1
|
Pećina-Šlaus N, Hrašćan R. Glioma Stem Cells-Features for New Therapy Design. Cancers (Basel) 2024; 16:1557. [PMID: 38672638 PMCID: PMC11049195 DOI: 10.3390/cancers16081557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/11/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
On a molecular level, glioma is very diverse and presents a whole spectrum of specific genetic and epigenetic alterations. The tumors are unfortunately resistant to available therapies and the survival rate is low. The explanation of significant intra- and inter-tumor heterogeneity and the infiltrative capability of gliomas, as well as its resistance to therapy, recurrence and aggressive behavior, lies in a small subset of tumor-initiating cells that behave like stem cells and are known as glioma cancer stem cells (GCSCs). They are responsible for tumor plasticity and are influenced by genetic drivers. Additionally, GCSCs also display greater migratory abilities. A great effort is under way in order to find ways to eliminate or neutralize GCSCs. Many different treatment strategies are currently being explored, including modulation of the tumor microenvironment, posttranscriptional regulation, epigenetic modulation and immunotherapy.
Collapse
Affiliation(s)
- Nives Pećina-Šlaus
- Laboratory of Neuro-Oncology, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Šalata 12, 10000 Zagreb, Croatia
- Department of Biology, School of Medicine, University of Zagreb, Šalata 3, 10000 Zagreb, Croatia
| | - Reno Hrašćan
- Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, 10000 Zagreb, Croatia;
| |
Collapse
|
2
|
Gao C, Nie Y. Etomidate inhibits tumor growth of glioblastoma by regulating M1 macrophage polarization. Metab Brain Dis 2024; 39:569-576. [PMID: 38300392 DOI: 10.1007/s11011-023-01335-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 12/04/2023] [Indexed: 02/02/2024]
Abstract
Glioblastoma (GBM) is a common primary central nervous system tumor. Although the multimodal integrated treatment for GBM has made great progress in recent years, the overall survival time of GBM is still short. Thus, novel treatments for GBM are worth further investigation and exploration. This study aimed to investigate the effects of etomidate on GBM tumor growth and the underlying mechanism. A xenograft tumor model was established and treated with etomidate to assess tumor growth. Immunohistochemistry (IHC) assay evaluated the positive rate of Ki67 cells in tumor tissues. Cell counting kit (CCK)-8 and EdU assays accessed the cell viability and proliferation. Immunofluorescence (IF) staining detected the distribution of macrophage markers in tumor tissues. The percentages of M1- and M2-like macrophages in tumor-associated macrophages (TAMs) and co-culture system (macrophages and GBM cells) were detected using flow cytometry. Macrophage polarization-related genes were measured using reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Etomidate treatment inhibited the tumor growth, and increased the CD86+ cells but decreased the CD206+ cells in TAMs. The gene expression of M1 markers was increased in TAMs of etomidate-treated mice, whereas that of M2 markers was decreased. Moreover, etomidate treatment increased the number of CD86+ M1-like macrophages co-cultured with tumor cells but decreased that of CD206+ M2-like macrophages, with the upregulation of M1 markers and downregulation of M2 markers. Etomidate inhibited GBM tumor growth by promoting M1 macrophage polarization, suggesting a new insight into the clinical treatment of GBM.
Collapse
Affiliation(s)
- Caiyan Gao
- Department of Anesthesiology, The First Affiliated Hospital of Harbin Medical University, No. 23, Youzheng Street, Nangang District, Harbin, 150001, P.R. China
| | - Yan Nie
- Department of Anesthesiology, The First Affiliated Hospital of Harbin Medical University, No. 23, Youzheng Street, Nangang District, Harbin, 150001, P.R. China.
| |
Collapse
|
3
|
Maleszewska M, Wojnicki K, Mieczkowski J, Król SK, Jacek K, Śmiech M, Kocyk M, Ciechomska IA, Bujko M, Siedlecki J, Kotulska K, Grajkowska W, Zawadzka M, Kaminska B. DMRTA2 supports glioma stem-cell mediated neovascularization in glioblastoma. Cell Death Dis 2024; 15:228. [PMID: 38509074 PMCID: PMC10954651 DOI: 10.1038/s41419-024-06603-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 03/06/2024] [Accepted: 03/08/2024] [Indexed: 03/22/2024]
Abstract
Glioblastoma (GBM) is the most common and lethal brain tumor in adults. Due to its fast proliferation, diffusive growth and therapy resistance survival times are less than two years for patients with IDH-wildtype GBM. GBM is noted for the considerable cellular heterogeneity, high stemness indices and abundance of the glioma stem-like cells known to support tumor progression, therapeutic resistance and recurrence. Doublesex- and mab-3-related transcription factor a2 (DMRTA2) is involved in maintaining neural progenitor cells (NPC) in the cell cycle and its overexpression suppresses NPC differentiation. Despite the reports showing that primary GBM originates from transformed neural stem/progenitors cells, the role of DMRTA2 in gliomagenesis has not been elucidated so far. Here we show the upregulation of DMRTA2 expression in malignant gliomas. Immunohistochemical staining showed the protein concentrated in small cells with high proliferative potential and cells localized around blood vessels, where it colocalizes with pericyte-specific markers. Knock-down of DMRTA2 in human glioma cells impairs proliferation but not viability of the cells, and affects the formation of the tumor spheres, as evidenced by strong decrease in the number and size of spheres in in vitro cultures. Moreover, the knockdown of DMRTA2 in glioma spheres affects the stabilization of the glioma stem-like cell-dependent tube formation in an in vitro angiogenesis assay. We conclude that DMRTA2 is a new player in gliomagenesis and tumor neovascularization and due to its high expression in malignant gliomas could be a biomarker and potential target for new therapeutic strategies in glioblastoma.
Collapse
Affiliation(s)
- Marta Maleszewska
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland.
- Department of Animal Physiology, Institute of Functional Biology and Ecology, Faculty of Biology, University of Warsaw, Warsaw, Poland.
| | - Kamil Wojnicki
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Jakub Mieczkowski
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
- 3P-Medicine Laboratory, Medical University of Gdansk, Gdansk, Poland
| | - Sylwia K Król
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Karol Jacek
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Magdalena Śmiech
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Marta Kocyk
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Iwona A Ciechomska
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Mateusz Bujko
- Department of Molecular and Translational Oncology, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Janusz Siedlecki
- Department of Molecular and Translational Oncology, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Katarzyna Kotulska
- Department of Pathology, The Children's Memorial Health Institute, Warsaw, Poland
| | - Wiesława Grajkowska
- Department of Pathology, The Children's Memorial Health Institute, Warsaw, Poland
| | - Małgorzata Zawadzka
- Laboratory of Neuromuscular Plasticity, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Bozena Kaminska
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
4
|
De Fazio E, Pittarello M, Gans A, Ghosh B, Slika H, Alimonti P, Tyler B. Intrinsic and Microenvironmental Drivers of Glioblastoma Invasion. Int J Mol Sci 2024; 25:2563. [PMID: 38473812 PMCID: PMC10932253 DOI: 10.3390/ijms25052563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/07/2024] [Accepted: 02/16/2024] [Indexed: 03/14/2024] Open
Abstract
Gliomas are diffusely infiltrating brain tumors whose prognosis is strongly influenced by their extent of invasion into the surrounding brain tissue. While lower-grade gliomas present more circumscribed borders, high-grade gliomas are aggressive tumors with widespread brain infiltration and dissemination. Glioblastoma (GBM) is known for its high invasiveness and association with poor prognosis. Its low survival rate is due to the certainty of its recurrence, caused by microscopic brain infiltration which makes surgical eradication unattainable. New insights into GBM biology at the single-cell level have enabled the identification of mechanisms exploited by glioma cells for brain invasion. In this review, we explore the current understanding of several molecular pathways and mechanisms used by tumor cells to invade normal brain tissue. We address the intrinsic biological drivers of tumor cell invasion, by tackling how tumor cells interact with each other and with the tumor microenvironment (TME). We focus on the recently discovered neuronal niche in the TME, including local as well as distant neurons, contributing to glioma growth and invasion. We then address the mechanisms of invasion promoted by astrocytes and immune cells. Finally, we review the current literature on the therapeutic targeting of the molecular mechanisms of invasion.
Collapse
Affiliation(s)
- Emerson De Fazio
- Department of Medicine, Vita-Salute San Raffaele University School of Medicine, 20132 Milan, Italy; (E.D.F.); (P.A.)
| | - Matilde Pittarello
- Department of Medicine, Humanitas University School of Medicine, 20089 Rozzano, Italy;
| | - Alessandro Gans
- Department of Neurology, University of Milan, 20122 Milan, Italy;
| | - Bikona Ghosh
- School of Medicine and Surgery, Dhaka Medical College, Dhaka 1000, Bangladesh;
| | - Hasan Slika
- Hunterian Neurosurgical Laboratory, Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA;
| | - Paolo Alimonti
- Department of Medicine, Vita-Salute San Raffaele University School of Medicine, 20132 Milan, Italy; (E.D.F.); (P.A.)
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Betty Tyler
- Hunterian Neurosurgical Laboratory, Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA;
| |
Collapse
|
5
|
Huang L, Wang Z, Liao C, Zhao Z, Gao H, Huang R, Chen J, Wu F, Zeng F, Zhang Y, Jiang T, Hu H. PVT1 promotes proliferation and macrophage immunosuppressive polarization through STAT1 and CX3CL1 regulation in glioblastoma multiforme. CNS Neurosci Ther 2024; 30:e14566. [PMID: 38287522 PMCID: PMC10805395 DOI: 10.1111/cns.14566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/02/2023] [Accepted: 11/30/2023] [Indexed: 01/31/2024] Open
Abstract
AIMS This study aimed to investigate the role of plasmacytoma variant translocation 1 (PVT1), a long non-coding RNA, in glioblastoma multiforme (GBM) and its impact on the tumor microenvironment (TME). METHODS We assessed aberrant PVT1 expression in glioma tissues and its impact on GBM cell growth in vitro and in vivo. Additionally, we investigated PVT1's role in influencing glioma-associated macrophages. To understand PVT1's role in cell growth and the immunosuppressive TME, we performed a series of comprehensive experiments. RESULTS PVT1 was overexpressed in GBM due to copy number amplification, correlating with poor prognosis. Elevated PVT1 promoted GBM cell proliferation, while its downregulation inhibited growth in vitro and in vivo. PVT1 inhibited type I interferon-stimulated genes (ISGs), with STAT1 as the central hub. PVT1 correlated with macrophage enrichment and regulated CX3CL1 expression, promoting recruitment and M2 phenotype polarization of macrophages. PVT1 localized to the cell nucleus and bound to DHX9, enriching at the promoter regions of STAT1 and CX3CL1, modulating ISGs and CX3CL1 expression. CONCLUSION PVT1 plays a significant role in GBM, correlating with poor prognosis, promoting cell growth, and shaping an immunosuppressive TME via STAT1 and CX3CL1 regulation. Targeting PVT1 may hold therapeutic promise for GBM patients.
Collapse
Affiliation(s)
- Lijie Huang
- Department of Pathophysiology, Beijing Neurosurgical InstituteCapital Medical UniversityChina
| | - Zheng Wang
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Chihyi Liao
- Department of Molecular Neuropathology, Beijing Neurosurgical InstituteCapital Medical UniversityBeijingChina
| | - Zheng Zhao
- Department of Molecular Neuropathology, Beijing Neurosurgical InstituteCapital Medical UniversityBeijingChina
| | - Hua Gao
- Department of Cell Biology, Beijing Neurosurgical InstituteCapital Medical UniversityBeijingChina
| | - Ruoyu Huang
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Jing Chen
- Department of Molecular Neuropathology, Beijing Neurosurgical InstituteCapital Medical UniversityBeijingChina
| | - Fan Wu
- Department of Molecular Neuropathology, Beijing Neurosurgical InstituteCapital Medical UniversityBeijingChina
| | - Fan Zeng
- Department of Molecular Neuropathology, Beijing Neurosurgical InstituteCapital Medical UniversityBeijingChina
| | - Ying Zhang
- Department of Molecular Neuropathology, Beijing Neurosurgical InstituteCapital Medical UniversityBeijingChina
| | - Tao Jiang
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- Department of Molecular Neuropathology, Beijing Neurosurgical InstituteCapital Medical UniversityBeijingChina
- Center of Brain TumorBeijing Institute for Brain DisordersBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
- Chinese Glioma Genome Atlas Network and Asian Glioma Genome Atlas NetworkBeijingChina
| | - Huimin Hu
- Department of Molecular Neuropathology, Beijing Neurosurgical InstituteCapital Medical UniversityBeijingChina
| |
Collapse
|
6
|
Mendez JS, Cohen AL, Eckenstein M, Jensen RL, Burt LM, Salzman KL, Chamberlain M, Hsu HH, Hutchinson M, Iwamoto F, Ligon KL, Mrugala MM, Pelayo M, Plotkin SR, Puduvalli VK, Raizer J, Reardon DA, Sterba M, Walbert T, West BL, Wong ET, Zhang C, Colman H. Phase 1b/2 study of orally administered pexidartinib in combination with radiation therapy and temozolomide in patients with newly diagnosed glioblastoma. Neurooncol Adv 2024; 6:vdae202. [PMID: 39734810 PMCID: PMC11672110 DOI: 10.1093/noajnl/vdae202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2024] Open
Abstract
Background Glioblastoma (GBM) has a median survival of <2 years. Pexidartinib (PLX3397) is a small-molecule inhibitor of CSF1R, KIT, and oncogenic FTL3, which are implicated in GBM treatment resistance. Results from glioma models indicate that combining radiation therapy (RT) and pexidartinib reduces radiation resistance. We added pexidartinib to standard-of-care RT/temozolomide (TMZ) in patients with newly diagnosed GBM to assess the therapeutic benefit of altering the tumor microenvironment with pexidartinib. Methods In this open-label, dose-escalation, multicenter, Phase 1b/2 trial, pexidartinib was administered in combination with RT/TMZ followed by adjuvant pexidartinib + TMZ. During Phase 1b, pexidartinib was given 5 or 7 days/week at multiple dosing levels. The primary Phase 1b endpoint was the recommended Phase 2 dose (RP2D). Phase 2 patients received the RP2D with the primary endpoint of median progression-free survival (mPFS). Secondary objectives were median overall survival (mOS), pharmacokinetics, and safety. Results The RP2D of pexidartinib was 800 mg/day for 5 days/week during RT/TMZ, followed by 800 mg/day for 7 days/week with adjuvant TMZ. mPFS was 6.7 months (90% CI: 4.5, 11.5) for the modified intention-to-treat population. The actual mOS was 13.1 months (90% CI: 11.5, 24.5), and the mOS corrected for comparison with matched historical controls was 18.8 months (95% CI: 12.6, 28.0). Conclusions This trial established the RP2D of pexidartinib in combination with RT/TMZ and adjuvant TMZ. Pexidartinib was generally safe and well tolerated. Although the study regimen with pexidartinib was not efficacious, pharmacodynamic studies showed modulation of systemic markers that could lead to alteration of the tumor microenvironment.
Collapse
Affiliation(s)
- Joe S Mendez
- Huntsman Cancer Institute, Salt Lake City, UT, USA
- Department of Neurosurgery, University of Utah, Salt Lake City, UT, USA
| | - Adam L Cohen
- Oncology Division, Inova Schar Cancer Institute, Fairfax, VA, USA
| | - Midori Eckenstein
- Department of Neurology, University of Utah, Salt Lake City, UT, USA
| | - Randy L Jensen
- Huntsman Cancer Institute, Salt Lake City, UT, USA
- Department of Neurosurgery, University of Utah, Salt Lake City, UT, USA
| | - Lindsay M Burt
- Department of Radiation Oncology, University of Utah, Salt Lake City, UT, USA
- Huntsman Cancer Institute, Salt Lake City, UT, USA
| | - Karen L Salzman
- Department of Radiology, University of Utah, Salt Lake City, UT, USA
| | | | - Henry H Hsu
- Allysta Pharmaceuticals Inc., Bellevue, WA, USA
| | | | - Fabio Iwamoto
- Division of Neuro-Oncology, Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Keith L Ligon
- Department of Pathology, Dana Farber Cancer Institute and Brigham and Women’s Hospital, Boston, MA, USA
| | - Maciej M Mrugala
- Division of Medical Oncology, Department of Neurology, Mayo Clinic and Mayo Clinic Cancer Center, Phoenix, AZ, USA
| | | | - Scott R Plotkin
- Department of Neurology and Cancer Center, Massachusetts General Hospital, Boston, MA, USA
| | - Vinay K Puduvalli
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jeffrey Raizer
- Clinical Sciences, Oncology, Takeda Pharmaceutical Company Limited, Cambridge, MA, USA
| | - David A Reardon
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | | | - Tobias Walbert
- Department of Neurology and Neurosurgery, Henry Ford Health, Wayne State University and Michigan State University, Detroit, MI, USA
| | | | - Eric T Wong
- Division of Hematology/Oncology, Rhode Island Hospital, Providence, RI, USA
| | - Chao Zhang
- Tupos Therapeutics Inc., Hayward, CA, USA
| | - Howard Colman
- Huntsman Cancer Institute, Salt Lake City, UT, USA
- Department of Neurosurgery, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
7
|
Li D, Wang L, Jiang B, Jing Y, Li X. Improving cancer immunotherapy by preventing cancer stem cell and immune cell linking in the tumor microenvironment. Biomed Pharmacother 2024; 170:116043. [PMID: 38128186 DOI: 10.1016/j.biopha.2023.116043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/07/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023] Open
Abstract
Cancer stem cells are the key link between malignant tumor progression and drug resistance. This cell population has special properties that are different from those of conventional tumor cells, and the role of cancer stem cell-related exosomes in progression of tumor malignancy is becoming increasingly clear. Cancer stem cell-derived exosomes carry a variety of functional molecules involved in regulation of the microenvironment, especially with regard to immune cells, but how these exosomes exert their functions and the specific mechanisms need to be further clarified. Here, we summarize the role of cancer stem cell exosomes in regulating immune cells in detail, aiming to provide new insights for subsequent targeted drug development and clinical strategy formulation.
Collapse
Affiliation(s)
- Dongyu Li
- Department of General Surgery & VIP In-Patient Ward, the First Hospital of China Medical University, Liaoning Province 110001, China
| | - Lei Wang
- Department of Vascular and Thyroid Surgery, the First Hospital of China Medical University, Liaoning Province 110001, China
| | - Bo Jiang
- Department of Vascular and Thyroid Surgery, the First Hospital of China Medical University, Liaoning Province 110001, China
| | - Yuchen Jing
- Department of Vascular and Thyroid Surgery, the First Hospital of China Medical University, Liaoning Province 110001, China
| | - Xuan Li
- Department of Vascular and Thyroid Surgery, the First Hospital of China Medical University, Liaoning Province 110001, China.
| |
Collapse
|
8
|
Garofalo S, D'Alessandro G, Limatola C. Microglia in Glioma. ADVANCES IN NEUROBIOLOGY 2024; 37:513-527. [PMID: 39207710 DOI: 10.1007/978-3-031-55529-9_28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Myeloid cells are fundamental constituents of the brain tumor microenvironment. In this chapter, we describe the state-of-the-art knowledge on the role of microglial cells in the cross-talk with the most common and aggressive brain tumor, glioblastoma. We report in vitro and in vivo studies related to glioblastoma patients and glioma models to outline the symbiotic interactions that microglia develop with tumoral cells, highlighting the heterogeneity of microglial functions in shaping the brain tumor microenvironment.
Collapse
Affiliation(s)
- Stefano Garofalo
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | | | - Cristina Limatola
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
9
|
Hu X, Jiang C, Gao Y, Xue X. Human dendritic cell subsets in the glioblastoma-associated microenvironment. J Neuroimmunol 2023; 383:578147. [PMID: 37643497 DOI: 10.1016/j.jneuroim.2023.578147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 06/24/2023] [Accepted: 07/05/2023] [Indexed: 08/31/2023]
Abstract
Glioblastoma (GBM) is the most aggressive type of glioma (Grade IV). The presence of cytotoxic T lymphocyte (CTLs) has been associated with improved outcomes in patients with GBM, and it is believed that the activation of CTLs by dendritic cells may play a critical role in controlling the growth of GBM. DCs are professional antigen-presenting cells (APC) that orchestrate innate and adaptive anti-GBM immunity. DCs can subsequently differentiate into plasmacytoid DCs (pDC), conventional DC1 (cDC1), conventional (cDC2), and monocyte-derived DCs (moDC) depending on environmental exposure. The different subsets of DCs exhibit varying functional capabilities in antigen presentation and T cell activation in producing an antitumor response. In this review, we focus on recent studies describing the phenotypic and functional characteristics of DC subsets in humans and their respective antitumor immunity and immunotolerance roles in the GBM-associated microenvironment. The critical components of crosstalk between DC subsets that contribute significantly to GBM-specific immune responses are also highlighted in this review with reference to the latest literature. Since DCs could be prime targets for therapeutic intervention, it is worth summarizing the relevance of DC subsets with respect to GBM-associated immunologic tolerance and their therapeutic potential.
Collapse
Affiliation(s)
- Xiaopeng Hu
- Medical Research Center, People's Hospital of Longhua, The Affiliated Hospital of Southern Medical University, Shenzhen 518000, China; Biosafety Level-3 Laboratory, Life Sciences Institute & Guangxi Collaborative Innovation Center for Biomedicine, Guangxi Medical University, Nanning 530021, China
| | - Chunmei Jiang
- Medical Research Center, People's Hospital of Longhua, The Affiliated Hospital of Southern Medical University, Shenzhen 518000, China
| | - Yang Gao
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Shandong First Medical University, Taian 271000, China.
| | - Xingkui Xue
- Medical Research Center, People's Hospital of Longhua, The Affiliated Hospital of Southern Medical University, Shenzhen 518000, China.
| |
Collapse
|
10
|
Nickl V, Eck J, Goedert N, Hübner J, Nerreter T, Hagemann C, Ernestus RI, Schulz T, Nickl RC, Keßler AF, Löhr M, Rosenwald A, Breun M, Monoranu CM. Characterization and Optimization of the Tumor Microenvironment in Patient-Derived Organotypic Slices and Organoid Models of Glioblastoma. Cancers (Basel) 2023; 15:2698. [PMID: 37345035 DOI: 10.3390/cancers15102698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/23/2023] [Accepted: 05/08/2023] [Indexed: 06/23/2023] Open
Abstract
While glioblastoma (GBM) is still challenging to treat, novel immunotherapeutic approaches have shown promising effects in preclinical settings. However, their clinical breakthrough is hampered by complex interactions of GBM with the tumor microenvironment (TME). Here, we present an analysis of TME composition in a patient-derived organoid model (PDO) as well as in organotypic slice cultures (OSC). To obtain a more realistic model for immunotherapeutic testing, we introduce an enhanced PDO model. We manufactured PDOs and OSCs from fresh tissue of GBM patients and analyzed the TME. Enhanced PDOs (ePDOs) were obtained via co-culture with PBMCs (peripheral blood mononuclear cells) and compared to normal PDOs (nPDOs) and PT (primary tissue). At first, we showed that TME was not sustained in PDOs after a short time of culture. In contrast, TME was largely maintained in OSCs. Unfortunately, OSCs can only be cultured for up to 9 days. Thus, we enhanced the TME in PDOs by co-culturing PDOs and PBMCs from healthy donors. These cellular TME patterns could be preserved until day 21. The ePDO approach could mirror the interaction of GBM, TME and immunotherapeutic agents and may consequently represent a realistic model for individual immunotherapeutic drug testing in the future.
Collapse
Affiliation(s)
- Vera Nickl
- Department of Neurosurgery, University Hospital Würzburg, 97080 Würzburg, Germany
| | - Juliana Eck
- Institute of Pathology, University of Würzburg, 97080 Würzburg, Germany
| | - Nicolas Goedert
- Department of Neurosurgery, University Hospital Würzburg, 97080 Würzburg, Germany
| | - Julian Hübner
- Department of Hematology, University Hospital Würzburg, 97080 Würzburg, Germany
| | - Thomas Nerreter
- Department of Hematology, University Hospital Würzburg, 97080 Würzburg, Germany
| | - Carsten Hagemann
- Department of Neurosurgery, University Hospital Würzburg, 97080 Würzburg, Germany
| | - Ralf-Ingo Ernestus
- Department of Neurosurgery, University Hospital Würzburg, 97080 Würzburg, Germany
| | - Tim Schulz
- Department of Neurosurgery, University Hospital Würzburg, 97080 Würzburg, Germany
| | - Robert Carl Nickl
- Department of Neurosurgery, University Hospital Würzburg, 97080 Würzburg, Germany
| | | | - Mario Löhr
- Department of Neurosurgery, University Hospital Würzburg, 97080 Würzburg, Germany
| | - Andreas Rosenwald
- Institute of Pathology, University of Würzburg, 97080 Würzburg, Germany
| | - Maria Breun
- Department of Neurosurgery, University Hospital Würzburg, 97080 Würzburg, Germany
| | - Camelia Maria Monoranu
- Department of Neuropathology, Institute of Pathology, University of Würzburg, 97080 Würzburg, Germany
| |
Collapse
|
11
|
Zhao L, Xu DG, Hu YH. The Regulation of Microglial Cell Polarization in the Tumor Microenvironment: A New Potential Strategy for Auxiliary Treatment of Glioma-A Review. Cell Mol Neurobiol 2023; 43:193-204. [PMID: 35137327 DOI: 10.1007/s10571-022-01195-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 01/09/2022] [Indexed: 01/07/2023]
Abstract
Glioma is the most common primary tumor of the central nervous system and normally should be treated by synthetic therapy, mainly with surgical operation assisted by radiotherapy and chemotherapy; however, the therapeutic effect has not been satisfactory, and the 5-year survival rates of anaplastic glioma and glioblastoma are 29.7% and 5.5%, respectively. To identify a more efficient strategy to treat glioma, in recent years, the influence of the inflammatory microenvironment on the progression of glioma has been studied. Various immunophenotypes exist in microglial cells, each of which has a different functional property. In this review, references about the phenotypic conversion of microglial cell polarity in the microenvironment were briefly summarized, and the differences in polarized state and function, their influences on glioma progression under different physiological and pathological conditions, and the interactive effects between the two were mainly discussed. Certain signaling molecules and regulatory pathways involved in the microglial cell polarization process were investigated, and the feasibility of targeted regulation of microglial cell conversion to an antitumor phenotype was analyzed to provide new clues for the efficient auxiliary treatment of neural glioma.
Collapse
Affiliation(s)
- Lei Zhao
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, 215 Heping West Road, Shijiazhuang, 050000, Hebei, People's Republic of China
| | - Dong-Gang Xu
- Institute of Military Cognition and Brain Science, Research Academy of Military Medical Sciences, Beijing, 100850, People's Republic of China
| | - Yu-Hua Hu
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, 215 Heping West Road, Shijiazhuang, 050000, Hebei, People's Republic of China.
| |
Collapse
|
12
|
Zhang S, Rautela J, Bediaga NG, Kolesnik TB, You Y, Nie J, Dagley LF, Bedo J, Wang H, Sun L, Sutherland R, Surgenor E, Iannarella N, Allan R, Souza-Fonseca-Guimaraes F, Xie Y, Wang Q, Zhang Y, Xu Y, Nutt SL, Lew AM, Huntington ND, Nicholson SE, Chopin M, Zhan Y. CIS controls the functional polarization of GM-CSF-derived macrophages. Cell Mol Immunol 2023; 20:65-79. [PMID: 36471114 PMCID: PMC9794780 DOI: 10.1038/s41423-022-00957-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 10/24/2022] [Accepted: 11/07/2022] [Indexed: 12/12/2022] Open
Abstract
The cytokine granulocyte-macrophage-colony stimulating factor (GM-CSF) possesses the capacity to differentiate monocytes into macrophages (MØs) with opposing functions, namely, proinflammatory M1-like MØs and immunosuppressive M2-like MØs. Despite the importance of these opposing biological outcomes, the intrinsic mechanism that regulates the functional polarization of MØs under GM-CSF signaling remains elusive. Here, we showed that GM-CSF-induced MØ polarization resulted in the expression of cytokine-inducible SH2-containing protein (CIS) and that CIS deficiency skewed the differentiation of monocytes toward immunosuppressive M2-like MØs. CIS deficiency resulted in hyperactivation of the JAK-STAT5 signaling pathway, consequently promoting downregulation of the transcription factor Interferon Regulatory Factor 8 (IRF8). Loss- and gain-of-function approaches highlighted IRF8 as a critical regulator of the M1-like polarization program. In vivo, CIS deficiency induced the differentiation of M2-like macrophages, which promoted strong Th2 immune responses characterized by the development of severe experimental asthma. Collectively, our results reveal a CIS-modulated mechanism that clarifies the opposing actions of GM-CSF in MØ differentiation and uncovers the role of GM-CSF in controlling allergic inflammation.
Collapse
Affiliation(s)
- Shengbo Zhang
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Jai Rautela
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
- oNKo-Innate Pty Ltd, Moonee Ponds, VIC, Australia
| | - Naiara G Bediaga
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Tatiana B Kolesnik
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Yue You
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Junli Nie
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Laura F Dagley
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Justin Bedo
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Computing and Information Systems, University of Melbourne, Parkville, VIC, Australia
| | - Hanqing Wang
- Department of Respiratory Medicine, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Centre, State Key Laboratory of Respiratory Diseases, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Li Sun
- College of Biological Science, Anhui Normal University, Hefei, China
| | - Robyn Sutherland
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Elliot Surgenor
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Nadia Iannarella
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Rhys Allan
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Fernando Souza-Fonseca-Guimaraes
- University of Queensland Diamantina Institute, University of Queensland, Translational Research Institute, Brisbane, QLD, Australia
| | - Yi Xie
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Program in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Duke, Singapore
| | - Qike Wang
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Yuxia Zhang
- Department of Respiratory Medicine, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Centre, State Key Laboratory of Respiratory Diseases, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yuekang Xu
- College of Biological Science, Anhui Normal University, Hefei, China
| | - Stephen L Nutt
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Andrew M Lew
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Nicholas D Huntington
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
- oNKo-Innate Pty Ltd, Moonee Ponds, VIC, Australia
| | - Sandra E Nicholson
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Michaël Chopin
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia.
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia.
| | - Yifan Zhan
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia.
- Drug Discovery, Shanghai Huaota Biopharm, Shanghai, China.
| |
Collapse
|
13
|
Feyissa AM, Rosenfeld SS, Quiñones-Hinojosa A. Altered glutamatergic and inflammatory pathways promote glioblastoma growth, invasion, and seizures: An overview. J Neurol Sci 2022; 443:120488. [PMID: 36368135 DOI: 10.1016/j.jns.2022.120488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 10/03/2022] [Accepted: 11/02/2022] [Indexed: 11/07/2022]
Abstract
Glioblastoma multiforme (GBM) is the most common and aggressive malignant primary brain cancer. Drug-resistant seizures and cognitive impairments often accompany the invasion of the neocortex by the GBM cells. Recent studies suggest that seizures and glioma share common pathogenic mechanisms and may influence each other. One explanation for the close link between the two conditions is elevated glutamate in the tumor microenvironment (TME) due to an increased expression of the cystine-glutamate transporter with ensuing overactivity of glutamatergic signaling. Excess glutamate in the TME also encourages the polarization of pro-inflammatory tumor-associated macrophages to an anti-inflammatory state causing TME immunosuppression and facilitating tumor invasion. Besides, the recently discovered glutamatergic neurogliomal synapses, partially via their influence on calcium communication in microtube-connected tumor cell networks, drive the progression of GBM by stimulating glioma invasion and growth. Moreover, neuroinflammatory pathways have been shown to have several points of intersection with glutamatergic signaling in the TME, further promoting both epileptogenesis and oncogenesis. Future studies identifying pharmacotherapeutics targeting these elements is an extremely attractive therapeutic strategy for GBM, for which very little therapeutic progress has been made in the past two decades.
Collapse
Affiliation(s)
| | - Steven S Rosenfeld
- Department of Neurology, Mayo Clinic, Jacksonville, FL, USA; Department of Hematology/Oncology, Mayo Clinic, Jacksonville, FL, USA
| | | |
Collapse
|
14
|
Microglia and Brain Macrophages as Drivers of Glioma Progression. Int J Mol Sci 2022; 23:ijms232415612. [PMID: 36555253 PMCID: PMC9779147 DOI: 10.3390/ijms232415612] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
Evidence is accumulating that the tumour microenvironment (TME) has a key role in the progression of gliomas. Non-neoplastic cells in addition to the tumour cells are therefore finding increasing attention. Microglia and other glioma-associated macrophages are at the centre of this interest especially in the context of therapeutic considerations. New ideas have emerged regarding the role of microglia and, more recently, blood-derived brain macrophages in glioblastoma (GBM) progression. We are now beginning to understand the mechanisms that allow malignant glioma cells to weaken microglia and brain macrophage defence mechanisms. Surface molecules and cytokines have a prominent role in microglia/macrophage-glioma cell interactions, and we discuss them in detail. The involvement of exosomes and microRNAs forms another focus of this review. In addition, certain microglia and glioma cell pathways deserve special attention. These "synergistic" (we suggest calling them "Janus") pathways are active in both glioma cells and microglia/macrophages where they act in concert supporting malignant glioma progression. Examples include CCN4 (WISP1)/Integrin α6β1/Akt and CHI3L1/PI3K/Akt/mTOR. They represent attractive therapeutic targets.
Collapse
|
15
|
Pachocki CJ, Hol EM. Current perspectives on diffuse midline glioma and a different role for the immune microenvironment compared to glioblastoma. J Neuroinflammation 2022; 19:276. [PMCID: PMC9675250 DOI: 10.1186/s12974-022-02630-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 10/25/2022] [Indexed: 11/21/2022] Open
Abstract
Diffuse midline glioma (DMG), formerly called diffuse intrinsic pontine glioma (DIPG), is a high-grade malignant pediatric brain tumor with a near-zero survival rate. To date, only radiation therapy provides marginal survival benefit; however, the median survival time remains less than a year. Historically, the infiltrative nature and sensitive location of the tumor rendered surgical removal and biopsies difficult and subsequently resulted in limited knowledge of the disease, as only post-mortem tissue was available. Therefore, clinical decision-making was based upon experience with the more frequent and histologically similar adult glioblastoma (GBM). Recent advances in tissue acquisition and molecular profiling revealed that DMG and GBM are distinct disease entities, with separate tissue characteristics and genetic profiles. DMG is characterized by heterogeneous tumor tissue often paired with an intact blood–brain barrier, possibly explaining its resistance to chemotherapy. Additional profiling shed a light on the origin of the disease and the influence of several mutations such as a highly recurring K27M mutation in histone H3 on its tumorigenesis. Furthermore, early evidence suggests that DMG has a unique immune microenvironment, characterized by low levels of immune cell infiltration, inflammation, and immunosuppression that may impact disease development and outcome. Within the tumor microenvironment of GBM, tumor-associated microglia/macrophages (TAMs) play a large role in tumor development. Interestingly, TAMs in DMG display distinct features and have low immune activation in comparison to other pediatric gliomas. Although TAMs have been investigated substantially in GBM over the last years, this has not been the case for DMG due to the lack of tissue for research. Bit by bit, studies are exploring the TAM–glioma crosstalk to identify what factors within the DMG microenvironment play a role in the recruitment and polarization of TAMs. Although more research into the immune microenvironment is warranted, there is evidence that targeting or stimulating TAMs and their factors provide a potential treatment option for DMG. In this review, we provide insight into the current status of DMG research, assess the knowledge of the immune microenvironment in DMG and GBM, and present recent findings and therapeutic opportunities surrounding the TAM–glioma crosstalk.
Collapse
Affiliation(s)
- Casper J. Pachocki
- grid.5477.10000000120346234Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Elly M. Hol
- grid.5477.10000000120346234Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
16
|
Robilliard LD, Yu J, Anchan A, Finlay G, Angel CE, Graham ES. Comprehensive Assessment of Secreted Immuno-Modulatory Cytokines by Serum-Differentiated and Stem-like Glioblastoma Cells Reveals Distinct Differences between Glioblastoma Phenotypes. Int J Mol Sci 2022; 23:ijms232214164. [PMID: 36430641 PMCID: PMC9692434 DOI: 10.3390/ijms232214164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 11/04/2022] [Accepted: 11/12/2022] [Indexed: 11/18/2022] Open
Abstract
Glioblastoma is refractory to therapy and presents a significant oncological challenge. Promising immunotherapies have not shown the promise observed in other aggressive cancers. The reasons for this include the highly immuno-suppressive tumour microenvironment controlled by the glioblastoma cells and heterogeneous phenotype of the glioblastoma cells. Here, we wanted to better understand which glioblastoma phenotypes produced the regulatory cytokines, particularly those that are implicated in shaping the immune microenvironment. In this study, we employed nanoString analysis of the glioblastoma transcriptome, and proteomic analysis (proteome profiler arrays and cytokine profiling) of secreted cytokines by different glioblastoma phenotypes. These phenotypes were cultured to reflect a spectrum of glioblastoma cells present in tumours, by culturing an enhanced stem-like phenotype of glioblastoma cells or a more differentiated phenotype following culture with serum. Extensive secretome profiling reveals that there is considerable heterogeneity in secretion patterns between serum-derived and glioblastoma stem-like cells, as well as between individuals. Generally, however, the serum-derived phenotypes appear to be the primary producers of cytokines associated with immune cell recruitment into the tumour microenvironment. Therefore, these glioblastoma cells have considerable importance in shaping the immune landscape in glioblastoma and represent a valuable therapeutic target that should not be ignored.
Collapse
Affiliation(s)
- Laverne D. Robilliard
- School of Medical Sciences, Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand
- Centre for Brain Research, University of Auckland, Auckland 1023, New Zealand
| | - Jane Yu
- School of Medical Sciences, Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand
- Centre for Brain Research, University of Auckland, Auckland 1023, New Zealand
| | - Akshata Anchan
- School of Medical Sciences, Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand
- Centre for Brain Research, University of Auckland, Auckland 1023, New Zealand
| | - Graeme Finlay
- School of Medical Sciences, Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand
- Auckland Cancer Society Research Centre, University of Auckland, Auckland 1023, New Zealand
| | - Catherine E. Angel
- School of Biological Sciences, Faculty of Science, University of Auckland, Auckland 1010, New Zealand
| | - E Scott Graham
- School of Medical Sciences, Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand
- Centre for Brain Research, University of Auckland, Auckland 1023, New Zealand
- Correspondence:
| |
Collapse
|
17
|
Franson A, McClellan BL, Varela ML, Comba A, Syed MF, Banerjee K, Zhu Z, Gonzalez N, Candolfi M, Lowenstein P, Castro MG. Development of immunotherapy for high-grade gliomas: Overcoming the immunosuppressive tumor microenvironment. Front Med (Lausanne) 2022; 9:966458. [PMID: 36186781 PMCID: PMC9515652 DOI: 10.3389/fmed.2022.966458] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/22/2022] [Indexed: 01/07/2023] Open
Abstract
The preclinical and clinical development of novel immunotherapies for the treatment of central nervous system (CNS) tumors is advancing at a rapid pace. High-grade gliomas (HGG) are aggressive tumors with poor prognoses in both adult and pediatric patients, and innovative and effective therapies are greatly needed. The use of cytotoxic chemotherapies has marginally improved survival in some HGG patient populations. Although several challenges exist for the successful development of immunotherapies for CNS tumors, recent insights into the genetic alterations that define the pathogenesis of HGG and their direct effects on the tumor microenvironment (TME) may allow for a more refined and targeted therapeutic approach. This review will focus on the TME in HGG, the genetic drivers frequently found in these tumors and their effect on the TME, the development of immunotherapy for HGG, and the practical challenges in clinical trials employing immunotherapy for HGG. Herein, we will discuss broadly the TME and immunotherapy development in HGG, with a specific focus on glioblastoma multiforme (GBM) as well as additional discussion in the context of the pediatric HGG diagnoses of diffuse midline glioma (DMG) and diffuse hemispheric glioma (DHG).
Collapse
Affiliation(s)
- Andrea Franson
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Brandon L. McClellan
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
- Immunology Graduate Program, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Maria Luisa Varela
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Andrea Comba
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Mohammad Faisal Syed
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Kaushik Banerjee
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Ziwen Zhu
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Nazareno Gonzalez
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Marianela Candolfi
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Pedro Lowenstein
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
- Department of Biomedical Engineering, University of Michigan Medical School, Ann Arbor, MI, United States
- Biosciences Initiative in Brain Cancer, Biointerface Institute, University of Michigan, Ann Arbor, MI, United States
| | - Maria Graciela Castro
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
- Biosciences Initiative in Brain Cancer, Biointerface Institute, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
18
|
Roles of CSF2 as a modulator of inflammation during retinal degeneration. Cytokine 2022; 158:155996. [PMID: 35988458 DOI: 10.1016/j.cyto.2022.155996] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 07/30/2022] [Accepted: 08/03/2022] [Indexed: 11/20/2022]
Abstract
Colony-stimulating factor 2 (CSF2) is a potent cytokine that stimulates myeloid cells, such as dendritic cells and macrophages. We have been analyzing the roles of microglia in retinal degeneration through the modulation of inflammation in the eye, and examined the roles of CSF2 in this process. Both subunits of the CSF2 receptor are expressed in microglia, but no evidence suggesting the involvement of CSF2 in inflammation in the degenerating eye has been reported. We found that Csf2 transcripts were induced in the early phase of in vitro mouse adult retina culture, used as degeneration models, suggesting that CSF2 induction is one of the earliest events occurring in the pathology of retinal degeneration. The administration of CSF2 into the retina after systemic NaIO3 treatment increased the number of microglia. To examine the roles of CSF2 in retinal inflammation, we overexpressed CSF2 in retinal explants. Induction of CSF2 activated microglia and Müller glia, and the layer structure of the retina was severely perturbed. CC motif chemokine ligand 2 (Ccl2) and C-X-C motif chemokine ligand 10 (Cxcl10), both of which are expressed in activated microglia, were strongly induced by the expression of CSF2 in the retina. The addition of CSF2 to primary retinal microglia and the microglial cell lines MG5 and BV2 showed statistically significant increase in Ccl2 and Il1b transcripts. Furthermore, CSF2 induced proliferation, migration, and phagocytosis in MG5 and/or BV2. The effects of CSF2 on microglia were mild, suggesting that CSF2 induced strong inflammation in the context of the retinal environment.
Collapse
|
19
|
Chen L, Xiong Z, Zhao H, Teng C, Liu H, Huang Q, Wanggou S, Li X. Identification of the novel prognostic biomarker, MLLT11, reveals its relationship with immune checkpoint markers in glioma. Front Oncol 2022; 12:889351. [PMID: 36033495 PMCID: PMC9414891 DOI: 10.3389/fonc.2022.889351] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 07/19/2022] [Indexed: 11/13/2022] Open
Abstract
AimThis study aimed to explore the expression pattern of MLLT11 under different pathological features, evaluate its prognostic value for glioma patients, reveal the relationship between MLLT11 mRNA expression and immune cell infiltration in the tumor microenvironment (TME), and provide more evidence for the molecular diagnosis of glioma and immunotherapy.MethodsUsing large-scale bioinformatic approach and RNA sequencing (RNA-seq) data from public databases The Cancer Genome Atlas (TCGA), Chinese Glioma Genome Atlas (CGGA), and The Gene Expression Omnibus (GEO)), we investigated the relationship between MLLT11 mRNA levels and pathologic characteristics. The distribution in the different subtypes was observed based on Verhaak bulk and Neftel single-cell classification. Then, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis were used for bioinformatic analysis. Kaplan–Meier survival analysis and Cox regression analysis were used for survival analysis. Correlation analyses were performed between MLLT11 expression and 22 immune cells and immune checkpoints in the TME.ResultsWe found that MLLT11 expression is decreased in high-grade glioma tissues; we further verified this result by RTPCR, Western blotting, and immunohistochemistry using our clinical samples. According to the Verhaak classification, high MLLT11 expression is mostly clustered in pro-neutral (PN) and neutral (NE) subtypes, while in the Neftel classification, MLLT11 mainly clustered in neural progenitor-like (NPC-like) neoplastic cells. Survival analysis revealed that low levels of MLLT11 expression are associated with a poorer prognosis; MLLT11 was identified as an independent prognostic factor in multivariate Cox regression analyses. Functional enrichment analyses of MLLT11 with correlated expression indicated that low MLLT11 expression is associated with the biological process related to the extracellular matrix, and the high expression group is related to the synaptic structure. Correlation analyses suggest that declined MLLT11 expression is associated with increased macrophage infiltration in glioma, especially M2 macrophage, and verified by RTPCR, Western blotting, and immunohistochemistry using our clinical glioma samples. MLLT11 had a highly negative correlation with immune checkpoint inhibitor (ICI) genes including PDCD1, PD-L1, TIM3(HAVCR2), and PD‐L2 (PDCD1LG2).ConclusionMLLT11 plays a crucial role in the progression of glioma and has the potential to be a new prognostic marker for glioma.
Collapse
Affiliation(s)
- Long Chen
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, China
| | - Zujian Xiong
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, China
| | - Hongyu Zhao
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, China
| | - Chubei Teng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, China
| | - Hongwei Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, China
| | - Qi Huang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, China
| | - Siyi Wanggou
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Siyi Wanggou, ; Xuejun Li,
| | - Xuejun Li
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Siyi Wanggou, ; Xuejun Li,
| |
Collapse
|
20
|
Kishk A, Pacheco MP, Heurtaux T, Sinkkonen L, Pang J, Fritah S, Niclou SP, Sauter T. Review of Current Human Genome-Scale Metabolic Models for Brain Cancer and Neurodegenerative Diseases. Cells 2022; 11:2486. [PMID: 36010563 PMCID: PMC9406599 DOI: 10.3390/cells11162486] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/28/2022] [Accepted: 08/08/2022] [Indexed: 11/16/2022] Open
Abstract
Brain disorders represent 32% of the global disease burden, with 169 million Europeans affected. Constraint-based metabolic modelling and other approaches have been applied to predict new treatments for these and other diseases. Many recent studies focused on enhancing, among others, drug predictions by generating generic metabolic models of brain cells and on the contextualisation of the genome-scale metabolic models with expression data. Experimental flux rates were primarily used to constrain or validate the model inputs. Bi-cellular models were reconstructed to study the interaction between different cell types. This review highlights the evolution of genome-scale models for neurodegenerative diseases and glioma. We discuss the advantages and drawbacks of each approach and propose improvements, such as building bi-cellular models, tailoring the biomass formulations for glioma and refinement of the cerebrospinal fluid composition.
Collapse
Affiliation(s)
- Ali Kishk
- Department of Life Sciences and Medicine, University of Luxembourg, L-4367 Belvaux, Luxembourg
| | - Maria Pires Pacheco
- Department of Life Sciences and Medicine, University of Luxembourg, L-4367 Belvaux, Luxembourg
| | - Tony Heurtaux
- Department of Life Sciences and Medicine, University of Luxembourg, L-4367 Belvaux, Luxembourg
- Luxembourg Center of Neuropathology, L-3555 Dudelange, Luxembourg
| | - Lasse Sinkkonen
- Department of Life Sciences and Medicine, University of Luxembourg, L-4367 Belvaux, Luxembourg
| | - Jun Pang
- Department of Computer Science, University of Luxembourg, L-4364 Esch-sur-Alzette, Luxembourg
| | - Sabrina Fritah
- NORLUX Neuro-Oncology Laboratory, Luxembourg Institute of Health, Department of Cancer Research, L-1526 Luxembourg, Luxembourg
| | - Simone P. Niclou
- NORLUX Neuro-Oncology Laboratory, Luxembourg Institute of Health, Department of Cancer Research, L-1526 Luxembourg, Luxembourg
| | - Thomas Sauter
- Department of Life Sciences and Medicine, University of Luxembourg, L-4367 Belvaux, Luxembourg
| |
Collapse
|
21
|
Menna G, Mattogno PP, Donzelli CM, Lisi L, Olivi A, Della Pepa GM. Glioma-Associated Microglia Characterization in the Glioblastoma Microenvironment through a 'Seed-and Soil' Approach: A Systematic Review. Brain Sci 2022; 12:718. [PMID: 35741603 PMCID: PMC9220868 DOI: 10.3390/brainsci12060718] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/25/2022] [Accepted: 05/28/2022] [Indexed: 12/04/2022] Open
Abstract
Background and aim: Ever since the discovery of tumor-associated immune cells, there has been growing interest in the understanding of the mechanisms underlying the crosstalk between these cells and tumor cells. A "seed and soil" approach has been recently introduced to describe the glioblastoma (GBM) landscape: tumor microenvironments act as fertile "soil" and interact with the "seed" (glial and stem cells compartment). In the following article, we provide a systematic review of the current evidence pertaining to the characterization of glioma-associated macrophages and microglia (GAMs) and microglia and macrophage cells in the glioma tumor microenvironment (TME). Methods: An online literature search was launched on PubMed Medline and Scopus using the following research string: "((Glioma associated macrophages OR GAM OR Microglia) AND (glioblastoma tumor microenvironment OR TME))". The last search for articles pertinent to the topic was conducted in February 2022. Results: The search of the literature yielded a total of 349 results. A total of 235 studies were found to be relevant to our research question and were assessed for eligibility. Upon a full-text review, 58 articles were included in the review. The reviewed papers were further divided into three categories based on their focus: (1) Microglia maintenance of immunological homeostasis and protection against autoimmunity; (2) Microglia crosstalk with dedifferentiated and stem-like glioblastoma cells; (3) Microglia migratory behavior and its activation pattern. Conclusions: Aggressive growth, inevitable recurrence, and scarce response to immunotherapies are driving the necessity to focus on the GBM TME from a different perspective to possibly disentangle its role as a fertile 'soil' for tumor progression and identify within it feasible therapeutic targets. Against this background, our systematic review confirmed microglia to play a paramount role in promoting GBM progression and relapse after treatments. The correct and extensive understanding of microglia-glioma crosstalk could help in understanding the physiopathology of this complex disease, possibly opening scenarios for improvement of treatments.
Collapse
Affiliation(s)
- Grazia Menna
- Institute of Neurosurgery, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (G.M.); (P.P.M.); (C.M.D.); (A.O.)
| | - Pier Paolo Mattogno
- Institute of Neurosurgery, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (G.M.); (P.P.M.); (C.M.D.); (A.O.)
| | - Carlo Maria Donzelli
- Institute of Neurosurgery, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (G.M.); (P.P.M.); (C.M.D.); (A.O.)
| | - Lucia Lisi
- Institute of Pharmacology, Catholic University of Rome, 00168 Rome, Italy;
| | - Alessandro Olivi
- Institute of Neurosurgery, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (G.M.); (P.P.M.); (C.M.D.); (A.O.)
| | - Giuseppe Maria Della Pepa
- Institute of Neurosurgery, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (G.M.); (P.P.M.); (C.M.D.); (A.O.)
| |
Collapse
|
22
|
Dialogue among Lymphocytes and Microglia in Glioblastoma Microenvironment. Cancers (Basel) 2022; 14:cancers14112632. [PMID: 35681612 PMCID: PMC9179556 DOI: 10.3390/cancers14112632] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 02/06/2023] Open
Abstract
Simple Summary In this review, we summarize in vitro and in vivo studies related to glioblastoma models and human patients to outline the symbiotic bidirectional interaction between microglia, lymphocytes, and tumor cells that develops during tumor progression. Particularly, we highlight the current experimental therapeutic approaches that aim to shape these interplays, such as adeno-associated virus (AAV) delivery and CAR-T and -NK cell infusion, and to modulate the tumor microenvironment in an anti-tumoral way, thus counteracting glioblastoma growth. Abstract Microglia and lymphocytes are fundamental constituents of the glioblastoma microenvironment. In this review, we summarize the current state-of-the-art knowledge of the microglial role played in promoting the development and aggressive hallmarks of this deadly brain tumor. Particularly, we report in vitro and in vivo studies related to glioblastoma models and human patients to outline the symbiotic bidirectional interaction between microglia, lymphocytes, and tumor cells that develops during tumor progression. Furthermore, we highlight the current experimental therapeutic approaches that aim to shape these interplays, such as adeno-associated virus (AAV) delivery and CAR-T and -NK cell infusion, and to modulate the tumor microenvironment in an anti-tumoral way, thus counteracting glioblastoma growth.
Collapse
|
23
|
Liu X, Liu Y, Qi Y, Huang Y, Hu F, Dong F, Shu K, Lei T. Signal Pathways Involved in the Interaction Between Tumor-Associated Macrophages/TAMs and Glioblastoma Cells. Front Oncol 2022; 12:822085. [PMID: 35600367 PMCID: PMC9114701 DOI: 10.3389/fonc.2022.822085] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 04/07/2022] [Indexed: 12/16/2022] Open
Abstract
It is commonly recognized, that glioblastoma is a large complex composed of neoplastic and non-neoplastic cells. Tumor-associated macrophages account for the majority of tumor bulk and play pivotal roles in tumor proliferation, migration, invasion, and survival. There are sophisticated interactions between malignant cells and tumor associated-macrophages. Tumor cells release a variety of chemokines, cytokines, and growth factors that subsequently lead to the recruitment of TAMs, which in return released a plethora of factors to construct an immunosuppressive and tumor-supportive microenvironment. In this article, we have reviewed the biological characteristics of glioblastoma-associated macrophages and microglia, highlighting the emerging molecular targets and related signal pathways involved in the interaction between TAMs and glioblastoma cells, as well as the potential TAMs-associated therapeutic targets for glioblastoma.
Collapse
Affiliation(s)
- Xiaojin Liu
- Sino-German Neuro-Oncology Molecular Laboratory, Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuan Liu
- Sino-German Neuro-Oncology Molecular Laboratory, Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yiwei Qi
- Sino-German Neuro-Oncology Molecular Laboratory, Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yimin Huang
- Sino-German Neuro-Oncology Molecular Laboratory, Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Feng Hu
- Sino-German Neuro-Oncology Molecular Laboratory, Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fangyong Dong
- Sino-German Neuro-Oncology Molecular Laboratory, Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kai Shu
- Sino-German Neuro-Oncology Molecular Laboratory, Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ting Lei
- Sino-German Neuro-Oncology Molecular Laboratory, Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
24
|
Wu J, Shen S, Liu T, Ren X, Zhu C, Liang Q, Cui X, Chen L, Cheng P, Cheng W, Wu A. Chemerin enhances mesenchymal features of glioblastoma by establishing autocrine and paracrine networks in a CMKLR1-dependent manner. Oncogene 2022; 41:3024-3036. [PMID: 35459783 PMCID: PMC9122825 DOI: 10.1038/s41388-022-02295-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 03/14/2022] [Accepted: 03/23/2022] [Indexed: 11/18/2022]
Abstract
Glioblastoma multiforme (GBM) with mesenchymal features exhibits enhanced chemotherapeutic resistance and results in reduced overall survival. Recent studies have suggested that there is a positive correlation between the GBM mesenchymal status and immune cell infiltration. However, the mechanisms by which GBM acquires its mesenchymal features in a tumor immune microenvironment-dependent manner remains unknown. Here, we uncovered a chemerin-mediated autocrine and paracrine network by which the mesenchymal phenotype of GBM cells is strengthened. We identified chemerin as a prognostic secretory protein mediating the mesenchymal phenotype-promoting network between tumor-associated macrophages (TAMs) and tumor cells in GBM. Mechanistically, chemerin promoted the mesenchymal features of GBM by suppressing the ubiquitin-proteasomal degradation of CMKLR1, a chemerin receptor predominantly expressed on TAMs and partially expressed on GBM cells, thereby enhancing NF-κB pathway activation. Moreover, chemerin was found to be involved in the recruitment of TAMs in the GBM tumor microenvironment. We revealed that chemerin also enhances the mesenchymal phenotype-promoting ability of TAMs and promotes their M2 polarization via a CMKLR1/NF-κB axis, which further exacerbates the mesenchymal features of GBM. Blocking the chemerin/CMKLR1 axis with 2-(α-naphthoyl) ethyltrimethylammonium iodide disrupted the mesenchymal network and suppressed tumor growth in GBM. These results suggest the therapeutic potential of targeting the chemerin/CMKLR1 axis to block the mesenchymal network in GBM.
Collapse
Affiliation(s)
- Jianqi Wu
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China
| | - Shuai Shen
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China
| | - Tianqi Liu
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China
| | - Xiufang Ren
- Departement of Pathology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Chen Zhu
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China
| | - Qingyu Liang
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China
| | - Xiao Cui
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China
| | - Ling Chen
- Department of Neurosurgery, Chinese People's Liberation Army of China (PLA) General Hospital, Medical School of Chinese PLA, Institute of Neurosurgery of Chinese PLA, Beijing, China
| | - Peng Cheng
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China
| | - Wen Cheng
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China.
| | - Anhua Wu
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
25
|
Bianconi A, Aruta G, Rizzo F, Salvati LF, Zeppa P, Garbossa D, Cofano F. Systematic Review on Tumor Microenvironment in Glial Neoplasm: From Understanding Pathogenesis to Future Therapeutic Perspectives. Int J Mol Sci 2022; 23:4166. [PMID: 35456984 PMCID: PMC9029619 DOI: 10.3390/ijms23084166] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/04/2022] [Accepted: 04/06/2022] [Indexed: 02/04/2023] Open
Abstract
Despite the multidisciplinary management in the treatment of glioblastomas, the average survival of GBM patients is still 15 months. In recent years, molecular biomarkers have gained more and more importance both in the diagnosis and therapy of glial tumors. At the same time, it has become clear that non neoplastic cells, which constitute about 30% of glioma mass, dramatically influence tumor growth, spread, and recurrence. This is the main reason why, in recent years, scientific research has been focused on understanding the function and the composition of tumor microenvironment and its role in gliomagenesis and recurrence. The aim of this review is to summarize the most recent discovery about resident microglia, tumor-associated macrophages, lymphocytes, and the role of extracellular vesicles and their bijective interaction with glioma cells. Moreover, we reported the most recent updates about new therapeutic strategies targeting immune system receptors and soluble factors. Understanding how glioma cells interact with non-neoplastic cells in tumor microenvironment is an essential step to comprehend mechanisms at the base of disease progression and to find new therapeutic strategies for GBM patients. However, no significant results have yet been obtained in studies targeting single molecules/pathways; considering the complex microenvironment, it is likely that only by using multiple therapeutic agents acting on multiple molecular targets can significant results be achieved.
Collapse
Affiliation(s)
- Andrea Bianconi
- Department of Neuroscience “Rita Levi Montalcini”, University of Turin, 10126 Turin, Italy; (G.A.); (F.R.); (P.Z.); (D.G.); (F.C.)
| | - Gelsomina Aruta
- Department of Neuroscience “Rita Levi Montalcini”, University of Turin, 10126 Turin, Italy; (G.A.); (F.R.); (P.Z.); (D.G.); (F.C.)
| | - Francesca Rizzo
- Department of Neuroscience “Rita Levi Montalcini”, University of Turin, 10126 Turin, Italy; (G.A.); (F.R.); (P.Z.); (D.G.); (F.C.)
| | | | - Pietro Zeppa
- Department of Neuroscience “Rita Levi Montalcini”, University of Turin, 10126 Turin, Italy; (G.A.); (F.R.); (P.Z.); (D.G.); (F.C.)
| | - Diego Garbossa
- Department of Neuroscience “Rita Levi Montalcini”, University of Turin, 10126 Turin, Italy; (G.A.); (F.R.); (P.Z.); (D.G.); (F.C.)
| | - Fabio Cofano
- Department of Neuroscience “Rita Levi Montalcini”, University of Turin, 10126 Turin, Italy; (G.A.); (F.R.); (P.Z.); (D.G.); (F.C.)
- Spine Surgery Unit, Humanitas Gradeningo, 10100 Turin, Italy
| |
Collapse
|
26
|
Wang L, Wang R, Huang T, Yang Y, Feng L, Fang J. miR-211-3p enhances induction chemotherapy insensitivity by upregulating CSF2/CCL20/TNF signaling in hypopharyngeal squamous cell carcinoma. Mol Biol Rep 2022; 49:6103-6112. [PMID: 35397087 DOI: 10.1007/s11033-022-07401-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 03/17/2022] [Indexed: 12/24/2022]
Abstract
PURPOSE To investigate the potential mechanisms of miR-211-3p on induction chemotherapy (IC) sensitivity in hypopharyngeal squamous cell carcinoma (HSCC). METHODS qRT-PCR was assessed to compare the miR-211-3p expression between IC sensitive and insensitive tumor tissues. The MTT assay was performed to analyze cell proliferation and viability to paclitaxel after alteration of miR-211-3p. Flow cytometry assay was conducted to explore cell apoptosis. Transwell assay was used to explore the effect of miR-211-3p on cell migration. Transcriptome sequencing was then performed to select differentially expressed genes (DEGs) after over-expression of miR-211-3p. GO and KEGG enrichment analyses were conducted to annotate DEGs. PPI analysis was conducted to screen candidate genes. The differential expression and survival status of candidate genes were further validated in TCGA-HNSCC data. The single sample GSEA method was used to investigate the association between downstream genes and immune cell infiltration. RESULTS miR-211-3p was up-regulated in IC insensitive larynx-hypopharyngeal tumor tissues. Over-expression of miR-211-3p promoted cell proliferation and migration, and inhibited apoptosis. The IC50 value of miR-211-3p overexpression (OE) group was significantly higher than negative control (NC) group treated with paclitaxel, suggesting miR-211-3p enhanced IC insensitivity in HSCC. We found 778 DEG after over-expression of miR-211-3p and 11 significant genes were then identified. Finally, colony stimulating factor 2 (CSF2) and C-C motif chemokine ligand 20 (CCL20) were validated to be significantly high expressed and associated with poorer overall survival in head and neck squamous cell carcinoma, which were involved in TNF signaling pathway and then regulated immune cell infiltration. CONCLUSION The miR-211-3p could promote HSCC progression and upregulate CSF2/CCL20/TNF signaling to promote IC insensitivity in HSCC, which may provide new ideas for HSCC therapy.
Collapse
Affiliation(s)
- Lingwa Wang
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Ru Wang
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Tianqiao Huang
- Department of Otolaryngology Head and Neck Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Yifan Yang
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Ling Feng
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China.
| | - Jugao Fang
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China.
| |
Collapse
|
27
|
Arrieta VA, Najem H, Petrosyan E, Lee-Chang C, Chen P, Sonabend AM, Heimberger AB. The Eclectic Nature of Glioma-Infiltrating Macrophages and Microglia. Int J Mol Sci 2021; 22:13382. [PMID: 34948178 PMCID: PMC8705822 DOI: 10.3390/ijms222413382] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/08/2021] [Accepted: 12/09/2021] [Indexed: 11/23/2022] Open
Abstract
Glioblastomas (GBMs) are complex ecosystems composed of highly multifaceted tumor and myeloid cells capable of responding to different environmental pressures, including therapies. Recent studies have uncovered the diverse phenotypical identities of brain-populating myeloid cells. Differences in the immune proportions and phenotypes within tumors seem to be dictated by molecular features of glioma cells. Furthermore, increasing evidence underscores the significance of interactions between myeloid cells and glioma cells that allow them to evolve in a synergistic fashion to sustain tumor growth. In this review, we revisit the current understanding of glioma-infiltrating myeloid cells and their dialogue with tumor cells in consideration of their increasing recognition in response and resistance to immunotherapies as well as the immune impact of the current chemoradiotherapy used to treat gliomas.
Collapse
Affiliation(s)
- Víctor A. Arrieta
- Department of Neurosurgery, Lou and Jean Malnati Brain Tumor Institute, Robert H Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; (V.A.A.); (H.N.); (E.P.); (C.L.-C.); (P.C.)
- PECEM, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 04360, Mexico
| | - Hinda Najem
- Department of Neurosurgery, Lou and Jean Malnati Brain Tumor Institute, Robert H Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; (V.A.A.); (H.N.); (E.P.); (C.L.-C.); (P.C.)
| | - Edgar Petrosyan
- Department of Neurosurgery, Lou and Jean Malnati Brain Tumor Institute, Robert H Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; (V.A.A.); (H.N.); (E.P.); (C.L.-C.); (P.C.)
| | - Catalina Lee-Chang
- Department of Neurosurgery, Lou and Jean Malnati Brain Tumor Institute, Robert H Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; (V.A.A.); (H.N.); (E.P.); (C.L.-C.); (P.C.)
| | - Peiwen Chen
- Department of Neurosurgery, Lou and Jean Malnati Brain Tumor Institute, Robert H Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; (V.A.A.); (H.N.); (E.P.); (C.L.-C.); (P.C.)
| | - Adam M. Sonabend
- Department of Neurosurgery, Lou and Jean Malnati Brain Tumor Institute, Robert H Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; (V.A.A.); (H.N.); (E.P.); (C.L.-C.); (P.C.)
| | - Amy B. Heimberger
- Department of Neurosurgery, Lou and Jean Malnati Brain Tumor Institute, Robert H Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; (V.A.A.); (H.N.); (E.P.); (C.L.-C.); (P.C.)
| |
Collapse
|
28
|
Chitu V, Biundo F, Stanley ER. Colony stimulating factors in the nervous system. Semin Immunol 2021; 54:101511. [PMID: 34743926 DOI: 10.1016/j.smim.2021.101511] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 10/23/2021] [Indexed: 01/02/2023]
Abstract
Although traditionally seen as regulators of hematopoiesis, colony-stimulating factors (CSFs) have emerged as important players in the nervous system, both in health and disease. This review summarizes the cellular sources, patterns of expression and physiological roles of the macrophage (CSF-1, IL-34), granulocyte-macrophage (GM-CSF) and granulocyte (G-CSF) colony stimulating factors within the nervous system, with a particular focus on their actions on microglia. CSF-1 and IL-34, via the CSF-1R, are required for the development, proliferation and maintenance of essentially all CNS microglia in a temporal and regional specific manner. In contrast, in steady state, GM-CSF and G-CSF are mainly involved in regulation of microglial function. The alterations in expression of these growth factors and their receptors, that have been reported in several neurological diseases, are described and the outcomes of their therapeutic targeting in mouse models and humans are discussed.
Collapse
Affiliation(s)
- Violeta Chitu
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | - Fabrizio Biundo
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | - E Richard Stanley
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| |
Collapse
|
29
|
Sørensen MD, Kristensen BW. TUMOUR-ASSOCIATED CD204+ MICROGLIA/MACROPHAGES ACCUMULATE IN PERIVASCULAR AND PERINECROTIC NICHES AND CORRELATE WITH AN INTERLEUKIN-6 ENRICHED INFLAMMATORY PROFILE IN GLIOBLASTOMA. Neuropathol Appl Neurobiol 2021; 48:e12772. [PMID: 34713474 PMCID: PMC9306597 DOI: 10.1111/nan.12772] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 09/30/2021] [Accepted: 10/25/2021] [Indexed: 11/29/2022]
Affiliation(s)
- Mia Dahl Sørensen
- Department of Pathology, Odense University Hospital, Odense, Denmark.,Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Bjarne Winther Kristensen
- Department of Pathology, Odense University Hospital, Odense, Denmark.,Department of Clinical Research, University of Southern Denmark, Odense, Denmark.,Department of Pathology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark.,Department of Clinical Medicine and Biotech Research and Innovation Center (BRIC), University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
30
|
Ye Z, Ai X, Zhao L, Fei F, Wang P, Zhou S. Phenotypic plasticity of myeloid cells in glioblastoma development, progression, and therapeutics. Oncogene 2021; 40:6059-6070. [PMID: 34556813 DOI: 10.1038/s41388-021-02010-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 08/16/2021] [Accepted: 09/06/2021] [Indexed: 02/08/2023]
Abstract
Glioblastoma (GBM) is the most common and malignant type of intracranial tumors with poor prognosis. Accumulating evidence suggests that phenotypic alterations of infiltrating myeloid cells in the tumor microenvironment are important for GBM progression. Conventional tumor immunotherapy commonly targets T-cells, while innate immunity as a therapeutic target is an emerging field. Targeting infiltrating myeloid cells that induce immune suppression in the TME provides a novel direction to improve the prognosis of patients with GBM. The factors released by tumor cells recruit myeloid cells into tumor bed and reprogram infiltrating myeloid cells into immunostimulatory/immunosuppressive phenotypes. Reciprocally, infiltrating myeloid cells, especially microglia/macrophages, regulate GBM progression and affect therapeutic efficacy. Herein, we revisited biological characteristics and functions of infiltrating myeloid cells and discussed the recent advances in immunotherapies targeting infiltrating myeloid cells in GBM. With an evolving understanding of the complex interactions between infiltrating myeloid cells and tumor cells in the tumor microenvironment, we will expand novel immunotherapeutic regimens targeting infiltrating myeloid cells in GBM treatment and improve the outcomes of GBM patients.
Collapse
Affiliation(s)
- Zengpanpan Ye
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second Hospital and Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, P. R. China
| | - Xiaolin Ai
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second Hospital and Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, P. R. China
| | - Linjie Zhao
- Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Fan Fei
- Department of Neurosurgery, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital; School of Medicine, University of Electronic Science and Technology of China, No.32 West Second Section First Ring Road, Chengdu, 610072, Sichuan, China.
| | - Ping Wang
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second Hospital and Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, P. R. China.
| | - Shengtao Zhou
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second Hospital and Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, P. R. China.
| |
Collapse
|
31
|
Zhong C, Tao B, Yang F, Xia K, Yang X, Chen L, Peng T, Xia X, Li X, Peng L. Histone demethylase JMJD1C promotes the polarization of M1 macrophages to prevent glioma by upregulating miR-302a. Clin Transl Med 2021; 11:e424. [PMID: 34586733 PMCID: PMC8473479 DOI: 10.1002/ctm2.424] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 04/26/2021] [Accepted: 05/01/2021] [Indexed: 12/23/2022] Open
Abstract
Glioma is regarded as an aggressive lethal primary brain tumor. Jumonji domain containing 1C (JMJD1C) is a H3K9 demethylase which participates in the progression of various tumors, but its specific function and underlying mechanism in glioma development remain undefined, which is the purpose of our work. We initially assessed JMJD1C expression in glioma tissues and cells using the assays of RT-qPCR and immunohistochemistry. Meanwhile, the H3K9 level at the microRNA (miR)-302a promoter region was measured by chromatin immunoprecipitation assay, while luciferase-based reporter assay was performed for validation of the binding affinity between miR-302a and methyltransferase-like 3 (METTL3). The effect of METTL3 on suppressor of cytokine signaling 2 (SOCS2) was subsequently analyzed by MeRIP-RT-qPCR. Finally, a xenograft tumor model was established in nude mice, followed by measurement of tumor-associated macrophages using flow cytometry. JMJD1C was poorly expressed in glioma tissues. Furthermore, JMJD1C increased miR-302a expression through promoting H3K9me1 demethylation at the miR-302a promoter region. miR-302a was identified to target METTL3, which could inhibit SOCS2 expression via m6A modification. JMJD1C promoted M1 macrophage polarization and suppressed the growth of glioma xenografts through the miR-302a/METTL3/SOCS2 axis both in vivo and in vitro. In conclusion, JMJD1C could enhance M1 macrophage polarization to inhibit the onset of glioma, bringing a new insight into the contribution of JMJD1C to the pathobiology of glioma, with possible implications for targeted therapeutic method.
Collapse
Affiliation(s)
- Chuanhong Zhong
- Department of Neurosurgerythe Affiliated Hospital of Southwest Medical UniversityLuzhouP. R. China
- Sichuan Clinical Research Center for NeurosurgeryLuzhouP. R. China
| | - Bei Tao
- Department of Rheumatologythe Affiliated Hospital of Southwest Medical UniversityLuzhouP. R. China
| | - Feilong Yang
- Neurosurgery Departmentthe Affiliated Santai Hospital of North Sichuan Medical CollegeMianyang621100P. R. China
| | - Kaiguo Xia
- Department of Neurosurgerythe Affiliated Hospital of Southwest Medical UniversityLuzhouP. R. China
- Sichuan Clinical Research Center for NeurosurgeryLuzhouP. R. China
| | - Xiaobo Yang
- Department of Neurosurgerythe Affiliated Hospital of Southwest Medical UniversityLuzhouP. R. China
- Sichuan Clinical Research Center for NeurosurgeryLuzhouP. R. China
| | - Ligang Chen
- Department of Neurosurgerythe Affiliated Hospital of Southwest Medical UniversityLuzhouP. R. China
- Sichuan Clinical Research Center for NeurosurgeryLuzhouP. R. China
| | - Tangming Peng
- Department of Neurosurgerythe Affiliated Hospital of Southwest Medical UniversityLuzhouP. R. China
- Sichuan Clinical Research Center for NeurosurgeryLuzhouP. R. China
| | - Xiangguo Xia
- Department of Neurosurgerythe Affiliated Hospital of Southwest Medical UniversityLuzhouP. R. China
- Sichuan Clinical Research Center for NeurosurgeryLuzhouP. R. China
| | - Xianglong Li
- Department of Neurosurgerythe Affiliated Hospital of Southwest Medical UniversityLuzhouP. R. China
- Sichuan Clinical Research Center for NeurosurgeryLuzhouP. R. China
| | - Lilei Peng
- Department of Neurosurgerythe Affiliated Hospital of Southwest Medical UniversityLuzhouP. R. China
- Sichuan Clinical Research Center for NeurosurgeryLuzhouP. R. China
| |
Collapse
|
32
|
Granulocyte-macrophage colony-stimulating factor enhances effect of temozolomide on high-grade glioma cells. Anticancer Drugs 2021; 31:950-958. [PMID: 32590393 DOI: 10.1097/cad.0000000000000964] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
In the present study, to delve into the effect of granulocyte-macrophage colony-stimulating factor (GM-CSF) combined with temozolomide (TMZ) on high-grade glioma cells and related mechanism, six cases of high-grade glioma cells from patient's tumor tissues were cultured. 3-(4,5)-dimethylthiahiazo (-z-y1)-3,5-di- phenytetrazoliumromide 3-(4,5)-dimethylthiahiazo (-z-y1)-3,5-di- phenytetrazoliumromide (MTT) assay was performed to detect cell proliferation and toxicity. Flow cytometry was performed to ascertain cell cycle and apoptosis rate. To detect the expressions of O6-methylguanine-DNA methyltransferase (MGMT) methylation status and MGMT protein, respectively, specific PCR and immunofluorescence were performed. According to the results of MTT assay, compared with the results of control group, GM-CSF group exhibited enhanced cell viability in varying degrees. In three cases of cells (MGMT gene methylation), the combination group [(67.67 ± 1.16), (68.13 ± 1.06), (68.42 ± 1.73)] had noticeably lower cell viability than the corresponding TMZ group [(90.00 ± 1.73), (82.33 ± 1.53), (82.67 ± 2.11)] (P < 0.01). Nevertheless, the two groups showed no significant difference in another three cases (MGMT gene unmethylated) (P > 0.05). In combination group, the apoptosis rate of the MGMT methylation cells was higher than that in the corresponding TMZ group (P < 0.01), which is consistent with MTT assay results. In all six cases of primary glioma cells, the fraction of cells in G1 phase of GM-CSF-treated group was noticeably down-regulated and was up-regulated in S phase (P < 0.01). GM-CSF could induce high-grade glioma cells to rapidly enter the cell cycle, thereby enhancing the lethal effect of TMZ on glioma cells with MGMT gene promoter methylation. However, this effect is not ideal on glioma cells with MGMT unmethylation.
Collapse
|
33
|
Chaudhary R, Morris RJ, Steinson E. The multifactorial roles of microglia and macrophages in the maintenance and progression of glioblastoma. J Neuroimmunol 2021; 357:577633. [PMID: 34153803 DOI: 10.1016/j.jneuroim.2021.577633] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/26/2021] [Accepted: 06/11/2021] [Indexed: 01/18/2023]
Abstract
The functional characteristics of glial cells, in particular microglia, have attained considerable importance in several diseases, including glioblastoma, the most hostile and malignant type of intracranial tumor. Microglia performs a highly significant role in the brain's inflammatory response mechanism. They exhibit anti-tumor properties via phagocytosis and the activation of a number of different cytotoxic substances. Some tumor-derived factors, however, transform these microglial cells into immunosuppressive and tumor-supportive, facilitating survival and progression of tumorigenic cells. Glioma-associated microglia and/or macrophages (GAMs) accounts for a large proportion of glioma infiltrating cells. Once within the tumor, GAMs exhibit a distinct phenotype of initiation that subsequently supports the growth and development of tumorigenic cells, angiogenesis and stimulates the infiltration of healthy brain regions. Interventions that suppress or prohibit the induction of GAMs at the tumor site or attenuate their immunological activities accommodating anti-tumor actions are likely to exert positive impact on glioblastoma treatment. In the present paper, we aim to summarize the most recent knowledge of microglia and its physiology, as well as include a very brief description of different molecular factors involved in microglia and glioblastoma interplay. We further address some of the major signaling pathways that regulate the baseline motility of glioblastoma progression. Finally, we discussed a number of therapeutic approaches regarding glioblastoma treatment.
Collapse
Affiliation(s)
- Rishabh Chaudhary
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow, India.
| | - Rhianna J Morris
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, United Kingdom
| | - Emma Steinson
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| |
Collapse
|
34
|
Garcia-Fabiani MB, Haase S, Comba A, Carney S, McClellan B, Banerjee K, Alghamri MS, Syed F, Kadiyala P, Nunez FJ, Candolfi M, Asad A, Gonzalez N, Aikins ME, Schwendeman A, Moon JJ, Lowenstein PR, Castro MG. Genetic Alterations in Gliomas Remodel the Tumor Immune Microenvironment and Impact Immune-Mediated Therapies. Front Oncol 2021; 11:631037. [PMID: 34168976 PMCID: PMC8217836 DOI: 10.3389/fonc.2021.631037] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 05/06/2021] [Indexed: 12/13/2022] Open
Abstract
High grade gliomas are malignant brain tumors that arise in the central nervous system, in patients of all ages. Currently, the standard of care, entailing surgery and chemo radiation, exhibits a survival rate of 14-17 months. Thus, there is an urgent need to develop new therapeutic strategies for these malignant brain tumors. Currently, immunotherapies represent an appealing approach to treat malignant gliomas, as the pre-clinical data has been encouraging. However, the translation of the discoveries from the bench to the bedside has not been as successful as with other types of cancer, and no long-lasting clinical benefits have been observed for glioma patients treated with immune-mediated therapies so far. This review aims to discuss our current knowledge about gliomas, their molecular particularities and the impact on the tumor immune microenvironment. Also, we discuss several murine models used to study these therapies pre-clinically and how the model selection can impact the outcomes of the approaches to be tested. Finally, we present different immunotherapy strategies being employed in clinical trials for glioma and the newest developments intended to harness the immune system against these incurable brain tumors.
Collapse
Affiliation(s)
- Maria B. Garcia-Fabiani
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Santiago Haase
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Andrea Comba
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Stephen Carney
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Brandon McClellan
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Immunology graduate program, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Kaushik Banerjee
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Mahmoud S. Alghamri
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Faisal Syed
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Padma Kadiyala
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
| | | | - Marianela Candolfi
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Antonela Asad
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Nazareno Gonzalez
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Marisa E. Aikins
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, United States
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, United States
| | - Anna Schwendeman
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, United States
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, United States
| | - James J. Moon
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, United States
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, United States
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Pedro R. Lowenstein
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Maria G. Castro
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
| |
Collapse
|
35
|
Huang Q, Liu J, Wu S, Zhang X, Xiao Z, Liu Z, Du W. Spi-B Promotes the Recruitment of Tumor-Associated Macrophages via Enhancing CCL4 Expression in Lung Cancer. Front Oncol 2021; 11:659131. [PMID: 34141615 PMCID: PMC8205110 DOI: 10.3389/fonc.2021.659131] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 05/03/2021] [Indexed: 01/14/2023] Open
Abstract
Tumor immune escape plays a critical role in malignant tumor progression and leads to the failure of anticancer immunotherapy. Spi-B, a lymphocyte lineage-specific Ets transcription factor, participates in mesenchymal invasion and favors metastasis in human lung cancer. However, the mechanism through which Spi-B regulates the tumor immune environment has not been elucidated. In this study, we demonstrated that Spi-B enhanced the infiltration of tumor-associated macrophages (TAMs) in the tumor microenvironment using subcutaneous mouse models and clinical samples of human lung cancer. Spi-B overexpression increased the expression of TAM polarization- and recruitment-related genes, including CCL4. Moreover, deleting CCL4 inhibited the ability of Spi-B promoting macrophage infiltration. These data suggest that Spi-B promotes the recruitment of TAMs to the tumor microenvironment via upregulating CCL4 expression, which contributes to the progression of lung cancer.
Collapse
Affiliation(s)
- Qiumin Huang
- Department of Immunology, Biochemistry and Molecular Biology, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Tianjin Medical University, Tianjin, China
| | - Junrong Liu
- Department of Immunology, Biochemistry and Molecular Biology, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Tianjin Medical University, Tianjin, China
| | - Shuainan Wu
- Department of Immunology, Biochemistry and Molecular Biology, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Tianjin Medical University, Tianjin, China
| | - Xuexi Zhang
- Department of Immunology, Biochemistry and Molecular Biology, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Tianjin Medical University, Tianjin, China
| | - Zengtuan Xiao
- Department of Lung Cancer Center, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Zhe Liu
- Department of Immunology, Biochemistry and Molecular Biology, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Tianjin Medical University, Tianjin, China.,Key Laboratory of Immune Microenvironment and Disease of the Ministry of Education, Tianjin Medical University, Tianjin, China.,Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Tianjin, China
| | - Wei Du
- Department of Immunology, Biochemistry and Molecular Biology, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Tianjin Medical University, Tianjin, China.,Key Laboratory of Immune Microenvironment and Disease of the Ministry of Education, Tianjin Medical University, Tianjin, China
| |
Collapse
|
36
|
Dugandžija T, Drljača J, Bulajić D, Isaković A, Stilinović N, Sekulić S, Čapo I. Hallmarks of tumor-associated microglia response to experimental U87 human glioblastoma xenograft. Tissue Cell 2021; 72:101557. [PMID: 34051646 DOI: 10.1016/j.tice.2021.101557] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 05/07/2021] [Accepted: 05/11/2021] [Indexed: 12/15/2022]
Abstract
Glioblastoma (GBM) is one of the deadliest primary brain neoplasm, heavily infiltrated with tumor-associated microglia/macrophages (TAM), which has received a great deal of interest. Bearing in mind that the number of peripheral macrophages by the 14th day is negligible, in our study TAM were referred to as microglia. Here we evaluated histopathological characterization of TAM and kinetics of their infiltration in U87 orthotopic GBM, a commonly used model in preclinical research. To mimic different stages of GBM growth, we evaluated three-time points. Our data showed that the highest areal density of TAM was 7 days after GBM inoculation, with ability to proliferate early after initiation of GBM growth. The areal density of TAM within the tumor correlated with GBM growth and proliferation. Moreover, microglia underwent substantial morphological changes upon exposure to GBM cells. A transition from ramified morphology in peritumoral area to ameboid shape with larger soma and shortened, thick branches in the tumor core was observed. Higher areal fraction of blood vessels also correlated with the areal density of TAM. Given these pro-invasive features of microglia, this GBM model represents a good basis for further testing microglia as a target and new strategy to fight with.
Collapse
Affiliation(s)
- Tihomir Dugandžija
- Faculty of Medicine, Department of Epidemiology, University of Novi Sad, Hajduk Veljkova 3, Novi Sad, 21000, Serbia; Oncology Institute of Vojvodina, Put doktora Goldmana 4, Sremska Kamenica, 21204, Serbia
| | - Jovana Drljača
- Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, Novi Sad, 21000, Serbia; Center for Medical and Pharmaceutical Investigations and Quality Control, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, Novi Sad, 21000, Serbia.
| | - Dragica Bulajić
- Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, Novi Sad, 21000, Serbia; Center for Medical and Pharmaceutical Investigations and Quality Control, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, Novi Sad, 21000, Serbia
| | - Aleksandra Isaković
- Institute of Medical and Clinical Biochemistry, School of Medicine, University of Belgrade, Pasterova 2, Belgrade, 11000, Serbia
| | - Nebojša Stilinović
- Faculty of Medicine, Department of Pharmacology, Toxicology and Clinical Pharmacology, University of Novi Sad, Hajduk Veljkova 3, Novi Sad, 21000, Serbia
| | - Slobodan Sekulić
- Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, Novi Sad, 21000, Serbia; Department of Neurology, University Hospital, Clinical Center of Vojvodina, Hajduk Veljkova 1-7, Novi Sad, 21000, Serbia
| | - Ivan Čapo
- Center for Medical and Pharmaceutical Investigations and Quality Control, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, Novi Sad, 21000, Serbia; Faculty of Medicine, Department of Histology and Embryology, University of Novi Sad, Hajduk Veljkova 3, Novi Sad, 21000, Serbia
| |
Collapse
|
37
|
Zeng F, Li G, Liu X, Zhang K, Huang H, Jiang T, Zhang Y. Plasminogen Activator Urokinase Receptor Implies Immunosuppressive Features and Acts as an Unfavorable Prognostic Biomarker in Glioma. Oncologist 2021; 26:e1460-e1469. [PMID: 33687124 DOI: 10.1002/onco.13750] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 02/25/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Clinical outcomes of patients with glioma are still poor, even after standard treatments, including surgery combined with radiotherapy and chemotherapy. New therapeutic strategies and targets for glioma are urgently needed. Plasminogen activator urokinase receptor (PLAUR), a highly glycosylated integral membrane protein, is reported to modulate plasminogen activation and extracellular matrix degradation in many malignant cancers, but its role in gliomas remains unclear. METHODS Glioma samples with mRNA sequencing data and clinical information from the Chinese Glioma Genome Atlas (n = 310) data set and The Cancer Genome Atlas (n = 611) data set were collected for this study. Analyses using Kaplan-Meier plots, time-dependent receiver operating characteristic curves, Cox regression, and nomograms were conducted to evaluate the prognostic performance of PLAUR expression. Analyses using Metascape, ESTIMATE, EPIC, and immunohistochemical staining were performed to reveal the potential biological mechanism. The statistical analysis and graphical work were completed using SPSS, R language, and GraphPad Prism. RESULTS PLAUR was highly expressed in phenotypes associated with glioma malignancy and could serve as an independent prognostic indicator. Functional analysis revealed the correlation between PLAUR and immune response. Further studies found that samples with higher PLAUR expression were infiltrated with fewer CD8 T cells and many more M2 macrophages. Strong positive correlation was demonstrated between PLAUR expression and some immunosuppressive markers, including immune checkpoints and cytokines. These findings were also confirmed in patient samples. CONCLUSION Our results elucidated the clinical significance and immunosuppressive effect of PLAUR in gliomas, which might provide some clues in glioma immunotherapy. IMPLICATIONS FOR PRACTICE Although the efficacy of immunotherapy has been verified in other tumors, its application in glioma is impeded because of the unique microenvironment. Tumor-associated macrophages, which are particularly abundant in a glioma mass, contribute much to the immunosuppressive microenvironment and offer new opportunities in glioma immunotherapy. The results of this study identified plasminogen activator urokinase receptor (PLAUR) expression as a potential marker to predict the infiltration of macrophages and the status of immune microenvironment in patients with glioma, suggesting that treatment decisions could be based on PLAUR level when administering immunotherapeutics. The soluble PLAUR in blood and other body fluids would make this approach easy to implement in the clinic.
Collapse
Affiliation(s)
- Fan Zeng
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, People's Republic of China
| | - Guanzhang Li
- Department of Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, People's Republic of China
| | - Xiu Liu
- Department of Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, People's Republic of China
| | - Kenan Zhang
- Department of Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, People's Republic of China
| | - Hua Huang
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, People's Republic of China
| | - Tao Jiang
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, People's Republic of China
| | - Ying Zhang
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, People's Republic of China
| |
Collapse
|
38
|
Buonfiglioli A, Hambardzumyan D. Macrophages and microglia: the cerberus of glioblastoma. Acta Neuropathol Commun 2021; 9:54. [PMID: 33766119 PMCID: PMC7992800 DOI: 10.1186/s40478-021-01156-z] [Citation(s) in RCA: 128] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 03/14/2021] [Indexed: 12/13/2022] Open
Abstract
Glioblastoma (GBM) is the most aggressive and deadliest of the primary brain tumors, characterized by malignant growth, invasion into the brain parenchyma, and resistance to therapy. GBM is a heterogeneous disease characterized by high degrees of both inter- and intra-tumor heterogeneity. Another layer of complexity arises from the unique brain microenvironment in which GBM develops and grows. The GBM microenvironment consists of neoplastic and non-neoplastic cells. The most abundant non-neoplastic cells are those of the innate immune system, called tumor-associated macrophages (TAMs). TAMs constitute up to 40% of the tumor mass and consist of both brain-resident microglia and bone marrow-derived myeloid cells from the periphery. Although genetically stable, TAMs can change their expression profiles based upon the signals that they receive from tumor cells; therefore, heterogeneity in GBM creates heterogeneity in TAMs. By interacting with tumor cells and with the other non-neoplastic cells in the tumor microenvironment, TAMs promote tumor progression. Here, we review the origin, heterogeneity, and functional roles of TAMs. In addition, we discuss the prospects of therapeutically targeting TAMs alone or in combination with standard or newly-emerging GBM targeting therapies.
Collapse
|
39
|
Wei J, Chen P, Gupta P, Ott M, Zamler D, Kassab C, Bhat KP, Curran MA, de Groot JF, Heimberger AB. Immune biology of glioma-associated macrophages and microglia: functional and therapeutic implications. Neuro Oncol 2021; 22:180-194. [PMID: 31679017 DOI: 10.1093/neuonc/noz212] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
CNS immune defenses are marshaled and dominated by brain resident macrophages and microglia, which are the innate immune sentinels and frontline host immune barriers against various pathogenic insults. These myeloid lineage cells are the predominant immune population in gliomas and can constitute up to 30-50% of the total cellular composition. Parenchymal microglial cells and recruited monocyte-derived macrophages from the periphery exhibit disease-specific phenotypic characteristics with spatial and temporal distinctions and are heterogeneous subpopulations based on their molecular signatures. A preponderance of myeloid over lymphoid lineage cells during CNS inflammation, including gliomas, is a contrasting feature of brain immunity relative to peripheral immunity. Herein we discuss glioma-associated macrophage and microglia immune biology in the context of their identity, molecular drivers of recruitment, nomenclature and functional paradoxes, therapeutic reprogramming and polarization strategies, relevant challenges, and our perspectives on therapeutic modulation.
Collapse
Affiliation(s)
- Jun Wei
- Departments of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Peiwen Chen
- Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Pravesh Gupta
- Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Martina Ott
- Departments of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Daniel Zamler
- Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Cynthia Kassab
- Departments of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Krishna P Bhat
- Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Michael A Curran
- Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - John F de Groot
- Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Amy B Heimberger
- Departments of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
40
|
Shao R, Sun D, Hu Y, Cui D. White matter injury in the neonatal hypoxic-ischemic brain and potential therapies targeting microglia. J Neurosci Res 2021; 99:991-1008. [PMID: 33416205 DOI: 10.1002/jnr.24761] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 10/27/2020] [Accepted: 11/01/2020] [Indexed: 12/12/2022]
Abstract
Neonatal hypoxic-ischemic (H-I) injury, which mainly causes neuronal damage and white matter injury (WMI), is among the predominant causes of infant morbidity (cerebral palsy, cognitive and persistent motor disabilities) and mortality. Disruptions to the oxygen and blood supply in the perinatal brain affect the cerebral microenvironment and may affect microglial activation, excitotoxicity, and oxidative stress. Microglia are significantly associated with axonal damage and myelinating oligodendrocytes, which are major pathological components of WMI. However, the effects of H-I injury on microglial functions and underlying transformation mechanisms remain poorly understood. The historical perception that these cells are major risk factors for ischemic stroke has been questioned due to our improved understanding of the diversity of microglial phenotypes and their alterable functions, which exacerbate or attenuate injuries in different regions in response to environmental instability. Unfortunately, although therapeutic hypothermia is an efficient treatment, death and disability remain the prognosis for a large proportion of neonates with H-I injury. Hence, novel neuroprotective therapies to treat WMI following H-I injury are urgently needed. Here, we review microglial mechanisms that might occur in the developing brain due to neonatal H-I injury and discuss whether microglia function as a double-edged sword in WMI. Then, we emphasize microglial heterogeneity, notably at the single-cell level, and sex-specific effects on the etiology of neurological diseases. Finally, we discuss current knowledge of strategies aiming to improve microglia modulation and remyelination following neonatal H-I injury. Overall, microglia-targeted therapy might provide novel and valuable insights into the treatment of neonatal H-I insult.
Collapse
Affiliation(s)
- Rongjiao Shao
- Department of Anesthesiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Dawei Sun
- Department of Anesthesiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yue Hu
- Department of Anesthesiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Derong Cui
- Department of Anesthesiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| |
Collapse
|
41
|
da Silva SD, Marchi FA, Su J, Yang L, Valverde L, Hier J, Bijian K, Hier M, Mlynarek A, Kowalski LP, Alaoui-Jamali MA. Co-Overexpression of TWIST1-CSF1 Is a Common Event in Metastatic Oral Cancer and Drives Biologically Aggressive Phenotype. Cancers (Basel) 2021; 13:cancers13010153. [PMID: 33466385 PMCID: PMC7795342 DOI: 10.3390/cancers13010153] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/11/2020] [Accepted: 12/18/2020] [Indexed: 12/24/2022] Open
Abstract
Invasive oral squamous cell carcinoma (OSCC) is often ulcerated and heavily infiltrated by pro-inflammatory cells. We conducted a genome-wide profiling of tissues from OSCC patients (early versus advanced stages) with 10 years follow-up. Co-amplification and co-overexpression of TWIST1, a transcriptional activator of epithelial-mesenchymal-transition (EMT), and colony-stimulating factor-1 (CSF1), a major chemotactic agent for tumor-associated macrophages (TAMs), were observed in metastatic OSCC cases. The overexpression of these markers strongly predicted poor patient survival (log-rank test, p = 0.0035 and p = 0.0219). Protein analysis confirmed the enhanced expression of TWIST1 and CSF1 in metastatic tissues. In preclinical models using OSCC cell lines, macrophages, and an in vivo matrigel plug assay, we demonstrated that TWIST1 gene overexpression induces the activation of CSF1 while TWIST1 gene silencing down-regulates CSF1 preventing OSCC invasion. Furthermore, excessive macrophage activation and polarization was observed in co-culture system involving OSCC cells overexpressing TWIST1. In summary, this study provides insight into the cooperation between TWIST1 transcription factor and CSF1 to promote OSCC invasiveness and opens up the potential therapeutic utility of currently developed antibodies and small molecules targeting cancer-associated macrophages.
Collapse
Affiliation(s)
- Sabrina Daniela da Silva
- Department of Otolaryngology Head and Neck Surgery, Sir Mortimer B. Davis-Jewish General Hospital, Montreal, QC H3T 1E2, Canada; (L.V.); (J.H.); (M.H.); (A.M.)
- Segal Cancer Centre and Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, Departments of Medicine, Oncology, and Pharmacology and Therapeutics, Faculty of Medicine, McGill University, Montreal, QC H3T 1E2, Canada; (J.S.); (K.B.)
- Correspondence: or (S.D.d.S.); (M.A.A.-J.); Tel.: +1-514-340-8222 (S.D.d.S.)
| | - Fabio Albuquerque Marchi
- Department of Head and Neck Surgery and Otorhinolaryngology, AC Camargo Cancer Center and National Institute of Science and Technology on Oncogenomics (INCITO), São Paulo 01509-010, Brazil; (F.A.M.); (L.P.K.)
| | - Jie Su
- Segal Cancer Centre and Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, Departments of Medicine, Oncology, and Pharmacology and Therapeutics, Faculty of Medicine, McGill University, Montreal, QC H3T 1E2, Canada; (J.S.); (K.B.)
| | - Long Yang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China;
| | - Ludmila Valverde
- Department of Otolaryngology Head and Neck Surgery, Sir Mortimer B. Davis-Jewish General Hospital, Montreal, QC H3T 1E2, Canada; (L.V.); (J.H.); (M.H.); (A.M.)
| | - Jessica Hier
- Department of Otolaryngology Head and Neck Surgery, Sir Mortimer B. Davis-Jewish General Hospital, Montreal, QC H3T 1E2, Canada; (L.V.); (J.H.); (M.H.); (A.M.)
| | - Krikor Bijian
- Segal Cancer Centre and Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, Departments of Medicine, Oncology, and Pharmacology and Therapeutics, Faculty of Medicine, McGill University, Montreal, QC H3T 1E2, Canada; (J.S.); (K.B.)
| | - Michael Hier
- Department of Otolaryngology Head and Neck Surgery, Sir Mortimer B. Davis-Jewish General Hospital, Montreal, QC H3T 1E2, Canada; (L.V.); (J.H.); (M.H.); (A.M.)
| | - Alex Mlynarek
- Department of Otolaryngology Head and Neck Surgery, Sir Mortimer B. Davis-Jewish General Hospital, Montreal, QC H3T 1E2, Canada; (L.V.); (J.H.); (M.H.); (A.M.)
| | - Luiz Paulo Kowalski
- Department of Head and Neck Surgery and Otorhinolaryngology, AC Camargo Cancer Center and National Institute of Science and Technology on Oncogenomics (INCITO), São Paulo 01509-010, Brazil; (F.A.M.); (L.P.K.)
| | - Moulay A. Alaoui-Jamali
- Segal Cancer Centre and Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, Departments of Medicine, Oncology, and Pharmacology and Therapeutics, Faculty of Medicine, McGill University, Montreal, QC H3T 1E2, Canada; (J.S.); (K.B.)
- Correspondence: or (S.D.d.S.); (M.A.A.-J.); Tel.: +1-514-340-8222 (S.D.d.S.)
| |
Collapse
|
42
|
Timmerman R, Burm SM, Bajramovic JJ. Tissue-specific features of microglial innate immune responses. Neurochem Int 2020; 142:104924. [PMID: 33248205 DOI: 10.1016/j.neuint.2020.104924] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/21/2020] [Accepted: 11/22/2020] [Indexed: 02/07/2023]
Abstract
As tissue-resident macrophages of the brain, microglia are increasingly considered as cellular targets for therapeutical intervention. Innate immune responses in particular have been implicated in central nervous system (CNS) infections, neuro-oncology, neuroinflammatory and neurodegenerative diseases. We here review the impact of 'nature and nurture' on microglial innate immune responses and summarize documented tissue-specific adaptations. Overall, such adaptations are associated with regulatory processes rather than with overt differences in the expressed repertoire of activating receptors of different tissue-resident macrophages. Microglial responses are characterized by slower kinetics, by a more persistent nature and by a differential usage of downstream enzymes and accessory receptors. We further consider factors like aging, previous exposure to inflammatory stimuli, and differences in the microenvironment that can modulate innate immune responses. The long-life span of microglia in the metabolically active CNS renders them susceptible to the phenomenon of 'inflammaging', and major challenges lie in the unraveling of the factors that underlie age-related alterations in microglial behavior.
Collapse
Affiliation(s)
- R Timmerman
- Alternatives Unit, Biomedical Primate Research Centre, Rijswijk, the Netherlands
| | - S M Burm
- Genmab, Utrecht, the Netherlands
| | - J J Bajramovic
- Alternatives Unit, Biomedical Primate Research Centre, Rijswijk, the Netherlands.
| |
Collapse
|
43
|
Blank A, Kremenetskaia I, Urbantat RM, Acker G, Turkowski K, Radke J, Schneider UC, Vajkoczy P, Brandenburg S. Microglia/macrophages express alternative proangiogenic factors depending on granulocyte content in human glioblastoma. J Pathol 2020; 253:160-173. [PMID: 33044746 DOI: 10.1002/path.5569] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 08/27/2020] [Accepted: 10/08/2020] [Indexed: 12/15/2022]
Abstract
Myeloid cells are an inherent part of the microenvironment of glioblastoma multiforme (GBM). There is growing evidence for their participation in mechanisms of tumor escape, especially in the development of resistance following initially promising anti-VEGF/VEGFR treatment. Thus, we sought to define the capability of myeloid cells to contribute to the expression of proangiogenic molecules in human GBM. We investigated GBM specimens in comparison with anaplastic astrocytoma (WHO grade III) and epilepsy patient samples freshly obtained from surgery. Flow cytometric analyses revealed two distinct CD11b+ CD45+ cell populations in GBM tissues, which were identified as microglia/macrophages and granulocytes. Due to varied granulocyte influx, GBM samples were subdivided into groups with low (GBM-lPMNL) and high (GBM-hPMNL) numbers of granulocytes (polymorphonuclear leukocytes; PMNL), which were related to activation of the microglia/macrophage population. Microglia/macrophages of the GBM-lPMNL group were similar to those of astrocytoma specimens, but those of GBM-hPMNL tissues revealed an altered phenotype by expressing high levels of CD163, TIE2, HIF1α, VEGF, CXCL2 and CD13. Although microglia/macrophages represented the main source of alternative proangiogenic factors, additionally granulocytes participated by production of IL8 and CD13. Moreover, microglia/macrophages of the GBM-hPMNL specimens were highly associated with tumor blood vessels, accompanied by remodeling of the vascular structure. Our data emphasize that tumor-infiltrating myeloid cells might play a crucial role for limited efficacy of anti-angiogenic therapy bypassing VEGF-mediated pathways through expression of alternative proangiogenic factors. © 2020 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Anne Blank
- Department of Experimental Neurosurgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Irina Kremenetskaia
- Department of Experimental Neurosurgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Ruth M Urbantat
- Department of Experimental Neurosurgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Güliz Acker
- Department of Experimental Neurosurgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Department of Neurosurgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Berlin Institute of Health, Berlin, Germany
| | - Kati Turkowski
- Department of Experimental Neurosurgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Josefine Radke
- Berlin Institute of Health, Berlin, Germany.,Department of Neuropathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,German Cancer Consortium (DKTK), Partner Site Berlin, Berlin, Germany
| | - Ulf C Schneider
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Peter Vajkoczy
- Department of Experimental Neurosurgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Department of Neurosurgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Susan Brandenburg
- Department of Experimental Neurosurgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
44
|
Chiavari M, Ciotti GMP, Canonico F, Altieri F, Lacal PM, Graziani G, Navarra P, Lisi L. PDIA3 Expression in Glioblastoma Modulates Macrophage/Microglia Pro-Tumor Activation. Int J Mol Sci 2020; 21:ijms21218214. [PMID: 33153019 PMCID: PMC7662700 DOI: 10.3390/ijms21218214] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/29/2020] [Accepted: 10/31/2020] [Indexed: 02/06/2023] Open
Abstract
The glioblastoma (GB) microenvironment includes cells of the innate immune system identified as glioma-associated microglia/macrophages (GAMs) that are still poorly characterized. A potential role on the mechanisms regulating GAM activity might be played by the endoplasmic reticulum protein ERp57/PDIA3 (protein disulfide-isomerase A3), the modulation of which has been reported in a variety of cancers. Moreover, by using The Cancer Genome Atlas database, we found that overexpression of PDIA3 correlated with about 55% reduction of overall survival of glioma patients. Therefore, we analyzed the expression of ERp57/PDIA3 using specimens obtained after surgery from 18 GB patients. Immunohistochemical analysis of tumor samples revealed ERp57/PDIA3 expression in GB cells as well as in GAMs. The ERp57/PDIA3 levels were higher in GAMs than in the microglia present in the surrounding parenchyma. Therefore, we studied the role of PDIA3 modulation in microglia-glioma interaction, based on the ability of conditioned media collected from human GB cells to induce the activation of microglial cells. The results indicated that reduced PDIA3 expression/activity in GB cells significantly limited the microglia pro-tumor polarization towards the M2 phenotype and the production of pro-inflammatory factors. Our data support a role of PDIA3 expression in GB-mediated protumor activation of microglia.
Collapse
Affiliation(s)
- Marta Chiavari
- Dipartimento di Bioetica e Sicurezza, Sezione di Farmacologia—Catholic University Medical School, 00168 Rome, Italy; (M.C.); (G.M.P.C.); (P.N.); (L.L.)
| | - Gabriella Maria Pia Ciotti
- Dipartimento di Bioetica e Sicurezza, Sezione di Farmacologia—Catholic University Medical School, 00168 Rome, Italy; (M.C.); (G.M.P.C.); (P.N.); (L.L.)
| | - Francesco Canonico
- Dipartimento di Scienze Cardiovascolari e Toraciche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Catholic University Medical School, 00168 Rome, Italy;
| | - Fabio Altieri
- Dipartimento di Scienze Biochimiche “A. Rossi Fanelli”, Sapienza University, P.le A. Moro 5, 00185 Rome, Italy;
| | | | - Grazia Graziani
- Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
- Correspondence:
| | - Pierluigi Navarra
- Dipartimento di Bioetica e Sicurezza, Sezione di Farmacologia—Catholic University Medical School, 00168 Rome, Italy; (M.C.); (G.M.P.C.); (P.N.); (L.L.)
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Lucia Lisi
- Dipartimento di Bioetica e Sicurezza, Sezione di Farmacologia—Catholic University Medical School, 00168 Rome, Italy; (M.C.); (G.M.P.C.); (P.N.); (L.L.)
| |
Collapse
|
45
|
Vawda R, Badner A, Hong J, Mikhail M, Dragas R, Xhima K, Jose A, Fehlings MG. Harnessing the Secretome of Mesenchymal Stromal Cells for Traumatic Spinal Cord Injury: Multicell Comparison and Assessment of In Vivo Efficacy. Stem Cells Dev 2020; 29:1429-1443. [PMID: 32962528 PMCID: PMC7703247 DOI: 10.1089/scd.2020.0079] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Cell therapy offers significant promise for traumatic spinal cord injury (SCI), which despite many medical advances, has limited treatment strategies. Able to address the multifactorial and dynamic pathophysiology of SCI, cells present various advantages over standard pharmacological approaches. However, the use of live cells is also severely hampered by logistical and practical considerations. These include specialized equipment and expertise, standardization of cell stocks, sustained cell viability post-thawing, and cryopreservation-induced delayed-onset cell death. For this reason, we suggest a novel and clinically translatable alternative to live-cell systemic infusion, which retains the efficacy of the latter while overcoming many of its limitations. This strategy involves the administration of concentrated cell secretome and exploits the trophic mechanism by which stromal cells function. In this study, we compare the efficacy of intravenously delivered concentrated conditioned media (CM) from human umbilical cord matrix cells (HUCMCs), bone marrow mesenchymal stromal cells, as well as newborn and adult fibroblasts in a rat model of moderately severe cervical clip compression/contusion injury (C7--T1, 35 g). This is further paired with a thorough profile of the CM cytokines, chemokines, and angiogenic factors. The HUCMC-derived CM was most effective at limiting acute (48 h post-SCI) vascular pathology, specifically lesion volume, and functional vascularity. Principle component analysis (PCA), hierarchical clustering, and interaction analysis of proteins highly expressed in the HUCMC secretome suggest involvement of the MAPK/ERK, JAK/STAT, and immune cell migratory pathways. This "secretotherapeutic" strategy represents a novel and minimally invasive method to target multiple organ systems and several pathologies shortly after traumatic SCI.
Collapse
Affiliation(s)
- Reaz Vawda
- Department of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, Canada
| | - Anna Badner
- Department of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, Canada.,Institute of Medical Science, School of Medicine, University of Toronto, Toronto, Canada
| | - James Hong
- Department of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, Canada.,Institute of Medical Science, School of Medicine, University of Toronto, Toronto, Canada
| | - Mirriam Mikhail
- Department of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, Canada
| | - Rachel Dragas
- Department of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, Canada.,Institute of Medical Science, School of Medicine, University of Toronto, Toronto, Canada
| | - Kristiana Xhima
- Department of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, Canada
| | - Alejandro Jose
- Department of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, Canada
| | - Michael G Fehlings
- Department of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, Canada.,Institute of Medical Science, School of Medicine, University of Toronto, Toronto, Canada.,Spinal Program, Toronto Western Hospital, University Health Network, Toronto, Canada
| |
Collapse
|
46
|
Martins TA, Schmassmann P, Shekarian T, Boulay JL, Ritz MF, Zanganeh S, Vom Berg J, Hutter G. Microglia-Centered Combinatorial Strategies Against Glioblastoma. Front Immunol 2020; 11:571951. [PMID: 33117364 PMCID: PMC7552736 DOI: 10.3389/fimmu.2020.571951] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 08/26/2020] [Indexed: 12/13/2022] Open
Abstract
Tumor-associated microglia (MG) and macrophages (MΦ) are important components of the glioblastoma (GBM) immune tumor microenvironment (iTME). From the recent advances in understanding how MG and GBM cells evolve and interact during tumorigenesis, we emphasize the cooperation of MG with other immune cell types of the GBM-iTME, mainly MΦ and T cells. We provide a comprehensive overview of current immunotherapeutic clinical trials and approaches for the treatment of GBM, which in general, underestimate the counteracting contribution of immunosuppressive MG as a main factor for treatment failure. Furthermore, we summarize new developments and strategies in MG reprogramming/re-education in the GBM context, with a focus on ways to boost MG-mediated tumor cell phagocytosis and associated experimental models and methods. This ultimately converges in our proposal of novel combinatorial regimens that locally modulate MG as a central paradigm, and therefore may lead to additional, long-lasting, and effective tumoricidal responses.
Collapse
Affiliation(s)
- Tomás A Martins
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | | | - Tala Shekarian
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Jean-Louis Boulay
- Department of Biomedicine, University of Basel, Basel, Switzerland.,Department of Neurosurgery, University Hospital Basel, Basel, Switzerland
| | - Marie-Françoise Ritz
- Department of Biomedicine, University of Basel, Basel, Switzerland.,Department of Neurosurgery, University Hospital Basel, Basel, Switzerland
| | - Steven Zanganeh
- Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, United States.,Department of Chemical and Biomolecular Engineering, New York University, New York, NY, United States
| | - Johannes Vom Berg
- Institute of Laboratory Animal Science, University of Zurich, Schlieren, Switzerland
| | - Gregor Hutter
- Department of Biomedicine, University of Basel, Basel, Switzerland.,Department of Neurosurgery, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
47
|
Liu X, Song C, Yang S, Ji Q, Chen F, Li W. IFI30 expression is an independent unfavourable prognostic factor in glioma. J Cell Mol Med 2020; 24:12433-12443. [PMID: 32969157 PMCID: PMC7686962 DOI: 10.1111/jcmm.15758] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 10/24/2019] [Accepted: 08/05/2020] [Indexed: 12/21/2022] Open
Abstract
Gamma-interferon-inducible lysosomal thiol reductase, the only known lysosomal thiol reductase, is encoded by gene IFI30 and expressed constitutively in antigen-presenting cells. Our comprehensive study on IFI30 in gliomas found its expression to be high in glioblastomas and in gliomas with a mesenchymal subtype or wild-type isocitrate dehydrogenase, all of which indicated the malignancy and poor outcomes of gliomas. Kaplan-Meier survival analysis ascertained that high IFI30 expression conferred poor outcomes. The IFI30 expression levels also showed high efficiency in predicting 1-, 3- and 5-year overall survival. Univariable and multivariable Cox regression analyses were performed to define IFI30 as an independent prognostic marker. Biological process analysis suggested that IFI30 was involved in immune responses. ESTIMATE and CIBERSORT were applied to evaluate immune cell infiltration, with results indicating that samples with higher IFI30 expression had higher infiltration of immune cells, including regulatory T cells and M0 macrophages. Correlation analysis showed that IFI30 was significantly positively correlated with immune checkpoints that suppress effective antitumour immune responses. Immunohistochemical staining was also performed to confirm the association between IFI30 expression and the immune phenotype. The suggested correlation between high IFI30 expression and an immunosuppressive phenotype contributes to our knowledge about the glioma microenvironment and might provide clues for the development of novel therapeutic targets.
Collapse
Affiliation(s)
- Xiu Liu
- Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Chunyan Song
- Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Shoubo Yang
- Department of Neuro-Oncology, Neurosurgery Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Qiang Ji
- Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Feng Chen
- Department of Neuro-Oncology, Neurosurgery Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Wenbin Li
- Department of Neuro-Oncology, Neurosurgery Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
48
|
Sielska M, Przanowski P, Pasierbińska M, Wojnicki K, Poleszak K, Wojtas B, Grzeganek D, Ellert-Miklaszewska A, Ku MC, Kettenmann H, Kaminska B. Tumour-derived CSF2/granulocyte macrophage colony stimulating factor controls myeloid cell accumulation and progression of gliomas. Br J Cancer 2020; 123:438-448. [PMID: 32390004 PMCID: PMC7403321 DOI: 10.1038/s41416-020-0862-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 03/19/2020] [Accepted: 04/06/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Malignant tumours release factors, which attract myeloid cells and induce their polarisation to pro-invasive, immunosuppressive phenotypes. Brain-resident microglia and peripheral macrophages accumulate in the tumour microenvironment of glioblastoma (GBM) and induce immunosuppression fostering tumour progression. Macrophage colony stimulating factors (CSFs) control the recruitment of myeloid cells during peripheral cancer progression, but it is disputable, which CSFs drive their accumulation in gliomas. METHODS The expression of CSF2 (encoding granulocyte-macrophage colony stimulating factor) was determined in TCGA datasets and five human glioma cell lines. Effects of stable CSF2 knockdown in glioma cells or neutralising CSF2 or receptor CSF2Rα antibodies on glioma invasion were tested in vitro and in vivo. RESULTS CSF2 knockdown or blockade of its signalling reduced microglia-dependent glioma invasion in microglia-glioma co-cultures. CSF2-deficient human glioma cells encapsulated in cell-impermeable hollow fibres and transplanted to mouse brains, failed to attract microglia, but stimulated astrocyte recruitment. CSF2-depleted gliomas were smaller, attracted less microglia and macrophages, and provided survival benefit in tumour-bearing mice. Apoptotic microglia/macrophages were detected in CSF2-depleted tumours. CONCLUSIONS CSF2 is overexpressed in a subset of mesenchymal GBMs in association with high immune gene expression. Tumour-derived CSF2 attracts, supports survival and induces pro-tumorigenic polarisation of microglia and macrophages.
Collapse
Affiliation(s)
- Malgorzata Sielska
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Piotr Przanowski
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Maria Pasierbińska
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Kamil Wojnicki
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Katarzyna Poleszak
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Bartosz Wojtas
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Dominika Grzeganek
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology, Warsaw, Poland
| | | | - Min-Chi Ku
- Max Delbruck Center, Molecular Neurosciences, Berlin-Buch, Germany
| | | | - Bozena Kaminska
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology, Warsaw, Poland.
| |
Collapse
|
49
|
Dual Role of WISP1 in maintaining glioma stem cells and tumor-supportive macrophages in glioblastoma. Nat Commun 2020; 11:3015. [PMID: 32541784 PMCID: PMC7295765 DOI: 10.1038/s41467-020-16827-z] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 05/28/2020] [Indexed: 12/20/2022] Open
Abstract
The interplay between glioma stem cells (GSCs) and the tumor microenvironment plays crucial roles in promoting malignant growth of glioblastoma (GBM), the most lethal brain tumor. However, the molecular mechanisms underlying this crosstalk are incompletely understood. Here, we show that GSCs secrete the Wnt‐induced signaling protein 1 (WISP1) to facilitate a pro-tumor microenvironment by promoting the survival of both GSCs and tumor-associated macrophages (TAMs). WISP1 is preferentially expressed and secreted by GSCs. Silencing WISP1 markedly disrupts GSC maintenance, reduces tumor-supportive TAMs (M2), and potently inhibits GBM growth. WISP1 signals through Integrin α6β1-Akt to maintain GSCs by an autocrine mechanism and M2 TAMs through a paracrine manner. Importantly, inhibition of Wnt/β-catenin-WISP1 signaling by carnosic acid (CA) suppresses GBM tumor growth. Collectively, these data demonstrate that WISP1 plays critical roles in maintaining GSCs and tumor-supportive TAMs in GBM, indicating that targeting Wnt/β-catenin-WISP1 signaling may effectively improve GBM treatment and the patient survival. The tumour microenvironment plays an important role in promoting glioblastoma. Here, the authors show that glioma stem cells secrete WISP1, which promotes both the survival of the stem cells and tumour-associated macrophages.
Collapse
|
50
|
Yu-Ju Wu C, Chen CH, Lin CY, Feng LY, Lin YC, Wei KC, Huang CY, Fang JY, Chen PY. CCL5 of glioma-associated microglia/macrophages regulates glioma migration and invasion via calcium-dependent matrix metalloproteinase 2. Neuro Oncol 2020; 22:253-266. [PMID: 31593589 PMCID: PMC7032635 DOI: 10.1093/neuonc/noz189] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 10/03/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Glioma-associated microglia/macrophages (GAMs) comprise macrophages of peripheral origin and brain-intrinsic microglia, which support tumor progression. Chemokine C-C ligand 5 (CCL5) is an inflammatory mediator produced by immune cells and is involved in tumor growth and migration in several cancers, including glioma. However, the mechanisms detailing how CCL5 facilitates glioma invasion remain largely unresolved. METHODS Glioma migration and invasion were determined by wound healing, transwell assay, and 3D µ-slide chemotaxis assay. The expression levels of CCL5, CD68, matrix metalloproteinase 2 (MMP2), phosphorylated Ca2+/calmodulin-dependent protein kinase II (p-CaMKII), p-Akt, and phosphorylated proline-rich tyrosine kinase 2 were determined by cytokine array, quantitative PCR, western blot, or immunohistochemistry. Zymography and intracellular calcium assays were used to analyze MMP2 activity and intracellular calcium levels, respectively. RESULTS CCL5 modulated the migratory and invasive activities of human glioma cells in association with MMP2 expression. In response to CCL5, glioma cells underwent a synchronized increase in intracellular calcium levels and p-CaMKII and p-Akt expression levels. CCL5-directed glioma invasion and increases in MMP2 were suppressed after inhibition of p-CaMKII. Glioma cells tended to migrate toward GAM-conditioned media activated by granulocyte-macrophage colony-stimulating factor (GM-CSF) in which CCL5 was abundant. This homing effect was associated with MMP2 upregulation, and could be ameliorated either by controlling intracellular and extracellular calcium levels or by CCL5 antagonism. Clinical results also revealed the associations between CCL5 and GAM activation. CONCLUSION Our results suggest that modulation of glioma CaMKII may restrict the effect of CCL5 on glioma invasion and could be a potential therapeutic target for alleviating glioma growth.
Collapse
Affiliation(s)
- Caren Yu-Ju Wu
- Graduate Institute of Biomedical Sciences, Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, Taoyuan, Taiwan
- Department of Neurosurgery, Keelung Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Chia-Hua Chen
- Department of Neurosurgery, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Chun-Yen Lin
- Department of Gastroenterology and Hepatology, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
- School of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Li-Ying Feng
- Department of Neurosurgery, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Yung-Chang Lin
- Department of Gastroenterology and Hepatology, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Kuo-Chen Wei
- Department of Neurosurgery, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
- School of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chiung-Yin Huang
- Department of Neurosurgery, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Jia-You Fang
- Graduate Institute of Biomedical Sciences, Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, Taoyuan, Taiwan
- Department of Anesthesiology, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Research Center for Food and Cosmetic Safety and Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Taoyuan, Taiwan
| | - Pin-Yuan Chen
- Department of Neurosurgery, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Department of Neurosurgery, Keelung Chang Gung Memorial Hospital, Keelung, Taiwan
- School of Medicine, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|