1
|
Stitz J. Development of HIV-1 vectors pseudotyped with envelope proteins of other retroviruses. Virology 2025; 602:110300. [PMID: 39577275 DOI: 10.1016/j.virol.2024.110300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/25/2024] [Accepted: 11/11/2024] [Indexed: 11/24/2024]
Abstract
In the past three decades, human immunodeficiency virus type 1 (HIV-1)-derived vectors were evolved and became indispensable to transduce therapeutic genes into a range of different target cell types to facilitate a variety of gene therapeutic strategies. To achieve this, i) the biosafety profile of the vectors was incrementally enhanced and ii) the CD4-restricted tropism mediated by the envelope proteins (Env) of the parental virus needed to be directed towards recruitment of other receptors expressed on the desired target cells. Here, a closer look is first taken at the development of vector components and the mechanisms of Env incorporation into particles. While envelope proteins originating from a broad range of very diverse virus species were successfully utilized, members of the Retroviridae family most frequently provided Env or further engineered variants thereof to form transduction-competent HIV-1 pseudotype vector particles. The development of these vectors is reviewed and anticipated to further contribute to the future progression of somatic gene therapy.
Collapse
Affiliation(s)
- Jörn Stitz
- Research Group Medical Biotechnology & Bioengineering, Faculty of Applied Natural Sciences, TH Köln - University of Applied Sciences, Campusplatz 1, 51379, Leverkusen, Germany.
| |
Collapse
|
2
|
Lentiviral Vectors as a Vaccine Platform against Infectious Diseases. Pharmaceutics 2023; 15:pharmaceutics15030846. [PMID: 36986707 PMCID: PMC10053212 DOI: 10.3390/pharmaceutics15030846] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 02/27/2023] [Accepted: 03/03/2023] [Indexed: 03/08/2023] Open
Abstract
Lentiviral vectors are among the most effective viral vectors for vaccination. In clear contrast to the reference adenoviral vectors, lentiviral vectors have a high potential for transducing dendritic cells in vivo. Within these cells, which are the most efficient at activating naive T cells, lentiviral vectors induce endogenous expression of transgenic antigens that directly access antigen presentation pathways without the need for external antigen capture or cross-presentation. Lentiviral vectors induce strong, robust, and long-lasting humoral, CD8+ T-cell immunity and effective protection against several infectious diseases. There is no pre-existing immunity to lentiviral vectors in the human population and the very low pro-inflammatory properties of these vectors pave the way for their use in mucosal vaccination. In this review, we have mainly summarized the immunological aspects of lentiviral vectors, their recent optimization to induce CD4+ T cells, and our recent data on lentiviral vector-based vaccination in preclinical models, including prophylaxis against flaviviruses, SARS-CoV-2, and Mycobacterium tuberculosis.
Collapse
|
3
|
Barreira M, Kerridge C, Jorda S, Olofsson D, Neumann A, Horton H, Smith-Moore S. Enzymatically amplified linear dbDNA TM as a rapid and scalable solution to industrial lentiviral vector manufacturing. Gene Ther 2023; 30:122-131. [PMID: 35606492 PMCID: PMC9935383 DOI: 10.1038/s41434-022-00343-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 05/05/2022] [Accepted: 05/06/2022] [Indexed: 11/09/2022]
Abstract
Traditional bacterial fermentation techniques used to manufacture plasmid are time-consuming, expensive, and inherently unstable. The production of sufficient GMP grade material thus imposes a major bottleneck on industrial-scale manufacturing of lentiviral vectors (LVV). Touchlight's linear doggybone DNA (dbDNATM) is an enzymatically amplified DNA vector produced with exceptional speed through an in vitro dual enzyme process, enabling industrial-scale manufacturing of GMP material in a fraction of the time required for plasmid. We have previously shown that dbDNATM can be used to produce functional LVV; however, obtaining high LVV titres remained a challenge. Here, we aimed to demonstrate that dbDNATM could be optimised for the manufacture of high titre LVV. We found that dbDNATM displayed a unique transfection and expression profile in the context of LVV production, which necessitated the optimisation of DNA input and construct ratios. Furthermore, we demonstrate that efficient 3' end processing of viral genomic RNA (vgRNA) derived from linear dbDNATM transfer vectors required the addition of a strong 3' termination signal and downstream spacer sequence to enable efficient vgRNA packaging. Using these improved vector architectures along with optimised transfection conditions, we were able to produce a CAR19h28z LVV with equivalent infectious titres as achieved using plasmid, demonstrating that dbDNATM technology can provide a highly effective solution to the plasmid bottleneck.
Collapse
Affiliation(s)
- Maria Barreira
- Touchlight Genetics Ltd, Hampton, TW12 2ER, United Kingdom.,Cell and Gene Therapy Catapult, Guy's Hospital, London, SE1 9RT, United Kingdom
| | | | - Sara Jorda
- Touchlight Genetics Ltd, Hampton, TW12 2ER, United Kingdom.,Medical Research Institute La Fe, 46026, Valencia, Spain
| | - Didrik Olofsson
- Omiqa Bioinformatics GmbH, Altensteinstraße 40, 14195, Berlin, Germany
| | - Alexander Neumann
- Omiqa Bioinformatics GmbH, Altensteinstraße 40, 14195, Berlin, Germany
| | - Helen Horton
- Touchlight Genetics Ltd, Hampton, TW12 2ER, United Kingdom
| | | |
Collapse
|
4
|
Yuan H, Wu X, Liu H, Chang LJ. Lentiviral Gene Therapy of Chronic Granulomatous Disease: Functional Assessment of Universal and Tissue-Specific Promoters. Hum Gene Ther 2023; 34:19-29. [PMID: 36274229 DOI: 10.1089/hum.2022.140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Chronic granulomatous disease (CGD) is a rare congenital immunodeficiency characterized by a defect in nicotinamide adenine dinucleotide phosphate oxidase required for phagocytosis. Hematopoietic stem cell (HSC) transplantation is currently the only curative treatment, but it is ladened with morbidities and mortality. Gene therapy is a promising treatment for CGD. However, if not properly designed, the gene therapy approach may not be successful. We engineered lentiviral vectors (LVs) carrying a universal promoter (EF1a) and two myeloid-specific promoters (miR223 and CD68) to drive the expression of green fluorescence protein (GFP) or CYBB, one of the key defective genes causing CGD. Tissue-specific LV expression was investigated in vitro and in a CGD mouse model. We compared GFP expression in both myeloid differentiated and undifferentiated HSCs. The CGD mice were transplanted with LV-modified mouse HSCs to investigate expression of CYBB and restoration of reactive oxygen species. The LV promoters were further compared under low and high-transgenic conditions to assess safety and therapeutic efficacy. A pneumonia disease model based on pathogenic Staphylococcus aureus challenge was established to assess the survival rate and body weight change. All three promoters demonstrated ectopic CYBB expression in vitro and in vivo. The EF1a promoter showed the highest expression of GFP or CYBB in transduced cells, including HSCs without cytotoxicity, whereas the LV-miR223 showed the highest transgene delivery efficiency with high myeloid specificity. Importantly, under low-transgenic condition, only the LV-EF1a-CYBB showed high antibacterial activity in vivo.
Collapse
Affiliation(s)
- Haokun Yuan
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiaomei Wu
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Hongwei Liu
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Lung-Ji Chang
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Shenzhen Geno-Immune Medical Institute, Shenzhen, China
| |
Collapse
|
5
|
Mazinani M, Rahbarizadeh F. CAR-T cell potency: from structural elements to vector backbone components. Biomark Res 2022; 10:70. [PMID: 36123710 PMCID: PMC9487061 DOI: 10.1186/s40364-022-00417-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 09/07/2022] [Indexed: 12/03/2022] Open
Abstract
Chimeric antigen receptor (CAR) T cell therapy, in which a patient’s own T lymphocytes are engineered to recognize and kill cancer cells, has achieved remarkable success in some hematological malignancies in preclinical and clinical trials, resulting in six FDA-approved CAR-T products currently available in the market. Once equipped with a CAR construct, T cells act as living drugs and recognize and eliminate the target tumor cells in an MHC-independent manner. In this review, we first described all structural modular of CAR in detail, focusing on more recent findings. We then pointed out behind-the-scene elements contributing to CAR expression and reviewed how CAR expression can be drastically affected by the elements embedded in the viral vector backbone.
Collapse
Affiliation(s)
- Marzieh Mazinani
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, P.O. Box 14115-111, Tehran, Iran
| | - Fatemeh Rahbarizadeh
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, P.O. Box 14115-111, Tehran, Iran. .,Research and Development Center of Biotechnology, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
6
|
Arsenijevic Y, Berger A, Udry F, Kostic C. Lentiviral Vectors for Ocular Gene Therapy. Pharmaceutics 2022; 14:pharmaceutics14081605. [PMID: 36015231 PMCID: PMC9414879 DOI: 10.3390/pharmaceutics14081605] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/14/2022] [Accepted: 07/22/2022] [Indexed: 12/10/2022] Open
Abstract
This review offers the basics of lentiviral vector technologies, their advantages and pitfalls, and an overview of their use in the field of ophthalmology. First, the description of the global challenges encountered to develop safe and efficient lentiviral recombinant vectors for clinical application is provided. The risks and the measures taken to minimize secondary effects as well as new strategies using these vectors are also discussed. This review then focuses on lentiviral vectors specifically designed for ocular therapy and goes over preclinical and clinical studies describing their safety and efficacy. A therapeutic approach using lentiviral vector-mediated gene therapy is currently being developed for many ocular diseases, e.g., aged-related macular degeneration, retinopathy of prematurity, inherited retinal dystrophies (Leber congenital amaurosis type 2, Stargardt disease, Usher syndrome), glaucoma, and corneal fibrosis or engraftment rejection. In summary, this review shows how lentiviral vectors offer an interesting alternative for gene therapy in all ocular compartments.
Collapse
Affiliation(s)
- Yvan Arsenijevic
- Unit Retinal Degeneration and Regeneration, Department of Ophthalmology, University of Lausanne, Jules-Gonin Eye Hospital, Fondation Asile des Aveugles, 1004 Lausanne, Switzerland;
- Correspondence: (Y.A.); (C.K.)
| | - Adeline Berger
- Group Epigenetics of ocular diseases, Department of Ophthalmology, University of Lausanne, Jules-Gonin Eye Hospital, Fondation Asile des Aveugles, 1004 Lausanne, Switzerland;
| | - Florian Udry
- Unit Retinal Degeneration and Regeneration, Department of Ophthalmology, University of Lausanne, Jules-Gonin Eye Hospital, Fondation Asile des Aveugles, 1004 Lausanne, Switzerland;
| | - Corinne Kostic
- Group for Retinal Disorder Research, Department of Ophthalmology, University of Lausanne, Jules-Gonin Eye Hospital, Fondation Asile des Aveugles, 1004 Lausanne, Switzerland
- Correspondence: (Y.A.); (C.K.)
| |
Collapse
|
7
|
Sharp B, Rallabandi R, Devaux P. Advances in RNA Viral Vector Technology to Reprogram Somatic Cells: The Paramyxovirus Wave. Mol Diagn Ther 2022; 26:353-367. [PMID: 35763161 DOI: 10.1007/s40291-022-00599-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2022] [Indexed: 11/24/2022]
Abstract
Ethical issues are a significant barrier to the use of embryonic stem cells in patients due to their origin: human embryos. To further the development of stem cells in a patient application, alternative sources of cells were sought. A process referred to as reprogramming was established to create induced pluripotent stem cells from somatic cells, resolving the ethical issues, and vectors were developed to deliver the reprogramming factors to generate induced pluripotent stem cells. Early viral vectors used integrating retroviruses and lentiviruses as delivery vehicles for the transcription factors required to initiate reprogramming. However, because of the inherent risk associated with vectors that integrate into the host genome, non-integrating approaches were explored. The development of non-integrating viral vectors offers a safer alternative, and these modern vectors are reliable, efficient, and easy to use to achieve induced pluripotent stem cells suitable for direct patient application in the growing field of individualized medicine. This review summarizes all the RNA viral vectors in the field of reprogramming with a special focus on the emerging delivery vectors based on non-integrating Paramyxoviruses, Sendai and measles viruses. We discuss their design and evolution towards being safe and efficient reprogramming vectors in generating induced pluripotent stem cells from somatic cells.
Collapse
Affiliation(s)
- Brenna Sharp
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, 55905, USA
| | - Ramya Rallabandi
- Virology and Gene Therapy Graduate Program, Mayo Clinic, Rochester, MN, USA.,Regenerative Sciences Program, Mayo Clinic, Rochester, MN, USA
| | - Patricia Devaux
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, 55905, USA. .,Virology and Gene Therapy Graduate Program, Mayo Clinic, Rochester, MN, USA. .,Regenerative Sciences Program, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
8
|
Jacobs R, Singh P, Smith T, Arbuthnot P, Maepa MB. Prospects of viral vector-mediated delivery of sequences encoding anti-HBV designer endonucleases. Gene Ther 2022:10.1038/s41434-022-00342-5. [PMID: 35606493 DOI: 10.1038/s41434-022-00342-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 05/05/2022] [Accepted: 05/06/2022] [Indexed: 11/09/2022]
Abstract
Available treatment for chronic hepatitis B virus (HBV) infection offers modest functional curative efficacy. The viral replicative intermediate comprising covalently closed circular DNA (cccDNA) is responsible for persistent chronic HBV infection. Hence, current efforts have focused on developing therapies that disable cccDNA. Employing gene editing tools has emerged as an attractive strategy, with the end goal of establishing permanently inactivated cccDNA. Although anti-HBV designer nucleases are effective in vivo, none has yet progressed to clinical trial. Lack of safe and efficient delivery systems remains the limiting factor. Several vectors may be used to deliver anti-HBV gene editor-encoding sequences, with viral vectors being at the forefront. Despite the challenges associated with packaging large gene editor-encoding sequences into viral vectors, advancement in the field is overcoming such limitations. Translation of viral vector-mediated gene editing against HBV to clinical application is within reach. This review discusses the prospects of delivering HBV targeted designer nucleases using viral vectors.
Collapse
Affiliation(s)
- Ridhwaanah Jacobs
- Wits/SAMRC Antiviral Gene Therapy Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Prashika Singh
- Wits/SAMRC Antiviral Gene Therapy Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Tiffany Smith
- Wits/SAMRC Antiviral Gene Therapy Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Patrick Arbuthnot
- Wits/SAMRC Antiviral Gene Therapy Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Mohube Betty Maepa
- Wits/SAMRC Antiviral Gene Therapy Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.
| |
Collapse
|
9
|
Unique Mode of Antiviral Action of a Marine Alkaloid against Ebola Virus and SARS-CoV-2. Viruses 2022; 14:v14040816. [PMID: 35458549 PMCID: PMC9028129 DOI: 10.3390/v14040816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/24/2022] [Accepted: 04/02/2022] [Indexed: 11/16/2022] Open
Abstract
Lamellarin α 20-sulfate is a cell-impenetrable marine alkaloid that can suppress infection that is mediated by the envelope glycoprotein of human immunodeficiency virus type 1. We explored the antiviral action and mechanisms of this alkaloid against emerging enveloped RNA viruses that use endocytosis for infection. The alkaloid inhibited the infection of retroviral vectors that had been pseudotyped with the envelope glycoprotein of Ebola virus and SARS-CoV-2. The antiviral effects of lamellarin were independent of the retrovirus Gag-Pol proteins. Interestingly, although heparin and dextran sulfate suppressed the cell attachment of vector particles, lamellarin did not. In silico structural analyses of the trimeric glycoprotein of the Ebola virus disclosed that the principal lamellarin-binding site is confined to a previously unappreciated cavity near the NPC1-binding site and fusion loop, whereas those for heparin and dextran sulfate were dispersed across the attachment and fusion subunits of the glycoproteins. Notably, lamellarin binding to this cavity was augmented under conditions where the pH was 5.0. These results suggest that the final action of the alkaloid against Ebola virus is specific to events following endocytosis, possibly during conformational glycoprotein changes in the acidic environment of endosomes. Our findings highlight the unique biological and physicochemical features of lamellarin α 20-sulfate and should lead to the further use of broadly reactive antivirals to explore the structural mechanisms of virus replication.
Collapse
|
10
|
Insights into Modern Therapeutic Approaches in Pediatric Acute Leukemias. Cells 2022; 11:cells11010139. [PMID: 35011701 PMCID: PMC8749975 DOI: 10.3390/cells11010139] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/07/2021] [Accepted: 12/15/2021] [Indexed: 02/01/2023] Open
Abstract
Pediatric cancers predominantly constitute lymphomas and leukemias. Recently, our knowledge and awareness about genetic diversities, and their consequences in these diseases, have greatly expanded. Modern solutions are focused on mobilizing and impacting a patient’s immune system. Strategies to stimulate the immune system, to prime an antitumor response, are of intense interest. Amid those types of therapies are chimeric antigen receptor T (CAR-T) cells, bispecific antibodies, and antibody–drug conjugates (ADC), which have already been approved in the treatment of acute lymphoblastic leukemia (ALL)/acute myeloid leukemia (AML). In addition, immune checkpoint inhibitors (ICIs), the pattern recognition receptors (PRRs), i.e., NOD-like receptors (NLRs), Toll-like receptors (TLRs), and several kinds of therapy antibodies are well on their way to showing significant benefits for patients with these diseases. This review summarizes the current knowledge of modern methods used in selected pediatric malignancies and presents therapies that may hold promise for the future.
Collapse
|
11
|
Bona R, Michelini Z, Mazzei C, Gallinaro A, Canitano A, Borghi M, Vescio MF, Di Virgilio A, Pirillo MF, Klotman ME, Negri D, Cara A. Safety and efficiency modifications of SIV-based integrase-defective lentiviral vectors for immunization. Mol Ther Methods Clin Dev 2021; 23:263-275. [PMID: 34729374 PMCID: PMC8526422 DOI: 10.1016/j.omtm.2021.09.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 09/24/2021] [Indexed: 11/20/2022]
Abstract
Integrase-defective lentiviral vectors (IDLVs) represent an attractive platform for vaccine development as a result of the ability to induce persistent humoral- and cellular-mediated immune responses against the encoded transgene. Compared with the parental integrating vector, the main advantages for using IDLV are the reduced hazard of insertional mutagenesis and the decreased risk for vector mobilization by wild-type viruses. Here we report on the development and use in the mouse immunogenicity model of simian immunodeficiency virus (SIV)-based IDLV containing a long deletion in the U3 region and with the 3' polypurine tract (PPT) removed from the transfer vector for improving safety and/or efficacy. Results show that a safer extended deletion of U3 sequences did not modify integrase-mediated or -independent integration efficiency. Interestingly, 3' PPT deletion impaired integrase-mediated integration but did not reduce illegitimate, integrase-independent integration efficiency, contrary to what was previously reported in the HIV system. Importantly, although the extended deletion in the U3 did not affect expression or immunogenicity from IDLV, deletion of 3' PPT considerably reduced both expression and immunogenicity of IDLV.
Collapse
Affiliation(s)
- Roberta Bona
- National Center for Global Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Zuleika Michelini
- National Center for Global Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Chiara Mazzei
- National Center for Global Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Alessandra Gallinaro
- National Center for Global Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Andrea Canitano
- National Center for Global Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Martina Borghi
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Maria Fenicia Vescio
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Antonio Di Virgilio
- Center for Animal Research and Welfare, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Maria Franca Pirillo
- National Center for Global Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Mary E. Klotman
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Donatella Negri
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Andrea Cara
- National Center for Global Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| |
Collapse
|
12
|
Gong J, Chung TH, Zheng J, Zheng H, Chang LJ. Transduction of modified factor VIII gene improves lentiviral gene therapy efficacy for hemophilia A. J Biol Chem 2021; 297:101397. [PMID: 34774524 PMCID: PMC8649223 DOI: 10.1016/j.jbc.2021.101397] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/03/2021] [Accepted: 11/04/2021] [Indexed: 12/18/2022] Open
Abstract
Hemophilia A (HA) is a bleeding disorder caused by deficiency of the coagulation factor VIII (F8). F8 replacement is standard of care, whereas gene therapy (F8 gene) for HA is an attractive investigational approach. However, the large size of the F8 gene and the immunogenicity of the product present challenges in development of the F8 gene therapy. To resolve these problems, we synthesized a shortened F8 gene (F8-BDD) and cloned it into a lentiviral vector (LV). The F8-BDD produced mainly short cleaved inactive products in LV-transduced cells. To improve F8 functionality, we designed two novel F8-BDD genes, one with an insertion of eight specific N-glycosylation sites (F8-N8) and another which restored all N-glycosylation sites (F8-299) in the B domain. Although the overall protein expression was reduced, high coagulation activity (>100-fold) was detected in the supernatants of LV-F8-N8- and LV-F8-299-transduced cells. Protein analysis of F8 and the procoagulation cofactor, von Willebrand Factor, showed enhanced interaction after restoration of B domain glycosylation using F8-299. HA mouse hematopoietic stem cell transplantation studies illustrated that the bleeding phenotype was corrected after LV-F8-N8 or -299 gene transfer into the hematopoietic stem cells. Importantly, the F8-299 modification markedly reduced immunogenicity of the F8 protein in these HA mice. In conclusion, the modified F8-299 gene could be efficiently packaged into LV and, although with reduced expression, produced highly stable and functional F8 protein that corrected the bleeding phenotype without inhibitory immunogenicity. We anticipate that these results will be beneficial in the development of gene therapies against HA.
Collapse
Affiliation(s)
- Jie Gong
- School of Medicine, University of Electronic Science and Technology of China, Sichuan, China
| | - Tsai-Hua Chung
- School of Medicine, University of Electronic Science and Technology of China, Sichuan, China; Shenzhen Geno-Immune Medical Institute, Shenzhen, China
| | - Jie Zheng
- Hematology Center, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Huyong Zheng
- Hematology Center, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Lung-Ji Chang
- School of Medicine, University of Electronic Science and Technology of China, Sichuan, China; Shenzhen Geno-Immune Medical Institute, Shenzhen, China; Hematology Center, Beijing Children's Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
13
|
Lentiviral Vectors for Delivery of Gene-Editing Systems Based on CRISPR/Cas: Current State and Perspectives. Viruses 2021; 13:v13071288. [PMID: 34372494 PMCID: PMC8310029 DOI: 10.3390/v13071288] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 06/24/2021] [Accepted: 06/28/2021] [Indexed: 12/17/2022] Open
Abstract
CRISPR/Cas technology has revolutionized the fields of the genome- and epigenome-editing by supplying unparalleled control over genomic sequences and expression. Lentiviral vector (LV) systems are one of the main delivery vehicles for the CRISPR/Cas systems due to (i) its ability to carry bulky and complex transgenes and (ii) sustain robust and long-term expression in a broad range of dividing and non-dividing cells in vitro and in vivo. It is thus reasonable that substantial effort has been allocated towards the development of the improved and optimized LV systems for effective and accurate gene-to-cell transfer of CRISPR/Cas tools. The main effort on that end has been put towards the improvement and optimization of the vector’s expression, development of integrase-deficient lentiviral vector (IDLV), aiming to minimize the risk of oncogenicity, toxicity, and pathogenicity, and enhancing manufacturing protocols for clinical applications required large-scale production. In this review, we will devote attention to (i) the basic biology of lentiviruses, and (ii) recent advances in the development of safer and more efficient CRISPR/Cas vector systems towards their use in preclinical and clinical applications. In addition, we will discuss in detail the recent progress in the repurposing of CRISPR/Cas systems related to base-editing and prime-editing applications.
Collapse
|
14
|
Johnson NM, Alvarado AF, Moffatt TN, Edavettal JM, Swaminathan TA, Braun SE. HIV-based lentiviral vectors: origin and sequence differences. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2021; 21:451-465. [PMID: 33981779 PMCID: PMC8065252 DOI: 10.1016/j.omtm.2021.03.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 03/23/2021] [Indexed: 12/11/2022]
Abstract
Three gene therapy strategies have received US Food and Drug Administration (FDA) approval; one includes HIV-1-based lentiviral vectors. These vectors incorporate features to provide long-term gene transfer and expression while minimizing generation of a replication-competent virus or pathogenicity. Importantly, the coding regions of viral proteins were deleted, and the cis-acting regulatory elements were retained. With the use of representative vectors developed for clinical/commercial applications, we compared the vector backbone sequences to the initial sources of the HIV-1. All vectors included required elements: 5′ long terminal repeat (LTR) through the Ψ packaging signal, central polypurine tract/chain termination sequence (cPPT/CTS), Rev responsive element (RRE), and 3′ LTR, including a poly(A) signal. The Ψ signaling sequence demonstrated the greatest similarity between all vectors with only minor changes. The 3′ LTR was the most divergent sequence with a range of deletions. The RRE length varied between vectors. Phylogenetic analysis of the cPPT/CTS indicated multiple sources, perhaps because of its later inclusion into lentiviral vector systems, whereas other regions revealed node clusters around the HIV-1 reference genomes HXB2 and NL4-3. We examine the function of each region in a lentiviral vector, the molecular differences between vectors, and where optimization may guide development of the lentiviral delivery systems.
Collapse
Affiliation(s)
- Nathan M Johnson
- Division of Immunology, Tulane National Primate Research Center, Tulane University School of Medicine, Covington, LA 70433, USA
| | - Anna Francesca Alvarado
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Trey N Moffatt
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Joshua M Edavettal
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Tarun A Swaminathan
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Stephen E Braun
- Division of Immunology, Tulane National Primate Research Center, Tulane University School of Medicine, Covington, LA 70433, USA.,Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| |
Collapse
|
15
|
Izumida M, Hayashi H, Tanaka A, Kubo Y. Cathepsin B Protease Facilitates Chikungunya Virus Envelope Protein-Mediated Infection via Endocytosis or Macropinocytosis. Viruses 2020; 12:v12070722. [PMID: 32635194 PMCID: PMC7412492 DOI: 10.3390/v12070722] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/29/2020] [Accepted: 07/02/2020] [Indexed: 02/07/2023] Open
Abstract
Chikungunya virus (CHIKV) is an enveloped virus that enters host cells and transits within the endosomes before starting its replication cycle, the precise mechanism of which is yet to be elucidated. Endocytosis and endosome acidification inhibitors inhibit infection by CHIKV, murine leukemia virus (MLV), or SARS-coronavirus, indicating that these viral entries into host cells occur through endosomes and require endosome acidification. Although endosomal cathepsin B protease is necessary for MLV, Ebola virus, and SARS-CoV infections, its role in CHIKV infection is unknown. Our results revealed that endocytosis inhibitors attenuated CHIKV-pseudotyped MLV vector infection in 293T cells but not in TE671 cells. In contrast, macropinocytosis inhibitors attenuated CHIKV-pseudotyped MLV vector infection in TE671 cells but not in 293T cells, suggesting that CHIKV host cell entry occurs via endocytosis or macropinocytosis, depending on the cell lines used. Cathepsin B inhibitor and knockdown by an shRNA suppressed CHIKV-pseudotyped MLV vector infection both in 293T and TE671 cells. These results show that cathepsin B facilitates CHIKV infection regardless of the entry pathway.
Collapse
Affiliation(s)
- Mai Izumida
- Department of Clinical Medicine, Institute of Tropical Medicine, Nagasaki University, Nagasaki 852-8523, Japan
- Correspondence: (M.I.); (Y.K.)
| | - Hideki Hayashi
- Medical University Research Administrator, Nagasaki University School of Medicine, Nagasaki 852-8523, Japan;
| | - Atsushi Tanaka
- Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan;
| | - Yoshinao Kubo
- Department of Clinical Medicine, Institute of Tropical Medicine, Nagasaki University, Nagasaki 852-8523, Japan
- Program for Nurturing Global Leaders in Tropical and Emerging Communicable Diseases, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8523, Japan
- Correspondence: (M.I.); (Y.K.)
| |
Collapse
|
16
|
Gallinaro A, Borghi M, Pirillo MF, Cecchetti S, Bona R, Canitano A, Michelini Z, Di Virgilio A, Olvera A, Brander C, Negri D, Cara A. Development and Preclinical Evaluation of an Integrase Defective Lentiviral Vector Vaccine Expressing the HIVACAT T Cell Immunogen in Mice. Mol Ther Methods Clin Dev 2020; 17:418-428. [PMID: 32154327 PMCID: PMC7056611 DOI: 10.1016/j.omtm.2020.01.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 01/22/2020] [Indexed: 12/25/2022]
Abstract
Cellular immune responses play a fundamental role in controlling viral replication and AIDS progression in human immunodeficiency virus (HIV)-infected subjects and in simian immunodeficiency virus (SIV)-infected macaques. Integrase defective lentiviral vector (IDLV) represents a promising vaccine candidate, inducing functional and durable immune responses in mice and non-human primates. Here, we designed HIV- and SIV-based IDLVs to express the HIVACAT T cell immunogen (HTI), a mosaic antigen designed to cover vulnerable sites in HIV-1 Gag, Pol, Vif, and Nef. We observed that HTI expression during lentiviral vector production interfered profoundly with IDLV particles release because of sequestration of both HIV- and SIV-Gag proteins in the cytoplasm of the vector-producing cells. However, modifications in IDLV design and vector production procedures greatly improved recovery of both HIV- and SIV-based IDLV-HTI. Immunization experiments in BALB/c mice showed that both IDLVs elicited HTI-specific T cell responses. However, immunization with HIV-based IDLV elicited also a T cell response toward exogenous HIV proteins in IDLV particles, suggesting that SIV-based IDLV may be a preferable platform to assess the induction of transgene-specific immune responses against rationally designed HIV structural antigens. These data support the further evaluation of IDLV as an effective platform of T cell immunogens for the development of an effective HIV vaccine.
Collapse
Affiliation(s)
| | - Martina Borghi
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | | | - Serena Cecchetti
- Confocal Microscopy Unit NMR, Confocal Microscopy Area Core Facilities, Istituto Superiore di Sanità, Rome, Italy
| | - Roberta Bona
- National Center for Global Health, Istituto Superiore di Sanità, Rome, Italy
| | - Andrea Canitano
- National Center for Global Health, Istituto Superiore di Sanità, Rome, Italy
| | - Zuleika Michelini
- National Center for Global Health, Istituto Superiore di Sanità, Rome, Italy
| | - Antonio Di Virgilio
- Center for Animal Research and Welfare, Istituto Superiore di Sanità, Rome, Italy
| | - Alex Olvera
- Irsicaixa AIDS Research Institute, 08916 Badalona, Catalonia, Spain
- Universitat de Vic-Universitat Central de Catalunya (UVic-UCC), 08500 Vic, Barcelona, Spain
| | - Christian Brander
- Irsicaixa AIDS Research Institute, 08916 Badalona, Catalonia, Spain
- Universitat de Vic-Universitat Central de Catalunya (UVic-UCC), 08500 Vic, Barcelona, Spain
- ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain
- AELIX Therapeutics, Barcelona, Spain
| | - Donatella Negri
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Andrea Cara
- National Center for Global Health, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
17
|
Izumida M, Togawa K, Hayashi H, Matsuyama T, Kubo Y. Production of Vesicular Stomatitis Virus Glycoprotein-Pseudotyped Lentiviral Vector Is Enhanced by Ezrin Silencing. Front Bioeng Biotechnol 2020; 8:368. [PMID: 32411688 PMCID: PMC7201057 DOI: 10.3389/fbioe.2020.00368] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Accepted: 04/02/2020] [Indexed: 11/17/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1)-based viral vector is widely used as a biomaterial to transfer a gene of interest into target cells in many biological study fields including gene therapy. Vesicular stomatitis virus glycoprotein (VSV-G)-containing HIV-1 vector much more efficiently transduces various mammalian cells than other viral envelope proteins-containing vectors. Understanding the mechanism would contribute to development of a novel method of efficient HIV-1 vector production. HIV-1 vector is generally constructed by transient transfection of human 293T or African green monkey COS7 cells. It was found in this study that HIV-1 Gag protein is constitutively digested in lysosomes of African green monkey cells. Surprisingly, VSV-G elevated HIV-1 Gag protein levels, suggesting that VSV-G protects Gag protein from the lysosomal degradation. Unphosphorylated ezrin, but not phosphorylated ezrin, was detected in COS7 cells, and ezrin silencing elevated Gag protein levels in the presence of VSV-G. Expression of unphosphorylated ezrin reduced Gag protein amounts. These results indicate that unphosphorylated ezrin proteins inhibit the VSV-G-mediated stabilization of HIV-1 Gag protein. Trafficking of HIV-1 Gag-associated intracellular vesicles may be controlled by ezrin. Finally, this study found that ezrin silencing yields higher amount of VSV-G-pseudotyped HIV-1 vector.
Collapse
Affiliation(s)
- Mai Izumida
- Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan.,Program for Nurturing Global Leaders in Tropical and Emerging Communicable Diseases, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Kei Togawa
- Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Hideki Hayashi
- Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan.,Medical University Research Administrator, Nagasaki University School of Medicine, Nagasaki, Japan
| | - Toshifumi Matsuyama
- Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan.,Department of Cancer Stem Cell Biology, Institute of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Yoshinao Kubo
- Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan.,Program for Nurturing Global Leaders in Tropical and Emerging Communicable Diseases, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan.,Department of Clinical Medicine, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
18
|
Deviatkin AA, Vakulenko YA, Akhmadishina LV, Tarasov VV, Beloukhova MI, Zamyatnin Jr. AA, Lukashev AN. Emerging Concepts and Challenges in Rheumatoid Arthritis Gene Therapy. Biomedicines 2020; 8:biomedicines8010009. [PMID: 31936504 PMCID: PMC7168286 DOI: 10.3390/biomedicines8010009] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/03/2020] [Accepted: 01/07/2020] [Indexed: 02/07/2023] Open
Abstract
Rheumatoid arthritis (RA) is a systemic inflammatory joint disease affecting about 1% of the population worldwide. Current treatment approaches do not ensure a cure for every patient. Moreover, classical regimens are based on nontargeted systemic immune suppression and have significant side effects. Biological treatment has advanced considerably but efficacy and specificity issues remain. Gene therapy is one of the potential future directions for RA therapy, which is rapidly developing. Several gene therapy trials done so far have been of moderate success, but experimental and genetics studies have yielded novel targets. As a result, the arsenal of gene therapy tools keeps growing. Currently, both viral and nonviral delivery systems are used for RA therapy. Herein, we review recent approaches for RA gene therapy.
Collapse
Affiliation(s)
- Andrei A. Deviatkin
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119048 Moscow, Russia; (M.I.B.); (A.A.Z.J.); (A.N.L.)
- Correspondence:
| | - Yulia A. Vakulenko
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector Borne Diseases, Sechenov First Moscow State Medical University, 119435 Moscow, Russia; (Y.A.V.); (L.V.A.)
- Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Ludmila V. Akhmadishina
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector Borne Diseases, Sechenov First Moscow State Medical University, 119435 Moscow, Russia; (Y.A.V.); (L.V.A.)
| | - Vadim V. Tarasov
- Department of Pharmacology and Pharmacy, Sechenov First Moscow State Medical University, 119991 Moscow, Russia;
| | - Marina I. Beloukhova
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119048 Moscow, Russia; (M.I.B.); (A.A.Z.J.); (A.N.L.)
| | - Andrey A. Zamyatnin Jr.
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119048 Moscow, Russia; (M.I.B.); (A.A.Z.J.); (A.N.L.)
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Alexander N. Lukashev
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119048 Moscow, Russia; (M.I.B.); (A.A.Z.J.); (A.N.L.)
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector Borne Diseases, Sechenov First Moscow State Medical University, 119435 Moscow, Russia; (Y.A.V.); (L.V.A.)
| |
Collapse
|
19
|
Khanna M, Manocha N, Himanshi, Joshi G, Saxena L, Saini S. Role of retroviral vector-based interventions in combating virus infections. Future Virol 2019. [DOI: 10.2217/fvl-2018-0151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The deployment of viruses as vaccine-vectors has witnessed recent developments owing to a better understanding of viral genomes and mechanism of interaction with the immune system. Vaccine delivery by viral vectors offers various advantages over traditional approaches. Viral vector vaccines are one of the best candidates for activating the cellular arm of the immune system, coupled with the induction of significant humoral responses. Hence, there is a broad scope for the development of effective vaccines against many diseases using viruses as vectors. Further studies are required before an ideal vaccine-vector is developed and licensed for use in humans. In this article, we have outlined the use of retroviral vectors in developing vaccines against various viral diseases.
Collapse
Affiliation(s)
- Madhu Khanna
- Virology Unit, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi 110 007, India
| | - Nilanshu Manocha
- Virology Unit, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi 110 007, India
| | - Himanshi
- Virology Unit, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi 110 007, India
| | - Garima Joshi
- Virology Unit, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi 110 007, India
| | - Latika Saxena
- Virology Unit, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi 110 007, India
| | - Sanjesh Saini
- Virology Unit, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi 110 007, India
| |
Collapse
|
20
|
Abstract
As the HIV pandemic rapidly spread worldwide in the 1980s and 1990s, a new approach to treat cancer, genetic diseases, and infectious diseases was also emerging. Cell and gene therapy strategies are connected with human pathologies at a fundamental level, by delivering DNA and RNA molecules that could correct and/or ameliorate the underlying genetic factors of any illness. The history of HIV gene therapy is especially intriguing, in that the virus that was targeted was soon co-opted to become part of the targeting strategy. Today, HIV-based lentiviral vectors, along with many other gene delivery strategies, have been used to evaluate HIV cure approaches in cell culture, small and large animal models, and in patients. Here, we trace HIV cell and gene therapy from the earliest clinical trials, using genetically unmodified cell products from the patient or from matched donors, through current state-of-the-art strategies. These include engineering HIV-specific immunity in T-cells, gene editing approaches to render all blood cells in the body HIV-resistant, and most importantly, combination therapies that draw from both of these respective "offensive" and "defensive" approaches. It is widely agreed upon that combinatorial approaches are the most promising route to functional cure/remission of HIV infection. This chapter outlines cell and gene therapy strategies that are poised to play an essential role in eradicating HIV-infected cells in vivo.
Collapse
|
21
|
Kamiyama H, Izumida M, Umemura Y, Hayashi H, Matsuyama T, Kubo Y. Role of Ezrin Phosphorylation in HIV-1 Replication. Front Microbiol 2018; 9:1912. [PMID: 30210460 PMCID: PMC6119696 DOI: 10.3389/fmicb.2018.01912] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 07/30/2018] [Indexed: 11/15/2022] Open
Abstract
Host-cell expression of the ezrin protein is required for CXCR4 (X4)-tropic HIV-1 infection. Ezrin function is regulated by phosphorylation at threonine-567. This study investigates the role of ezrin phosphorylation in HIV-1 infection and virion release. We analyzed the effects of ezrin mutations involving substitution of threonine-567 by alanine (EZ-TA), a constitutively inactive mutant, or by aspartic acid (EZ-TD), which mimics phosphorylated threonine. We also investigated the effects of ezrin silencing on HIV-1 virion release using a specific siRNA. We observed that X4-tropic HIV-1 vector infection was inhibited by expression of the EZ-TA mutant but increased by expression of the EZ-TD mutant, suggesting that ezrin phosphorylation in target cells is required for efficient HIV-1 entry. Expression of a dominant-negative mutant of ezrin (EZ-N) and ezrin silencing in HIV-1 vector-producing cells significantly reduced the infectivity of released virions without affecting virion production. This result indicates that endogenous ezrin expression is required for virion infectivity. The EZ-TD but not the EZ-TA inhibited virion release from HIV-1 vector-producing cells. Taken together, these findings suggest that ezrin phosphorylation in target cells is required for efficient HIV-1 entry but inhibits virion release from HIV-1 vector-producing cells.
Collapse
Affiliation(s)
- Haruka Kamiyama
- Department of AIDS Research, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan.,Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Mai Izumida
- Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan.,Department of Clinical Medicine, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | - Yuria Umemura
- Department of Clinical Medicine, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | - Hideki Hayashi
- Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan.,Medical University Research Administrator (MEDURA), Nagasaki University School of Medicine, Nagasaki, Japan
| | - Toshifumi Matsuyama
- Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan.,Department of Cancer Stem Cell Biology, Institute of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Yoshinao Kubo
- Department of AIDS Research, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan.,Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan.,Program for Nurturing Global Leaders in Tropical and Emerging Communicable Diseases, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
22
|
Battivelli E, Dahabieh MS, Abdel-Mohsen M, Svensson JP, Tojal Da Silva I, Cohn LB, Gramatica A, Deeks S, Greene WC, Pillai SK, Verdin E. Distinct chromatin functional states correlate with HIV latency reactivation in infected primary CD4 + T cells. eLife 2018; 7:e34655. [PMID: 29714165 PMCID: PMC5973828 DOI: 10.7554/elife.34655] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 04/18/2018] [Indexed: 12/21/2022] Open
Abstract
Human immunodeficiency virus (HIV) infection is currently incurable, due to the persistence of latently infected cells. The 'shock and kill' approach to a cure proposes to eliminate this reservoir via transcriptional activation of latent proviruses, enabling direct or indirect killing of infected cells. Currently available latency-reversing agents (LRAs) have however proven ineffective. To understand why, we used a novel HIV reporter strain in primary CD4+ T cells and determined which latently infected cells are reactivatable by current candidate LRAs. Remarkably, none of these agents reactivated more than 5% of cells carrying a latent provirus. Sequencing analysis of reactivatable vs. non-reactivatable populations revealed that the integration sites were distinguishable in terms of chromatin functional states. Our findings challenge the feasibility of 'shock and kill', and suggest the need to explore other strategies to control the latent HIV reservoir.
Collapse
Affiliation(s)
- Emilie Battivelli
- Gladstone Institute of Virology and ImmunologyGladstone InstitutesSan FranciscoUnited States
- Department of MedicineUniversity of California San FranciscoSan FranciscoUnited States
- Buck Institute for Research on AgingNovatoUnited States
| | - Matthew S Dahabieh
- Gladstone Institute of Virology and ImmunologyGladstone InstitutesSan FranciscoUnited States
- Department of MedicineUniversity of California San FranciscoSan FranciscoUnited States
| | - Mohamed Abdel-Mohsen
- University of California San FranciscoSan FranciscoUnited States
- Blood Systems Research InstituteSan FranciscoUnited States
- The Wistar InstitutePhiladelphiaUnited States
| | - J Peter Svensson
- Department of Biosciences and NutritionKarolinska InstitutetSolnaSweden
| | - Israel Tojal Da Silva
- Laboratory of Molecular ImmunologyThe Rockefeller UniversityNew YorkUnited States
- Laboratory of Computational Biology and BioinformaticsInternational Research CenterSao PauloBrazil
| | - Lillian B Cohn
- Laboratory of Molecular ImmunologyThe Rockefeller UniversityNew YorkUnited States
| | - Andrea Gramatica
- Gladstone Institute of Virology and ImmunologyGladstone InstitutesSan FranciscoUnited States
- Department of MedicineUniversity of California San FranciscoSan FranciscoUnited States
- Department of Cellular and Molecular PharmacologyUniversity of California San FranciscoSan FranciscoUnited States
| | - Steven Deeks
- Department of MedicineUniversity of California San FranciscoSan FranciscoUnited States
| | - Warner C Greene
- Gladstone Institute of Virology and ImmunologyGladstone InstitutesSan FranciscoUnited States
- Department of MedicineUniversity of California San FranciscoSan FranciscoUnited States
- Department of Cellular and Molecular PharmacologyUniversity of California San FranciscoSan FranciscoUnited States
| | - Satish K Pillai
- University of California San FranciscoSan FranciscoUnited States
- Blood Systems Research InstituteSan FranciscoUnited States
| | - Eric Verdin
- Gladstone Institute of Virology and ImmunologyGladstone InstitutesSan FranciscoUnited States
- Department of MedicineUniversity of California San FranciscoSan FranciscoUnited States
- Buck Institute for Research on AgingNovatoUnited States
| |
Collapse
|
23
|
Tomás HA, Rodrigues AF, Carrondo MJT, Coroadinha AS. LentiPro26: novel stable cell lines for constitutive lentiviral vector production. Sci Rep 2018; 8:5271. [PMID: 29588490 PMCID: PMC5869598 DOI: 10.1038/s41598-018-23593-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 03/12/2018] [Indexed: 12/20/2022] Open
Abstract
Lentiviral vectors (LVs) are excellent tools to promote gene transfer and stable gene expression. Their potential has been already demonstrated in gene therapy clinical trials for the treatment of diverse disorders. For large scale LV production, a stable producer system is desirable since it allows scalable and cost-effective viral productions, with increased reproducibility and safety. However, the development of stable systems has been challenging and time-consuming, being the selection of cells presenting high expression levels of Gag-Pro-Pol polyprotein and the cytotoxicity associated with some viral components, the main limitations. Hereby is described the establishment of a new LV producer cell line using a mutated less active viral protease to overcome potential cytotoxic limitations. The stable transfection of bicistronic expression cassettes with re-initiation of the translation mechanism enabled the generation of LentiPro26 packaging populations supporting high titers. Additionally, by skipping intermediate clone screening steps and performing only one final clone screening, it was possible to save time and generate LentiPro26-A59 cell line, that constitutively produces titers above 106 TU.mL-1.day-1, in less than six months. This work constitutes a step forward towards the development of improved LV producer cell lines, aiming to efficiently supply the clinical expanding gene therapy applications.
Collapse
Affiliation(s)
- H A Tomás
- iBET - Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901, Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal
| | - A F Rodrigues
- iBET - Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901, Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal
| | - M J T Carrondo
- iBET - Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901, Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal
- Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516, Monte da Caparica, Portugal
| | - A S Coroadinha
- iBET - Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901, Oeiras, Portugal.
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal.
| |
Collapse
|
24
|
Kubo Y, Izumida M, Yashima Y, Yoshii-Kamiyama H, Tanaka Y, Yasui K, Hayashi H, Matsuyama T. Gamma-interferon-inducible, lysosome/endosome-localized thiolreductase, GILT, has anti-retroviral activity and its expression is counteracted by HIV-1. Oncotarget 2018; 7:71255-71273. [PMID: 27655726 PMCID: PMC5342076 DOI: 10.18632/oncotarget.12104] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Accepted: 08/26/2016] [Indexed: 11/25/2022] Open
Abstract
The mechanism by which type II interferon (IFN) inhibits virus replications remains to be identified. Murine leukemia virus (MLV) replication was significantly restricted by γ-IFN, but not human immunodeficiency virus type 1 (HIV-1) replication. Because MLV enters host cells via endosomes, we speculated that certain cellular factors among γ-IFN-induced, endosome-localized proteins inhibit MLV replication. We found that γ-IFN-inducible lysosomal thiolreductase (GILT) significantly restricts HIV-1 replication as well as MLV replication by its thiolreductase activity. GILT silencing enhanced replication-defective HIV-1 vector infection and virion production in γ-IFN-treated cells, although γ-IFN did not inhibit HIV-1 replication. This result showed that GILT is required for the anti-viral activity of γ-IFN. Interestingly, GILT protein level was increased by γ-IFN in uninfected cells and env-deleted HIV-1-infected cells, but not in full-length HIV-1-infected cells. γ-IFN-induced transcription from the γ-IFN-activation sequence was attenuated by the HIV-1 Env protein. These results suggested that the γ-IFN cannot restrict HIV-1 replication due to the inhibition of γ-IFN signaling by HIV-1 Env. Finally, we found that 4,4′-dithiodipyridine (4-PDS), which inhibits S-S bond formation at acidic pH, significantly suppresses HIV-1 vector infection and virion production, like GILT. In conclusion, this study showed that GILT functions as a host restriction factor against the retroviruses, and a GILT mimic, 4-PDS, is the leading compound for the development of novel concept of anti-viral agents.
Collapse
Affiliation(s)
- Yoshinao Kubo
- Division of Cytokine Signaling, Graduate School of Medical Sciences, Nagasaki University, Nagasaki, Japan.,Department of AIDS Research, Institute of Tropical Medicine, G-COE, Nagasaki University, Nagasaki, Japan
| | - Mai Izumida
- Division of Cytokine Signaling, Graduate School of Medical Sciences, Nagasaki University, Nagasaki, Japan
| | - Yuka Yashima
- Division of Cytokine Signaling, Graduate School of Medical Sciences, Nagasaki University, Nagasaki, Japan
| | - Haruka Yoshii-Kamiyama
- Division of Cytokine Signaling, Graduate School of Medical Sciences, Nagasaki University, Nagasaki, Japan.,Department of AIDS Research, Institute of Tropical Medicine, G-COE, Nagasaki University, Nagasaki, Japan
| | - Yuetsu Tanaka
- Department of Immunology, Graduate School and Faculty of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Kiyoshi Yasui
- Division of Cytokine Signaling, Graduate School of Medical Sciences, Nagasaki University, Nagasaki, Japan
| | - Hideki Hayashi
- Division of Cytokine Signaling, Graduate School of Medical Sciences, Nagasaki University, Nagasaki, Japan
| | - Toshifumi Matsuyama
- Division of Cytokine Signaling, Graduate School of Medical Sciences, Nagasaki University, Nagasaki, Japan.,Present address: Department of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
25
|
Kubo Y, Masumoto H, Izumida M, Kakoki K, Hayashi H, Matsuyama T. Rab3a-Bound CD63 Is Degraded and Rab3a-Free CD63 Is Incorporated into HIV-1 Particles. Front Microbiol 2017; 8:1653. [PMID: 28900422 PMCID: PMC5581869 DOI: 10.3389/fmicb.2017.01653] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 08/15/2017] [Indexed: 01/23/2023] Open
Abstract
CD63, a member of the tetraspanin family, is involved in virion production by human immunodeficiency virus type 1 (HIV-1), but its mechanism is unknown. In this study, we showed that a small GTP-binding protein, Rab3a, interacts with CD63. When Rab3a was exogenously expressed, the amounts of CD63 decreased in cells. The Rab3a-mediated reduction of CD63 was suppressed by lysosomal and proteasomal inhibitors. The amount of CD63 was increased by reducing the endogenous Rab3a level using a specific shRNA. These results indicate that Rab3a binds to CD63 to induce the degradation of CD63. Rab3a is thought to be involved in exocytosis, but we found that another function of Rab3a affects the fate of CD63 in lysosomes. CD63 interacted with Rab3a and was incorporated into HIV-1 particles. However, Rab3a was not detected in HIV-1 virions, thereby indicating that Rab3a-free CD63, but not Rab3a-bound CD63, is incorporated into HIV-1 particles. Overexpression or silencing of Rab3a moderately reduced HIV-1 virion formation. Overexpression of Rab3a decreased CD63 levels, but did not affect the incorporation of CD63 into HIV-1 particles. This study showed that Rab3a binds to CD63 to induce the degradation of CD63, and only Rab3a-free CD63 is incorporated into HIV-1 particles.
Collapse
Affiliation(s)
- Yoshinao Kubo
- Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki UniversityNagasaki, Japan.,Program for Nurturing Global Leaders in Tropical and Emerging Communicable Diseases, Graduate School of Biomedical Sciences, Nagasaki UniversityNagasaki, Japan
| | - Hiroshi Masumoto
- Biomedical Research Support Center, Nagasaki University School of MedicineNagasaki, Japan
| | - Mai Izumida
- Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki UniversityNagasaki, Japan.,Department of Clinical Medicine, Institute of Tropical Medicine, Nagasaki UniversityNagasaki, Japan
| | - Katsura Kakoki
- Department of Urology, Graduate School of Biomedical Sciences, Nagasaki UniversityNagasaki, Japan
| | - Hideki Hayashi
- Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki UniversityNagasaki, Japan.,Medical University Research Administrator, Nagasaki University School of MedicineNagasaki, Japan
| | - Toshifumi Matsuyama
- Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki UniversityNagasaki, Japan
| |
Collapse
|
26
|
Lukashev AN, Zamyatnin AA. Viral Vectors for Gene Therapy: Current State and Clinical Perspectives. BIOCHEMISTRY (MOSCOW) 2017; 81:700-8. [PMID: 27449616 DOI: 10.1134/s0006297916070063] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Gene therapy is the straightforward approach for the application of recent advances in molecular biology into clinical practice. One of the major obstacles in the development of gene therapy is the delivery of the effector to and into the target cell. Unfortunately, most methods commonly used in laboratory practice are poorly suited for clinical use. Viral vectors are one of the most promising methods for gene therapy delivery. Millions of years of evolution of viruses have resulted in the development of various molecular mechanisms for entry into cells, long-term survival within cells, and activation, inhibition, or modification of the host defense mechanisms at all levels. The relatively simple organization of viruses, small genome size, and evolutionary plasticity allow modifying them to create effective instruments for gene therapy approaches. This review summarizes the latest trends in the development of gene therapy, in particular, various aspects and prospects of the development of clinical products based on viral delivery systems.
Collapse
Affiliation(s)
- A N Lukashev
- Chumakov Institute of Poliomyelitis and Viral Encephalitides, Moscow, 142782, Russia.
| | | |
Collapse
|
27
|
Negre O, Eggimann AV, Beuzard Y, Ribeil JA, Bourget P, Borwornpinyo S, Hongeng S, Hacein-Bey S, Cavazzana M, Leboulch P, Payen E. Gene Therapy of the β-Hemoglobinopathies by Lentiviral Transfer of the β(A(T87Q))-Globin Gene. Hum Gene Ther 2016; 27:148-65. [PMID: 26886832 PMCID: PMC4779296 DOI: 10.1089/hum.2016.007] [Citation(s) in RCA: 123] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
β-globin gene disorders are the most prevalent inherited diseases worldwide and result from abnormal β-globin synthesis or structure. Novel therapeutic approaches are being developed in an effort to move beyond palliative management. Gene therapy, by ex vivo lentiviral transfer of a therapeutic β-globin gene derivative (β(AT87Q)-globin) to hematopoietic stem cells, driven by cis-regulatory elements that confer high, erythroid-specific expression, has been evaluated in human clinical trials over the past 8 years. β(AT87Q)-globin is used both as a strong inhibitor of HbS polymerization and as a biomarker. While long-term studies are underway in multiple centers in Europe and in the United States, proof-of-principle of efficacy and safety has already been obtained in multiple patients with β-thalassemia and sickle cell disease.
Collapse
Affiliation(s)
- Olivier Negre
- 1 bluebird bio, Cambridge, Massachusetts.,2 CEA, Institute of Emerging Disease and Innovative Therapies (iMETI) , Fontenay aux Roses, France
| | | | - Yves Beuzard
- 2 CEA, Institute of Emerging Disease and Innovative Therapies (iMETI) , Fontenay aux Roses, France .,3 UMR 007, University of Paris 11 and CEA , CEA-iMETI, Fontenay aux Roses, France
| | | | - Philippe Bourget
- 4 Necker Hospital , Assistance Publique-Hôpitaux de Paris, Paris, France
| | | | | | - Salima Hacein-Bey
- 6 Immunology Laboratory, Groupe Hospitalier Universitaire Paris-Sud , Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Marina Cavazzana
- 4 Necker Hospital , Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Philippe Leboulch
- 2 CEA, Institute of Emerging Disease and Innovative Therapies (iMETI) , Fontenay aux Roses, France .,3 UMR 007, University of Paris 11 and CEA , CEA-iMETI, Fontenay aux Roses, France .,5 Mahidol University , Bangkok, Thailand .,7 Harvard Medical School and Genetics Division, Department of Medicine, Brigham & Women's Hospital , Boston, Massachusetts
| | - Emmanuel Payen
- 2 CEA, Institute of Emerging Disease and Innovative Therapies (iMETI) , Fontenay aux Roses, France .,3 UMR 007, University of Paris 11 and CEA , CEA-iMETI, Fontenay aux Roses, France .,8 INSERM , Paris, France
| |
Collapse
|
28
|
Jin C, Fotaki G, Ramachandran M, Nilsson B, Essand M, Yu D. Safe engineering of CAR T cells for adoptive cell therapy of cancer using long-term episomal gene transfer. EMBO Mol Med 2016; 8:702-11. [PMID: 27189167 PMCID: PMC4931286 DOI: 10.15252/emmm.201505869] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Chimeric antigen receptor (CAR) T‐cell therapy is a new successful treatment for refractory B‐cell leukemia. Successful therapeutic outcome depends on long‐term expression of CAR transgene in T cells, which is achieved by delivering transgene using integrating gamma retrovirus (RV) or lentivirus (LV). However, uncontrolled RV/LV integration in host cell genomes has the potential risk of causing insertional mutagenesis. Herein, we describe a novel episomal long‐term cell engineering method using non‐integrating lentiviral (NILV) vector containing a scaffold/matrix attachment region (S/MAR) element, for either expression of transgenes or silencing of target genes. The insertional events of this vector into the genome of host cells are below detection level. CD19 CAR T cells engineered with a NILV‐S/MAR vector have similar levels of CAR expression as T cells engineered with an integrating LV vector, even after numerous rounds of cell division. NILV‐S/MAR‐engineered CD19 CAR T cells exhibited similar cytotoxic capacity upon CD19+ target cell recognition as LV‐engineered T cells and are as effective in controlling tumor growth in vivo. We propose that NILV‐S/MAR vectors are superior to current options as they enable long‐term transgene expression without the risk of insertional mutagenesis and genotoxicity.
Collapse
Affiliation(s)
- Chuan Jin
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Grammatiki Fotaki
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Mohanraj Ramachandran
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Berith Nilsson
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Magnus Essand
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Di Yu
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| |
Collapse
|
29
|
Abstract
Retroviral vector gene therapy is a promising approach to treating HIV-1. However, integrated vectors are mutagens with the potential to dysregulate nearby genes and cause severe adverse side effects. Leukemia has already been a documented severe adverse event in gene therapy clinical trials for the treatment of primary immunodeficiencies. These side effects will need to be reduced or avoided if retroviral vectors are to be used clinically for HIV-1 treatment. The addition of chromatin insulators to retroviral vectors is a potential strategy for reducing adverse side effects. Insulators have already been effectively used in retroviral vectors to reduce genotoxicity in pre-clinical studies. Here, we will review how insulators function, genotoxicity in gene therapy clinical trials, the design of insulated retroviral vectors, promising results from insulated retroviral vector studies, and considerations for the development of insulated retroviral treatment vectors for HIV-1 gene therapy.
Collapse
Affiliation(s)
- Diana L. Browning
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164, USA;
| | - Grant D. Trobridge
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164, USA;
- Pharmaceutical Sciences, College of Pharmacy, Washington State University Spokane, Spokane, WA 99202, USA
- Correspondence: ; Tel.: +1-509-368-6535
| |
Collapse
|
30
|
Kantor B, McCown T, Leone P, Gray SJ. Clinical applications involving CNS gene transfer. ADVANCES IN GENETICS 2015; 87:71-124. [PMID: 25311921 DOI: 10.1016/b978-0-12-800149-3.00002-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Diseases of the central nervous system (CNS) have traditionally been the most difficult to treat by traditional pharmacological methods, due mostly to the blood-brain barrier and the difficulties associated with repeated drug administration targeting the CNS. Viral vector gene transfer represents a way to permanently provide a therapeutic protein within the nervous system after a single administration, whether this be a gene replacement strategy for an inherited disorder or a disease-modifying protein for a disease such as Parkinson's. Gene therapy approaches for CNS disorders has evolved considerably over the last two decades. Although a breakthrough treatment has remained elusive, current strategies are now considerably safer and potentially much more effective. This chapter will explore the past, current, and future status of CNS gene therapy, focusing on clinical trials utilizing adeno-associated virus and lentiviral vectors.
Collapse
Affiliation(s)
- Boris Kantor
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina, Columbia, SC, USA
| | - Thomas McCown
- Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Paola Leone
- Department of Cell Biology, Rowan University, Camden, NJ, USA
| | - Steven J Gray
- Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Ophthalmology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
31
|
Abstract
Numerous viral vectors have been developed for the delivery of transgenes to specific target cells. For persistent transgene expression, vectors based on retroviruses are attractive delivery vehicles because of their ability to stably integrate their DNA into the host cell genome. Initially, vectors based on simple retroviruses were the vector of choice for such applications. However, these vectors can only transduce actively dividing cells. Therefore, much interest has turned to retroviral vectors based on the lentivirus genus because of their ability to transduce both dividing and non-dividing cells. The best characterized lentiviral vectors are derived from the human immunodeficiency virus type 1 (HIV-1). This chapter describes the basic features of the HIV-1 replication cycle and the many improvements reported for the lentiviral vector systems to increase the safety and efficiency. We also provide practical information on the production of HIV-1 derived lentiviral vectors, the cell transduction protocol and a method to determine the transduction titers of a lentiviral vector.
Collapse
Affiliation(s)
- Ying Poi Liu
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | | |
Collapse
|
32
|
Kantor B, Bailey RM, Wimberly K, Kalburgi SN, Gray SJ. Methods for gene transfer to the central nervous system. ADVANCES IN GENETICS 2014; 87:125-97. [PMID: 25311922 DOI: 10.1016/b978-0-12-800149-3.00003-2] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Gene transfer is an increasingly utilized approach for research and clinical applications involving the central nervous system (CNS). Vectors for gene transfer can be as simple as an unmodified plasmid, but more commonly involve complex modifications to viruses to make them suitable gene delivery vehicles. This chapter will explain how tools for CNS gene transfer have been derived from naturally occurring viruses. The current capabilities of plasmid, retroviral, adeno-associated virus, adenovirus, and herpes simplex virus vectors for CNS gene delivery will be described. These include both focal and global CNS gene transfer strategies, with short- or long-term gene expression. As is described in this chapter, an important aspect of any vector is the cis-acting regulatory elements incorporated into the vector genome that control when, where, and how the transgene is expressed.
Collapse
Affiliation(s)
- Boris Kantor
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina, Columbia, SC, USA
| | - Rachel M Bailey
- Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Keon Wimberly
- Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Sahana N Kalburgi
- Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Steven J Gray
- Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Ophthalmology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
33
|
Semple-Rowland SL, Berry J. Use of lentiviral vectors to deliver and express bicistronic transgenes in developing chicken embryos. Methods 2013; 66:466-73. [PMID: 23816789 DOI: 10.1016/j.ymeth.2013.06.026] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 05/16/2013] [Accepted: 06/21/2013] [Indexed: 12/16/2022] Open
Abstract
The abilities of lentiviral vectors to carry large transgenes (∼8kb) and to efficiently infect and integrate these genes into the genomes of both dividing and non-dividing cells make them ideal candidates for transport of genetic material into cells and tissues. Given the properties of these vectors, it is somewhat surprising that they have seen only limited use in studies of developing tissues and in particular of the developing nervous system. Over the past several years, we have taken advantage of the large capacity of these vectors to explore the expression characteristics of several dual promoter and 2A peptide bicistronic transgenes in developing chick neural retina, with the goal of identifying transgene designs that reliably express multiple proteins in infected cells. Here we summarize the activities of several of these transgenes in neural retina and provide detailed methodologies for packaging lentivirus and delivering the virus into the developing neural tubes of chicken embryos in ovo, procedures that have been optimized over the course of several years of use in our laboratory. Conditions to hatch injected embryos are also discussed. The chicken-specific techniques will be of highest interest to investigators using avian embryos, development and packaging of lentiviral vectors that reliably express multiple proteins in infected cells should be of interest to all investigators whose experiments demand manipulation and expression of multiple proteins in developing cells and tissues.
Collapse
Affiliation(s)
- Susan L Semple-Rowland
- Department of Neuroscience, University of Florida, McKnight Brain Institute, Gainesville, FL 32610 0244, United States.
| | - Jonathan Berry
- Department of Neuroscience, University of Florida, McKnight Brain Institute, Gainesville, FL 32610 0244, United States.
| |
Collapse
|
34
|
A doubly fluorescent HIV-1 reporter shows that the majority of integrated HIV-1 is latent shortly after infection. J Virol 2013; 87:4716-27. [PMID: 23408629 DOI: 10.1128/jvi.03478-12] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
HIV-1 latency poses a major barrier to viral eradication. Canonically, latency is thought to arise from progressive epigenetic silencing of active infections. However, little is known about when and how long terminal repeat (LTR)-silent infections arise since the majority of the current latency models cannot differentiate between initial (LTR-silent) and secondary (progressive silencing) latency. In this study, we constructed and characterized a novel, double-labeled HIV-1 vector (Red-Green-HIV-1 [RGH]) that allows for detection of infected cells independently of LTR activity. Infection of Jurkat T cells and other cell lines with RGH suggests that the majority of integrated proviruses were LTR-silent early postinfection. Furthermore, the LTR-silent infections were transcriptionally competent, as the proviruses could be reactivated by a variety of T cell signaling agonists. Moreover, we used the double-labeled vector system to compare LTRs from seven different subtypes with respect to LTR silencing and reactivation. These experiments indicated that subtype D and F LTRs were more sensitive to silencing, whereas the subtype AE LTR was largely insensitive. Lastly, infection of activated human primary CD4(+) T cells yielded LTR-silent as well as productive infections. Taken together, our data, generated using the newly developed RGH vector as a sensitive tool to analyze HIV-1 latency on a single-cell level, show that the majority of HIV-1 infections are latent early postinfection.
Collapse
|
35
|
Generation of an optimized lentiviral vector encoding a high-expression factor VIII transgene for gene therapy of hemophilia A. Gene Ther 2012; 20:607-15. [PMID: 22996197 PMCID: PMC3552131 DOI: 10.1038/gt.2012.76] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
We previously compared the expression of several human factor VIII (fVIII) transgene variants and demonstrated the superior expression properties of B domain-deleted porcine fVIII. Subsequently, a hybrid human/porcine fVIII molecule (HP-fVIII) comprising 91% human amino-acid sequence was engineered to maintain the high-expression characteristics of porcine fVIII. The bioengineered construct then was used effectively to treat knockout mice with hemophilia A. In the current study, we focused on optimizing self-inactivating (SIN) lentiviral vector systems by analyzing the efficacy of various lentiviral components in terms of virus production, transduction efficiency and transgene expression. Specifically, three parameters were evaluated: (1) the woodchuck hepatitis post-transcriptional regulatory element (WPRE), (2) HIV versus SIV viral vector systems and (3) various internal promoters. The inclusion of a WPRE sequence had negligible effects on viral production and HP-fVIII expression. HIV and SIV vectors were compared and found to be similar with respect to transduction efficiency in both K562s and HEK-293T cells. However, there was an enhanced expression of HP-fVIII by the SIV system, which was evident in both K562 and BHK-M cell lines. To further compare expression of HP-fVIII from an SIV-based lentiviral system, we constructed expression vectors containing the high expression transgene and a human elongation factor-1 alpha, cytomegalovirus (CMV) or phosphoglycerate kinase promoter. Expression was significantly greater from the CMV promoter, which also yielded therapeutic levels of HP-fVIII in hemophilia A mice. Based on these studies, an optimized vector contains the HP-fVIII transgene driven by a CMV internal promoter within a SIV-based lentiviral backbone lacking a WPRE.
Collapse
|
36
|
Abstract
Despite the first application of gene therapy in 1990, gene therapy has until recently failed to meet the huge expectations set forth by researchers, clinicians, and patients, thus dampening enthusiasm for an imminent cure for many life-threatening genetic diseases. Nonetheless, in recent years we have witnessed a strong comeback for gene therapy, with clinical successes in young and adult subjects suffering from inherited forms of blindness or from X-linked severe combined immunodeficiency disease. In this review, various gene therapy vectors progressing into clinical development and pivotal advances in gene therapy trials will be discussed.
Collapse
Affiliation(s)
- Maria P Limberis
- Gene Therapy Program, Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104-3403, USA.
| |
Collapse
|
37
|
Blocking double-stranded RNA-activated protein kinase PKR by Japanese encephalitis virus nonstructural protein 2A. J Virol 2012; 86:10347-58. [PMID: 22787234 DOI: 10.1128/jvi.00525-12] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Japanese encephalitis virus (JEV) is an enveloped flavivirus with a single-stranded, positive-sense RNA genome encoding three structural and seven nonstructural proteins. To date, the role of JEV nonstructural protein 2A (NS2A) in the viral life cycle is largely unknown. The interferon (IFN)-induced double-stranded RNA (dsRNA)-activated protein kinase (PKR) phosphorylates the eukaryotic translation initiation factor 2α subunit (eIF2α) after sensing viral RNA and results in global translation arrest as an important host antiviral defense response. In this study, we found that JEV NS2A could antagonize PKR-mediated growth inhibition in a galactose-inducible PKR-expressing yeast system. In human cells, PKR activation, eIF2α phosphorylation, and the subsequent translational inhibition and cell death triggered by dsRNA and IFN-α were also repressed by JEV NS2A. Moreover, among the four eIF2α kinases, NS2A specifically blocked the eIF2α phosphorylation mediated by PKR and attenuated the PKR-promoted cell death induced by the chemotherapeutic drug doxorubicin. A single point mutation of NS2A residue 33 from Thr to Ile (T33I) abolished the anti-PKR potential of JEV NS2A. The recombinant JEV mutant carrying the NS2A-T33I mutation showed reduced in vitro growth and in vivo virulence phenotypes. Thus, JEV NS2A has a novel function in blocking the host antiviral response of PKR during JEV infection.
Collapse
|
38
|
Yu CY, Chang TH, Liang JJ, Chiang RL, Lee YL, Liao CL, Lin YL. Dengue virus targets the adaptor protein MITA to subvert host innate immunity. PLoS Pathog 2012; 8:e1002780. [PMID: 22761576 PMCID: PMC3386177 DOI: 10.1371/journal.ppat.1002780] [Citation(s) in RCA: 224] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Accepted: 05/15/2012] [Indexed: 12/22/2022] Open
Abstract
Dengue is one of the most important arboviral diseases caused by infection of four serotypes of dengue virus (DEN). We found that activation of interferon regulatory factor 3 (IRF3) triggered by viral infection and by foreign DNA and RNA stimulation was blocked by DEN-encoded NS2B3 through a protease-dependent mechanism. The key adaptor protein in type I interferon pathway, human mediator of IRF3 activation (MITA) but not the murine homologue MPYS, was cleaved in cells infected with DEN-1 or DEN-2 and with expression of the enzymatically active protease NS2B3. The cleavage site of MITA was mapped to LRR↓96G and the function of MITA was suppressed by dengue protease. DEN replication was reduced with overexpression of MPYS but not with MITA, while DEN replication was enhanced by MPYS knockdown, indicating an antiviral role of MITA/MPYS against DEN infection. The involvement of MITA in DEN-triggered innate immune response was evidenced by reduction of IRF3 activation and IFN induction in cells with MITA knockdown upon DEN-2 infection. NS2B3 physically interacted with MITA, and the interaction and cleavage of MITA could be further enhanced by poly(dA:dT) stimulation. Thus, we identified MITA as a novel host target of DEN protease and provide the molecular mechanism of how DEN subverts the host innate immunity. The pathogenesis of severe dengue diseases remains unclear, but magnitude of dengue virus (DEN) replication is believed to be one of the major determining factors. Thus, revealing how DEN evades the host defense mechanism such as type I interferon (IFN) system is important for better understanding this devastating disease. Although several DEN viral proteins have been reported as IFN-resistant factors, without knowing the cellular targets, the mechanism of how DEN subverts IFN system is poorly understood. In this study, we found that the human mediator of IRF3 activation (MITA), also known as STING and ERIS, was cleaved in cells infected with DEN and in cells expressing an enzymatically active DEN protease NS2B3. MITA is known as a DNA sensor for IFN production and its antiviral role has also been demonstrated for several DNA and RNA viruses. DEN protease appears to cleave MITA but not its murine homologue MPYS, and this cleavage resulted in impaired MITA activation. Ectopic overexpression of MPYS but not MITA reduced DEN replication, and knockdown of endogenous MPYS enhanced DEN replication. Thus, we find that MITA/MPYS is involved in host defense against DEN replication and DEN protease targets MITA to subvert its antiviral effect.
Collapse
Affiliation(s)
- Chia-Yi Yu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Tsung-Hsien Chang
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Jian-Jong Liang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Ruei-Lin Chiang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Yi-Ling Lee
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Ching-Len Liao
- Department of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan
| | - Yi-Ling Lin
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
- Department of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
39
|
Abstract
More than two decades have passed since genetically modified HIV was used for gene delivery. Through continuous improvements these early marker gene-carrying HIVs have evolved into safer and more effective lentiviral vectors. Lentiviral vectors offer several attractive properties as gene-delivery vehicles, including: (i) sustained gene delivery through stable vector integration into host genome; (ii) the capability of infecting both dividing and non-dividing cells; (iii) broad tissue tropisms, including important gene- and cell-therapy-target cell types; (iv) no expression of viral proteins after vector transduction; (v) the ability to deliver complex genetic elements, such as polycistronic or intron-containing sequences; (vi) potentially safer integration site profile; and (vii) a relatively easy system for vector manipulation and production. Accordingly, lentivector technologies now have widespread use in basic biology and translational studies for stable transgene overexpression, persistent gene silencing, immunization, in vivo imaging, generating transgenic animals, induction of pluripotent cells, stem cell modification and lineage tracking, or site-directed gene editing. Moreover, in the present high-throughput '-omics' era, the commercial availability of premade lentiviral vectors, which are engineered to express or silence genome-wide genes, accelerates the rapid expansion of this vector technology. In the present review, we assess the advances in lentiviral vector technology, including basic lentivirology, vector designs for improved efficiency and biosafety, protocols for vector production and infection, targeted gene delivery, advanced lentiviral applications and issues associated with the vector system.
Collapse
|
40
|
Distinct effects of two HIV-1 capsid assembly inhibitor families that bind the same site within the N-terminal domain of the viral CA protein. J Virol 2012; 86:6643-55. [PMID: 22496222 DOI: 10.1128/jvi.00493-12] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The emergence of resistance to existing classes of antiretroviral drugs necessitates finding new HIV-1 targets for drug discovery. The viral capsid (CA) protein represents one such potential new target. CA is sufficient to form mature HIV-1 capsids in vitro, and extensive structure-function and mutational analyses of CA have shown that the proper assembly, morphology, and stability of the mature capsid core are essential for the infectivity of HIV-1 virions. Here we describe the development of an in vitro capsid assembly assay based on the association of CA-NC subunits on immobilized oligonucleotides. This assay was used to screen a compound library, yielding several different families of compounds that inhibited capsid assembly. Optimization of two chemical series, termed the benzodiazepines (BD) and the benzimidazoles (BM), resulted in compounds with potent antiviral activity against wild-type and drug-resistant HIV-1. Nuclear magnetic resonance (NMR) spectroscopic and X-ray crystallographic analyses showed that both series of inhibitors bound to the N-terminal domain of CA. These inhibitors induce the formation of a pocket that overlaps with the binding site for the previously reported CAP inhibitors but is expanded significantly by these new, more potent CA inhibitors. Virus release and electron microscopic (EM) studies showed that the BD compounds prevented virion release, whereas the BM compounds inhibited the formation of the mature capsid. Passage of virus in the presence of the inhibitors selected for resistance mutations that mapped to highly conserved residues surrounding the inhibitor binding pocket, but also to the C-terminal domain of CA. The resistance mutations selected by the two series differed, consistent with differences in their interactions within the pocket, and most also impaired virus replicative capacity. Resistance mutations had two modes of action, either directly impacting inhibitor binding affinity or apparently increasing the overall stability of the viral capsid without affecting inhibitor binding. These studies demonstrate that CA is a viable antiviral target and demonstrate that inhibitors that bind within the same site on CA can have distinct binding modes and mechanisms of action.
Collapse
|
41
|
Zakas PM, Spencer HT, Doering CB. Engineered Hematopoietic Stem Cells as Therapeutics for Hemophilia A. ACTA ACUST UNITED AC 2012; 1. [PMID: 25383239 DOI: 10.4172/2157-7412.s1-003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Philip M Zakas
- Graduate Program in Molecular and Systems Pharmacology, Graduate Division of Biological and Biomedical Sciences, Emory University
| | - H Trent Spencer
- Aflac Cancer Center and Blood Disorders Service, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia
| | - Christopher B Doering
- Aflac Cancer Center and Blood Disorders Service, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
42
|
Kamiyama H, Kakoki K, Yoshii H, Iwao M, Igawa T, Sakai H, Hayashi H, Matsuyama T, Yamamoto N, Kubo Y. Infection of XC cells by MLVs and Ebola virus is endosome-dependent but acidification-independent. PLoS One 2011; 6:e26180. [PMID: 22022555 PMCID: PMC3192169 DOI: 10.1371/journal.pone.0026180] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Accepted: 09/21/2011] [Indexed: 11/18/2022] Open
Abstract
Inhibitors of endosome acidification or cathepsin proteases attenuated infections mediated by envelope proteins of xenotropic murine leukemia virus-related virus (XMRV) and Ebola virus, as well as ecotropic, amphotropic, polytropic, and xenotropic murine leukemia viruses (MLVs), indicating that infections by these viruses occur through acidic endosomes and require cathepsin proteases in the susceptible cells such as TE671 cells. However, as previously shown, the endosome acidification inhibitors did not inhibit these viral infections in XC cells. It is generally accepted that the ecotropic MLV infection in XC cells occurs at the plasma membrane. Because cathepsin proteases are activated by low pH in acidic endosomes, the acidification inhibitors may inhibit the viral infections by suppressing cathepsin protease activation. The acidification inhibitors attenuated the activities of cathepsin proteases B and L in TE671 cells, but not in XC cells. Processing of cathepsin protease L was suppressed by the acidification inhibitor in NIH3T3 cells, but again not in XC cells. These results indicate that cathepsin proteases are activated without endosome acidification in XC cells. Treatment with an endocytosis inhibitor or knockdown of dynamin 2 expression by siRNAs suppressed MLV infections in all examined cells including XC cells. Furthermore, endosomal cathepsin proteases were required for these viral infections in XC cells as other susceptible cells. These results suggest that infections of XC cells by the MLVs and Ebola virus occur through endosomes and pH-independent cathepsin activation induces pH-independent infection in XC cells.
Collapse
Affiliation(s)
- Haruka Kamiyama
- Department of AIDS Research, Institute of Tropical Medicine, Global COE Program, Nagasaki University, Nagasaki, Japan
- Graduate School of Science and Technology, Nagasaki University, Nagasaki, Japan
| | - Katsura Kakoki
- Department of AIDS Research, Institute of Tropical Medicine, Global COE Program, Nagasaki University, Nagasaki, Japan
- Department of Urology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Hiroaki Yoshii
- Department of AIDS Research, Institute of Tropical Medicine, Global COE Program, Nagasaki University, Nagasaki, Japan
| | - Masatomo Iwao
- Graduate School of Science and Technology, Nagasaki University, Nagasaki, Japan
| | - Tsukasa Igawa
- Department of Urology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Hideki Sakai
- Department of Urology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Hideki Hayashi
- Division of Cytokine Signaling, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Toshifumi Matsuyama
- Division of Cytokine Signaling, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Naoki Yamamoto
- Department of AIDS Research, Institute of Tropical Medicine, Global COE Program, Nagasaki University, Nagasaki, Japan
- Department of Microbiology, National University of Singapore, Singapore, Singapore
| | - Yoshinao Kubo
- Department of AIDS Research, Institute of Tropical Medicine, Global COE Program, Nagasaki University, Nagasaki, Japan
- Division of Cytokine Signaling, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
- * E-mail:
| |
Collapse
|
43
|
Dottori M, Tay C, Hughes SM. Neural development in human embryonic stem cells-applications of lentiviral vectors. J Cell Biochem 2011; 112:1955-62. [DOI: 10.1002/jcb.23116] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
44
|
Improvement of lentiviral transfer vectors using cis-acting regulatory elements for increased gene expression. Appl Microbiol Biotechnol 2011; 91:1581-91. [PMID: 21674167 DOI: 10.1007/s00253-011-3392-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Revised: 05/16/2011] [Accepted: 05/16/2011] [Indexed: 10/18/2022]
Abstract
Lentiviral vectors are an important tool for gene delivery in vivo and in vitro. The success of gene transfer approaches relies on high and stable levels of gene expression. To this end, several molecular strategies have been employed to manipulate these vectors towards improving gene expression in the targeted animal cells. Low gene expression can be accepted due to the weak transcription from the majority of available mammalian promoters; however, this obstacle can be in part overcome by the insertion of cis-acting elements that enhance gene expression in various expression contexts. In this work, we created different lentiviral vectors in which several posttranscriptional regulatory elements, namely the Woodchuck hepatitis posttranscriptional regulatory element (WPRE) and different specialized poly(A) termination sequences (BGH and SV40) were used to develop vectors leading to improved transgene expression. These vectors combine the advantages of restriction enzyme/ligation-independent cloning eliminating the instability and recombinogenic problems occurring from traditional cloning methods in lentiviral expression vectors and were tested by expressing GFP and the firefly Luciferase reporter gene from different cellular promoters in different cell lines. We show that the promoter activity varies between cell lines and is affected by the lentiviral genomic context. Moreover, we show that the combination of the WPRE element with the BGH poly(A) signal significantly enhances transgene expression. The vectors herein created can be easily modified and adapted without the need for extensive recloning making them a valuable tool for viral vector development.
Collapse
|
45
|
Yoshii H, Kamiyama H, Goto K, Oishi K, Katunuma N, Tanaka Y, Hayashi H, Matsuyama T, Sato H, Yamamoto N, Kubo Y. CD4-independent human immunodeficiency virus infection involves participation of endocytosis and cathepsin B. PLoS One 2011; 6:e19352. [PMID: 21541353 PMCID: PMC3081840 DOI: 10.1371/journal.pone.0019352] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Accepted: 04/04/2011] [Indexed: 01/03/2023] Open
Abstract
During a comparison of the infectivity of mNDK, a CD4-independent human immunodeficiency virus type 1 (HIV-1) strain, to various cell lines, we found that HeLa cells were much less susceptible than 293T and TE671 cells. Hybridoma cells between HeLa and 293T cells were as susceptible as 293T cells, suggesting that cellular factors enhance the mNDK infection in 293T cells. By screening a cDNA expression library in HeLa cells, cystatin C was isolated as an enhancer of the mNDK infection. Because cathepsin B protease, a natural ligand of cystatin C, was upregulated in HeLa cells, we speculated that the high levels of cathepsin B activities were inhibitory to the CD4-independent infection and that cystatin C enhanced the infection by impairing the excessive cathepsin B activity. Consistent with this idea, pretreatment of HeLa cells with 125 µM of CA-074Me, a cathepsin B inhibitor, resulted in an 8-fold enhancement of the mNDK infectivity. Because cathepsin B is activated by low pH in acidic endosomes, we further examined the potential roles of endosomes in the CD4-independent infection. Suppression of endosome acidification or endocytosis by inhibitors or by an Eps15 dominant negative mutant reduced the infectivity of mNDK in which CD4-dependent infections were not significantly impaired. Taken together, these results suggest that endocytosis, endosomal acidification, and cathepsin B activity are involved in the CD4-independent entry of HIV-1.
Collapse
Affiliation(s)
- Hiroaki Yoshii
- Department of AIDS Research, Institute of Tropical Medicine, Global Center of Excellence (GCOE), Nagasaki University, Nagasaki, Japan
- Department of Preventive and Therapeutic Research for Infectious Diseases, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Haruka Kamiyama
- Department of AIDS Research, Institute of Tropical Medicine, Global Center of Excellence (GCOE), Nagasaki University, Nagasaki, Japan
| | - Kensuke Goto
- Department of Eco-epidemiology, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | - Kazunori Oishi
- Department of Preventive and Therapeutic Research for Infectious Diseases, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
- International Research Center for Infectious Diseases, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Nobuhiko Katunuma
- Institute for Health Sciences, Tokushima Bunri University, Tokushima, Japan
| | - Yuetsu Tanaka
- Department of Immunology, Graduate School and Faculty of Medicine, University of the Ryukyus, Nishihara, Okinawa, Japan
| | - Hideki Hayashi
- Division of Cytokine Signaling, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Toshifumi Matsuyama
- Division of Cytokine Signaling, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Hironori Sato
- Department of AIDS Research, Institute of Tropical Medicine, Global Center of Excellence (GCOE), Nagasaki University, Nagasaki, Japan
- Laboratory of Viral Genomics, Pathogen Genomics Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Naoki Yamamoto
- Department of AIDS Research, Institute of Tropical Medicine, Global Center of Excellence (GCOE), Nagasaki University, Nagasaki, Japan
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yoshinao Kubo
- Department of AIDS Research, Institute of Tropical Medicine, Global Center of Excellence (GCOE), Nagasaki University, Nagasaki, Japan
- * E-mail:
| |
Collapse
|
46
|
Lee CC, Huang HY, Chiang BL. Lentiviral-mediated interleukin-4 and interleukin-13 RNA interference decrease airway inflammation and hyperresponsiveness. Hum Gene Ther 2011; 22:577-86. [PMID: 21375458 DOI: 10.1089/hum.2009.105] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Interleukin (IL)-4 and IL-13 are two key cytokines released from activated T helper type 2 (Th2) cells and strongly associated with asthma and allergic disease. We applied silencing of the IL-4 and IL-13 gene expression by RNA interference delivered by a lentiviral vector to evaluate the therapeutic role of IL-4 and IL13 short hairpin RNAs (shRNAs) in a murine model of asthma. Mice were sensitized with ovalbumin (OVA), and one treatment of IL-4 and IL-13 shRNA lentiviral vector (Lenti-si-IL-4 and Lenti-si-IL-13) was instilled intratracheally 48 hr before challenge. After three challenges of OVA antigen, mice were assessed for airway inflammation and hyperresponsiveness. With infection of Lenti-si-IL-4 and Lenti-si-IL-13 in EL-4 cells, both RNA and protein expressions of IL-4 and IL-13 were obviously abrogated. Furthermore, intratracheal instillation of Lenti-si-IL-4 and Lenti-si-IL-13 in OVA-immunized mice resulted in a strong inhibition of local IL-4 and IL-13 cytokine release. Treatment with Lenti-si-IL-4 and Lenti-si-IL-13 successfully alleviated OVA-induced airway eosinophilia and Th2 cell cytokine release. Finally, to determine airway hyperresponsiveness by enhanced pause and pulmonary resistance in noninvasive and invasive body plethysmography, we found that administration of Lenti-si-IL-4 and Lenti-si-IL-13 markedly decreased airway hyperresponsiveness in OVA-immunized mice. These results suggest that inhibition of IL-4 and IL-13 gene expression by shRNA lentiviral vector markedly inhibits antigen-induced airway inflammation and hyperresponsiveness in mice.
Collapse
Affiliation(s)
- Chen-Chen Lee
- Department of Microbiology and Immunology, School of Medicine, China Medical University, Taichung, Taiwan, ROC
| | | | | |
Collapse
|
47
|
The inside out of lentiviral vectors. Viruses 2011; 3:132-159. [PMID: 22049307 PMCID: PMC3206600 DOI: 10.3390/v3020132] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2010] [Revised: 01/25/2011] [Accepted: 02/08/2011] [Indexed: 11/30/2022] Open
Abstract
Lentiviruses induce a wide variety of pathologies in different animal species. A common feature of the replicative cycle of these viruses is their ability to target non-dividing cells, a property that constitutes an extremely attractive asset in gene therapy. In this review, we shall describe the main basic aspects of the virology of lentiviruses that were exploited to obtain efficient gene transfer vectors. In addition, we shall discuss some of the hurdles that oppose the efficient genetic modification mediated by lentiviral vectors and the strategies that are being developed to circumvent them.
Collapse
|
48
|
Doering CB, Archer D, Spencer HT. Delivery of nucleic acid therapeutics by genetically engineered hematopoietic stem cells. Adv Drug Deliv Rev 2010; 62:1204-12. [PMID: 20869414 PMCID: PMC2991563 DOI: 10.1016/j.addr.2010.09.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Revised: 08/17/2010] [Accepted: 09/08/2010] [Indexed: 01/02/2023]
Abstract
Several populations of adult human stem cells have been identified, but only a few of these are in routine clinical use. The hematopoietic stem cell (HSC) is arguably the most well characterized and the most routinely transplanted adult stem cell. Although details regarding several aspects of this cell's phenotype are not well understood, transplant of HSCs has advanced to become the standard of care for the treatment of a range of monogenic diseases and several types of cancer. It has also proven to be an excellent target for genetic manipulation, and clinical trials have already demonstrated the usefulness of targeting this cell as a means of delivering nucleic acid therapeutics for the treatment of several previously incurable diseases. It is anticipated that additional clinical trials will soon follow, such as genetically engineering HSCs with vectors to treat monogenic diseases such as hemophilia A. In addition to the direct targeting of HSCs, induced pluripotent stem (iPS) cells have the potential to replace virtually any engineered stem cell therapeutic, including HSCs. We now know that for the broad use of genetically modified HSCs for the treatment of non-lethal diseases, e.g. hemophilia A, we must be able to regulate the introduction of nucleic acid sequences into these target cells. We can begin to refine transduction protocols to provide safer approaches to genetically manipulate HSCs and strategies are being developed to improve the overall safety of gene transfer. This review focuses on recent advances in the systemic delivery of nucleic acid therapeutics using genetically modified stem cells, specifically focusing on i) the use of retroviral vectors to genetically modify HSCs, ii) the expression of fVIII from hematopoietic stem cells for the treatment of hemophilia A, and iii) the use of genetically engineered hematopoietic cells generated from iPS cells as treatment for disorders of hematopoiesis.
Collapse
Affiliation(s)
- Christopher B Doering
- Aflac Cancer Center and Blood Disorders Service, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | | | | |
Collapse
|
49
|
Li H, Lu Y, Witek RP, Chang LJ, Campbell-Thompson M, Jorgensen M, Petersen B, Song S. Ex vivo transduction and transplantation of bone marrow cells for liver gene delivery of alpha1-antitrypsin. Mol Ther 2010; 18:1553-8. [PMID: 20551917 DOI: 10.1038/mt.2010.116] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Adult stem cell-based gene therapy holds several unique advantages including avoidance of germline or other undesirable cell transductions. We have previously shown that liver progenitor (oval) cells can be used as a platform for liver gene delivery of human alpha1-antitrypsin (hAAT). However, this cell source cannot be used in humans for autologous transplantation. In the present study, we tested the feasibility of bone marrow (BM) cell-based liver gene delivery of hAAT. In vitro studies showed that BM cells can be transduced by lentiviral vector (Lenti-CB-hAAT) and recombinant adeno-associated viral vectors (rAAV1-CB-hAAT, and rAAV8-CB-hAAT). Transplantation studies showed that transplanted BM cells homed into liver, differentiated into hepatocytes and expressed hAAT in the liver. Importantly, we showed that transplantation of rAAV8-CB-hAAT vector-transduced BM cells resulted in sustained levels of hAAT in the systemic circulation of recipient mice. These results demonstrated that rAAV vector-mediated BM cell-based liver gene therapy is feasible for the treatment of AAT deficiency and implies a novel therapy for the treatment of liver diseases.
Collapse
Affiliation(s)
- Hong Li
- Department of Pharmaceutics, University of Florida, Gainesville, FL, USA
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Lentiviral-mediated Foxp3 RNAi suppresses tumor growth of regulatory T cell-like leukemia in a murine tumor model. Gene Ther 2010; 17:972-9. [PMID: 20357829 DOI: 10.1038/gt.2010.38] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Foxp3, a member of the forkhead transcription factor family, is a master gene that controls the development and function of CD4(+)CD25(+) regulatory T (Treg) cells. It is thought to contribute to pathogenesis of many different tumors, including ovarian carcinoma and pancreatic, breast and pancreatic ductal adenocarcinoma. Selectively depleted Foxp3-expressing cells with anit-CD25 antibodies or vaccination of Foxp3 mRNA-transfected dendritic cells engender protective immunity against tumor. This study targeted silencing Foxp3 gene expression using RNA interference (RNAi) delivered by a lentiviral vector to evaluate the therapeutic role of Foxp3 short-hairpin RNAs (shRNAs) in a murine model of leukemia. RLmale symbol1, a mouse CD4(+)CD25(+) leukemia cell with Foxp3 expression, was used as the leukemia animal model. By infecting RLmale symbol1 cells with Lenti-Foxp3-siRNA, we reduced Foxp3 gene expression and the suppressive function of CD4(+)CD25(-) effector cells stimulated with ConA. Moreover, lentiviral-mediated Foxp3 RNAi transduced into RLmale symbol1 cell or injected into the tumor showed suppressive effects on tumor growth and prolonged the survival of tumor-transplanted mice. However, this suppressive effect was abrogated in NOD-SCID mice transplanted with Lenti-Foxp3-siRNA-infected RLmale symbol1 cells. In conclusion, inhibiting Foxp3 gene expression by shRNAs effectively decreases tumor growth of Treg cell-like leukemia. The results may provide a novel strategy for future immunotherapy against cancers.
Collapse
|