1
|
Farnum BH, Goldsmith CR. Use of Intramolecular Quinol Redox Couples to Facilitate the Catalytic Transformation of O 2 and O 2-Derived Species. Acc Chem Res 2024. [PMID: 39689366 DOI: 10.1021/acs.accounts.4c00645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
ConspectusThe redox reactivity of transition metal centers can be augmented by nearby redox-active inorganic or organic moieties. In some cases, these functional groups can even allow a metal center to participate in reactions that were previously inaccessible to both the metal center and the functional group by themselves. Our research groups have been synthesizing and characterizing coordination complexes with polydentate quinol-containing ligands. Quinol is capable of being reversibly oxidized by either one or two electrons to semiquinone or para-quinone, respectively. Functionally, quinol behaves much differently than phenol, even though the pKa values of the first O-H bonds are nearly identical.The redox activity of the quinol in the polydentate ligand can augment the abilities of bound redox-active metals to catalyze the dismutation of O2-• and H2O2. These complexes can thereby act as high-performing functional mimics of superoxide dismutase (SOD) and catalase (CAT) enzymes, which exclusively use redox-active metals to transfer electrons to and from these reactive oxygen species (ROS). The quinols augment the activity of redox-active metals by stabilizing higher-valent metal species, providing alternative redox partners for the oxidation and reduction of reactive oxygen species, and protecting the catalyst from destructive side reactions. The covalently attached quinols can even enable redox-inactive Zn(II) to catalyze the degradation of ROS. With the Zn(II)-containing SOD and CAT mimics, the organic redox couple entirely substitutes for the inorganic redox couples used by the enzymes. The ligand structure modulates the antioxidant activity, and thus far, we have found that compounds that have poor or negligible SOD activity can nonetheless behave as efficient CAT mimics.Quinol-containing ligands have also been used to prepare electrocatalysts for dioxygen reduction, functionally mimicking the enzyme cytochrome c oxidase. The installation of quinols can boost electrocatalytic activity and even enable otherwise inactive ligand frameworks to support electrocatalysis. The quinols can also shift the product selectivity of O2 reduction from H2O2 to H2O without markedly increasing the effective overpotential. Distinct control of the coordination environment around the metal center allows the most successful of these catalysts to use economic and naturally abundant first-row transition metals such as iron and cobalt to selectively reduce O2 to H2O at low effective overpotentials. With iron, we have found that the electrocatalysts can enter the catalytic cycle as either an Fe(II) or Fe(III) species with no difference in turnover frequency. The entry point to the cycle, however, has a marked impact on the effective overpotential, with the Fe(III) species thus far being more efficient.
Collapse
Affiliation(s)
- Byron H Farnum
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| | - Christian R Goldsmith
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| |
Collapse
|
2
|
Miliordos E, Moore JL, Obisesan SV, Oppelt J, Ivanović-Burmazović I, Goldsmith CR. Computational Analysis of the Superoxide Dismutase Mimicry Exhibited by a Zinc(II) Complex with a Redox-Active Organic Ligand. J Phys Chem A 2024; 128:1491-1500. [PMID: 38354404 DOI: 10.1021/acs.jpca.3c07403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Previously, we found that a Zn(II) complex with the redox-active ligand N-(2,5-dihydroxybenzyl)-N,N',N'-tris(2-pyridinylmethyl)-1,2-ethanediamine (H2qp1) was able to act as a functional mimic of superoxide dismutase, despite its lack of a redox-active transition metal. As the complex catalyzes the dismutation of superoxide to form O2 and H2O2, the quinol in the ligand is believed to cycle between three oxidation states: quinol, quinoxyl radical, and para-quinone. Although the metal is not the redox partner, it nonetheless is essential to the reactivity since the free ligand by itself is inactive as a catalyst. In the present work, we primarily use calculations to probe the mechanism. The calculations support the inner-sphere decomposition of superoxide, suggest that the quinol/quinoxyl radical couple accounts for most of the catalysis, and elucidate the many roles that proton transfer between the zinc complexes and buffer has in the reactivity. Acid/base reactions involving the nonmetal-coordinating hydroxyl group on the quinol are predicted to be key to lowering the energy of the intermediates. We prepared a Zn(II) complex with N-(2-hydroxybenzyl)-N,N',N'-tris(2-pyridinylmethyl)-1,2-ethanediamine (Hpp1) that lacks this functional group and found that it could not catalyze the dismutation of superoxide; this confirms the importance of the second, distal hydroxyl group of the quinol.
Collapse
Affiliation(s)
- Evangelos Miliordos
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| | - Jamonica L Moore
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| | - Segun V Obisesan
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| | - Julian Oppelt
- Department of Chemistry, Ludwig-Maximilians-Universität München, 81377 München, Germany
| | | | - Christian R Goldsmith
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| |
Collapse
|
3
|
Mekhail MA, Smith KJ, Freire DM, Pota K, Nguyen N, Burnett ME, Green KN. Increased Efficiency of a Functional SOD Mimic Achieved with Pyridine Modification on a Pyclen-Based Copper(II) Complex. Inorg Chem 2023; 62:5415-5425. [PMID: 36995929 PMCID: PMC10820499 DOI: 10.1021/acs.inorgchem.2c04327] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
A series of Cu(II) complexes with the formula [CuRPyN3]2+ varying in substitution on the pyridine ring were investigated as superoxide dismutase (SOD) mimics to identify the most efficient reaction rates produced by a synthetic, water-soluble copper-based SOD mimic reported to date. The resulting Cu(II) complexes were characterized by X-ray diffraction analysis, UV-visible spectroscopy, cyclic voltammetry, and metal-binding (log β) affinities. Unique to this approach, the modifications to the pyridine ring of the PyN3 parent system tune the redox potential while exhibiting high binding stabilities without changing the coordination environment of the metal complex within the PyN3 family of ligands. We were able to adjust in parallel the binding stability and the SOD activity without compromising on either through simple modification of the pyridine ring on the ligand system. This goldilocks effect of high metal stabilities and high SOD activity reveals the potential of this system to be explored in therapeutics. These results serve as a guide for factors that can be modified in metal complexes using pyridine substitutions for PyN3, which can be incorporated into a range of applications moving forward.
Collapse
Affiliation(s)
- Magy A Mekhail
- Department of Chemistry and Biochemistry, Texas Christian University, Fort Worth, Texas 76129, United States
| | - Katherine J Smith
- Department of Chemistry and Biochemistry, Texas Christian University, Fort Worth, Texas 76129, United States
| | - David M Freire
- Department of Chemistry and Biochemistry, Texas Christian University, Fort Worth, Texas 76129, United States
| | - Kristof Pota
- Department of Chemistry and Biochemistry, Texas Christian University, Fort Worth, Texas 76129, United States
| | - Nam Nguyen
- Department of Chemistry and Biochemistry, Texas Christian University, Fort Worth, Texas 76129, United States
| | - Marianne E Burnett
- Department of Chemistry and Biochemistry, Texas Christian University, Fort Worth, Texas 76129, United States
| | - Kayla N Green
- Department of Chemistry and Biochemistry, Texas Christian University, Fort Worth, Texas 76129, United States
| |
Collapse
|
4
|
Meireles AM, Guimarães AS, Querino GR, Castro KADDF, Nakagaki S, DeFreitas‐Silva G. Exploring manganese pyridylporphyrin isomers for cyclohexane oxidation: First‐generation catalysts are better than third‐generation ones. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Alexandre Moreira Meireles
- Departamento de Química, Instituto de Ciências Exatas Universidade Federal de Minas Gerais Belo Horizonte Minas Gerais Brazil
| | - Adriano Silva Guimarães
- Departamento de Química, Instituto de Ciências Exatas Universidade Federal de Minas Gerais Belo Horizonte Minas Gerais Brazil
| | - Guilherme Rabelo Querino
- Departamento de Química, Instituto de Ciências Exatas Universidade Federal de Minas Gerais Belo Horizonte Minas Gerais Brazil
| | | | - Shirley Nakagaki
- Laboratório de Bioinorgânica e Catálise, Departamento de Química, Centro Politécnico Universidade Federal do Paraná Curitiba Paraná Brazil
| | - Gilson DeFreitas‐Silva
- Departamento de Química, Instituto de Ciências Exatas Universidade Federal de Minas Gerais Belo Horizonte Minas Gerais Brazil
| |
Collapse
|
5
|
Senft L, Moore JL, Franke A, Fisher KR, Scheitler A, Zahl A, Puchta R, Fehn D, Ison S, Sader S, Ivanović-Burmazović I, Goldsmith CR. Quinol-containing ligands enable high superoxide dismutase activity by modulating coordination number, charge, oxidation states and stability of manganese complexes throughout redox cycling. Chem Sci 2021; 12:10483-10500. [PMID: 34447541 PMCID: PMC8356818 DOI: 10.1039/d1sc02465e] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 07/05/2021] [Indexed: 01/01/2023] Open
Abstract
Reactivity assays previously suggested that two quinol-containing MRI contrast agent sensors for H2O2, [Mn(H2qp1)(MeCN)]2+ and [Mn(H4qp2)Br2], could also catalytically degrade superoxide. Subsequently, [Zn(H2qp1)(OTf)]+ was found to use the redox activity of the H2qp1 ligand to catalyze the conversion of O2˙− to O2 and H2O2, raising the possibility that the organic ligand, rather than the metal, could serve as the redox partner for O2˙− in the manganese chemistry. Here, we use stopped-flow kinetics and cryospray-ionization mass spectrometry (CSI-MS) analysis of the direct reactions between the manganese-containing contrast agents and O2˙− to confirm the activity and elucidate the catalytic mechanism. The obtained data are consistent with the operation of multiple parallel catalytic cycles, with both the quinol groups and manganese cycling through different oxidation states during the reactions with superoxide. The choice of ligand impacts the overall charges of the intermediates and allows us to visualize complementary sets of intermediates within the catalytic cycles using CSI-MS. With the diquinolic H4qp2, we detect Mn(iii)-superoxo intermediates with both reduced and oxidized forms of the ligand, a Mn(iii)-hydroperoxo compound, and what is formally a Mn(iv)-oxo species with the monoquinolate/mono-para-quinone form of H4qp2. With the monoquinolic H2qp1, we observe a Mn(ii)-superoxo ↔ Mn(iii)-peroxo intermediate with the oxidized para-quinone form of the ligand. The observation of these species suggests inner-sphere mechanisms for O2˙− oxidation and reduction that include both the ligand and manganese as redox partners. The higher positive charges of the complexes with the reduced and oxidized forms of H2qp1 compared to those with related forms of H4qp2 result in higher catalytic activity (kcat ∼ 108 M−1 s−1 at pH 7.4) that rivals those of the most active superoxide dismutase (SOD) mimics. The manganese complex with H2qp1 is markedly more stable in water than other highly active non-porphyrin-based and even some Mn(ii) porphyrin-based SOD mimics. Manganese complexes with polydentate quinol-containing ligands are found to catalyze the degradation of superoxide through inner-sphere mechanisms. The redox activity of the ligand stabilizes higher-valent manganese species.![]()
Collapse
Affiliation(s)
- Laura Senft
- Department of Chemistry, Ludwig-Maximilian-University Butenandtstr. 5-13 D 81377 Munich Germany
| | - Jamonica L Moore
- Department of Chemistry and Biochemistry, Auburn University Auburn AL 36849 USA
| | - Alicja Franke
- Department of Chemistry, Ludwig-Maximilian-University Butenandtstr. 5-13 D 81377 Munich Germany
| | - Katherine R Fisher
- Department of Chemistry, Ludwig-Maximilian-University Butenandtstr. 5-13 D 81377 Munich Germany
| | - Andreas Scheitler
- Department of Chemistry and Pharmacy, Friedrich-Alexander University Erlangen-Nuremberg 91058 Erlangen Germany
| | - Achim Zahl
- Department of Chemistry and Pharmacy, Friedrich-Alexander University Erlangen-Nuremberg 91058 Erlangen Germany
| | - Ralph Puchta
- Department of Chemistry and Pharmacy, Friedrich-Alexander University Erlangen-Nuremberg 91058 Erlangen Germany
| | - Dominik Fehn
- Department of Chemistry and Pharmacy, Friedrich-Alexander University Erlangen-Nuremberg 91058 Erlangen Germany
| | - Sidney Ison
- Department of Chemistry and Biochemistry, Auburn University Auburn AL 36849 USA
| | - Safaa Sader
- Department of Chemistry and Biochemistry, Auburn University Auburn AL 36849 USA
| | | | | |
Collapse
|
6
|
Evaluation of the compounds commonly known as superoxide dismutase and catalase mimics in cellular models. J Inorg Biochem 2021; 219:111431. [PMID: 33798828 DOI: 10.1016/j.jinorgbio.2021.111431] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 03/15/2021] [Accepted: 03/15/2021] [Indexed: 12/15/2022]
Abstract
Oxidative stress that results from an imbalance between the concentrations of reactive species (RS) and antioxidant defenses is associated with many pathologies. Superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase are among the key enzymes that maintain the low nanomolar physiological concentrations of superoxide and hydrogen peroxide. The increase in the levels of these species and their progeny could have deleterious effects. In this context, chemists have developed SOD and CAT mimics to supplement them when cells are overwhelmed with oxidative stress. However, the beneficial activity of such molecules in cells depends not only on their intrinsic catalytic activities but also on their stability in biological context, their cell penetration and their cellular localization. We have employed cellular assays to characterize several compounds that possess SOD and CAT activities and have been frequently used in cellular and animal models. We used cellular assays that address SOD and CAT activities of the compounds. Finally, we determined the effect of compounds on the suppression of the inflammation in HT29-MD2 cells challenged by lipopolysaccharide. When the assay requires penetration inside cells, the SOD mimics Mn(III) meso-tetrakis(N-(2'-n-butoxyethyl)pyridinium-2-yl)porphyrin (MnTnBuOE-2-PyP5+) and Mn(II) dichloro[(4aR,13aR,17aR,21aR)-1,2,3,4,4a,5,6,12,13,13a,14,15,16,17,17a,18,19,20,21,21a-eicosahydro-11,7-nitrilo-7Hdibenzo[b,h] [1,4, 7,10] tetraazacycloheptadecine-κN5,κN13,κN18,κN21,κN22] (Imisopasem manganese, M40403, CG4419) were found efficacious at 10 μM, while Mn(II) chloro N-(phenolato)-N,N'-bis[2-(N-methyl-imidazolyl)methyl]-ethane-1,2-diamine (Mn1) requires an incubation at 100 μM. This study thus demonstrates that MnTnBuOE-2-PyP5+, M40403 and Mn1 were efficacious in suppressing inflammatory response in HT29-MD2 cells and such action appears to be related to their ability to enter the cells and modulate reactive oxygen species (ROS) levels.
Collapse
|
7
|
Batinic-Haberle I, Tovmasyan A, Huang Z, Duan W, Du L, Siamakpour-Reihani S, Cao Z, Sheng H, Spasojevic I, Alvarez Secord A. H 2O 2-Driven Anticancer Activity of Mn Porphyrins and the Underlying Molecular Pathways. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6653790. [PMID: 33815656 PMCID: PMC7987459 DOI: 10.1155/2021/6653790] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 01/12/2021] [Accepted: 01/18/2021] [Indexed: 02/07/2023]
Abstract
Mn(III) ortho-N-alkyl- and N-alkoxyalkyl porphyrins (MnPs) were initially developed as superoxide dismutase (SOD) mimics. These compounds were later shown to react with numerous reactive species (such as ONOO-, H2O2, H2S, CO3 •-, ascorbate, and GSH). Moreover, the ability of MnPs to oxidatively modify activities of numerous proteins has emerged as their major mechanism of action both in normal and in cancer cells. Among those proteins are transcription factors (NF-κB and Nrf2), mitogen-activated protein kinases, MAPKs, antiapoptotic bcl-2, and endogenous antioxidative defenses. The lead Mn porphyrins, namely, MnTE-2-PyP5+ (BMX-010, AEOL10113), MnTnBuOE-2-PyP5+ (BMX-001), and MnTnHex-2-PyP5+, were tested in numerous injuries of normal tissue and cellular and animal cancer models. The wealth of the data led to the progression of MnTnBuOE-2-PyP5+ into four Phase II clinical trials on glioma, head and neck cancer, anal cancer, and multiple brain metastases, while MnTE-2-PyP5+ is in Phase II clinical trial on atopic dermatitis and itch.
Collapse
Affiliation(s)
- Ines Batinic-Haberle
- Department of Radiation Oncology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Artak Tovmasyan
- Department of Radiation Oncology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Zhiqing Huang
- Department of Obstetrics and Gynecology, Division of Reproductive Sciences, Duke Cancer Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Weina Duan
- Departments of Anesthesiology, Neurobiology, and Neurosurgery, Duke University School of Medicine, Durham, NC 27710, USA
| | - Li Du
- Departments of Anesthesiology, Neurobiology, and Neurosurgery, Duke University School of Medicine, Durham, NC 27710, USA
| | | | - Zhipeng Cao
- Departments of Anesthesiology, Neurobiology, and Neurosurgery, Duke University School of Medicine, Durham, NC 27710, USA
| | - Huaxin Sheng
- Departments of Anesthesiology, Neurobiology, and Neurosurgery, Duke University School of Medicine, Durham, NC 27710, USA
| | - Ivan Spasojevic
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
- Pharmacokinetics/Pharmacodynamics (PK/PD) Core Laboratory, Duke Cancer Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Angeles Alvarez Secord
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Duke Cancer Institute, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
8
|
Jadreško D, Marković B, Medvidović-Kosanović M, Matković-Čalogović D, Széchenyi A, Počkaj M, Balić T, Popović Z. Structural and electrochemical properties of two novel CdX2 (X = Br, I) picolinamide complexes. Polyhedron 2021. [DOI: 10.1016/j.poly.2020.114906] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
9
|
Cabral BN, Milani JLS, Meireles AM, Martins DCDS, Ribeiro SLDS, Rebouças JS, Donnici CL, das Chagas RP. Mn( iii)–porphyrin catalysts for the cycloaddition of CO 2 with epoxides at atmospheric pressure: effects of Lewis acidity and ligand structure. NEW J CHEM 2021. [DOI: 10.1039/d0nj05280a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Mn(iii)–porphyrin catalysts with electron-withdrawing substituents were designed to uncover electronic and structural aspects in the cycloaddition of CO2 with epoxides.
Collapse
Affiliation(s)
| | - Jorge Luiz Sônego Milani
- Departamento de Química
- Instituto de Ciências Exatas
- Universidade Federal de Juiz de Fora
- Juiz de Fora
- Brazil
| | - Alexandre Moreira Meireles
- Departamento de Química
- Instituto de Ciências Exatas
- Universidade Federal de Minas Gerais
- Belo Horizonte
- Brazil
| | | | | | - Júlio Santos Rebouças
- Departamento de Química
- Centro de Ciências Exatas e da Natureza
- Universidade Federal da Paraíba
- João Pessoa
- Brazil
| | - Claudio Luis Donnici
- Departamento de Química
- Instituto de Ciências Exatas
- Universidade Federal de Minas Gerais
- Belo Horizonte
- Brazil
| | | |
Collapse
|
10
|
Batinic-Haberle I, Spasojevic I. 25 years of development of Mn porphyrins — from mimics of superoxide dismutase enzymes to thiol signaling to clinical trials: The story of our life in the USA. J PORPHYR PHTHALOCYA 2020. [DOI: 10.1142/s1088424619300283] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
We have developed Mn porphyrins (MnPs) initially as mimics of superoxide dismutase (SOD) enzymes based on structure–activity relationships. Several cationic Mn porphyrins, being substituted with cationic ortho [Formula: see text]-alkyl- or alkoxyalkylpyridyl groups in meso positions of the porphyrin ring, have been identified as potential therapeutics based on their high SOD-like activity and high bioavailability. Two of those [Mn(III) meso-tetrakis([Formula: see text]-ethylpyridinium-2-yl)porphyrin, MnTE-2-PyP[Formula: see text] (BMX-010, AEOL10113) and Mn(III) meso-tetrakis(Nn-butoxyethylpyridinium-2-yl)porphyrin, MnTnBuOE-2-PyP[Formula: see text] (BMX-001)] are now in five Phase II clinical trials. Studies of ours, and those of others, contributed to the understanding of the diverse activities of these compounds. With biologically compatible potentials and four biologically accessible oxidation states, Mn porphyrins interact with numerous reactive species, both as oxidants and reductants. Among those reactions, their abilities to (catalytically) oxidize [Formula: see text]-glutathionylate protein thiols may perhaps be their major in vivo mode of action. Via [Formula: see text]-glutathionylation, MnPs modulate actions of signaling proteins and, in turn, cellular apoptotic and proliferative pathways. During the major part of our stay in the USA, our lives have been dedicated to Mn porphyrins. Our families and especially our son and his three babies have been our inspiration not to give up on a life often burdened with hardship. It is thus our immense pleasure to see our compounds in clinical trials. Above all, we hope that our story will inspire future researchers to persevere — women in particular.
Collapse
Affiliation(s)
- Ines Batinic-Haberle
- Departments of Radiation Oncology and Pharmaceutical Research Shared Resource, Duke School of Medicine, Durham NC 27710, USA
| | - Ivan Spasojevic
- Departments of Medicine and Pharmaceutical Research Shared Resource, Duke School of Medicine, Durham NC 27710, USA
- PK/PD Core Laboratory, Pharmaceutical Research Shared Resource, Duke School of Medicine, Durham NC 27710, USA
| |
Collapse
|
11
|
Radi R. The origins of nitric oxide and peroxynitrite research in Uruguay: 25 years of contributions to the biochemical and biomedical sciences. Nitric Oxide 2019; 87:83-89. [DOI: 10.1016/j.niox.2019.03.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 03/04/2019] [Accepted: 03/06/2019] [Indexed: 12/12/2022]
|
12
|
Batinic-Haberle I, Tovmasyan A, Spasojevic I. Mn Porphyrin-Based Redox-Active Drugs: Differential Effects as Cancer Therapeutics and Protectors of Normal Tissue Against Oxidative Injury. Antioxid Redox Signal 2018; 29:1691-1724. [PMID: 29926755 PMCID: PMC6207162 DOI: 10.1089/ars.2017.7453] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
SIGNIFICANCE After approximatelty three decades of research, two Mn(III) porphyrins (MnPs), MnTE-2-PyP5+ (BMX-010, AEOL10113) and MnTnBuOE-2-PyP5+ (BMX-001), have progressed to five clinical trials. In parallel, another similarly potent metal-based superoxide dismutase (SOD) mimic-Mn(II)pentaaza macrocycle, GC4419-has been tested in clinical trial on application, identical to that of MnTnBuOE-2-PyP5+-radioprotection of normal tissue in head and neck cancer patients. This clearly indicates that Mn complexes that target cellular redox environment have reached sufficient maturity for clinical applications. Recent Advances: While originally developed as SOD mimics, MnPs undergo intricate interactions with numerous redox-sensitive pathways, such as those involving nuclear factor κB (NF-κB) and nuclear factor E2-related factor 2 (Nrf2), thereby impacting cellular transcriptional activity. An increasing amount of data support the notion that MnP/H2O2/glutathione (GSH)-driven catalysis of S-glutathionylation of protein cysteine, associated with modification of protein function, is a major action of MnPs on molecular level. CRITICAL ISSUES Differential effects of MnPs on normal versus tumor cells/tissues, which support their translation into clinic, arise from differences in their accumulation and redox environment of such tissues. This in turn results in different yields of MnP-driven modifications of proteins. Thus far, direct evidence for such modification of NF-κB, mitogen-activated protein kinases (MAPK), phosphatases, Nrf2, and endogenous antioxidative defenses was provided in tumor, while indirect evidence shows the modification of NF-κB and Nrf2 translational activities by MnPs in normal tissue. FUTURE DIRECTIONS Studies that simultaneously explore differential effects in same animal are lacking, while they are essential for understanding of extremely intricate interactions of metal-based drugs with complex cellular networks of normal and cancer cells/tissues.
Collapse
Affiliation(s)
- Ines Batinic-Haberle
- 1 Department of Radiation Oncology, Duke University School of Medicine , Durham, North Carolina
| | - Artak Tovmasyan
- 1 Department of Radiation Oncology, Duke University School of Medicine , Durham, North Carolina
| | - Ivan Spasojevic
- 2 Department of Medicine, Duke University School of Medicine , Durham, North Carolina.,3 PK/PD Core Laboratory, Pharmaceutical Research Shared Resource, Duke Cancer Institute , Durham, North Carolina
| |
Collapse
|
13
|
Carballal S, Valez V, Alvarez-Paggi D, Tovmasyan A, Batinic-Haberle I, Ferrer-Sueta G, Murgida DH, Radi R. Manganese porphyrin redox state in endothelial cells: Resonance Raman studies and implications for antioxidant protection towards peroxynitrite. Free Radic Biol Med 2018; 126:379-392. [PMID: 30144631 DOI: 10.1016/j.freeradbiomed.2018.08.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 08/18/2018] [Accepted: 08/20/2018] [Indexed: 10/28/2022]
Abstract
Cationic manganese(III) ortho N-substituted pyridylporphyrins (MnP) act as efficient antioxidants catalyzing superoxide dismutation and accelerating peroxynitrite reduction. Importantly, MnP can reach mitochondria offering protection against reactive species in different animal models of disease. Although an LC-MS/MS-based method for MnP quantitation and subcellular distribution has been reported, a direct method capable of evaluating both the uptake and the redox state of MnP in living cells has not yet been developed. In the present work we applied resonance Raman (RR) spectroscopy to analyze the intracellular accumulation of two potent MnP-based lipophilic SOD mimics, MnTnBuOE-2-PyP5+ and MnTnHex-2-PyP5+ within endothelial cells. RR experiments with isolated mitochondria revealed that the reduction of Mn(III)P was affected by inhibitors of the electron transport chain, supporting the action of MnP as efficient redox active compounds in mitochondria. Indeed, RR spectra confirmed that MnP added in the Mn(III) state can be incorporated into the cells, readily reduced by intracellular components to the Mn(II) state and oxidized by peroxynitrite. To assess the combined impact of reactivity and bioavailability, we studied the kinetics of Mn(III)TnBuOE-2-PyP5+ with peroxynitrite and evaluated the cytoprotective capacity of MnP by exposing the endothelial cells to nitro-oxidative stress induced by peroxynitrite. We observed a preservation of normal mitochondrial function, attenuation of cell damage and prevention of apoptotic cell death. These data introduce a novel application of RR spectroscopy for the direct detection of MnP and their redox states inside living cells, and helps to rationalize their antioxidant capacity in biological systems.
Collapse
Affiliation(s)
- Sebastián Carballal
- Departmento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay; Center for Free Radical and Biomedical Research, Universidad de la República, Montevideo, Uruguay
| | - Valeria Valez
- Departmento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay; Center for Free Radical and Biomedical Research, Universidad de la República, Montevideo, Uruguay
| | - Damián Alvarez-Paggi
- Departamento de Química Inorgánica, Analítica y Química Física and INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. 2, piso 1, C1428EHA Buenos Aires, Argentina
| | - Artak Tovmasyan
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710, USA
| | - Ines Batinic-Haberle
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710, USA
| | - Gerardo Ferrer-Sueta
- Center for Free Radical and Biomedical Research, Universidad de la República, Montevideo, Uruguay; Laboratorio de Fisicoquímica Biológica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Daniel H Murgida
- Departamento de Química Inorgánica, Analítica y Química Física and INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. 2, piso 1, C1428EHA Buenos Aires, Argentina
| | - Rafael Radi
- Departmento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay; Center for Free Radical and Biomedical Research, Universidad de la República, Montevideo, Uruguay.
| |
Collapse
|
14
|
Dashtestani F, Ghourchian H, Najafi A. Albumin coated copper-cysteine nanozyme for reducing oxidative stress induced during sperm cryopreservation. Bioorg Chem 2018; 80:621-630. [DOI: 10.1016/j.bioorg.2018.07.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 07/15/2018] [Accepted: 07/16/2018] [Indexed: 11/29/2022]
|
15
|
Wang J, Nizamidin P, Zhang Y, Kari N, Yimit A. Detection of Trimethylamine Based on a Manganese Tetraphenylporphyrin Optical Waveguide Sensing Element. ANAL SCI 2018; 34:559-565. [PMID: 29743427 DOI: 10.2116/analsci.17p564] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The sensitive detection of trimethylamine has been accomplished by using a homogeneous optical waveguide sensor system. Also the sensor can be easily fabricated by using tetraphenylporphyrin manganese (MnTPP) as sensitive materials to detect different volatile organic compounds (VOC). NMR (1H-NMR), field-emission scanning electron microscopy (FESEM), and X-ray photoelectron spectroscopy (XPS), infrared (IR), and ultraviolet-visible (UV-vis) instrumental means were used to characterize its structure. Gas-sensing measurements indicated that the sensing element has shown good selectivity, high sensitivity and a low detection limit level of 0.1 ppm to trimethylamine (TMA) with the presence of interference gases at room temperature. For a range of trimethylamine concentrations from 0.1 to 1000 ppm, the sensor has shown a short response time. Also the response time and recovery time are 1.5 and 50 s, respectively. Simulation experiments (dichloromethane, chloroform and carbon tetrachloride were selected as interference gases) showed little interference with its gas sensing. That may provide an ideal candidate for detecting the freshness of fish and seafood.
Collapse
Affiliation(s)
- Jiaming Wang
- College of Chemistry and Chemical Engineering, Xinjiang University
| | - Patima Nizamidin
- College of Chemistry and Chemical Engineering, Xinjiang University
| | - Yuan Zhang
- College of Chemistry and Chemical Engineering, Xinjiang University
| | - Nuerguli Kari
- College of Chemistry and Chemical Engineering, Xinjiang University
| | - Abliz Yimit
- College of Chemistry and Chemical Engineering, Xinjiang University
| |
Collapse
|
16
|
Mantovani KM, Molgero Westrup KC, da Silva Junior RM, Jaerger S, Wypych F, Nakagaki S. Oxidation catalyst obtained by the immobilization of layered double hydroxide/Mn(iii) porphyrin on monodispersed silica spheres. Dalton Trans 2018; 47:3068-3073. [PMID: 29200223 DOI: 10.1039/c7dt03656f] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Several functional hybrid materials have been reported as immobilized porphyrin derivatives in various organic and inorganic host materials (polymers, mineral clays, silica, etc.), with potential applications in various fields, such as photochemistry, electrochemistry and heterogeneous catalysis. Layered double hydroxides (LDHs), commonly known as hydrotalcite-like materials, have also been analyzed for use as supports for metallocomplexes. Recently, nanocomposite materials with a core-shell structure produced by combining two kinds of nanometer-size materials have received considerable attention, since the use of these materials is a promising strategy to prevent the aggregation and self-oxidation of molecules, reducing the catalytic activity. In this study, monodispersed hierarchical layered double hydroxides on silica spheres (LDH@SiO2) with core-shell structures were developed for metalloporphyrin immobilization and the materials were used as the oxidant catalysts of different substrates.
Collapse
Affiliation(s)
- Karen Mary Mantovani
- Laboratório de Bioinorgânica e Catálise, Departamento de Química, Universidade Federal do Paraná, CP 19032, 81531-980, Curitiba, PR, Brazil.
| | | | | | | | | | | |
Collapse
|
17
|
Spin states of Mn(III) meso-tetraphenylporphyrin chloride assessed by density functional methods. J Mol Model 2017; 23:363. [PMID: 29192384 DOI: 10.1007/s00894-017-3515-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 11/02/2017] [Indexed: 10/18/2022]
Abstract
The present work assessed several exchange-correlation functionals (including GGA, meta-GGA and hybrid functionals), in combination with a variety of basis sets and effective core potentials (ECP) for their ability to predict the ground spin state of Mn(III) meso-tetraphenylporphyrin chloride complex, labeled Mn(III)TPPCl, for which experimental data support the quintet high spin state. Geometry optimization of Mn(III)TPPCl was performed for three possible spin states (singlet state, LS; triplet state, IS; and quintet state, HS) at the TPSSh level using the LANL2DZ ECP for Mn and the 6-311G(d) basis set for C, N, Cl and H. Afterwards, single-point energy calculations were conducted by applying 18 exchange-correlation functionals (BLYP, B3LYP, PW91, BPW91, BP86, OLYP, OPBE, OPW91, O3LYP, PBE0, PBEh1PBE, HSEH1PBE, TPSS, TPSSh, M06 L, M06, M062X and M06HF). The influence of the basis set for the metal center was assessed using a smaller group of functionals and varying between the Pople basis set 6-31G(d), its newer formulation m6-31G(d) and the larger Def2-QZVP basis set. All functionals in combination with Pople basis sets predict the quintet state as the ground spin state. In addition, the BLYP, BP86, BPW91, PW91, PBEh1PBE, TPSS and TPSSh functionals predicted the IS lying at most ~60 kJ mol-1 above the HS, which agrees with the reference data. Results including Def2-QZVP basis set were inconsistent, since only BLYP and B3LYP predict HS as the ground spin state. The recommended methodology for the treatment of such systems seems to be exchange-correlations functionals with few or none Hartree-Fock exchange and modest size basis sets. Graphical Abstract MnTPPCl molecule and the energy ordering of its spin states assessed by 18 functionals.
Collapse
|
18
|
Ucoski GM, Pinto VHA, DeFreitas-Silva G, Rebouças JS, Mazzaro I, Nunes FS, Nakagaki S. Magnetic HMS silica as a Support to Immobilization of Catalysts Based on Cationic Manganese Porphyrins. ChemistrySelect 2017. [DOI: 10.1002/slct.201700501] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Geani Maria Ucoski
- Departament of Chemistry; Universidade Federal do Paraná; Curitiba, PR Brazil 81531-980 CP:19081
| | - Victor Hugo Araújo Pinto
- Departament of Chemistry; Universidade Federal do Paraná; Curitiba, PR Brazil 81531-980 CP:19081
- Department of Chemistry; Universidade Federal da Paraíba; João Pessoa, PB Brazil 58051-900 CP:5093
| | - Gilson DeFreitas-Silva
- Department of Chemistry; Universidade Federal de Minas Gerais; Belo Horizonte, MG Brazil 31270-901
| | - Júlio Santos Rebouças
- Department of Chemistry; Universidade Federal da Paraíba; João Pessoa, PB Brazil 58051-900 CP:5093
| | - Irineu Mazzaro
- Department of Physics; Universidade Federal do Paraná; Curitiba, PR Brazil 81504-990
| | - Fábio Souza Nunes
- Departament of Chemistry; Universidade Federal do Paraná; Curitiba, PR Brazil 81531-980 CP:19081
| | - Shirley Nakagaki
- Departament of Chemistry; Universidade Federal do Paraná; Curitiba, PR Brazil 81531-980 CP:19081
| |
Collapse
|
19
|
Mathieu E, Bernard AS, Delsuc N, Quévrain E, Gazzah G, Lai B, Chain F, Langella P, Bachelet M, Masliah J, Seksik P, Policar C. A Cell-Penetrant Manganese Superoxide Dismutase (MnSOD) Mimic Is Able To Complement MnSOD and Exerts an Antiinflammatory Effect on Cellular and Animal Models of Inflammatory Bowel Diseases. Inorg Chem 2017; 56:2545-2555. [PMID: 28198622 DOI: 10.1021/acs.inorgchem.6b02695] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Inorganic complexes are increasingly used for biological and medicinal applications, and the question of the cell penetration and distribution of metallodrugs is key to understanding their biological activity. Oxidative stress is known to be involved in inflammation and in inflammatory bowel diseases for which antioxidative defenses are weakened. We report here the study of the manganese complex Mn1 mimicking superoxide dismutase (SOD), a protein involved in cell protection against oxidative stress, using an approach in inorganic cellular chemistry combining the investigation of Mn1 intracellular speciation using mass spectrometry and of its quantification and distribution using electron paramagnetic resonance and spatially resolved X-ray fluorescence with evaluation of its biological activity. More precisely, we have looked for and found the MS signature of Mn1 in cell lysates and quantified the overall manganese content. Intestinal epithelial cells activated by bacterial lipopolysaccharide were taken as a cellular model of oxidative stress and inflammation. DNBS-induced colitis in mice was used to investigate Mn1 activity in vivo. Mn1 exerts an intracellular antiinflammatory activity, remains at least partially coordinated, with diffuse distribution over the whole cell, and functionally complements mitochondrial MnSOD.
Collapse
Affiliation(s)
- Emilie Mathieu
- Département de Chimie, Ecole Normale Superieure, PSL Research University, UPMC Univ Paris 06, CNRS, Laboratoire des Biomolecules (LBM), 24 rue Lhomond, 75005 Paris, France
| | - Anne-Sophie Bernard
- Département de Chimie, Ecole Normale Superieure, PSL Research University, UPMC Univ Paris 06, CNRS, Laboratoire des Biomolecules (LBM), 24 rue Lhomond, 75005 Paris, France
| | - Nicolas Delsuc
- Département de Chimie, Ecole Normale Superieure, PSL Research University, UPMC Univ Paris 06, CNRS, Laboratoire des Biomolecules (LBM), 24 rue Lhomond, 75005 Paris, France
| | - Elodie Quévrain
- Département de Chimie, Ecole Normale Superieure, PSL Research University, UPMC Univ Paris 06, CNRS, Laboratoire des Biomolecules (LBM), 24 rue Lhomond, 75005 Paris, France
| | - Géraldine Gazzah
- Département de Chimie, Ecole Normale Superieure, PSL Research University, UPMC Univ Paris 06, CNRS, Laboratoire des Biomolecules (LBM), 24 rue Lhomond, 75005 Paris, France
| | - Barry Lai
- X-ray Science Division, Argonne National Laboratory (ANL) , Argonne, Illinois 60439, United States
| | - Florian Chain
- Commensal and Probiotics-Host Interactions Laboratory, Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, F-78350 Jouy-en-Josas, France
| | - Philippe Langella
- Commensal and Probiotics-Host Interactions Laboratory, Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, F-78350 Jouy-en-Josas, France
| | - Maria Bachelet
- Sorbonne Universites, UPMC Univ Paris 06 - Département de Chimie, Ecole Normale Superieure, PSL Research University - CNRS, INSERM, APHP, INRA, Laboratoire des Biomolecules (LBM), 27 rue de Chaligny, 75012 Paris, France.,Commensal and Probiotics-Host Interactions Laboratory, Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, F-78350 Jouy-en-Josas, France
| | - Joelle Masliah
- Département de Chimie, Ecole Normale Superieure, PSL Research University, UPMC Univ Paris 06, CNRS, Laboratoire des Biomolecules (LBM), 24 rue Lhomond, 75005 Paris, France.,Sorbonne Universites, UPMC Univ Paris 06 - Département de Chimie, Ecole Normale Superieure, PSL Research University - CNRS, INSERM, APHP, INRA, Laboratoire des Biomolecules (LBM), 27 rue de Chaligny, 75012 Paris, France
| | - Philippe Seksik
- Sorbonne Universites, UPMC Univ Paris 06 - Département de Chimie, Ecole Normale Superieure, PSL Research University - CNRS, INSERM, APHP, INRA, Laboratoire des Biomolecules (LBM), 27 rue de Chaligny, 75012 Paris, France.,Commensal and Probiotics-Host Interactions Laboratory, Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, F-78350 Jouy-en-Josas, France
| | - Clotilde Policar
- Département de Chimie, Ecole Normale Superieure, PSL Research University, UPMC Univ Paris 06, CNRS, Laboratoire des Biomolecules (LBM), 24 rue Lhomond, 75005 Paris, France
| |
Collapse
|
20
|
|
21
|
Mn Porphyrin-Based Redox-Active Therapeutics. OXIDATIVE STRESS IN APPLIED BASIC RESEARCH AND CLINICAL PRACTICE 2016. [DOI: 10.1007/978-3-319-30705-3_8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
22
|
Ucoski GM, Machado GS, Silva GDF, Nunes FS, Wypych F, Nakagaki S. Heterogeneous oxidation of the dye Brilliant Green with H 2 O 2 catalyzed by supported manganese porphyrins. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.molcata.2015.07.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
23
|
Johnson MDL, Kehl-Fie TE, Rosch JW. Copper intoxication inhibits aerobic nucleotide synthesis in Streptococcus pneumoniae. Metallomics 2015; 7:786-94. [PMID: 25730343 PMCID: PMC4431907 DOI: 10.1039/c5mt00011d] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Copper is universally toxic in excess, a feature exploited by the human immune system to facilitate bacterial clearance. The mechanism of copper intoxication remains unknown for many bacterial species. Here, we demonstrate that copper toxicity in Streptococcus pneumoniae is independent from oxidative stress but, rather, is the result of copper inhibiting the aerobic dNTP biosynthetic pathway. Furthermore, we show that copper-intoxicated S. pneumoniae is rescued by manganese, which is an essential metal in the aerobic nucleotide synthesis pathway. These data provide insight into new targets to enhance copper-mediated toxicity during bacterial clearance.
Collapse
Affiliation(s)
- Michael D L Johnson
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38105-3678, USA.
| | | | | |
Collapse
|
24
|
Dashtestani F, Ghourchian H, Eskandari K, Rafiee-Pour HA. A superoxide dismutase mimic nanocomposite for amperometric sensing of superoxide anions. Mikrochim Acta 2014. [DOI: 10.1007/s00604-014-1424-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
25
|
Delmastro-Greenwood MM, Tse HM, Piganelli JD. Effects of metalloporphyrins on reducing inflammation and autoimmunity. Antioxid Redox Signal 2014; 20:2465-77. [PMID: 23472672 DOI: 10.1089/ars.2013.5257] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
SIGNIFICANCE High levels of reactive oxygen species can facilitate DNA and protein damage beyond the control of endogenous antioxidants, resulting in oxidative stress. Oxidative stress then triggers inflammation, which can lead to pathological conditions. In genetically susceptible individuals, the conglomeration of oxidative stress and inflammation can enhance autoreactive immune cell activation, causing beta-cell destruction in autoimmune type 1 diabetes. As a means of shielding pancreatic islets, manganese porphyrin (MnP) oxidoreductant treatment has been tested in a number of reported studies. RECENT ADVANCES MnP affects both innate and adaptive immune cell responses, blocking nuclear factor kappa-B activation, proinflammatory cytokine secretion, and T helper 1 T-cell responses. As a result, MnP treatment protects against type 1 diabetes onset in nonobese diabetic mice and stabilizes islets for cellular transplantation. CRITICAL ISSUES MnP displays global immunosuppressive properties, exemplified by decreased cytokine production from all T-helper cell subsets. This quality may impact infection control in the setting of autoimmunity. Nonetheless, because of their cytoprotective and immunomodulatory function, MnPs should be considered as a safer alternative to other clinical immunosuppressive agents (i.e., rapamycin) for transplantation. FUTURE DIRECTIONS Although MnP likely affects only redox-sensitive targets, the mechanism behind global T-cell immunosuppression and the outcome on infection clearance will have to be elucidated. Based on the increased primary engraftment seen with MnP use, protection against primary nonfunction in porcine to human xenotransplants would likely be enhanced. Further, a better understanding of MnP oxidoreductase function may allow for its use in other chronic inflammatory conditions.
Collapse
Affiliation(s)
- Meghan M Delmastro-Greenwood
- 1 Division of Immunogenetics, Department of Pediatrics, Rangos Research Center, Diabetes Institute , Children's Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania
| | | | | |
Collapse
|
26
|
Tovmasyan A, Reboucas JS, Benov L. Simple biological systems for assessing the activity of superoxide dismutase mimics. Antioxid Redox Signal 2014; 20:2416-36. [PMID: 23964890 PMCID: PMC4005499 DOI: 10.1089/ars.2013.5576] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
SIGNIFICANCE Half a century of research provided unambiguous proof that superoxide and species derived from it-reactive oxygen species (ROS)-play a central role in many diseases and degenerative processes. This stimulated the search for pharmaceutical agents that are capable of preventing oxidative damage, and methods of assessing their therapeutic potential. RECENT ADVANCES The limitations of superoxide dismutase (SOD) as a therapeutic tool directed attention to small molecules, SOD mimics, that are capable of catalytically scavenging superoxide. Several groups of compounds, based on either metal complexes, including metalloporphyrins, metallocorroles, Mn(II) cyclic polyamines, and Mn(III) salen derivatives, or non-metal based compounds, such as fullerenes, nitrones, and nitroxides, have been developed and studied in vitro and in vivo. Very few entered clinical trials. CRITICAL ISSUES AND FUTURE DIRECTIONS Development of SOD mimics requires in-depth understanding of their mechanisms of biological action. Elucidation of both molecular features, essential for efficient ROS-scavenging in vivo, and factors limiting the potential side effects requires biologically relevant and, at the same time, relatively simple testing systems. This review discuses the advantages and limitations of genetically engineered SOD-deficient unicellular organisms, Escherichia coli and Saccharomyces cerevisiae as tools for investigating the efficacy and mechanisms of biological actions of SOD mimics. These simple systems allow the scrutiny of the minimal requirements for a functional SOD mimic: the association of a high catalytic activity for superoxide dismutation, low toxicity, and an efficient cellular uptake/biodistribution.
Collapse
Affiliation(s)
- Artak Tovmasyan
- 1 Department of Radiation Oncology, Duke University Medical Center , Durham, North Carolina
| | | | | |
Collapse
|
27
|
Batinic-Haberle I, Tovmasyan A, Roberts ERH, Vujaskovic Z, Leong KW, Spasojevic I. SOD therapeutics: latest insights into their structure-activity relationships and impact on the cellular redox-based signaling pathways. Antioxid Redox Signal 2014; 20:2372-415. [PMID: 23875805 PMCID: PMC4005498 DOI: 10.1089/ars.2012.5147] [Citation(s) in RCA: 169] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Revised: 06/30/2013] [Accepted: 07/22/2013] [Indexed: 01/23/2023]
Abstract
SIGNIFICANCE Superoxide dismutase (SOD) enzymes are indispensable and ubiquitous antioxidant defenses maintaining the steady-state levels of O2·(-); no wonder, thus, that their mimics are remarkably efficacious in essentially any animal model of oxidative stress injuries thus far explored. RECENT ADVANCES Structure-activity relationship (half-wave reduction potential [E1/2] versus log kcat), originally reported for Mn porphyrins (MnPs), is valid for any other class of SOD mimics, as it is dominated by the superoxide reduction and oxidation potential. The biocompatible E1/2 of ∼+300 mV versus normal hydrogen electrode (NHE) allows powerful SOD mimics as mild oxidants and antioxidants (alike O2·(-)) to readily traffic electrons among reactive species and signaling proteins, serving as fine mediators of redox-based signaling pathways. Based on similar thermodynamics, both SOD enzymes and their mimics undergo similar reactions, however, due to vastly different sterics, with different rate constants. CRITICAL ISSUES Although log kcat(O2·(-)) is a good measure of therapeutic potential of SOD mimics, discussions of their in vivo mechanisms of actions remain mostly of speculative character. Most recently, the therapeutic and mechanistic relevance of oxidation of ascorbate and glutathionylation and oxidation of protein thiols by MnP-based SOD mimics and subsequent inactivation of nuclear factor κB has been substantiated in rescuing normal and killing cancer cells. Interaction of MnPs with thiols seems to be, at least in part, involved in up-regulation of endogenous antioxidative defenses, leading to the healing of diseased cells. FUTURE DIRECTIONS Mechanistic explorations of single and combined therapeutic strategies, along with studies of bioavailability and translational aspects, will comprise future work in optimizing redox-active drugs.
Collapse
Affiliation(s)
- Ines Batinic-Haberle
- Department of Radiation Oncology, Duke University Medical School, Durham, North Carolina
| | - Artak Tovmasyan
- Department of Radiation Oncology, Duke University Medical School, Durham, North Carolina
| | - Emily R. H. Roberts
- Department of Biomedical Engineering, Duke University, Durham, North Carolina
| | - Zeljko Vujaskovic
- Department of Radiation Oncology, Duke University Medical School, Durham, North Carolina
| | - Kam W. Leong
- Department of Biomedical Engineering, Duke University, Durham, North Carolina
- King Abdulaziz University, Jeddah, Saudi Arabia Kingdom
| | - Ivan Spasojevic
- Department of Medicine, Duke University Medical School, Durham, North Carolina
| |
Collapse
|
28
|
Honsa ES, Johnson MDL, Rosch JW. The roles of transition metals in the physiology and pathogenesis of Streptococcus pneumoniae. Front Cell Infect Microbiol 2013; 3:92. [PMID: 24364001 PMCID: PMC3849628 DOI: 10.3389/fcimb.2013.00092] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 11/19/2013] [Indexed: 01/01/2023] Open
Abstract
For bacterial pathogens whose sole environmental reservoir is the human host, the acquisition of essential nutrients, particularly transition metals, is a critical aspect of survival due to tight sequestration and limitation strategies deployed to curtail pathogen outgrowth. As such, these bacteria have developed diverse, specialized acquisition mechanisms to obtain these metals from the niches of the body in which they reside. To oppose the spread of infection, the human host has evolved multiple mechanisms to counter bacterial invasion, including sequestering essential metals away from bacteria and exposing bacteria to lethal concentrations of metals. Hence, to maintain homeostasis within the host, pathogens must be able to acquire necessary metals from host proteins and to export such metals when concentrations become detrimental. Furthermore, this acquisition and efflux equilibrium must occur in a tissue-specific manner because the concentration of metals varies greatly within the various microenvironments of the human body. In this review, we examine the functional roles of the metal import and export systems of the Gram-positive pathogen Streptococcus pneumoniae in both signaling and pathogenesis.
Collapse
Affiliation(s)
- Erin S Honsa
- Department of Infectious Diseases, St. Jude Children's Research Hospital Memphis, TN, USA
| | - Michael D L Johnson
- Department of Infectious Diseases, St. Jude Children's Research Hospital Memphis, TN, USA
| | - Jason W Rosch
- Department of Infectious Diseases, St. Jude Children's Research Hospital Memphis, TN, USA
| |
Collapse
|
29
|
Campo GM, Avenoso A, D'Ascola A, Scuruchi M, Nastasi G, Micali A, Puzzolo D, Pisani A, Calatroni A, Campo S. The SOD mimic MnTM-2-PyP(5+) reduces hyaluronan degradation-induced inflammation in mouse articular chondrocytes stimulated with Fe (II) plus ascorbate. Int J Biochem Cell Biol 2013; 45:1610-9. [PMID: 23692848 DOI: 10.1016/j.biocel.2013.05.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Revised: 05/04/2013] [Accepted: 05/09/2013] [Indexed: 02/07/2023]
Abstract
In pathological conditions, oxidative burst generates hyaluronan (HA) fragmentation with a consequent increase in the number of small HA oligosaccharides. These fragments are able to stimulate an inflammatory response in different cell types by activating the CD44 and the toll-like receptors 4 (TLR-4) and 2 (TLR-2). The stimulation of CD44 and TLRs in turn activates the NF-kB which induces the production of several pro-inflammatory mediators that amplify and perpetuate inflammation. We aimed to study the antioxidant effect of the SOD mimic, synthetic manganese porphyrin, Mn(III) 5,10,15,20-tetrakis(N-methylpyridinium-2-yl)porphyrin (MnTM-2-PyP(5+)) on preventing HA degradation in mouse articular chondrocytes stimulated with Fe (II) plus ascorbate. Fe (II) plus ascorbate stimulation induced oxidative burst confirmed by high levels of hydroxyl radical/peroxynitrite production, increased lipid peroxidation and HA degradation. HA fragments highly induced mRNA expression and the related protein production of CD44, TLR-4 and TLR-2, NF-kB activation and significantly up-regulated the inflammatory cytokines, tumor necrosis factor alpha (TNF-alpha), interleukin-1beta (IL-1beta), and other pro-inflammatory mediators, i.e. matrix metalloprotease 13 (MMP-13) and inducible nitric oxide synthase (iNOS). Treatment of cells with MnTM-2-PyP(5+)was able to attenuate oxidative burst, HA degradation and NF-kB activation, and markedly decreased mRNA expression of CD44, and TLRs and the related protein synthesis, as well as the levels of up-regulated inflammatory mediators. Adding a specific HA-blocking peptide (PEP-1) to cells significantly reduced all the inflammatory parameters up-regulated by Fe (II) plus ascorbate, and increased MnTM-2-PyP(5+) activity. These findings suggest that HA degradation plays a key role in the initial inflammatory response of cartilage and antioxidants and could be a useful tool to prevent the propagation of this mechanism.
Collapse
Affiliation(s)
- Giuseppe M Campo
- Department of Biomedical Sciences and Morphological and Functional Images, School of Medicine, University of Messina, 98125 Messina, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Tovmasyan A, Sheng H, Weitner T, Arulpragasam A, Lu M, Warner DS, Vujaskovic Z, Spasojevic I, Batinic-Haberle I. Design, mechanism of action, bioavailability and therapeutic effects of mn porphyrin-based redox modulators. Med Princ Pract 2012; 22:103-30. [PMID: 23075911 PMCID: PMC3640855 DOI: 10.1159/000341715] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Accepted: 07/01/2012] [Indexed: 12/18/2022] Open
Abstract
Based on aqueous redox chemistry and simple in vivo models of oxidative stress, Escherichia coli and Saccharomyces cerevisiae, the cationic Mn(III) N-substituted pyridylporphyrins (MnPs) have been identified as the most potent cellular redox modulators within the porphyrin class of drugs; their efficacy in animal models of diseases that have oxidative stress in common is based on their high ability to catalytically remove superoxide, peroxynitrite, carbonate anion radical, hypochlorite, nitric oxide, lipid peroxyl and alkoxyl radicals, thus suppressing the primary oxidative event. While doing so MnPs could couple with cellular reductants and redox-active proteins. Reactive species are widely accepted as regulators of cellular transcriptional activity: minute, nanomolar levels are essential for normal cell function, while submicromolar or micromolar levels impose oxidative stress, which is evidenced in increased inflammatory and immune responses. By removing reactive species, MnPs affect redox-based cellular transcriptional activity and consequently secondary oxidative stress, and in turn inflammatory processes. The equal ability to reduce and oxidize superoxide during the dismutation process and recently accumulated results suggest that pro-oxidative actions of MnPs may also contribute to their therapeutic effects. All our data identify the superoxide dismutase-like activity, estimated by log k(cat)O2-*), as a good measure for the therapeutic efficacy of MnPs. Their accumulation in mitochondria and their ability to cross the blood-brain barrier contribute to their remarkable efficacy. We summarize herein the therapeutic effects of MnPs in cancer, central nervous system injuries, diabetes, their radioprotective action and potential for imaging. Few of the most potent modulators of cellular redox-based pathways, MnTE2-PyP5+, MnTDE-2-ImP5+, MnTnHex-2-PyP5+ and MnTnBuOE-2-PyP5+, are under preclinical and clinical development.
Collapse
Affiliation(s)
- Artak Tovmasyan
- Department of Radiation Oncology, Duke University Medical
Center, Durham, N.C., USA
| | - Huaxin Sheng
- Department of Anesthesiology, Duke University Medical Center,
Durham, N.C., USA
- Department of Multidisciplinary Neuroprotection Laboratories,
Duke University Medical Center, Durham, N.C., USA
| | - Tin Weitner
- Department of Radiation Oncology, Duke University Medical
Center, Durham, N.C., USA
| | - Amanda Arulpragasam
- Department of Duke University Neuroscience Undergraduate
Program, Duke University Medical Center, Durham, N.C., USA
| | - Miaomiao Lu
- Department of Anesthesiology, Duke University Medical Center,
Durham, N.C., USA
- Department of Multidisciplinary Neuroprotection Laboratories,
Duke University Medical Center, Durham, N.C., USA
- Department of Department of Anesthesiology, Second Affiliated
Hospital, Zhengzhou University, Zhengzhou, China
| | - David S. Warner
- Department of Anesthesiology, Duke University Medical Center,
Durham, N.C., USA
- Department of Multidisciplinary Neuroprotection Laboratories,
Duke University Medical Center, Durham, N.C., USA
| | - Zeljko Vujaskovic
- Department of Radiation Oncology, Duke University Medical
Center, Durham, N.C., USA
| | - Ivan Spasojevic
- Department of Medicine, Duke University Medical Center, Durham,
N.C., USA
| | - Ines Batinic-Haberle
- Department of Radiation Oncology, Duke University Medical
Center, Durham, N.C., USA
| |
Collapse
|
31
|
Mifune M, Iwado A, Kamino S, Enomoto S. [Photometric determination of Cu2+ ion using octabromo-tetrakis(4-methylpyridyl)porphine]. YAKUGAKU ZASSHI 2012; 132:953-8. [PMID: 22864355 DOI: 10.1248/yakushi.132.953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Octabromo-tetrakis(4-methylpyridyl)porphine (OBTMPyP), an octabromonated compound with 4 pyrole rings of tetrakis(4-methylpyridyl)porphine, selectively forms a complex with Cu2+ ions at pH 2.0. When 3.6×10(-5) mol/L OBTMPyP was added to the reaction mixture, the calibration curve showed good linearity for Cu2+ ions ranging from 0.01-2.2 µg (addition of 1.0 mL). A good coefficient of variation (Cu2+ ions=1.5 µg (addition of 1.0 mL), n=10, 0.8%) was obtained. The molar absorption coefficient (ε) based on Cu2+ ions was 8.5×10(4) L/mol•cm. This value was 6-fold greater than that determined with a clinical chemical analysis kit using the bathocuproine sulfonic acid method, which is a well-known method for spectrophotometric determination of the Cu2+ ion concentration. A deproteination method was successfully applied in the clinical analysis kit for determination of Cu2+ ion concentrations in control serum I, and the values determined using this method and the bathocuproine sulfonic acid method were almost the same.
Collapse
Affiliation(s)
- Masaki Mifune
- Division of Pharmaceutical Sciences, Graduate School of Medicine and Dentistry and Pharmaceutical Sciences, Okayama University, Japan.
| | | | | | | |
Collapse
|
32
|
KACHADOURIAN R, SRINIVASAN N, HANEY CA, STEVENS RD. An LDI-TOF and ESI mass spectrometry study of a series of β-substituted cationic metalloporphyrins. J PORPHYR PHTHALOCYA 2012. [DOI: 10.1002/jpp.354] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A series of β-halogenated cationic metalloporphyrins were analyzed by LDI-TOF and ESI-MS. Although LDI-TOFMS reveals to be a good tool for the characterization of this family of metal-complexes, including the redox state of the metal, ESI-MS indicates in addition the relative tendency of such metal-complexes to be reduced.
Collapse
Affiliation(s)
- R. KACHADOURIAN
- Department of Medicine, National Jewish Medical and Research Center, Denver, CO 80206, USA
| | - N. SRINIVASAN
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695, USA
| | - C. A. HANEY
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695, USA
| | - R. D. STEVENS
- Department of Pediatrics, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
33
|
BATINIĆ-HABERLE INES, STEVENS ROBERTD, FRIDOVICH IRWIN. Electrospray mass spectrometry of isomeric tetrakis(N-alkylpyridyl)porphyrins and their manganese(III) and iron(III) complexes. J PORPHYR PHTHALOCYA 2012. [DOI: 10.1002/(sici)1099-1409(200004/05)4:3<217::aid-jpp198>3.0.co;2-e] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Manganese(III) complexes of isomeric tetrakis(N-alkylpyridyl)porphyrins (N- alkyl = N- methyl , M or N- ethyl , E ), MnTM ( E )-2(3,4)- PyP5+, are being developed as superoxide dismutase (SOD) mimics. Simultaneously, techniques for their purification, identification and characterization are being pursued. Electrospray mass spectrometry ( ESMS ) proved to be an excellent method for identification and characterization of this group of water-soluble cationic porphyrins. The multiply charged parent ion is observed for both the metal-free ligands and their corresponding manganese complexes. The other major peaks in the mass spectra result from loss of N-alkyl groups, reduction of the metal center, axial coordination of chloride or hydroxo ion in the case of the Fe porphyrin, loss of metal and deprotonation of pyrrolic nitrogens. As a result of inductive and resonance effects, which stabilize the ortho isomer, almost no loss of N-alkyl groups from the manganese complex or from its parent ligand was observed. The relative intensity of the multiply charged molecular ion MnIIITM -3(4)- PyP5+/5 was 100% in the case of the meta and para isomers. Although manganese porphyrins display a low preference toward axial ligation, favorable electrostatics at the metal center of the ortho isomer gives rise to 100% relative intensity of the species that has chloride axially ligated at the manganese site, MnIIITM ( E )-2- PyPCl4+/4. When the stronger preference of iron porphyrins toward axial ligation combines with the ortho effect, the monohydroxo iron porphyrin FeIIITM -2- PyP ( OH )4+/4 dominates the ESMS of an aqueous acetonitrile solution at pH 7.8.
Collapse
Affiliation(s)
- INES BATINIĆ-HABERLE
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| | - ROBERT D. STEVENS
- Department of Pediatrics, Duke University Medical Center, Durham, NC 27710, USA
| | - IRWIN FRIDOVICH
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
34
|
BAILEY SABRINAL, HAMBRIGHT P. Kinetics of zinc ion incorporation in base into a centrally aprotic beta-octabrominated cationic water-soluble porphyrin and its monolithium complex. J PORPHYR PHTHALOCYA 2012. [DOI: 10.1002/jpp.549] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The kinetics of zinc incorporation from pH 12 to 13 into the centrally aprotic BrP (4)2+ form of beta-octabromo-meso-tetrakis(N-methyl-4-pyridyl)porphyrin and its monolithium complex were studied at 25.0 °C, ionic strength (I) = 0.10. The reactions were first order in porphyrin and total zinc concentrations. For BrP (4)2+, the specific rate constant was 5.1 × 105 M -1 s -1 for Zn ( OH )2 aq , 9.9 × 104 M -1 s -1 for [Formula: see text] and [Formula: see text] was unreactive. The Li - BrP (4)3+ complex had a formation constant with BrP (4)2+ of 1.1 × 103 M -1 from both kinetic and equilibrium measurements. In solutions containing both BrP (4)2+ and Li - BrP (4)3+, zinc incorporation proceeded only through BrP (4)2+.
Collapse
Affiliation(s)
- SABRINA L. BAILEY
- Department of Chemistry, Howard University, Washington, DC 20059, USA
| | - P. HAMBRIGHT
- Department of Chemistry, Howard University, Washington, DC 20059, USA
| |
Collapse
|
35
|
D'SOUZA FRANCIS, HSIEH YIYING, DEVIPRASAD GR. Electrochemical and Spectroelectrochemical Characterization of Water-soluble, β-Pyrrolebrominated Cobalt Porphyrins. J PORPHYR PHTHALOCYA 2012. [DOI: 10.1002/(sici)1099-1409(199807/10)2:4/5<429::aid-jpp117>3.0.co;2-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The electrochemical and spectroelectrochemical characterization of two water-soluble porphyrins, namely the tetrachloro salt of cobalt(II) tetrakis-(N-methyl pyridyl)-β-octabromoporphyrin, [( Br 8 TMPyP ) Co II] Cl 4, and the tetrasodium salt of cobalt(II) tetrakis-(4-sulfonatophenyl)-β-octabromoporphyrin, Na 4[( Br 8 TPPS ) Co II], under different pH conditions is reported. The investigated porphyrins are highly non-planar and electron-deficient owing to the presence of eight bromides at the β-pyrrole positions and the four meso-aryl substituents. The redox potentials corresponding to the first oxidation and first reduction are shifted positively compared with the redox potentials of the respective unbrominated porphyrin derivatives. Spectroelectrochemical studies reveal the formation of a cobalt(III) complex during the first oxidation of both cobalt porphyrins. The first reduction of Br 8 TPPS ) Co II]4− results in a cobalt(I) complex, while involvement of the peripheral N-methyl pyridyl groups in the case of Br 8 TMPyP ) Co II]4+ is suggested. The peak potentials of the first oxidation corresponding to a Co II/ Co III redox couple of both investigated compounds are found to be pH-dependent. Debromination of the β-pyrrole bromo substituents of Br 8 TMPyP ) Co II]4+ at more negative potentials is observed. The UV-vis spectrum obtained after bulk electrolysis of Br 8 TMPyP ) Co II]4+ at −1.0 V vs Ag / AgCl followed by reoxidation at 0.2 V indicates complete elimination of the bromo substituents of the porphyrin periphery.
Collapse
Affiliation(s)
- FRANCIS D'SOUZA
- Department of Chemistry, Wichita State University, 1845 Fairmount, Wichita, KS 67260-0051, USA
| | - YI-YING HSIEH
- Department of Chemistry, Wichita State University, 1845 Fairmount, Wichita, KS 67260-0051, USA
| | - G. R. DEVIPRASAD
- Department of Chemistry, Wichita State University, 1845 Fairmount, Wichita, KS 67260-0051, USA
| |
Collapse
|
36
|
Rayati S, Zakavi S, Bohloulbandi E, Jafarian M, avei MR. Comparative study of the catalytic activity of a series of β-brominated Mn–porphyrins in the oxidation of olefins and organic sulfides: Better catalytic performance of the partially brominated ones. Polyhedron 2012. [DOI: 10.1016/j.poly.2011.12.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
37
|
Ou Z, Shao J, D'Souza F, Tagliatesta P, Kadish KM. β-Pyrrole brominated meso-tetraphenylporphyrins: synthesis, spectral and electrochemical properties. J PORPHYR PHTHALOCYA 2012. [DOI: 10.1142/s1088424604000192] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The synthesis, catalytic properties, UV-visible spectra and electrochemistry of β-pyrrole brominated porphyrins are summarized in this brief review. The effect of the Br substituents of the porphyrin ring on the redox behavior, and on axial CO or pyridine binding to the porphyrins is also discussed.
Collapse
Affiliation(s)
- Zhongping Ou
- Department of Chemistry, University of Houston, Houston, TX 77204-5003, USA
| | - Jianguo Shao
- Department of Chemistry, University of Houston, Houston, TX 77204-5003, USA
| | - Francis D'Souza
- Department of Chemistry, Wichita State University, 1845 Fairmount, Wichita, KS 67260-0051, USA
| | - Pietro Tagliatesta
- Dipartimento di Scienze e Tecnologie Chimiche, Università degli Studi di Roma-Tor Vergata, 00133 Roma, Italy
| | - Karl M. Kadish
- Department of Chemistry, University of Houston, Houston, TX 77204-5003, USA
| |
Collapse
|
38
|
Rebouças JS, de Carvalho MEMD, Idemori YM. Perhalogenated 2-pyridylporphyrin complexes: synthesis, self-coordinating aggregation properties, and catalytic studies. J PORPHYR PHTHALOCYA 2012. [DOI: 10.1142/s1088424602000087] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The synthesis of 2, 3, 7, 8, 12, 13, 17, 18-octabromo-meso-tetrakis(2-pyridyl)porphyrin, H 2 Br 8 T 2 PyP , is described, including the comparison of four attempted methods for the demetallation of ZnBr 8 T 2 PyP . One of the methods represents a strategy of demetallation based on the acid-base properties of the macrocycle, the solvent-dependent kinetics of metal insertion into porphyrins and the pH -dependent solubility of the 2-pyridylporphyrin derivatives in water. Self-coordinating aggregation of ZnBr 8 T 2 PyP in non-coordinating solvents was verified by 1 H NMR spectroscopy. The Mn(III)/Mn(II) redox potential for MnBr 8 T 2 PyPCl is 0.38 V higher than the reduction potential measured for its first-generation analogue, MnT 2 PyPCl . Cyclohexane hydroxylation by iodosylbenzene was performed in CH3 CN catalyzed by MnBr 8 T 2 PyPCl and MnT 2 PyPCl . MnBr 8 T 2 PyPCl was highly active, even at low concentration (5 × 10−5 M ), but perhalogenation did not account for oxidative robustness. At such a low catalyst concentration, MnT 2 PyPCl exhibited no activity as inferred by comparison to blank experiments.
Collapse
Affiliation(s)
- Júlio S. Rebouças
- Departamento de Química - ICEx - Universidade Federal de Minas Gerais, 31270-901, Belo Horizonte, MG, Brazil
| | | | - Ynara M. Idemori
- Departamento de Química - ICEx - Universidade Federal de Minas Gerais, 31270-901, Belo Horizonte, MG, Brazil
| |
Collapse
|
39
|
Lemay R, Tremblay-Morin JP, Ali H, Hunting D, van Lier JE, Paquette B. Synthesis and radiosensitizing properties of brominated tetrapyridine porphyrins. J PORPHYR PHTHALOCYA 2012. [DOI: 10.1142/s1088424607000643] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Brominated derivatives of tetrapyridinium copper porphyrin were prepared via bromination of the β-positions (pyrrole rings) and/or the peripheral alkyl side-chains attached to the pyridine moieties. The radiosensitizing properties of these new cationic, brominated porphyrins were tested on MDA-MB-231 breast cancer cells in vitro using a 60 Co source or an X-ray irradiator. The non-brominated porphyrin and the porphyrin containing bromines at β-positions only were devoid of any radiosensitizing activity. However, a pronounced radiosensitizing effect was observed with the porphyrin containing bromo atoms at both β-positions and the peripheral side-chains. A similar radiosensitizing effect was detected for different radiation energies, suggesting that high energy photons could be used to treat tumors in conjunction with this novel brominated, porphyrin-based radiosensitizer.
Collapse
Affiliation(s)
- Rosalie Lemay
- Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3001 12th Avenue North, Sherbrooke, Québec J1H 5N4, Canada
| | - Jean-Philippe Tremblay-Morin
- Department of Chemistry, Faculty of Sciences, Université de Sherbrooke, 2500 boulevard de l'Université, Sherbrooke, Québec J1K 2R1, Canada
| | - Hasrat Ali
- Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3001 12th Avenue North, Sherbrooke, Québec J1H 5N4, Canada
| | - Darel Hunting
- Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3001 12th Avenue North, Sherbrooke, Québec J1H 5N4, Canada
| | - Johan E. van Lier
- Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3001 12th Avenue North, Sherbrooke, Québec J1H 5N4, Canada
| | - Benoit Paquette
- Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3001 12th Avenue North, Sherbrooke, Québec J1H 5N4, Canada
| |
Collapse
|
40
|
Prakash S, Rajesh S, Singh SR, Karunakaran C, Vasu V. Electrochemical incorporation of hemin in a ZnO–PPy nanocomposite on a Pt electrode as NOx sensor. Analyst 2012; 137:5874-80. [DOI: 10.1039/c2an36347j] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
41
|
Araujo-Chaves JC, Yokomizo CH, Kawai C, Mugnol KCU, Prieto T, Nascimento OR, Nantes IL. Towards the mechanisms involved in the antioxidant action of MnIII [meso-tetrakis(4-N-methyl pyridinium) porphyrin] in mitochondria. J Bioenerg Biomembr 2011; 43:663-71. [PMID: 21986957 DOI: 10.1007/s10863-011-9382-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Accepted: 08/08/2011] [Indexed: 01/17/2023]
Abstract
Aerobic organisms are afforded with an antioxidant enzymatic apparatus that more recently has been recognized to include cytochrome c, as it is able to prevent hydrogen peroxide generation by returning electrons from the superoxide ion back to the respiratory chain. The present study investigated the glutathione peroxidase (GPx), superoxide dismutase (SOD) and cytochrome c-like antioxidant activities of para Mn(III)TMPyP in isolated rat liver mitochondria (RLM) and mitoplasts. In RLM, Mn(III)TMPyP decreased the lipid-peroxide content associated with glutathione (GSH) depletion consistent with the use of GSH as a reducing agent for high valence states of Mn(III)TMPyP. SOD and cytochrome c antioxidant activities were also investigated. Mn(II)TMPyP was able to reduce ferric cytochrome c, indicating the potential to remove a superoxide ion by returning electrons back to the respiratory chain. In antimicyn A-poisoned mitoplasts, Mn(III)TMPyP efficiently decreased the EPR signal of DMPO-OH adduct concomitant with GSH depletion. The present results are consistent with SOD and GPx activities for Mn(III)TMPyP and do not exclude cytochrome c-like activity. However, considering that para Mn(III)TMPyP more efficiently reduces, rather than oxidizes, superoxide ion; electron transfer from the Mn(II)TMPyP to the respiratory chain might not significantly contribute to the superoxide ion removal, since most of Mn(II)TMPyP is expected to be produced at the expense of NADPH/GSH oxidation. The present results suggest GPx-like activity to be the principal antioxidant mechanism of Mn(III)TMPyP, whose efficiency is dependent on the NADPH/GSH content in cells.
Collapse
Affiliation(s)
- Juliana C Araujo-Chaves
- Centro Interdisciplinar de Investigação Bioquímica, Universidade de Mogi das Cruzes-UMC, Mogi das Cruzes, SP, Brazil
| | | | | | | | | | | | | |
Collapse
|
42
|
Batinic-Haberle I, Rajic Z, Tovmasyan A, Ye X, Leong KW, Dewhirst MW, Vujaskovic Z, Benov L, Spasojevic I. Diverse functions of cationic Mn(III) N-substituted pyridylporphyrins, recognized as SOD mimics. Free Radic Biol Med 2011; 51:1035-53. [PMID: 21616142 PMCID: PMC3178885 DOI: 10.1016/j.freeradbiomed.2011.04.046] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Revised: 03/30/2011] [Accepted: 04/29/2011] [Indexed: 10/18/2022]
Abstract
Oxidative stress, a redox imbalance between the endogenous reactive species and antioxidant systems, is common to numerous pathological conditions such as cancer, central nervous system injuries, radiation injury, diabetes etc. Therefore, compounds able to reduce oxidative stress have been actively sought for over 3 decades. Superoxide is the major species involved in oxidative stress either in its own right or through its progeny, such as ONOO⁻, H₂O₂, •OH, CO₃•⁻, and •NO₂. Hence, the very first compounds developed in the late 1970-ies were the superoxide dismutase (SOD) mimics. Thus far the most potent mimics have been the cationic meso Mn(III) N-substituted pyridylporphyrins and N,N'-disubstituted imidazolylporphyrins (MnPs), some of them with k(cat)(O₂·⁻) similar to the k(cat) of SOD enzymes. Most frequently studied are ortho isomers MnTE-2-PyP⁵⁺, MnTnHex-2-PyP⁵⁺, and MnTDE-2-ImP⁵⁺. The ability to disproportionate O₂·⁻ parallels their ability to remove the other major oxidizing species, peroxynitrite, ONOO⁻. The same structural feature that gives rise to the high k(cat)(O₂·⁻) and k(red)(ONOO⁻), allows MnPs to strongly impact the activation of the redox-sensitive transcription factors, HIF-1α, NF-κB, AP-1, and SP-1, and therefore modify the excessive inflammatory and immune responses. Coupling with cellular reductants and other redox-active endogenous proteins seems to be involved in the actions of Mn porphyrins. While hydrophilic analogues, such as MnTE-2-PyP⁵⁺ and MnTDE-2-ImP⁵⁺ are potent in numerous animal models of diseases, the lipophilic analogues, such as MnTnHex-2-PyP⁵⁺, were developed to cross blood brain barrier and target central nervous system and critical cellular compartments, mitochondria. The modification of its structure, aimed to preserve the SOD-like potency and lipophilicity, and diminish the toxicity, has presently been pursued. The pulmonary radioprotection by MnTnHex-2-PyP⁵⁺ was the first efficacy study performed successfully with non-human primates. The Phase I toxicity clinical trials were done on amyotrophic lateral sclerosis patients with N,N'-diethylimidazolium analogue, MnTDE-2-ImP⁵⁺ (AEOL10150). Its aggressive development as a wide spectrum radioprotector by Aeolus Pharmaceuticals has been supported by USA Federal government. The latest generation of compounds, bearing oxygens in pyridyl substituents is presently under aggressive development for cancer and CNS injuries at Duke University and is supported by Duke Translational Research Institute, The Wallace H. Coulter Translational Partners Grant Program, Preston Robert Tisch Brain Tumor Center at Duke, and National Institute of Allergy and Infectious Diseases. Metal center of cationic MnPs easily accepts and donates electrons as exemplified in the catalysis of O₂·⁻ dismutation. Thus such compounds may be equally good anti- and pro-oxidants; in either case the beneficial therapeutic effects may be observed. Moreover, while the in vivo effects may appear antioxidative, the mechanism of action of MnPs that produced such effects may be pro-oxidative; the most obvious example being the inhibition of NF-κB. The experimental data therefore teach us that we need to distinguish between the mechanism/s of action/s of MnPs and the effects we observe. A number of factors impact the type of action of MnPs leading to favorable therapeutic effects: levels of reactive species and oxygen, levels of endogenous antioxidants (enzymes and low-molecular compounds), levels of MnPs, their site of accumulation, and the mutual encounters of all of those species. The complexity of in vivo redox systems and the complex redox chemistry of MnPs challenge and motivate us to further our understanding of the physiology of the normal and diseased cell with ultimate goal to successfully treat human diseases.
Collapse
Affiliation(s)
- Ines Batinic-Haberle
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710, USA
- Corresponding authors: Ines Batinic-Haberle, Ph. D. Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710, Tel: 919-684-2101, Fax: 919-684-8718, . Ivan Spasojevic, Ph. D. Department of Medicine, Duke University Medical Center, Durham, NC 27710, Tel: 919-684-8311, Fax: 919-684-8380,
| | - Zrinka Rajic
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710, USA
| | - Artak Tovmasyan
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710, USA
| | - Xiaodong Ye
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Kam W. Leong
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Mark W. Dewhirst
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710, USA
| | - Zeljko Vujaskovic
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710, USA
| | - Ludmil Benov
- Department of Biochemistry, Faculty of Medicine, Kuwait School of Medicine, Kuwait
| | - Ivan Spasojevic
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
- Corresponding authors: Ines Batinic-Haberle, Ph. D. Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710, Tel: 919-684-2101, Fax: 919-684-8718, . Ivan Spasojevic, Ph. D. Department of Medicine, Duke University Medical Center, Durham, NC 27710, Tel: 919-684-8311, Fax: 919-684-8380,
| |
Collapse
|
43
|
Mifune M, Iwado A, Taniguchi M, Kamino S, Enomoto S. [Photometric study on the reaction between 2,3,7,8,12,13,17,18-octabromo- 5,10,15,20-tetrakis-(4-methylpyridyl) porphine and various metal ions]. YAKUGAKU ZASSHI 2011; 131:1233-40. [PMID: 21804328 DOI: 10.1248/yakushi.131.1233] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The chelate forming reaction between 2,3,7,8,12,13,17,18-octabromo-5,10,15,20-tetrakis(4-methylpyridyl)porphine (OBTMPyP) and various metal ions, which belong mainly to 4th period and 7th-12th groups in the periodic table, was examined by the observing the absorption spectra. Because one chemical spicy, H-OBTMPyP, which is one protonated compound at an N atom of pyroll ring among 4 pyroll rings, was observed at pH 9.0, this pH was used to measure the changes of absorption spectra with metal ions. From these changes of absorption spectra of OBTMPyP with metal ions, OBTMPyP were seen to react easily with Cu²⁺, Zn²⁺, Mn²⁺, or Co²⁺ ion without other additional reagent or heating within 1 min at over 25 °C. On the other hand, OBTMPyP reacted little with Ni²⁺, and was not all with Fe³⁺ (or Fe²⁺) reduced by ascorbic acid from Fe³⁺) under the same conditions. 5,10,15,20-tetrakis(4-methylpyridyl)porphine (TMPyP) also did not reacted metal ions above these conditions. The λ(max) of each Soret band differed. The stability constants (Ka value) of Cu-, Zn-, Mn- and Co-OBTMPyP was calculated by the change in absorbance of each band, and was 2.6 × 10⁵, 3.6 × 10⁵, 2.7 × 10⁵ and 2.9 × 10⁵ (dm³/mol), respectively. It was revealed that OBTMPyP and metal ions reacted at molar ratio of 1:1, and octabromination of porphine rings improved the reactivity with these ions.
Collapse
Affiliation(s)
- Masaki Mifune
- Division of Pharmaceutical Sciences, Graduate School of Medicine and Dentistry and Pharmaceutical Sciences, Okayama University, Japan.
| | | | | | | | | |
Collapse
|
44
|
NADPH oxidase-mediated reactive oxygen species production activates hypoxia-inducible factor-1 (HIF-1) via the ERK pathway after hyperthermia treatment. Proc Natl Acad Sci U S A 2010; 107:20477-82. [PMID: 21059928 DOI: 10.1073/pnas.1006646107] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Hyperthermia (HT) is a strong adjuvant treatment with radiotherapy and chemotherapy because it causes tumor reoxygenation. However, the detailed molecular mechanisms of how HT enhances tumor oxygenation have not been elucidated. Here we report that 1 h of HT activates hypoxia-inducible factor-1 (HIF-1) in tumors and its downstream targets, vascular endothelial growth factor (VEGF) and pyruvate dehydrogenase kinase 1 (PDK1). Consistent with HIF-1 activation and up-regulation of its downstream genes, HT also enhances tumor perfusion/vascularization and decreases oxygen consumption. As a result, tumor hypoxia is reduced after HT, suggesting that these physiological changes contribute to HT-induced tumor reoxygenation. Because HIF-1 is a potent regulator of tumor vascularization and metabolism, our findings suggest that HIF-1 plays a role in HT-induced tumor reoxygenation by transactivating its downstream targets. We demonstrate that NADPH oxidase-mediated reactive oxygen species production, as a mechanism, up-regulates HIF-1 after HT. Furthermore, we determine that this pathway is initiated by increased transcription of NADPH oxidase-1 through the ERK pathway. In conclusion, this study determines that, although HIF-1 is a good therapeutic target, the timing of its inhibition needs to be optimized to achieve the most beneficial outcome when it is combined with other treatments of HT, radiation, and chemotherapy.
Collapse
|
45
|
Batinić-Haberle I, Rebouças JS, Spasojević I. Superoxide dismutase mimics: chemistry, pharmacology, and therapeutic potential. Antioxid Redox Signal 2010; 13:877-918. [PMID: 20095865 PMCID: PMC2935339 DOI: 10.1089/ars.2009.2876] [Citation(s) in RCA: 398] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Oxidative stress has become widely viewed as an underlying condition in a number of diseases, such as ischemia-reperfusion disorders, central nervous system disorders, cardiovascular conditions, cancer, and diabetes. Thus, natural and synthetic antioxidants have been actively sought. Superoxide dismutase is a first line of defense against oxidative stress under physiological and pathological conditions. Therefore, the development of therapeutics aimed at mimicking superoxide dismutase was a natural maneuver. Metalloporphyrins, as well as Mn cyclic polyamines, Mn salen derivatives and nitroxides were all originally developed as SOD mimics. The same thermodynamic and electrostatic properties that make them potent SOD mimics may allow them to reduce other reactive species such as peroxynitrite, peroxynitrite-derived CO(3)(*-), peroxyl radical, and less efficiently H(2)O(2). By doing so SOD mimics can decrease both primary and secondary oxidative events, the latter arising from the inhibition of cellular transcriptional activity. To better judge the therapeutic potential and the advantage of one over the other type of compound, comparative studies of different classes of drugs in the same cellular and/or animal models are needed. We here provide a comprehensive overview of the chemical properties and some in vivo effects observed with various classes of compounds with a special emphasis on porphyrin-based compounds.
Collapse
Affiliation(s)
- Ines Batinić-Haberle
- Department of Radiation Oncology, Duke University Medical School, Durham, North Carolina 27710, USA.
| | | | | |
Collapse
|
46
|
Lee H, Park W, Lim D. Synthesis and SOD activity of manganese complexes of substituted pyridino pentaaza macrocycles that contain axial auxiliary. Bioorg Med Chem Lett 2010; 20:2421-4. [DOI: 10.1016/j.bmcl.2010.03.037] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2009] [Revised: 02/19/2010] [Accepted: 03/06/2010] [Indexed: 11/30/2022]
|
47
|
Tabares LC, Gätjens J, Un S. Understanding the influence of the protein environment on the Mn(II) centers in Superoxide Dismutases using High-Field Electron Paramagnetic Resonance. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2009; 1804:308-17. [PMID: 19818880 DOI: 10.1016/j.bbapap.2009.09.027] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Revised: 09/16/2009] [Accepted: 09/23/2009] [Indexed: 01/20/2023]
Abstract
One of the most puzzling questions of manganese and iron superoxide dismutases (SODs) is what is the basis for their metal-specificity. This review summarizes our findings on the Mn(II) electronic structure of SODs and related synthetic models using high-field high-frequency electron paramagnetic resonance (HFEPR), a technique that is able to achieve a very detailed and quantitative information about the electronic structure of the Mn(II) ions. We have used HFEPR to compare eight different SODs, including iron, manganese and cambialistic proteins. This comparative approach has shown that in spite of their high structural homology each of these groups have specific spectroscopic and biochemical characteristics. This has allowed us to develop a model about how protein and metal interactions influence protein pK, inhibitor binding and the electronic structure of the manganese center. To better appreciate the thermodynamic prerequisites required for metal discriminatory SOD activity and their relationship to HFEPR spectroscopy, we review the work on synthetic model systems that functionally mimic Mn-and FeSOD. Using a single ligand framework, it was possible to obtain metal-discriminatory "activity" as well as variations in the HFEPR spectra that parallel those found in the proteins. Our results give new insights into protein-metal interactions from the perspective of the Mn(II) and new steps towards solving the puzzle of metal-specificity in SODs.
Collapse
Affiliation(s)
- Leandro C Tabares
- Leiden Institute of Chemistry, Leiden University, 2333 CC Leiden, The Netherlands
| | | | | |
Collapse
|
48
|
Eckshtain M, Zilbermann I, Mahammed A, Saltsman I, Okun Z, Maimon E, Cohen H, Meyerstein D, Gross Z. Superoxide dismutase activity of corrole metal complexes. Dalton Trans 2009:7879-82. [PMID: 19771348 DOI: 10.1039/b911278b] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The first report regarding SOD activity of metallocorroles, investigated via the combination of the cytochrome C assay, pulse radiolysis, and electrochemistry, is used for identifying the main criteria needed for achieving good performance, as well as for elucidating mechanistic aspects of their action.
Collapse
Affiliation(s)
- Meital Eckshtain
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa, 32000, Israel
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Silva DCD, DeFreitas-Silva G, Nascimento ED, Rebouças JS, Barbeira PJS, Carvalho MEMDD, Idemori YM. Spectral, electrochemical, and catalytic properties of a homologous series of manganese porphyrins as cytochrome P450 model: The effect of the degree of β-bromination. J Inorg Biochem 2008; 102:1932-41. [DOI: 10.1016/j.jinorgbio.2008.07.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2008] [Revised: 07/01/2008] [Accepted: 07/02/2008] [Indexed: 11/30/2022]
|
50
|
DeFreitas-Silva G, Rebouças JS, Spasojevi I, Benov L, Idemori YM, -Haberle IB. SOD-like activity of Mn(II) beta-octabromo-meso-tetrakis(N-methylpyridinium-3-yl)porphyrin equals that of the enzyme itself. Arch Biochem Biophys 2008; 477:105-12. [PMID: 18477465 PMCID: PMC2577908 DOI: 10.1016/j.abb.2008.04.032] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2008] [Revised: 04/21/2008] [Accepted: 04/24/2008] [Indexed: 11/29/2022]
Abstract
Mn porphyrins are among the most efficient SOD mimics with potency approaching that of SOD enzymes. The most potent ones, Mn(III) N-alkylpyridylporphyrins bear positive charges in a close proximity to the metal site, affording thermodynamic and kinetic facilitation for the reaction with negatively charged superoxide. The addition of electron-withdrawing bromines onto beta-pyrrolic positions dramatically improves thermodynamic facilitation for the O2*- dismutation. We have previously characterized the para isomer, Mn(II)Br(8)TM-4-PyP(4+) [Mn(II) beta-octabromo-meso-tetrakis(N-methylpyridinium-4-yl)porphyrin]. Herein we fully characterized its meta analogue, Mn(II)Br(8)TM-3-PyP(4+) with respect to UV/vis spectroscopy, electron spray mass spectrometry, electrochemistry, O2*- dismutation, metal-ligand stability, and the ability to protect SOD-deficient Escherichia coli in comparison with its para analogue. The increased electron-deficiency of the metal center stabilizes Mn in its +2 oxidation state. The metal-centered Mn(III)/Mn(II) reduction potential, E((1/2))=+468 mV vs NHE, is increased by 416 mV with respect to non-brominated analogue, Mn(III)TM-3-PyP(5+) and is only 12 mV less positive than for para isomer. Yet, the complex is significantly more stable towards the loss of metal than its para analogue. As expected, based on the structure-activity relationships, an increase in E((1/2)) results in a higher catalytic rate constant for the O2*- dismutation, log k(cat)> or =8.85; 1.5-fold increase with respect to the para isomer. The IC(50) was calculated to be < or =3.7 nM. Manipulation of the electron-deficiency of a cationic porphyrin resulted, therefore, in the highest k(cat) ever reported for a metalloporphyrin, being essentially identical to the k(cat) of superoxide dismutases (log k(cat)=8.84-9.30). The positive kinetic salt effect points to the unexpected, unique and first time recorded behavior of Mn beta-octabrominated porphyrins when compared to other Mn porphyrins studied thus far. When species of opposing charges react, the increase in ionic strength invariably results in the decreased rate constant; with brominated porphyrins the opposite was found to be true. The effect is 3.5-fold greater with meta than with para isomer, which is discussed with respect to the closer proximity of the quaternary nitrogens of the meta isomer to the metal center than that of the para isomer. The potency of Mn(II)Br(8)TM-3-PyP(4+) was corroborated by in vivo studies, where 500 nM allows SOD-deficient E. coli to grow >60% of the growth of wild type; at concentrations > or =5 microM it exhibits toxicity. Our work shows that exceptionally high k(cat) for the O2*- disproportionation can be achieved not only with an N(5)-type coordination motif, as rationalized previously for aza crown ether (cyclic polyamines) complexes, but also with a N(4)-type motif as in the Mn porphyrin case; both motifs sharing "up-down-up-down" steric arrangement.
Collapse
Affiliation(s)
- Gilson DeFreitas-Silva
- Departamento de Química, ICEx, Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270-901, Brazil
| | - Júlio S. Rebouças
- Department of Radiation Oncology, Duke University Medical School, Durham, NC 27710, USA
| | - Ivan Spasojevi
- Department of Medicine, Duke University Medical School, Durham, NC 27710, USA
| | - Ludmil Benov
- Department of Biochemistry, Faculty of Medicine, Kuwait University, Safat, 13110, Kuwait
| | - Ynara M. Idemori
- Departamento de Química, ICEx, Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270-901, Brazil
| | - Ines Batini -Haberle
- Department of Radiation Oncology, Duke University Medical School, Durham, NC 27710, USA
| |
Collapse
|