1
|
Carisch L, Lindt B, Richter H, Del Chicca F. Regional ADC values of the morphologically normal canine brain. Front Vet Sci 2023; 10:1219943. [PMID: 38026624 PMCID: PMC10663295 DOI: 10.3389/fvets.2023.1219943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction Diffusion-weighted magnetic resonance imaging is increasingly available for investigation of canine brain diseases. Apparent diffusion coefficient (ADC) of normal canine brains is reported only in small numbers of subjects. The aim of the study was to investigate the ADC of different anatomical regions in the morphologically normal brain in a large population of canine patients in clinical setting. Additionally, possible influence on the ADC value of patient-related factors like sex, age and body weight, difference between the left and right side of the cerebral hemispheres, and between gray and white matter were investigated. Methods Brain magnetic resonance studies including diffusion-weighted images of dogs presented at the Vetsuisse Faculty-University Zurich between 2015 and 2020 were reviewed retrospectively. Only morphologically normal brain magnetic resonance studies of dogs presented with neurological signs or non-neurological signs were included. Apparent diffusion coefficient values of 12 regions of interest (ROIs) in each hemisphere and an additional region in the cerebellar vermis were examined in each dog. Results A total of 321 dogs (including 247 dogs with neurological signs and 62 dogs with non-neurological signs) of various breeds, sex and age were included. Apparent diffusion coefficient significantly varied among most anatomical brain regions. A significantly higher ADC was measured in the gray [median 0.79 (range 0.69-0.90) × 10-3 mm2/s] compared to the white matter [median 0.70 (range 0.63-0.85) × 10-3 mm2/s]. No significant differences were found between the left and right cerebral hemispheres in most of the regions, neither between sexes, different reproductive status, and not consistently between body weight groups. Age was correlated first with a decrease from dogs <1 year of age to middle-age (⩾3 to <8 years) dogs and later with an increase of ADC values in dogs ⩾8 years. Discussion Apparent diffusion coefficient values of 25 ROIs were described in 321 morphologically normal canine brains in clinical setting. Apparent diffusion coefficient differences depending on the brain anatomical region are present. Apparent diffusion coefficient differences among age classes are present, likely consistent with brain maturation and aging. The described data can be a reference for future studies in clinical settings on the canine brain.
Collapse
Affiliation(s)
- Lea Carisch
- Clinic for Diagnostic Imaging, Department of Diagnostics and Clinical Services, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | | | | | | |
Collapse
|
2
|
Merisaari H, Karlsson L, Scheinin NM, Shulist SJ, Lewis JD, Karlsson H, Tuulari JJ. Effect of number of diffusion encoding directions in neonatal diffusion tensor imaging using Tract-Based Spatial Statistical analysis. Eur J Neurosci 2023; 58:3827-3837. [PMID: 37641861 DOI: 10.1111/ejn.16135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 08/09/2023] [Accepted: 08/12/2023] [Indexed: 08/31/2023]
Abstract
Diffusion tensor imaging (DTI) has been used to study the developing brain in early childhood, infants and in utero studies. In infants, number of used diffusion encoding directions has traditionally been smaller in earlier studies down to the minimum of 6 orthogonal directions. Whereas the more recent studies often involve more directions, number of used directions remain an issue when acquisition time is optimized without compromising on data quality and in retrospective studies. Variability in the number of used directions may introduce bias and uncertainties to the DTI scalar estimates that affect cross-sectional and longitudinal study of the brain. We analysed DTI images of 133 neonates, each data having 54 directions after quality control, to evaluate the effect of number of diffusion weighting directions from 6 to 54 with interval of 6 to the DTI scalars with Tract-Based Spatial Statistics (TBSS) analysis. The TBSS analysis was applied to DTI scalar maps, and the mean region of interest (ROI) values were extracted using JHU atlas. We found significant bias in ROI mean values when only 6 directions were used (positive in fractional anisotropy [FA] and negative in fractional anisotropy [MD], axial diffusivity [AD] and fractional anisotropy [RD]), while when using 24 directions and above, the difference to scalar values calculated from 54 direction DTI was negligible. In repeated measures voxel-wise analysis, notable differences to 54 direction DTI were observed with 6, 12 and 18 directions. DTI measurements from data with at least 24 directions may be used in comparisons with DTI measurements from data with higher numbers of directions.
Collapse
Affiliation(s)
- Harri Merisaari
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland
- Centre for Population Health Research, Turku University Central Hospital and University of Turku, Turku, Finland
- Department of Radiology, Turku University Central Hospital and University of Turku, Turku, Finland
| | - Linnea Karlsson
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland
- Centre for Population Health Research, Turku University Central Hospital and University of Turku, Turku, Finland
- Department of Paediatrics and Adolescent Medicine, Turku University Central Hospital and University of Turku, Turku, Finland
- Department of Psychiatry, Turku University Hospital and University of Turku, Turku, Finland
| | - Noora M Scheinin
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland
- Centre for Population Health Research, Turku University Central Hospital and University of Turku, Turku, Finland
- Department of Psychiatry, Turku University Hospital and University of Turku, Turku, Finland
| | - Satu J Shulist
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland
- Centre for Population Health Research, Turku University Central Hospital and University of Turku, Turku, Finland
| | - John D Lewis
- Montreal Neurological Institute, McGill University, Montreal, Québec, Canada
| | - Hasse Karlsson
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland
- Centre for Population Health Research, Turku University Central Hospital and University of Turku, Turku, Finland
- Department of Psychiatry, Turku University Hospital and University of Turku, Turku, Finland
| | - Jetro J Tuulari
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland
- Centre for Population Health Research, Turku University Central Hospital and University of Turku, Turku, Finland
- Turku Collegium of Science, Medicine and Technology, University of Turku, Turku, Finland
| |
Collapse
|
3
|
Perakis E. On Modelling Electrical Conductivity of the Cerebral White Matter. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1424:81-89. [PMID: 37486482 DOI: 10.1007/978-3-031-31982-2_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
The conductivity, in general, of the brain tissues is a characteristic key of functional cerebral changes. White matter electric conductivity appears to be extremely anisotropic, so a tensor (matrix) is needed to describe it. Traditional methods of imaging brain electrical properties fail to capture it and required the interpolation of the diffusion matrix. The electrochemical model is suitable for analysis, while, on the other hand, the volume fraction model is suitable for studying the effect of white matter structural changes in relation to electrical conductivity. It adopts a relevant algorithm, based upon a linear conductivity-to-diffusivity relationship and a volume constraint, respectively. It incorporates the effects of the partial volume of the cerebrospinal fluid and the structure of the neuronal fiber crossing, which was not achieved by the existing algorithms, accomplishing a more accurate estimation of the anisotropic conductivity of the white matter. Diffusion matrix imaging is a powerful noninvasive method for characterizing neuronal tissue in the human brain. The ultimate goal is to study and draw appropriate conclusions, regarding the molecule diffusion in the brain under normal physiological conditions and the changes that occur in development, diseases, and aging. The ability to measure the electrical conductivity of brain tissues in a noninvasive way also helps in characterizing endogenous currents by measuring the associated electromagnetic fields.
Collapse
|
4
|
Korkalainen N, Ilvesmäki T, Parkkola R, Perhomaa M, Mäkikallio K. Brain volumes and white matter microstructure in 8- to 10-year-old children born with fetal growth restriction. Pediatr Radiol 2022; 52:2388-2400. [PMID: 35460034 PMCID: PMC9616762 DOI: 10.1007/s00247-022-05372-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 03/05/2022] [Accepted: 03/29/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Fetal growth restriction caused by placental insufficiency is associated with increased risk of poor neurodevelopment, even in the absence of specific perinatal brain injury. Placental insufficiency leads to chronic hypoxaemia that may alter cerebral tissue organisation and maturation. OBJECTIVE The aim of this study was to assess the effects fetal growth restriction and fetal haemodynamic abnormalities have on brain volumes and white matter microstructure at early school age. MATERIALS AND METHODS This study examined 32 children born with fetal growth restriction at 24 to 40 gestational weeks, and 27 gestational age-matched children, who were appropriate for gestational age. All children underwent magnetic resonance imaging (MRI) at the age of 8-10 years. Cerebral volumes were analysed, and tract-based spatial statistics and atlas-based analysis of white matter were performed on 17 children born with fetal growth restriction and 14 children with birth weight appropriate for gestational age. RESULTS Children born with fetal growth restriction demonstrated smaller total intracranial volumes compared to children with normal fetal growth, whereas no significant differences in grey or white matter volumes were detected. On atlas-based analysis of white matter, children born with fetal growth restriction demonstrated higher mean and radial diffusivity values in large white matter tracts when compared to children with normal fetal growth. CONCLUSION Children ages 8-10 years old born with fetal growth restriction demonstrated significant changes in white matter microstructure compared to children who were appropriate for gestational age, even though no differences in grey and white matter volumes were detected. Poor fetal growth may impact white matter maturation and lead to neurodevelopmental impairment later in life.
Collapse
Affiliation(s)
- Noora Korkalainen
- Department of Obstetrics and Gynecology, PEDEGO Research Unit, Oulu University Hospital, Aapistie 5 A, 5000, FI-90014, Oulu, PL, Finland.
- University of Oulu, Oulu, Finland.
| | - Tero Ilvesmäki
- Department of Radiology, Turku University Hospital, Turku, Finland
- Department of Radiology, University of Turku, Turku, Finland
| | - Riitta Parkkola
- Department of Radiology, Turku University Hospital, Turku, Finland
- Department of Radiology, University of Turku, Turku, Finland
| | - Marja Perhomaa
- Department of Radiology, Oulu University Hospital, Oulu, Finland
| | - Kaarin Mäkikallio
- Department of Radiology, University of Turku, Turku, Finland
- Department of Obstetrics and Gynecology, Turku University Hospital, Turku, Finland
| |
Collapse
|
5
|
Bobba PS, Weber CF, Mak A, Mozayan A, Malhotra A, Sheth KN, Taylor SN, Vossough A, Grant PE, Scheinost D, Constable RT, Ment LR, Payabvash S. Age-related topographic map of magnetic resonance diffusion metrics in neonatal brains. Hum Brain Mapp 2022; 43:4326-4334. [PMID: 35599634 PMCID: PMC9435001 DOI: 10.1002/hbm.25956] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/22/2022] [Accepted: 05/06/2022] [Indexed: 01/15/2023] Open
Abstract
Accelerated maturation of brain parenchyma close to term-equivalent age leads to rapid changes in diffusion-weighted imaging (DWI) and diffusion tensor imaging (DTI) metrics of neonatal brains, which can complicate the evaluation and interpretation of these scans. In this study, we characterized the topography of age-related evolution of diffusion metrics in neonatal brains. We included 565 neonates who had MRI between 0 and 3 months of age, with no structural or signal abnormality-including 162 who had DTI scans. We analyzed the age-related changes of apparent diffusion coefficient (ADC) values throughout brain and DTI metrics (fractional anisotropy [FA] and mean diffusivity [MD]) along white matter (WM) tracts. Rate of change in ADC, FA, and MD values across 5 mm cubic voxels was calculated. There was significant reduction of ADC and MD values and increase of FA with increasing gestational age (GA) throughout neonates' brain, with the highest temporal rates in subcortical WM, corticospinal tract, cerebellar WM, and vermis. GA at birth had significant effect on ADC values in convexity cortex and corpus callosum as well as FA/MD values in corpus callosum, after correcting for GA at scan. We developed online interactive atlases depicting age-specific normative values of ADC (ages 34-46 weeks), and FA/MD (35-41 weeks). Our results show a rapid decrease in diffusivity metrics of cerebral/cerebellar WM and vermis in the first few weeks of neonatal age, likely attributable to myelination. In addition, prematurity and low GA at birth may result in lasting delay in corpus callosum myelination and cerebral cortex cellularity.
Collapse
Affiliation(s)
- Pratheek S. Bobba
- Department of Radiology and Biomedical ImagingYale School of MedicineNew HavenConnecticutUSA
| | - Clara F. Weber
- Department of Radiology and Biomedical ImagingYale School of MedicineNew HavenConnecticutUSA
- Social Neuroscience Lab, Department of Psychiatry and PsychotherapyLübeck UniversityLübeckGermany
| | - Adrian Mak
- Department of Radiology and Biomedical ImagingYale School of MedicineNew HavenConnecticutUSA
- CLAIM ‐ Charité Lab for Artificial Intelligence in MedicineCharité Universitätsmedizin BerlinBerlinGermany
| | - Ali Mozayan
- Department of Radiology and Biomedical ImagingYale School of MedicineNew HavenConnecticutUSA
| | - Ajay Malhotra
- Department of Radiology and Biomedical ImagingYale School of MedicineNew HavenConnecticutUSA
| | - Kevin N. Sheth
- Department of NeurologyYale University School of MedicineNew HavenConnecticutUSA
| | - Sarah N. Taylor
- Department of PediatricsYale University School of MedicineNew HavenConnecticutUSA
| | - Arastoo Vossough
- Department of RadiologyChildren's Hospital of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Department of RadiologyUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Patricia Ellen Grant
- Division of Newborn Medicine, Department of MedicineBoston Children's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
- Department of Radiology, Boston Children's HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Dustin Scheinost
- Department of Radiology and Biomedical ImagingYale School of MedicineNew HavenConnecticutUSA
| | - Robert Todd Constable
- Department of Radiology and Biomedical ImagingYale School of MedicineNew HavenConnecticutUSA
| | - Laura R. Ment
- Department of NeurologyYale University School of MedicineNew HavenConnecticutUSA
- Department of PediatricsYale University School of MedicineNew HavenConnecticutUSA
| | - Seyedmehdi Payabvash
- Department of Radiology and Biomedical ImagingYale School of MedicineNew HavenConnecticutUSA
| |
Collapse
|
6
|
Associations between Brain Microstructure and Phonological Processing Ability in Preschool Children. CHILDREN 2022; 9:children9060782. [PMID: 35740719 PMCID: PMC9221994 DOI: 10.3390/children9060782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 11/17/2022]
Abstract
Neuroimaging studies have associated brain changes in children with future reading and language skills, but few studies have investigated the association between language skills and white matter structure in preschool-aged children. Using 208 data sets acquired in 73 healthy children aged 2–7 years, we investigated the relationship between developmental brain microstructure and phonological processing ability as measured using their phonological processing raw score (PPRS). The correlation analysis showed that across the whole age group, with increasing age, PPRS increased, fractional anisotropy (FA) of the internal capsule and inferior fronto-occipital fasciculus and some other regions increased, and mean diffusivity (MD) of the corpus callosum and internal capsule and some other regions decreased. The results of the mediation analysis suggest that increased FA may be the basis of phonological processing ability development during this period, and the increased number of fiber connections between the right inferior parietal lobule and right supramarginal gyrus may be a key imaging feature of phonological processing ability development. Our study reflects the changes in brain microstructure and contributes to understanding the underlying neural mechanisms of language development in preschool children.
Collapse
|
7
|
Zhang F, Daducci A, He Y, Schiavi S, Seguin C, Smith RE, Yeh CH, Zhao T, O'Donnell LJ. Quantitative mapping of the brain's structural connectivity using diffusion MRI tractography: A review. Neuroimage 2022; 249:118870. [PMID: 34979249 PMCID: PMC9257891 DOI: 10.1016/j.neuroimage.2021.118870] [Citation(s) in RCA: 102] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 12/03/2021] [Accepted: 12/31/2021] [Indexed: 12/13/2022] Open
Abstract
Diffusion magnetic resonance imaging (dMRI) tractography is an advanced imaging technique that enables in vivo reconstruction of the brain's white matter connections at macro scale. It provides an important tool for quantitative mapping of the brain's structural connectivity using measures of connectivity or tissue microstructure. Over the last two decades, the study of brain connectivity using dMRI tractography has played a prominent role in the neuroimaging research landscape. In this paper, we provide a high-level overview of how tractography is used to enable quantitative analysis of the brain's structural connectivity in health and disease. We focus on two types of quantitative analyses of tractography, including: 1) tract-specific analysis that refers to research that is typically hypothesis-driven and studies particular anatomical fiber tracts, and 2) connectome-based analysis that refers to research that is more data-driven and generally studies the structural connectivity of the entire brain. We first provide a review of methodology involved in three main processing steps that are common across most approaches for quantitative analysis of tractography, including methods for tractography correction, segmentation and quantification. For each step, we aim to describe methodological choices, their popularity, and potential pros and cons. We then review studies that have used quantitative tractography approaches to study the brain's white matter, focusing on applications in neurodevelopment, aging, neurological disorders, mental disorders, and neurosurgery. We conclude that, while there have been considerable advancements in methodological technologies and breadth of applications, there nevertheless remains no consensus about the "best" methodology in quantitative analysis of tractography, and researchers should remain cautious when interpreting results in research and clinical applications.
Collapse
Affiliation(s)
- Fan Zhang
- Brigham and Women's Hospital, Harvard Medical School, Boston, USA.
| | | | - Yong He
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China; Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China; IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China; Chinese Institute for Brain Research, Beijing, China
| | - Simona Schiavi
- Department of Computer Science, University of Verona, Verona, Italy
| | - Caio Seguin
- Melbourne Neuropsychiatry Centre, University of Melbourne and Melbourne Health, Melbourne, Australia; The University of Sydney, School of Biomedical Engineering, Sydney, Australia
| | - Robert E Smith
- The Florey Institute of Neuroscience and Mental Health, Melbourne, Australia; Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Australia
| | - Chun-Hung Yeh
- Institute for Radiological Research, Chang Gung University, Taoyuan, Taiwan; Department of Psychiatry, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Tengda Zhao
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China; Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China; IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | | |
Collapse
|
8
|
Shirazi Y, Oghabian MA, Batouli SAH. Along-tract analysis of the white matter is more informative about brain ageing, compared to whole-tract analysis. Clin Neurol Neurosurg 2021; 211:107048. [PMID: 34826755 DOI: 10.1016/j.clineuro.2021.107048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 10/25/2021] [Accepted: 11/14/2021] [Indexed: 11/30/2022]
Abstract
Diffusion Tensor Imaging (DTI) enabled the investigation of brain White Matter (WM), both qualitatively to study the macrostructure, and quantitatively to study the microstructure. The quantitative analyses are mostly performed at the whole-tract level, i.e., providing one measure of interest per tract; however, along-tract approaches may provide finer details of the quality of the WM tracts. In this study, using the DWI data collected from 40 young and 40 old individuals, we compared the DTI measures of FA, MD, AD, and RD, estimated by both whole-tract and along-tract approaches in 18 WM bundles, between the two groups. The results of the whole-tract quantitative analysis showed a statistically significant (p-FWER < 0.05) difference between the old and young groups in 6 tracts for FA, 8 tracts for MD, 1 tract for AD, and 7 tracts for RD. On the contrary, the along-tract approach showed differences between the two groups in 10 tracts for FA, 14 tracts for MD, 8 tracts for AD, and 11 tracts for RD. All the differences between the along-tract measures of the two groups had a large effect size (Cohen'd > 0.80). This study showed that the along-tract approach for the analysis of brain WM reveals changes in some WM tracts which had not shown any changes in the whole-tract approach, and therefore this finding emphasizes the utilization of the along-tract approach along with the whole-tract method for a more accurate study of the brain WM.
Collapse
Affiliation(s)
- Yasin Shirazi
- Medical Physics and Biomedical Engineering Department, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Ali Oghabian
- Medical Physics and Biomedical Engineering Department, Tehran University of Medical Sciences, Tehran, Iran; Neuroimaging and Analysis Group, Research Center for Molecular and Cellular Imaging, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Amir Hossein Batouli
- Neuroimaging and Analysis Group, Research Center for Molecular and Cellular Imaging, Tehran University of Medical Sciences, Tehran, Iran; Department of Neuroscience and addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
9
|
Han X, Geng Z, Zhu Q, Song Z, Lv H. Diffusion kurtosis imaging: An efficient tool for evaluating age-related changes in rat brains. Brain Behav 2021; 11:e02136. [PMID: 34559478 PMCID: PMC8613443 DOI: 10.1002/brb3.2136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 03/16/2021] [Accepted: 03/18/2021] [Indexed: 11/26/2022] Open
Abstract
PURPOSE To evaluate and determine age-related changes in rat brains by studying the diffusion kurtosis imaging results among different age groups of rats. METHODS Sprague-Dawley (SD) rats underwent conventional magnetic resonance imaging (MRI) and diffusion Kurtosis Imaging (DKI). Two diffusion values of mean kurtosis (MK) and kurtosis (K⊥ ) were measured and analyzed based on laterality, brain regions and age groups. The MK and K⊥ data were plotted against different age groups. RESULTS No laterality was found for the MK or K⊥ values in the cerebral cortex (CT), external capsule (EC), or caudate putamen (CPu) regions. In contrast, significant changes in these values were observed among different age groups. Changes of the MK and K⊥ values were significant in both hemispheres in the EC, the CT, and the CPu brain regions. The changes in the MK and K⊥ values showed a parabolic relationship with ages in all the brain regions. CONCLUSION No laterality in the MK and K⊥ values was observed for the EC, CT, or CPu regions of the rat brain. Significant changes in MK and K⊥ values were both observed among different age groups, thus suggesting diffusion kurtosis imaging as an efficient tool for studying brain aging in rats.
Collapse
Affiliation(s)
- Xue‐Fang Han
- Department of Radiologythe Second Hospital of Hebei Medical UniversityShijiazhuangHebei ProvinceP.R. China
| | - Zuo‐Jun Geng
- Department of Radiologythe Second Hospital of Hebei Medical UniversityShijiazhuangHebei ProvinceP.R. China
| | - Qing‐Feng Zhu
- Department of Radiologythe Second Hospital of Hebei Medical UniversityShijiazhuangHebei ProvinceP.R. China
| | - Zhen‐Hu Song
- Department of Radiologythe Second Hospital of Hebei Medical UniversityShijiazhuangHebei ProvinceP.R. China
| | - Huan‐Di Lv
- Department of Radiologythe Second Hospital of Hebei Medical UniversityShijiazhuangHebei ProvinceP.R. China
| |
Collapse
|
10
|
Liesche-Starnecker F, Prokop G, Yakushev I, Preibisch C, Delbridge C, Meyer HS, Aftahy K, Barz M, Meyer B, Zimmer C, Schlegel J, Wiestler B, Gempt J. Visualizing cellularity and angiogenesis in newly-diagnosed glioblastoma with diffusion and perfusion MRI and FET-PET imaging. EJNMMI Res 2021; 11:72. [PMID: 34398358 PMCID: PMC8368421 DOI: 10.1186/s13550-021-00817-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 07/28/2021] [Indexed: 12/31/2022] Open
Abstract
Purpose Combining imaging modalities has become an essential tool for assessment of tumor biology in glioblastoma (GBM) patients. Aim of this study is to understand how tumor cellularity and neovascularization are reflected in O-(2-[18F]fluoroethyl)-L-tyrosine positron emission tomography ([18F] FET PET) and magnetic resonance imaging (MRI) parameters, including cerebral blood volume (CBV), fractional anisotropy (FA) and mean diffusivity (MD). Methods In this prospective cohort, 162 targeted biopsies of 43 patients with therapy-naïve, isocitrate dehydrogenase (IDH) wildtype GBM were obtained after defining areas of interest based on imaging parameters [18F] FET PET, CBV, FA and MD. Histopathological analysis of cellularity and neovascularization was conducted and results correlated to imaging data. Results ANOVA analysis showed a significant increase of CBV in areas with high neovascularization. For diffusion metrics, and in particular FA, a trend for inverse association with neovascularization was found. [18F] FET PET showed a significant positive correlation to cellularity, while CBV also showed a trend towards correlation with cellularity, not reaching significant levels. In contrast, MD and FA were negatively associated with cellularity. Conclusion Our study confirms that amino acid PET and MR imaging parameters are indicative of histological tumor properties in glioblastoma and highlights the ability of multimodal imaging to assess tumor biology non-invasively.
Collapse
Affiliation(s)
- Friederike Liesche-Starnecker
- Department of Neuropathology, Institute of Pathology, School of Medicine, Technical University Munich, Munich, Germany
| | - Georg Prokop
- Department of Neuropathology, Institute of Pathology, School of Medicine, Technical University Munich, Munich, Germany
| | - Igor Yakushev
- Department of Nuclear Medicine, Klinikum rechts der isar, School of Medicine, Technical University Munich, Munich, Germany
| | - Christine Preibisch
- Department of Neuroradiology, Klinikum rechts der isar, School of Medicine, Technical University Munich, Munich, Germany
| | - Claire Delbridge
- Department of Neuropathology, Institute of Pathology, School of Medicine, Technical University Munich, Munich, Germany
| | - Hanno S Meyer
- Department of Neurosurgery, Klinikum rechts der isar, School of Medicine, Technical University Munich, Ismaningerstr. 22, 81675, Munich, Germany
| | - Kaywan Aftahy
- Department of Neurosurgery, Klinikum rechts der isar, School of Medicine, Technical University Munich, Ismaningerstr. 22, 81675, Munich, Germany
| | - Melanie Barz
- Department of Neurosurgery, Klinikum rechts der isar, School of Medicine, Technical University Munich, Ismaningerstr. 22, 81675, Munich, Germany
| | - Bernhard Meyer
- Department of Neurosurgery, Klinikum rechts der isar, School of Medicine, Technical University Munich, Ismaningerstr. 22, 81675, Munich, Germany
| | - Claus Zimmer
- Department of Neuroradiology, Klinikum rechts der isar, School of Medicine, Technical University Munich, Munich, Germany
| | - Jürgen Schlegel
- Department of Neuropathology, Institute of Pathology, School of Medicine, Technical University Munich, Munich, Germany
| | - Benedikt Wiestler
- Department of Neuroradiology, Klinikum rechts der isar, School of Medicine, Technical University Munich, Munich, Germany.,TranslaTUM (Zentralinstitut für translationale Krebsforschung der Technischen Universität München), Einsteinstraße 25, Munich, Germany
| | - Jens Gempt
- Department of Neurosurgery, Klinikum rechts der isar, School of Medicine, Technical University Munich, Ismaningerstr. 22, 81675, Munich, Germany.
| |
Collapse
|
11
|
Alger JR, O'Neill J, O'Connor MJ, Kalender G, Ly R, Ng A, Dillon A, Narr KL, Loo SK, Levitt JG. Neuroimaging of Supraventricular Frontal White Matter in Children with Familial Attention-Deficit Hyperactivity Disorder and Attention-Deficit Hyperactivity Disorder Due to Prenatal Alcohol Exposure. Neurotox Res 2021; 39:1054-1075. [PMID: 33751467 PMCID: PMC8442735 DOI: 10.1007/s12640-021-00342-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 02/15/2021] [Accepted: 02/17/2021] [Indexed: 10/21/2022]
Abstract
Attention-deficit hyperactivity disorder (ADHD) is common in patients with (ADHD+PAE) and without (ADHD-PAE) prenatal alcohol exposure (PAE). Many patients diagnosed with idiopathic ADHD actually have covert PAE, a treatment-relevant distinction. To improve differential diagnosis, we sought to identify brain differences between ADHD+PAE and ADHD-PAE using neurobehavioral, magnetic resonance spectroscopy, and diffusion tensor imaging metrics that had shown promise in past research. Children 8-13 were recruited in three groups: 23 ADHD+PAE, 19 familial ADHD-PAE, and 28 typically developing controls (TD). Neurobehavioral instruments included the Conners 3 Parent Behavior Rating Scale and the Delis-Kaplan Executive Function System (D-KEFS). Two dimensional magnetic resonance spectroscopic imaging was acquired from supraventricular white matter to measure N-acetylaspartate compounds, glutamate, creatine + phosphocreatine (creatine), and choline-compounds (choline). Whole brain diffusion tensor imaging was acquired and used to to calculate fractional anisotropy, mean diffusivity, axial diffusivity, and radial diffusivity from the same superventricular white matter regions that produced magnetic resonance spectroscopy data. The Conners 3 Parent Hyperactivity/Impulsivity Score, glutamate, mean diffusivity, axial diffusivity, and radial diffusivity were all higher in ADHD+PAE than ADHD-PAE. Glutamate was lower in ADHD-PAE than TD. Within ADHD+PAE, inferior performance on the D-KEFS Tower Test correlated with higher neurometabolite levels. These findings suggest white matter differences between the PAE and familial etiologies of ADHD. Abnormalities detected by magnetic resonance spectroscopy and diffusion tensor imaging co-localize in supraventricular white matter and are relevant to executive function symptoms of ADHD.
Collapse
Affiliation(s)
- Jeffry R Alger
- Department of Neurology, University of California Los Angeles, MC 708522, Los Angeles, CA, 90024, USA.
- Neurospectroscopics, LLC, Sherman Oaks, CA, USA.
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Hura Imaging Inc, Calabas, CA, USA.
| | - Joseph O'Neill
- Division of Child & Adolescent Psychiatry, Jane & Terry Semel Instutute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
| | - Mary J O'Connor
- Division of Child & Adolescent Psychiatry, Jane & Terry Semel Instutute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
| | - Guldamla Kalender
- Division of Child & Adolescent Psychiatry, Jane & Terry Semel Instutute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
| | - Ronald Ly
- Division of Child & Adolescent Psychiatry, Jane & Terry Semel Instutute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
| | - Andrea Ng
- Division of Child & Adolescent Psychiatry, Jane & Terry Semel Instutute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
| | - Andrea Dillon
- Division of Child & Adolescent Psychiatry, Jane & Terry Semel Instutute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
| | - Katherine L Narr
- Department of Neurology, University of California Los Angeles, MC 708522, Los Angeles, CA, 90024, USA
- Division of Child & Adolescent Psychiatry, Jane & Terry Semel Instutute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
| | - Sandra K Loo
- Division of Child & Adolescent Psychiatry, Jane & Terry Semel Instutute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
| | - Jennifer G Levitt
- Division of Child & Adolescent Psychiatry, Jane & Terry Semel Instutute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
| |
Collapse
|
12
|
Kushwah S, Kumar A, Verma A, Basu S, Kumar A. Comparison of fractional anisotropy and apparent diffusion coefficient among hypoxic ischemic encephalopathy stages 1, 2, and 3 and with nonasphyxiated newborns in 18 areas of brain. Indian J Radiol Imaging 2021; 27:447-456. [PMID: 29379241 PMCID: PMC5761173 DOI: 10.4103/ijri.ijri_384_16] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Purpose To determine the area and extent of injury in hypoxic encephalopathy stages by diffusion tensor imaging (DTI) using parameters apparent diffusion coefficient (ADC) and fractional anisotropy (FA) values and their comparison with controls without any evidence of asphyxia. To correlate the outcome of hypoxia severity clinically and significant changes on DTI parameter. Materials and Methods DTI was done in 50 cases at median age of 12 and 20 controls at median age of 7 days. FA and apparent diffusion coefficient (ADC) were measured in several regions of interest (ROI). Continuous variables were analyzed using Student's t-test. Categorical variables were compared by Fisher's exact test. Comparison among multiple groups was done using analysis of variance (ANOVA) and post hoc Bonferroni test. Results Abnormalities were more easily and accurately determined in ROI with the help of FA and ADC values. When compared with controls FA values were significantly decreased and ADC values were significantly increased in cases, in ROI including both right and left side of thalamus, basal ganglia, posterior limb of internal capsule, cerebral peduncle, corticospinal tracts, frontal, parietal, temporal, occipital with P value < 0.05. The extent of injury was maximum in stage-III. There was no significant difference among males and females. Conclusion Compared to conventional magnetic resonance imaging (MRI), the evaluation of FA and ADC values using DTI can determine the extent and severity of injury in hypoxic encephalopathy. It can be used for early determination of brain injury in these patients.
Collapse
Affiliation(s)
- Supriya Kushwah
- Department of Paediatrics, Yenepoya Medical College, Mangalore, Karnataka, India
| | - Ashok Kumar
- Department of Paediatrics, Institute of Medical Sciences, Varanasi, Uttar Pradesh, India
| | - Ashish Verma
- Department of Paediatrics, Institute of Medical Sciences, Varanasi, Uttar Pradesh, India
| | - Sriparna Basu
- Department of Paediatrics, Institute of Medical Sciences, Varanasi, Uttar Pradesh, India
| | - Ashutosh Kumar
- Department of Anaesthesia, KMC, Mangalore, Karnataka, India
| |
Collapse
|
13
|
Development of human white matter pathways in utero over the second and third trimester. Proc Natl Acad Sci U S A 2021; 118:2023598118. [PMID: 33972435 PMCID: PMC8157930 DOI: 10.1073/pnas.2023598118] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
During the second and third trimesters of human gestation, rapid neurodevelopment is underpinned by fundamental processes including neuronal migration, cellular organization, cortical layering, and myelination. In this time, white matter growth and maturation lay the foundation for an efficient network of structural connections. Detailed knowledge about this developmental trajectory in the healthy human fetal brain is limited, in part, due to the inherent challenges of acquiring high-quality MRI data from this population. Here, we use state-of-the-art high-resolution multishell motion-corrected diffusion-weighted MRI (dMRI), collected as part of the developing Human Connectome Project (dHCP), to characterize the in utero maturation of white matter microstructure in 113 fetuses aged 22 to 37 wk gestation. We define five major white matter bundles and characterize their microstructural features using both traditional diffusion tensor and multishell multitissue models. We found unique maturational trends in thalamocortical fibers compared with association tracts and identified different maturational trends within specific sections of the corpus callosum. While linear maturational increases in fractional anisotropy were seen in the splenium of the corpus callosum, complex nonlinear trends were seen in the majority of other white matter tracts, with an initial decrease in fractional anisotropy in early gestation followed by a later increase. The latter is of particular interest as it differs markedly from the trends previously described in ex utero preterm infants, suggesting that this normative fetal data can provide significant insights into the abnormalities in connectivity which underlie the neurodevelopmental impairments associated with preterm birth.
Collapse
|
14
|
Olivieri B, Rampakakis E, Gilbert G, Fezoua A, Wintermark P. Myelination may be impaired in neonates following birth asphyxia. NEUROIMAGE-CLINICAL 2021; 31:102678. [PMID: 34082365 PMCID: PMC8182124 DOI: 10.1016/j.nicl.2021.102678] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 03/17/2021] [Accepted: 04/12/2021] [Indexed: 01/23/2023]
Abstract
Myelination is a developmental process that intensifies after birth during the first years of life. We used a T2* mapping sequence to assess myelination in healthy and critically ill neonates with neonatal encephalopathy. Birth asphyxia, in addition to causing the previously well-described direct injury to the brain, may impair myelination.
Background Myelination is a developmental process that begins during the end of gestation, intensifies after birth over the first years of life, and continues well into adolescence. Any event leading to brain injury around the time of birth and during the perinatal period, such as birth asphyxia, may impair this critical process. Currently, the impact of such brain injury related to birth asphyxia on the myelination process is unknown. Objective To assess the myelination pattern over the first month of life in neonates with neonatal encephalopathy (NE) developing brain injury, compared to neonates without injury (i.e., healthy neonates and neonates with NE who do not develop brain injury). Methods Brain magnetic resonance imaging (MRI) was performed around day of life 2, 10, and 30 in healthy neonates and near-term/term neonates with NE who were treated with hypothermia. We evaluated myelination in various regions of interest using a T2* mapping sequence. In each region of interest, we compared the T2* values of the neonates with NE with brain injury to the values of the neonates without injury, according to the MRI timing, by using a repeated measures generalized linear mixed model. Results We obtained 74 MRI scans over the first month of life for 6 healthy neonates, 17 neonates with NE who were treated with hypothermia and did not develop brain injury, and 16 neonates with NE who were treated with hypothermia and developed brain injury. The T2* values significantly increased in the neonates with NE who developed injury in the posterior limbs of the internal capsule (day 2: p < 0.001; day 10: p < 0.001; and day 30: p < 0.001), the thalami (day 2: p = 0.001; day 10: p = 0.006; and day 30: p = 0.016), the lentiform nuclei (day 2: p = 0.005), the anterior white matter (day 2: p = 0.002; day 10: p = 0.006; and day 30: p = 0.002), the posterior white matter (day 2: p = 0.001; day 10: p = 0.008; and day 30: p = 0.03), the genu of the corpus callosum (day 2: p = 0.01; and day 10: p = 0.006), and the optic radiations (day 30: p < 0.001). Conclusion In the neonates with NE who were treated with hypothermia and developed brain injury, birth asphyxia impaired myelination in the regions that are myelinated at birth or soon after birth (the posterior limbs of internal capsule, the thalami, and the lentiform nuclei), in the regions where the myelination process begins only after the perinatal period (optic radiations), and in the regions where this process does not occur until months after birth (anterior/posterior white matter), which suggests that birth asphyxia, in addition to causing the previously well-described direct injury to the brain, may impair myelination.
Collapse
Affiliation(s)
- Bianca Olivieri
- Research Institute of the McGill University Health Centre, McGill University, Montreal, QC, Canada
| | - Emmanouil Rampakakis
- Medical Affairs, JSS Medical Research, Montreal, Québec, Canada; Department of Pediatrics, Montreal Children's Hospital, McGill University, Montreal, QC, Canada
| | | | - Aliona Fezoua
- Research Institute of the McGill University Health Centre, McGill University, Montreal, QC, Canada
| | - Pia Wintermark
- Research Institute of the McGill University Health Centre, McGill University, Montreal, QC, Canada; Department of Pediatrics, Division of Newborn Medicine, Montreal Children's Hospital, McGill University, Montreal, QC, Canada.
| |
Collapse
|
15
|
Ahmed S, Mohan A, Yoo HB, To WT, Kovacs S, Sunaert S, De Ridder D, Vanneste S. Structural correlates of the audiological and emotional components of chronic tinnitus. PROGRESS IN BRAIN RESEARCH 2021; 262:487-509. [PMID: 33931193 DOI: 10.1016/bs.pbr.2021.01.030] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The objective is to investigate white matter tracts, more specifically the arcuate fasciculus and acoustic radiation, in tinnitus and assess their relationship with distress, loudness and hearing loss. DTI images were acquired for 58 tinnitus patients and 65 control subjects. Deterministic tractography was first performed to visualize the arcuate fasciculus and acoustic radiation tracts bilaterally and to calculate tract density, fractional anisotropy, radial diffusivity, and axial diffusivity for tinnitus and control subjects. Tinnitus patients had a significantly reduced tract density compared to controls in both tracts of interest. They also exhibited increased axial diffusivity in the left acoustic radiation, as well as increased radial diffusivity in the left arcuate fasciculus, and both the left and right acoustic radiation. Furthermore, they exhibited decreased fractional anisotropy in the left arcuate fasciculus, as well as the left and right acoustic radiation tracts. Partial correlation analysis showed: (1) a negative correlation between arcuate fasciculus tract density and tinnitus distress, (2) a negative correlation between acoustic radiation tract density and hearing loss, (3) a negative correlation between acoustic radiation tract density and loudness, (4) a positive correlation between left arcuate fasciculus and tinnitus distress for radial diffusivity, (5) a negative correlation between left arcuate fasciculus and tinnitus distress for fractional anisotropy, (6) a positive correlation between left and right acoustic radiation and hearing loss for radial diffusivity, (7) No correlation between any of the white matter characteristics and tinnitus loudness. Structural alterations in the acoustic radiation and arcuate fasciculus correlate with hearing loss and distress in tinnitus but not tinnitus loudness showing that loudness is a more functional correlate of the disorder which does not manifest structurally.
Collapse
Affiliation(s)
- Shaheen Ahmed
- Lab for Clinical and Integrative Neuroscience, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX, United States
| | - Anusha Mohan
- Global Brain Health Institute & Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Hye Bin Yoo
- Lab for Clinical and Integrative Neuroscience, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX, United States
| | - Wing Ting To
- School of Nursing & Midwifery, Trinity College Dublin, Dublin, Ireland
| | - Silvia Kovacs
- Translational MRI, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Stefan Sunaert
- Translational MRI, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Dirk De Ridder
- School of Nursing & Midwifery, Trinity College Dublin, Dublin, Ireland
| | - Sven Vanneste
- Lab for Clinical and Integrative Neuroscience, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX, United States; Global Brain Health Institute & Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
16
|
Glutamine + glutamate level predicts the magnitude of microstructural organization in the gray matter in the healthy elderly. Int Psychogeriatr 2021; 33:21-29. [PMID: 31578159 PMCID: PMC8482373 DOI: 10.1017/s1041610219001418] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Diffusion tensor imaging (DTI), which is a technique for measuring the degree and direction of movement of water molecules in tissue, has been widely used to noninvasively assess white matter (WM) or gray matter (GM) microstructures in vivo. Mean diffusivity (MD), which is the average diffusion across all directions, has been considered as a marker of WM tract degeneration or extracellular space enlargement in GM. Recent lines of evidence suggest that cortical MD can better identify early-stage Alzheimer's disease than structural morphometric parameters in magnetic resonance imaging. However, knowledge of the relationships between cortical MD and other biological factors in the same cortical region, e.g. metabolites, is still limited. METHODS Thirty-three healthy elderly individuals [aged 50-77 years (mean, 63.8±7.4 years); 11 males and 22 females] were enrolled. We estimated the associations between cortical MD and neurotransmitter levels. Specifically, we measured levels of γ-aminobutyric acid (GABA) and glutamate + glutamine (Glx), which are inhibitory and excitatory neurotransmitters, respectively, in medial prefrontal cortex (mPFC) and posterior cingulate cortex (PCC) using MEGA-PRESS magnetic resonance spectroscopy, and we measured regional cortical MD using DTI. RESULTS Cortical MD was significantly negatively associated with Glx levels in both mPFC and PCC. No significant association was observed between cortical MD and GABA levels in either GM region. CONCLUSION Our findings suggest that degeneration of microstructural organization in GM, as determined on the basis of cortical MD measured by DTI, is accompanied by the decline of Glx metabolism within the same GM region.
Collapse
|
17
|
Zhu T, Peng Q, Ouyang A, Huang H. Neuroanatomical underpinning of diffusion kurtosis measurements in the cerebral cortex of healthy macaque brains. Magn Reson Med 2020; 85:1895-1908. [PMID: 33058286 DOI: 10.1002/mrm.28548] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 08/23/2020] [Accepted: 09/17/2020] [Indexed: 12/21/2022]
Abstract
PURPOSE To investigate the neuroanatomical underpinning of healthy macaque brain cortical microstructure measured by diffusion kurtosis imaging (DKI), which characterizes non-Gaussian water diffusion. METHODS High-resolution DKI was acquired from 6 postmortem macaque brains. Neurofilament density (ND) was quantified based on structure tensor from neurofilament histological images of a different macaque brain sample. After alignment of DKI-derived mean kurtosis (MK) maps to the histological images, MK and histology-based ND were measured at corresponding regions of interests characterized by distinguished cortical MK values in the prefrontal/precentral-postcentral and temporal cortices. Pearson correlation was performed to test significant correlation between these cortical MK and ND measurements. RESULTS Heterogeneity of cortical MK across different cortical regions was revealed, with significantly and consistently higher MK measurements in the prefrontal/precentral-postcentral cortex compared to those in the temporal cortex across all six scanned macaque brains. Corresponding higher ND measurements in the prefrontal/precentral-postcentral cortex than in the temporal cortex were also found. The heterogeneity of cortical MK is associated with heterogeneity of histology-based ND measurements, with significant correlation between cortical MK and corresponding ND measurements (P < .005). CONCLUSION These findings suggested that DKI-derived MK can potentially be an effective noninvasive biomarker quantifying underlying neuroanatomical complexity inside the cerebral cortical mantle for clinical and neuroscientific research.
Collapse
Affiliation(s)
- Tianjia Zhu
- Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Qinmu Peng
- Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Austin Ouyang
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Hao Huang
- Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
18
|
Correlations between DTI-derived metrics and MRS metabolites in tumour regions of glioblastoma: a pilot study. Radiol Oncol 2020; 54:394-408. [PMID: 32990651 PMCID: PMC7585345 DOI: 10.2478/raon-2020-0055] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 07/31/2020] [Indexed: 02/08/2023] Open
Abstract
Introduction Specific correlations among diffusion tensor imaging (DTI)-derived metrics and magnetic resonance spectroscopy (MRS) metabolite ratios in brains with glioblastoma are still not completely understood. Patients and methods We made retrospective cohort study. MRS ratios (choline-to-N-acetyl aspartate [Cho/NAA], lipids and lactate to creatine [LL/Cr], and myo-inositol/creatine [mI/Cr]) were correlated with eleven DTI biomarkers: mean diffusivity (MD), fractional anisotropy (FA), pure isotropic diffusion (p), pure anisotropic diffusion (q), the total magnitude of the diffusion tensor (L), linear tensor (Cl), planar tensor (Cp), spherical tensor (Cs), relative anisotropy (RA), axial diffusivity (AD) and radial diffusivity (RD) at the same regions: enhanced rim, peritumoral oedema and normal-appearing white matter. Correlational analyses of 546 MRS and DTI measurements used Spearman coefficient. Results At the enhancing rim we found four significant correlations: FA ⇔ LL/Cr, Rs = -.364, p = .034; Cp ⇔ LL/Cr, Rs = .362, p = .035; q ⇔ LL/Cr, Rs = -.349, p = .035; RA ⇔ LL/Cr, Rs = -.357, p = .038. Another ten pairs of significant correlations were found in the peritumoral edema: AD ⇔ LL/Cr, AD ⇔ mI/Cr, MD ⇔ LL/Cr, MD ⇔ mI/Cr, p ⇔ LL/Cr, p ⇔ mI/ Cr, RD ⇔ mI/Cr, RD ⇔ mI/Cr, L ⇔ LL/Cr, L ⇔ mI/Cr. Conclusions DTI and MRS biomarkers answer different questions; peritumoral oedema represents the biggest challenge with at least ten significant correlations between DTI and MRS that need additional studies. The fact that DTI and MRS measures are not specific of one histologic type of tumour broadens their application to a wider variety of intracranial pathologies.
Collapse
|
19
|
Janjic T, Pereverzyev S, Hammerl M, Neubauer V, Lerchner H, Wallner V, Steiger R, Kiechl-Kohlendorfer U, Zimmermann M, Buchheim A, Grams AE, Gizewski ER. Feed-forward neural networks using cerebral MR spectroscopy and DTI might predict neurodevelopmental outcome in preterm neonates. Eur Radiol 2020; 30:6441-6451. [PMID: 32683551 PMCID: PMC7599175 DOI: 10.1007/s00330-020-07053-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/11/2020] [Accepted: 06/30/2020] [Indexed: 11/28/2022]
Abstract
Objectives We aimed to evaluate the ability of feed-forward neural networks (fNNs) to predict the neurodevelopmental outcome (NDO) of very preterm neonates (VPIs) at 12 months corrected age by using biomarkers of cerebral MR proton spectroscopy (1H-MRS) and diffusion tensor imaging (DTI) at term-equivalent age (TEA). Methods In this prospective study, 300 VPIs born before 32 gestational weeks received an MRI scan at TEA between September 2013 and December 2017. Due to missing or poor-quality spectroscopy data and missing neurodevelopmental tests, 173 VPIs were excluded. Data sets consisting of 103 and 115 VPIs were considered for prediction of motor and cognitive developmental delay, respectively. Five metabolite ratios and two DTI characteristics in six different areas of the brain were evaluated. A feature selection algorithm was developed for receiving a subset of characteristics prevalent for the VPIs with a developmental delay. Finally, the predictors were constructed employing multiple fNNs and fourfold cross-validation. Results By employing the constructed fNN predictors, we were able to predict cognitive delays of VPIs with 85.7% sensitivity, 100% specificity, 100% positive predictive value (PPV) and 99.1% negative predictive value (NPV). For the prediction of motor delay, we achieved a sensitivity of 76.9%, a specificity of 98.9%, a PPV of 90.9% and an NPV of 96.7%. Conclusion FNNs might be able to predict motor and cognitive development of VPIs at 12 months corrected age when employing biomarkers of cerebral 1H-MRS and DTI quantified at TEA. Key Points • A feed-forward neuronal network is a promising tool for outcome prediction in premature infants. • Cerebral proton magnetic resonance spectroscopy and diffusion tensor imaging can be used for the construction of early prognostic biomarkers. • Premature infants that would most benefit from early intervention services can be spotted at the time of optimal neuroplasticity. Electronic supplementary material The online version of this article (10.1007/s00330-020-07053-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- T Janjic
- Department of Neuroradiology, Medical University of Innsbruck, Anichstraße 35, 6020, Innsbruck, Austria. .,Neuroimaging Research Core Facility, Medical University of Innsbruck, Innsbruck, Austria.
| | - S Pereverzyev
- Department of Neuroradiology, Medical University of Innsbruck, Anichstraße 35, 6020, Innsbruck, Austria.,Neuroimaging Research Core Facility, Medical University of Innsbruck, Innsbruck, Austria
| | - M Hammerl
- Department of Paediatrics II, Neonatology, Medical University of Innsbruck, Innsbruck, Austria
| | - V Neubauer
- Department of Paediatrics II, Neonatology, Medical University of Innsbruck, Innsbruck, Austria
| | - H Lerchner
- Department of Neuroradiology, Medical University of Innsbruck, Anichstraße 35, 6020, Innsbruck, Austria.,Neuroimaging Research Core Facility, Medical University of Innsbruck, Innsbruck, Austria
| | - V Wallner
- Department of Neuroradiology, Medical University of Innsbruck, Anichstraße 35, 6020, Innsbruck, Austria
| | - R Steiger
- Department of Neuroradiology, Medical University of Innsbruck, Anichstraße 35, 6020, Innsbruck, Austria.,Neuroimaging Research Core Facility, Medical University of Innsbruck, Innsbruck, Austria
| | - U Kiechl-Kohlendorfer
- Department of Paediatrics II, Neonatology, Medical University of Innsbruck, Innsbruck, Austria
| | - M Zimmermann
- Department of Paediatrics II, Neonatology, Medical University of Innsbruck, Innsbruck, Austria
| | - A Buchheim
- Institute of Psychology, University of Innsbruck, Innsbruck, Austria
| | - A E Grams
- Department of Neuroradiology, Medical University of Innsbruck, Anichstraße 35, 6020, Innsbruck, Austria.,Neuroimaging Research Core Facility, Medical University of Innsbruck, Innsbruck, Austria
| | - E R Gizewski
- Department of Neuroradiology, Medical University of Innsbruck, Anichstraße 35, 6020, Innsbruck, Austria.,Neuroimaging Research Core Facility, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
20
|
O'Dea M, Sweetman D, Bonifacio SL, El-Dib M, Austin T, Molloy EJ. Management of Multi Organ Dysfunction in Neonatal Encephalopathy. Front Pediatr 2020; 8:239. [PMID: 32500050 PMCID: PMC7243796 DOI: 10.3389/fped.2020.00239] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Accepted: 04/20/2020] [Indexed: 12/16/2022] Open
Abstract
Neonatal Encephalopathy (NE) describes neonates with disturbed neurological function in the first post-natal days of life. NE is an overall term that does not specify the etiology of the encephalopathy although it often involves hypoxia-ischaemia. In NE, although neurological dysfunction is part of the injury and is most predictive of long-term outcome, these infants may also have multiorgan injury and compromise, which further contribute to neurological impairment and long-term morbidities. Therapeutic hypothermia (TH) is the standard of care for moderate to severe NE. Infants with NE may have co-existing immune, respiratory, endocrine, renal, hepatic, and cardiac dysfunction that require individualized management and can be impacted by TH. Non-neurological organ dysfunction not only has a negative effect on long term outcome but may also influence the efficacy of treatments in the acute phase. Post resuscitative care involves stabilization and decisions regarding TH and management of multi-organ dysfunction. This management includes detailed neurological assessment, cardio-respiratory stabilization, glycaemic and fluid control, sepsis evaluation and antibiotics, seizure identification, and monitoring and responding to biochemical and coagulation derangements. The emergence of new biomarkers of specific organ injury may have predictive value and improve the definition of organ injury and prognosis. Further evidence-based research is needed to optimize management of NE, prevent further organ dysfunction and reduce neurodevelopmental impairment.
Collapse
Affiliation(s)
- Mary O'Dea
- Discipline of Paediatrics, Trinity College, The University of Dublin, Dublin, Ireland
- Paediatric Research Laboratory, Trinity Translational Institute, St. James' Hospital, Dublin, Ireland
- Neonatology, Coombe Women and Infant's University Hospital, Dublin, Ireland
- National Children's Research Centre, Dublin, Ireland
| | - Deirdre Sweetman
- National Children's Research Centre, Dublin, Ireland
- Paediatrics, National Maternity Hospital, Dublin, Ireland
| | - Sonia Lomeli Bonifacio
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, United States
| | - Mohamed El-Dib
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Topun Austin
- Neonatal Intensive Care Unit, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| | - Eleanor J. Molloy
- Discipline of Paediatrics, Trinity College, The University of Dublin, Dublin, Ireland
- Paediatric Research Laboratory, Trinity Translational Institute, St. James' Hospital, Dublin, Ireland
- Neonatology, Coombe Women and Infant's University Hospital, Dublin, Ireland
- National Children's Research Centre, Dublin, Ireland
- Paediatrics, National Maternity Hospital, Dublin, Ireland
- Neonatology, Children's Hospital Ireland (CHI) at Crumlin, Dublin, Ireland
- Paediatrics, CHI at Tallaght, Tallaght University Hospital, Dublin, Ireland
| |
Collapse
|
21
|
Pines AR, Cieslak M, Larsen B, Baum GL, Cook PA, Adebimpe A, Dávila DG, Elliott MA, Jirsaraie R, Murtha K, Oathes DJ, Piiwaa K, Rosen AFG, Rush S, Shinohara RT, Bassett DS, Roalf DR, Satterthwaite TD. Leveraging multi-shell diffusion for studies of brain development in youth and young adulthood. Dev Cogn Neurosci 2020; 43:100788. [PMID: 32510347 PMCID: PMC7200217 DOI: 10.1016/j.dcn.2020.100788] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 04/02/2020] [Accepted: 04/14/2020] [Indexed: 12/13/2022] Open
Abstract
Multi-shell imaging sequences may improve sensitivity to developmental effects. Models that leverage multi-shell information are often less sensitive to the confounding effects of motion. Multi-shell sequences and models that leverage this data may be of particular utility for studying the developing brain.
Diffusion weighted imaging (DWI) has advanced our understanding of brain microstructure evolution over development. Recently, the use of multi-shell diffusion imaging sequences has coincided with advances in modeling the diffusion signal, such as Neurite Orientation Dispersion and Density Imaging (NODDI) and Laplacian-regularized Mean Apparent Propagator MRI (MAPL). However, the relative utility of recently-developed diffusion models for understanding brain maturation remains sparsely investigated. Additionally, despite evidence that motion artifact is a major confound for studies of development, the vulnerability of metrics derived from contemporary models to in-scanner motion has not been described. Accordingly, in a sample of 120 youth and young adults (ages 12–30) we evaluated metrics derived from diffusion tensor imaging (DTI), NODDI, and MAPL for associations with age and in-scanner head motion at multiple scales. Specifically, we examined mean white matter values, white matter tracts, white matter voxels, and connections in structural brain networks. Our results revealed that multi-shell diffusion imaging data can be leveraged to robustly characterize neurodevelopment, and demonstrate stronger age effects than equivalent single-shell data. Additionally, MAPL-derived metrics were less sensitive to the confounding effects of head motion. Our findings suggest that multi-shell imaging data and contemporary modeling techniques confer important advantages for studies of neurodevelopment.
Collapse
Affiliation(s)
- Adam R Pines
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, 19104, United States
| | - Matthew Cieslak
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, 19104, United States
| | - Bart Larsen
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, 19104, United States
| | - Graham L Baum
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, 19104, United States
| | - Philip A Cook
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, 19104, United States
| | - Azeez Adebimpe
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, 19104, United States
| | - Diego G Dávila
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, 19104, United States
| | - Mark A Elliott
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, 19104, United States
| | - Robert Jirsaraie
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, 19104, United States
| | - Kristin Murtha
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, 19104, United States
| | - Desmond J Oathes
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, 19104, United States
| | - Kayla Piiwaa
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, 19104, United States
| | - Adon F G Rosen
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, 19104, United States
| | - Sage Rush
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, 19104, United States
| | - Russell T Shinohara
- Department of Biostatistics, Epidemiology, and Informatics University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Danielle S Bassett
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, 19104, United States; Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, United States; Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA, 19104, United States; Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA, 19104, United States; Department of Neurology, University of Pennsylvania, Philadelphia, PA, 19104, United States; Santa Fe Institute, Santa Fe, NM, 87501, United States
| | - David R Roalf
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, 19104, United States
| | | |
Collapse
|
22
|
Association between diffusivity measures and language and cognitive-control abilities from early toddler’s age to childhood. Brain Struct Funct 2020; 225:1103-1122. [DOI: 10.1007/s00429-020-02062-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 03/20/2020] [Indexed: 12/20/2022]
|
23
|
Abstract
Significant advances in the field of neonatal imaging has resulted in the generation of large complex data sets of relevant information for routine daily clinical practice, and basic and translational research. The evaluation of this data is a complex task for the neonatal imager who must distinguish normal and incidental findings from clinically significant abnormalities which are often adjunctive data points applicable to clinical evaluation and treatment. This review provides an overview of the imaging manifestations of disease processes commonly encountered in the neonatal brain. Since MRI is currently the highest yield technique for the diagnosis and characterization of the normal and abnormal brain, it is therefore the focus of the majority of this review. When applicable, discussion of some of the pertinent known pathophysiology and neuropathological aspects of disease processes are reviewed.
Collapse
|
24
|
Dietary Fructose Intake and Hippocampal Structure and Connectivity during Childhood. Nutrients 2020; 12:nu12040909. [PMID: 32224933 PMCID: PMC7230400 DOI: 10.3390/nu12040909] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/21/2020] [Accepted: 03/24/2020] [Indexed: 01/06/2023] Open
Abstract
In rodent literature, there is evidence that excessive fructose consumption during development has a detrimental impact on hippocampal structure and function. In this study of 103 children ages 7–11 years old, we investigated whether dietary fructose intake was related to alterations in hippocampal volume and connectivity in humans. To examine if these associations were specific to fructose or were related to dietary sugars intake in general, we explored relationships between dietary intake of added sugars and the monosaccharide, glucose, on the same brain measures. We found that increased dietary intake of fructose, measured as a percentage of total calories, was associated with both an increase in the volume of the CA2/3 subfield of the right hippocampus and increased axial, radial, and mean diffusivity in the prefrontal connections of the right cingulum. These findings are consistent with the idea that increased fructose consumption during childhood may be associated with an inflammatory process, and/or decreases or delays in myelination and/or pruning. Increased habitual consumption of glucose or added sugar in general were associated with an increased volume of right CA2/3, but not with any changes in the connectivity of the hippocampus. These findings support animal data suggesting that higher dietary intake of added sugars, particularly fructose, are associated with alterations in hippocampal structure and connectivity during childhood.
Collapse
|
25
|
Christiaens D, Veraart J, Cordero-Grande L, Price AN, Hutter J, Hajnal JV, Tournier JD. On the need for bundle-specific microstructure kernels in diffusion MRI. Neuroimage 2019; 208:116460. [PMID: 31843710 PMCID: PMC7014821 DOI: 10.1016/j.neuroimage.2019.116460] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 11/18/2019] [Accepted: 12/10/2019] [Indexed: 11/23/2022] Open
Abstract
Probing microstructure with diffusion magnetic resonance imaging (dMRI) on a scale orders of magnitude below the imaging resolution relies on biophysical modelling of the signal response in the tissue. The vast majority of these biophysical models of diffusion in white matter assume that the measured dMRI signal is the sum of the signals emanating from each of the constituent compartments, each of which exhibits a distinct behaviour in the b-value and/or orientation domain. Many of these models further assume that the dMRI behaviour of the oriented compartments (e.g. the intra-axonal space) is identical between distinct fibre populations, at least at the level of a single voxel. This implicitly assumes that any potential biological differences between fibre populations are negligible, at least as far as is measurable using dMRI. Here, we validate this assumption by means of a voxel-wise, model-free signal decomposition that, under the assumption above and in the absence of noise, is shown to be rank-1. We evaluate the effect size of signal components beyond this rank-1 representation and use permutation testing to assess their significance. We conclude that in the healthy adult brain, the dMRI signal is adequately represented by a rank-1 model, implying that biologically more realistic, but mathematically more complex fascicle-specific microstructure models do not capture statistically significant or anatomically meaningful structure, even in extended high-b diffusion MRI scans.
Collapse
Affiliation(s)
- Daan Christiaens
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK; Department of Electrical Engineering, ESAT/PSI, KU Leuven, Leuven, Belgium.
| | - Jelle Veraart
- Centre for Biomedical Imaging, NYU School of Medicine, New York, NY, USA; iMinds - Vision Lab, University of Antwerp, Antwerp, Belgium
| | - Lucilio Cordero-Grande
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
| | - Anthony N Price
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
| | - Jana Hutter
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
| | - Joseph V Hajnal
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
| | - J-Donald Tournier
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
| |
Collapse
|
26
|
Wang N, Zhuang J, Wie H, Dibb R, Qi Y, Liu C. Probing demyelination and remyelination of the cuprizone mouse model using multimodality MRI. J Magn Reson Imaging 2019; 50:1852-1865. [PMID: 31012202 PMCID: PMC6810724 DOI: 10.1002/jmri.26758] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Revised: 04/07/2019] [Accepted: 04/08/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Various studies by MRI exhibit that the corpus callosum (CC) is the most vulnerable to cuprizone administration, detecting the demyelination and remyelination process using different MRI parameters are, however, lacking. PURPOSE To investigate the sensitivity of multiparametric MRI both in vivo and ex vivo for demyelination and remyelination. STUDY TYPE Prospective. ANIMAL MODEL A cuprizone mice model with an age-matched control group (n = 5), 4-week cuprizone exposure group followed by 9-week on a normal diet (n = 6), and a 13-week cuprizone exposure group (n = 6). FIELD STRENGTH/SEQUENCE 3D gradient recalled echo, T2 -weighted, and diffusion tensor imaging (DTI) at 7.0T and 9.4T. ASSESSMENT Quantification of DTI metrics, quantitative susceptibility mapping (QSM), and T2 -weighted imaging intensity in major white matter bundles. STATISTICAL TESTS Nonparametric permutation tests were used with a cluster-forming threshold as 3.09 (equivalent to P = 0.001), and the significant level as P = 0.05 with family-wise correction. RESULTS In vivo susceptibility values increased from -11.7 to -0.7 ppb (P < 0.001) in CC and from -13.7 to -5.1 ppb (P < 0.001) in the anterior commissure (AC) after the 13-week cuprizone exposure. Ex vivo susceptibility values increased from -25.4 to 7.4 ppb (P < 0.001) in CC and from -41.6 to -15.8 ppb (P < 0.001) in AC. Susceptibility values showed high variations to demyelination for in vivo studies (94.0% in CC, 62.8% in AC). Susceptibility values exhibited higher variations than radial diffusivity for ex vivo studies (129.1% vs. 28.3% in CC, 62.0% vs. 25.0% in AC). In addition to the differential susceptibility variations in different white matter tracts, intraregional demyelination variation was also present not only in CC but also in the AC area by voxel-based analysis. DATA CONCLUSION QSM is sensitive to the demyelination process of cuprizone exposure, which can be a complementary technique to conventional T2 -weighted images and DTI metrics. LEVEL OF EVIDENCE 2 Technical Efficacy Stage: 2 J. Magn. Reson. Imaging 2019;50:1852-1865.
Collapse
Affiliation(s)
- Nian Wang
- Center for In Vivo Microscopy, Duke University, Durham, North Carolina, USA
- Brain Imaging and Analysis Center, Duke University, Durham, North Carolina, USA
| | - Jie Zhuang
- Brain Imaging and Analysis Center, Duke University, Durham, North Carolina, USA
| | - Hongjiang Wie
- Brain Imaging and Analysis Center, Duke University, Durham, North Carolina, USA
| | - Russell Dibb
- Center for In Vivo Microscopy, Duke University, Durham, North Carolina, USA
| | - Yi Qi
- Center for In Vivo Microscopy, Duke University, Durham, North Carolina, USA
| | - Chunlei Liu
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA, USA
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA
| |
Collapse
|
27
|
Sa de Almeida J, Lordier L, Zollinger B, Kunz N, Bastiani M, Gui L, Adam-Darque A, Borradori-Tolsa C, Lazeyras F, Hüppi PS. Music enhances structural maturation of emotional processing neural pathways in very preterm infants. Neuroimage 2019; 207:116391. [PMID: 31765804 DOI: 10.1016/j.neuroimage.2019.116391] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 11/18/2019] [Accepted: 11/21/2019] [Indexed: 11/26/2022] Open
Abstract
Prematurity disrupts brain maturation by exposing the developing brain to different noxious stimuli present in the neonatal intensive care unit (NICU) and depriving it from meaningful sensory inputs during a critical period of brain development, leading to later neurodevelopmental impairments. Musicotherapy in the NICU environment has been proposed to promote sensory stimulation, relevant for activity-dependent brain plasticity, but its impact on brain structural maturation is unknown. Neuroimaging studies have demonstrated that music listening triggers neural substrates implied in socio-emotional processing and, thus, it might influence networks formed early in development and known to be affected by prematurity. Using multi-modal MRI, we aimed to evaluate the impact of a specially composed music intervention during NICU stay on preterm infant's brain structure maturation. 30 preterm newborns (out of which 15 were exposed to music during NICU stay and 15 without music intervention) and 15 full-term newborns underwent an MRI examination at term-equivalent age, comprising diffusion tensor imaging (DTI), used to evaluate white matter maturation using both region-of-interest and seed-based tractography approaches, as well as a T2-weighted image, used to perform amygdala volumetric analysis. Overall, WM microstructural maturity measured through DTI metrics was reduced in preterm infants receiving the standard-of-care in comparison to full-term newborns, whereas preterm infants exposed to the music intervention demonstrated significantly improved white matter maturation in acoustic radiations, external capsule/claustrum/extreme capsule and uncinate fasciculus, as well as larger amygdala volumes, in comparison to preterm infants with standard-of-care. These results suggest a structural maturational effect of the proposed music intervention on premature infants' auditory and emotional processing neural pathways during a key period of brain development.
Collapse
Affiliation(s)
- Joana Sa de Almeida
- Division of Development and Growth, Department of Woman, Child and Adolescent, University Hospitals of Geneva, Geneva, Switzerland
| | - Lara Lordier
- Division of Development and Growth, Department of Woman, Child and Adolescent, University Hospitals of Geneva, Geneva, Switzerland
| | | | - Nicolas Kunz
- Center of BioMedical Imaging (CIBM), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Matteo Bastiani
- Sir Peter Mansfield Imaging Centre, School of Medicine, University of Nottingham, UK; NIHR Biomedical Research Centre, University of Nottingham, UK; Wellcome Centre for Integrative Neuroimaging (WIN) - Centre for Functional Magnetic Resonance Imaging of the Brain (FMRIB), University of Oxford, UK
| | - Laura Gui
- Department of Radiology and Medical Informatics, Center of BioMedical Imaging (CIBM), University of Geneva, Geneva, Switzerland
| | - Alexandra Adam-Darque
- Division of Development and Growth, Department of Woman, Child and Adolescent, University Hospitals of Geneva, Geneva, Switzerland
| | - Cristina Borradori-Tolsa
- Division of Development and Growth, Department of Woman, Child and Adolescent, University Hospitals of Geneva, Geneva, Switzerland
| | - François Lazeyras
- Department of Radiology and Medical Informatics, Center of BioMedical Imaging (CIBM), University of Geneva, Geneva, Switzerland
| | - Petra S Hüppi
- Division of Development and Growth, Department of Woman, Child and Adolescent, University Hospitals of Geneva, Geneva, Switzerland.
| |
Collapse
|
28
|
Kim DY, Jung WS, Choi JW, Choung J, Kim HG. Evaluating Tissue Contrast and Detecting White Matter Injury in the Infant Brain: A Comparison Study of Synthetic Phase-Sensitive Inversion Recovery. AJNR Am J Neuroradiol 2019; 40:1406-1412. [PMID: 31345940 DOI: 10.3174/ajnr.a6135] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Accepted: 06/17/2019] [Indexed: 12/17/2022]
Abstract
BACKGROUND AND PURPOSE Synthetic MR imaging enables the acquisition of phase-sensitive inversion recovery images. The aim of this study was to compare the image quality of synthetic phase-sensitive inversion recovery with that of other sequences in infants. MATERIALS AND METHODS Brain MR imaging with 3D T1-weighted fast-spoiled gradient recalled, synthetic T1WI, and synthetic phase-sensitive inversion recovery of 91 infants was compared. Contrast between unmyelinated WM and myelinated WM and between unmyelinated WM and cortical GM was calculated. Qualitative evaluation of image quality and myelination degree was performed. In infants with punctate white matter injuries, the number of lesions was compared. RESULTS The contrast between unmyelinated WM and myelinated WM was higher in synthetic phase-sensitive inversion recovery compared with fast-spoiled gradient recalled or synthetic T1WI (P < .001). Compared with synthetic T1WI, synthetic phase-sensitive inversion recovery showed higher gray-white matter differentiation (P < .001) and myelination degree in the cerebellar peduncle (P < .001). The number of detected punctate white matter injuries decreased with synthetic phase-sensitive inversion recovery compared with fast-spoiled gradient recalled sequences (1.2 ± 3.2 versus 3.4 ± 3.6, P = .001). CONCLUSIONS Synthetic phase-sensitive inversion recovery has the potential to improve tissue contrast and image quality in the brain MR imaging of infants. However, we have to be aware that synthetic phase-sensitive inversion recovery has limited value when assessing punctate white matter injuries compared with 3D fast-spoiled gradient recalled imaging.
Collapse
Affiliation(s)
- D Y Kim
- From the Department of Radiology (D.Y.K., W.S.J., J.W.C., H.G.K.)
| | - W S Jung
- From the Department of Radiology (D.Y.K., W.S.J., J.W.C., H.G.K.)
| | - J W Choi
- From the Department of Radiology (D.Y.K., W.S.J., J.W.C., H.G.K.)
| | - J Choung
- Biomedical Informatics (J.C.), Ajou University School of Medicine, Suwon, Republic of Korea.,Office of Biostatistics (J.C.), Ajou Research Institute for Innovative Medicine, Ajou University Medical Center, Suwon, Republic of Korea
| | - H G Kim
- From the Department of Radiology (D.Y.K., W.S.J., J.W.C., H.G.K.) .,Department of Radiology (H.G.K.), Eunpyeong St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
29
|
Breu M, Reisinger D, Tao L, Wu D, Zhang Y, Budde MD, Fatemi A, Pathak AP, Zhang J. In vivo high-resolution diffusion tensor imaging of the developing neonatal rat cortex and its relationship to glial and dendritic maturation. Brain Struct Funct 2019; 224:1815-1829. [PMID: 31011813 DOI: 10.1007/s00429-019-01878-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 04/11/2019] [Indexed: 12/25/2022]
Abstract
Diffusion tensor imaging (DTI) is increasingly utilized as a sensitive tool for studying brain maturation and injuries during the neonatal period. In this study, we acquired high resolution in vivo DTI data from neonatal rat brains from postnatal day 2 (P2) to P10 and correlated temporal changes in DTI derived markers with microstructural organization of glia, axons, and dendrites during this critical period of brain development. Group average images showed dramatic temporal changes in brain morphology, fractional anisotropy (FA) and mean diffusivity (MD). Most cortical regions showed a monotonous decline in FA and an initial increase in MD from P2 to P8 that declined slightly by P10. Qualitative histology revealed rapid maturation of the glial and dendritic networks in the developing cortex. In the cingulate and motor cortex, the decreases in FA over time significantly correlated with structural anisotropy values computed from histological sections stained with glial and dendritic markers. However, in the sensory and visual cortex, other factors probably contributed to the observed decreases in FA. We did not observe any significant correlations between FA and structural anisotropy computed from the axonal histological marker.
Collapse
Affiliation(s)
- Markus Breu
- Division of Neurogenetics, Kennedy Krieger Institute, Baltimore, MD, USA.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - Dominik Reisinger
- Division of Neurogenetics, Kennedy Krieger Institute, Baltimore, MD, USA.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - Liangcheng Tao
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Dan Wu
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yajing Zhang
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Matthew D Budde
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Ali Fatemi
- Division of Neurogenetics, Kennedy Krieger Institute, Baltimore, MD, USA.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Arvind P Pathak
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jiangyang Zhang
- Department of Radiology, New York University School of Medicine, 660 First Avenue, Room 207, New York, NY, 10016, USA.
| |
Collapse
|
30
|
Ghazi Sherbaf F, Aarabi MH, Hosein Yazdi M, Haghshomar M. White matter microstructure in fetal alcohol spectrum disorders: A systematic review of diffusion tensor imaging studies. Hum Brain Mapp 2019; 40:1017-1036. [PMID: 30289588 PMCID: PMC6865781 DOI: 10.1002/hbm.24409] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 09/18/2018] [Accepted: 09/19/2018] [Indexed: 12/31/2022] Open
Abstract
Diffusion tensor imaging (DTI) has revolutionized our understanding of the neural underpinnings of alcohol teratogenesis. This technique can detect alterations in white matter in neurodevelopmental disorders, such as fetal alcohol spectrum disorder (FASD). Using Prisma guidelines, we identified 23 DTI studies conducted on individuals with prenatal alcohol exposure (PAE). These studies confirm the widespread nature of brain damage in PAE by reporting diffusivity alterations in commissural, association, and projection fibers; and in relation to increasing cognitive impairment. Reduced integrity in terms of lower fractional anisotropy (FA) and higher mean diffusivity (MD) and radial diffusivity (RD) is reported more consistently in the corpus callosum, cerebellar peduncles, cingulum, and longitudinal fasciculi connecting frontal and temporoparietal regions. Although these interesting results provide insight into FASD neuropathology, it is important to investigate the clinical diversity of this disorder for better treatment options and prediction of progression. The aim of this review is to provide a summary of different patterns of neural structure between PAE and typically developed individuals. We further discuss the association of alterations in diffusivity with demographic features and symptomatology of PAE. With the accumulated knowledge of the neural correlates of FASD presenting symptoms, a comprehensive understanding of the heterogeneity in FASD will potentially improve the disease management and will highlight the diagnostic challenges and potential areas of future research avenues, where neural markers may be beneficial.
Collapse
Affiliation(s)
| | | | - Meisam Hosein Yazdi
- Namazee Hospital, Imaging Research Center, Department of RadiologyShiraz University of Medical SciencesShirazIran
| | | |
Collapse
|
31
|
Developmental trajectory of the prefrontal cortex: a systematic review of diffusion tensor imaging studies. Brain Imaging Behav 2019; 12:1197-1210. [PMID: 28913594 DOI: 10.1007/s11682-017-9761-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Fluctuations in gray and white matter volumes in addition to the fibers' reorganization and refinement of synaptic connectivity apparently happen in a particular temporo-spatial sequence during the dynamic and prolonged process of cerebral maturation. These developmental events are associated with regional modifications of brain tissues and neural circuits, contributing to networks' specialization and enhanced cognitive processing. According to several studies, improvements in cognitive processes are possibly myelin-dependent and associated to white matter maturation. Of particular interest is the developmental pattern of the prefrontal cortex (PFC), more specifically the PFC white matter, due to its role in high-level executive processes such as attention, working memory and inhibitory control. A systematic review of the literature was conducted using the Web of Science, PubMed and Embase databases to analyze the development of PFC white matter using Diffusion Tensor Imaging (DTI), a widely used non-invasive technique to assess white matter maturation. Both the research and reporting of results were based on Cochrane's recommendations and PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analysis) guidelines. Information extracted from 27 published studies revealed an increased myelination, organization and integrity of frontal white matter with age, as revealed by DTI indexes (fractional anisotropy [FA], mean diffusivity [MD], radial diffusivity [RD] and axial diffusivity [AD]). These patterns highlight the extended developmental course of the frontal structural connectivity, which parallels the improvements in higher-level cognitive functions observed between adolescence and early adulthood.
Collapse
|
32
|
Nakagawa S, Takeuchi H, Taki Y, Nouchi R, Kotozaki Y, Shinada T, Maruyama T, Sekiguchi A, Iizuka K, Yokoyama R, Yamamoto Y, Hanawa S, Araki T, Miyauchi CM, Magistro D, Sakaki K, Jeong H, Sasaki Y, Kawashima R. Mean diffusivity related to collectivism among university students in Japan. Sci Rep 2019; 9:1338. [PMID: 30718676 PMCID: PMC6362187 DOI: 10.1038/s41598-018-37995-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 12/18/2018] [Indexed: 11/17/2022] Open
Abstract
Collectivism is an important factor for coping with stress in one’s social life. To date, no imaging studies have revealed a direct association between collectivism and white matter structure. Collectivism is positively related to independence, harm avoidance, rejection sensitivity, cooperativeness, external locus of control, and self-monitoring and negatively related to need for uniqueness. Accordingly, we hypothesised that the neural structures underpinning collectivism are those that are also involved with its relationship using magnetic resonance imaging (MRI). This study aimed to identify the brain structures associated with collectivism in healthy young adults (n = 797), using regional grey and white matter volume, fractional anisotropy, and mean diffusivity (MD) analyses of MRI data. Scores on the collectivism scale were positively associated with MD values in the bilateral dorsolateral prefrontal cortex, left orbitofrontal cortex, inferior frontal gyrus, right superior temporal gyrus, ventral posterior cingulate cortex, globus pallidus, and calcarine cortex using the threshold-free cluster enhancement method with family-wise errors corrected to P < 0.05 at the whole-brain level. No significant associations between were found collectivism and other measures. Thus, the present findings supported our hypothesis that the neural correlates of collectivism are situated in regions involved in its related factors.
Collapse
Affiliation(s)
- Seishu Nakagawa
- Division of Psychiatry, Tohoku Medical and Pharmaceutical University, Sendai, Japan. .,Department of Human Brain Science, Institute of Development, Ageing and Cancer, Tohoku University, Sendai, Japan.
| | - Hikaru Takeuchi
- Division of Developmental Cognitive Neuroscience, Institute of Development, Ageing and Cancer, Tohoku University, Sendai, Japan
| | - Yasuyuki Taki
- Division of Developmental Cognitive Neuroscience, Institute of Development, Ageing and Cancer, Tohoku University, Sendai, Japan.,Division of Medical Neuroimaging Analysis, Department of Community Medical Supports, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan.,Department of Nuclear Medicine and Radiology, Institute of Development, Ageing and Cancer, Tohoku University, Sendai, Japan
| | - Rui Nouchi
- Creative Interdisciplinary Research Division, Frontier Research Institute for Interdisciplinary Science (FRIS), Tohoku University, Sendai, Japan.,Smart Ageing International Research Center, Institute of Development, Ageing and Cancer, Tohoku University, Sendai, Japan
| | - Yuka Kotozaki
- Smart Ageing International Research Center, Institute of Development, Ageing and Cancer, Tohoku University, Sendai, Japan
| | - Takamitsu Shinada
- Department of Human Brain Science, Institute of Development, Ageing and Cancer, Tohoku University, Sendai, Japan
| | - Tsukasa Maruyama
- Department of Human Brain Science, Institute of Development, Ageing and Cancer, Tohoku University, Sendai, Japan
| | - Atsushi Sekiguchi
- Division of Medical Neuroimaging Analysis, Department of Community Medical Supports, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan.,Department of Behavioral Medicine, National Institute of Mental Health, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Kunio Iizuka
- Department of Psychiatry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | | | - Yuki Yamamoto
- Department of Human Brain Science, Institute of Development, Ageing and Cancer, Tohoku University, Sendai, Japan
| | - Sugiko Hanawa
- Department of Human Brain Science, Institute of Development, Ageing and Cancer, Tohoku University, Sendai, Japan
| | | | - Carlos Makoto Miyauchi
- Department of Human Brain Science, Institute of Development, Ageing and Cancer, Tohoku University, Sendai, Japan.,Department of Language Sciences, Graduate School of Humanities, Tokyo Metropolitan University, Tokyo, Japan
| | - Daniele Magistro
- Department of Sport Science, School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Kohei Sakaki
- Advanced Brain Science, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Hyeonjeong Jeong
- Department of Human Brain Science, Institute of Development, Ageing and Cancer, Tohoku University, Sendai, Japan.,Graduate School of International Cultural Studies, Tohoku University, Sendai, Japan
| | - Yukako Sasaki
- Advanced Brain Science, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Ryuta Kawashima
- Smart Ageing International Research Center, Institute of Development, Ageing and Cancer, Tohoku University, Sendai, Japan.,Advanced Brain Science, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| |
Collapse
|
33
|
Feng L, Li H, Oishi K, Mishra V, Song L, Peng Q, Ouyang M, Wang J, Slinger M, Jeon T, Lee L, Heyne R, Chalak L, Peng Y, Liu S, Huang H. Age-specific gray and white matter DTI atlas for human brain at 33, 36 and 39 postmenstrual weeks. Neuroimage 2019; 185:685-698. [PMID: 29959046 PMCID: PMC6289605 DOI: 10.1016/j.neuroimage.2018.06.069] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 05/21/2018] [Accepted: 06/25/2018] [Indexed: 01/24/2023] Open
Abstract
During the 3rd trimester, dramatic structural changes take place in the human brain, underlying the neural circuit formation. The survival rate of premature infants has increased significantly in recent years. The large morphological differences of the preterm brain at 33 or 36 postmenstrual weeks (PMW) from the brain at 40PMW (full term) make it necessary to establish age-specific atlases for preterm brains. In this study, with high quality (1.5 × 1.5 × 1.6 mm3 imaging resolution) diffusion tensor imaging (DTI) data obtained from 84 healthy preterm and term-born neonates, we established age-specific preterm and term-born brain templates and atlases at 33, 36 and 39PMW. Age-specific DTI templates include a single-subject template, a population-averaged template with linear transformation and a population-averaged template with nonlinear transformation. Each of the age-specific DTI atlases includes comprehensive labeling of 126 major gray matter (GM) and white matter (WM) structures, specifically 52 cerebral cortical structures, 40 cerebral WM structures, 22 brainstem and cerebellar structures and 12 subcortical GM structures. From 33 to 39 PMW, dramatic morphological changes of delineated individual neural structures such as ganglionic eminence and uncinate fasciculus were revealed. The evaluation based on measurements of Dice ratio and L1 error suggested reliable and reproducible automated labels from the age-matched atlases compared to labels from manual delineation. Applying these atlases to automatically and effectively delineate microstructural changes of major WM tracts during the 3rd trimester was demonstrated. The established age-specific DTI templates and atlases of 33, 36 and 39 PMW brains may be used for not only understanding normal functional and structural maturational processes but also detecting biomarkers of neural disorders in the preterm brains.
Collapse
Affiliation(s)
- Lei Feng
- Department of Radiology, Children's Hospital of Philadelphia, PA, USA; Research Center for Sectional and Imaging Anatomy, Shandong University Cheeloo College of Medicine, Shandong, China
| | - Hang Li
- Department of Radiology, Children's Hospital of Philadelphia, PA, USA; Department of Radiology, Beijing Children's Hospital Affiliated to Capital Medical University, National Center for Children's Health, Beijing, China
| | - Kenichi Oishi
- Department of Radiology, Johns Hopkins University, MD, USA
| | - Virendra Mishra
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, TX, USA
| | - Limei Song
- Department of Radiology, Children's Hospital of Philadelphia, PA, USA; Research Center for Sectional and Imaging Anatomy, Shandong University Cheeloo College of Medicine, Shandong, China
| | - Qinmu Peng
- Department of Radiology, Children's Hospital of Philadelphia, PA, USA; Department of Radiology, Perelman School of Medicine, University of Pennsylvania, PA, USA
| | - Minhui Ouyang
- Department of Radiology, Children's Hospital of Philadelphia, PA, USA; Advanced Imaging Research Center, University of Texas Southwestern Medical Center, TX, USA
| | - Jiaojian Wang
- Department of Radiology, Children's Hospital of Philadelphia, PA, USA; Department of Radiology, Perelman School of Medicine, University of Pennsylvania, PA, USA
| | - Michelle Slinger
- Department of Radiology, Children's Hospital of Philadelphia, PA, USA
| | - Tina Jeon
- Department of Radiology, Children's Hospital of Philadelphia, PA, USA
| | - Lizette Lee
- Department of Pediatrics, University of Texas Southwestern Medical Center, TX, USA
| | - Roy Heyne
- Department of Pediatrics, University of Texas Southwestern Medical Center, TX, USA
| | - Lina Chalak
- Department of Pediatrics, University of Texas Southwestern Medical Center, TX, USA
| | - Yun Peng
- Department of Radiology, Beijing Children's Hospital Affiliated to Capital Medical University, National Center for Children's Health, Beijing, China
| | - Shuwei Liu
- Research Center for Sectional and Imaging Anatomy, Shandong University Cheeloo College of Medicine, Shandong, China
| | - Hao Huang
- Department of Radiology, Children's Hospital of Philadelphia, PA, USA; Advanced Imaging Research Center, University of Texas Southwestern Medical Center, TX, USA; Department of Radiology, Perelman School of Medicine, University of Pennsylvania, PA, USA.
| |
Collapse
|
34
|
Zamani A, Mychasiuk R, Semple BD. Determinants of social behavior deficits and recovery after pediatric traumatic brain injury. Exp Neurol 2019; 314:34-45. [PMID: 30653969 DOI: 10.1016/j.expneurol.2019.01.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 12/29/2018] [Accepted: 01/12/2019] [Indexed: 12/15/2022]
Abstract
Traumatic brain injury (TBI) during early childhood is associated with a particularly high risk of developing social behavior impairments, including deficits in social cognition that manifest as reduced social interactions, with profound consequences for the individuals' quality of life. A number of pre-injury, post-injury, and injury-related factors have been identified or hypothesized to determine the extent of social behavior problems after childhood TBI. These include variables associated with the individual themselves (e.g. age, genetics, the injury severity, and extent of white matter damage), proximal environmental factors (e.g. family functioning, parental mental health), and more distal environmental factors (e.g. socioeconomic status, access to resources). In this review, we synthesize the available evidence demonstrating which of these determinants influence risk versus resilience to social behavior deficits after pediatric TBI, drawing upon the available clinical and preclinical literature. Injury-related pathology in neuroanatomical regions associated with social cognition and behaviors will also be described, with a focus on findings from magnetic resonance imaging and diffusion tensor imaging. Finally, study limitations and suggested future directions are highlighted. In summary, while no single variable can alone accurately predict the manifestation of social behavior problems after TBI during early childhood, an increased understanding of how both injury and environmental factors can influence social outcomes provides a useful framework for the development of more effective rehabilitation strategies aiming to optimize recovery for young brain-injured patients.
Collapse
Affiliation(s)
- Akram Zamani
- Department of Neuroscience, Monash University, Prahran, VIC, Australia
| | - Richelle Mychasiuk
- Department of Neuroscience, Monash University, Prahran, VIC, Australia; Department of Psychology, University of Calgary, Calgary, AB, Canada
| | - Bridgette D Semple
- Department of Neuroscience, Monash University, Prahran, VIC, Australia; Department of Medicine (Royal Melbourne Hospital), The University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
35
|
Rogers CE, Lean RE, Wheelock MD, Smyser CD. Aberrant structural and functional connectivity and neurodevelopmental impairment in preterm children. J Neurodev Disord 2018; 10:38. [PMID: 30541449 PMCID: PMC6291944 DOI: 10.1186/s11689-018-9253-x] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 11/14/2018] [Indexed: 12/15/2022] Open
Abstract
Background Despite advances in antenatal and neonatal care, preterm birth remains a leading cause of neurological disabilities in children. Infants born prematurely, particularly those delivered at the earliest gestational ages, commonly demonstrate increased rates of impairment across multiple neurodevelopmental domains. Indeed, the current literature establishes that preterm birth is a leading risk factor for cerebral palsy, is associated with executive function deficits, increases risk for impaired receptive and expressive language skills, and is linked with higher rates of co-occurring attention deficit hyperactivity disorder, anxiety, and autism spectrum disorders. These same infants also demonstrate elevated rates of aberrant cerebral structural and functional connectivity, with persistent changes evident across advanced magnetic resonance imaging modalities as early as the neonatal period. Emerging findings from cross-sectional and longitudinal investigations increasingly suggest that aberrant connectivity within key functional networks and white matter tracts may underlie the neurodevelopmental impairments common in this population. Main body This review begins by highlighting the elevated rates of neurodevelopmental disorders across domains in this clinical population, describes the patterns of aberrant structural and functional connectivity common in prematurely-born infants and children, and then reviews the increasingly established body of literature delineating the relationship between these brain abnormalities and adverse neurodevelopmental outcomes. We also detail important, typically understudied, clinical, and social variables that may influence these relationships among preterm children, including heritability and psychosocial risks. Conclusion Future work in this domain should continue to leverage longitudinal evaluations of preterm infants which include both neuroimaging and detailed serial neurodevelopmental assessments to further characterize relationships between imaging measures and impairment, information necessary for advancing our understanding of modifiable risk factors underlying these disorders and best practices for improving neurodevelopmental trajectories in this high-risk clinical population.
Collapse
Affiliation(s)
- Cynthia E Rogers
- Departments of Psychiatry and Pediatrics, Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8504, St. Louis, MO, 63110, USA.
| | - Rachel E Lean
- Departments of Psychiatry, Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8504, St. Louis, MO, 63110, USA
| | - Muriah D Wheelock
- Departments of Psychiatry, Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8504, St. Louis, MO, 63110, USA
| | - Christopher D Smyser
- Departments of Neurology, Pediatrics and Mallinckrodt Institute of Radiology, Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8111, St. Louis, MO, 63110, USA
| |
Collapse
|
36
|
Lebel C, Deoni S. The development of brain white matter microstructure. Neuroimage 2018; 182:207-218. [PMID: 29305910 PMCID: PMC6030512 DOI: 10.1016/j.neuroimage.2017.12.097] [Citation(s) in RCA: 300] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 12/16/2017] [Accepted: 12/30/2017] [Indexed: 12/13/2022] Open
Abstract
Throughout infancy, childhood, and adolescence, our brains undergo remarkable changes. Processes including myelination and synaptogenesis occur rapidly across the first 2-3 years of life, and ongoing brain remodeling continues into young adulthood. Studies have sought to characterize the patterns of structural brain development, and early studies predominately relied upon gross anatomical measures of brain structure, morphology, and organization. MRI offers the ability to characterize and quantify a range of microstructural aspects of brain tissue that may be more closely related to fundamental neurodevelopmental processes. Techniques such as diffusion, magnetization transfer, relaxometry, and myelin water imaging provide insight into changing cyto- and myeloarchitecture, neuronal density, and structural connectivity. In this review, we focus on the growing body of literature exploiting these MRI techniques to better understand the microstructural changes that occur in brain white matter during maturation. Our review focuses on studies of normative brain development from birth to early adulthood (∼25 years), and places particular emphasis on longitudinal studies and newer techniques that are being used to study microstructural white matter development. All imaging methods demonstrate consistent, rapid microstructural white matter development over the first 3 years of life, suggesting increased myelination and axonal packing. Diffusion studies clearly demonstrate continued white matter maturation during later childhood and adolescence, though the lack of consistent findings in other modalities suggests changes may be mainly due to axonal packing. An emerging literature details differential microstructural development in boys and girls, and connects developmental trajectories to cognitive abilities, behaviour, and/or environmental factors, though the nature of these relationships remains unclear. Future research will need to focus on newer imaging techniques and longitudinal studies to provide more detailed information about microstructural white matter development, particularly in the childhood years.
Collapse
Affiliation(s)
- Catherine Lebel
- Department of Radiology, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute and the Hotchkiss Brain Institute, Calgary, AB, Canada.
| | - Sean Deoni
- School of Engineering, Providence, RI, United States; Advanced Baby Imaging Lab at Memorial Hospital of Rhode Island, Pawtucket, RI, United States
| |
Collapse
|
37
|
Kim S, Kwon HJ, Kang EJ, Kim DW. Diffusion-Tensor Tractography of the Auditory Neural Pathway : Clinical Usefulness in Patients with Unilateral Sensorineural Hearing Loss. Clin Neuroradiol 2018; 30:115-122. [PMID: 30374668 DOI: 10.1007/s00062-018-0733-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 10/10/2018] [Indexed: 11/28/2022]
Abstract
PURPOSE The purpose of this study was to evaluate the structural integrity of the auditory neural pathway in patients with unilateral sensorineural hearing loss using quantitative diffusion-tensor tractography. METHODS Diffusion-tensor tractography imaging was performed using a 3T magnetic resonance imaging system to evaluate structural alterations in the auditory neural pathway of patients with unilateral sensorineural hearing loss. The two diffusion-tensor tractography parameters, fractional anisotropy and the apparent diffusion coefficient were compared between the ipsilateral side and the contralateral side in patients and controls. Additionally, correlations between the parameter values and the hearing loss level in patients were evaluated. RESULTS A total of 24 sensorineural hearing loss patients (14 males; age range, 17-65 years; average age, 45.3 years) and 24 age and sex-matched control subjects were enrolled. Fractional anisotropy values on the ipsilateral and contralateral sides were significantly lower in patients than in the control group (p = 0.004 and 0.001, respectively). The differences in the apparent diffusion coefficient values for the ipsilateral and contralateral sides between the two groups were not significant (p = 0.279 and 0.248, respectively). There was an inverse relationship between fractional anisotropy and the severity of hearing impairment on the ipsilateral and contralateral sides (r = -0.519, p = 0.005 and r = -0.454, p = 0.015, respectively). No significant correlation was found between the apparent diffusion coefficient and hearing loss level on the ipsilateral and contralateral sides (r = 0.172, p = 0.380 and r = 0.131, p = 0.508, respectively). CONCLUSION Quantitative diffusion-tensor tractography can be used to detect microstructural alterations in the auditory neural pathway in sensorineural hearing loss patients with normal results in standard imaging studies.
Collapse
Affiliation(s)
- Sanghyeon Kim
- Department of Radiology, College of Medicine, Dong-A University, 1,3-ga, Dongdaeshin-dong, Seogu, Busan, Korea (Republic of).
| | - Hee Jin Kwon
- Department of Radiology, College of Medicine, Dong-A University, 1,3-ga, Dongdaeshin-dong, Seogu, Busan, Korea (Republic of)
| | - Eun-Ju Kang
- Department of Radiology, College of Medicine, Dong-A University, 1,3-ga, Dongdaeshin-dong, Seogu, Busan, Korea (Republic of)
| | - Dong Won Kim
- Department of Radiology, College of Medicine, Dong-A University, 1,3-ga, Dongdaeshin-dong, Seogu, Busan, Korea (Republic of)
| |
Collapse
|
38
|
Chou MC, Lai PH, Li JY. Early white matter injuries associated with dopamine transporter dysfunction in patients with acute CO intoxication: A diffusion kurtosis imaging and Tc-99m TRODAT-1 SPECT study. Eur Radiol 2018; 29:1375-1383. [PMID: 30143836 DOI: 10.1007/s00330-018-5673-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 07/08/2018] [Accepted: 07/17/2018] [Indexed: 10/28/2022]
Abstract
PURPOSE Patients with CO intoxication were demonstrated to exhibit white matter (WM) injuries, changes in substantia nigra, dopamine transporter dysfunctions of striatum and Parkinsonism symptoms. We aimed to investigate the relationship between WM injuries of dopaminergic pathways and dopamine transporter dysfunctions of the striatum in patients with acute CO intoxication using both diffusion kurtosis imaging (DKI) and single photon-emission computed tomography (SPECT). MATERIALS AND METHODS Seventeen patients with acute CO intoxication and 19 age- and gender-matched healthy subjects were enrolled. DKI data were acquired from all participants and Tc-99m-TRODAT-1 SPECT scan was performed on each patient. DKI datasets were fitted to obtain axial, radial and mean diffusivity, fractional anisotropy, axial, radial and mean kurtosis for voxel-based comparison. In addition, the TRODAT-1 binding ratio of the striatum was calculated using the occipital cortices as a reference. In significant regions, correlational analysis was performed to understand the relationship between DKI indices and TRODAT-1 binding ratio. RESULTS The results showed that DKI indices were significantly altered in multiple WM regions broadly involving the basal ganglia-thalamocortical circuit and nigrostriatal pathway. The correlation analysis further revealed significant correlations between DKI indices and the TRODAT-1 binding ratio in the nigrostriatal pathway (absolute correlation coefficients ranged from 0.5992 to 0.6950, p<0.05), suggesting that CO-induced early WM injuries were associated with dopamine transporter dysfunctions of striatum. CONCLUSION We concluded that DKI and Tc-99m-TRODAT-1 SPECT scans were helpful in early detection of global WM injuries associated with dysfunctions of dopamine transporter in patients with acute CO intoxication. KEY POINTS • Voxel-based diffusion kurtosis imaging analysis was helpful in globally detecting early white matter injuries in patients with acute CO intoxication. • CO-induced early white matter injuries were broadly located in basal ganglia-thalamocortical circuit and nigrostriatal pathway. • Early white matter injuries in dopaminergic pathways were significantly correlated with dopamine transporter dysfunctions of the striatum.
Collapse
Affiliation(s)
- Ming-Chung Chou
- Department of Medical Imaging and Radiological Sciences, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Healthcare Administration and Medical Informatics, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Ping-Hong Lai
- Department of Radiology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan.,Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Jie-Yuan Li
- Department of Neurology, E-Da Hospital, No. 1, E-Da Road, Jiao-Su Village, Yan-Chao District, Kaohsiung City, 824, Taiwan. .,School of Medicine, I-Shou University, Kaohsiung, Taiwan. .,Department of Nursing, Yuh-Ing Junior College of Health Care and Management, Kaohsiung, Taiwan.
| |
Collapse
|
39
|
Kroenke CD. Using diffusion anisotropy to study cerebral cortical gray matter development. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2018; 292:106-116. [PMID: 29705039 PMCID: PMC6420781 DOI: 10.1016/j.jmr.2018.04.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Revised: 03/07/2018] [Accepted: 04/20/2018] [Indexed: 06/03/2023]
Abstract
Diffusion-weighted magnetic resonance imaging (diffusion MRI) is being used to characterize morphological development of cells within developing cerebral cortical gray matter. Abnormal morphology is a shared characteristic of cerebral cortical neurons for many neurodevelopmental disorders, and therefore diffusion MRI is potentially of high value for monitoring growth-related anatomical changes of relevance to brain function. Here, the theoretical framework for analyzing diffusion MRI data is summarized. An overview of quantitative methods for validating the interpretations of diffusion MRI data using light microscopy is then presented. These theoretical modeling and validation methods have been used to precisely characterize changes in water diffusion anisotropy with development in the context of several animal model systems. Further, in diffusion MRI studies of several preclinical models of neurodevelopmental disorders, the ability is demonstrated of diffusion MRI to detect abnormal morphological neural development. These animal model studies are reviewed along with recent initial efforts to translate the findings into an approach for studies of human subjects. This body of data indicates that diffusion MRI has the requisite sensitivity to detect abnormal cellular development in the context of several models of neurodevelopmental disorders, and therefore may provide a new strategy for detecting abnormalities in early stages of brain development in humans.
Collapse
Affiliation(s)
- Christopher D Kroenke
- Division of Neuroscience, Oregon National Primate Research Center, Department of Behavioral Neuroscience, and Advanced Imaging Research Center, Oregon Health & Science University, Portland, OR 97239, United States.
| |
Collapse
|
40
|
Guan X, Huang P, Zeng Q, Liu C, Wei H, Xuan M, Gu Q, Xu X, Wang N, Yu X, Luo X, Zhang M. Quantitative susceptibility mapping as a biomarker for evaluating white matter alterations in Parkinson’s disease. Brain Imaging Behav 2018; 13:220-231. [DOI: 10.1007/s11682-018-9842-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
41
|
Anblagan D, Valdés Hernández MC, Ritchie SJ, Aribisala BS, Royle NA, Hamilton IF, Cox SR, Gow AJ, Pattie A, Corley J, Starr JM, Muñoz Maniega S, Bastin ME, Deary IJ, Wardlaw JM. Coupled changes in hippocampal structure and cognitive ability in later life. Brain Behav 2018; 8:e00838. [PMID: 29484252 PMCID: PMC5822578 DOI: 10.1002/brb3.838] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 07/07/2017] [Accepted: 08/07/2017] [Indexed: 11/30/2022] Open
Abstract
Introduction The hippocampus plays an important role in cognitive abilities which often decline with advancing age. Methods In a longitudinal study of community-dwelling adults, we investigated whether there were coupled changes in hippocampal structure and verbal memory, working memory, and processing speed between the ages of 73 (N = 655) and 76 years (N = 469). Hippocampal structure was indexed by hippocampal volume, hippocampal volume as a percentage of intracranial volume (H_ICV), fractional anisotropy (FA), mean diffusivity (MD), and longitudinal relaxation time (T1). Results Mean levels of hippocampal volume, H_ICV, FA, T1, and all three cognitive abilities domains decreased, whereas MD increased, from age 73 to 76. At baseline, higher hippocampal volume was associated with better working memory and verbal memory, but none of these correlations survived correction for multiple comparisons. Higher FA, lower MD, and lower T1 at baseline were associated with better cognitive abilities in all three domains; only the correlation between baseline hippocampal MD and T1, and change in the three cognitive domains, survived correction for multiple comparisons. Individuals with higher hippocampal MD at age 73 experienced a greater decline in all three cognitive abilities between ages 73 and 76. However, no significant associations with changes in cognitive abilities were found with hippocampal volume, FA, and T1 measures at baseline. Similarly, no significant associations were found between cognitive abilities at age 73 and changes in the hippocampal MRI biomarkers between ages 73 and 76. Conclusion Our results provide evidence to better understand how the hippocampus ages in healthy adults in relation to the cognitive domains in which it is involved, suggesting that better hippocampal MD at age 73 predicts less relative decline in three important cognitive domains across the next 3 years. It can potentially assist in diagnosing early stages of aging-related neuropathologies, because in some cases, accelerated decline could predict pathologies.
Collapse
Affiliation(s)
- Devasuda Anblagan
- Centre for Cognitive Ageing and Cognitive EpidemiologyUniversity of EdinburghEdinburghUK
- Department of Neuroimaging SciencesCentre for Clinical Brain SciencesUniversity of EdinburghEdinburghUK
- Scottish Imaging NetworkA Platform for Scientific Excellence (SINAPSE) CollaborationEdinburghUK
- Edinburgh Dementia Research CentreUK Dementia Research InstituteEdinburghUK
| | - Maria C. Valdés Hernández
- Centre for Cognitive Ageing and Cognitive EpidemiologyUniversity of EdinburghEdinburghUK
- Department of Neuroimaging SciencesCentre for Clinical Brain SciencesUniversity of EdinburghEdinburghUK
- Scottish Imaging NetworkA Platform for Scientific Excellence (SINAPSE) CollaborationEdinburghUK
- Edinburgh Dementia Research CentreUK Dementia Research InstituteEdinburghUK
| | - Stuart J. Ritchie
- Centre for Cognitive Ageing and Cognitive EpidemiologyUniversity of EdinburghEdinburghUK
- Department of PsychologyUniversity of EdinburghEdinburghUK
| | - Benjamin S. Aribisala
- Department of Neuroimaging SciencesCentre for Clinical Brain SciencesUniversity of EdinburghEdinburghUK
- Department of Computer ScienceLagos State UniversityLagosNigeria
| | - Natalie A. Royle
- Centre for Cognitive Ageing and Cognitive EpidemiologyUniversity of EdinburghEdinburghUK
- Department of Neuroimaging SciencesCentre for Clinical Brain SciencesUniversity of EdinburghEdinburghUK
- Scottish Imaging NetworkA Platform for Scientific Excellence (SINAPSE) CollaborationEdinburghUK
| | - Iona F. Hamilton
- Department of Neuroimaging SciencesCentre for Clinical Brain SciencesUniversity of EdinburghEdinburghUK
- Edinburgh Dementia Research CentreUK Dementia Research InstituteEdinburghUK
| | - Simon R. Cox
- Centre for Cognitive Ageing and Cognitive EpidemiologyUniversity of EdinburghEdinburghUK
- Scottish Imaging NetworkA Platform for Scientific Excellence (SINAPSE) CollaborationEdinburghUK
- Department of PsychologyUniversity of EdinburghEdinburghUK
| | - Alan J. Gow
- Centre for Cognitive Ageing and Cognitive EpidemiologyUniversity of EdinburghEdinburghUK
- Department of PsychologySchool of Social SciencesHeriot‐Watt UniversityEdinburghUK
| | - Alison Pattie
- Department of PsychologyUniversity of EdinburghEdinburghUK
| | - Janie Corley
- Centre for Cognitive Ageing and Cognitive EpidemiologyUniversity of EdinburghEdinburghUK
- Department of PsychologyUniversity of EdinburghEdinburghUK
| | - John M. Starr
- Centre for Cognitive Ageing and Cognitive EpidemiologyUniversity of EdinburghEdinburghUK
- Alzheimer Scotland Dementia Research CentreUniversity of EdinburghEdinburghUK
| | - Susana Muñoz Maniega
- Centre for Cognitive Ageing and Cognitive EpidemiologyUniversity of EdinburghEdinburghUK
- Department of Neuroimaging SciencesCentre for Clinical Brain SciencesUniversity of EdinburghEdinburghUK
- Scottish Imaging NetworkA Platform for Scientific Excellence (SINAPSE) CollaborationEdinburghUK
- Edinburgh Dementia Research CentreUK Dementia Research InstituteEdinburghUK
| | - Mark E. Bastin
- Centre for Cognitive Ageing and Cognitive EpidemiologyUniversity of EdinburghEdinburghUK
- Department of Neuroimaging SciencesCentre for Clinical Brain SciencesUniversity of EdinburghEdinburghUK
- Scottish Imaging NetworkA Platform for Scientific Excellence (SINAPSE) CollaborationEdinburghUK
- Edinburgh Dementia Research CentreUK Dementia Research InstituteEdinburghUK
| | - Ian J. Deary
- Centre for Cognitive Ageing and Cognitive EpidemiologyUniversity of EdinburghEdinburghUK
- Department of PsychologyUniversity of EdinburghEdinburghUK
| | - Joanna M. Wardlaw
- Centre for Cognitive Ageing and Cognitive EpidemiologyUniversity of EdinburghEdinburghUK
- Department of Neuroimaging SciencesCentre for Clinical Brain SciencesUniversity of EdinburghEdinburghUK
- Scottish Imaging NetworkA Platform for Scientific Excellence (SINAPSE) CollaborationEdinburghUK
- Edinburgh Dementia Research CentreUK Dementia Research InstituteEdinburghUK
| |
Collapse
|
42
|
Yu Q, Ouyang A, Chalak L, Jeon T, Chia J, Mishra V, Sivarajan M, Jackson G, Rollins N, Liu S, Huang H. Structural Development of Human Fetal and Preterm Brain Cortical Plate Based on Population-Averaged Templates. Cereb Cortex 2018; 26:4381-4391. [PMID: 26405055 DOI: 10.1093/cercor/bhv201] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We hypothesized that the distinct maturational processes take place across different cortical areas from middle fetal stage to normal time of birth and these maturational processes are altered in late third trimester. Fractional anisotropies (FA) from diffusion tensor imaging (DTI) infer the microstructures of the early developing cortical plate. High-resolution DTI of 11 fetal brain specimens at postmenstrual age of 20 weeks (or simplified as 20 weeks), 19 in vivo brains at 35 weeks, and 17 in vivo brains at normal time of birth at term (40 weeks) were acquired. Population-averaged age-specific DTI templates were established with large deformation diffeomorphic metric mapping for subject groups at 20, 35, and 40 weeks. To alleviate partial volume effects, skeletonized FA values were used for mapping averaged cortical FA to the cortical surface and measuring FA at 12 functionally distinctive cortical regions. Significant and heterogeneous FA decreases take place in distinct cortical areas from 20 to 35 weeks and from 35 to 40 weeks, suggesting differentiated cortical development patterns. Temporally nonuniform FA decrease patterns during 35-40 weeks compared with those during 20-35 weeks were observed in higher-order association cortex. Measured skeletonized FA suggested dissociated changes between cerebral cortex and white matter during 35-40 weeks.
Collapse
Affiliation(s)
- Qiaowen Yu
- Research Center for Sectional and Imaging Anatomy, Shandong Provincial Key Laboratory of Mental Disorders, Shandong University School of Medicine, Jinan, Shandong 250012, China
- Advanced Imaging Research Center
| | | | | | | | | | | | | | | | - Nancy Rollins
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Radiology, Children's Medical Center at Dallas
| | - Shuwei Liu
- Research Center for Sectional and Imaging Anatomy, Shandong Provincial Key Laboratory of Mental Disorders, Shandong University School of Medicine, Jinan, Shandong 250012, China
| | - Hao Huang
- Advanced Imaging Research Center
- Department of Radiology, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
43
|
Right but not left hemispheric discrimination of faces in infancy. Nat Hum Behav 2017; 2:67-79. [DOI: 10.1038/s41562-017-0249-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 10/19/2017] [Indexed: 11/08/2022]
|
44
|
Kim HG, Moon WJ, Han J, Choi JW. Quantification of myelin in children using multiparametric quantitative MRI: a pilot study. Neuroradiology 2017; 59:1043-1051. [PMID: 28765995 DOI: 10.1007/s00234-017-1889-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 07/20/2017] [Indexed: 12/26/2022]
Abstract
PURPOSE The purpose of this study was to evaluate the usefulness of multiparametric quantitative MRI for myelination quantification in children. METHODS We examined 22 children (age 0-14 years) with multiparametric quantitative MRI. The total volume of myelin partial volume (Msum), the percentage of Msum within the whole brain parenchyma (Mbpv), and the percentage of Msum within the intracranial volume (Micv) were obtained. Four developmental models of myelin maturation (the logarithmic, logistic, Gompertz, and modified Gompertz models) were examined to find the most representative model of the three parameters. We acquired myelin partial volume values in different brain regions and assessed the goodness of fit for the models. RESULTS The ranges of Msum, Mbpv, and Micv were 0.8-160.9 ml, 0.2-13%, and 0.0-11.6%, respectively. The Gompertz model was the best fit for the three parameters. For developmental model analysis of myelin partial volume in each brain region, the Gompertz model was the best-fit model for pons (R 2 = 74.6%), middle cerebeller peduncle (R 2 = 76.4%), putamen (R2 = 95.8%), and centrum semiovale (R 2 = 77.7%). The logistic model was the best-fit model for the genu and splenium of the corpus callosum (R 2 = 79.7-93.6%), thalamus (R 2 = 81.7%), and frontal, parietal, temporal, and occipital white matter (R 2 = 92.5-96.5%). CONCLUSIONS Multiparametric quantitative MRI depicts the normal developmental pattern of myelination in children. It is a potential tool for research studies on pediatric brain development evaluation.
Collapse
Affiliation(s)
- Hyun Gi Kim
- Department of Radiology, Ajou University School of Medicine, Ajou University Medical Center, 164 World cup-ro, Yeongtong-gu, Suwon, 443-380, South Korea
| | - Won-Jin Moon
- Department of Radiology, Konkuk University Hospital, Konkuk University School of Medicine, 4-12, Hwayang-dong, Gwangjin-gu, Seoul, 143-914, South Korea
| | - JinJoo Han
- Office of Biostatistics, Department of Humanities and Social Medicine, Ajou University School of Medicine, 164 World cup-ro, Yeongtong-gu, Suwon, 443-380, South Korea
| | - Jin Wook Choi
- Department of Radiology, Ajou University School of Medicine, Ajou University Medical Center, 164 World cup-ro, Yeongtong-gu, Suwon, 443-380, South Korea.
| |
Collapse
|
45
|
Ruff CA, Faulkner SD, Rumajogee P, Beldick S, Foltz W, Corrigan J, Basilious A, Jiang S, Thiyagalingam S, Yager JY, Fehlings MG. The extent of intrauterine growth restriction determines the severity of cerebral injury and neurobehavioural deficits in rodents. PLoS One 2017; 12:e0184653. [PMID: 28934247 PMCID: PMC5608203 DOI: 10.1371/journal.pone.0184653] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 08/28/2017] [Indexed: 12/16/2022] Open
Abstract
Background Cerebral Palsy (CP) is the most common physical pediatric neurodevelopmental disorder and spastic diplegic injury is its most frequent subtype. CP results in substantial neuromotor and cognitive impairments that have significant socioeconomic impact. Despite this, its underlying pathophysiological mechanisms and etiology remain incompletely understood. Furthermore, there is a need for clinically relevant injury models, which a) reflect the heterogeneity of the condition and b) can be used to evaluate new translational therapies. To address these key knowledge gaps, we characterized a chronic placental insufficiency (PI) model, using bilateral uterine artery ligation (BUAL) of dams. This injury model results in intrauterine growth restriction (IUGR) in pups, and animals recapitulate the human phenotype both in terms of neurobehavioural and anatomical deficits. Methods Effects of BUAL were studied using luxol fast blue (LFB)/hematoxylin & eosin (H&E) staining, immunohistochemistry, quantitative Magnetic Resonance Imaging (MRI), and Catwalk neurobehavioural tests. Results Neuroanatomical analysis revealed regional ventricular enlargement and corpus callosum thinning in IUGR animals, which was correlated with the extent of growth restriction. Olig2 staining revealed reductions in oligodendrocyte density in white and grey matter structures, including the corpus callosum, optic chiasm, and nucleus accumbens. The caudate nucleus, along with other brain structures such as the optic chiasm, internal capsule, septofimbrial and lateral septal nuclei, exhibited reduced size in animals with IUGR. The size of the pretectal nucleus was reduced only in moderately injured animals. MAG/NF200 staining demonstrated reduced myelination and axonal counts in the corpus callosum of IUGR animals. NeuN staining revealed changes in neuronal density in the hippocampus and in the thickness of hippocampal CA2 and CA3 regions. Diffusion weighted imaging (DWI) revealed regional white and grey matter changes at 3 weeks of age. Furthermore, neurobehavioural testing demonstrated neuromotor impairments in animals with IUGR in paw intensities, swing speed, relative print positions, and phase dispersions. Conclusions We have characterized a rodent model of IUGR and have demonstrated that the neuroanatomical and neurobehavioural deficits mirror the severity of the IUGR injury. This model has the potential to be applied to examine the pathobiology of and potential therapeutic strategies for IUGR-related brain injury. Thus, this work has potential translational relevance for the study of CP.
Collapse
Affiliation(s)
- Crystal A. Ruff
- Division of Genetics and Development, Krembil Research Institute, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
- Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Stuart D. Faulkner
- Division of Genetics and Development, Krembil Research Institute, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
- Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Prakasham Rumajogee
- Division of Genetics and Development, Krembil Research Institute, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
- Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Stephanie Beldick
- Division of Genetics and Development, Krembil Research Institute, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
- Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Warren Foltz
- STARR facility, Toronto Medical Discovery Tower, Toronto, Ontario, Canada
| | - Jennifer Corrigan
- Section of Pediatric Neurosciences, Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Alfred Basilious
- Division of Genetics and Development, Krembil Research Institute, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
- Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Shangjun Jiang
- Division of Genetics and Development, Krembil Research Institute, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
- Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Shanojan Thiyagalingam
- Division of Genetics and Development, Krembil Research Institute, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
- Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Jerome Y. Yager
- Section of Pediatric Neurosciences, Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Michael G. Fehlings
- Division of Genetics and Development, Krembil Research Institute, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
- Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Division of Neurosurgery, University of Toronto, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
46
|
Shim G, Choi K, Kim D, Suh S, Lee S, Jeong H, Jeong B. Predicting neurocognitive function with hippocampal volumes and DTI metrics in patients with Alzheimer's dementia and mild cognitive impairment. Brain Behav 2017; 7:e00766. [PMID: 28948070 PMCID: PMC5607539 DOI: 10.1002/brb3.766] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 06/07/2017] [Indexed: 12/16/2022] Open
Abstract
INTRODUCTION Cognitive performance in patients with Alzheimer's dementia (AD) and mild cognitive impairment (MCI) has been reported to be related to hippocampal atrophy and microstructural changes in white matter (WM). We aimed to predict the neurocognitive functions of patients with MCI or AD using hippocampal volumes and diffusion tensor imaging (DTI) metrics via partial least squares regression (PLSR). METHODS A total of 148 elderly female subjects were included: AD (n = 49), MCI (n = 66), and healthy controls (n = 33). Twenty-four hippocampal subfield volumes and the average values for fractional anisotropy (FA) and mean diffusivity (MD) of 48 WM tracts were used as predictors, CERAD-K total scores, scores of CERAD-K 7 cognitive subdomains and K-GDS were used as dependent variables in PLSR. RESULTS Regarding MCI patients, DTI metrics such as the MD values of the left retrolenticular part of the internal capsule and left fornix (cres)/stria terminalis were significant predictors, while hippocampal subfield volumes, like the left CA1 and hippocampal tail, were main contributors to cognitive function in AD patients, although global FA/MD values were also strong predictors. The 10-fold cross-validation and stricter 300-iteration tests proved that global cognition measured by the CERAD-K total scores and the scores of several CERAD-K subdomains can be reliably predicted using the PLSR models. CONCLUSIONS Our findings indicate different structural contributions to cognitive function in MCI and AD patients, implying that diffuse WM microstructural changes may precede hippocampal atrophy during the AD neurodegenerative process.
Collapse
Affiliation(s)
| | - Kwang‐Yeon Choi
- Department of PsychiatryKorea University College of MedicineSeoulKorea
| | - Dohyun Kim
- Computational Affective Neuroscience and Development LaboratoryKAISTGraduate School of Medical Science and EngineeringDaejeonKorea
- KAIST Institute for Health Science and TechnologyKAISTDaejeonKorea
| | - Sang‐il Suh
- Department of RadiologyKorea University Guro HospitalKorea University College of MedicineSeoulKorea
| | - Suji Lee
- Department of Biomedical SciencesKorea University Graduate SchoolSeoulKorea
| | - Hyun‐Ghang Jeong
- Department of PsychiatryKorea University College of MedicineSeoulKorea
- Department of Biomedical SciencesKorea University Graduate SchoolSeoulKorea
| | - Bumseok Jeong
- KAIST Clinic Pappalardo CenterKAISTDaejeonKorea
- Computational Affective Neuroscience and Development LaboratoryKAISTGraduate School of Medical Science and EngineeringDaejeonKorea
- KAIST Institute for Health Science and TechnologyKAISTDaejeonKorea
| |
Collapse
|
47
|
Millar LJ, Shi L, Hoerder-Suabedissen A, Molnár Z. Neonatal Hypoxia Ischaemia: Mechanisms, Models, and Therapeutic Challenges. Front Cell Neurosci 2017; 11:78. [PMID: 28533743 PMCID: PMC5420571 DOI: 10.3389/fncel.2017.00078] [Citation(s) in RCA: 213] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 03/07/2017] [Indexed: 12/11/2022] Open
Abstract
Neonatal hypoxia-ischaemia (HI) is the most common cause of death and disability in human neonates, and is often associated with persistent motor, sensory, and cognitive impairment. Improved intensive care technology has increased survival without preventing neurological disorder, increasing morbidity throughout the adult population. Early preventative or neuroprotective interventions have the potential to rescue brain development in neonates, yet only one therapeutic intervention is currently licensed for use in developed countries. Recent investigations of the transient cortical layer known as subplate, especially regarding subplate's secretory role, opens up a novel set of potential molecular modulators of neonatal HI injury. This review examines the biological mechanisms of human neonatal HI, discusses evidence for the relevance of subplate-secreted molecules to this condition, and evaluates available animal models. Neuroserpin, a neuronally released neuroprotective factor, is discussed as a case study for developing new potential pharmacological interventions for use post-ischaemic injury.
Collapse
Affiliation(s)
- Lancelot J. Millar
- Molnár Group, Department of Physiology, Anatomy and Genetics, University of OxfordOxford, UK
| | - Lei Shi
- Molnár Group, Department of Physiology, Anatomy and Genetics, University of OxfordOxford, UK
- JNU-HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, College of Pharmacy, Jinan UniversityGuangzhou, China
| | | | - Zoltán Molnár
- Molnár Group, Department of Physiology, Anatomy and Genetics, University of OxfordOxford, UK
| |
Collapse
|
48
|
Harms RL, Fritz FJ, Tobisch A, Goebel R, Roebroeck A. Robust and fast nonlinear optimization of diffusion MRI microstructure models. Neuroimage 2017; 155:82-96. [PMID: 28457975 PMCID: PMC5518773 DOI: 10.1016/j.neuroimage.2017.04.064] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 04/07/2017] [Accepted: 04/09/2017] [Indexed: 02/07/2023] Open
Abstract
Advances in biophysical multi-compartment modeling for diffusion MRI (dMRI) have gained popularity because of greater specificity than DTI in relating the dMRI signal to underlying cellular microstructure. A large range of these diffusion microstructure models have been developed and each of the popular models comes with its own, often different, optimization algorithm, noise model and initialization strategy to estimate its parameter maps. Since data fit, accuracy and precision is hard to verify, this creates additional challenges to comparability and generalization of results from diffusion microstructure models. In addition, non-linear optimization is computationally expensive leading to very long run times, which can be prohibitive in large group or population studies. In this technical note we investigate the performance of several optimization algorithms and initialization strategies over a few of the most popular diffusion microstructure models, including NODDI and CHARMED. We evaluate whether a single well performing optimization approach exists that could be applied to many models and would equate both run time and fit aspects. All models, algorithms and strategies were implemented on the Graphics Processing Unit (GPU) to remove run time constraints, with which we achieve whole brain dataset fits in seconds to minutes. We then evaluated fit, accuracy, precision and run time for different models of differing complexity against three common optimization algorithms and three parameter initialization strategies. Variability of the achieved quality of fit in actual data was evaluated on ten subjects of each of two population studies with a different acquisition protocol. We find that optimization algorithms and multi-step optimization approaches have a considerable influence on performance and stability over subjects and over acquisition protocols. The gradient-free Powell conjugate-direction algorithm was found to outperform other common algorithms in terms of run time, fit, accuracy and precision. Parameter initialization approaches were found to be relevant especially for more complex models, such as those involving several fiber orientations per voxel. For these, a fitting cascade initializing or fixing parameter values in a later optimization step from simpler models in an earlier optimization step further improved run time, fit, accuracy and precision compared to a single step fit. This establishes and makes available standards by which robust fit and accuracy can be achieved in shorter run times. This is especially relevant for the use of diffusion microstructure modeling in large group or population studies and in combining microstructure parameter maps with tractography results. Evaluate robustness of fit, accuracy, precision for diffusion microstructure models Test three optimization algorithms and three parameter initialization strategies GPU implementation removes run time constraints; whole brain fit within minutes Powell conjugate-direction algorithm has superior fit, accuracy, precision Initialization approaches are important for crossing fiber microstructure models
Collapse
Affiliation(s)
- R L Harms
- Dept. of Cognitive Neuroscience, Faculty of Psychology & Neuroscience, Maastricht University, The Netherlands; Brain Innovation B.V., Maastricht, The Netherlands.
| | - F J Fritz
- Dept. of Cognitive Neuroscience, Faculty of Psychology & Neuroscience, Maastricht University, The Netherlands
| | - A Tobisch
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - R Goebel
- Dept. of Cognitive Neuroscience, Faculty of Psychology & Neuroscience, Maastricht University, The Netherlands
| | - A Roebroeck
- Dept. of Cognitive Neuroscience, Faculty of Psychology & Neuroscience, Maastricht University, The Netherlands
| |
Collapse
|
49
|
Kurtcan S, Hatiboglu MA, Alkan A, Toprak H, Seyithanoglu MH, Aralasmak A, Atasoy B, Uysal O. Evaluation of Auditory Pathways Using DTI in Patients Treated with Gamma Knife Radiosurgery for Acoustic Neuroma: A Preliminary Report. Clin Neuroradiol 2017; 28:377-383. [PMID: 28258282 DOI: 10.1007/s00062-017-0572-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 02/21/2017] [Indexed: 11/28/2022]
Abstract
PURPOSE We aimed to evaluate the change in bilateral auditory pathways using diffusion tensor imaging (DTI) after gamma knife radiosurgery (GKR) and to determine the relationship between the radiosurgical treatment variables and DTI findings. METHODS In this study 13 patients with unilateral acoustic neuroma and 11 controls underwent routine magnetic resonance imaging (MRI) and DTI. The apparent diffusion coefficient (ADC) and fractional anisotropy (FA) were measured from the bilateral auditory pathways in all individuals before and after GKR. RESULTS Before GKR, subjects' ADC values obtained from the contralateral side were higher at the lateral lemniscus, medial geniculate body and Heschl's gyrus compared to those of the controls. No statistical differences were found in ADC and FA obtained at bilateral auditory pathways before and after GKR. The ADCs measured at the lateral lemniscus were positively correlated with the maximum radiation dose delivered to the brainstem (BS) and the brainstem volume receiving a radiation dose of 10 Gy (BS V10). A negative correlation was found between the FA measured from the inferior colliculus and the maximum radiation dose to the cochlea. The ADCs at the inferior colliculus were positively correlated with the mean radiation dose to the cochlea. CONCLUSION There were no significant differences in the degree of involvement before and after GKR, revealing that GKR did not significantly affect the auditory pathways at 4 months. The major factors that may lead to microstructural injury to auditory pathways at the brainstem level are associated with maximum brainstem radiation dose, BS V10, and cochlear dose. These findings may suggest that more attention should be paid to anatomical structures including the cochlea and brainstem during treatment planning of GKR.
Collapse
Affiliation(s)
- Serpil Kurtcan
- Department of Radiology, Faculty of Medicine, Bezmialem Vakif University, 34093, Istanbul, Turkey.
| | - Mustafa Aziz Hatiboglu
- Department of Neurosurgery, Faculty of Medicine, BezmialemVakif University, Istanbul, Turkey
| | - Alpay Alkan
- Department of Radiology, Faculty of Medicine, Bezmialem Vakif University, 34093, Istanbul, Turkey
| | - Huseyin Toprak
- Department of Radiology, Faculty of Medicine, Bezmialem Vakif University, 34093, Istanbul, Turkey
| | | | - Ayse Aralasmak
- Department of Radiology, Faculty of Medicine, Bezmialem Vakif University, 34093, Istanbul, Turkey
| | - Bahar Atasoy
- Department of Radiology, Faculty of Medicine, Bezmialem Vakif University, 34093, Istanbul, Turkey
| | - Omer Uysal
- Department of Biostatistics, Faculty of Medicine, BezmialemVakif University, Istanbul, Turkey
| |
Collapse
|
50
|
Gillespie NA, Neale MC, Hagler DJ, Eyler LT, Fennema-Notestine C, Franz CE, Lyons MJ, McEvoy LK, Dale AM, Panizzon MS, Kremen WS. Genetic and environmental influences on mean diffusivity and volume in subcortical brain regions. Hum Brain Mapp 2017; 38:2589-2598. [PMID: 28240386 DOI: 10.1002/hbm.23544] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 02/07/2017] [Accepted: 02/08/2017] [Indexed: 12/15/2022] Open
Abstract
Increased mean diffusivity (MD) is hypothesized to reflect tissue degeneration and may provide subtle indicators of neuropathology as well as age-related brain changes in the absence of volumetric differences. Our aim was to determine the degree to which genetic and environmental variation in subcortical MD is distinct from variation in subcortical volume. Data were derived from a sample of 387 male twins (83 MZ twin pairs, 55 DZ twin pairs, and 111 incomplete twin pairs) who were MRI scanned as part of the Vietnam Era Twin Study of Aging. Quantitative estimates of MD and volume for 7 subcortical regions were obtained: thalamus, caudate nucleus, putamen, pallidum, hippocampus, amygdala, and nucleus accumbens. After adjusting for covariates, bivariate twin models were fitted to estimate the size and significance of phenotypic, genotypic, and environmental correlations between MD and volume at each subcortical region. With the exception of the amygdala, familial aggregation in MD was entirely explained by additive genetic factors across all subcortical regions with estimates ranging from 46 to 84%. Based on bivariate twin modeling, variation in subcortical MD appears to be both genetically and environmentally unrelated to individual differences in subcortical volume. Therefore, subcortical MD may be an alternative biomarker of brain morphology for complex traits worthy of future investigation. Hum Brain Mapp 38:2589-2598, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Nathan A Gillespie
- Virginia Institute for Psychiatric and Behavior Genetics, Virginia Commonwealth University, Virginia
| | - Michael C Neale
- Virginia Institute for Psychiatric and Behavior Genetics, Virginia Commonwealth University, Virginia
| | - Donald J Hagler
- Department of Radiology, University of California, San Diego, California
| | - Lisa T Eyler
- Desert-Pacific Mental Illness Research, Education, and Clinical Center, VA San Diego Healthcare System, California.,Department of Psychiatry, University of California, San Diego, California
| | - Christine Fennema-Notestine
- Department of Radiology, University of California, San Diego, California.,Department of Psychiatry, University of California, San Diego, California
| | - Carol E Franz
- Department of Psychiatry, University of California, San Diego, California
| | - Michael J Lyons
- Department of Psychological and Brain Sciences, Boston University, Boston, Massachusetts
| | - Linda K McEvoy
- Department of Radiology, University of California, San Diego, California
| | - Anders M Dale
- Department of Radiology, University of California, San Diego, California.,Department of Psychiatry, University of California, San Diego, California
| | - Matthew S Panizzon
- Department of Psychiatry, University of California, San Diego, California
| | - William S Kremen
- Department of Psychiatry, University of California, San Diego, California.,Center of Excellence for Stress and Mental Health, VA San Diego Healthcare System, California
| |
Collapse
|