1
|
Amoriello R, Memo C, Ballerini L, Ballerini C. The brain cytokine orchestra in multiple sclerosis: from neuroinflammation to synaptopathology. Mol Brain 2024; 17:4. [PMID: 38263055 PMCID: PMC10807071 DOI: 10.1186/s13041-024-01077-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/18/2024] [Indexed: 01/25/2024] Open
Abstract
The central nervous system (CNS) is finely protected by the blood-brain barrier (BBB). Immune soluble factors such as cytokines (CKs) are normally produced in the CNS, contributing to physiological immunosurveillance and homeostatic synaptic scaling. CKs are peptide, pleiotropic molecules involved in a broad range of cellular functions, with a pivotal role in resolving the inflammation and promoting tissue healing. However, pro-inflammatory CKs can exert a detrimental effect in pathological conditions, spreading the damage. In the inflamed CNS, CKs recruit immune cells, stimulate the local production of other inflammatory mediators, and promote synaptic dysfunction. Our understanding of neuroinflammation in humans owes much to the study of multiple sclerosis (MS), the most common autoimmune and demyelinating disease, in which autoreactive T cells migrate from the periphery to the CNS after the encounter with a still unknown antigen. CNS-infiltrating T cells produce pro-inflammatory CKs that aggravate local demyelination and neurodegeneration. This review aims to recapitulate the state of the art about CKs role in the healthy and inflamed CNS, with focus on recent advances bridging the study of adaptive immune system and neurophysiology.
Collapse
Affiliation(s)
- Roberta Amoriello
- International School for Advanced Studies (SISSA/ISAS), 34136, Trieste, Italy.
- Dipartimento di Medicina Sperimentale e Clinica, University of Florence, 50139, Florence, Italy.
| | - Christian Memo
- Dipartimento di Medicina Sperimentale e Clinica, University of Florence, 50139, Florence, Italy
| | - Laura Ballerini
- Dipartimento di Medicina Sperimentale e Clinica, University of Florence, 50139, Florence, Italy
| | - Clara Ballerini
- International School for Advanced Studies (SISSA/ISAS), 34136, Trieste, Italy.
| |
Collapse
|
2
|
The Therapeutic Prospects of Targeting IL-1R1 for the Modulation of Neuroinflammation in Central Nervous System Disorders. Int J Mol Sci 2022; 23:ijms23031731. [PMID: 35163653 PMCID: PMC8915186 DOI: 10.3390/ijms23031731] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/24/2022] [Accepted: 01/30/2022] [Indexed: 11/16/2022] Open
Abstract
The interleukin-1 receptor type 1 (IL-1R1) holds pivotal roles in the immune system, as it is positioned at the “epicenter” of the inflammatory signaling networks. Increased levels of the cytokine IL-1 are a recognized feature of the immune response in the central nervous system (CNS) during injury and disease, i.e., neuroinflammation. Despite IL-1/IL-1R1 signaling within the CNS having been the subject of several studies, the roles of IL-1R1 in the CNS cellular milieu still cause controversy. Without much doubt, however, the persistent activation of the IL-1/IL-1R1 signaling pathway is intimately linked with the pathogenesis of a plethora of CNS disease states, ranging from Alzheimer’s disease (AD), Parkinson’s disease (PD), amyotrophic lateral sclerosis (ALS) and multiple sclerosis (MS), all the way to schizophrenia and prion diseases. Importantly, a growing body of evidence is showing that blocking IL-1R1 signaling via pharmacological or genetic means in different experimental models of said CNS diseases leads to reduced neuroinflammation and delayed disease progression. The aim of this paper is to review the recent progress in the study of the biological roles of IL-1R1, as well as to highlight key aspects that render IL-1R1 a promising target for the development of novel disease-modifying treatments for multiple CNS indications.
Collapse
|
3
|
Manoharan I, Swafford D, Shanmugam A, Patel N, Prasad PD, Thangaraju M, Manicassamy S. Activation of Transcription Factor 4 in Dendritic Cells Controls Th1/Th17 Responses and Autoimmune Neuroinflammation. THE JOURNAL OF IMMUNOLOGY 2021; 207:1428-1436. [PMID: 34348977 DOI: 10.4049/jimmunol.2100010] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 06/28/2021] [Indexed: 12/25/2022]
Abstract
Dendritic cells (DCs) are professional APCs that play a crucial role in initiating robust immune responses against invading pathogens while inducing regulatory responses to the body's tissues and commensal microorganisms. A breakdown of DC-mediated immunological tolerance leads to chronic inflammation and autoimmune disorders. However, cell-intrinsic molecular regulators that are critical for programming DCs to a regulatory state rather than to an inflammatory state are not known. In this study, we show that the activation of the TCF4 transcription factor in DCs is critical for controlling the magnitude of inflammatory responses and limiting neuroinflammation. DC-specific deletion of TCF4 in mice increased Th1/Th17 responses and exacerbated experimental autoimmune encephalomyelitis pathology. Mechanistically, loss of TCF4 in DCs led to heightened activation of p38 MAPK and increased levels of proinflammatory cytokines IL-6, IL-23, IL-1β, TNF-α, and IL-12p40. Consistent with these findings, pharmacological blocking of p38 MAPK activation delayed experimental autoimmune encephalomyelitis onset and diminished CNS pathology in TCF4ΔDC mice. Thus, manipulation of the TCF4 pathway in DCs could provide novel opportunities for regulating chronic inflammation and represents a potential therapeutic approach to control autoimmune neuroinflammation.
Collapse
Affiliation(s)
- Indumathi Manoharan
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA.,Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, GA
| | - Daniel Swafford
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, GA
| | | | - Nikhil Patel
- Department of Pathology, Medical College of Georgia, Augusta University, Augusta, GA; and
| | - Puttur D Prasad
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA
| | - Muthusamy Thangaraju
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA
| | - Santhakumar Manicassamy
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA; .,Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, GA.,Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA
| |
Collapse
|
4
|
Rasouli J, Casella G, Ishikawa LLW, Thome R, Boehm A, Ertel A, Melo-Silva CR, Mari ER, Porazzi P, Zhang W, Xiao D, Sigal LJ, Fortina P, Zhang GX, Rostami A, Ciric B. IFN-β Acts on Monocytes to Ameliorate CNS Autoimmunity by Inhibiting Proinflammatory Cross-Talk Between Monocytes and Th Cells. Front Immunol 2021; 12:679498. [PMID: 34149716 PMCID: PMC8213026 DOI: 10.3389/fimmu.2021.679498] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 05/12/2021] [Indexed: 01/18/2023] Open
Abstract
IFN-β has been the treatment for multiple sclerosis (MS) for almost three decades, but understanding the mechanisms underlying its beneficial effects remains incomplete. We have shown that MS patients have increased numbers of GM-CSF+ Th cells in circulation, and that IFN-β therapy reduces their numbers. GM-CSF expression by myelin-specific Th cells is essential for the development of experimental autoimmune encephalomyelitis (EAE), an animal model of MS. These findings suggested that IFN-β therapy may function via suppression of GM-CSF production by Th cells. In the current study, we elucidated a feedback loop between monocytes and Th cells that amplifies autoimmune neuroinflammation, and found that IFN-β therapy ameliorates central nervous system (CNS) autoimmunity by inhibiting this proinflammatory loop. IFN-β suppressed GM-CSF production in Th cells indirectly by acting on monocytes, and IFN-β signaling in monocytes was required for EAE suppression. IFN-β increased IL-10 expression by monocytes, and IL-10 was required for the suppressive effects of IFN-β. IFN-β treatment suppressed IL-1β expression by monocytes in the CNS of mice with EAE. GM-CSF from Th cells induced IL-1β production by monocytes, and, in a positive feedback loop, IL-1β augmented GM-CSF production by Th cells. In addition to GM-CSF, TNF and FASL expression by Th cells was also necessary for IL-1β production by monocyte. IFN-β inhibited GM-CSF, TNF, and FASL expression by Th cells to suppress IL-1β secretion by monocytes. Overall, our study describes a positive feedback loop involving several Th cell- and monocyte-derived molecules, and IFN-β actions on monocytes disrupting this proinflammatory loop.
Collapse
MESH Headings
- Animals
- Antigen-Presenting Cells/immunology
- Antigen-Presenting Cells/metabolism
- Autoimmunity/drug effects
- Cell Communication/genetics
- Cell Communication/immunology
- Cytokines/metabolism
- Disease Models, Animal
- Disease Susceptibility/immunology
- Encephalomyelitis, Autoimmune, Experimental/etiology
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Granulocyte-Macrophage Colony-Stimulating Factor/biosynthesis
- Interferon-beta/metabolism
- Interferon-beta/pharmacology
- Mice
- Mice, Knockout
- Monocytes/drug effects
- Monocytes/immunology
- Monocytes/metabolism
- T-Lymphocytes, Helper-Inducer/drug effects
- T-Lymphocytes, Helper-Inducer/immunology
- T-Lymphocytes, Helper-Inducer/metabolism
Collapse
Affiliation(s)
- Javad Rasouli
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Giacomo Casella
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, United States
| | | | - Rodolfo Thome
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Alexandra Boehm
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Adam Ertel
- Sidney Kimmel Cancer Center, Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Carolina R. Melo-Silva
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Elisabeth R. Mari
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Patrizia Porazzi
- Sidney Kimmel Cancer Center, Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Weifeng Zhang
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Dan Xiao
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Luis J. Sigal
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Paolo Fortina
- Sidney Kimmel Cancer Center, Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA, United States
- Department of Translation and Precision Medicine, Sapienza University, Rome, Italy
| | - Guang-Xian Zhang
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Abdolmohamad Rostami
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Bogoljub Ciric
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, United States
| |
Collapse
|
5
|
Blandford SN, Galloway DA, Williams JB, Arsenault S, Brown J, MacLean G, Moore GRW, Barron J, Ploughman M, Clift F, Stefanelli M, Moore CS. Interleukin-1 receptor antagonist: An exploratory plasma biomarker that correlates with disability and provides pathophysiological insights in relapsing-remitting multiple sclerosis. Mult Scler Relat Disord 2021; 52:103006. [PMID: 34004435 DOI: 10.1016/j.msard.2021.103006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 04/13/2021] [Accepted: 04/29/2021] [Indexed: 12/01/2022]
Abstract
BACKGROUND Multiple sclerosis (MS) is a chronic inflammatory demyelinating and neurodegenerative disorder. Interleukin-1 receptor antagonist (IL-1RA) is an endogenous soluble antagonist of the IL-1 receptor and blocks the pro-inflammatory effects of IL-1β known to contribute to MS pathology. The objectives of this study were to determine whether IL-1RA is associated with disability in MS and how this correlates with neurofilament light (NfL) levels in cerebrospinal fluid (CSF). METHODS Peripheral blood and CSF were collected from consenting MS patients. Patient demographic and clinical variables, including past relapse activity, were also collected. Circulating levels of IL-1RA, IL-18, and IL-1β were measured in plasma; IL-1RA and NfL were measured in the CSF via Bio-plex multiplex immunoassay kits and ELISA, respectively. IL-1RA expression was investigated in vitro using primary human macrophages and microglia, and in situ using post-mortem MS tissue. RESULTS Following a multiple regression analysis, IL-1RA levels in plasma correlated with expanded disability status scale score independent of all other variables. In a separate cohort, CSF IL-1RA significantly correlated with NfL. In vitro, induction of the NLRP3 inflammasome, a pathological hallmark within MS lesions, led to increased release of IL-1RA from primary human microglia and macrophages. In the CNS, IL-1RA+ macrophages/microglia were present at the rim of mixed active/inactive MS lesions. CONCLUSIONS Results presented in this study demonstrate that IL-1RA is a novel exploratory biomarker in relapsing-remitting MS, which correlates with disability and provides mechanistic insights into the regulatory inflammatory responses within the demyelinated CNS.
Collapse
Affiliation(s)
- Stephanie N Blandford
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, 300 Prince Philip Drive, St. John's, A1B 3V6 Newfoundland and Labrador, Canada
| | - Dylan A Galloway
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, 300 Prince Philip Drive, St. John's, A1B 3V6 Newfoundland and Labrador, Canada
| | - John B Williams
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, 300 Prince Philip Drive, St. John's, A1B 3V6 Newfoundland and Labrador, Canada
| | - Shane Arsenault
- Discipline of Medicine (Neurology), Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Janet Brown
- Discipline of Medicine (Neurology), Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Gregg MacLean
- Department of Medicine, Horizon Health, Saint John, New Brunswick, Canada
| | - G R Wayne Moore
- Department of Pathology and Laboratory Medicine, Faculty of Medicine, University of British Columbia, Vancouver British Columbia, Canada
| | - Jane Barron
- Discipline of Laboratory Medicine, Faculty of Medicine, Memorial University of Newfoundland, St. John's Newfoundland and Labrador, Canada
| | - Michelle Ploughman
- Recovery and Performance Laboratory, Faculty of Medicine, Memorial University of Newfoundland, St. John's NL, Canada
| | - Fraser Clift
- Discipline of Medicine (Neurology), Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Mark Stefanelli
- Discipline of Medicine (Neurology), Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Craig S Moore
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, 300 Prince Philip Drive, St. John's, A1B 3V6 Newfoundland and Labrador, Canada; Discipline of Medicine (Neurology), Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada.
| |
Collapse
|
6
|
Therapeutic potential of the target on NLRP3 inflammasome in multiple sclerosis. Pharmacol Ther 2021; 227:107880. [PMID: 33901504 DOI: 10.1016/j.pharmthera.2021.107880] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 04/21/2021] [Accepted: 04/22/2021] [Indexed: 02/06/2023]
Abstract
Inflammasomes are multi-protein macromolecular complexes that typically comprise of three units, a sensor, an adaptor and procaspase-1. The assembly of each inflammasome is dictated by a unique pattern recognition receptors (PRRs) in response to pathogen-associated molecular patterns (PAMPs) or other endogenous danger-associated molecular patterns (DAMPs) in the cytosol of the host cells, and promote the maturation and secretion of IL-1β and IL-18 during the inflammatory process. Specific inflammasomes are involved in the host defense response against different pathogens, and the latter have evolved multiple corresponding mechanisms to inhibit inflammasome activation. The nucleotide-binding oligomerization domain leucine-rich repeat and pyrin domain-containing 3 (NLRP3) inflammasome is the best understood in terms of molecular mechanisms, and is a promising therapeutic target in immune-related disorders. Multiple sclerosis (MS) is an autoimmune disease characterized by inflammatory demyelination of white matter in the central nervous system, increased levels of IL-1β in the cerebrospinal fluid (CSF) of relapsed patients, and deposition of caspase-1 in the spinal cord. The direct involvement of the NLRP3 inflammasome in the occurrence and development of MS was ascertained in the experimental autoimmune encephalomyelitis (EAE) animal model. In this review, we have focused on the mechanisms underlying activation of the NLRP3 inflammasome in MS or EAE, as well as inhibitors that specifically target the complex and alleviate disease progression, in order to unearth new therapeutic strategies against MS.
Collapse
|
7
|
Van Den Eeckhout B, Tavernier J, Gerlo S. Interleukin-1 as Innate Mediator of T Cell Immunity. Front Immunol 2021; 11:621931. [PMID: 33584721 PMCID: PMC7873566 DOI: 10.3389/fimmu.2020.621931] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 12/08/2020] [Indexed: 12/19/2022] Open
Abstract
The three-signal paradigm tries to capture how the innate immune system instructs adaptive immune responses in three well-defined actions: (1) presentation of antigenic peptides in the context of MHC molecules, which allows for a specific T cell response; (2) T cell co-stimulation, which breaks T cell tolerance; and (3) secretion of polarizing cytokines in the priming environment, thereby specializing T cell immunity. The three-signal model provides an empirical framework for innate instruction of adaptive immunity, but mainly discusses STAT-dependent cytokines in T cell activation and differentiation, while the multi-faceted roles of type I IFNs and IL-1 cytokine superfamily members are often neglected. IL-1α and IL-1β are pro-inflammatory cytokines, produced following damage to the host (release of DAMPs) or upon innate recognition of PAMPs. IL-1 activity on both DCs and T cells can further shape the adaptive immune response with variable outcomes. IL-1 signaling in DCs promotes their ability to induce T cell activation, but also direct action of IL-1 on both CD4+ and CD8+ T cells, either alone or in synergy with prototypical polarizing cytokines, influences T cell differentiation under different conditions. The activities of IL-1 form a direct bridge between innate and adaptive immunity and could therefore be clinically translatable in the context of prophylactic and therapeutic strategies to empower the formation of T cell immunity. Understanding the modalities of IL-1 activity during T cell activation thus could hold major implications for rational development of the next generation of vaccine adjuvants.
Collapse
Affiliation(s)
- Bram Van Den Eeckhout
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Jan Tavernier
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Orionis Biosciences BV, Ghent, Belgium
| | - Sarah Gerlo
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| |
Collapse
|
8
|
Korniotis S, D'Aveni M, Hergalant S, Letscher H, Tejerina E, Gastineau P, Agbogan VA, Gras C, Fouquet G, Rossignol J, Chèvre JC, Cagnard N, Rubio MT, Hermine O, Zavala F. Mobilized Multipotent Hematopoietic Progenitors Stabilize and Expand Regulatory T Cells to Protect Against Autoimmune Encephalomyelitis. Front Immunol 2020; 11:607175. [PMID: 33424854 PMCID: PMC7786289 DOI: 10.3389/fimmu.2020.607175] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 11/19/2020] [Indexed: 12/14/2022] Open
Abstract
Achieving immunoregulation via in vivo expansion of Foxp3+ regulatory CD4+ T cells (Treg) remains challenging. We have shown that mobilization confers to multipotent hematopoietic progenitors (MPPs) the capacity to enhance Treg proliferation. Transcriptomic analysis of Tregs co-cultured with MPPs revealed enhanced expression of genes stabilizing the suppressive function of Tregs as well as the activation of IL-1β-driven pathways. Adoptive transfer of only 25,000 MPPs effectively reduced the development of experimental autoimmune encephalomyelitis (EAE), a pre-clinical model for multiple sclerosis (MS). Production of the pathogenic cytokines IL-17 and GM-CSF by spinal cord-derived CD4+ T-cells in MPP-protected recipients was reduced while Treg expansion was enhanced. Treg depletion once protection by MPPs was established, triggered disease relapse to the same level as in EAE mice without MPP injection. The key role of IL-1β was further confirmed in vivo by the lack of protection against EAE in recipients of IL-1β-deficient MPPs. Mobilized MPPs may thus be worth considering for cell therapy of MS either per se or for enrichment of HSC grafts in autologous bone marrow transplantation already implemented in patients with severe refractory multiple sclerosis.
Collapse
Affiliation(s)
- Sarantis Korniotis
- Université de Paris, Inserm U1151, CNRS UMR 8253, Institut Necker Enfants Malades (INEM), Paris, France
| | - Maud D'Aveni
- Université de Paris, INSERM UMR 1163, Institut Imagine, Laboratory of Cellular and Molecular Mechanisms of Hematological Disorders and Therapeutic Implications, Paris, France.,Université de Lorraine, UMR 7365, IMoPA, Vandoeuvre-lès-Nancy, France.,Université de Lorraine, CHRU Nancy, Hematology Department, Nancy, France
| | | | - Hélène Letscher
- Université de Paris, Inserm U1151, CNRS UMR 8253, Institut Necker Enfants Malades (INEM), Paris, France
| | - Emmanuel Tejerina
- Université de Paris, Inserm U1151, CNRS UMR 8253, Institut Necker Enfants Malades (INEM), Paris, France
| | - Pauline Gastineau
- Université de Paris, Inserm U1151, CNRS UMR 8253, Institut Necker Enfants Malades (INEM), Paris, France
| | - Viviane A Agbogan
- Université de Paris, Inserm U1151, CNRS UMR 8253, Institut Necker Enfants Malades (INEM), Paris, France
| | - Christophe Gras
- Université de Paris, Inserm U1151, CNRS UMR 8253, Institut Necker Enfants Malades (INEM), Paris, France
| | - Guillemette Fouquet
- Université de Paris, INSERM UMR 1163, Institut Imagine, Laboratory of Cellular and Molecular Mechanisms of Hematological Disorders and Therapeutic Implications, Paris, France
| | - Julien Rossignol
- Université de Paris, INSERM UMR 1163, Institut Imagine, Laboratory of Cellular and Molecular Mechanisms of Hematological Disorders and Therapeutic Implications, Paris, France
| | - Jean-Claude Chèvre
- Université de Lorraine, Inserm U1256, NGERE, Vandoeuvre-lès-Nancy, France
| | | | - Marie-Thérèse Rubio
- Université de Lorraine, UMR 7365, IMoPA, Vandoeuvre-lès-Nancy, France.,Université de Lorraine, CHRU Nancy, Hematology Department, Nancy, France
| | - Olivier Hermine
- Université de Paris, INSERM UMR 1163, Institut Imagine, Laboratory of Cellular and Molecular Mechanisms of Hematological Disorders and Therapeutic Implications, Paris, France
| | - Flora Zavala
- Université de Paris, Inserm U1151, CNRS UMR 8253, Institut Necker Enfants Malades (INEM), Paris, France
| |
Collapse
|
9
|
Ifergan I, Miller SD. Potential for Targeting Myeloid Cells in Controlling CNS Inflammation. Front Immunol 2020; 11:571897. [PMID: 33123148 PMCID: PMC7573146 DOI: 10.3389/fimmu.2020.571897] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 09/03/2020] [Indexed: 12/20/2022] Open
Abstract
Multiple Sclerosis (MS) is characterized by immune cell infiltration to the central nervous system (CNS) as well as loss of myelin. Characterization of the cells in lesions of MS patients revealed an important accumulation of myeloid cells such as macrophages and dendritic cells (DCs). Data from the experimental autoimmune encephalomyelitis (EAE) model of MS supports the importance of peripheral myeloid cells in the disease pathology. However, the majority of MS therapies focus on lymphocytes. As we will discuss in this review, multiple strategies are now in place to target myeloid cells in clinical trials. These strategies have emerged from data in both human and mouse studies. We discuss strategies targeting myeloid cell migration, growth factors and cytokines, biological functions (with a focus on miRNAs), and immunological activities (with a focus on nanoparticles).
Collapse
Affiliation(s)
- Igal Ifergan
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States.,Interdepartmental Immunobiology Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Stephen D Miller
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States.,Interdepartmental Immunobiology Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|
10
|
Hauptmann J, Johann L, Marini F, Kitic M, Colombo E, Mufazalov IA, Krueger M, Karram K, Moos S, Wanke F, Kurschus FC, Klein M, Cardoso S, Strauß J, Bolisetty S, Lühder F, Schwaninger M, Binder H, Bechman I, Bopp T, Agarwal A, Soares MP, Regen T, Waisman A. Interleukin-1 promotes autoimmune neuroinflammation by suppressing endothelial heme oxygenase-1 at the blood-brain barrier. Acta Neuropathol 2020; 140:549-567. [PMID: 32651669 PMCID: PMC7498485 DOI: 10.1007/s00401-020-02187-x] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 06/05/2020] [Accepted: 06/26/2020] [Indexed: 12/18/2022]
Abstract
The proinflammatory cytokine interleukin 1 (IL-1) is crucially involved in the pathogenesis of multiple sclerosis (MS) and its animal model experimental autoimmune encephalomyelitis (EAE). Herein, we studied the role of IL-1 signaling in blood-brain barrier (BBB) endothelial cells (ECs), astrocytes and microglia for EAE development, using mice with the conditional deletion of its signaling receptor IL-1R1. We found that IL-1 signaling in microglia and astrocytes is redundant for the development of EAE, whereas the IL-1R1 deletion in BBB-ECs markedly ameliorated disease severity. IL-1 signaling in BBB-ECs upregulated the expression of the adhesion molecules Vcam-1, Icam-1 and the chemokine receptor Darc, all of which have been previously shown to promote CNS-specific inflammation. In contrast, IL-1R1 signaling suppressed the expression of the stress-responsive heme catabolizing enzyme heme oxygenase-1 (HO-1) in BBB-ECs, promoting disease progression via a mechanism associated with deregulated expression of the IL-1-responsive genes Vcam1, Icam1 and Ackr1 (Darc). Mechanistically, our data emphasize a functional crosstalk of BBB-EC IL-1 signaling and HO-1, controlling the transcription of downstream proinflammatory genes promoting the pathogenesis of autoimmune neuroinflammation.
Collapse
Affiliation(s)
- Judith Hauptmann
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Lisa Johann
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Federico Marini
- Center of Thrombosis and Hemostasis Mainz (CTH), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Institute for Medical Biostatistics, Epidemiology and Informatics (IMBEI), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Maja Kitic
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Elisa Colombo
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Ilgiz A Mufazalov
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Martin Krueger
- Anatomical Institute, University of Leipzig, Leipzig, Germany
| | - Khalad Karram
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Sonja Moos
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Department of Dermatology, Heidelberg University Hospital, 69120, Heidelberg, Germany
| | - Florian Wanke
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Immunology, Infectious Diseases and Ophthalmology (I2O) Discovery and Translational Area Roche Innovation Center, Basel, Switzerland
| | - Florian C Kurschus
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Department of Dermatology, Heidelberg University Hospital, 69120, Heidelberg, Germany
| | - Matthias Klein
- Institute for Immunology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | | | - Judith Strauß
- Institute for Neuroimmunology and Multiple Sclerosis Research, University Medical Center Göttingen, Göttingen, Germany
| | - Subhashini Bolisetty
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany
| | - Fred Lühder
- Institute for Neuroimmunology and Multiple Sclerosis Research, University Medical Center Göttingen, Göttingen, Germany
| | - Markus Schwaninger
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany
| | - Harald Binder
- Institute of Medical Biometry and Statistics, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| | - Ingo Bechman
- Anatomical Institute, University of Leipzig, Leipzig, Germany
| | - Tobias Bopp
- Institute for Immunology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Anupam Agarwal
- Nephrology Research and Training Center, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - Tommy Regen
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany.
| | - Ari Waisman
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany.
- Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.
| |
Collapse
|
11
|
Milovanovic J, Arsenijevic A, Stojanovic B, Kanjevac T, Arsenijevic D, Radosavljevic G, Milovanovic M, Arsenijevic N. Interleukin-17 in Chronic Inflammatory Neurological Diseases. Front Immunol 2020; 11:947. [PMID: 32582147 PMCID: PMC7283538 DOI: 10.3389/fimmu.2020.00947] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 04/22/2020] [Indexed: 12/15/2022] Open
Abstract
A critical role for IL-17, a cytokine produced by T helper 17 (Th17) cells, has been indicated in the pathogenesis of chronic inflammatory and autoimmune diseases. A positive effect of blockade of IL-17 secreted by autoreactive T cells has been shown in various inflammatory diseases. Several cytokines, whose production is affected by environmental factors, control Th17 differentiation and its maintenance in tissues during chronic inflammation. The roles of IL-17 in the pathogenesis of chronic neuroinflammatory conditions, multiple sclerosis (MS), experimental autoimmune encephalomyelitis (EAE), Alzheimer's disease, and ischemic brain injury are reviewed here. The role of environmental stimuli in Th17 differentiation is also summarized, highlighting the role of viral infection in the regulation of pathogenic T helper cells in EAE.
Collapse
Affiliation(s)
- Jelena Milovanovic
- Faculty of Medical Sciences, Center for Molecular Medicine and Stem Cell Research, University of Kragujevac, Kragujevac, Serbia
- Department of Histology and Embriology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Aleksandar Arsenijevic
- Faculty of Medical Sciences, Center for Molecular Medicine and Stem Cell Research, University of Kragujevac, Kragujevac, Serbia
| | - Bojana Stojanovic
- Faculty of Medical Sciences, Center for Molecular Medicine and Stem Cell Research, University of Kragujevac, Kragujevac, Serbia
- Department of Pathophysiology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Tatjana Kanjevac
- Department of Dentistry, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Dragana Arsenijevic
- Faculty of Medical Sciences, Center for Molecular Medicine and Stem Cell Research, University of Kragujevac, Kragujevac, Serbia
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Gordana Radosavljevic
- Faculty of Medical Sciences, Center for Molecular Medicine and Stem Cell Research, University of Kragujevac, Kragujevac, Serbia
| | - Marija Milovanovic
- Faculty of Medical Sciences, Center for Molecular Medicine and Stem Cell Research, University of Kragujevac, Kragujevac, Serbia
| | - Nebojsa Arsenijevic
- Faculty of Medical Sciences, Center for Molecular Medicine and Stem Cell Research, University of Kragujevac, Kragujevac, Serbia
| |
Collapse
|
12
|
Effect of sildenafil on neuroinflammation and synaptic plasticity pathways in experimental autoimmune encephalomyelitis. Int Immunopharmacol 2020; 85:106581. [PMID: 32442900 DOI: 10.1016/j.intimp.2020.106581] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 04/17/2020] [Accepted: 05/07/2020] [Indexed: 12/25/2022]
Abstract
Multiple sclerosis (MS) is a chronic immuno-inflammatory disease of the central nervous system characterized by demyelination and axonal damage. Cognitive changes are common in individuals with MS since inflammatory molecules secreted by microglia interfere with the physiological mechanisms of synaptic plasticity. According to previous data, inhibition of PDE5 promotes the accumulation of cGMP, which inhibits neuroinflammation and seems to improve synaptic plasticity and memory. The present study aimed to evaluate the effect of sildenafil on the signaling pathways of neuroinflammation and synaptic plasticity in experimental autoimmune encephalomyelitis (EAE). C57BL/6 mice were divided into three experimental groups (n = 10/group): (a) Control; (b) EAE; (c) EAE + sild (25 mg/kg/21 days). Sildenafil was able to delay the onset and attenuate the severity of the clinical symptoms of EAE. The drug also reduced the infiltration of CD4+ T lymphocytes and their respective IL-17 and TNF-α cytokines. Moreover, sildenafil reduced neuroinflammation in the hippocampus (assessed by the reduction of inflammatory markers IL-1β, pIKBα and pNFkB and reactive gliosis, as well as elevating the inhibitory cytokines TGF-β and IL-10). Moreover, sildenafil induced increased levels of NeuN, BDNF and pCREB, protein kinases (PKA, PKG, and pERK) and synaptophysin, and modulated the expression of the glutamate receptors AMPA and NMDA. The present findings demonstrated that sildenafil has therapeutic potential for cognitive deficit associated with multiple sclerosis.
Collapse
|
13
|
Musella A, Fresegna D, Rizzo FR, Gentile A, De Vito F, Caioli S, Guadalupi L, Bruno A, Dolcetti E, Buttari F, Bullitta S, Vanni V, Centonze D, Mandolesi G. 'Prototypical' proinflammatory cytokine (IL-1) in multiple sclerosis: role in pathogenesis and therapeutic targeting. Expert Opin Ther Targets 2020; 24:37-46. [PMID: 31899994 DOI: 10.1080/14728222.2020.1709823] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Introduction: It has been recognized for about 20 years that interleukin (IL)-1 signaling is implicated in Multiple Sclerosis (MS), a disabling, chronic, inflammatory and neurodegenerative disease of the central nervous system (CNS). Only recently, multifaceted roles of IL-1 emerged in MS pathophysiology as a result of both clinical and preclinical studies. Notably, drugs that directly target the IL-1 system have not been tested so far in MS.Areas covered: Recent studies in animal models, together with the development of ex vivo chimeric MS models, have disclosed a critical role for IL-1 not only at the peripheral level but also within the CNS. In the present review, we highlight the IL-1-dependent neuropathological aspects of MS, by providing an overview of the cells of the immune and CNS systems that respond to IL-1 signaling, and by emphasizing the subsequent effects on the CNS, from demyelinating processes, to synaptopathy, and excitotoxicity.Expert opinion: Drugs that act on the IL-1 system show a therapeutic potential in several autoinflammatory diseases and preclinical studies have highlighted the effects of these compounds in MS. We will discuss why anti-IL-1 therapies in MS have been neglected to date.
Collapse
Affiliation(s)
- Alessandra Musella
- Synaptic Immunopathology Lab, IRCCS San Raffaele Pisana, Rome, Italy.,San Raffaele University, Rome, Italy
| | - Diego Fresegna
- Synaptic Immunopathology Lab, IRCCS San Raffaele Pisana, Rome, Italy
| | - Francesca Romana Rizzo
- Synaptic Immunopathology Lab, Department of Systems Medicine, Tor Vergata University, Rome, Italy
| | - Antonietta Gentile
- Synaptic Immunopathology Lab, IRCCS San Raffaele Pisana, Rome, Italy.,Synaptic Immunopathology Lab, Department of Systems Medicine, Tor Vergata University, Rome, Italy
| | | | - Silvia Caioli
- Synaptic Immunopathology Lab, Department of Systems Medicine, Tor Vergata University, Rome, Italy
| | - Livia Guadalupi
- Synaptic Immunopathology Lab, Department of Systems Medicine, Tor Vergata University, Rome, Italy
| | - Antonio Bruno
- Synaptic Immunopathology Lab, Department of Systems Medicine, Tor Vergata University, Rome, Italy
| | - Ettore Dolcetti
- Synaptic Immunopathology Lab, Department of Systems Medicine, Tor Vergata University, Rome, Italy
| | - Fabio Buttari
- Unit of Neurology, IRCCS Neuromed, Pozzilli, IS, Italy
| | - Silvia Bullitta
- Synaptic Immunopathology Lab, Department of Systems Medicine, Tor Vergata University, Rome, Italy
| | - Valentina Vanni
- Synaptic Immunopathology Lab, IRCCS San Raffaele Pisana, Rome, Italy
| | - Diego Centonze
- Synaptic Immunopathology Lab, Department of Systems Medicine, Tor Vergata University, Rome, Italy.,Unit of Neurology, IRCCS Neuromed, Pozzilli, IS, Italy
| | - Georgia Mandolesi
- Synaptic Immunopathology Lab, IRCCS San Raffaele Pisana, Rome, Italy.,San Raffaele University, Rome, Italy
| |
Collapse
|
14
|
Yasuda K, Takeuchi Y, Hirota K. The pathogenicity of Th17 cells in autoimmune diseases. Semin Immunopathol 2019; 41:283-297. [PMID: 30891627 DOI: 10.1007/s00281-019-00733-8] [Citation(s) in RCA: 321] [Impact Index Per Article: 53.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 03/05/2019] [Indexed: 12/14/2022]
Abstract
IL-17-producing T helper (Th17) cells have been implicated in the pathogenesis of many inflammatory and autoimmune diseases. Targeting the effector cytokines IL-17 and GM-CSF secreted by autoimmune Th17 cells has been shown to be effective for the treatment of the diseases. Understanding a molecular basis of Th17 differentiation and effector functions is therefore critical for the regulation of the pathogenicity of tissue Th17 cells in chronic inflammation. Here, we discuss the roles of proinflammatory cytokines and environmental stimuli in the control of Th17 differentiation and chronic tissue inflammation by pathogenic Th17 cells in humans and in mouse models of autoimmune diseases. We also highlight recent advances in the regulation of pathogenic Th17 cells by gut microbiota and immunometabolism in autoimmune arthritis.
Collapse
Affiliation(s)
- Keiko Yasuda
- Laboratory of Integrative Biological Science, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, 606-8507, Japan.,Department of Nephrology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Yusuke Takeuchi
- Laboratory of Integrative Biological Science, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, 606-8507, Japan.,Department of Rheumatology and Clinical Immunology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Keiji Hirota
- Laboratory of Integrative Biological Science, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, 606-8507, Japan.
| |
Collapse
|
15
|
Ritvo PG, Klatzmann D. Interleukin-1 in the Response of Follicular Helper and Follicular Regulatory T Cells. Front Immunol 2019; 10:250. [PMID: 30873158 PMCID: PMC6402473 DOI: 10.3389/fimmu.2019.00250] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 01/29/2019] [Indexed: 11/14/2022] Open
Abstract
The role of interleukin-1 in the regulation of humoral responses is poorly documented, in contrast to its role in inflammation. Recent findings suggest there is an interleukin-1 axis in the follicular T cell control of B cell responses, involving interleukin-1 receptors (IL-1R1 and IL-1R2) and receptor antagonists (IL-1Ra). Here, we revisit the literature on this topic and conclude that targeting the interleukin-1 pathway should be a valuable therapeutic approach in many diseases involving excessive production of (auto)antibodies, such as autoimmune diseases or allergy.
Collapse
Affiliation(s)
- Paul-Gydéon Ritvo
- Sorbonne Université, INSERM, Immunology-Immunopathology-Immunotherapy (i3), Paris, France
| | - David Klatzmann
- Sorbonne Université, INSERM, Immunology-Immunopathology-Immunotherapy (i3), Paris, France.,AP-HP, Hôpital Pitié-Salpêtrière, Biotherapy (CIC-BTi) and Inflammation-Immunopathology-Biotherapy Department (i2B), Paris, France
| |
Collapse
|
16
|
Huang X, Feng Z, Jiang Y, Li J, Xiang Q, Guo S, Yang C, Fei L, Guo G, Zheng L, Wu Y, Chen Y. VSIG4 mediates transcriptional inhibition of Nlrp3 and Il-1β in macrophages. SCIENCE ADVANCES 2019; 5:eaau7426. [PMID: 30662948 PMCID: PMC6326752 DOI: 10.1126/sciadv.aau7426] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 11/30/2018] [Indexed: 06/03/2023]
Abstract
Hyperactivation of the NLRP3 inflammasome contributes to the pathogenesis of multiple diseases, but the mechanisms underlying transcriptional regulation of Nlrp3 remain elusive. We demonstrate here that macrophages lacking V-set and immunoglobulin domain-containing 4 (Vsig4) exhibit significant increases in Nlrp3 and Il-1β transcription, caspase-1 activation, pyroptosis, and interleukin-1β (IL-1β) secretion in response to NLRP3 inflammasome stimuli. VSIG4 interacts with MS4A6D in the formation of a surface signaling complex. VSIG4 occupancy triggers Ser232 and Ser235 phosphorylation in MS4A6D, leading to activation of JAK2-STAT3-A20 cascades that further results in nuclear factor κB suppression and Nlrp3 and Il-1β repression. Exaggerated NLRP3 and IL-1β expression in Vsig4-/- mice is accountable for deleterious disease severity in experimental autoimmune encephalomyelitis (EAE) and resistance to dextran sulfate sodium (DSS)-induced colitis. The agonistic VSIG4 antibodies (VG11), acting through NLRP3 and IL-1β suppression, show significant therapeutic efficacy in mouse EAE. These findings highlight VSIG4 as a prospective target for treating NLRP3-associated inflammatory disorders.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/therapeutic use
- Colitis/chemically induced
- Colitis/metabolism
- Dextran Sulfate/pharmacology
- Encephalomyelitis, Autoimmune, Experimental/chemically induced
- Encephalomyelitis, Autoimmune, Experimental/drug therapy
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Female
- HEK293 Cells
- Humans
- Inflammasomes/metabolism
- Interleukin-1beta/metabolism
- Macrophages/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Myelin-Oligodendrocyte Glycoprotein/pharmacology
- NLR Family, Pyrin Domain-Containing 3 Protein/metabolism
- Peptide Fragments/pharmacology
- RAW 264.7 Cells
- Receptors, Complement/genetics
- Receptors, Complement/immunology
- Receptors, Complement/metabolism
- THP-1 Cells
- Transcription, Genetic
Collapse
Affiliation(s)
- Xiaoyong Huang
- Institute of Immunology, PLA, Third Military Medical University, Chongqing 400038, People’s Republic of China
| | - Zeqing Feng
- Institute of Immunology, PLA, Third Military Medical University, Chongqing 400038, People’s Republic of China
| | - Yuanzhong Jiang
- MOE Key Laboratory for Bio-resources and Eco-environment, College of Life Science, Sichuan University, Chengdu 610064, People’s Republic of China
| | - Jialin Li
- Institute of Immunology, PLA, Third Military Medical University, Chongqing 400038, People’s Republic of China
| | - Qun Xiang
- Institute of Immunology, PLA, Third Military Medical University, Chongqing 400038, People’s Republic of China
| | - Sheng Guo
- Institute of Immunology, PLA, Third Military Medical University, Chongqing 400038, People’s Republic of China
| | - Chengying Yang
- Institute of Immunology, PLA, Third Military Medical University, Chongqing 400038, People’s Republic of China
| | - Lei Fei
- Institute of Immunology, PLA, Third Military Medical University, Chongqing 400038, People’s Republic of China
| | - Guoning Guo
- Department of Emergency, Southwest Hospital, Third Military Medical University, Chongqing 400038, People's Republic of China
| | - Lixin Zheng
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MA, USA
| | - Yuzhang Wu
- Institute of Immunology, PLA, Third Military Medical University, Chongqing 400038, People’s Republic of China
| | - Yongwen Chen
- Institute of Immunology, PLA, Third Military Medical University, Chongqing 400038, People’s Republic of China
| |
Collapse
|
17
|
Endothelial Microsomal Prostaglandin E Synthetase-1 Upregulates Vascularity and Endothelial Interleukin-1β in Deteriorative Progression of Experimental Autoimmune Encephalomyelitis. Int J Mol Sci 2018; 19:ijms19113647. [PMID: 30463256 PMCID: PMC6274996 DOI: 10.3390/ijms19113647] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 11/10/2018] [Accepted: 11/14/2018] [Indexed: 12/14/2022] Open
Abstract
Microsomal prostaglandin E synthetase-1 (mPGES-1) is an inducible terminal enzyme for the production of prostaglandin E₂ (PGE₂). In experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis, mPGES-1 is induced in vascular endothelial cells (VECs) around inflammatory foci and facilitates inflammation, demyelination, and paralysis. Therefore, we investigated the role of CD31-positive VECs in mPGES-1-mediated EAE aggravation using immunohistochemical analysis and imaging of wild-type (wt) and mPGES-1-deficient (mPGES-1-/-) mice. We demonstrated that EAE induction facilitated vascularity in inflammatory lesions in the spinal cord, and this was significantly higher in wt mice than in mPGES-1-/- mice. In addition, endothelial interleukin-1β (IL-1β) production was significantly higher in wt mice than in mPGES-1-/- mice. Moreover, endothelial PGE₂ receptors (E-prostanoid (EP) receptors EP1⁻4) were expressed after EAE induction, and IL-1β was induced in EP receptor-positive VECs. Furthermore, IL-1 receptor 1 expression on VECs was increased upon EAE induction. Thus, increased vascularity is one mechanism involved in EAE aggravation induced by mPGES-1. Furthermore, mPGES-1 facilitated the autocrine function of VECs upon EP receptor induction and IL-1β production, modulating mPGES-1 induction in EAE.
Collapse
|
18
|
Microsomal Prostaglandin E Synthase-1 Facilitates an Intercellular Interaction between CD4⁺ T Cells through IL-1β Autocrine Function in Experimental Autoimmune Encephalomyelitis. Int J Mol Sci 2017; 18:ijms18122758. [PMID: 29257087 PMCID: PMC5751357 DOI: 10.3390/ijms18122758] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 12/09/2017] [Accepted: 12/13/2017] [Indexed: 11/21/2022] Open
Abstract
Microsomal prostaglandin synthetase-1 (mPGES-1) is an inducible terminal enzyme that produces prostaglandin E2 (PGE2). In our previous study, we investigated the role of mPGES-1 in the inflammation and demyelination observed in experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis, using mPGES-1-deficient (mPGES-1−/−) and wild-type (wt) mice. We found that mPGES-1 facilitated inflammation, demyelination, and paralysis and was induced in vascular endothelial cells and macrophages and microglia around inflammatory foci. Here, we investigated the role of interleukin-1β (IL-1β) in the intercellular mechanism stimulated by mPGES-1 in EAE spinal cords in the presence of inflammation. We found that the area invaded by CD4-positive (CD4+) T cells was extensive, and that PGE2 receptors EP1–4 were more induced in activated CD4+ T cells of wt mice than in those of mPGES-1−/− mice. Moreover, IL-1β and IL-1 receptor 1 (IL-1r1) were produced by 65% and 48% of CD4+ T cells in wt mice and by 44% and 27% of CD4+ T cells in mPGES-1−/− mice. Furthermore, interleukin-17 (IL-17) was released from the activated CD4+ T cells. Therefore, mPGES-1 stimulates an intercellular interaction between CD4+ T cells by upregulating the autocrine function of IL-1β in activated CD4+ T cells, which release IL-17 to facilitate axonal and myelin damage in EAE mice.
Collapse
|
19
|
Sutton CE, Finlay CM, Raverdeau M, Early JO, DeCourcey J, Zaslona Z, O'Neill LAJ, Mills KHG, Curtis AM. Loss of the molecular clock in myeloid cells exacerbates T cell-mediated CNS autoimmune disease. Nat Commun 2017; 8:1923. [PMID: 29234010 PMCID: PMC5727202 DOI: 10.1038/s41467-017-02111-0] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 11/07/2017] [Indexed: 12/26/2022] Open
Abstract
The transcription factor BMAL1 is a core component of the molecular clock, regulating biological pathways that drive 24 h (circadian) rhythms in behaviour and physiology. The molecular clock has a profound influence on innate immune function, and circadian disruption is linked with increased incidence of multiple sclerosis (MS). However, the mechanisms underlying this association are unknown. Here we show that BMAL1 and time-of-day regulate the accumulation and activation of various immune cells in a CNS autoimmune disease model, experimental autoimmune encephalomyelitis (EAE). In myeloid cells, BMAL1 maintains anti-inflammatory responses and reduces T cell polarization. Loss of myeloid BMAL1 or midday immunizations to induce EAE create an inflammatory environment in the CNS through expansion and infiltration of IL-1β-secreting CD11b+Ly6Chi monocytes, resulting in increased pathogenic IL-17+/IFN-γ+ T cells. These findings demonstrate the importance of the molecular clock in modulating innate and adaptive immune crosstalk under autoimmune conditions.
Collapse
Affiliation(s)
- Caroline E Sutton
- Immune Regulation Research Group, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, D02 R590, Dublin, Ireland
| | - Conor M Finlay
- Immune Regulation Research Group, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, D02 R590, Dublin, Ireland
| | - Mathilde Raverdeau
- Immune Regulation Research Group, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, D02 R590, Dublin, Ireland
| | - James O Early
- Inflammatory Research Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, D02 R590, Dublin, Ireland
- Department of Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland (RCSI), 123 St. Stephens Green, D02 YN77, Dublin, Ireland
| | - Joseph DeCourcey
- Immune Regulation Research Group, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, D02 R590, Dublin, Ireland
| | - Zbigniew Zaslona
- Inflammatory Research Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, D02 R590, Dublin, Ireland
| | - Luke A J O'Neill
- Inflammatory Research Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, D02 R590, Dublin, Ireland
| | - Kingston H G Mills
- Immune Regulation Research Group, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, D02 R590, Dublin, Ireland.
| | - Annie M Curtis
- Department of Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland (RCSI), 123 St. Stephens Green, D02 YN77, Dublin, Ireland.
| |
Collapse
|
20
|
Gu SM, Park MH, Yun HM, Han SB, Oh KW, Son DJ, Yun JS, Hong JT. CCR5 knockout suppresses experimental autoimmune encephalomyelitis in C57BL/6 mice. Oncotarget 2017; 7:15382-93. [PMID: 26985768 PMCID: PMC4941248 DOI: 10.18632/oncotarget.8097] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Accepted: 02/28/2016] [Indexed: 12/26/2022] Open
Abstract
Multiple sclerosis (MS) is an inflammatory disease in which myelin in the spinal cord is damaged. C-C chemokine receptor type 5 (CCR5) is implicated in immune cell migration and cytokine release in central nervous system (CNS). We investigated whether CCR5 plays a role in MS progression using a murine model, experimental autoimmune encephalomyelitis (EAE), in CCR5 deficient (CCR5-/-) mice. CCR5-/- and CCR5+/+ (wild-type) mice were immunized with myelin oligodendrocyte glycoprotein 35-55 (MOG35-55) followed by pertussis toxin, after which EAE paralysis was scored for 28 days. We found that clinical scoring and EAE neuropathology were lower in CCR5-/- mice than CCR5+/+ mice. Immune cells (CD3+, CD4+, CD8+, B cell, NK cell and macrophages) infiltration and astrocytes/microglial activation were attenuated in CCR5-/- mice. Moreover, levels of IL-1β, TNF-α, IFN-γ and MCP-1 cytokine levels were decreased in CCR5-/- mice spinal cord. Myelin basic protein (MBP) and CNPase were increased while NG2 and O4 were decreased in CCR5-/- mice, indicating that demyelination was suppressed by CCR5 gene deletion. These findings suggest that CCR5 is likely participating in demyelination in the spinal cord the MS development, and that it could serve as an effective therapeutic target for the treatment of MS.
Collapse
Affiliation(s)
- Sun Mi Gu
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju-si, Chungcheongbuk-do, Republic of Korea
| | - Mi Hee Park
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju-si, Chungcheongbuk-do, Republic of Korea
| | - Hyung Mun Yun
- Department of Maxillofacial Tissue Regeneration, School of Dentistry and Research Center for Tooth and Periodontal Regeneration (MRC), Kyung Hee University, Seoul, Republic of Korea
| | - Sang Bae Han
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju-si, Chungcheongbuk-do, Republic of Korea
| | - Ki Wan Oh
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju-si, Chungcheongbuk-do, Republic of Korea
| | - Dong Ju Son
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju-si, Chungcheongbuk-do, Republic of Korea
| | - Jae Suk Yun
- Pharmacological Research Division, National Institute of Food and Drug Safety Evaluation (NIFDS), Ministry of Food and Drug Safety (MFDS), Cheongju-si, Chungcheongbuk-do, Republic of Korea
| | - Jin Tae Hong
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju-si, Chungcheongbuk-do, Republic of Korea
| |
Collapse
|
21
|
Lin CC, Edelson BT. New Insights into the Role of IL-1β in Experimental Autoimmune Encephalomyelitis and Multiple Sclerosis. THE JOURNAL OF IMMUNOLOGY 2017; 198:4553-4560. [PMID: 28583987 DOI: 10.4049/jimmunol.1700263] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 03/23/2017] [Indexed: 01/05/2023]
Abstract
Multiple sclerosis (MS), and its animal model experimental autoimmune encephalomyelitis, are neuroinflammatory diseases driven by autoreactive pathogenic TH cells that elicit demyelination and axonal damage. How TH cells acquire pathogenicity and communicate with myeloid cells and cells of the CNS remain unclear. IL-1β is recognized to play an important role in experimental autoimmune encephalomyelitis (EAE) and perhaps MS. Clinical EAE is significantly attenuated in IL-1R-deficient and IL-1β-deficient mice, and IL-1β is found in the blood, cerebrospinal fluid, and CNS lesions of MS patients. In this article, we focus on new reports that elucidate the cellular sources of IL-1β and its actions during EAE, in both lymphoid tissues and within the CNS. Several immune cell types serve as critical producers of IL-1β during EAE, with this cytokine inducing response in both hematopoietic and nonhematopoietic cells. These findings from the EAE model should inspire efforts toward investigating the therapeutic potential of IL-1 blockade in MS.
Collapse
Affiliation(s)
- Chih-Chung Lin
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Brian T Edelson
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| |
Collapse
|
22
|
Mendiola AS, Cardona AE. The IL-1β phenomena in neuroinflammatory diseases. J Neural Transm (Vienna) 2017; 125:781-795. [PMID: 28534174 DOI: 10.1007/s00702-017-1732-9] [Citation(s) in RCA: 167] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 05/04/2017] [Indexed: 02/06/2023]
Abstract
It is becoming increasingly clear that neuroinflammation has a causal role in the pathogenesis of central nervous system (CNS)-related diseases, and therefore therapeutic strategies targeting the regulation or availability of inflammatory mediators can be used to prevent or mitigate pathology. Interestingly, the proinflammatory cytokine, interleukin-1 beta (IL-1β), has been implicated in perpetuating immune responses and contributing to disease severity in a variety of CNS diseases ranging from multiple sclerosis, neurodegenerative diseases, traumatic brain injury, and diabetic retinopathy. Moreover, pharmacological blockade of IL-1 signaling has shown to be beneficial in some autoimmune and autoinflammatory diseases, making IL-1β a promising therapeutic target in neuroinflammatory conditions. This review highlights recent advances of our understanding on the multifaceted roles of IL-1β in neuroinflammatory diseases.
Collapse
Affiliation(s)
- Andrew S Mendiola
- Department of Biology, University of Texas at San Antonio, San Antonio, TX, 78249, USA
| | - Astrid E Cardona
- Department of Biology, University of Texas at San Antonio, San Antonio, TX, 78249, USA.
| |
Collapse
|
23
|
Involvement of the IL-1 system in experimental autoimmune encephalomyelitis and multiple sclerosis: Breaking the vicious cycle between IL-1β and GM-CSF. Brain Behav Immun 2017; 62:1-8. [PMID: 27432634 DOI: 10.1016/j.bbi.2016.07.146] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 07/07/2016] [Accepted: 07/14/2016] [Indexed: 02/08/2023] Open
Abstract
Multiple sclerosis (MS) is an autoimmune disease that affects hundreds of thousands of people worldwide. Given the autoimmune nature of the disease, a large part of the research has focused on autoreactive T and B cells. However, research on the involvement of myeloid cells in the pathophysiology of MS has received a strong and renewed attention over the recent years. Despite the multitude of inflammatory mediators involved in innate immunity, only a select group of cytokines are absolutely critical to the development of CNS autoimmunity, among which is interleukin (IL)-1. While the importance of the IL-1 system in experimental autoimmune encephalomyelitis (EAE) and MS has been recognized for about 20years, it is only recently that we have begun to understand that IL-1 plays multifaceted roles in disease initiation, development, amplification and chronicity. Here, we review the recent findings showing an implication of the IL-1 system in EAE and MS, and introduce a model that highlights how IL-1β and granulocyte-macrophage colony-stimulating factor (GM-CSF) are interacting together to create a vicious feedback cycle of CNS inflammation that ultimately leads to myelin and neuronal damage.
Collapse
|
24
|
Gao Y, Xu X, Feng J, Ma Y, Zheng D, Meng Y, Shan F. Effects of interleukin-1 receptor-associated kinase 1 RNA interference in dendritic cells on inflammatory cytokine release and T-cell proliferation. Mol Med Rep 2016; 14:5685-5692. [DOI: 10.3892/mmr.2016.5946] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 09/14/2016] [Indexed: 11/06/2022] Open
|
25
|
Lévesque SA, Paré A, Mailhot B, Bellver-Landete V, Kébir H, Lécuyer MA, Alvarez JI, Prat A, de Rivero Vaccari JP, Keane RW, Lacroix S. Myeloid cell transmigration across the CNS vasculature triggers IL-1β-driven neuroinflammation during autoimmune encephalomyelitis in mice. J Exp Med 2016; 213:929-49. [PMID: 27139491 PMCID: PMC4886360 DOI: 10.1084/jem.20151437] [Citation(s) in RCA: 125] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 03/21/2016] [Indexed: 12/11/2022] Open
Abstract
Growing evidence supports a role for IL-1 in multiple sclerosis and experimental autoimmune encephalomyelitis (EAE), but how it impacts neuroinflammation is poorly understood. We show that susceptibility to EAE requires activation of IL-1R1 on radiation-resistant cells via IL-1β secreted by bone marrow-derived cells. Neutrophils and monocyte-derived macrophages (MDMs) are the main source of IL-1β and produce this cytokine as a result of their transmigration across the inflamed blood-spinal cord barrier. IL-1R1 expression in the spinal cord is found in endothelial cells (ECs) of the pial venous plexus. Accordingly, leukocyte infiltration at EAE onset is restricted to IL-1R1(+) subpial and subarachnoid vessels. In response to IL-1β, primary cultures of central nervous system ECs produce GM-CSF, G-CSF, IL-6, Cxcl1, and Cxcl2. Initiation of EAE or subdural injection of IL-1β induces a similar cytokine/chemokine signature in spinal cord vessels. Furthermore, the transfer of Gr1(+) cells on the spinal cord is sufficient to induce illness in EAE-resistant IL-1β knockout (KO) mice. Notably, transfer of Gr1(+) cells isolated from C57BL/6 mice induce massive recruitment of recipient myeloid cells compared with cells from IL-1β KO donors, and this recruitment translates into more severe paralysis. These findings suggest that an IL-1β-dependent paracrine loop between infiltrated neutrophils/MDMs and ECs drives neuroinflammation.
Collapse
Affiliation(s)
- Sébastien A Lévesque
- Centre de Recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Département de Médecine Moléculaire, Faculté de Médecine, Université Laval, Québec, QC G1V 4G2, Canada
| | - Alexandre Paré
- Centre de Recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Département de Médecine Moléculaire, Faculté de Médecine, Université Laval, Québec, QC G1V 4G2, Canada
| | - Benoit Mailhot
- Centre de Recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Département de Médecine Moléculaire, Faculté de Médecine, Université Laval, Québec, QC G1V 4G2, Canada
| | - Victor Bellver-Landete
- Centre de Recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Département de Médecine Moléculaire, Faculté de Médecine, Université Laval, Québec, QC G1V 4G2, Canada
| | - Hania Kébir
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Département de Neurosciences, Faculté de Médecine, Université de Montréal, Montréal, QC H2X 0A9, Canada
| | - Marc-André Lécuyer
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Département de Neurosciences, Faculté de Médecine, Université de Montréal, Montréal, QC H2X 0A9, Canada
| | - Jorge Ivan Alvarez
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Département de Neurosciences, Faculté de Médecine, Université de Montréal, Montréal, QC H2X 0A9, Canada Department of Pathobiology, University of Pennsylvania, Philadelphia, PA 19104
| | - Alexandre Prat
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Département de Neurosciences, Faculté de Médecine, Université de Montréal, Montréal, QC H2X 0A9, Canada
| | - Juan Pablo de Rivero Vaccari
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, Miller School of Medicine, University of Miami, Miami, FL 33136
| | - Robert W Keane
- Department of Physiology and Biophysics, Miller School of Medicine, University of Miami, Miami, FL 33136
| | - Steve Lacroix
- Centre de Recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Département de Médecine Moléculaire, Faculté de Médecine, Université Laval, Québec, QC G1V 4G2, Canada
| |
Collapse
|
26
|
Evangelista MG, Castro SBRD, Alves CCDS, Dias AT, Souza VWD, Reis LBD, Silva LCD, Castañon MCMN, Farias RE, Juliano MA, Ferreira AP. Early IFN-γ production together with decreased expression of TLR3 and TLR9 characterizes EAE development conditional on the presence of myelin. Autoimmunity 2016; 49:258-67. [PMID: 26911613 DOI: 10.3109/08916934.2016.1141898] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Experimental autoimmune encephalomyelitis (EAE) is a model for the study of multiple sclerosis, which is an inflammatory and demyelinating disease of the central nervous system (CNS). Despite increased efforts to elucidate the function of toll-like receptors (TLRs) in autoimmune diseases of the CNS, the relative contribution of other factors, including the immunomodulatory properties of TLR signaling, role of the innate response and the presence or absence of myelin peptides remain unclear. The aim was to evaluate TLR expression in the CNS during EAE development by investigating the expression of TLRs in the initial phase of EAE and establishing correlations with the modulation of inflammatory factors. Mice were subcutaneously immunized at the tail base with 100 μg of myelin oligodendrocyte glycoprotein peptide (MOG35-55), emulsified in complete Freund's adjuvant (CFA) supplemented with 400 μg of attenuated Mycobacterium tuberculosis H37RA. Pertussis toxin (300 ng per animal) was intraperitoneally injected on the day of immunization and 48 h later. Another group (MOG(-)) received an equal emulsion of CFA and M. tuberculosis, without MOG35-55, and the same protocol of Pertussis toxin. The immunized mice presented signs of disease with increased IFN-γ production and presence of NK cells on Day 2 postimmunization and reduced the expression of TLR-3 and TLR-9. In the spinal cord, CCL5 and CCL20 were higher in EAE. This study establishes a correlation between TLR-3 and TLR-9 expression with the development of EAE. In addition, evidence of a role for the myelin peptide in targeting the innate inflammatory response to the CNS is presented.
Collapse
Affiliation(s)
- Marcilene Gomes Evangelista
- a IMUNOCET - Department of Parasitology, Microbiology and Immunology , Institute of Biological Sciences, Federal University of Juiz de Fora , Juiz de Fora , Brazil
| | - Sandra Bertelli Ribeiro De Castro
- a IMUNOCET - Department of Parasitology, Microbiology and Immunology , Institute of Biological Sciences, Federal University of Juiz de Fora , Juiz de Fora , Brazil .,b Department of Pharmacy , Federal University of Juiz de Fora , Governador Valadares , Brazil
| | - Caio César De Souza Alves
- a IMUNOCET - Department of Parasitology, Microbiology and Immunology , Institute of Biological Sciences, Federal University of Juiz de Fora , Juiz de Fora , Brazil .,c Faculty of Medicine , Federal University of the Valleys of Jequitinhonha and Mucuri , Teófilo Otoni , Brazil
| | - Alyria Teixeira Dias
- a IMUNOCET - Department of Parasitology, Microbiology and Immunology , Institute of Biological Sciences, Federal University of Juiz de Fora , Juiz de Fora , Brazil
| | - Viano Wyallison De Souza
- a IMUNOCET - Department of Parasitology, Microbiology and Immunology , Institute of Biological Sciences, Federal University of Juiz de Fora , Juiz de Fora , Brazil
| | - Lívia Bittencourt Dos Reis
- a IMUNOCET - Department of Parasitology, Microbiology and Immunology , Institute of Biological Sciences, Federal University of Juiz de Fora , Juiz de Fora , Brazil
| | - Luan Cristian Da Silva
- a IMUNOCET - Department of Parasitology, Microbiology and Immunology , Institute of Biological Sciences, Federal University of Juiz de Fora , Juiz de Fora , Brazil
| | | | - Rogério Estevam Farias
- d Department of Morphology , Federal University of Juiz de Fora , Juiz de Fora , Brazil , and
| | | | - Ana Paula Ferreira
- a IMUNOCET - Department of Parasitology, Microbiology and Immunology , Institute of Biological Sciences, Federal University of Juiz de Fora , Juiz de Fora , Brazil
| |
Collapse
|
27
|
The immunobiology of Campylobacter jejuni: Innate immunity and autoimmune diseases. Immunobiology 2015; 221:535-43. [PMID: 26709064 DOI: 10.1016/j.imbio.2015.12.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 12/05/2015] [Accepted: 12/06/2015] [Indexed: 12/26/2022]
Abstract
The Gram-negative bacterium Campylobacter jejuni causes gastroenteritis and Guillain-Barré syndrome in humans. Recent advances in the immunobiology of C. jejuni have been made. This review summarizes C. jejuni-binding innate receptors and highlights the role of innate immunity in autoimmune diseases. This human pathogen produces a variety of glycoconjugates, including human ganglioside-like determinants and multiple activators of Toll-like receptors (TLRs). Furthermore, C. jejuni targets MyD88, NLRP3 inflammasome, TIR-domain-containing adapter-inducing interferon-β (TRIF), sialic acid-binding immunoglobulin-like lectins (Siglecs), macrophage galactose-type lectin (MGL), and immunoglobulin-like receptors (TREM2, LMIR5/CD300b). The roles of these innate receptors and signaling molecules have been extensively studied. MyD88-mediated TLR activation or inflammasome-dependent IL-1β secretion is essential for autoimmune induction. TRIF mediates the production of type I interferons that promote humoral immune responses and immunoglobulin class-switching. Siglec-1 and Siglec-7 interact directly with gangliosides. Siglec-1 activation enhances phagocytosis and inflammatory responses. MGL internalizes GalNAc-containing glycoconjugates. TREM2 is well-known for its role in phagocytosis. LMIR5 recognizes C. jejuni components and endogenous sulfoglycolipids. Several lines of evidence from animal models of autoimmune diseases suggest that simultaneous activation of innate immunity in the presence of autoreactive lymphocytes or antigen mimicry may link C. jejuni to immunopathology.
Collapse
|
28
|
Rodrigues DH, Leles BP, Costa VV, Miranda AS, Cisalpino D, Gomes DA, de Souza DG, Teixeira AL. IL-1β Is Involved with the Generation of Pain in Experimental Autoimmune Encephalomyelitis. Mol Neurobiol 2015; 53:6540-6547. [PMID: 26614512 DOI: 10.1007/s12035-015-9552-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 11/18/2015] [Indexed: 12/24/2022]
Abstract
Pain is one of the main symptoms of multiple sclerosis, a demyelinating disease of the central nervous system that affects millions of people worldwide. The experimental autoimmune encephalomyelitis (EAE) is considered an experimental model of multiple sclerosis, and besides motor weakness, hypernociception is one of the clinical signs of animals with EAE. In this study, we investigated the influence of some cytokines in the generation of the hypernociceptive response in a mouse model of EAE using MOG35-55. We measured some cytokines in the dorsal root ganglia (DRG), an important anatomical structure involved in pain. We found increased levels of the cytokines TNF-α, IL-1β, and Kc in DRGs of animals with EAE. We used the antibody IL-1ra to antagonize the effects of IL-1β, and animals presented a decrease in the hypernociceptive response. Thus, our results suggest that hypernociception in this experimental model of EAE may be a consequence of the increase in some cytokines in DRGs, especially IL-1β.
Collapse
MESH Headings
- Animals
- Chemokine CXCL1/metabolism
- Encephalomyelitis, Autoimmune, Experimental/complications
- Encephalomyelitis, Autoimmune, Experimental/genetics
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Encephalomyelitis, Autoimmune, Experimental/physiopathology
- Female
- Ganglia, Spinal/metabolism
- Ganglia, Spinal/pathology
- Interleukin 1 Receptor Antagonist Protein/metabolism
- Interleukin-1beta/metabolism
- Mice, Inbred C57BL
- Myelin-Oligodendrocyte Glycoprotein
- NAV1.8 Voltage-Gated Sodium Channel/genetics
- NAV1.8 Voltage-Gated Sodium Channel/metabolism
- Nociception
- Pain/complications
- Pain/genetics
- Pain/metabolism
- Pain/physiopathology
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Spinal Cord/metabolism
- Spinal Cord/pathology
- TRPV Cation Channels/genetics
- TRPV Cation Channels/metabolism
- Tumor Necrosis Factor-alpha/metabolism
Collapse
Affiliation(s)
- David Henrique Rodrigues
- Department of Basic and Health Sciences, Universidade Federal de Juiz de Fora-campus Governador Valadares, de Juiz de Fora, Brazil.
- Translational Psychoneuroimmunology Group, Laboratory of Immunopharmacology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
- Department of Biochemistry, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil.
| | - Bruno Pereira Leles
- Department of Biochemistry, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Vivian Vasconcelos Costa
- Department of Biochemistry, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Aline Silva Miranda
- Translational Psychoneuroimmunology Group, Laboratory of Immunopharmacology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Daniel Cisalpino
- Department of Biochemistry, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Dawidson Assis Gomes
- Department of Biochemistry, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Danielle Glória de Souza
- Department of Biochemistry, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Antônio Lúcio Teixeira
- Translational Psychoneuroimmunology Group, Laboratory of Immunopharmacology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Department of Biochemistry, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| |
Collapse
|
29
|
Murta V, Farías MI, Pitossi FJ, Ferrari CC. Chronic systemic IL-1β exacerbates central neuroinflammation independently of the blood-brain barrier integrity. J Neuroimmunol 2014; 278:30-43. [PMID: 25595250 DOI: 10.1016/j.jneuroim.2014.11.023] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2014] [Revised: 11/24/2014] [Accepted: 11/27/2014] [Indexed: 12/13/2022]
Abstract
Peripheral circulating cytokines are involved in immune to brain communication and systemic inflammation is considered a risk factor for flaring up the symptoms in most neurodegenerative diseases. We induced both central inflammatory demyelinating lesion, and systemic inflammation with an interleukin-1β expressing adenovector. The peripheral pro-inflammatory stimulus aggravated the ongoing central lesion independently of the blood-brain barrier (BBB) integrity. This model allows studying the role of specific molecules and cells (neutrophils) from the innate immune system, in the relationship between central and peripheral communication, and on relapsing episodes of demyelinating lesions, along with the role of BBB integrity.
Collapse
Affiliation(s)
- Verónica Murta
- Laboratorio de Terapias Regenerativas y Protectoras del Sistema Nervioso, Leloir Institute Foundation, Institute for Biochemical Investigations, CONICET, Buenos Aires, Argentina.
| | - María Isabel Farías
- Laboratorio de Terapias Regenerativas y Protectoras del Sistema Nervioso, Leloir Institute Foundation, Institute for Biochemical Investigations, CONICET, Buenos Aires, Argentina.
| | - Fernando Juan Pitossi
- Laboratorio de Terapias Regenerativas y Protectoras del Sistema Nervioso, Leloir Institute Foundation, Institute for Biochemical Investigations, CONICET, Buenos Aires, Argentina.
| | - Carina Cintia Ferrari
- Laboratorio de Terapias Regenerativas y Protectoras del Sistema Nervioso, Leloir Institute Foundation, Institute for Biochemical Investigations, CONICET, Buenos Aires, Argentina.
| |
Collapse
|
30
|
Aubé B, Lévesque SA, Paré A, Chamma É, Kébir H, Gorina R, Lécuyer MA, Alvarez JI, De Koninck Y, Engelhardt B, Prat A, Côté D, Lacroix S. Neutrophils mediate blood-spinal cord barrier disruption in demyelinating neuroinflammatory diseases. THE JOURNAL OF IMMUNOLOGY 2014; 193:2438-54. [PMID: 25049355 DOI: 10.4049/jimmunol.1400401] [Citation(s) in RCA: 177] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Disruption of the blood-brain and blood-spinal cord barriers (BBB and BSCB, respectively) and immune cell infiltration are early pathophysiological hallmarks of multiple sclerosis (MS), its animal model experimental autoimmune encephalomyelitis (EAE), and neuromyelitis optica (NMO). However, their contribution to disease initiation and development remains unclear. In this study, we induced EAE in lys-eGFP-ki mice and performed single, nonterminal intravital imaging to investigate BSCB permeability simultaneously with the kinetics of GFP(+) myeloid cell infiltration. We observed a loss in BSCB integrity within a day of disease onset, which paralleled the infiltration of GFP(+) cells into the CNS and lasted for ∼4 d. Neutrophils accounted for a significant proportion of the circulating and CNS-infiltrating myeloid cells during the preclinical phase of EAE, and their depletion delayed the onset and reduced the severity of EAE while maintaining BSCB integrity. We also show that neutrophils collected from the blood or bone marrow of EAE mice transmigrate more efficiently than do neutrophils of naive animals in a BBB cell culture model. Moreover, using intravital videomicroscopy, we demonstrate that the IL-1R type 1 governs the firm adhesion of neutrophils to the inflamed spinal cord vasculature. Finally, immunostaining of postmortem CNS material obtained from an acutely ill multiple sclerosis patient and two neuromyelitis optica patients revealed instances of infiltrated neutrophils associated with regions of BBB or BSCB leakage. Taken together, our data provide evidence that neutrophils are involved in the initial events that take place during EAE and that they are intimately linked with the status of the BBB/BSCB.
Collapse
Affiliation(s)
- Benoit Aubé
- Centre de Recherche du Centre Hospitalier Universitaire de Québec-Centre Hospitalier de l'Université Laval, Quebec, Quebec G1V 4G2, Canada; Département de Médecine Moléculaire, Faculté de Médecine, Université Laval, Quebec, Quebec G1V 0A6, Canada; Centre de Recherche de l'Institut Universitaire en Santé Mentale de Québec, Université Laval, Quebec, Quebec G1J 2G3, Canada; Centre d'Optique, Photonique et Laser, Université Laval, Quebec, Quebec G1V 0A6, Canada
| | - Sébastien A Lévesque
- Centre de Recherche du Centre Hospitalier Universitaire de Québec-Centre Hospitalier de l'Université Laval, Quebec, Quebec G1V 4G2, Canada; Département de Médecine Moléculaire, Faculté de Médecine, Université Laval, Quebec, Quebec G1V 0A6, Canada
| | - Alexandre Paré
- Centre de Recherche du Centre Hospitalier Universitaire de Québec-Centre Hospitalier de l'Université Laval, Quebec, Quebec G1V 4G2, Canada; Département de Médecine Moléculaire, Faculté de Médecine, Université Laval, Quebec, Quebec G1V 0A6, Canada
| | - Émilie Chamma
- Centre de Recherche de l'Institut Universitaire en Santé Mentale de Québec, Université Laval, Quebec, Quebec G1J 2G3, Canada; Centre d'Optique, Photonique et Laser, Université Laval, Quebec, Quebec G1V 0A6, Canada
| | - Hania Kébir
- Unité de Neuroimmunologie, Centre d'Excellence en Neuromique, Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Faculté de Médecine, Université de Montréal, Montréal, Quebec H3C 3J7, Canada; and
| | - Roser Gorina
- Theodor Kocher Institute, University of Bern, 3012 Bern, Switzerland
| | - Marc-André Lécuyer
- Unité de Neuroimmunologie, Centre d'Excellence en Neuromique, Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Faculté de Médecine, Université de Montréal, Montréal, Quebec H3C 3J7, Canada; and
| | - Jorge I Alvarez
- Unité de Neuroimmunologie, Centre d'Excellence en Neuromique, Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Faculté de Médecine, Université de Montréal, Montréal, Quebec H3C 3J7, Canada; and
| | - Yves De Koninck
- Centre de Recherche de l'Institut Universitaire en Santé Mentale de Québec, Université Laval, Quebec, Quebec G1J 2G3, Canada
| | - Britta Engelhardt
- Theodor Kocher Institute, University of Bern, 3012 Bern, Switzerland
| | - Alexandre Prat
- Unité de Neuroimmunologie, Centre d'Excellence en Neuromique, Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Faculté de Médecine, Université de Montréal, Montréal, Quebec H3C 3J7, Canada; and
| | - Daniel Côté
- Centre de Recherche de l'Institut Universitaire en Santé Mentale de Québec, Université Laval, Quebec, Quebec G1J 2G3, Canada; Centre d'Optique, Photonique et Laser, Université Laval, Quebec, Quebec G1V 0A6, Canada
| | - Steve Lacroix
- Centre de Recherche du Centre Hospitalier Universitaire de Québec-Centre Hospitalier de l'Université Laval, Quebec, Quebec G1V 4G2, Canada; Département de Médecine Moléculaire, Faculté de Médecine, Université Laval, Quebec, Quebec G1V 0A6, Canada;
| |
Collapse
|
31
|
Procaccini C, Pucino V, De Rosa V, Marone G, Matarese G. Neuro-endocrine networks controlling immune system in health and disease. Front Immunol 2014; 5:143. [PMID: 24778633 PMCID: PMC3985001 DOI: 10.3389/fimmu.2014.00143] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 03/19/2014] [Indexed: 01/03/2023] Open
Abstract
The nervous and immune systems have long been considered as compartments that perform separate and different functions. However, recent clinical, epidemiological, and experimental data have suggested that the pathogenesis of several immune-mediated disorders, such as multiple sclerosis (MS), might involve factors, hormones, and neural mediators that link the immune and nervous system. These molecules are members of the same superfamily, which allow the mutual and bi-directional neural-immune interaction. More recently, the discovery of leptin, one of the most abundant adipocyte-derived hormones that control food intake and metabolism, has suggested that nutritional/metabolic status, acting at central level, can control immune self-tolerance, since it promotes experimental autoimmune encephalomyelitis, an animal model of MS. Here, we summarize the most recent advances and the key players linking the central nervous system, immune tolerance, and the metabolic status. Understanding this coordinated interaction may pave the way for novel therapeutic approaches to increase host defense and suppress immune-mediated disorders.
Collapse
Affiliation(s)
- Claudio Procaccini
- Laboratorio di Immunologia, Istituto di Endocrinologia e Oncologia Sperimentale, Consiglio Nazionale delle Ricerche , Napoli , Italy
| | - Valentina Pucino
- Dipartimento di Scienze Mediche Traslazionali, Università di Napoli "Federico II" , Napoli , Italy
| | - Veronica De Rosa
- Laboratorio di Immunologia, Istituto di Endocrinologia e Oncologia Sperimentale, Consiglio Nazionale delle Ricerche , Napoli , Italy ; Unità di Neuroimmunologia, IRCCS Fondazione Santa Lucia , Roma , Italy
| | - Gianni Marone
- Dipartimento di Scienze Mediche Traslazionali, Università di Napoli "Federico II" , Napoli , Italy ; Centro Interdipartimentale di Ricerca in Scienze Immunologiche di Base e Cliniche, Università di Napoli "Federico II" , Napoli , Italy
| | - Giuseppe Matarese
- Dipartimento di Medicina e Chirurgia, Università degli Studi di Salerno , Salerno , Italy ; IRCCS Multimedica , Milano , Italy
| |
Collapse
|
32
|
Procaccini C, Pucino V, De Rosa V, Marone G, Matarese G. Neuro-endocrine networks controlling immune system in health and disease. Front Immunol 2014. [PMID: 24778633 DOI: 10.3389/fimmu.2014.00143/abstract] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The nervous and immune systems have long been considered as compartments that perform separate and different functions. However, recent clinical, epidemiological, and experimental data have suggested that the pathogenesis of several immune-mediated disorders, such as multiple sclerosis (MS), might involve factors, hormones, and neural mediators that link the immune and nervous system. These molecules are members of the same superfamily, which allow the mutual and bi-directional neural-immune interaction. More recently, the discovery of leptin, one of the most abundant adipocyte-derived hormones that control food intake and metabolism, has suggested that nutritional/metabolic status, acting at central level, can control immune self-tolerance, since it promotes experimental autoimmune encephalomyelitis, an animal model of MS. Here, we summarize the most recent advances and the key players linking the central nervous system, immune tolerance, and the metabolic status. Understanding this coordinated interaction may pave the way for novel therapeutic approaches to increase host defense and suppress immune-mediated disorders.
Collapse
Affiliation(s)
- Claudio Procaccini
- Laboratorio di Immunologia, Istituto di Endocrinologia e Oncologia Sperimentale, Consiglio Nazionale delle Ricerche , Napoli , Italy
| | - Valentina Pucino
- Dipartimento di Scienze Mediche Traslazionali, Università di Napoli "Federico II" , Napoli , Italy
| | - Veronica De Rosa
- Laboratorio di Immunologia, Istituto di Endocrinologia e Oncologia Sperimentale, Consiglio Nazionale delle Ricerche , Napoli , Italy ; Unità di Neuroimmunologia, IRCCS Fondazione Santa Lucia , Roma , Italy
| | - Gianni Marone
- Dipartimento di Scienze Mediche Traslazionali, Università di Napoli "Federico II" , Napoli , Italy ; Centro Interdipartimentale di Ricerca in Scienze Immunologiche di Base e Cliniche, Università di Napoli "Federico II" , Napoli , Italy
| | - Giuseppe Matarese
- Dipartimento di Medicina e Chirurgia, Università degli Studi di Salerno , Salerno , Italy ; IRCCS Multimedica , Milano , Italy
| |
Collapse
|
33
|
Klementiev B, Li S, Korshunova I, Dmytriyeva O, Pankratova S, Walmod PS, Kjær LK, Dahllöf MS, Lundh M, Christensen DP, Mandrup-Poulsen T, Bock E, Berezin V. Anti-inflammatory properties of a novel peptide interleukin 1 receptor antagonist. J Neuroinflammation 2014; 11:27. [PMID: 24490798 PMCID: PMC3923439 DOI: 10.1186/1742-2094-11-27] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 01/20/2014] [Indexed: 01/09/2023] Open
Abstract
Background Interleukin 1 (IL-1) is implicated in neuroinflammation, an essential component of neurodegeneration. We evaluated the potential anti-inflammatory effect of a novel peptide antagonist of IL-1 signaling, Ilantide. Methods We investigated the binding of Ilantide to IL-1 receptor type I (IL-1RI) using surface plasmon resonance, the inhibition of Il-1β-induced activation of nuclear factor κB (NF-κB) in HEK-Blue cells that contained an IL-1β-sensitive reporter, the secretion of TNF-α in macrophages, protection against IL-1-induced apoptosis in neonatal pancreatic islets, and the penetration of Ilantide through the blood–brain barrier using competitive enzyme-linked immunosorbent assay (ELISA). We studied the effects of the peptide on social behavior and memory in rat models of lipopolysaccharide (LPS)- and amyloid-induced neuroinflammation, respectively, and its effect in a rat model of experimental autoimmune enchephalomyelitis. Results Ilantide bound IL-1RI, inhibited the IL-1β-induced activation of NF-κB, and inhibited the secretion of TNF-α in vitro. Ilantide protected pancreatic islets from apoptosis in vitro and reduced inflammation in an animal model of arthritis. The peptide penetrated the blood–brain barrier. It reduced the deficits in social activity and memory in LPS- and amyloid-treated animals and delayed the development of experimental autoimmune enchephalomyelitis. Conclusions These findings indicate that Ilantide is a novel and potent IL-1RI antagonist that is able to reduce inflammatory damage in the central nervous system and pancreatic islets.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Vladimir Berezin
- Laboratory of Neural Plasticity, Department of Neuroscience and Pharmacology, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen, Denmark.
| |
Collapse
|
34
|
Duarte JH, Di Meglio P, Hirota K, Ahlfors H, Stockinger B. Differential influences of the aryl hydrocarbon receptor on Th17 mediated responses in vitro and in vivo. PLoS One 2013; 8:e79819. [PMID: 24244565 PMCID: PMC3828240 DOI: 10.1371/journal.pone.0079819] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 10/04/2013] [Indexed: 11/19/2022] Open
Abstract
The aryl hydrocarbon receptor (AhR) has been attributed with anti-inflammatory effects in the development of pathological immune responses leading to experimental autoimmune encephalomyelitis (EAE) via the induction of regulatory T cells. In agreement with previously published findings, we find that TCDD administration confers protection from EAE, however, this immuno-modulatory effect was not the consequence of de novo Treg generation, but the inhibition of Th17 cell differentiation. Systemic application of FICZ at the time of immunization also reduced EAE pathology albeit to a lesser degree than TCDD. In vitro Th17 differentiation in the presence of AhR agonists, including TCDD, promoted IL-17 and IL-22 expression, but did not induce Treg differentiation. AhR affinity influenced the amounts of IL-17 and IL-22 protein that was secreted by Th17 cells, but did not seem to affect susceptibility to EAE in vivo. Making use of conditional AhR-deficient mice, we show that the anti-inflammatory effect of TCDD depends on AhR activation in both T cells and dendritic cells, further emphasising the ability of TCDD to interfere with T effector cell differentiation in vivo. The dichotomy between the in vivo and in vitro effects of AhR reveals the complexity of the AhR pathway, which has the capacity of affecting different AhR-expressing cell types involved in mounting immune responses, thus participating in defining their outcome.
Collapse
MESH Headings
- Animals
- Basic Helix-Loop-Helix Transcription Factors/deficiency
- Basic Helix-Loop-Helix Transcription Factors/genetics
- Basic Helix-Loop-Helix Transcription Factors/immunology
- Carbazoles/pharmacology
- Cell Differentiation/drug effects
- Cells, Cultured
- Dendritic Cells/drug effects
- Dendritic Cells/immunology
- Dendritic Cells/pathology
- Encephalomyelitis, Autoimmune, Experimental/chemically induced
- Encephalomyelitis, Autoimmune, Experimental/genetics
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Environmental Pollutants/pharmacology
- Gene Expression Regulation
- Immunity, Cellular/drug effects
- Immunologic Factors/pharmacology
- Interleukin-17/genetics
- Interleukin-17/immunology
- Interleukins/genetics
- Interleukins/immunology
- Lymphocyte Activation/drug effects
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Myelin-Oligodendrocyte Glycoprotein
- Peptide Fragments
- Polychlorinated Dibenzodioxins/analogs & derivatives
- Polychlorinated Dibenzodioxins/pharmacology
- Receptors, Aryl Hydrocarbon/deficiency
- Receptors, Aryl Hydrocarbon/genetics
- Receptors, Aryl Hydrocarbon/immunology
- Signal Transduction
- T-Lymphocytes, Regulatory/drug effects
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/pathology
- Th17 Cells/drug effects
- Th17 Cells/immunology
- Th17 Cells/pathology
- Interleukin-22
Collapse
Affiliation(s)
- João H. Duarte
- Division of Molecular Immunology, MRC National Institute for Medical Research, London, United Kingdom
| | - Paola Di Meglio
- Division of Molecular Immunology, MRC National Institute for Medical Research, London, United Kingdom
| | - Keiji Hirota
- Division of Molecular Immunology, MRC National Institute for Medical Research, London, United Kingdom
| | - Helena Ahlfors
- Division of Molecular Immunology, MRC National Institute for Medical Research, London, United Kingdom
| | - Brigitta Stockinger
- Division of Molecular Immunology, MRC National Institute for Medical Research, London, United Kingdom
| |
Collapse
|
35
|
Immune privilege as an intrinsic CNS property: astrocytes protect the CNS against T-cell-mediated neuroinflammation. Mediators Inflamm 2013; 2013:320519. [PMID: 24023412 PMCID: PMC3760105 DOI: 10.1155/2013/320519] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Accepted: 07/09/2013] [Indexed: 12/26/2022] Open
Abstract
Astrocytes have many functions in the central nervous system (CNS). They support differentiation and homeostasis of neurons and influence synaptic activity. They are responsible for formation of the blood-brain barrier (BBB) and make up the glia limitans. Here, we review their contribution to neuroimmune interactions and in particular to those induced by the invasion of activated T cells. We discuss the mechanisms by which astrocytes regulate pro- and anti-inflammatory aspects of T-cell responses within the CNS. Depending on the microenvironment, they may become potent antigen-presenting cells for T cells and they may contribute to inflammatory processes. They are also able to abrogate or reprogram T-cell responses by inducing apoptosis or secreting inhibitory mediators. We consider apparently contradictory functions of astrocytes in health and disease, particularly in their interaction with lymphocytes, which may either aggravate or suppress neuroinflammation.
Collapse
|
36
|
The emerging role of p38 mitogen-activated protein kinase in multiple sclerosis and its models. Mol Cell Biol 2013; 33:3728-34. [PMID: 23897428 DOI: 10.1128/mcb.00688-13] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Multiple sclerosis (MS), the most common disabling neurologic disease of young adults, is considered a classical T cell-mediated disease and is characterized by demyelination, axonal damage, and progressive neurological dysfunction. The currently available disease-modifying therapies are limited in their efficacy, and improved understanding of new pathways contributing to disease pathogenesis could reveal additional novel therapeutic targets. The p38 mitogen-activated protein kinase (MAPK) signaling pathway is known to be triggered by stress stimuli and to contribute to inflammatory responses. Importantly, a number of recent studies have identified this signaling pathway as a central player in MS and its principal animal model, experimental allergic encephalomyelitis. Here, we review the evidence from mouse and human studies supporting the role of p38 MAPK in regulating key immunopathogenic mechanisms underlying autoimmune inflammatory disease of the central nervous system and the potential of targeting this pathway as a disease-modifying therapy in MS.
Collapse
|
37
|
Durrant DM, Robinette ML, Klein RS. IL-1R1 is required for dendritic cell-mediated T cell reactivation within the CNS during West Nile virus encephalitis. ACTA ACUST UNITED AC 2013; 210:503-16. [PMID: 23460727 PMCID: PMC3600909 DOI: 10.1084/jem.20121897] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
IL-1R1 signaling drives T cell activation in the CNS via effects on DC activation. Infections of the central nervous system (CNS) with cytopathic viruses require efficient T cell responses to promote viral clearance, limit immunopathology, and enhance survival. We found that IL-1R1 is critical for effector T cell reactivation and limits inflammation within the CNS during murine West Nile virus (WNV) encephalitis. WNV-infected IL-1R1−/− mice display intact adaptive immunity in the periphery but succumb to WNV infection caused by loss of virologic control in the CNS with depressed local Th1 cytokine responses, despite parenchymal entry of virus-specific CD8+ T cells. Ex vivo analysis of CD4+ T cells from WNV-infected CNS of IL-1R1−/− mice revealed impaired effector responses, whereas CD8+ T cells revealed no cell intrinsic defects in response to WNV antigen. WNV-infected, IL-1R1−/− mice also exhibited decreased activation of CNS CD11c+CD11b−CD103+ and CD11c+CD11b−CD8α+Dec-205+ cells with reduced up-regulation of the co-stimulatory molecules CD80, CD86, and CD68. Adoptive transfer of wild-type CD11c-EYFP+ cells from WNV-infected CNS into WNV-infected IL-1R1−/− mice trafficked into the CNS restored T cell functions and improved survival from otherwise lethal infection. These data indicate that IL-1R1 signaling promotes virologic control during WNV infection specifically within the CNS via modulation of CD11c+ cell–mediated T cell reactivation at this site.
Collapse
Affiliation(s)
- Douglas M Durrant
- Department of Internal Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | | | | |
Collapse
|
38
|
Murta V, Pitossi FJ, Ferrari CC. CNS response to a second pro-inflammatory event depends on whether the primary demyelinating lesion is active or resolved. Brain Behav Immun 2012; 26:1102-15. [PMID: 22824737 DOI: 10.1016/j.bbi.2012.07.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Revised: 07/12/2012] [Accepted: 07/12/2012] [Indexed: 11/16/2022] Open
Abstract
Interleukin-1β (IL-1β) is considered to be one of the most important mediators in the pathogenesis of inflammatory diseases, particularly in neurodegenerative diseases such as multiple sclerosis (MS). MS is a chronic inflammatory disease characterized by demyelination and remyelination events, with unpredictable relapsing and remitting episodes that seldom worsen MS lesions. We proposed to study the effect of a unique component of the inflammatory process, IL-1β, and evaluate its effect in repeated episodes, similar to the relapsing-remitting MS pathology. Using adenoviral vectors, we developed a model of focal demyelination/remyelination triggered by the chronic expression of IL-1β. The long-term expression of IL-1β in the striatum produced blood-brain barrier (BBB) breakdown, demyelination, microglial/macrophage activation, and neutrophil infiltration but no overt neuronal degeneration. This demyelinating process was followed by complete remyelination of the area. This simple model allows us to study demyelination and remyelination independently of the autoimmune and adaptive immune components. Re-exposure to this cytokine when the first inflammatory response was still unresolved generated a lesion with decreased neuroinflammation, demyelination, axonal injury and glial response. However, a second long-term expression of IL-1β when the first lesion was resolved could not be differentiated from the first event. In this study, we demonstrated that the response to a second inflammatory stimulus varies depending on whether the initial lesion is still active or has been resolved. Considering that anti-inflammatory treatments have shown little improvement in MS patients, studies about the behavior of specific components of the inflammatory process should be taken into account to develop new therapeutic tools.
Collapse
Affiliation(s)
- Veronica Murta
- Leloir Institute Foundation, Institute for Biochemical Investigations, CONICET, Buenos Aires, Argentina.
| | | | | |
Collapse
|
39
|
Oral ACTH (H.P. Acthar®Gel) inhibits IL-1 and IL-17 secretion in humans. Biomed Pharmacother 2012; 66:36-9. [DOI: 10.1016/j.biopha.2011.11.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Accepted: 11/21/2011] [Indexed: 11/23/2022] Open
|
40
|
Ohba T, Ariga Y, Maruyama T, Truong NK, Inoue JI, Muta T. Identification of interleukin-1 receptor-associated kinase 1 as a critical component that induces post-transcriptional activation of IκB-ζ. FEBS J 2011; 279:211-22. [PMID: 22059479 DOI: 10.1111/j.1742-4658.2011.08416.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
IκB-ζ, an essential inflammatory regulator, is specifically induced by Toll-like receptor ligands or interleukin (IL)-1β by post-transcriptional activation mediated via a 165-nucleotide element in IκB-ζ mRNA. Here, we analyzed the Toll-like receptor-IL-1 receptor signaling components involved in the post-transcriptional regulation of IκB-ζ with mutated estrogen receptor [ER(T2)] fusion proteins. Upon 4-hydroxytamoxifen treatment, the ER(T2) fusion proteins with IL-1 receptor-associated kinase (IRAK)1 and IRAK4 elicited specific activation of a reporter gene for the post-transcriptional regulation of IκB-ζ. The tumor necrosis factor receptor-associated factor (TRAF)6-ER(T2) protein activated nuclear factor-κB, but not post-transcriptional regulation, indicating that activation of IRAK1/4, but not of TRAF6, is sufficient to activate the 165-nucleotide element-mediated post-transcriptional mechanism. Interestingly, the post-transcriptional mechanism was not activated in TRAF6-deficient cells, indicating an essential role for TRAF6. Thus, the signaling pathway leading to nuclear factor-κB activation and the post-transcriptional activation bifurcates at IRAK1, suggesting a new pathway activated by IRAK1.
Collapse
Affiliation(s)
- Tomoyuki Ohba
- Laboratory of Cell Recognition and Response, Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | | | | | | | | | | |
Collapse
|
41
|
Li Q, Powell N, Zhang H, Belevych N, Ching S, Chen Q, Sheridan J, Whitacre C, Quan N. Endothelial IL-1R1 is a critical mediator of EAE pathogenesis. Brain Behav Immun 2011; 25:160-7. [PMID: 20854891 PMCID: PMC2991628 DOI: 10.1016/j.bbi.2010.09.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2010] [Revised: 09/10/2010] [Accepted: 09/14/2010] [Indexed: 10/19/2022] Open
Abstract
Interleukin-1 (IL-1) has been implicated in the disease progression of multiple sclerosis (MS). In the animal model of MS, experimental autoimmune encephalomyelitis (EAE), the induction of disease is significantly attenuated in mice lacking the type I IL-1 receptor (IL-1R1). In this study, we created a transgenic mouse (eIL-1R1 kd) in which IL-1R1 expression is knocked down specifically in endothelial cells. Induction of EAE in eIL-1R1 kd mice results in a decrease in incidence, severity and delayed onset of EAE. In addition, eIL-1R1 kd mice show significant decrease in VCAM-1 expression and diminished CD45(+) and CD3(+) infiltrating leukocytes in the spinal cord in animals challenged with EAE. Further, IL-1 and IL-23 stimulate IL-17 production by splenocytes from both wild type and the eIL-1R1 kd animals. Similarly, IL-1 and IL-23 synergistically stimulate splenocytes proliferation in these two strains of animals. After immunization with MOG(79-96), although eIL-1R1 kd mice displayed greatly reduced clinical scores, their splenocytes produced IL-17 and proliferated in response to a second MOG challenge, similar to wild type animals. These findings indicate a critical role for endothelial IL-1R1 in mediating the pathogenesis of EAE, and describe a new model that can be used to study endothelial IL-1R1.
Collapse
Affiliation(s)
- Qiming Li
- Corresponding author. Tel: 614-292-1657; fax: 614-247-6945. (N. Quan)
| | - Nicole Powell
- Corresponding author. Tel: 614-292-1657; fax: 614-247-6945. (N. Quan)
| | | | | | | | | | | | | | - Ning Quan
- Corresponding author. Tel: 614-292-1657; fax: 614-247-6945. (N. Quan)
| |
Collapse
|
42
|
Gris D, Ye Z, Iocca HA, Wen H, Craven RR, Gris P, Huang M, Schneider M, Miller SD, Ting JPY. NLRP3 plays a critical role in the development of experimental autoimmune encephalomyelitis by mediating Th1 and Th17 responses. THE JOURNAL OF IMMUNOLOGY 2010; 185:974-81. [PMID: 20574004 DOI: 10.4049/jimmunol.0904145] [Citation(s) in RCA: 314] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The interplay between innate and adaptive immunity is important in multiple sclerosis (MS). The inflammasome complex, which activates caspase-1 to process pro-IL-1beta and pro-IL-18, is rapidly emerging as a pivotal regulator of innate immunity, with nucleotide-binding domain, leucine-rich repeat containing protein family, pyrin domain containing 3 (NLRP3) (cryopyrin or NALP3) as a prominent player. Although the role of NLRP3 in host response to pathogen associated molecular patterns and danger associated molecular patterns is well documented, its role in autoimmune diseases is less well studied. To investigate the role of NLRP3 protein in MS, we used a mouse model of MS, experimental autoimmune encephalomyelitis (EAE). Nlrp3 expression was elevated in the spinal cords during EAE, and Nlrp3(-/-) mice had a dramatically delayed course and reduced severity of disease. This was accompanied by a significant reduction of the inflammatory infiltrate including macrophages, dendritic cells, CD4, and CD8(+) T cells in the spinal cords of the Nlrp3(-/-) mice, whereas microglial accumulation remained the same. Nlrp3(-/-) mice also displayed improved histology in the spinal cords with reduced destruction of myelin and astrogliosis. Nlrp3(-/-) mice with EAE produced less IL-18, and the disease course was similar to Il18(-/-) mice. Furthermore, Nlrp3(-/-) and Il18(-/-) mice had similarly reduced IFN-gamma and IL-17 production. Thus, NLRP3 plays a critical role in the induction of the EAE, likely through effects on capase-1-dependent cytokines which then influence Th1 and Th17.
Collapse
Affiliation(s)
- Denis Gris
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC 27599, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Merson TD, Binder MD, Kilpatrick TJ. Role of cytokines as mediators and regulators of microglial activity in inflammatory demyelination of the CNS. Neuromolecular Med 2010; 12:99-132. [PMID: 20411441 DOI: 10.1007/s12017-010-8112-z] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2009] [Accepted: 02/26/2010] [Indexed: 12/11/2022]
Abstract
As the resident innate immune cells of the central nervous system (CNS), microglia fulfil a critical role in maintaining tissue homeostasis and in directing and eliciting molecular responses to CNS damage. The human disease Multiple Sclerosis and animal models of inflammatory demyelination are characterized by a complex interplay between degenerative and regenerative processes, many of which are regulated and mediated by microglia. Cellular communication between microglia and other neural and immune cells is controlled to a large extent by the activity of cytokines. Here we review the role of cytokines as mediators and regulators of microglial activity in inflammatory demyelination, highlighting their importance in potentiating cell damage, promoting neuroprotection and enhancing cellular repair in a context-dependent manner.
Collapse
Affiliation(s)
- Tobias D Merson
- Florey Neuroscience Institutes, Centre for Neuroscience, University of Melbourne, Parkville, VIC, 3010, Australia.
| | | | | |
Collapse
|
44
|
Dong C. Mouse Th17 cells: current understanding of their generation and regulation. Eur J Immunol 2009; 39:640-4. [PMID: 19283704 DOI: 10.1002/eji.200839076] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
IL-17-expressing CD4(+) T cells have been recently recognized as a new subset of Th cells, namely Th17 cells. Considerable progress has been made in understanding the developmental regulation of mouse Th17 cells. Here, I summarize this knowledge and discuss on the relationship of Th17 with regulatory and follicular Th cells.
Collapse
Affiliation(s)
- Chen Dong
- Department of Immunology, MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
45
|
Abstract
Naïve CD4(+) helper T (TH) cells, upon activation by antigen-presenting cells (APC), differentiate into different types of effector cells that are characterized by their distinct cytokine production profiles and immune regulatory functions. In addition to TH1 and TH2 cells, a third subset of effector TH cells has recently been described and termed TH17. Since their identification, TH17 cells have emerged as crucial players in infectious, inflammatory, and autoimmune diseases, and cancer. In this review, we summarize the latest discoveries on the cytokine-mediated regulation and transcriptional programming of TH17 cells and their roles in different immune responses and diseases.
Collapse
Affiliation(s)
- Gustavo J Martinez
- Department of Immunology, MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
46
|
TH17 cells in development: an updated view of their molecular identity and genetic programming. Nat Rev Immunol 2008; 8:337-48. [PMID: 18408735 DOI: 10.1038/nri2295] [Citation(s) in RCA: 819] [Impact Index Per Article: 48.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Following activation, CD4+ T cells differentiate into different lineages of helper T (T(H)) cells that are characterized by distinct developmental regulation and biological functions. T(H)17 cells have recently been identified as a new lineage of effector T(H) cells, and they have been shown to be important in immune responses to infectious agents, as well as in various immune diseases. Over the past two to three years, there has been a rapid progress in our understanding of the differentiation programme of T(H)17 cells. Here, I summarize our current knowledge of the unique gene expression, cytokine-mediated regulation and transcriptional programming of T(H)17 cells, and provide my personal perspectives on the future studies that are required to elucidate this lineage in more detail.
Collapse
|
47
|
Gottipati S, Rao NL, Fung-Leung WP. IRAK1: A critical signaling mediator of innate immunity. Cell Signal 2008; 20:269-76. [PMID: 17890055 DOI: 10.1016/j.cellsig.2007.08.009] [Citation(s) in RCA: 213] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2007] [Accepted: 08/14/2007] [Indexed: 11/17/2022]
Abstract
The innate immune system is equipped with sensitive and efficient machineries to provide an immediate, first line defense against infections. Toll-like receptors (TLRs) detect pathogens and the IL-1 receptor (IL-1R) family enables cells to quickly respond to inflammatory cytokines by mounting an efficient protective response. Interleukin-1 receptor activated kinases (IRAKs) are key mediators in the signaling pathways of TLRs/IL-1Rs. By means of their kinase and adaptor functions, IRAKs initiate a cascade of signaling events eventually leading to induction of inflammatory target gene expression. Due to this pivotal role, IRAK function is also highly regulated via multiple mechanisms. In this review, we focus on IRAK1, the earliest known and yet the most interesting member of this family. An overview on its structure, function and biology is given, with emphasis on the different novel mechanisms that regulate IRAK1 function. We also highlight several unresolved questions in this field and evaluate the potential of IRAK1 as a target for therapeutic intervention.
Collapse
Affiliation(s)
- Sridevi Gottipati
- Immunology, Johnson & Johnson Pharmaceutical Research and Development, L.L.C., San Diego, CA 92121, USA
| | | | | |
Collapse
|
48
|
Gutcher I, Becher B. APC-derived cytokines and T cell polarization in autoimmune inflammation. J Clin Invest 2007; 117:1119-27. [PMID: 17476341 PMCID: PMC1857272 DOI: 10.1172/jci31720] [Citation(s) in RCA: 321] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
T cell-mediated autoimmune diseases such as multiple sclerosis and rheumatoid arthritis are driven by autoaggressive Th cells. The pathogenicity of such Th cells has, in the past, been considered to be dictated by their cytokine polarization profile. The polarization of such effector T cells relies critically upon the actions of cytokines secreted by APCs. While Th1 polarization has long been associated with the pathogenesis of autoimmune diseases, recent data obtained in gene-targeted mice and the discovery of Th17 cell involvement in autoimmunity conflict with this hypothesis. In light of these recent developments, we discuss in this review the actions of APC-derived cytokines and their emerging roles in T cell polarization in the context of autoimmune inflammatory responses.
Collapse
Affiliation(s)
- Ilona Gutcher
- Neuroimmunology Unit, Neurology Clinic, University of Zurich, Y44J7 Winterthurerstrasse 190, Zurich 8057, Switzerland
| | | |
Collapse
|
49
|
Chen X, Howard OMZ, Oppenheim JJ. Pertussis toxin by inducing IL-6 promotes the generation of IL-17-producing CD4 cells. THE JOURNAL OF IMMUNOLOGY 2007; 178:6123-9. [PMID: 17475838 DOI: 10.4049/jimmunol.178.10.6123] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Compelling evidence has now demonstrated that IL-17-producing CD4 cells (Th17) are a major contributor to autoimmune pathogenesis, whereas CD4+CD25+ T regulatory cells (Treg) play a major role in suppression of autoimmunity. Differentiation of proinflammatory Th17 and immunosuppressive Treg from naive CD4 cells is reciprocally related and contingent upon the cytokine environment. We and others have reported that in vivo administration of pertussis toxin (PTx) reduces the number and function of mouse Treg. In this study, we have shown that supernatants from PTx-treated mouse splenic cells, which contained IL-6 and other proinflammatory cytokines, but not PTx itself, overcame the inhibition of proliferation seen in cocultures of Treg and CD4+CD25- T effector cells. This stimulatory effect could be mimicked by individual inflammatory cytokines such as IL-1beta, IL-6, and TNF-alpha. The combination of these cytokines synergistically stimulated the proliferation of CD4+CD25- T effector cells despite the presence of Treg with a concomitant reduction in the percentage of FoxP3+ cells and generation of IL-17-expressing cells. PTx generated Th17 cells, while inhibiting the differentiation of FoxP+ cells, from naive CD4 cells when cocultured with bone marrow-derived dendritic cells from wild-type mice, but not from IL-6-/- mice. In vivo treatment with PTx induced IL-17-secreting cells in wild-type mice, but not in IL-6-/- mice. Thus, in addition to inhibiting the development of Treg, the immunoadjuvant activity of PTx can be attributable to the generation of IL-6-dependent IL-17-producing CD4 cells.
Collapse
Affiliation(s)
- Xin Chen
- Basic Research Program, SAIC-Frederick, National Cancer Institute-Frederick, Frederick, MD 21702-1201, USA.
| | | | | |
Collapse
|
50
|
Ching S, Zhang H, Chen Q, Quan N. Differential expression of extracellular matrix and adhesion molecule genes in the brain of juvenile versus adult mice in responses to intracerebroventricular administration of IL-1. Neuroimmunomodulation 2007; 14:46-56. [PMID: 17700040 DOI: 10.1159/000107288] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2006] [Accepted: 03/01/2007] [Indexed: 01/06/2023] Open
Abstract
OBJECTIVE Intracerebroventricular (ICV) injection of interleukin-1 (IL-1) stimulates the recruitment of leukocytes into the central nervous system at different time points in juvenile versus adult mice. Our results showed that leukocytes entered brain parenchyma at 8 and 16 h after injection in juvenile and adult mice, respectively. This study compares the differential gene expression patterns of extracellular matrix and adhesion molecules in the brain of juvenile and adult mice. METHODS We analyzed these gene expressions in mice brains by microarray and real-time PCR at 2 and 8 h after ICV IL-1. RESULTS After ICV IL-1, the following genes were significantly upregulated in both juvenile and adult mice: LAMbeta1-1, MMP17, TGFbeta, THBS3 and VCAM1 were upregulated at 2 h after injection; LAMbeta1-1 and TGFbeta were upregulated at 8 h. Additional changes were found in adult mice only: CNTN1, ECM1, ICAM1 and LAMalpha4 were upregulated at 2 h after injection; COL4alpha1, MMP3 and VCAM1 were upregulated at 8 h; TIMP4 was downregulated. Comparing juvenile and adult mice, real-time PCR analysis showed that there was more induction of TGFbeta at 8 h and a stronger downregulation of TIMP4 at 2 h after injection in juvenile mice. Higher expression of MMP17 was found in juvenile mice, compared to adult mice, at both 2 and 8 h after injection. CONCLUSIONS These data show distinct expression patterns of molecules related to the extracellular matrix and adhesion molecules in juvenile versus adult mice, and suggest that increased expression of MMP17 and TGFbeta and decreased expression of TIMP4 may contribute to the accelerated recruitment of leukocytes into the central nervous system in juvenile animals.
Collapse
Affiliation(s)
- San Ching
- Department of Oral Biology, Ohio State University, Columbus, Ohio, USA.
| | | | | | | |
Collapse
|