliary Senescence. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 188:2264-2280. [PMID: 30036520 PMCID: PMC6168967 DOI: 10.1016/j.ajpath.2018.06.015] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 05/26/2018] [Accepted: 06/19/2018] [Indexed: 12/12/2022]
Abstract
Activation of the secretin (Sct)/secretin receptor (SR) axis stimulates ductular reaction and liver fibrosis, which are hallmarks of cholangiopathies. Our aim was to define the role of Sct-regulated cellular senescence, and we demonstrated that both ductular reaction and liver fibrosis are significantly reduced in Sct-/-, SR-/-, and Sct-/-/SR-/- bile duct ligated (BDL) mice compared with BDL wild-type mice. The reduction in hepatic fibrosis in Sct-/-, SR-/-, and Sct-/-/SR-/- BDL mice was accompanied by reduced transforming growth factor-β1 levels in serum and cholangiocyte supernatant, as well as decreased expression of markers of cellular senescence in cholangiocytes in contrast to enhanced cellular senescence in hepatic stellate cells compared with BDL wild-type mice. Secretin directly stimulated the senescence of cholangiocytes and regulated, by a paracrine mechanism, the senescence of hepatic stellate cells and liver fibrosis via modulation of transforming growth factor-β1 biliary secretion. Targeting senescent cholangiocytes may represent a novel therapeutic approach for ameliorating hepatic fibrosis during cholestatic liver injury.
Collapse
Affiliation(s)
- Nan Wu
- Department of Medical Physiology, Department of Research, Texas A&M University College of Medicine, Temple, Texas
| | - Fanyin Meng
- Central Texas Veterans Health Care System, Temple, Texas; Baylor Scott & White Digestive Disease Research Center, Baylor Scott & White Health Care, Temple, Texas
| | - Tianhao Zhou
- Department of Medical Physiology, Department of Research, Texas A&M University College of Medicine, Temple, Texas
| | - Julie Venter
- Department of Medical Physiology, Department of Research, Texas A&M University College of Medicine, Temple, Texas
| | - Thao K Giang
- Department of Medical Physiology, Department of Research, Texas A&M University College of Medicine, Temple, Texas
| | - Konstantina Kyritsi
- Department of Medical Physiology, Department of Research, Texas A&M University College of Medicine, Temple, Texas
| | - Chaodong Wu
- Department of Nutrition and Food Science, Texas A&M University, College Station, Texas
| | | | - Paolo Onori
- Department of Anatomical, Histological, Forensic Medicine and Orthopaedics Sciences, Sapienza, Rome, Italy
| | - Romina Mancinelli
- Department of Anatomical, Histological, Forensic Medicine and Orthopaedics Sciences, Sapienza, Rome, Italy
| | - Eugenio Gaudio
- Department of Anatomical, Histological, Forensic Medicine and Orthopaedics Sciences, Sapienza, Rome, Italy
| | - Heather Francis
- Department of Medical Physiology, Department of Research, Texas A&M University College of Medicine, Temple, Texas; Central Texas Veterans Health Care System, Temple, Texas; Baylor Scott & White Digestive Disease Research Center, Baylor Scott & White Health Care, Temple, Texas
| | - Gianfranco Alpini
- Department of Medical Physiology, Department of Research, Texas A&M University College of Medicine, Temple, Texas; Central Texas Veterans Health Care System, Temple, Texas; Baylor Scott & White Digestive Disease Research Center, Baylor Scott & White Health Care, Temple, Texas.
| | - Shannon Glaser
- Department of Medical Physiology, Department of Research, Texas A&M University College of Medicine, Temple, Texas; Central Texas Veterans Health Care System, Temple, Texas; Baylor Scott & White Digestive Disease Research Center, Baylor Scott & White Health Care, Temple, Texas
| | - Antonio Franchitto
- Department of Anatomical, Histological, Forensic Medicine and Orthopaedics Sciences, Sapienza, Rome, Italy; Department of Medicine, Sapienza, Rome, Italy; Eleonora Lorillard Spencer Cenci Foundation, Rome, Italy
| |
Collapse
|