1
|
Zhao H, Gong H, Zhu P, Sun C, Sun W, Zhou Y, Wu X, Qiu A, Wen X, Zhang J, Luo D, Liu Q, Li Y. Deciphering the cellular and molecular landscapes of Wnt/β-catenin signaling in mouse embryonic kidney development. Comput Struct Biotechnol J 2024; 23:3368-3378. [PMID: 39310276 PMCID: PMC11416353 DOI: 10.1016/j.csbj.2024.08.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/27/2024] [Accepted: 08/27/2024] [Indexed: 09/25/2024] Open
Abstract
Background The Wnt/β-catenin signaling pathway is critical in kidney development, yet its specific effects on gene expression in different embryonic kidney cell types are not fully understood. Methods Wnt/β-catenin signaling was activated in mouse E12.5 kidneys in vitro using CHIR99021, with RNA sequencing performed afterward, and the results were compared to DMSO controls (dataset GSE131240). Differential gene expression in ureteric buds and cap mesenchyme following pathway activation (datasets GSE20325 and GSE39583) was analyzed. Single-cell RNA-seq data from the Mouse Cell Atlas was used to link differentially expressed genes (DEGs) with kidney cell types. β-catenin ChIP-seq data (GSE39837) identified direct transcriptional targets. Results Activation of Wnt/β-catenin signaling led to 917 significant DEGs, including the upregulation of Notum and Apcdd1 and the downregulation of Crym and Six2. These DEGs were involved in kidney development and immune response. Single-cell analysis identified 787 DEGs across nineteen cell subtypes, with Macrophage_Apoe high cells showing the most pronounced enrichment of Wnt/β-catenin-activated genes. Gene expression profiles in ureteric buds and cap mesenchyme differed significantly upon β-catenin manipulation, with cap mesenchyme showing a unique set of DEGs. Analysis of β-catenin ChIP-seq data revealed 221 potential direct targets, including Dpp6 and Fgf12. Conclusion This study maps the complex gene expression driven by Wnt/β-catenin signaling in embryonic kidney cell types. The identified DEGs and β-catenin targets elucidate the molecular details of kidney development and the pathway's role in immune processes, providing a foundation for further research into Wnt/β-catenin signaling in kidney development and disease.
Collapse
Affiliation(s)
- Hui Zhao
- Guangzhou National Laboratory, Guangzhou International Bio Island, No. 9 Xing Dao Huan Bei Road, Guangzhou 510005, Guangdong Province, China
| | - Hui Gong
- Department of Laboratory Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital (Nanshan Hospital) and The 6th Affiliated Hospital of Shenzhen University Medical School, Shenzhen, Guangdong 518052, China
| | - Peide Zhu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing 102249, China
| | - Chang Sun
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Wuping Sun
- Department of Pain Medicine, Shenzhen Municipal Key Laboratory for Pain Medicine, The affiliated Nanshan People's Hospital, The 6th Affiliated Hospital of Shenzhen University Medical School, Shenzhen 518060, China
| | - Yujin Zhou
- Department of Laboratory Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital (Nanshan Hospital) and The 6th Affiliated Hospital of Shenzhen University Medical School, Shenzhen, Guangdong 518052, China
| | - Xiaoxiao Wu
- Department of Laboratory Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital (Nanshan Hospital) and The 6th Affiliated Hospital of Shenzhen University Medical School, Shenzhen, Guangdong 518052, China
| | - Ailin Qiu
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Xiaosha Wen
- Department of Laboratory Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital (Nanshan Hospital) and The 6th Affiliated Hospital of Shenzhen University Medical School, Shenzhen, Guangdong 518052, China
| | - Jinde Zhang
- Guangdong Medical University, Zhanjiang 524023, Guangdong China
| | - Dixian Luo
- Department of Laboratory Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital (Nanshan Hospital) and The 6th Affiliated Hospital of Shenzhen University Medical School, Shenzhen, Guangdong 518052, China
| | - Quan Liu
- Department of Laboratory Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital (Nanshan Hospital) and The 6th Affiliated Hospital of Shenzhen University Medical School, Shenzhen, Guangdong 518052, China
| | - Yifan Li
- Department of Laboratory Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital (Nanshan Hospital) and The 6th Affiliated Hospital of Shenzhen University Medical School, Shenzhen, Guangdong 518052, China
| |
Collapse
|
2
|
Ou W, Xu W, Wang Y, Hua Z, Ding W, Cui L, Du P. Cooperation of Wnt/β-catenin and Dll1-mediated Notch pathway in Lgr5-positive intestinal stem cells regulates the mucosal injury and repair in DSS-induced colitis mice model. Gastroenterol Rep (Oxf) 2024; 12:goae090. [PMID: 39444950 PMCID: PMC11498905 DOI: 10.1093/gastro/goae090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/30/2024] [Accepted: 07/18/2024] [Indexed: 10/25/2024] Open
Abstract
Background Lgr5-positive cells located in the basal layer of crypts have self-regenerative and proliferative differentiation potentials of intestinal stem cells (ISCs), maintaining a balance of regeneration-repair in mucosal epithelium. However, the mechanisms of mucosal repair that are regulated by ISCs in ulcerative colitis (UC) remain unclear. Method Colon tissues from patients with UC were collected to test β-catenin and Notch1 expression by using Western blot and quantitative real-time polymerase chain reaction (PCR). β-cateninfl/fl mice, β-cateninTg mice, and Dll1tm1 Gos mice were used to cross with Lgr5-EGFP-IRES-creERT2 mice to generate mice of different genotypes, altering the activation of Wnt/β-catenin and Dll1-mediated Notch signaling in ISCs in vivo. Dextran sulfate sodium (DSS) was used to induce a colitis mice model. Intestinal organoids were isolated and cultured to observe the proliferation and differentiation levels of ISCs. Result β-catenin and Notch1 expression were significantly increased in the inflamed colon tissues from patients with UC. Wnt/β-catenin activation and Dll1-mediated Notch pathway inhibition in Lgr5-positive stem cells promoted the expressions of E-cadherin, CK20, and CHGA in colonic organoids and epithelium, implying the promotion of colonic epithelial integrity. Activation of Wnt/β-catenin and suppression of Dll1-mediated Notch pathway in Lgr5-positive ISCs alleviated the DSS-induced intestinal mucosal inflammation in mice. Conclusions Lgr5-positive ISCs are characterized by self-renewal and high dividend potential, which play an important role in the injury and repair of intestinal mucosa. More importantly, the Wnt/β-catenin signaling pathway cooperates with the Notch signaling pathway to maintain the function of the Lgr5-positive ISCs.
Collapse
Affiliation(s)
- Weijun Ou
- Department of Colorectal Surgery, Xinhua Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, P. R. China
- Shanghai Colorectal Cancer Research Center, Shanghai, P. R. China
| | - Weimin Xu
- Department of Colorectal Surgery, Xinhua Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, P. R. China
- Shanghai Colorectal Cancer Research Center, Shanghai, P. R. China
| | - Yaosheng Wang
- Department of Colorectal Surgery, Xinhua Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, P. R. China
- Shanghai Colorectal Cancer Research Center, Shanghai, P. R. China
| | - Zhebin Hua
- Department of Colorectal Surgery, Xinhua Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, P. R. China
- Shanghai Colorectal Cancer Research Center, Shanghai, P. R. China
| | - Wenjun Ding
- Department of Colorectal Surgery, Xinhua Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, P. R. China
- Shanghai Colorectal Cancer Research Center, Shanghai, P. R. China
| | - Long Cui
- Department of Colorectal Surgery, Xinhua Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, P. R. China
- Shanghai Colorectal Cancer Research Center, Shanghai, P. R. China
| | - Peng Du
- Department of Colorectal Surgery, Xinhua Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, P. R. China
- Shanghai Colorectal Cancer Research Center, Shanghai, P. R. China
| |
Collapse
|
3
|
Babajani A, Eftekharinasab A, Bekeschus S, Mehdian H, Vakhshiteh F, Madjd Z. Reactive oxygen species from non-thermal gas plasma (CAP): implication for targeting cancer stem cells. Cancer Cell Int 2024; 24:344. [PMID: 39438918 PMCID: PMC11515683 DOI: 10.1186/s12935-024-03523-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 10/05/2024] [Indexed: 10/25/2024] Open
Abstract
Cancer remains a major global health challenge, with the persistence of cancer stem cells (CSCs) contributing to treatment resistance and relapse. Despite advancements in cancer therapy, targeting CSCs presents a significant hurdle. Non-thermal gas plasma, also known as CAP, represents an innovative cancer treatment. It has recently gained attention for its often found to be selective, immunogenic, and potent anti-cancer properties. CAP is composed of a collection of transient, high-energy, and physically and chemically active entities, such as reactive oxygen species (ROS). It is acknowledged that the latter are responsible for a major portion of biomedical CAP effects. The dynamic interplay of CAP-derived ROS and other components contributes to the unique and versatile properties of CAP, enabling it to interact with biological systems and elicit various therapeutic effects, including its potential in cancer treatment. While CAP has shown promise in various cancer types, its application against CSCs is relatively unexplored. This review assesses the potential of CAP as a therapeutic strategy for targeting CSCs, focusing on its ability to regulate cellular states and achieve redox homeostasis. This is done by providing an overview of CSC characteristics and demonstrating recent findings on CAP's efficacy in targeting these cells. By contributing insights into the unique attributes of CSCs and the potential of CAP, this work contributes to an advanced understanding of innovative oncology strategies.
Collapse
Affiliation(s)
- Amirhesam Babajani
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | | | - Sander Bekeschus
- ZIK Plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany
| | - Hassan Mehdian
- Plasma Medicine Group, Plasma Research Institute, Kharazmi University, Tehran, Iran
| | - Faezeh Vakhshiteh
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran.
| | - Zahra Madjd
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran.
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran.
| |
Collapse
|
4
|
Hou Y, Zhang F, Zong J, Li T, Gan W, Lv S, Yan Z, Zeng Z, Yang L, Zhou M, Zhao W, Yang M. Integrated analysis reveals a novel 5-fluorouracil resistance-based prognostic signature with promising implications for predicting the efficacy of chemotherapy and immunotherapy in patients with colorectal cancer. Apoptosis 2024; 29:1126-1144. [PMID: 38824480 DOI: 10.1007/s10495-024-01981-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/14/2024] [Indexed: 06/03/2024]
Abstract
BACKGROUND 5-Fluorouracil (5-FU) has been used as a standard first-line treatment for colorectal cancer (CRC) patients. Although 5-FU-based chemotherapy and immune checkpoint blockade (ICB) have achieved success in treating CRC, drug resistance and low response rates remain substantial limitations. Thus, it is necessary to construct a 5-FU resistance-related signature (5-FRSig) to predict patient prognosis and identify ideal patients for chemotherapy and immunotherapy. METHODS Using bulk and single-cell RNA sequencing data, we established and validated a novel 5-FRSig model using stepwise regression and multiple CRC cohorts and evaluated its associations with the prognosis, clinical features, immune status, immunotherapy, neoadjuvant therapy, and drug sensitivity of CRC patients through various bioinformatics algorithms. Unsupervised consensus clustering was performed to categorize the 5-FU resistance-related molecular subtypes of CRC. The expression levels of 5-FRSig, immune checkpoints, and immunoregulators were determined using quantitative real-time polymerase chain reaction (RT‒qPCR). Potential small-molecule agents were identified via Connectivity Map (CMap) and molecular docking. RESULTS The 5-FRSig and cluster were confirmed as independent prognostic factors in CRC, as patients in the low-risk group and Cluster 1 had a better prognosis. Notably, 5-FRSig was significantly associated with 5-FU sensitivity, chemotherapy response, immune cell infiltration, immunoreactivity phenotype, immunotherapy efficiency, and drug selection. We predicted 10 potential compounds that bind to the core targets of 5-FRSig with the highest affinity. CONCLUSION We developed a valid 5-FRSig to predict the prognosis, chemotherapeutic response, and immune status of CRC patients, thus optimizing the therapeutic benefits of chemotherapy combined with immunotherapy, which can facilitate the development of personalized treatments and novel molecular targeted therapies for patients with CRC.
Collapse
Affiliation(s)
- Yufang Hou
- State Key Laboratory of Digestive Health, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 2 Nanwei Road, Beijing, 100050, China
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Fang Zhang
- State Key Laboratory of Digestive Health, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 2 Nanwei Road, Beijing, 100050, China
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Jinbao Zong
- Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
- Qingdao Hospital of Traditional Chinese Medicine, The affiliated Qingdao Hiser Hospital of Qingdao University, Qingdao, 266033, China
| | - Tiegang Li
- State Key Laboratory of Digestive Health, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 2 Nanwei Road, Beijing, 100050, China
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Wenqiang Gan
- State Key Laboratory of Digestive Health, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 2 Nanwei Road, Beijing, 100050, China
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Silin Lv
- State Key Laboratory of Digestive Health, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 2 Nanwei Road, Beijing, 100050, China
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Zheng Yan
- State Key Laboratory of Digestive Health, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 2 Nanwei Road, Beijing, 100050, China
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Zifan Zeng
- State Key Laboratory of Digestive Health, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 2 Nanwei Road, Beijing, 100050, China
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Liu Yang
- State Key Laboratory of Digestive Health, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 2 Nanwei Road, Beijing, 100050, China
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Mingxuan Zhou
- State Key Laboratory of Digestive Health, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 2 Nanwei Road, Beijing, 100050, China
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Wenyi Zhao
- State Key Laboratory of Digestive Health, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 2 Nanwei Road, Beijing, 100050, China
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Min Yang
- State Key Laboratory of Digestive Health, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 2 Nanwei Road, Beijing, 100050, China.
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| |
Collapse
|
5
|
Wang Z, Chang Y, Sun H, Li Y, Tang T. Advances in molecular mechanisms of inflammatory bowel disease‑associated colorectal cancer (Review). Oncol Lett 2024; 27:257. [PMID: 38646499 PMCID: PMC11027113 DOI: 10.3892/ol.2024.14390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 03/15/2024] [Indexed: 04/23/2024] Open
Abstract
The link between inflammation and cancer is well documented and colonic inflammation caused by inflammatory bowel disease (IBD) is thought to be a high-risk factor for the development of colorectal cancer (CRC). The complex crosstalk between epithelial and inflammatory cells is thought to underlie the progression from inflammation to cancer. The present review collates and summarises recent advances in the understanding of the pathogenesis of IBD-associated CRC (IBD-CRC), including the oncogenic mechanisms of the main inflammatory signalling pathways and genetic alterations induced by oxidative stress during colonic inflammation, and discusses the crosstalk between the tumour microenvironment, intestinal flora and host immune factors during inflammatory oncogenesis in colitis-associated CRC. In addition, the therapeutic implications of anti-inflammatory therapy for IBD-CRC were discussed, intending to provide new insight into improve clinical practice.
Collapse
Affiliation(s)
- Zhi Wang
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, Jilin 130000, P.R. China
| | - Yu Chang
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, Jilin 130000, P.R. China
| | - Haibo Sun
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, Jilin 130000, P.R. China
| | - Yuqin Li
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, Jilin 130000, P.R. China
| | - Tongyu Tang
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, Jilin 130000, P.R. China
| |
Collapse
|
6
|
Aguiar TFM, Rivas MP, de Andrade Silva EM, Pires SF, Dangoni GD, Macedo TC, Defelicibus A, Barros BDDF, Novak E, Cristofani LM, Odone V, Cypriano M, de Toledo SRC, da Cunha IW, da Costa CML, Carraro DM, Tojal I, de Oliveira Mendes TA, Krepischi ACV. First Transcriptome Analysis of Hepatoblastoma in Brazil: Unraveling the Pivotal Role of Noncoding RNAs and Metabolic Pathways. Biochem Genet 2024:10.1007/s10528-024-10764-y. [PMID: 38649558 DOI: 10.1007/s10528-024-10764-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 02/27/2024] [Indexed: 04/25/2024]
Abstract
Hepatoblastoma stands as the most prevalent liver cancer in the pediatric population. Characterized by a low mutational burden, chromosomal and epigenetic alterations are key drivers of its tumorigenesis. Transcriptome analysis is a powerful tool for unraveling the molecular intricacies of hepatoblastoma, shedding light on the effects of genetic and epigenetic changes on gene expression. In this study conducted in Brazilian patients, an in-depth whole transcriptome analysis was performed on 14 primary hepatoblastomas, compared to control liver tissues. The analysis unveiled 1,492 differentially expressed genes (1,031 upregulated and 461 downregulated), including 920 protein-coding genes (62%). Upregulated biological processes were linked to cell differentiation, signaling, morphogenesis, and development, involving known hepatoblastoma-associated genes (DLK1, MEG3, HDAC2, TET1, HMGA2, DKK1, DKK4), alongside with novel findings (GYNG4, CDH3, and TNFRSF19). Downregulated processes predominantly centered around oxidation and metabolism, affecting amines, nicotinamides, and lipids, featuring novel discoveries like the repression of SYT7, TTC36, THRSP, CCND1, GCK and CAMK2B. Two genes, which displayed a concordant pattern of DNA methylation alteration in their promoter regions and dysregulation in the transcriptome, were further validated by RT-qPCR: the upregulated TNFRSF19, a key gene in the embryonic development, and the repressed THRSP, connected to lipid metabolism. Furthermore, based on protein-protein interaction analysis, we identified genes holding central positions in the network, such as HDAC2, CCND1, GCK, and CAMK2B, among others, that emerged as prime candidates warranting functional validation in future studies. Notably, a significant dysregulation of non-coding RNAs (ncRNAs), predominantly upregulated transcripts, was observed, with 42% of the top 50 highly expressed genes being ncRNAs. An integrative miRNA-mRNA analysis revealed crucial biological processes associated with metabolism, oxidation reactions of lipids and carbohydrates, and methylation-dependent chromatin silencing. In particular, four upregulated miRNAs (miR-186, miR-214, miR-377, and miR-494) played a pivotal role in the network, potentially targeting multiple protein-coding transcripts, including CCND1 and CAMK2B. In summary, our transcriptome analysis highlighted disrupted embryonic development as well as metabolic pathways, particularly those involving lipids, emphasizing the emerging role of ncRNAs as epigenetic regulators in hepatoblastomas. These findings provide insights into the complexity of the hepatoblastoma transcriptome and identify potential targets for future therapeutic interventions.
Collapse
Affiliation(s)
- Talita Ferreira Marques Aguiar
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, Human Genome and Stem-Cell Research Center, University of São Paulo, São Paulo, Brazil
- Columbia University Irving Medical Center, New York, NY, USA
| | - Maria Prates Rivas
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, Human Genome and Stem-Cell Research Center, University of São Paulo, São Paulo, Brazil
| | - Edson Mario de Andrade Silva
- Department of Biochemistry and Molecular Biology, Federal University of Viçosa, Minas Gerais, Brazil
- Horticultural Sciences Department, University of Florida, Gainesville, USA
| | - Sara Ferreira Pires
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, Human Genome and Stem-Cell Research Center, University of São Paulo, São Paulo, Brazil
| | - Gustavo Dib Dangoni
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, Human Genome and Stem-Cell Research Center, University of São Paulo, São Paulo, Brazil
| | - Taiany Curdulino Macedo
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, Human Genome and Stem-Cell Research Center, University of São Paulo, São Paulo, Brazil
| | | | | | - Estela Novak
- Pediatric Cancer Institute (ITACI) at the Pediatric Department, São Paulo University Medical School, São Paulo, Brazil
| | - Lilian Maria Cristofani
- Pediatric Cancer Institute (ITACI) at the Pediatric Department, São Paulo University Medical School, São Paulo, Brazil
| | - Vicente Odone
- Pediatric Cancer Institute (ITACI) at the Pediatric Department, São Paulo University Medical School, São Paulo, Brazil
| | - Monica Cypriano
- Department of Pediatrics, Adolescent and Child With Cancer Support Group (GRAACC), Federal University of São Paulo, São Paulo, Brazil
| | - Silvia Regina Caminada de Toledo
- Department of Pediatrics, Adolescent and Child With Cancer Support Group (GRAACC), Federal University of São Paulo, São Paulo, Brazil
| | | | | | - Dirce Maria Carraro
- International Center for Research, A. C. Camargo Cancer Center, São Paulo, Brazil
| | - Israel Tojal
- International Center for Research, A. C. Camargo Cancer Center, São Paulo, Brazil
| | | | - Ana Cristina Victorino Krepischi
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, Human Genome and Stem-Cell Research Center, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
7
|
Guo Y, Zhou Q, Wei M, Fan J, Huang H. Association of TNFRSF19 with a TNF family-based prognostic model and subtypes in gliomas using machine learning. Heliyon 2024; 10:e28445. [PMID: 38560169 PMCID: PMC10979244 DOI: 10.1016/j.heliyon.2024.e28445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 04/04/2024] Open
Abstract
Purpose TNF family members (TFMs) play a crucial role in different types of cancers, with TNF Receptor Superfamily Member 19 (TNFRSF19) standing out as a particularly important member in this category. Further research is necessary to investigate the potential impact of TFMs on prognosis prediction and to elucidate the function and potential therapeutic targets linked to TNFRSF19 expression in gliomas. Methods Three databases provided the data on gene expression and clinical information. Fourteen prognostic members were found through univariate Cox analysis and subsequently utilized to construct TFMs-based model in LASSO and multivariate Cox analyses. TFMs-based subtypes based on the expression profile were identified using an unsupervised clustering method. Machine learning algorithm identified key genes linked to prognostic model and subtype. A sequence of immune infiltrations was evaluated using the ssGSEA and ESTIMATE algorithms. Immunohistochemistry was used to examine the patterns of expression and the clinical significance of TNFRSF19. Results Our development of a prognostic model and subtypes based on the TNF family was successful, resulting in accurate predictions of prognosis. The findings indicate that TNFRSF19 exhibited strong performance. Upregulation of TNFRSF19 was correlated with malignant phenotypes and poor prognosis, which was confirmed through immunohistochemistry. TNFRSF19 played a role in reshaping the immunosuppressive microenvironment in gliomas, and multiple drug-targeted TNFRSF19 molecules were identified. Conclusions The TMF-based prognostic model and subtype can facilitate treatment decisions for glioma. TNFRSF19 is an outstanding representative of a predictor of prognosis and immunotherapy effect in gliomas.
Collapse
Affiliation(s)
- Youwei Guo
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Quanwei Zhou
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Min Wei
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Jianfeng Fan
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - He Huang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
8
|
McKenna JK, Wu Y, Sonkusre P, Chari R, Lebensohn AM. The ubiquitin ligase HUWE1 enhances WNT signaling by antagonizing destruction complex-mediated β-catenin degradation and through a mechanism independent of β-catenin stability. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.02.578552. [PMID: 38410441 PMCID: PMC10896346 DOI: 10.1101/2024.02.02.578552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
WNT/β-catenin signaling is mediated by the transcriptional coactivator β-catenin (CTNNB1). CTNNB1 abundance is regulated by phosphorylation and proteasomal degradation promoted by a destruction complex composed of the scaffold proteins APC and AXIN1 or AXIN2, and the kinases CSNK1A1 and GSK3A or GSK3B. Loss of CSNK1A1 increases CTNNB1 abundance, resulting in hyperactive WNT signaling. Previously, we demonstrated that the HECT domain ubiquitin ligase HUWE1 is necessary for hyperactive WNT signaling in HAP1 haploid human cells lacking CSNK1A1. Here, we investigate the mechanism underlying this requirement. In the absence of CSNK1A1, GSK3A/GSK3B still phosphorylated a fraction of CTNNB1, promoting its degradation. HUWE1 loss enhanced GSK3A/GSK3B-dependent CTNNB1 phosphorylation, further reducing CTNNB1 abundance. However, the reduction in CTNNB1 caused by HUWE1 loss was disproportionately smaller than the reduction in WNT target gene transcription. To test if the reduction in WNT signaling resulted from reduced CTNNB1 abundance alone, we engineered the endogenous CTNNB1 locus in HAP1 cells to encode a CTNNB1 variant insensitive to destruction complex-mediated phosphorylation and degradation. HUWE1 loss in these cells reduced WNT signaling with no change in CTNNB1 abundance. Genetic interaction and overexpression analyses revealed that the effects of HUWE1 on WNT signaling were not only mediated by GSK3A/GSK3B, but also by APC and AXIN1. Regulation of WNT signaling by HUWE1 required its ubiquitin ligase activity. These results suggest that in cells lacking CSNK1A1, a destruction complex containing APC, AXIN1 and GSK3A/GSK3B downregulates WNT signaling by phosphorylating and targeting CTNNB1 for degradation. HUWE1 enhances WNT signaling by antagonizing this activity. Therefore, HUWE1 enhances WNT/CTNNB1 signaling through two mechanisms, one that regulates CTNNB1 abundance and another that is independent of CTNNB1 stability. Coordinated regulation of CTNNB1 abundance and an independent signaling step by HUWE1 would be an efficient way to control WNT signaling output, enabling sensitive and robust activation of the pathway.
Collapse
Affiliation(s)
- Joseph K. McKenna
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Yalan Wu
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Praveen Sonkusre
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Raj Chari
- Genome Modification Core, Laboratory Animal Sciences Program, Frederick National Lab for Cancer Research, Frederick, Maryland, United States of America
| | - Andres M. Lebensohn
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
9
|
Zuo X, Wang X, Ma T, Chen S, Cao P, Cheng H, Yang N, Han X, Gao W, Liu X, Sun Y. TNFRSF19 within the 13q12.12 Risk Locus Functions as a Lung Cancer Suppressor by Binding Wnt3a to Inhibit Wnt/β-Catenin Signaling. Mol Cancer Res 2024; 22:227-239. [PMID: 38047807 DOI: 10.1158/1541-7786.mcr-23-0109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 10/12/2023] [Accepted: 11/28/2023] [Indexed: 12/05/2023]
Abstract
Cancer risk loci provide special clues for uncovering pathogenesis of cancers. The TNFRSF19 gene located within the 13q12.12 lung cancer risk locus encodes TNF receptor superfamily member 19 (TNFRSF19) protein and has been proved to be a key target gene of a lung tissue-specific tumor suppressive enhancer, but its functional role in lung cancer pathogenesis remains to be elucidated. Here we showed that the TNFRSF19 gene could protect human bronchial epithelial Beas-2B cells from pulmonary carcinogen nicotine-derived nitrosamine ketone (NNK)-induced malignant transformation. Knockout of the TNFRSF19 significantly increased NNK-induced colony formation rate on soft agar. Moreover, TNFRSF19 expression was significantly reduced in lung cancer tissues and cell lines. Restoration of TNFRSF19 expression in A549 lung cancer cell line dramatically suppressed the tumor formation in xenograft mouse model. Interestingly, the TNFRSF19 protein that is an orphan membrane receptor could compete with LRP6 to bind Wnt3a, thereby inhibiting the Wnt/β-catenin signaling pathway that is required for NNK-induced malignant transformation as indicated by protein pulldown, site mutation, and fluorescence energy resonance transfer experiments. Knockout of the TNFRSF19 enhanced LRP6-Wnt3a interaction, promoting β-catenin nucleus translocation and the downstream target gene expression, and thus sensitized the cells to NNK carcinogen. In conclusion, our study demonstrated that the TNFRSF19 inhibited lung cancer carcinogenesis by competing with LRP6 to combine with Wnt3a to inhibit the Wnt/β-catenin signaling pathway. IMPLICATIONS These findings revealed a novel anti-lung cancer mechanism, highlighting the special significance of TNFRSF19 gene within the 13q12.12 risk locus in lung cancer pathogenesis.
Collapse
Affiliation(s)
- Xianglin Zuo
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, P.R. China
- Department of Cell Biology, Nanjing Medical University, Nanjing, P.R. China
| | - Xuchun Wang
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, P.R. China
- Department of Cell Biology, Nanjing Medical University, Nanjing, P.R. China
| | - Tingzheng Ma
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, P.R. China
- Department of Cell Biology, Nanjing Medical University, Nanjing, P.R. China
| | - Shuhan Chen
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, P.R. China
- Department of Cell Biology, Nanjing Medical University, Nanjing, P.R. China
| | - Pingping Cao
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, P.R. China
- Department of Cell Biology, Nanjing Medical University, Nanjing, P.R. China
| | - He Cheng
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, P.R. China
- Department of Cell Biology, Nanjing Medical University, Nanjing, P.R. China
| | - Nan Yang
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, P.R. China
| | - Xiao Han
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, P.R. China
| | - Wei Gao
- Department of Cell Biology, Nanjing Medical University, Nanjing, P.R. China
| | - Xiaoyu Liu
- Department of Cell Biology, Nanjing Medical University, Nanjing, P.R. China
| | - Yujie Sun
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, P.R. China
- Department of Cell Biology, Nanjing Medical University, Nanjing, P.R. China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Nanjing Medical University, Nanjing, P.R. China
| |
Collapse
|
10
|
Yao S, Xiao H, Wei C, Chen S. ANKRD2 expression combined with TNFRSF19 expression for evaluating the prognosis of oral squamous cell carcinoma patients. Heliyon 2024; 10:e24091. [PMID: 38234906 PMCID: PMC10792581 DOI: 10.1016/j.heliyon.2024.e24091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 12/28/2023] [Accepted: 01/03/2024] [Indexed: 01/19/2024] Open
Abstract
Objective As an important chemotherapy drug, cisplatin has been widely used in the treatment of many cancers. However, many patients, including oral squamous cell carcinoma (OSCC) patients, experience unacceptable outcomes from cisplatin treatment. Thus, we devised a risk model for predicting the sensitivity of OSCC patients to cisplatin treatment, to provide a reference for clinical practice. Methods CAL-27 and SCC-9 cell lines treated or not with cisplatin and data from The Cancer Genome Atlas (TCGA) were screened for simultaneously and significantly differentially expressed genes. Next, we built a risk model for predicting cisplatin sensitivity in OSCC patients. Reverse transcription-polymerase chain reaction (RT-PCR), pathological samples and clinical data were used to examine the reliability of the model. Results ANKRD2 and TNFRSF19 were differentially expressed between the OSCC metastasis cell line HSC-3 treated and not treated with cisplatin, as well as between the OSCC cell line SCC-25 and the cell line SCC25-DDP, which has cisplatin chemoresistance. We found that the expression of ANKRD2 and TNFRSF19 had a significant influence on the prognosis of OSCC patients. The risk model that combined ANKRD2 and TNFRSF19 to predict sensitivity to cisplatin in OSCC patients was confirmed by analysing the pathological samples and follow-up information of clinical patients. Conclusions The expression of ANKRD2 and TNFRSF19 is associated with cisplatin sensitivity and prognosis in patients with OSCC. The survival outcome of patients with oral squamous cell carcinoma (OSCC) was found to be significantly worse in those with high expression of ANKRD2 combined with low expression of TNFRSF19. ANKRD2 and TNFRSF19 may be targets for cisplatin sensitivity prediction in OSCC patients. These findings may provide novel strategies for overcoming cisplatin resistance.
Collapse
Affiliation(s)
- Shucong Yao
- Department of Oral and Maxillofacial Surgery, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Hongwei Xiao
- Department of Oral and Maxillofacial Surgery, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Changji Wei
- Department of Oral and Maxillofacial Surgery, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Shisheng Chen
- Department of Oral and Maxillofacial Surgery, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| |
Collapse
|
11
|
Toghrayee Z, Montazeri H. Uncovering hidden cancer self-dependencies through analysis of shRNA-level dependency scores. Sci Rep 2024; 14:856. [PMID: 38195844 PMCID: PMC10776685 DOI: 10.1038/s41598-024-51453-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 01/05/2024] [Indexed: 01/11/2024] Open
Abstract
Large-scale short hairpin RNA (shRNA) screens on well-characterized human cancer cell lines have been widely used to identify novel cancer dependencies. However, the off-target effects of shRNA reagents pose a significant challenge in the analysis of these screens. To mitigate these off-target effects, various approaches have been proposed that aggregate different shRNA viability scores targeting a gene into a single gene-level viability score. Most computational methods for discovering cancer dependencies rely on these gene-level scores. In this paper, we propose a computational method, named NBDep, to find cancer self-dependencies by directly analyzing shRNA-level dependency scores instead of gene-level scores. The NBDep algorithm begins by removing known batch effects of the shRNAs and selecting a subset of concordant shRNAs for each gene. It then uses negative binomial random effects models to statistically assess the dependency between genetic alterations and the viabilities of cell lines by incorporating all shRNA dependency scores of each gene into the model. We applied NBDep to the shRNA dependency scores available at Project DRIVE, which covers 26 different types of cancer. The proposed method identified more well-known and putative cancer genes compared to alternative gene-level approaches in pan-cancer and cancer-specific analyses. Additionally, we demonstrated that NBDep controls type-I error and outperforms statistical tests based on gene-level scores in simulation studies.
Collapse
Affiliation(s)
- Zohreh Toghrayee
- Department of Bioinformatics, Institute Biochemistry and Biophysics, University of Tehran, Tehran, Iran
- Department of Bioinformatics, Kish International Campus University of Tehran, Kish, Iran
| | - Hesam Montazeri
- Department of Bioinformatics, Institute Biochemistry and Biophysics, University of Tehran, Tehran, Iran.
| |
Collapse
|
12
|
Tage H, Yamaguchi K, Nakagawa S, Kasuga S, Takane K, Furukawa Y, Ikenoue T. Visinin-like 1, a novel target gene of the Wnt/β-catenin signaling pathway, is involved in apoptosis resistance in colorectal cancer. Cancer Med 2023. [PMID: 37096864 DOI: 10.1002/cam4.5970] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 03/14/2023] [Accepted: 04/07/2023] [Indexed: 04/26/2023] Open
Abstract
BACKGROUND Abnormal activation of Wnt/β-catenin signaling is associated with various aspects of cancer development. This study explored the roles of novel target genes of the Wnt/β-catenin signaling pathway in cancer cells. METHODS Using the haploid chronic myelogenous leukemia cell line HAP1, RNA sequencing (RNA-seq) was performed to identify genes whose expression was increased by APC disruption and reversed by β-catenin knockdown (KD). The regulatory mechanism and function of one of the candidate genes was investigated in colorectal cancer (CRC) cells. RESULTS In total, 64 candidate genes whose expression was regulated by Wnt/β-catenin signaling were identified. Of these candidate genes, the expression levels of six were reduced by β-catenin KD in HCT116 CRC cells in our previous microarray. One of these genes was Visinin-like 1 ( VSNL1 ), which belongs to the neuronal calcium-sensor gene family. The expression of VSNL1 was regulated by the β-catenin/TCF7L2 complex via two TCF7L2-binding elements in intron 1. VSNL1 KDinduced apoptosis in VSNL1-positive CRC cells. Additionally, forced expression of wild-type VSNL1, but not a myristoylation, Ca2+ -binding, or dimerization-defective mutant, suppressed the apoptosis induced by camptothecin and doxorubicin in VSNL1-negative CRC cells. CONCLUSION Our findings suggest that VSNL1 , a novel target gene of the Wnt/β-catenin signaling pathway, is associated with apoptosis resistance in CRC cells.
Collapse
Affiliation(s)
- Hiroki Tage
- Division of Clinical Genome Research, Advanced Clinical Research Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Kiyoshi Yamaguchi
- Division of Clinical Genome Research, Advanced Clinical Research Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Saya Nakagawa
- Division of Clinical Genome Research, Advanced Clinical Research Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - So Kasuga
- Division of Clinical Genome Research, Advanced Clinical Research Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Kiyoko Takane
- Division of Clinical Genome Research, Advanced Clinical Research Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Yoichi Furukawa
- Division of Clinical Genome Research, Advanced Clinical Research Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Tsuneo Ikenoue
- Division of Clinical Genome Research, Advanced Clinical Research Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
13
|
Li C, Wu Y, Huang MY, Song XJ. Characterization of Inflammatory Signals in BV-2 Microglia in Response to Wnt3a. Biomedicines 2023; 11:biomedicines11041121. [PMID: 37189739 DOI: 10.3390/biomedicines11041121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 03/31/2023] [Accepted: 04/05/2023] [Indexed: 05/17/2023] Open
Abstract
Activation of microglia is one of the pathological bases of neuroinflammation, which involves various diseases of the central nervous system. Inhibiting the inflammatory activation of microglia is a therapeutic approach to neuroinflammation. In this study, we report that activation of the Wnt/β-catenin signaling pathway in a model of neuroinflammation in Lipopolysaccharide (LPS)/IFN-γ-stimulated BV-2 cells can result in inhibition of production of nitric oxide (NO), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α). Activation of the Wnt/β-catenin signaling pathway also results in inhibition of the phosphorylation of nuclear factor-κB (NF-κB) and extracellular signal-regulated kinase (ERK) in the LPS/IFN-γ-stimulated BV-2 cells. These findings indicate that activation of the Wnt/β-catenin signaling pathway can inhibit neuroinflammation through downregulating the pro-inflammatory cytokines including iNOS, TNF-α, and IL-6, and suppress NF-κB/ERK-related signaling pathways. In conclusion, this study indicates that the Wnt/β-catenin signaling activation may play an important role in neuroprotection in certain neuroinflammatory diseases.
Collapse
Affiliation(s)
- Cheng Li
- Department of Medical Neuroscience, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China
- SUSTech Center for Pain Medicine, Southern University of Science and Technology, Shenzhen 518055, China
| | - Ying Wu
- Department of Medical Neuroscience, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China
- SUSTech Center for Pain Medicine, Southern University of Science and Technology, Shenzhen 518055, China
| | - Ming-Yue Huang
- Department of Medical Neuroscience, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xue-Jun Song
- Department of Medical Neuroscience, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China
- SUSTech Center for Pain Medicine, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
14
|
Liu B, Fang X, Kwong DLW, Zhang Y, Verhoeft K, Gong L, Zhang B, Chen J, Yu Q, Luo J, Tang Y, Huang T, Ling F, Fu L, Yan Q, Guan XY. Targeting TROY-mediated P85a/AKT/TBX3 signaling attenuates tumor stemness and elevates treatment response in hepatocellular carcinoma. J Exp Clin Cancer Res 2022; 41:182. [PMID: 35610614 PMCID: PMC9131684 DOI: 10.1186/s13046-022-02401-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 05/19/2022] [Indexed: 12/11/2022] Open
Abstract
Background Previous in vitro hepatocyte differentiation model showed that TROY was specifically expressed in liver progenitor cells and a small proportion of hepatocellular carcinoma cells, suggesting that TROY may participate in hepatocellular carcinoma (HCC) stemness regulation. Here, we aim to investigate the role and mechanism of TROY in HCC pathogenesis. Method Bioinformatics analysis of the TCGA dataset has been used to identify the function and mechanism of TROY. Spheroid, apoptosis, and ALDH assay were performed to evaluate the stemness functions. Validation of the downstream pathway was based on Western blot, co-immunoprecipitation, and double immunofluorescence. Results HCC tissue microarray study found that a high frequency of TROY-positive cells was detected in 53/130 (40.8%) of HCC cases, which was significantly associated with poor prognosis and tumor metastasis. Functional studies revealed that TROY could promote self-renewal, drug resistance, tumorigenicity, and metastasis of HCC cells. Mechanism study found that TROY could interact with PI3K subunit p85α, inducing its polyubiquitylation and degradation. The degradation of p85α subsequently activate PI3K/AKT/TBX3 signaling and upregulated pluripotent genes expression including SOX2, NANOG, and OCT4, and promoted EMT in HCC cells. Interestingly, immune cell infiltration analysis found that upregulation of TROY in HCC tissues was induced by TGF-β1 secreted from CAFs. PI3K inhibitor wortmannin could effectively impair tumor stemness to sorafenib. Conclusion We demonstrated that TROY is an HCC CSC marker and plays an important role in HCC stemness regulation. Targeting TROY-positive CSCs with PI3K inhibitor wortmannin combined with chemo- or targeted drugs might be a novel therapeutic strategy for HCC patients. Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13046-022-02401-6.
Collapse
|
15
|
Zhu W, Tan L, Ma T, Yin Z, Gao J. Long noncoding RNA SNHG8 promotes chemoresistance in gastric cancer via binding with hnRNPA1 and stabilizing TROY expression. Dig Liver Dis 2022; 54:1573-1582. [PMID: 35354542 DOI: 10.1016/j.dld.2022.02.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 02/21/2022] [Accepted: 02/22/2022] [Indexed: 12/30/2022]
Abstract
AIMS To determine SNHG8's function and potential mechanisms in gastric cancer (GC) chemoresistance. METHODS We assessed SNHG8 expression in GC cell lines, GC/CDDP cell lines (cell lines treated with cisplatin), and 42 GC tissues and SNHG8 levels in the lncRNA microarray analysis of AGS/CDDP and AGS cell lines. We also examined GC cell viability in vivo and in vitro and its apoptosis level with Flow cytometry assays. SNHG8 was localized in subcells using fluorescence in situ hybridization (FISH) and cell fraction assays, hnRNPA1's link to SNHG8 was determined utilizing RNA immunoprecipitation (RIP) and FISH assays, gene expression profiles were assessed employing RNA transcriptome sequencing, and hnRNPA1's relationship with TROY was ascertained with the RIP assay. RESULTS SNHG8 increased significantly in GC cell lines and GC tissues. However, a decrease in its expression promoted sensitivity to chemotherapy and inhibited DNA damage repair in vitro and in vivo. SNHG8 appeared to regulate TROY expression via linking with hnRNPA1. Reducing TROY levels considerably stimulated GC cell chemosensitivity, whereas heightening them partially rescued the rate of chemoresistance caused by downregulating SNHG8. CONCLUSION In summary, the "SNHG8/hnRNPA1-TROY" axis is crucial to GC chemoresistance.
Collapse
Affiliation(s)
- Wenzhong Zhu
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Lulu Tan
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Tiantian Ma
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zhijie Yin
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jinbo Gao
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
16
|
Vallée A. Curcumin and Wnt/β‑catenin signaling in exudative age‑related macular degeneration (Review). Int J Mol Med 2022; 49:79. [PMID: 35445729 PMCID: PMC9083851 DOI: 10.3892/ijmm.2022.5135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/11/2022] [Indexed: 11/06/2022] Open
Abstract
Curcumin is a natural product widely used due to its pharmacological effects. Nevertheless, only a limited number of studies concerning the effects of curcumin on exudative age‑related macular degeneration (AMD) is currently available. Since ophthalmic diseases, including exudative AMD, have a marked impact on public health, the prevention and therapy of ophthalmic disorders remain of increasing concern. Exudative AMD is characterized by choroidal neovascularization (CNV) invading the subretinal space, ultimately enhancing exudation and hemorrhaging. The exudative AMD subtype corresponds to 10 to 15% of cases of macular degeneration; however, the occurrence of this subtype has been reported as the major cause of vision loss and blindness, with the occurrence of CNV being responsible for 80% of the cases with vision loss. In CNV increased expression of VEGF has been observed, stimulated by the overactivation of Wnt/β‑catenin signaling pathway. The stimulation of the Wnt/β‑catenin signaling pathway is responsible for the activation of several cellular mechanisms, simultaneously enhancing inflammation, oxidative stress and angiogenesis in numerous diseases, including ophthalmic disorders. Some studies have previously demonstrated the possible advantage of the use of curcumin for the inhibition of Wnt/β‑catenin signaling. In the present review article, the different mechanisms of curcumin are described concerning its effects on oxidative stress, inflammation and angiogenesis in exudative AMD, by interacting with Wnt/β‑catenin signaling.
Collapse
Affiliation(s)
- Alexandre Vallée
- Department of Epidemiology-Data-Biostatistics, Delegation of Clinical Research and Innovation (DRCI), Foch Hospital, 92150 Suresnes, France
| |
Collapse
|
17
|
Wu L, Yu Y, Xu L, Wang X, Zhou J, Wang Y. TROY Modulates Cancer Stem-Like Cell Properties and Gefitinib Resistance Through EMT Signaling in Non–Small Cell Lung Cancer. Front Genet 2022; 13:881875. [PMID: 35646083 PMCID: PMC9136171 DOI: 10.3389/fgene.2022.881875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 03/23/2022] [Indexed: 11/13/2022] Open
Abstract
Targeted therapy has made breakthrough progress in the treatment of advanced non–small cell lung cancer (NSCLC) in the last 20 years. Despite that, acquired resistance of epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI) is an urgent clinical problem. Our study established an acquired gefitinib-resistant cell line, which exhibited epithelial–mesenchymal transition (EMT) and stem cell–like properties. Transcriptional sequencing and bioinformatics analysis revealed that TROY was significantly increased in gefitinib-resistant cells. Gene set enrichment analysis (GSEA) showed EMT was the core enriched hallmark in the resistant cells. TROY siRNA interference could overcome the gefitinib resistance with the downregulated expression of EMT and CSC markers. In addition, immunohistochemistry indicated that TROY was overexpressed in tumor samples from patients who acquired resistance to first-generation EGFR-TKI without T790M mutation and the expression of TROY was associated with poor prognosis in LUAD. Here, we provided the potential role of TROY in the resistance of targeted therapy and a new strategy to overcome the acquired resistance to EGFR-TKI in NSCLC.
Collapse
Affiliation(s)
- Linying Wu
- Department of Respiratory Disease, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yuman Yu
- Department of Geriatrics, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Liming Xu
- Department of Pathology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaoling Wang
- Department of Pathology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Jianying Zhou
- Department of Respiratory Disease, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- *Correspondence: Jianying Zhou, ; Yuehong Wang,
| | - Yuehong Wang
- Department of Respiratory Disease, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- *Correspondence: Jianying Zhou, ; Yuehong Wang,
| |
Collapse
|
18
|
Ekstrand J, Zemmler M, Abrahamsson A, Lundberg P, Forsgren M, Dabrosin C. Breast Density and Estradiol Are Major Determinants for Soluble TNF-TNF-R Proteins in vivo in Human Breast Tissue. Front Immunol 2022; 13:850240. [PMID: 35432372 PMCID: PMC9005790 DOI: 10.3389/fimmu.2022.850240] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/09/2022] [Indexed: 02/03/2023] Open
Abstract
High mammographic density and exposure to sex steroids are independent risk factors for breast cancer by yet unknown mechanisms. Inflammation is one hallmark of cancer and the tumor necrosis factor family of proteins (TNFSFs) and receptors (TNFRSFs) are key determinants of tissue inflammation. The relationship between TNFSFs/TNFRSFs and breast tissue density or local breast estradiol levels is unknown. We investigated whether TNFSFs and soluble TNFRSFs (sTNFRSFs) are dysregulated in vivo in human breast cancer and dense breast tissue of postmenopausal women. We explored TNFSF/TNFRSF correlations with breast density and estradiol, both locally in the breast and in abdominal subcutaneous (s.c.) fat as a measure of systemic effects. Microdialysis was used for local sampling of in vivo proteins and estradiol in a total of 73 women; 12 with breast cancer, 42 healthy postmenopausal women with different breast densities, and 19 healthy premenopausal women. Breast density was determined as lean tissue fraction (LTF) using magnetic resonance imaging. Microdialysis was also performed in estrogen receptor (ER) positive breast cancer in mice treated with the pure anti-estrogen fulvestrant and tumor tissue was subjected to immunohistochemistry. 23 members of the TNFSF/sTNFRSF families were quantified using proximity extension assay.Our data revealed upregulation of TNFSF10, 13 and 13B, TNFRSF6, 6B, 9, 11A, 11B, 13B, 14, and 19, and TNFR-1 and -2 in ER+ breast cancer in women. In dense breast tissue TNFSF10, 13, and 14, TNFRSF3, 6, 9, 10B, 13B, 14, 19, and TNFR-1 and -2 were upregulated. Certain TNFSFs/TNFRSFs were increased in premenopausal breasts relative to postmenopausal breasts. Furthermore, estradiol correlated with most of the TNFSF/sTNFRSF members, though LTF only correlated with some of the proteins. Several of these associations were breast tissue-specific, as very few correlated with estradiol in abdominal s.c. fat. Estrogen dependent regulations of TNFSF2 (TNF-α) and TNF-R2 were corroborated in ER+ breast cancer in mice. Taken together, our data indicate TNFSFs/sTNFRSFs may represent potential targetable pathways for treatment of breast cancer patients and in prevention of breast cancer development in women with dense breasts.
Collapse
Affiliation(s)
- Jimmy Ekstrand
- Department of Oncology, Linköping University, Linköping, Sweden.,Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Maja Zemmler
- Department of Oncology, Linköping University, Linköping, Sweden.,Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Annelie Abrahamsson
- Department of Oncology, Linköping University, Linköping, Sweden.,Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Peter Lundberg
- Department of Radiology, Linköping University, Linköping, Sweden.,Department of Medical and Health Sciences, Linköping University, Linköping, Sweden.,Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
| | - Mikael Forsgren
- Department of Radiology, Linköping University, Linköping, Sweden.,Department of Medical and Health Sciences, Linköping University, Linköping, Sweden.,Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
| | - Charlotta Dabrosin
- Department of Oncology, Linköping University, Linköping, Sweden.,Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
19
|
Han S, Zhang XL, Jiang X, Li X, Ding J, Zuo LJ, Duan SS, Chen R, Sun BB, Hu XY, Gao YN, Zhang XL. Long Non-Coding RNA and mRNA Expression Analysis in Liver of Mice With Clonorchis sinensis Infection. Front Cell Infect Microbiol 2022; 11:754224. [PMID: 35127549 PMCID: PMC8807509 DOI: 10.3389/fcimb.2021.754224] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 12/07/2021] [Indexed: 12/13/2022] Open
Abstract
Clonorchiasis is recognized as an important zoonotic parasitic disease worldwide. However, the roles of host long non-coding RNAs (lncRNAs) and messenger RNAs (mRNAs) in the response to Clonorchis sinensis (C. sinensis) infection remain unknown. Here we compared the expression of lncRNAs and mRNAs in the liver tissue of mice infected with C. sinensis, in order to further understand the molecular mechanisms of clonorchiasis. A total of 388 lncRNAs and 1,172 mRNAs were found to be differentially expressed with absolute value of fold change (FC) ≥ 2.0 and p < 0.05 by microarray. Compared with controls, Gm6135 and 4930581F22Rik were the most over- and under-expressed lncRNAs; flavin-containing monooxygenase 3 (Fmo3) and deleted in malignant brain tumors 1 (Dmbt1) were the most over- and under-expressed mRNAs. Moreover, functional annotation showed that the significantly different mRNAs were related with “FOXO signaling pathway”, “Wnt signaling pathway”, and “AMPK signaling pathway”. Remarkably, lncRNA Gm8801 were significantly correlated with mRNA glycerol-3-phosphate acyltransferase mitochondrial (Gpam), insulin receptor substrate 2 (Irs2), and tumor necrosis factor receptor superfamily member 19 (Tnfrsf19) in ceRNA networks. These results showed that the expression profiles of lncRNAs and mRNAs in the liver changed after C. sinensis infection. Our results provided valuable insights into the lncRNAs and mRNAs involved in clonorchiasis pathogenesis, which may be useful for future control strategies.
Collapse
Affiliation(s)
- Su Han
- Department of Parasitology, Harbin Medical University, Harbin, China
| | - Xue-Li Zhang
- Department of Parasitology, Harbin Medical University, Harbin, China
| | - Xu Jiang
- Department of Parasitology, Harbin Medical University, Harbin, China
| | - Xiang Li
- Department of Parasitology, Harbin Medical University, Harbin, China
| | - Jian Ding
- Department of Parasitology, Harbin Medical University, Harbin, China
| | - Li-Jiao Zuo
- Department of Parasitology, Harbin Medical University, Harbin, China
| | - Shan-Shan Duan
- Department of Parasitology, Harbin Medical University, Harbin, China
| | - Rui Chen
- Department of Orthopaedic Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Bei-Bei Sun
- Clinical Laboratory, Zhuhai Maternal and Child Health Hospital, Zhuhai, China
| | - Xin-Yi Hu
- Department of Stomatology, Laixi People’s Hospital, Qingdao, China
| | - Yan-Nan Gao
- Department of Parasitology, Harbin Medical University, Harbin, China
| | - Xiao-Li Zhang
- Department of Parasitology, Harbin Medical University, Harbin, China
- *Correspondence: Xiao-Li Zhang,
| |
Collapse
|
20
|
Development and Validation of a TNF Family-Based Signature for Predicting Prognosis, Tumor Immune Characteristics, and Immunotherapy Response in Colorectal Cancer Patients. J Immunol Res 2021; 2021:6439975. [PMID: 34541005 PMCID: PMC8448595 DOI: 10.1155/2021/6439975] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 07/10/2021] [Accepted: 08/03/2021] [Indexed: 12/12/2022] Open
Abstract
In this study, a comprehensive analysis of TNF family members in colorectal cancer (CRC) was conducted and a TNF family-based signature (TFS) was generated to predict prognosis and immunotherapy response. Using the expression data of 516 CRC patients from The Cancer Genome Atlas (TCGA) database, TNF family members were screened to construct a TFS by using the univariate Cox proportional hazards regression and the least absolute shrinkage and selection operator- (LASSO-) Cox proportional hazards regression method. The TFS was then validated in a meta-Gene Expression Omnibus (GEO) cohort (n = 1162) from the GEO database. Additionally, the tumor immune characteristics and predicted responses to immune checkpoint blockade in TFS-based risk subgroups were analyzed. Eight genes (TNFRSF11A, TNFRSF10C, TNFRSF10B, TNFSF11, TNFRSF25, TNFRSF19, LTBR, and NGFR) were used to construct the TFS. Compared to the high-risk patients, the low-risk patients had better overall survival, which was verified by the GEO data. In addition, a high TFS risk score was associated with high infiltration of regulatory T cells (Tregs), nonactivated macrophages (M0), natural killer cells, immune escape phenotypes, poor immunotherapy response, and tumorigenic and metastasis-related pathways. Conversely, a low TFS risk score was related to high infiltration of resting CD4 memory T cells and resting dendritic cells, few immune escape phenotypes, and high sensitivity to immunotherapy. Thus, the eight gene-based TFS is a promising index to predict the prognosis, immune characteristics, and immunotherapy response in CRC, and our results also provide new understanding of the role of the TNF family members in the prognosis and treatment of CRC.
Collapse
|
21
|
Ma Y, Xia P, Wang Z, Xu J, Zhang L, Jiang Y. PDIA6 promotes pancreatic cancer progression and immune escape through CSN5-mediated deubiquitination of β-catenin and PD-L1. Neoplasia 2021; 23:912-928. [PMID: 34325342 PMCID: PMC8329431 DOI: 10.1016/j.neo.2021.07.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 07/06/2021] [Accepted: 07/07/2021] [Indexed: 01/15/2023]
Abstract
Protein Disulfide Isomerase Family A Member 6 (PDIA6) is an endoplasmic reticulum protein that is capable of catalyzing protein folding and disulfide bond formation. Abnormally elevated expression of PDIA6 has been reported to predict poor outcomes in various cancers. Herein, gain-of- and loss-of-function experiments were performed to investigate how PDIA6 participated in the carcinogenesis of pancreatic cancer (PC). By analyzing the protein expression of PDIA6 in 28 paired PC and para carcinoma specimens, we first found that PDIA6 expression was higher in PC samples. Both the overall survival and disease-free survival rates of PC patients with higher PDIA6 expression were poorer than those with lower PDIA6 (n = 178). Furthermore, knockdown of PDIA6 impaired the malignancies of PC cells - suppressed cell proliferation, invasion, migration, cisplatin resistance, and xenografted tumor growth. PDIA6-silenced PC cells were more sensitive to cytotoxic natural killer (NK) cells. Overexpression of PDIA6 had opposite effects on PC cells. Interestingly, COP9 signalosome subunit 5 (CSN5), a regulator of E3 ubiquitin ligases known to promote deubiquitination of its downstream targets, was demonstrated to interact with PDIA6, and its expression was increased in PC cells overexpressing PDIA6. Additionally, PDIA6 overexpression promoted deubiquitination of β-catenin and PD-L1 and subsequently upregulated their expression in PC cells. These alterations were partly reversed by CSN5 shRNA. Collectively, the above results demonstrate that PDIA6 contributes to PC progression, which may be associated with CSN5-regulated deubiquitination of β-catenin and PD-L1. Our findings suggest PDIA6 as a potential target for the treatment of PC.
Collapse
Affiliation(s)
- Yihui Ma
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Peiyi Xia
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhengyang Wang
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jingjing Xu
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lan Zhang
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yanan Jiang
- Department of Pathophysiology, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
22
|
Li Y, Wang Z, Liu Y, Zhang H, Huang Y, Gao P, Hu Y, Xu Q. Influence of hyperocclusion on the remodeling of gingival tissues. Int Immunopharmacol 2021; 98:107885. [PMID: 34153669 DOI: 10.1016/j.intimp.2021.107885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
OBJECTIVE The purpose of this study was to observe the effect of hyperocclusion on the remodeling of gingival tissues and detect the related signaling pathways. DESIGN Hyperocclusion models were established by tooth extraction in mice. The mice were sacrificed at 3, 7, 14, 28, or 56 days after the surgery, and the left mandibular first molars with gingival tissues were isolated and examinations were focused on the gingival tissues. Apoptotic cells were examined using terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) technology. Proliferating cells, p65, inflammatory cytokines, and β-catenin were detected using immunohistochemical methods. RESULTS A series of apoptosis and proliferation responses were triggered in stressed gingival tissues. It was observed that the levels of p65, proinflammatory factors including interleukin-1β and tumor necrosis factor-α in extraction group were higher compared with those from mice with intact dentition, and peaked on days 14, 14 and 7 respectively. The expression of β-catenin was increased under hyperocclusion situations, peaked on day 14, and declined to the initial levels over time. CONCLUSIONS The results of this study suggest that hyperocclusion causes remodeling of the gingival tissues by activating a series of adaptive responses. Both nuclear factor kappa B and Wnt/β-catenin signaling pathways may be responsible for those adaptive responses though the exact mechanism is not clear.
Collapse
Affiliation(s)
- Yan Li
- Department of Stomatology, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao 266003, Shandong, China; School of Stomatology of Qingdao University, Qingdao 266003, China
| | - Zhiguo Wang
- Department of Burn and Plastic Surgery, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao 266003, Shandong, China.
| | - Ye Liu
- Department of Stomatology, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao 266003, Shandong, China
| | - Hui Zhang
- Department of Stomatology, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao 266003, Shandong, China
| | - Yan Huang
- Department of Stomatology, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao 266003, Shandong, China
| | - Pengyu Gao
- Department of Stomatology, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao 266003, Shandong, China; School of Stomatology of Qingdao University, Qingdao 266003, China
| | - Yingzhe Hu
- Department of Stomatology, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao 266003, Shandong, China; School of Stomatology of Qingdao University, Qingdao 266003, China
| | - Quanchen Xu
- Department of Stomatology, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao 266003, Shandong, China.
| |
Collapse
|
23
|
Zhang W, Li C, Wu F, Li N, Wang Y, Hu Y, Fang T, Yuan H, He H. Analyzing and Validating the Prognostic Value of a TNF-Related Signature in Kidney Renal Clear Cell Carcinoma. Front Mol Biosci 2021; 8:689037. [PMID: 34124165 PMCID: PMC8194470 DOI: 10.3389/fmolb.2021.689037] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/10/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Kidney renal clear cell carcinoma (KIRC) has the highest incidence rate in renal cell carcinoma (RCC). Although bioinformatics is widely used in cancer, few reliable biomarkers of KIRC have been found. Therefore, continued efforts are required to elucidate the potential mechanism of the biogenesis and progression of KIRC. Methods: We evaluated the expression of tumor necrosis factor (TNF) family genes in KIRC, and constructed a prognostic signature. We validated the signature by another database and explored the relationship between the signature and progression of KIRC. We assessed the prognostic value, immune infiltration, and tumor mutation burden (TMB) of the signature in KIRC. Results: We selected four key genes (TNFSF14, TNFRSF19, TNFRSF21, and EDA) to construct the TNF-related signature. We divided the KIRC patients into high- and low-risk groups based on the signature. Patients with higher risk scores had shorter overall survival and worse prognosis. With another database, we validated the value of the signature. The signature was considered as an independent risk factor. A higher level of risk score was relevant to higher level of immune infiltration, especially T regulatory cells, CD8+ T cells, and macrophages. The signature was also associated with TMB scores, and it may have an effect on assessing the efficacy of immunotherapy. Conclusion: This is the first TNF-family-related signature of KIRC and we demonstrated its effectiveness. It played a significant role in predicting the prognosis of patients with KIRC. It also has the potential to become a powerful tool in guiding the immunotherapy of KIRC patients in clinical practice.
Collapse
Affiliation(s)
- Wenhao Zhang
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China.,Department of Urology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Changjiu Li
- Department of Urology, Affiliated Hangzhou First People's Hospital, Nanjing Medical University, Hangzhou, China
| | - Fanding Wu
- School of Computer and Information Engineering, Zhejiang Gongshang University, Hangzhou, China
| | - Ning Li
- Department of Urology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuwei Wang
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yixuan Hu
- Department of Urology, Affiliated Hangzhou First People's Hospital, Nanjing Medical University, Hangzhou, China
| | - Tiantian Fang
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Hui Yuan
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Huadong He
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China.,Department of Urology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
24
|
Lei Z, Yang L, Lei Y, Yang Y, Zhang X, Song Q, Chen G, Liu W, Wu H, Guo J. High dose lithium chloride causes colitis through activating F4/80 positive macrophages and inhibiting expression of Pigr and Claudin-15 in the colon of mice. Toxicology 2021; 457:152799. [PMID: 33901603 DOI: 10.1016/j.tox.2021.152799] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 04/02/2021] [Accepted: 04/21/2021] [Indexed: 01/08/2023]
Abstract
OBJECTIVE Lithium chloride (LiCl) was a mood stabilizer for bipolar affective disorders and it could activate Wnt/β-catenin signaling pathway both in vivo and in vitro. Colon is one of a very susceptible tissues to Wnt signaling pathway, and so it would be very essential to explore the toxic effect of a high dose of LiCl on colon. METHODS C57BL/6 mice were injected intraperitoneally with 200 mg/kg LiCl one dose a day for 5 days to activate Wnt signal pathway in intestines. H&E staining was used to assess the colonic tissues of mice treated with high dose of LiCl. The expression of inflammation-associated genes and tight junction-associated genes in colons was measured using qPCR, Western blot and immunostaining methods. The gut microbiome was tested through 16S rDNA gene analysis. RESULTS The differentiation of enteroendocrine cells in colon was inhibited by treatment of 200 mg/kg LiCl. The F4/80 positive macrophages in colon were activated by high dose of LiCl, and migrated from the submucosa to the lamina propria. The expression of pro-inflammatory genes TNFα and IL-1β was increased in the colon of high dose of LiCl treated mice. Clostridium_sp_k4410MGS_306 and Prevotellaceae_UCG_001 were specific and predominant for the high dose of LiCl treated mice. The expression of IgA coding genes, Pigr and Claudin-15 was significantly decreased in the colon tissues of the high dose of LiCl treated mice. CONCLUSION 200 mg/kg LiCl might cause the inflammation in colon of mice through activating F4/80 positive macrophages and inhibiting the expression of IgA coding genes in plasma cells and the expression of Pigr and Claudin-15 in colonic epithelial cells, providing evidences for the toxic effects of high dose of LiCl on colon.
Collapse
Affiliation(s)
- Zili Lei
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong TCM Key Laboratory for Metabolic Disease, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, 510006, PR China.
| | - Lanxiang Yang
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong TCM Key Laboratory for Metabolic Disease, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, 510006, PR China; School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, 510006, PR China
| | - Yuting Lei
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong TCM Key Laboratory for Metabolic Disease, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, 510006, PR China
| | - Yanhong Yang
- The First Affiliated Hospital (School of Clinical Medicine), Guangdong Pharmaceutical University, Nong-Lin-Xia Road 19#, Yue-Xiu District, Guangzhou 510080, PR China
| | - Xueying Zhang
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong TCM Key Laboratory for Metabolic Disease, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, 510006, PR China; School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, 510006, PR China
| | - Qi Song
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong TCM Key Laboratory for Metabolic Disease, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, 510006, PR China
| | - Guibin Chen
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong TCM Key Laboratory for Metabolic Disease, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, 510006, PR China
| | - Wanwan Liu
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong TCM Key Laboratory for Metabolic Disease, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, 510006, PR China
| | - Huijuan Wu
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong TCM Key Laboratory for Metabolic Disease, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, 510006, PR China; School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, 510006, PR China
| | - Jiao Guo
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong TCM Key Laboratory for Metabolic Disease, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, 510006, PR China.
| |
Collapse
|
25
|
Liu X, Wang K, Wei X, Xie T, Lv B, Zhou Q, Wang X. Interaction of NF-κB and Wnt/β-catenin Signaling Pathways in Alzheimer's Disease and Potential Active Drug Treatments. Neurochem Res 2021; 46:711-731. [PMID: 33523396 DOI: 10.1007/s11064-021-03227-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 11/24/2020] [Accepted: 01/02/2021] [Indexed: 12/25/2022]
Abstract
The most important neuropathological features of Alzheimer's disease (AD) are extracellular amyloid-β protein (Aβ) deposition, tau protein hyperphosphorylation and activation of neurometabolic reaction in the brain accompanied by neuronal and synaptic damage, and impaired learning and memory function. According to the amyloid cascade hypothesis, increased Aβ deposits in the brain to form the core of the senile plaques that initiate cascade reactions, affecting the synapses and stimulating activation of microglia, resulting in neuroinflammation. A growing number of studies has shown that NF-κB and Wnt/β-catenin pathways play important roles in neurodegenerative diseases, especially AD. In this review, we briefly introduce the connection between neuroinflammation-mediated synaptic dysfunction in AD and elaborated on the mechanism of these two signaling pathways in AD-related pathological changes, as well as their interaction. Based on our interest in natural compounds, we also briefly introduce and conduct preliminary screening of potential therapeutics for AD.
Collapse
Affiliation(s)
- Xiao Liu
- State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Kaiyue Wang
- State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Xing Wei
- State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Tian Xie
- State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Bin Lv
- State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Qian Zhou
- Department of Anatomy, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishiku, Kitakyushu, 807-8555, Japan
| | - Xiaoying Wang
- State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China. .,College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| |
Collapse
|
26
|
Ouyang R, Li Z, Peng P, Zhang J, Liu J, Qin M, Huang J. Exploration of the relationship between tumor mutation burden and immune infiltrates in colon adenocarcinoma. Int J Med Sci 2021; 18:685-694. [PMID: 33437203 PMCID: PMC7797534 DOI: 10.7150/ijms.51918] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 11/19/2020] [Indexed: 02/07/2023] Open
Abstract
Background: Tumor mutation burden (TMB) was correlated with the immunotherapeutic response in various malignancies. We aimed to evaluate the TMB immune signature in colon adenocarcinoma (COAD). Methods: Gene expression profile, mutation and clinical data of COAD patients were obtained from The Cancer Genome Atlas (TCGA) database. The samples were divided into high and low TMB level groups to identify differentially expressed genes (DEGs). Functional enrichments analyzes were performed to identify the biological functions of the DEGs. Then, immune cell infiltration signatures were calculated by the CIBERSORT algorithm. Finally, Cox proportional hazard model was constructed to estimate the prognostic value of the identified immune-related genes. Results: Gene set enrichment analysis in the high-TMB level group showed that DEGS were enriched in immune-related pathways, such as antigen processing and presentation, Toll-like receptor signaling and natural killer cell-mediated cytotoxicity. A higher infiltration level of CD8+ T cells, CD4+ T cells, activated NK cells , M1 Macrophages and T follicular helper cells was observed in the high-TMB level group. Furthermore, a Cox regression model combined with survival analysis based on the expression level of four identified prognostic genes was constructed, validated anf revealed that higher risk-score levels conferred poor survival outcomes in COAD patients. Conclusions: Our data demonstrate that the high TMB levels are associated with an immune signature in COAD and deepen the molecular understanding of TMB function in tumor immunotherapy.
Collapse
Affiliation(s)
- Rong Ouyang
- Department of Gastroenterology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
- Department of Gastroenterology, Liuzhou Worker's Hospital, Liuzhou, China
| | - Zhongzhuan Li
- Department of Gastroenterology, Liuzhou Worker's Hospital, Liuzhou, China
| | - Peng Peng
- Department of Gastroenterology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jinxiu Zhang
- Department of Gastroenterology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jun Liu
- Department of Gastroenterology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
- Department of Gastroenterology, Liuzhou Worker's Hospital, Liuzhou, China
| | - Mengbin Qin
- Department of Gastroenterology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jiean Huang
- Department of Gastroenterology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
27
|
Zhao XT, Zhu Y, Zhou JF, Gao YJ, Liu FZ. Development of a novel 7 immune-related genes prognostic model for oral cancer: A study based on TCGA database. Oral Oncol 2020; 112:105088. [PMID: 33220636 DOI: 10.1016/j.oraloncology.2020.105088] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 10/16/2020] [Accepted: 10/31/2020] [Indexed: 12/24/2022]
Abstract
Oral squamous cell carcinoma (OSCC) is an aggressive tumor whose prognosis has little improvement in the last three decades. Various immune-related genes have been suggested as significant roles in the development and progression of malignant cancers. In this study, we acquired and integrated differentially expressed genes of OSCC patients, including immune-related genes and transcription factors (TFs), from The Cancer Genome Atlas (TCGA) database. TF-mediated network was established to exploring the regulatory mechanisms of prognostic immune-related genes. A 7 immune-related genes prognostic model for OSCC was obtained, including CGB8, CTLA4, TNFRSF19, CCL26, NRG1, TPM2 and PLAU, which was further proved to be an independent prognostic indicator after adjusting for other clinical factors. The immune-related genes prognostic index was significantly negatively correlated to the infiltration abundances of B cells (P < 0.05) and CD8+ T cells (P < 0.05). The novel proposed immune-based prognostic model not only provided a promising biomarker and a way to monitor the long-term treatment of OSCC, but also gave a new insight into a potential immunotherapy strategy.
Collapse
Affiliation(s)
- Xiao-Tong Zhao
- Department of Otorhinolaryngology and Head and Neck Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221000, China
| | - Yan Zhu
- Department of Pathology, the People's Hospital of Jiangsu Province (The First Affiliated Hospital of Nanjing Medial University), Nanjing, Jiangsu 210029, China
| | | | | | - Fang-Zhou Liu
- Department of Head & Neck Surgery, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing 210029, China.
| |
Collapse
|
28
|
β-Catenin Regulates Wound Healing and IL-6 Expression in Activated Human Astrocytes. Biomedicines 2020; 8:biomedicines8110479. [PMID: 33171974 PMCID: PMC7694627 DOI: 10.3390/biomedicines8110479] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 10/29/2020] [Accepted: 11/03/2020] [Indexed: 02/06/2023] Open
Abstract
Reactive astrogliosis is prominent in most neurodegenerative disorders and is often associated with neuroinflammation. The molecular mechanisms regulating astrocyte-linked neuropathogenesis during injury, aging and human immunodeficiency virus (HIV)-associated neurocognitive disorders (HAND) are not fully understood. In this study, we investigated the implications of the wingless type (Wnt)/β-catenin signaling pathway in regulating astrocyte function during gliosis. First, we identified that HIV-associated inflammatory cytokines, interleukin (IL)-1β and tumor necrosis factor (TNF)-α induced mediators of the Wnt/β-catenin pathway including β-catenin and lymphoid enhancer-binding factor (LEF)-1 expression in astrocytes. Next, we investigated the regulatory role of β-catenin on primary aspects of reactive astrogliosis, including proliferation, migration and proinflammatory responses, such as IL-6. Knockdown of β-catenin impaired astrocyte proliferation and migration as shown by reduced cyclin-D1 levels, bromodeoxyuridine incorporation and wound healing. HIV-associated cytokines, IL-1β alone and in combination with TNF-α, strongly induced the expression of proinflammatory cytokines including C-C motif chemokine ligand (CCL)2, C-X-C motif chemokine ligand (CXCL)8 and IL-6; however, only IL-6 levels were regulated by β-catenin as demonstrated by knockdown and pharmacological stabilization. In this context, IL-6 levels were negatively regulated by β-catenin. To better understand this relationship, we examined the crossroads between β-catenin and nuclear factor (NF)-κB pathways. While NF-κB expression was significantly increased by IL-1β and TNF-α, NF-κB levels were not affected by β-catenin knockdown. IL-1β treatment significantly increased glycogen synthase kinase (GSK)-3β phosphorylation, which inhibits β-catenin degradation. Further, pharmacological inhibition of GSK-3β increased nuclear translocation of both β-catenin and NF-κB p65 into the nucleus in the absence of any other inflammatory stimuli. HIV+ human astrocytes show increased IL-6, β-catenin and NF-κB expression levels and are interconnected by regulatory associations during HAND. In summary, our study demonstrates that HIV-associated inflammation increases β-catenin pathway mediators to augment activated astrocyte responses including migration and proliferation, while mitigating IL-6 expression. These findings suggest that β-catenin plays an anti-inflammatory role in activated human astrocytes during neuroinflammatory pathologies, such as HAND.
Collapse
|
29
|
Han YM, A Kang E, Min Park J, Young Oh J, Yoon Lee D, Hye Choi S, Baik Hahm K. Dietary intake of fermented kimchi prevented colitis-associated cancer. J Clin Biochem Nutr 2020; 67:263-273. [PMID: 33293767 PMCID: PMC7705092 DOI: 10.3164/jcbn.20-77] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 05/31/2020] [Indexed: 12/12/2022] Open
Abstract
Kimchi is composed of various chemopreventive phytochemicals and profuse probiotics, defining kimchi as probiotic foods. Concerns had increased on the modulation of intestinal microbiota on various kinds of systemic diseases. Under the hypothesis that dietary intake of kimchi can be ideal intervention for either ameliorating colitis or preventing colitic cancer, we performed the study to validate the efficolitic cancery of fermented kimchi on preventing colitic cancer. Using azoxymethane-initiated and dextran sulfate sodium-promoted colitic cancer models, we have administrated fermented or non-fermented kimchi to modulate colitic cancer preemptively. Detailed molecular mechanisms were explored. Preemptive administration of fermented kimchi significantly afforded colitic cancer prevention through attenuating inflammasomes (IL-18, IL-1β, caspase-1), enhancing antioxidative (NQO1, GST-π), imposing anti-proliferative (Bax, caspase-3, β-catenin), and affording cytoprotective actions (HSP70, 15-PGDH), while non-fermented kimchi did not prevent colitic cancer. Special recipe cancer preventive kimchi (cpkimchi) was more effective compared to standard recipe fermented kimchi (p<0.01), while non-fermented kimchi (kimuchi) worsened colitic cancer development, telling the importance of fermentation in cancer prevention. Repression of NF-kB p65, induction of tumor suppressive 15-PGDH, and inactivation of ERK1/2 by cpkimchi contributed to colitic cancer prevention. Dietary intake of cpkimchi ameliorated colitis and prevented colitic cancer via concerted anti-inflammatory, antioxidative, and anti-mutagenic actions.
Collapse
Affiliation(s)
- Young-Min Han
- Western Seoul Center, Korea Basic Science Institute, University-Industry Cooperate Building, 150 Bugahyeon-ro, Seodaemun-gu, Seoul, 03759, Korea
| | - Eun A Kang
- CHA Cancer Preventive Research Center, CHA Bio Complex, 330 Pangyo-dong, Bundang-gu, Seongnam, 13497, Korea
| | - Jong Min Park
- CHA Cancer Preventive Research Center, CHA Bio Complex, 330 Pangyo-dong, Bundang-gu, Seongnam, 13497, Korea
| | - Ji Young Oh
- CJ Food Research Center, CJ Blossome Park, Gwangyo-ro, Yeongtong-gu, Suwon, 16495, Korea
| | - Dong Yoon Lee
- CJ Food Research Center, CJ Blossome Park, Gwangyo-ro, Yeongtong-gu, Suwon, 16495, Korea
| | - Seung Hye Choi
- CJ Food Research Center, CJ Blossome Park, Gwangyo-ro, Yeongtong-gu, Suwon, 16495, Korea
| | - Ki Baik Hahm
- CHA Cancer Preventive Research Center, CHA Bio Complex, 330 Pangyo-dong, Bundang-gu, Seongnam, 13497, Korea.,Medpacto Research Institute, Medpacto Inc., 92, Myeongdal-ro, Seocho-gu, Seoul, Korea
| |
Collapse
|
30
|
Zhou Y, Yang W, Ao M, Höti N, Gabrielson E, Chan DW, Zhang H, Li QK. Proteomic Analysis of the Air-Way Fluid in Lung Cancer. Detection of Periostin in Bronchoalveolar Lavage (BAL). Front Oncol 2020; 10:1072. [PMID: 32719746 PMCID: PMC7350406 DOI: 10.3389/fonc.2020.01072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 05/28/2020] [Indexed: 12/20/2022] Open
Abstract
Background: Bronchoalveolar lavage (BAL) is a specific type of air-way fluid. It is a commonly used clinical specimen for the diagnosis of benign diseases and cancers of the lung. Although previous studies have identified several disease-associated proteins in the BAL, the potential utility of BAL in lung cancer is still not well-studied. Based upon the fact that the majority of secreted proteins are glycoproteins, we have profiled N-glycoproteins in BAL collected from lung cancers, and investigated the expression of glycoproteins such as the matrix N-glycoprotein, periostin, in lung cancers. Methods: BAL specimens (n = 16) were collected from lung cancer patients, and analyzed using mass spectrometry-based quantitative N-glycoproteomic technique. Additional BAL specimens (n = 39) were independently collected to further evaluate the expression of periostin by using an enzyme-linked immunosorbent assay (ELISA). Results: A total of 462 glycoproteins were identified in BAL samples using N-glycoproteomic technique, including 290 in lung adenocarcinoma (ADC, n = 5), 376 in squamous cell carcinoma (SQCC, n = 4), 309 in small cell lung carcinoma (SCLC, n = 4), and 316 in benign lung disease (n = 3). The expressions of several glycoproteins were elevated, including 8 in ADC, 12 in SQCC, and 17 in SCLC, compared to benign BALs. The expression of periostin was detected in all subtypes of lung cancers. To further investigate the expression of periostin, an ELISA assay was performed using additional independently collected BALs (n = 39) The normalized levels of periostin in benign disease, ADC, SQCC, and SCLC were 255 ± 104 (mean ± SE) and 4,002 ± 2,181, 3,496 ± 1,765, and 1,772 ± 1,119 ng/mg of total BAL proteins. Conclusion: Our findings demonstrate that proteomic analysis of BAL can be used for the study of cancer-associated extracellular proteins in air-way fluid from lung cancer patients.
Collapse
Affiliation(s)
- Yangying Zhou
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD, United States
| | - Weiming Yang
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD, United States
| | - Minghui Ao
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD, United States
| | - Naseruddin Höti
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD, United States
| | - Edward Gabrielson
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD, United States.,Department of Oncology, Sidney Kimmel Cancer Center at Johns Hopkins Medical Institutions, Baltimore, MD, United States
| | - Daniel W Chan
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD, United States.,Department of Oncology, Sidney Kimmel Cancer Center at Johns Hopkins Medical Institutions, Baltimore, MD, United States
| | - Hui Zhang
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD, United States.,Department of Oncology, Sidney Kimmel Cancer Center at Johns Hopkins Medical Institutions, Baltimore, MD, United States
| | - Qing Kay Li
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD, United States.,Department of Oncology, Sidney Kimmel Cancer Center at Johns Hopkins Medical Institutions, Baltimore, MD, United States
| |
Collapse
|
31
|
Ding Z, Kloss JM, Tuncali S, Tran NL, Loftus JC. TROY signals through JAK1-STAT3 to promote glioblastoma cell migration and resistance. Neoplasia 2020; 22:352-364. [PMID: 32629176 PMCID: PMC7338993 DOI: 10.1016/j.neo.2020.06.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 06/02/2020] [Accepted: 06/08/2020] [Indexed: 11/26/2022]
Abstract
Glioblastoma (GBM) is the most common primary malignant brain tumor in adults and carries a discouraging prognosis. Its aggressive and highly infiltrative nature renders the current standard treatment of maximal surgical resection, radiation, and chemotherapy relatively ineffective. Identifying the signaling pathways that regulate GBM migration/invasion and resistance is required to develop more effective therapeutic regimens to treat GBM. Expression of TROY, an orphan receptor of the TNF receptor superfamily, increases with glial tumor grade, inversely correlates with patient overall survival, stimulates GBM cell invasion in vitro and in vivo, and increases resistance to temozolomide and radiation therapy. Conversely, silencing TROY expression inhibits GBM cell invasion, increases sensitivity to temozolomide, and prolongs survival in a preclinical intracranial xenograft model. Here, we have identified for the first time that TROY interacts with JAK1. Increased TROY expression increases JAK1 phosphorylation. In addition, increased TROY expression promotes STAT3 phosphorylation and STAT3 transcriptional activity that is dependent upon JAK1. TROY-mediated activation of STAT3 is independent of its ability to stimulate activity of NF-κB. Inhibition of JAK1 activity by ruxolitinib or knockdown of JAK1 expression by siRNA significantly inhibits TROY-induced STAT3 activation, GBM cell migration, and decreases resistance to temozolomide. Taken together, our data indicate that the TROY signaling complex may represent a potential therapeutic target with the distinctive capacity to exert effects on multiple pathways mediating GBM cell invasion and resistance.
Collapse
Affiliation(s)
- Zonghui Ding
- Department of Cancer Biology, Mayo Clinic Arizona, Scottsdale, AZ 85259, United States
| | - Jean M Kloss
- Department of Cancer Biology, Mayo Clinic Arizona, Scottsdale, AZ 85259, United States
| | - Serdar Tuncali
- Department of Cancer Biology, Mayo Clinic Arizona, Scottsdale, AZ 85259, United States
| | - Nhan L Tran
- Department of Cancer Biology, Mayo Clinic Arizona, Scottsdale, AZ 85259, United States; Department of Neurosurgery, Mayo Clinic Arizona, Scottsdale, AZ 85259, United States.
| | - Joseph C Loftus
- Department of Cancer Biology, Mayo Clinic Arizona, Scottsdale, AZ 85259, United States.
| |
Collapse
|
32
|
He R, Hua K, Zhang S, Wan Y, Gong H, Ma B, Luo R, Zhou R, Jin H. COX-2 mediated crosstalk between Wnt/β-catenin and the NF-κB signaling pathway during inflammatory responses induced by Haemophilus parasuis in PK-15 and NPTr cells. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 105:103588. [PMID: 31887319 DOI: 10.1016/j.dci.2019.103588] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Accepted: 12/21/2019] [Indexed: 06/10/2023]
Abstract
Haemophilus parasuis infection causes typical acute systemic inflammation in pigs, is characterized by fibrinous polyserositis inflammation, and results in great economic losses to the swine industry worldwide. However, the molecular details of how the host modulates the acute inflammatory response induced by H. parasuis are largely unknown. In previous studies, we found that H. parasuis high-virulence strain SH0165 infection induced the activation of both Wnt/β-catenin and NF-κB signaling in PK-15 and NPTr cells. In this study, we found that the activation of NF-κB, a central hub in inflammatory signaling, was impeded by the Wnt/β-catenin pathway during H. parasuis infection. In contrast, blocking NF-κB activity had no effect on the Wnt/β-catenin pathway during H. parasuis infection. Furthermore, we found that the inhibitory effect of β-catenin on NF-κB activity was mediated by its target gene, pig cyclooxygenase-2 (COX-2). Therefore, we demonstrated that H. parasuis infection activates the canonical Wnt/β-catenin signaling pathway, which leads to decreased NF-κB activity, reducing the acute inflammatory response in pigs. Additionally, the data provide a possible perspective for understanding the anti-inflammatory role of Wnt/β-catenin in pigs during bacterial infection.
Collapse
Affiliation(s)
- Rongrong He
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070, China
| | - Kexin Hua
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070, China
| | - Sihua Zhang
- Wuhan Animal Disease Control Center, Wuhan, Hubei, 430016, China
| | - Yun Wan
- Wuhan Animal Disease Control Center, Wuhan, Hubei, 430016, China
| | - Huimin Gong
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070, China
| | - Bin Ma
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070, China
| | - Rui Luo
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070, China
| | - Rui Zhou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070, China
| | - Hui Jin
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070, China.
| |
Collapse
|
33
|
Guo L, Gao R, Gan J, Zhu Y, Ma J, Lv P, Zhang Y, Li S, Tang H. Downregulation of TNFRSF19 and RAB43 by a novel miRNA, miR-HCC3, promotes proliferation and epithelial-mesenchymal transition in hepatocellular carcinoma cells. Biochem Biophys Res Commun 2020; 525:425-432. [PMID: 32102752 DOI: 10.1016/j.bbrc.2020.02.105] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 02/16/2020] [Indexed: 02/07/2023]
Abstract
Tumor necrosis factor receptor superfamily 19 (TNFRSF19) is a transmembrane protein involved in tumorigenesis. RAB43 is a small molecule GTP-binding protein contributing to the occurrence and development of tumors. However, TNFRSF19/RAB43 dysregulation and their role in hepatocellular carcinoma cells are unknown. Herein, we found that TNFRSF19 and RAB43 were downregulated in hepatocellular carcinoma tissues. TNFRSF19/RAB43 overexpression suppressed, whereas TNFRSF19/RAB43 knockdown promoted cell proliferation and epithelial-mesenchymal transition (EMT) of hepatocellular carcinoma cells. Previously, using deep sequencing technology, a new miRNA, miR-HCC3, was identified and found to suppress the expression of TNFRSF19 and RAB43 by binding to their 3'untranslated regions (3'UTRs) directly. miR-HCC3 was upregulated in hepatocellular carcinoma (HCC) tissues compared with adjacent noncancerous tissues and promoted proliferation and epithelial-mesenchymal transition in HCC cells. Furthermore, TNFRSF19/RAB43 suppressed but miR-HCC3 promoted tumor growth in vivo. Collectively, our results indicated that downregulation of TNFRSF19 and RAB43 by miR-HCC3 contributes to oncogenic activities in HCC, which sheds light on tumorigenesis and might provide potential therapeutic targets for HCC.
Collapse
Affiliation(s)
- LiMing Guo
- Tianjin Life Science Research Center and Tianjin Key Laboratory of Inflammation Biology, Collaborative Innovation Center of Tianjin for Medical Epigenetics, Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Rui Gao
- Tianjin Life Science Research Center and Tianjin Key Laboratory of Inflammation Biology, Collaborative Innovation Center of Tianjin for Medical Epigenetics, Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - JianChen Gan
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, China
| | - YaNan Zhu
- Tianjin Life Science Research Center and Tianjin Key Laboratory of Inflammation Biology, Collaborative Innovation Center of Tianjin for Medical Epigenetics, Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - JunYi Ma
- Tianjin Life Science Research Center and Tianjin Key Laboratory of Inflammation Biology, Collaborative Innovation Center of Tianjin for Medical Epigenetics, Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Ping Lv
- Tianjin Life Science Research Center and Tianjin Key Laboratory of Inflammation Biology, Collaborative Innovation Center of Tianjin for Medical Epigenetics, Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Yi Zhang
- Tianjin Life Science Research Center and Tianjin Key Laboratory of Inflammation Biology, Collaborative Innovation Center of Tianjin for Medical Epigenetics, Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - ShengPing Li
- State Key Laboratory of Oncology in Southern China, Department of Hepatobiliary Oncology, Cancer Center, Sun Yat-sen University, Guangzhou, China
| | - Hua Tang
- Tianjin Life Science Research Center and Tianjin Key Laboratory of Inflammation Biology, Collaborative Innovation Center of Tianjin for Medical Epigenetics, Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.
| |
Collapse
|
34
|
Yang L, Shi P, Zhao G, Xu J, Peng W, Zhang J, Zhang G, Wang X, Dong Z, Chen F, Cui H. Targeting cancer stem cell pathways for cancer therapy. Signal Transduct Target Ther 2020; 5:8. [PMID: 32296030 PMCID: PMC7005297 DOI: 10.1038/s41392-020-0110-5] [Citation(s) in RCA: 988] [Impact Index Per Article: 247.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 12/15/2019] [Accepted: 12/19/2019] [Indexed: 12/18/2022] Open
Abstract
Since cancer stem cells (CSCs) were first identified in leukemia in 1994, they have been considered promising therapeutic targets for cancer therapy. These cells have self-renewal capacity and differentiation potential and contribute to multiple tumor malignancies, such as recurrence, metastasis, heterogeneity, multidrug resistance, and radiation resistance. The biological activities of CSCs are regulated by several pluripotent transcription factors, such as OCT4, Sox2, Nanog, KLF4, and MYC. In addition, many intracellular signaling pathways, such as Wnt, NF-κB (nuclear factor-κB), Notch, Hedgehog, JAK-STAT (Janus kinase/signal transducers and activators of transcription), PI3K/AKT/mTOR (phosphoinositide 3-kinase/AKT/mammalian target of rapamycin), TGF (transforming growth factor)/SMAD, and PPAR (peroxisome proliferator-activated receptor), as well as extracellular factors, such as vascular niches, hypoxia, tumor-associated macrophages, cancer-associated fibroblasts, cancer-associated mesenchymal stem cells, extracellular matrix, and exosomes, have been shown to be very important regulators of CSCs. Molecules, vaccines, antibodies, and CAR-T (chimeric antigen receptor T cell) cells have been developed to specifically target CSCs, and some of these factors are already undergoing clinical trials. This review summarizes the characterization and identification of CSCs, depicts major factors and pathways that regulate CSC development, and discusses potential targeted therapy for CSCs.
Collapse
Affiliation(s)
- Liqun Yang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 400716, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, 400716, Chongqing, China
| | - Pengfei Shi
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 400716, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, 400716, Chongqing, China
| | - Gaichao Zhao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 400716, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, 400716, Chongqing, China
| | - Jie Xu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 400716, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, 400716, Chongqing, China
| | - Wen Peng
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 400716, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, 400716, Chongqing, China
| | - Jiayi Zhang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 400716, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, 400716, Chongqing, China
| | - Guanghui Zhang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 400716, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, 400716, Chongqing, China
| | - Xiaowen Wang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 400716, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, 400716, Chongqing, China
| | - Zhen Dong
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 400716, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, 400716, Chongqing, China
| | - Fei Chen
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, 48201, USA
| | - Hongjuan Cui
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 400716, Chongqing, China.
- Cancer Center, Medical Research Institute, Southwest University, 400716, Chongqing, China.
| |
Collapse
|
35
|
Vallée A, Lecarpentier Y, Vallée R, Guillevin R, Vallée JN. Circadian Rhythms in Exudative Age-Related Macular Degeneration: The Key Role of the Canonical WNT/β-Catenin Pathway. Int J Mol Sci 2020; 21:ijms21030820. [PMID: 32012797 PMCID: PMC7037737 DOI: 10.3390/ijms21030820] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/23/2020] [Accepted: 01/27/2020] [Indexed: 02/07/2023] Open
Abstract
Age-related macular degeneration (AMD) is considered as the main worldwide cause of blindness in elderly adults. Exudative AMD type represents 10 to 15% of macular degeneration cases, but is the main cause of vision loss and blindness. Circadian rhythm changes are associated with aging and could further accelerate it. However, the link between circadian rhythms and exudative AMD is not fully understood. Some evidence suggests that dysregulation of circadian functions could be manifestations of diseases or could be risk factors for the development of disease in elderly adults. Biological rhythms are complex systems interacting with the environment and control several physiological pathways. Recent findings have shown that the dysregulation of circadian rhythms is correlated with exudative AMD. One of the main pathways involved in exudative AMD is the canonical WNT/β-catenin pathway. Circadian clocks have a main role in some tissues by driving the circadian expression of genes involved in physiological and metabolic functions. In exudative AMD, the increase of the canonical WNT/β-catenin pathway is enhanced by the dysregulation of circadian rhythms. Exudative AMD progression is associated with major metabolic reprogramming, initiated by aberrant WNT/β-catenin pathway, of aerobic glycolysis. This review focuses on the interest of circadian rhythm dysregulation in exudative AMD through the aberrant upregulation of the canonical WNT/β-catenin pathway.
Collapse
Affiliation(s)
- Alexandre Vallée
- DACTIM-MIS, Laboratory of Mathematics and Applications (LMA), UMR CNRS 7348, University of Poitiers, CHU de Poitiers, 86021 Poitiers, France
| | - Yves Lecarpentier
- Centre de Recherche Clinique, Grand Hôpital de l'Est Francilien (GHEF), 77100 Meaux, France
| | - Rodolphe Vallée
- University Hospital Group of Paris-Seine-Saint-Denis, APHP, University of Paris-13 Sorbonne Paris-Cité, 93000 Paris, France
| | - Rémy Guillevin
- DACTIM-MIS, Laboratory of Mathematics and Applications (LMA), UMR CNRS 7348, University of Poitiers, CHU de Poitiers, 86021 Poitiers, France
| | - Jean-Noël Vallée
- CHU Amiens Picardie, University of Picardie Jules Verne (UPJV), 80000 Amiens, France
- Laboratory of Mathematics and Applications (LMA), UMR CNRS 7348, University of Poitiers, 86021 Poitiers, France
| |
Collapse
|
36
|
AGR2 is a target of canonical Wnt/β-catenin signaling and is important for stemness maintenance in colorectal cancer stem cells. Biochem Biophys Res Commun 2019; 515:600-606. [DOI: 10.1016/j.bbrc.2019.05.154] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Accepted: 05/24/2019] [Indexed: 11/18/2022]
|
37
|
Khare V, Tabassum S, Chatterjee U, Chatterjee S, Ghosh MK. RNA helicase p68 deploys β-catenin in regulating RelA/p65 gene expression: implications in colon cancer. J Exp Clin Cancer Res 2019; 38:330. [PMID: 31351496 PMCID: PMC6660689 DOI: 10.1186/s13046-019-1304-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 06/30/2019] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND RelA/p65 a crucial member of NF-κB signaling pathway plays diverse role in mediating oncogenesis. Limited knowledge prevails on the mechanistic insights of RelA gene regulation. RNA helicase p68 apart from being a vital player of RNA metabolism acts as a transcriptional coactivator of several oncogenic transcription factors including β-catenin and is highly implicated in cancer progression. In this study, we aim to discern the molecular mechanism of how an RNA helicase, p68 deploys a major oncogenic signaling pathway, Wnt/ β-catenin to regulate the expression of RelA, an indispensable component of NF-κB signaling pathway towards driving colon carcinogenesis. METHODS Immunoblotting and quantitative RT-PCR was performed for determining the protein and mRNA expressions of the concerned genes respectively. Luciferase assay was employed for studying the promoter activity of RelA. Chromatin immunoprecipitation was used to evaluate the occupancy of transcription factors on the RelA promoter. Immunohistochemical analysis was conducted using FFPE sections derived from normal human colon and colon cancer patient samples. Finally, a syngeneic colorectal allograft mouse model was used to assess physiological significance of the in vitro findings. RESULTS p68, β-catenin and RelA proteins were found to bear strong positive correlation in normal and colon carcinoma patient samples. Both p68 and β-catenin increased RelA mRNA and protein expression. p68, β-catenin and Wnt3a elevated RelA promoter activity. Conversely, p68 and β-catenin knockdown diminished RelA promoter activity and led to reduced RelA mRNA and protein expression. p68 was perceived to occupy RelA promoter with β-catenin at the TCF4/LEF (TBE) sites thereby potentiating RelA transcription. p68 and β-catenin alliance positively modulated the expression of signature NF-κB target genes. Enhanced NF-κB target gene expression by p68 was corroborated by findings in clinical samples. Tumors generated in mice colorectal allograft model, stably expressing p68 further reinforced our in vitro findings. CONCLUSIONS We report for the first time a novel mechanism of alliance between p68 and β-catenin in regulating the expression of RelA and stimulating the NF-κB signaling axis towards driving colon carcinogenesis. This study unravels novel modes of p68-mediated colon carcinogenesis, marking it a potential target for therapy.
Collapse
Affiliation(s)
- Veenita Khare
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector-V, Salt Lake, Kolkata- 700091 & 4, Raja S.C. Mullick Road, Jadavpur, Kolkata, 700032 India
| | - Shaheda Tabassum
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector-V, Salt Lake, Kolkata- 700091 & 4, Raja S.C. Mullick Road, Jadavpur, Kolkata, 700032 India
| | - Uttara Chatterjee
- Division of Pathology, Park Clinic, 4, Gorky Terrace, Kolkata, 700017 India
| | - Sandip Chatterjee
- Division of Pathology, Park Clinic, 4, Gorky Terrace, Kolkata, 700017 India
| | - Mrinal K. Ghosh
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector-V, Salt Lake, Kolkata- 700091 & 4, Raja S.C. Mullick Road, Jadavpur, Kolkata, 700032 India
| |
Collapse
|
38
|
Vallée A, Lecarpentier Y, Vallée JN. Curcumin: a therapeutic strategy in cancers by inhibiting the canonical WNT/β-catenin pathway. J Exp Clin Cancer Res 2019; 38:323. [PMID: 31331376 PMCID: PMC6647277 DOI: 10.1186/s13046-019-1320-y] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 07/10/2019] [Indexed: 12/13/2022] Open
Abstract
Numerous studies have presented that curcumin could have a positive effect in the prevention of cancer and then in tumor therapy. Several hypotheses have highlighted that curcumin could decreases tumor growth and invasion by acting on both chronic inflammation and oxidative stress. This review focuses on the interest of use curcumin in cancer therapy by acting on the WNT/β-catenin pathway to repress chronic inflammation and oxidative stress. In the cancer process, one of the major signaling pathways involved is the WNT/β-catenin pathway, which appears to be upregulated. Curcumin administration participates to the downregulation of the WNT/β-catenin pathway and thus, through this action, in tumor growth control. Curcumin act as PPARγ agonists. The WNT/β-catenin pathway and PPARγ act in an opposed manner. Chronic inflammation, oxidative stress and circadian clock disruption are common and co-substantial pathological processes accompanying and promoting cancers. Circadian clock disruption related to the upregulation of the WNT/β-catenin pathway is involved in cancers. By stimulating PPARγ expression, curcumin can control circadian clocks through the regulation of many key circadian genes. The administration of curcumin in cancer treatment would thus appear to be an interesting therapeutic strategy, which acts through their role in regulating WNT/β-catenin pathway and PPARγ activity levels.
Collapse
Affiliation(s)
- Alexandre Vallée
- Diagnosis and Therapeutic Center, Hypertension and Cardiovascular Prevention Unit, Hotel-Dieu Hospital, AP-HP, Université Paris Descartes, 1 place du Parvis de Notre-Dame, Paris, France
| | - Yves Lecarpentier
- Centre de Recherche Clinique, Grand Hôpital de l’Est Francilien (GHEF), 6-8 rue Saint-fiacre, 77100 Meaux, France
| | - Jean-Noël Vallée
- Centre Hospitalier Universitaire (CHU) Amiens Picardie, Université Picardie Jules Verne (UPJV), 80054 Amiens, France
- Laboratoire de Mathématiques et Applications (LMA), UMR CNRS 7348, Université de Poitiers, Poitiers, France
| |
Collapse
|
39
|
Vallée A, Lecarpentier Y, Vallée JN. Targeting the Canonical WNT/β-Catenin Pathway in Cancer Treatment Using Non-Steroidal Anti-Inflammatory Drugs. Cells 2019; 8:cells8070726. [PMID: 31311204 PMCID: PMC6679009 DOI: 10.3390/cells8070726] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 07/11/2019] [Accepted: 07/14/2019] [Indexed: 12/19/2022] Open
Abstract
Chronic inflammation and oxidative stress are common and co-substantial pathological processes accompanying and contributing to cancers. Numerous epidemiological studies have indicated that non-steroidal anti-inflammatory drugs (NSAIDs) could have a positive effect on both the prevention of cancer and tumor therapy. Numerous hypotheses have postulated that NSAIDs could slow tumor growth by acting on both chronic inflammation and oxidative stress. This review takes a closer look at these hypotheses. In the cancer process, one of the major signaling pathways involved is the WNT/β-catenin pathway, which appears to be upregulated. This pathway is closely associated with both chronic inflammation and oxidative stress in cancers. The administration of NSAIDs has been observed to help in the downregulation of the WNT/β-catenin pathway and thus in the control of tumor growth. NSAIDs act as PPARγ agonists. The WNT/β-catenin pathway and PPARγ act in opposing manners. PPARγ agonists can promote cell cycle arrest, cell differentiation, and apoptosis, and can reduce inflammation, oxidative stress, proliferation, invasion, and cell migration. In parallel, the dysregulation of circadian rhythms (CRs) contributes to cancer development through the upregulation of the canonical WNT/β-catenin pathway. By stimulating PPARγ expression, NSAIDs can control CRs through the regulation of many key circadian genes. The administration of NSAIDs in cancer treatment would thus appear to be an interesting therapeutic strategy, which acts through their role in regulating WNT/β-catenin pathway and PPARγ activity levels.
Collapse
Affiliation(s)
- Alexandre Vallée
- Diagnosis and Therapeutic Center, Hypertension and Cardiovascular Prevention Unit, Hotel-Dieu Hospital, AP-HP, Université Paris Descartes, 75004 Paris, France.
| | - Yves Lecarpentier
- Centre de Recherche Clinique, Grand Hôpital de l'Est Francilien (GHEF), 6-8 rue Saint-fiacre, 77100 Meaux, France
| | - Jean-Noël Vallée
- Centre Hospitalier Universitaire (CHU) Amiens Picardie, Université Picardie Jules Verne (UPJV), 80054 Amiens, France
- Laboratoire de Mathématiques et Applications (LMA), UMR CNRS 7348, Université de Poitiers, 86000 Poitiers, France
| |
Collapse
|
40
|
Wnt signaling in intestinal inflammation. Differentiation 2019; 108:24-32. [DOI: 10.1016/j.diff.2019.01.002] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 12/17/2018] [Accepted: 01/18/2019] [Indexed: 12/12/2022]
|
41
|
Nomura M, Matsumoto K, Shimizu Y, Ikeda M, Amano N, Nishi M, Ryo A, Nagashio R, Sato Y, Iwamura M. TROY expression is associated with pathological stage and poor prognosis in patients treated with radical cystectomy. Cancer Biomark 2019; 24:91-96. [PMID: 30475756 DOI: 10.3233/cbm-181911] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND New biomarkers may help us provide individualized prognosis and allow risk-stratified clinical decision making about radical treatment. OBJECTIVES This study aimed to determine the tumor necrosis factor of receptor superfamily 19 (TROY) expression in urothelial carcinoma and its relationship to clinicopathological findings. METHODS Immunohistochemical staining for TROY was carried out in 136 archival radical cystectomy specimens with immunoreactivity being stratified on a 0-9 scale. Expression scores for TROY were further stratified into negative (score 0) and positive (score 1 or greater). Median age was 65 years, and the median follow-up period was 50.7 months. RESULTS Expression of TROY was significantly associated with the pathological stage (p= 0.019) and expression of nestin (p= 0.013). Log-rank tests indicated that expression of TROY was significantly associated with disease progression and cancer-specific mortality (p= 0.044 and 0.008, respectively). In multivariate Cox regression analysis, lymph node status was the only independent prognostic factor for disease progression and cancer-specific survival. Expression of TROY was a marginal prognostic factor for cancer-specific survival. CONCLUSIONS TROY may therefore be a new molecular marker to aid in identifying and selecting patients undergoing radical cystectomy who could potentially benefit from multimodal treatment.
Collapse
Affiliation(s)
- Megumi Nomura
- Department of Urology, School of Medicine, Kitasato University, Sagamihara 2520374, Japan
| | - Kazumasa Matsumoto
- Department of Urology, School of Medicine, Kitasato University, Sagamihara 2520374, Japan
| | - Yuriko Shimizu
- Department of Urology, School of Medicine, Kitasato University, Sagamihara 2520374, Japan
| | - Masaomi Ikeda
- Department of Urology, School of Medicine, Kitasato University, Sagamihara 2520374, Japan
| | - Noriyuki Amano
- Department of Urology, School of Medicine, Kitasato University, Sagamihara 2520374, Japan
| | - Mayuko Nishi
- Department of Microbiology, School of Medicine, Yokohama City University, Yokohama 2360027, Japan
| | - Akihide Ryo
- Department of Microbiology, School of Medicine, Yokohama City University, Yokohama 2360027, Japan
| | - Ryo Nagashio
- Department of Molecular Diagnosis, School of Allied Health Sciences, Kitasato University, Sagamihara 2520373, Japan
| | - Yuichi Sato
- Department of Molecular Diagnosis, School of Allied Health Sciences, Kitasato University, Sagamihara 2520373, Japan
| | - Masatsugu Iwamura
- Department of Urology, School of Medicine, Kitasato University, Sagamihara 2520374, Japan
| |
Collapse
|
42
|
Shao L, Zuo X, Yang Y, Zhang Y, Yang N, Shen B, Wang J, Wang X, Li R, Jin G, Yu D, Chen Y, Sun L, Li Z, Fu Q, Hu Z, Han X, Song X, Shen H, Sun Y. The inherited variations of a p53-responsive enhancer in 13q12.12 confer lung cancer risk by attenuating TNFRSF19 expression. Genome Biol 2019; 20:103. [PMID: 31126313 PMCID: PMC6533720 DOI: 10.1186/s13059-019-1696-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Accepted: 04/22/2019] [Indexed: 12/20/2022] Open
Abstract
Background Inherited factors contribute to lung cancer risk, but the mechanism is not well understood. Defining the biological consequence of GWAS hits in cancers is a promising strategy to elucidate the inherited mechanisms of cancers. The tag-SNP rs753955 (A>G) in 13q12.12 is highly associated with lung cancer risk in the Chinese population. Here, we systematically investigate the biological significance and the underlying mechanism behind 13q12.12 risk locus in vitro and in vivo. Results We characterize a novel p53-responsive enhancer with lung tissue cell specificity in a 49-kb high linkage disequilibrium block of rs753955. This enhancer harbors 3 highly linked common inherited variations (rs17336602, rs4770489, and rs34354770) and six p53 binding sequences either close to or located between the variations. The enhancer effectively protects normal lung cell lines against pulmonary carcinogen NNK-induced DNA damages and malignant transformation by upregulating TNFRSF19 through chromatin looping. These variations significantly weaken the enhancer activity by affecting its p53 response, especially when cells are exposed to NNK. The effect of the mutant enhancer alleles on TNFRSF19 target gene in vivo is supported by expression quantitative trait loci analysis of 117 Chinese NSCLC samples and GTEx data. Differentiated expression of TNFRSF19 and its statistical significant correlation with tumor TNM staging and patient survival indicate a suppressor role of TNFRSF19 in lung cancer. Conclusion This study provides evidence of how the inherited variations in 13q12.12 contribute to lung cancer risk, highlighting the protective roles of the p53-responsive enhancer-mediated TNFRSF19 activation in lung cells under carcinogen stress. Electronic supplementary material The online version of this article (10.1186/s13059-019-1696-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lipei Shao
- Key laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, 211126, China.,Department of Cell Biology, Nanjing Medical University, Nanjing, 211126, China
| | - Xianglin Zuo
- Key laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, 211126, China.,Department of Cell Biology, Nanjing Medical University, Nanjing, 211126, China
| | - Yin Yang
- Key laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, 211126, China.,Department of Cell Biology, Nanjing Medical University, Nanjing, 211126, China
| | - Yu Zhang
- Key laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, 211126, China.,Department of Cell Biology, Nanjing Medical University, Nanjing, 211126, China
| | - Nan Yang
- Key laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, 211126, China
| | - Bin Shen
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211126, China
| | - Jianying Wang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211126, China
| | - Xuchun Wang
- Key laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, 211126, China.,Department of Cell Biology, Nanjing Medical University, Nanjing, 211126, China
| | - Ruilei Li
- Department of Cancer Biotherapy Center, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, 650000, Yunnan, China
| | - Guangfu Jin
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, 211126, China.,Collaborative Innovation Center for Cancer Personalized Medicine, Jiangsu Key Lab of Cancer Biomarkers, Prevention & Treatment, Cancer Center, Nanjing Medical University, Nanjing, 211126, China
| | - Dawei Yu
- Key laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, 211126, China.,Department of Cell Biology, Nanjing Medical University, Nanjing, 211126, China
| | - Yuan Chen
- Key laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, 211126, China.,Department of Cell Biology, Nanjing Medical University, Nanjing, 211126, China
| | - Luan Sun
- Key laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, 211126, China.,Department of Cell Biology, Nanjing Medical University, Nanjing, 211126, China
| | - Zhen Li
- Department of Cancer Biotherapy Center, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, 650000, Yunnan, China
| | - Qiaofen Fu
- Department of Cancer Biotherapy Center, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, 650000, Yunnan, China
| | - Zhibin Hu
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, 211126, China.,Collaborative Innovation Center for Cancer Personalized Medicine, Jiangsu Key Lab of Cancer Biomarkers, Prevention & Treatment, Cancer Center, Nanjing Medical University, Nanjing, 211126, China
| | - Xiao Han
- Key laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, 211126, China
| | - Xin Song
- Department of Cancer Biotherapy Center, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, 650000, Yunnan, China.
| | - Hongbin Shen
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, 211126, China. .,Collaborative Innovation Center for Cancer Personalized Medicine, Jiangsu Key Lab of Cancer Biomarkers, Prevention & Treatment, Cancer Center, Nanjing Medical University, Nanjing, 211126, China.
| | - Yujie Sun
- Key laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, 211126, China. .,Collaborative Innovation Center for Cancer Personalized Medicine, Jiangsu Key Lab of Cancer Biomarkers, Prevention & Treatment, Cancer Center, Nanjing Medical University, Nanjing, 211126, China. .,Department of Cell Biology, Nanjing Medical University, Nanjing, 211126, China.
| |
Collapse
|
43
|
A Role for NF-κB in Organ Specific Cancer and Cancer Stem Cells. Cancers (Basel) 2019; 11:cancers11050655. [PMID: 31083587 PMCID: PMC6563002 DOI: 10.3390/cancers11050655] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 05/02/2019] [Accepted: 05/08/2019] [Indexed: 02/07/2023] Open
Abstract
Cancer stem cells (CSCs) account for tumor initiation, invasiveness, metastasis, and recurrence in a broad range of human cancers. Although being a key player in cancer development and progression by stimulating proliferation and metastasis and preventing apoptosis, the role of the transcription factor NF-κB in cancer stem cells is still underestimated. In the present review, we will evaluate the role of NF-κB in CSCs of glioblastoma multiforme, ovarian cancer, multiple myeloma, lung cancer, colon cancer, prostate cancer, as well as cancer of the bone. Next to summarizing current knowledge regarding the presence and contribution of CSCs to the respective types of cancer, we will emphasize NF-κB-mediated signaling pathways directly involved in maintaining characteristics of cancer stem cells associated to tumor progression. Here, we will also focus on the status of NF-κB-activity predominantly in CSC populations and the tumor mass. Genetic alterations leading to NF-κB activity in glioblastoma, ependymoma, and multiple myeloma will be discussed.
Collapse
|
44
|
Hsu YB, Lan MC, Kuo YL, Huang CYF, Lan MY. A preclinical evaluation of thiostrepton, a natural antibiotic, in nasopharyngeal carcinoma. Invest New Drugs 2019; 38:264-273. [DOI: 10.1007/s10637-019-00779-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Accepted: 04/03/2019] [Indexed: 12/18/2022]
|
45
|
Qi Y, Li J. RETRACTED: Triptolide inhibits the growth and migration of colon carcinoma cells by down-regulation of miR-191. Exp Mol Pathol 2019; 107:23-31. [PMID: 30684462 DOI: 10.1016/j.yexmp.2019.01.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 01/16/2019] [Accepted: 01/21/2019] [Indexed: 12/22/2022]
Abstract
This article has been retracted: please see Elsevier Policy on Article Withdrawal (http://www.elsevier.com/locate/withdrawalpolicy). This article has been retracted at the request of the Editor-in-Chief. Concerns were raised about the background pattern of the Western Blots from Figure 2A. Given the comments of Dr Elisabeth Bik regarding this article “This paper belongs to a set of over 400 papers (as per February 2020) that share very similar Western blots with tadpole-like shaped bands, the same background pattern, and striking similarities in title structures, paper layout, bar graph design, and - in a subset - flow cytometry panels”, the journal requested the authors to provide the raw data. However, the authors were not able to fulfil this request and therefore the Editor-in-Chief decided to retract the article.
Collapse
Affiliation(s)
- Yuxi Qi
- Department of Anorectal Surgery, Jining No.1 People's Hospital, Jining 272011, China; Affiliated Jining No.1 People's Hospital of Jining Medical University, Jining Medical University, Jining 272067, China
| | - Jinliang Li
- Department of Anorectal Surgery, Jining No.1 People's Hospital, Jining 272011, China.
| |
Collapse
|
46
|
PDZ-RhoGEF Is a Signaling Effector for TROY-Induced Glioblastoma Cell Invasion and Survival. Neoplasia 2018; 20:1045-1058. [PMID: 30219706 PMCID: PMC6140379 DOI: 10.1016/j.neo.2018.08.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 08/17/2018] [Accepted: 08/20/2018] [Indexed: 11/24/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most common type of malignant brain tumors in adults and has a dismal prognosis. The highly aggressive invasion of malignant cells into the normal brain parenchyma renders complete surgical resection of GBM tumors impossible, increases resistance to therapeutic treatment, and leads to near-universal tumor recurrence. We have previously demonstrated that TROY (TNFRSF19) plays an important role in glioblastoma cell invasion and therapeutic resistance. However, the potential downstream effectors of TROY signaling have not been fully characterized. Here, we identified PDZ-RhoGEF as a binding partner for TROY that potentiated TROY-induced nuclear factor kappa B activation which is necessary for both cell invasion and survival. In addition, PDZ-RhoGEF also interacts with Pyk2, indicating that PDZ-RhoGEF is a component of a signalsome that includes TROY and Pyk2. PDZ-RhoGEF is overexpressed in glioblastoma tumors and stimulates glioma cell invasion via Rho activation. Increased PDZ-RhoGEF expression enhanced TROY-induced glioma cell migration. Conversely, silencing PDZ-RhoGEF expression inhibited TROY-induced glioma cell migration, increased sensitivity to temozolomide treatment, and extended survival of orthotopic xenograft mice. Furthermore, depletion of RhoC or RhoA inhibited TROY- and PDZ-RhoGEF-induced cell migration. Mechanistically, increased TROY expression stimulated Rho activation, and depletion of PDZ-RhoGEF expression reduced this activation. Taken together, these data suggest that PDZ-RhoGEF plays an important role in TROY signaling and provides insights into a potential node of vulnerability to limit GBM cell invasion and decrease therapeutic resistance.
Collapse
|
47
|
Yang VW, Liu Y, Kim J, Shroyer KR, Bialkowska AB. Increased Genetic Instability and Accelerated Progression of Colitis-Associated Colorectal Cancer through Intestinal Epithelium-specific Deletion of Klf4. Mol Cancer Res 2018; 17:165-176. [PMID: 30108164 DOI: 10.1158/1541-7786.mcr-18-0399] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 07/05/2018] [Accepted: 08/08/2018] [Indexed: 12/15/2022]
Abstract
Krüppel-like factor 4 (KLF4), a zinc finger transcription factor, regulates homeostasis of the intestinal epithelium. Previously, it was reported that KLF4 functions as a tumor suppressor in colorectal cancer. Here, evidence demonstrates that KLF4 mitigates the development and progression of colitis-associated colorectal cancer (CAC) in a murine model. Mice with intestinal epithelium-specific deletion of Klf4 (Klf4ΔIS ) and control mice (Klf4fl/fl ) were used to explore the role of KLF4 in the development of azoxymethane (AOM) and dextran sodium sulfate (DSS)-induced CAC. Upon AOM and DSS treatment, KLF4 expression was progressively lost in colonic tissues of Klf4fl/fl mice during tumor development. Klf4ΔIS mice treated with AOM/DSS developed significantly more adenomatous polyps and carcinomas in situ in comparison with treated Klf4fl/fl mice. Adenomatous polyps, but not normal-appearing mucosa, from colonic tissues of treated Klf4ΔIS mice contained a significantly increased number of mitotic cells with more than 2 centrosomes relative to treated control mice. KLF4 and p53 colocalize to the centrosomes in mouse embryonic fibroblasts (MEF). Absence of KLF4 in Klf4-/- MEFs inhibits and its overexpression restores p53 localization to the centrosomes in Klf4-/- MEFs. IMPLICATIONS: Taken together, these results indicate that KLF4 plays a protective role against progression of CAC by guarding against genetic instability.
Collapse
Affiliation(s)
- Vincent W Yang
- Department of Medicine, Stony Brook University School of Medicine, Stony Brook, New York. .,Department of Physiology and Biophysics, Stony Brook University School of Medicine, Stony Brook, New York
| | - Yang Liu
- Department of Medicine, Stony Brook University School of Medicine, Stony Brook, New York
| | - Julie Kim
- Department of Medicine, Stony Brook University School of Medicine, Stony Brook, New York
| | - Kenneth R Shroyer
- Department of Pathology, Stony Brook University School of Medicine, Stony Brook, New York
| | - Agnieszka B Bialkowska
- Department of Medicine, Stony Brook University School of Medicine, Stony Brook, New York.
| |
Collapse
|
48
|
Katoh M. Multi‑layered prevention and treatment of chronic inflammation, organ fibrosis and cancer associated with canonical WNT/β‑catenin signaling activation (Review). Int J Mol Med 2018; 42:713-725. [PMID: 29786110 PMCID: PMC6034925 DOI: 10.3892/ijmm.2018.3689] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 05/16/2018] [Indexed: 12/13/2022] Open
Abstract
β-catenin/CTNNB1 is an intracellular scaffold protein that interacts with adhesion molecules (E-cadherin/CDH1, N-cadherin/CDH2, VE-cadherin/CDH5 and α-catenins), transmembrane-type mucins (MUC1/CD227 and MUC16/CA125), signaling regulators (APC, AXIN1, AXIN2 and NHERF1/EBP50) and epigenetic or transcriptional regulators (BCL9, BCL9L, CREBBP/CBP, EP300/p300, FOXM1, MED12, SMARCA4/BRG1 and TCF/LEF). Gain-of-function CTTNB1 mutations are detected in bladder cancer, colorectal cancer, gastric cancer, liver cancer, lung cancer, pancreatic cancer, prostate cancer and uterine cancer, whereas loss-of-function CTNNB1 mutations are also detected in human cancer. ABCB1, ALDH1A1, ASCL2, ATF3, AXIN2, BAMBI, CCND1, CD44, CLDN1, CTLA4, DKK1, EDN1, EOMES, FGF18, FGF20, FZD7, IL10, JAG1, LEF1, LGR5, MITF, MSX1, MYC, NEUROD1, NKD1, NODAL, NOTCH2, NOTUM, NRCAM, OPN, PAX3, PPARD, PTGS2, RNF43, SNAI1, SP5, TCF7, TERT, TNFRSF19, VEGFA and ZNRF3 are representative β-catenin target genes. β-catenin signaling is involved in myofibroblast activation and subsequent pulmonary fibrosis, in addition to other types of fibrosis. β-catenin and NF-κB signaling activation are involved in field cancerization in the stomach associated with Helicobacter pylori (H. pylori) infection and in the liver associated with hepatitis C virus (HCV) infection and other etiologies. β-catenin-targeted therapeutics are functionally classified into β-catenin inhibitors targeting upstream regulators (AZ1366, ETC-159, G007-LK, GNF6231, ipafricept, NVP-TNKS656, rosmantuzumab, vantictumab, WNT-C59, WNT974 and XAV939), β-catenin inhibitors targeting protein-protein interactions (CGP049090, CWP232228, E7386, ICG-001, LF3 and PRI-724), β-catenin inhibitors targeting epigenetic regulators (PKF118-310), β-catenin inhibitors targeting mediator complexes (CCT251545 and cortistatin A) and β-catenin inhibitors targeting transmembrane-type transcriptional outputs, including CD44v6, FZD7 and LGR5. Eradicating H. pylori and HCV is the optimal approach for the first-line prevention of gastric cancer and hepatocellular carcinoma (HCC), respectively. However, β-catenin inhibitors may be applicable for the prevention of organ fibrosis, second-line HCC prevention and treating β-catenin-driven cancer. The multi-layered prevention and treatment strategy of β-catenin-related human diseases is necessary for the practice of personalized medicine and implementation of precision medicine.
Collapse
Affiliation(s)
- Masaru Katoh
- Department of Omics Network, National Cancer Center, Chuo Ward, Tokyo 104‑0045, Japan
| |
Collapse
|
49
|
Deng C, Lin YX, Qi XK, He GP, Zhang Y, Zhang HJ, Xu M, Feng QS, Bei JX, Zeng YX, Feng L. TNFRSF19 Inhibits TGFβ Signaling through Interaction with TGFβ Receptor Type I to Promote Tumorigenesis. Cancer Res 2018; 78:3469-3483. [PMID: 29735548 DOI: 10.1158/0008-5472.can-17-3205] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 03/27/2018] [Accepted: 04/26/2018] [Indexed: 11/16/2022]
Abstract
Genetic susceptibility underlies the pathogenesis of cancer. We and others have previously identified a novel susceptibility gene TNFRSF19, which encodes an orphan member of the TNF receptor superfamily known to be associated with nasopharyngeal carcinoma (NPC) and lung cancer risk. Here, we show that TNFRSF19 is highly expressed in NPC and is required for cell proliferation and NPC development. However, unlike most of the TNF receptors, TNFRSF19 was not involved in NFκB activation or associated with TRAF proteins. We identified TGFβ receptor type I (TβRI) as a specific binding partner for TNFRSF19. TNFRSF19 bound the kinase domain of TβRI in the cytoplasm, thereby blocking Smad2/3 association with TβRI and subsequent signal transduction. Ectopic expression of TNFRSF19 in normal epithelial cells conferred resistance to the cell-cycle block induced by TGFβ, whereas knockout of TNFRSF19 in NPC cells unleashed a potent TGFβ response characterized by upregulation of Smad2/3 phosphorylation and TGFβ target gene transcription. Furthermore, elevated TNFRSF19 expression correlated with reduced TGFβ activity and poor prognosis in patients with NPC. Our data reveal that gain of function of TNFRSF19 in NPC represents a mechanism by which tumor cells evade the growth-inhibitory action of TGFβ.Significance:TNFRSF19, a susceptibility gene for nasopharyngeal carcinoma and other cancers, functions as a potent inhibitor of the TGFβ signaling pathway.Graphical Abstract: http://cancerres.aacrjournals.org/content/canres/78/13/3469/F1.large.jpg Cancer Res; 78(13); 3469-83. ©2018 AACR.
Collapse
Affiliation(s)
- Chengcheng Deng
- Department of Experimental Research, Sun Yat-sen University Cancer Center, State Key Laboratory Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Yu-Xin Lin
- Department of Experimental Research, Sun Yat-sen University Cancer Center, State Key Laboratory Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Xue-Kang Qi
- Department of Experimental Research, Sun Yat-sen University Cancer Center, State Key Laboratory Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Gui-Ping He
- Department of Experimental Research, Sun Yat-sen University Cancer Center, State Key Laboratory Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Yuchen Zhang
- Department of Experimental Research, Sun Yat-sen University Cancer Center, State Key Laboratory Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Hao-Jiong Zhang
- Department of Experimental Research, Sun Yat-sen University Cancer Center, State Key Laboratory Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Miao Xu
- Department of Experimental Research, Sun Yat-sen University Cancer Center, State Key Laboratory Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Qi-Sheng Feng
- Department of Experimental Research, Sun Yat-sen University Cancer Center, State Key Laboratory Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Jin-Xin Bei
- Department of Experimental Research, Sun Yat-sen University Cancer Center, State Key Laboratory Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Yi-Xin Zeng
- Department of Experimental Research, Sun Yat-sen University Cancer Center, State Key Laboratory Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.
| | - Lin Feng
- Department of Experimental Research, Sun Yat-sen University Cancer Center, State Key Laboratory Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.
| |
Collapse
|
50
|
Vallée A, Vallée JN, Guillevin R, Lecarpentier Y. Interactions Between the Canonical WNT/Beta-Catenin Pathway and PPAR Gamma on Neuroinflammation, Demyelination, and Remyelination in Multiple Sclerosis. Cell Mol Neurobiol 2018; 38:783-795. [PMID: 28905149 DOI: 10.1007/s10571-017-0550-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 09/09/2017] [Indexed: 12/13/2022]
Abstract
Multiple sclerosis (MS) is marked by neuroinflammation and demyelination with loss of oligodendrocytes in the central nervous system. The immune response is regulated by WNT/beta-catenin pathway in MS. Activated NF-kappaB, a major effector of neuroinflammation, and upregulated canonical WNT/beta-catenin pathway positively regulate each other. Demyelinating events present an upregulation of WNT/beta-catenin pathway, whereas proper myelinating phases show a downregulation of WNT/beta-catenin pathway essential for the promotion of oligodendrocytes precursors cells proliferation and differentiation. The activation of WNT/beta-catenin pathway results in differentiation failure and impairment in remyelination. However, PI3K/Akt pathway and TCF7L2, two downstream targets of WNT/beta-catenin pathway, are upregulated and promote proper remyelination. The interactions of these signaling pathways remain unclear. PPAR gamma activation can inhibit NF-kappaB, and can also downregulate the WNT/beta-catenin pathway. PPAR gamma and canonical WNT/beta-catenin pathway act in an opposite manner. PPAR gamma agonists appear as a promising treatment for the inhibition of demyelination and the promotion of proper remyelination through the control of both NF-kappaB activity and canonical WNT/beta-catenin pathway.
Collapse
Affiliation(s)
- Alexandre Vallée
- Experimental and Clinical Neurosciences Laboratory, INSERM U1084, University of Poitiers, Poitiers, France.
- Laboratory of Mathematics and Applications (LMA), UMR CNRS 7348, University of Poitiers, Poitiers, France.
| | - Jean-Noël Vallée
- Laboratory of Mathematics and Applications (LMA), UMR CNRS 7348, University of Poitiers, Poitiers, France
- CHU Amiens Picardie, University of Picardie Jules Verne (UPJV), Amiens, France
| | - Rémy Guillevin
- DACTIM, UMR CNRS 7348, University of Poitiers et CHU de Poitiers, Poitiers, France
| | - Yves Lecarpentier
- Centre de Recherche Clinique, Grand Hôpital de l'Est Francilien (GHEF), Meaux, France
| |
Collapse
|