1
|
Maher EE, Prillaman ME, Keskinoz EN, Petry HM, Erisir A. Immunocytochemical and ultrastructural organization of the taste thalamus of the tree shrew (Tupaia belangeri). J Comp Neurol 2021; 529:2558-2575. [PMID: 33458823 DOI: 10.1002/cne.25109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 12/28/2020] [Accepted: 01/10/2021] [Indexed: 12/16/2022]
Abstract
Ventroposterior medialis parvocellularis (VPMP) nucleus of the primate thalamus receives direct input from the nucleus of the solitary tract, whereas the homologous thalamic structure in the rodent does not. To reveal whether the synaptic circuitries in these nuclei lend evidence for conservation of design principles in the taste thalamus across species or across sensory thalamus in general, we characterized the ultrastructural and molecular properties of the VPMP in a close relative of primates, the tree shrew (Tupaia belangeri), and compared these to known properties of the taste thalamus in rodent, and the visual thalamus in mammals. Electron microscopy analysis to categorize the synaptic inputs in the VPMP revealed that the largest-size terminals contained many vesicles and formed large synaptic zones with thick postsynaptic density on multiple, medium-caliber dendrite segments. Some formed triads within glomerular arrangements. Smaller-sized terminals contained dark mitochondria; most formed a single asymmetric or symmetric synapse on small-diameter dendrites. Immuno-EM experiments revealed that the large-size terminals contained VGLUT2, whereas the small-size terminal populations contained VGLUT1 or ChAT. These findings provide evidence that the morphological and molecular characteristics of synaptic circuitry in the tree shrew VPMP are similar to that in nonchemical sensory thalamic nuclei. Furthermore, the results indicate that all primary sensory nuclei of the thalamus in higher mammals share a structural template for processing thalamocortical sensory information. In contrast, substantial morphological and molecular differences in rodent versus tree shrew taste nuclei suggest a fundamental divergence in cellular processing mechanisms of taste input in these two species.
Collapse
Affiliation(s)
- Erin E Maher
- Department of Psychology, University of Virginia, Charlottesville, Virginia, USA
| | - McKenzie E Prillaman
- Department of Psychology, University of Virginia, Charlottesville, Virginia, USA
| | - Elif N Keskinoz
- Department of Psychology, University of Virginia, Charlottesville, Virginia, USA.,Department of Anatomy, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Heywood M Petry
- Department of Psychological and Brain Sciences, University of Louisville, Louisville, Kentucky, USA
| | - Alev Erisir
- Department of Psychology, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
2
|
Viscomi MT, Molinari M. Remote neurodegeneration: multiple actors for one play. Mol Neurobiol 2014; 50:368-89. [PMID: 24442481 DOI: 10.1007/s12035-013-8629-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Accepted: 12/24/2013] [Indexed: 12/19/2022]
Abstract
Remote neurodegeneration significantly influences the clinical outcome in many central nervous system (CNS) pathologies, such as stroke, multiple sclerosis, and traumatic brain and spinal cord injuries. Because these processes develop days or months after injury, they are accompanied by a therapeutic window of opportunity. The complexity and clinical significance of remote damage is prompting many groups to examine the factors of remote degeneration. This research is providing insights into key unanswered questions, opening new avenues for innovative neuroprotective therapies. In this review, we evaluate data from various remote degeneration models to describe the complexity of the systems that are involved and the importance of their interactions in reducing damage and promoting recovery after brain lesions. Specifically, we recapitulate the current data on remote neuronal degeneration, focusing on molecular and cellular events, as studied in stroke and brain and spinal cord injury models. Remote damage is a multifactorial phenomenon in which many components become active in specific time frames. Days, weeks, or months after injury onset, the interplay between key effectors differentially affects neuronal survival and functional outcomes. In particular, we discuss apoptosis, inflammation, oxidative damage, and autophagy-all of which mediate remote degeneration at specific times. We also review current findings on the pharmacological manipulation of remote degeneration mechanisms in reducing damage and sustaining outcomes. These novel treatments differ from those that have been proposed to limit primary lesion site damage, representing new perspectives on neuroprotection.
Collapse
Affiliation(s)
- Maria Teresa Viscomi
- Experimental Neurorehabilitation Laboratory, Santa Lucia Foundation I.R.C.C.S., Via del Fosso di Fiorano 65, 00143, Rome, Italy,
| | | |
Collapse
|
3
|
|
4
|
Hendrickson ML, Ling C, Kalil RE. Degeneration of axotomized projection neurons in the rat dLGN: temporal progression of events and their mitigation by a single administration of FGF2. PLoS One 2012; 7:e46918. [PMID: 23144793 PMCID: PMC3489851 DOI: 10.1371/journal.pone.0046918] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Accepted: 09/06/2012] [Indexed: 12/13/2022] Open
Abstract
Removal of visual cortex in the rat axotomizes projection neurons in the dorsal lateral geniculate nucleus (dLGN), leading to cytological and structural changes and apoptosis. Biotinylated dextran amine was injected into the visual cortex to label dLGN projection neurons retrogradely prior to removing the cortex in order to quantify the changes in the dendritic morphology of these neurons that precede cell death. At 12 hours after axotomy we observed a loss of appendages and the formation of varicosities in the dendrites of projection neurons. During the next 7 days, the total number of dendrites and the cross-sectional areas of the dendritic arbors of projection neurons declined to about 40% and 20% of normal, respectively. The response of dLGN projection neurons to axotomy was asynchronous, but the sequence of structural changes in individual neurons was similar; namely, disruption of dendrites began within hours followed by cell soma atrophy and nuclear condensation that commenced after the loss of secondary dendrites had occurred. However, a single administration of fibroblast growth factor-2 (FGF2), which mitigates injury-induced neuronal cell death in the dLGN when given at the time of axotomy, markedly reduced the dendritic degeneration of projection neurons. At 3 and 7 days after axotomy the number of surviving dendrites of dLGN projection neurons in FGF-2 treated rats was approximately 50% greater than in untreated rats, and the cross-sectional areas of dendritic arbors were approximately 60% and 50% larger. Caspase-3 activity in axotomized dLGN projection neurons was determined by immunostaining for fractin (fractin-IR), an actin cleavage product produced exclusively by activated caspase-3. Fractin-IR was seen in some dLGN projection neurons at 36 hours survival, and it increased slightly by 3 days. A marked increase in reactivity was seen by 7 days, with the entire dLGN filled with dense fractin-IR in neuronal cell somas and dendrites.
Collapse
Affiliation(s)
- Michael L. Hendrickson
- W.M. Keck Laboratory for Biological Imaging, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Changying Ling
- Department of Surgery, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Ronald E. Kalil
- Department of Ophthalmology and Visual Sciences, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
5
|
Ling C, Hendrickson ML, Kalil RE. Morphology, classification, and distribution of the projection neurons in the dorsal lateral geniculate nucleus of the rat. PLoS One 2012; 7:e49161. [PMID: 23139837 PMCID: PMC3489731 DOI: 10.1371/journal.pone.0049161] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Accepted: 10/03/2012] [Indexed: 11/18/2022] Open
Abstract
The morphology of confirmed projection neurons in the dorsal lateral geniculate nucleus (dLGN) of the rat was examined by filling these cells retrogradely with biotinylated dextran amine (BDA) injected into the visual cortex. BDA-labeled projection neurons varied widely in the shape and size of their cell somas, with mean cross-sectional areas ranging from 60–340 µm2. Labeled projection neurons supported 7–55 dendrites that spanned up to 300 µm in length and formed dendritic arbors with cross-sectional areas of up to 7.0×104 µm2. Primary dendrites emerged from cell somas in three broad patterns. In some dLGN projection neurons, primary dendrites arise from the cell soma at two poles spaced approximately 180° apart. In other projection neurons, dendrites emerge principally from one side of the cell soma, while in a third group of projection neurons primary dendrites emerge from the entire perimeter of the cell soma. Based on these three distinct patterns in the distribution of primary dendrites from cell somas, we have grouped dLGN projection neurons into three classes: bipolar cells, basket cells and radial cells, respectively. The appendages seen on dendrites also can be grouped into three classes according to differences in their structure. Short “tufted” appendages arise mainly from the distal branches of dendrites; “spine-like” appendages, fine stalks with ovoid heads, typically are seen along the middle segments of dendrites; and “grape-like” appendages, short stalks that terminate in a cluster of ovoid bulbs, appear most often along the proximal segments of secondary dendrites of neurons with medium or large cell somas. While morphologically diverse dLGN projection neurons are intermingled uniformly throughout the nucleus, the caudal pole of the dLGN contains more small projection neurons of all classes than the rostral pole.
Collapse
Affiliation(s)
- Changying Ling
- Department of Surgery, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Michael L. Hendrickson
- W.M. Keck Laboratory for Biological Imaging, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Ronald E. Kalil
- Department of Ophthalmology and Visual Sciences, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
6
|
Abstract
Visual information must be relayed through the lateral geniculate nucleus before it reaches the visual cortex. However, not all spikes created in the retina lead to postsynaptic spikes and properties of the retinogeniculate synapse contribute to this filtering. To understand the mechanisms underlying this filtering process, we conducted electrophysiology to assess the properties of signal transmission in the Long-Evans rat. We also performed SDS-digested freeze-fracture replica labeling to quantify the receptor and transporter distribution, as well as EM reconstruction to describe the 3D structure. To analyze the impact of transmitter diffusion on the activity of the receptors, simulations were integrated. We identified that a large contributor to the filtering is the marked paired-pulse depression at this synapse, which was intensified by the morphological characteristics of the contacts. The broad presynaptic and postsynaptic contact area restricts transmitter diffusion two dimensionally. Additionally, the presence of multiple closely arranged release sites invites intersynaptic spillover, which causes desensitization of AMPA receptors. The presence of AMPA receptors that slowly recover from desensitization along with the high presynaptic release probability and multivesicular release at each synapse also contribute to the depression. These features contrast with many other synapses where spatiotemporal spread of transmitter is limited by rapid transmitter clearance allowing synapses to operate more independently. We propose that the micrometer-order structure can ultimately affect the visual information processing.
Collapse
|
7
|
Parajuli LK, Fukazawa Y, Watanabe M, Shigemoto R. Subcellular distribution of α1G subunit of T-type calcium channel in the mouse dorsal lateral geniculate nucleus. J Comp Neurol 2011; 518:4362-74. [PMID: 20853512 DOI: 10.1002/cne.22461] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
T-type calcium channels play a pivotal role in regulating neural membrane excitability in the nervous system. However, the precise subcellular distributions of T-type channel subunits and their implication for membrane excitability are not well understood. Here we investigated the subcellular distribution of the α1G subunit of the calcium channel which is expressed highly in the mouse dorsal lateral geniculate nucleus (dLGN). Light microscopic analysis demonstrated that dLGN exhibits intense immunoperoxidase reactivity for the α1G subunit. Electron microscopic observation showed that the labeling was present in both the relay cells and interneurons and was found in the somatodendritic, but not axonal, domains of these cells. Most of the immunogold particles for the α1G subunit were either associated with the plasma membrane or the intracellular membranes. Reconstruction analysis of serial electron microscopic images revealed that the intensity of the intracellular labeling exhibited a gradient such that the labeling density was higher in the proximal dendrite and progressively decreased towards the distal dendrite. In contrast, the plasma membrane-associated particles were distributed with a uniform density over the somatodendritic surface of dLGN cells. The labeling density in the relay cell plasma membrane was about 3-fold higher than that of the interneurons. These results provide ultrastructural evidence for cell-type-specific expression levels and for uniform expression density of the α1G subunit over the plasma membrane of dLGN cells.
Collapse
Affiliation(s)
- Laxmi Kumar Parajuli
- Division of Cerebral Structure, National Institute for Physiological Sciences, Okazaki 444-8787, Japan
| | | | | | | |
Collapse
|
8
|
Bickford ME, Slusarczyk A, Dilger EK, Krahe TE, Kucuk C, Guido W. Synaptic development of the mouse dorsal lateral geniculate nucleus. J Comp Neurol 2010; 518:622-35. [PMID: 20034053 DOI: 10.1002/cne.22223] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The dorsal lateral geniculate nucleus (dLGN) of the mouse has emerged as a model system in the study of thalamic circuit development. However, there is still a lack of information regarding how and when various types of retinal and nonretinal synapses develop. We examined the synaptic organization of the developing mouse dLGN in the common pigmented C57/BL6 strain, by recording the synaptic responses evoked by electrical stimulation of optic tract axons, and by investigating the ultrastructure of identified synapses. At early postnatal ages (<P12), optic tract evoked responses were primarily excitatory. The full complement of inhibitory responses did not emerge until after eye opening (>P14), when optic tract stimulation routinely evoked an excitatory postsynaptic potential/inhibitory postsynaptic potential (EPSP/IPSP) sequence, with the latter having both a GABA(A) and GABA(B) component. Electrophysiological and ultrastructural observations were consistent. At P7, many synapses were present, but synaptic profiles lacked the ultrastructural features characteristic of the adult dLGN, and little gamma-aminobutyric acid (GABA) could be detected by using immunocytochemical techniques. In contrast, by P14, GABA staining was robust, mature synaptic profiles of retinal and nonretinal origin were easily distinguished, and the size and proportion of synaptic contacts were similar to those of the adult. The emergence of nonretinal synapses coincides with pruning of retinogeniculate connections, and the transition of retinal activity from spontaneous to visually driven. These results indicate that the synaptic architecture of the mouse dLGN is similar to that of other higher mammals, and thus provides further support for its use as a model system for visual system development.
Collapse
Affiliation(s)
- Martha E Bickford
- Department of Anatomical Sciences & Neurobiology, University of Louisville School of Medicine, Kentucky 40292, USA
| | | | | | | | | | | |
Collapse
|
9
|
Input-specific intrasynaptic arrangements of ionotropic glutamate receptors and their impact on postsynaptic responses. J Neurosci 2009; 29:12896-908. [PMID: 19828804 DOI: 10.1523/jneurosci.6160-08.2009] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
To examine the intrasynaptic arrangement of postsynaptic receptors in relation to the functional role of the synapse, we quantitatively analyzed the two-dimensional distribution of AMPA and NMDA receptors (AMPARs and NMDARs, respectively) using SDS-digested freeze-fracture replica labeling (SDS-FRL) and assessed the implication of distribution differences on the postsynaptic responses by simulation. In the dorsal lateral geniculate nucleus, corticogeniculate (CG) synapses were twice as large as retinogeniculate (RG) synapses but expressed similar numbers of AMPARs. Two-dimensional views of replicas revealed that AMPARs form microclusters in both synapses to a similar extent, resulting in larger AMPAR-lacking areas in the CG synapses. Despite the broad difference in the AMPAR distribution within a synapse, our simulations based on the actual receptor distributions suggested that the AMPAR quantal response at individual RG synapses is only slightly larger in amplitude, less variable, and faster in kinetics than that at CG synapses having a similar number of the receptors. NMDARs at the CG synapses were expressed twice as many as those in the RG synapses. Electrophysiological recordings confirmed a larger contribution of NMDAR relative to AMPAR-mediated responses in CG synapses. We conclude that synapse size and the density and distribution of receptors have minor influences on quantal responses and that the number of receptors acts as a predominant postsynaptic determinant of the synaptic strength mediated by both the AMPARs and NMDARs.
Collapse
|
10
|
Miceli D, Repérant J, Ward R, Rio JP, Jay B, Médina M, Kenigfest NB. Fine structure of the visual dorsolateral anterior thalamic nucleus of the pigeon (Columba livia): A hodological and GABA-immunocytochemical study. J Comp Neurol 2008; 507:1351-78. [DOI: 10.1002/cne.21635] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
11
|
Saxon DW, Hopkins DA. Ultrastructure and synaptology of the paratrigeminal nucleus in the rat: primary pharyngeal and laryngeal afferent projections. Synapse 2006; 59:220-34. [PMID: 16385507 DOI: 10.1002/syn.20233] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The paratrigeminal nucleus (PTN) receives primary afferent projections from the aerodigestive tract and orofacial regions and plays a role in the integration of visceral and somatic information. This study describes the fine structure of the rat PTN and the synaptology of primary afferent projections from the pharynx and larynx. Injections of wheat germ agglutinin-horseradish peroxidase (WGA-HRP) or cholera toxin-HRP (CT-HRP) were made into the wall of the pharynx or larynx to label primary afferent axon terminals. Light microscopic observations demonstrated that afferent axons terminated bilaterally in overlapping fields in the PTN. Electron microscopic observations of the PTN revealed that there were three distinct classes of neurons, based on morphology and axosomatic contacts. The most abundant neurons, Type 1, were fusiform in shape and received very few or no axosomatic contacts. Type 2 neurons contained prominent Nissl substance (rough endoplasmic reticulum) and few axosomatic contacts, while Type 3 neurons had many axosomatic synapses. Terminals containing round, clear vesicles and forming asymmetric contacts (round asymmetric, RA) with dendrites were the predominant synaptic type in the PTN. Primary afferent terminals from the pharynx and larynx were of the RA type and formed synaptic contacts with small-diameter (<1 microm) dendrites. Visceral primary afferent inputs from the pharynx and larynx overlap with trigeminal somatic afferents in the PTN and have similar synaptic morphology. The results support the concept that the PTN provides an anatomical substrate for mediating viscerovisceral and somatovisceral reflexes via efferent connections with autonomic centers in the brainstem.
Collapse
Affiliation(s)
- Dale W Saxon
- Department of Anatomy, Faculty of Medicine, Indiana University, Evansville Center for Medical Education, Evansville, Indiana 47712, USA
| | | |
Collapse
|
12
|
Avwenagha O, Bird MM, Lieberman AR, Yan Q, Campbell G. Patterns of expression of brain-derived neurotrophic factor and tyrosine kinase B mRNAs and distribution and ultrastructural localization of their proteins in the visual pathway of the adult rat. Neuroscience 2006; 140:913-28. [PMID: 16626872 DOI: 10.1016/j.neuroscience.2006.02.056] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2005] [Revised: 02/23/2006] [Accepted: 02/23/2006] [Indexed: 01/19/2023]
Abstract
We have examined the cellular and subcellular distribution and the patterns of expression of brain-derived neurotrophic factor (BDNF), and of its high affinity receptor, tyrosine kinase B (TrkB), in retinorecipient regions of the brain, including the superior colliculus, the lateral geniculate nucleus and the olivary pretectal nucleus. In the retinorecipient layers of the superior colliculus, BDNF protein and mRNA were present in the cell bodies of a subpopulation of neurons, and BDNF protein was present in the neuropil as punctate or fiber-like structures. In the lateral geniculate nucleus, however, BDNF mRNA was not detected, and BDNF protein was restricted to punctate and fiber-like structures in the neuropil, especially in the most superficial part of the dorsal lateral geniculate nucleus, just below the optic tract. At the ultrastructural level, BDNF protein was localized predominantly to axon terminals containing round synaptic vesicles and pale mitochondria with irregular cristae, which made asymmetric (Gray type I) synaptic specializations (R-boutons). Enucleation of one eye was followed by loss of BDNF immunoreactivity and disappearance of BDNF-positive R-boutons in the contralateral visual centers, confirming the retinal origin of at least most of these terminals. TrkB was present in postsynaptic densities apposed to immunoreactive R-boutons in the superior colliculus and lateral geniculate nucleus, and was also associated with axonal and dendritic microtubules. These findings suggest that BDNF is synthesized by a subpopulation of retinal ganglion cells and axonally transported to visual centers where this neurotrophin is assumed to play important roles in visual system maintenance and/or in modulating the excitatory retinal input to neurons in these centers.
Collapse
Affiliation(s)
- O Avwenagha
- Department of Anatomy and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| | | | | | | | | |
Collapse
|
13
|
Fujiyama F, Hioki H, Tomioka R, Taki K, Tamamaki N, Nomura S, Okamoto K, Kaneko T. Changes of immunocytochemical localization of vesicular glutamate transporters in the rat visual system after the retinofugal denervation. J Comp Neurol 2003; 465:234-49. [PMID: 12949784 DOI: 10.1002/cne.10848] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
To clarify which vesicular glutamate transporter (VGluT) is used by excitatory axon terminals of the retinofugal system, we examined immunoreactivities and mRNA signals for VGluT1 and VGluT2 in the rat retina and compared immunoreactivities for VGluT1 and VGluT2 in the retinorecipient regions using double immunofluorescence method, anterograde tracing, and immunoelectron microscopy. Furthermore, the changes of VGluT1 and VGluT2 immunoreactivities were studied after eyeball enucleation. Intense immunoreactivity and mRNA signal for VGluT2, but not for VGluT1 immunoreactivity, were observed in most perikarya of ganglion cells in the retina. Immunoelectron microscopy revealed that VGluT1- and VGluT2-immunolabeled terminals made asymmetrical synapses, suggesting that they were excitatory synapses, and that VGluT1-immunolabeled terminals were smaller than VGluT2-labeled ones in many retinorecipient regions, such as the dorsal lateral geniculate nucleus (LGd) and superior colliculus (SC). Double immunofluorescence study further revealed that almost no VGluT2 immunoreactivity was colocalized with VGluT1 in the retinorecipient regions. After wheat germ agglutinin (WGA) injection into the eyeballs, WGA immunoreactivity was colocalized in the single axon terminals of LGd and SC with VGluT2 but not VGluT1 immunoreactivity. After unilateral enucleation, VGluT2 immunoreactivity in the LGd, SC, nucleus of the optic tract, and nuclei of the accessory optic tract in the contralateral side of the enucleated eye was clearly decreased. Although only a small change of VGluT2 immunoreactivity was observed in the contra- and ipsilateral suprachiasmatic nuclei, olivary pretectal nucleus, anterior pretectal nucleus, and posterior pretectal nucleus, moderate reduction of VGluT2 was found in these regions after bilateral enucleation. On the other hand, almost no change in VGluT1 immunoreactivity was found in the structures examined in the present enucleation study. Thus, the present results support the notion that the retinofugal pathways are glutamatergic, and indicate that VGluT2, but not VGluT1, is employed for accumulating glutamate into synaptic vesicles of retinofugal axons.
Collapse
Affiliation(s)
- Fumino Fujiyama
- Department of Morphological Brain Science, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Leresche N. Synaptic Currents in Thalamo-cortical Neurons of the Rat Lateral Geniculate Nucleus. Eur J Neurosci 2002; 4:595-602. [PMID: 12106323 DOI: 10.1111/j.1460-9568.1992.tb00168.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Thalamo-cortical neurons were identified in slices of the rat dorsal lateral geniculate nucleus and whole-cell currents were recorded using the patch-clamp technique. Postsynaptic currents occurring spontaneously, or elicited by extracellular stimulation in the vicinity of the recorded neuron, were analysed. Spontaneous postsynaptic currents were observed in every recorded neuron. At a holding potential of - 60 mV, and with a high internal Cl-, the currents were inward and had amplitudes ranging from < 10 to 425 pA. All the spontaneous currents were blocked by 10 microM bicuculline, indicating that they were due to the activation of postsynaptic gamma-aminobutyric acid (GABAA) receptors. The 10-90% rise time of these spontaneous GABAergic currents was 0.86 +/- 0.19 ms. Their time course of decay could be fitted to an exponential function with one time constant of 18.19 +/- 3.02 ms (mean +/- SD), or two time constants of 4.47 +/- 0.77 and 33.27 +/- 3.74 ms. This activity was frequently organized in bursts. Stimulus-evoked postsynaptic currents were recorded and shown to be due to the activation of glutamatergic receptors. Under similar experimental conditions a bicuculline-sensitive component was also recorded. These stimulus-evoked GABAergic currents had a 10 - 90% rise time of 1.93 +/- 0.54 ms. Their time course of decay could also be fitted to an exponential function with one time constant of 24.42 ms or two time constants of 10.26 +/- 2.46 and 49.30 +/- 10.98 ms. The difference in the time course between spontaneous and evoked GABAergic currents suggests that these responses may arise from synapses having different locations.
Collapse
Affiliation(s)
- N. Leresche
- Laboratoire de Neurobiologie, URA 295 CNRS, Ecole Normale Supérieure, 46 rue d'Ulm, 75005 Paris, France
| |
Collapse
|
15
|
Huh GS, Boulanger LM, Du H, Riquelme PA, Brotz TM, Shatz CJ. Functional requirement for class I MHC in CNS development and plasticity. Science 2000; 290:2155-9. [PMID: 11118151 PMCID: PMC2175035 DOI: 10.1126/science.290.5499.2155] [Citation(s) in RCA: 634] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Class I major histocompatibility complex (class I MHC) molecules, known to be important for immune responses to antigen, are expressed also by neurons that undergo activity-dependent, long-term structural and synaptic modifications. Here, we show that in mice genetically deficient for cell surface class I MHC or for a class I MHC receptor component, CD3zeta, refinement of connections between retina and central targets during development is incomplete. In the hippocampus of adult mutants, N-methyl-D-aspartate receptor-dependent long-term potentiation (LTP) is enhanced, and long-term depression (LTD) is absent. Specific class I MHC messenger RNAs are expressed by distinct mosaics of neurons, reflecting a potential for diverse neuronal functions. These results demonstrate an important role for these molecules in the activity-dependent remodeling and plasticity of connections in the developing and mature mammalian central nervous system (CNS).
Collapse
Affiliation(s)
- Gene S. Huh
- *To whom correspondence may be addressed. E-mail: or
| | | | | | | | | | | |
Collapse
|
16
|
Vercelli A, Garbossa D, Biasiol S, Repici M, Jhaveri S. NOS inhibition during postnatal development leads to increased ipsilateral retinocollicular and retinogeniculate projections in rats. Eur J Neurosci 2000; 12:473-90. [PMID: 10712628 DOI: 10.1046/j.1460-9568.2000.00925.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Synthesis of nitric oxide (NO) occurs downstream from activation of N-methyl-D-aspartate (NMDA) receptors; NO reportedly acts as a retrograde messenger, influencing the refinement and stabilization of coactive afferent terminals. Cells and neuropil in the rat superior colliculus (SC) and lateral geniculate body (LGB) show intense, developmentally regulated activity for NO synthase (NOS). To study the role of NO in the development of retinogeniculate and retinotectal axon arbors, we examined primary visual projections of rats that had received intraperitoneal injections of Nomega-nitro-L-arginine (L-NoArg, an NOS inhibitor) on postnatal day 0, and daily thereafter for 4-6 weeks. Treated rats showed significant alterations in ipsilateral retinotectal projections, in the mediolateral and anteroposterior axes; there was an increase in the density of fibres entering the SC, in branch length, and in the numbers of boutons on retinotectal arbors in the treated group. Ipsilaterally projecting retinal axons also showed an increase in density and distribution in the dorsal nucleus of the LGB. If animals were allowed to survive for several months after stopping treatment, similar changes were also noted, but these were much less striking. Our results support the hypothesis that, in the mammalian visual system, NO released from target neurons in the SC and LGB serves as a retrograde signal which feeds back on retinal afferents, influencing their growth. The effects of NOS inhibition are partially reversed after treatment is stopped, indicating that lack of NO synthesis delays the maturation of retinofugal connections, and also that NO plays a constitutive role in their development.
Collapse
Affiliation(s)
- A Vercelli
- Department of Anatomy, Pharmacology & Forensic Medicine, I-10126 Torino, Italy.
| | | | | | | | | |
Collapse
|
17
|
Wang B, Gonzalo-Ruiz A, Morte L, Campbell G, Lieberman AR. Immunoelectron microscopic study of glutamate inputs from the retrosplenial granular cortex to identified thalamocortical projection neurons in the anterior thalamus of the rat. Brain Res Bull 1999; 50:63-76. [PMID: 10507474 DOI: 10.1016/s0361-9230(99)00092-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
We have carried out an ultrastructural study to determine the characteristics and distribution of glutamate-containing constituents of the anterodorsal (AD) and anteroventral (AV) thalamic nuclei in adult rats. We used a polyclonal antibody to glutamate and a postembedding immunogold detection method in animals in which the neurons of AD/AV projecting to the cortex had been retrogradely labelled and the terminals of corticothalamic afferents anterogradely labelled by injection of cholera toxin-horseradish peroxidase (HRP) into the retrosplenial granular cortex. The heaviest immunogold labelling was over axon terminals 0.42 to 2.2 microm in diameter containing round synaptic vesicles and establishing Gray type 1 (asymmetric) synaptic contact (type 1 terminals) on HRP-labelled or non-labelled dendrites. Mean gold particle densities over such terminals were 3-4 times higher than the densities over the dendrites to which they were presynaptic and 5-6 times higher than over terminals establishing Gray type 2 (symmetric) synaptic contacts (type 2 terminals). Gold particle densities over neuronal cell bodies and dendrites and over a subpopulation of myelinated axons were intermediate between the densities over type 1 and type 2 terminals. In adjacent serial sections immunoreacted for gamma aminobutyric acid, type 2 terminals were heavily immunolabelled whereas type 1 terminals and other profiles with moderate gold particle densities after glutamate immunoreaction displayed very low labelling. A subpopulation of small type 1 axon terminals (up to 1 microm diameter) contained HRP reaction product identifying them as cortical in origin; they contacted small dendritic profiles (most <1 microm diameter) many of which also contained HRP reaction product. We conclude that terminals of the corticothalamic projection from retrosplenial granular cortex to AD/AV are glutamatergic and innervate predominantly distal dendrites of thalamocortical projection neurons.
Collapse
Affiliation(s)
- B Wang
- Department of Anatomy and Developmental Biology, University College London, UK
| | | | | | | | | |
Collapse
|
18
|
Three GABA receptor-mediated postsynaptic potentials in interneurons in the rat lateral geniculate nucleus. J Neurosci 1999. [PMID: 10407013 DOI: 10.1523/jneurosci.19-14-05721.1999] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Inhibition is crucial for the thalamus to relay sensory information from the periphery to the cortex and to participate in thalamocortical oscillations. However, the properties of inhibitory synaptic events in interneurons are poorly defined because in part of the technical difficulty of obtaining stable recording from these small cells. With the whole-cell recording technique, we obtained stable recordings from local interneurons in the lateral geniculate nucleus and studied their inhibitory synaptic properties. We found that interneurons expressed three different types of GABA receptors: bicuculline-sensitive GABA(A) receptors, bicuculline-insensitive GABA(A) receptors, and GABA(B) receptors. The reversal potentials of GABA responses were estimated by polarizing the membrane potential. The GABA(A) receptor-mediated responses had a reversal potential of approximately -82 mV, consistent with mediation via Cl(-) channels. The reversal potential for the GABA(B) response was -97 mV, consistent with it being a K(+) conductance. The roles of these GABA receptors in postsynaptic responses were also examined in interneurons. Optic tract stimulation evoked a disynaptic IPSP that was mediated by all three types of GABA receptors and depended on activation of geniculate interneurons. Stimulation of the thalamic reticular nucleus evoked an IPSP, which appeared to be mediated exclusively by bicuculline-sensitive GABA(A) receptors and depended on the activation of reticular cells. The results indicate that geniculate interneurons form a complex neuronal circuitry with thalamocortical and reticular cells via feed-forward and feedback circuits, suggesting that they play a more important role in thalamic function than thought previously.
Collapse
|
19
|
Abstract
We used whole-cell patch recording to study 102 local interneurons in the rat dorsal lateral geniculate nucleus in vitro. Input impedance with this technique (607.0+/-222.4 MOhm) was far larger than that measured with sharp electrode techniques, suggesting that interneurons may be more electrotonically compact than previously believed. Consistent and robust burst firing was observed in all interneurons when a slight depolarizing boost was given from a potential at, or slightly hyperpolarized from, resting membrane potential. These bursts had some similarities to the low-threshold spike described previously in other thalamic neuron types. The bursting responses were blocked by Ni+, suggesting that the low-threshold calcium current I(T), responsible for the low-threshold spike, was also involved in interneuron burst firing. Compared to the low-threshold spike of thalamocortical cells, however, the interneuron bursts were of relatively long duration and low intraburst frequency. The requirement for a depolarizing boost to elicit the burst is consistent with previous reports of a depolarizing shift of the I(T) activation curve of interneurons relative to thalamocortical cells, a finding we confirmed using voltage-clamp. Voltage-clamp study also revealed an additional long-lasting current that could be tentatively identified as the calcium activated non-selective cation current, I(CAN), based on reversal potential and on pharmacological characteristics. Computer simulation of the interneuron burst demonstrated that its particular morphology is likely due to the interaction of I(T) and I(CAN). In the slice, bursts could also be elicited by stimulation of the optic tract, suggesting that they may occur in response to natural stimulation. Synaptically triggered bursts were only partially blocked by Ni+, but could then be completely blocked by further addition of (+/-)-2-amino-5-phosphonopentanoic acid. The existence of robust bursts in this cell type suggests an additional role for interneurons in sculpting sensory responses by feedforward inhibition of thalamocortical cells. The low-threshold spike is a mechanism whereby activity in a neuron is dependent on a prior lack of activity in that same neuron. Understanding of the low-threshold spike in the other major neuron types of the thalamus has brought many new insights into how thalamic oscillations might be involved in sleep and epilepsy. Our description of this phenomenon in the interneurons of the thalamus suggests that these network oscillations might be even more complicated than previously believed.
Collapse
Affiliation(s)
- J J Zhu
- Department of Anatomy, University of Wisconsin, Madison 53706, USA
| | | | | |
Collapse
|
20
|
Bester H, Bourgeais L, Villanueva L, Besson JM, Bernard JF. Differential projections to the intralaminar and gustatory thalamus from the parabrachial area: A PHA-L study in the rat. J Comp Neurol 1999. [DOI: 10.1002/(sici)1096-9861(19990322)405:4<421::aid-cne1>3.0.co;2-2] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
21
|
Agarwala S, Kalil RE. Axotomy-induced neuronal death and reactive astrogliosis in the lateral geniculate nucleus following a lesion of the visual cortex in the rat. J Comp Neurol 1998; 392:252-63. [PMID: 9512272 DOI: 10.1002/(sici)1096-9861(19980309)392:2<252::aid-cne7>3.0.co;2-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Following a unilateral lesion of the visual cortex (cortical areas 17, 18, and 18a) in adult rats, neurons in the ipsilateral dorsal lateral geniculate nucleus (LGN) are axotomized, which leads to their atrophy and death. The time course of this neuronal degeneration was studied quantitatively, and the astroglial response was examined with glial fibrillary acidic protein immunohistochemistry. More than 95% of the neurons in the ipsilateral LGN survive during the first 3 days following a lesion of the visual cortex. However, in the next 4 days, massive neuronal death ensues, reducing the number of surviving neurons to approximately 33% of normal by the end of the first postoperative week. Between 2 weeks and 24 weeks postoperatively, the number of neurons present in the LGN declines very gradually from 34% to 17% of normal. Three days after a lesion of the visual cortex, the mean cross-sectional areas of ipsilateral LGN neurons are 13% smaller than normal (87%). By 1 week after the operation, surviving LGN neurons have atrophied to 66% of their normal area. Subsequently, the size of surviving neurons declines slowly to approximately 50% of normal at 24 weeks after the cortical lesion. Astrocytes in the ipsilateral LGN also react to cortical damage. At 1 day after a lesion of the visual cortex, glial fibrillary acidic protein immunoreactivity in the LGN is almost undetectable, but a distinct increase in immunoreactivity is seen at 3 days. Immunoreactivity peaks between 1 week and 2 weeks postoperatively and, thereafter, remains intense for at least 24 weeks. Thus, following a lesion of the visual cortex, the somata of neurons in the LGN remain essentially normal morphologically for about 3 days before the onset of rapid atrophy and death. Moreover, most of the neural cell death that occurs in the LGN after axotomy takes place in the last half of the first postoperative week.
Collapse
Affiliation(s)
- S Agarwala
- Center for Neuroscience, University of Wisconsin, Madison 53706, USA
| | | |
Collapse
|
22
|
Parnavelas J, Dinopoulos A, Brecha N. Transient features of tachykinin peptide innervation of the dorsal lateral geniculate nucleus of the rabbit during postnatal development. J Comp Neurol 1997. [DOI: 10.1002/(sici)1096-9861(19970414)380:3<310::aid-cne2>3.0.co;2-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
23
|
Sobkowicz HM, Slapnick SM, Nitecka LM, August BK. Compound synapses within the GABAergic innervation of the auditory inner hair cells in the adolescent mouse. J Comp Neurol 1997; 377:423-42. [PMID: 8989656 DOI: 10.1002/(sici)1096-9861(19970120)377:3<423::aid-cne9>3.0.co;2-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Ultrastructural investigation of the gamma-aminobutyric acid (GABA) component of the inner spiral bundle in adolescent mice revealed a pathway of glutamic acid decarboxylase (GAD)-positive and -negative fibers and vesiculated endings that contact inner hair cells and their afferents through a complex of axosomatic and axodendritic synapses. Ultrastructural details were investigated by using conventional electron microscopy. Several synaptic arrangements were observed: Main axosomatic synapses form between vesiculated endings and individual or adjoining inner hair cells (interreceptor synapses). Spinous synapses form on long, spinelike processes that protrude from inner hair cells to reach distant efferent endings. The efferent endings associate with inner hair cells and their synaptic afferents through compound synapses-serial, "converging," and triadic-otherwise characteristic of sensory relay nuclei. Serial synapses form by the sequential presynaptic alignment of the efferent-->receptor-->afferent components. Converging synapses result from the simultaneous apposition of a receptor ribbon synapse and a presynaptic efferent terminal on a recipient afferent dendrite. Triadic synapses comprise a vesiculated efferent ending in contact with an inner hair cell and with its synaptic afferent. Additionally, efferent endings may form simple axodendritic and axoaxonal synapses with GAD-negative vesiculated endings. The combination of different synaptic arrangements leads to short chains of compound synapses. It is assumed that these synaptic patterns seen in the adolescent mouse represent adult synaptology. The patterns of synaptic connectivity suggest an integrative role for the GABA/GAD lateral efferent system, and imply its involvement in the pre- and postsynaptic modulation of auditory signals.
Collapse
Affiliation(s)
- H M Sobkowicz
- Department of Neurology, University of Wisconsin, Madison 53706, USA.
| | | | | | | |
Collapse
|
24
|
Wilson JR, Forestner DM, Cramer RP. Quantitative analyses of synaptic contacts of interneurons in the dorsal lateral geniculate nucleus of the squirrel monkey. Vis Neurosci 1996; 13:1129-42. [PMID: 8961542 DOI: 10.1017/s095252380000777x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Three interneurons were recorded from and then injected with horseradish peroxidase in the parvocellular laminae of the squirrel monkey's (Saimiri sciureus) dorsal lateral geniculate nucleus. They were then examined using the electron microscope for their synaptic contacts, both the afferent contacts onto their dendrites and their presynaptic dendritic contacts onto presumptive projection (relay) neuron dendrites. The somata of these interneurons were small (mean = 178 microns 2), but the dendritic trees were large compared with those of projection neurons. All three interneurons had similar synaptic patterns onto their dendrites with about equal numbers of retinal, cortical, and GABAergic contacts. The distribution of these contacts was more uniform compared with the same types of contacts made onto projection neurons. The presynaptic dendrites were observed to contact only the dendrites of presumptive projection neurons, and these contacts were nearly all in the form of geniculate triads. None of the three interneurons displayed an axon. The receptive fields of these interneurons were similar to those of projection cells, but were larger and had center-response signs that were the opposite of the projection neurons around them (e.g. OFF center for the dorsal part of the parvocellular mass where ON-center projection neurons reside). The squirrel monkey data provides additional evidence that one aspect of the laminar pattern observed in the parvocellular pathway of the primate's dLGN might be related to a segregation of projection neurons of one center-response sign with interneurons of the opposite center-response sign.
Collapse
Affiliation(s)
- J R Wilson
- Yerkes Regional Primate Research Center, Atlanta, GA 30322, USA
| | | | | |
Collapse
|
25
|
Sato F, Nakamura Y, Shinoda Y. Three-dimensional analysis of cerebellar terminals and their postsynaptic components in the ventral lateral nucleus of the cat thalamus. J Comp Neurol 1996; 371:537-51. [PMID: 8841908 DOI: 10.1002/(sici)1096-9861(19960805)371:4<537::aid-cne4>3.0.co;2-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Relationships among cerebellar terminals (CTs), dendrites of thalamocortical projection neurons (TCNs), and dendrites of local circuit neurons in the ventral lateral nucleus of the cat thalamus were analyzed quantitatively by observing several series of serial ultrathin sections and by using a computer-assisted program for the three-dimensional reconstruction from serial ultrathin sections. In pentobarbital-anesthetized cats, CTs were labeled either by injections of wheat germ agglutinin conjugated to horseradish peroxidase (WGA-HRP) into the cerebellar nuclei or by intra-axonal injection of HRP after electrophysiological identification. By using two series of 133 and 73 serial sections, mutual relationships between 43 WGA-HRP-labeled CTs and their postsynaptic structures were analyzed based on their synaptic specializations and shapes of synaptic vesicles. Thirty-nine of these CTs formed a synapse with one TCN dendrite, whereas only four CTs formed synapses with two TCN dendrites. These CTs also synapsed on dendrites containing pleomorphic synaptic vesicles (presynaptic dendrites). Single CTs synapsed on 0-6 presynaptic dendrites (2.2 +/- 1.5, N = 43) through their whole extents, and about 40% of these presynaptic dendrites that were contacted by CTs established synaptic contacts with the same TCN dendrites on which the CTs synapsed. Thus, a CT, a presynaptic dendrite, and a TCN dendrite formed a triadic arrangement. Triadic arrangements were identified in approximately 60% of these 43 CTs. However, they rarely had a glomerulus-like appearance, as described previously in the ventral lateral nucleus and other main thalamic relay nuclei. In another series of 83 and 43 serial sections along dendrites of TCNs, observations were focused on the triadic arrangement. Triadic arrangements were located evenly on the primary and secondary dendrites of TCNs. Computer-assisted three-dimensional reconstructions were made on one WGA-HRP-labeled CT and two intra-axonally labeled CTs (a bouton en passant and a bouton terminal) with their surrounding neuronal elements, and complex spatial arrangement of neuronal processes became obvious. These results provide the quantitative assessment of synaptic arrangements among CTs, presynaptic dendrites, and TCN dendrites and reveal their spatial interrelations in the cat ventral lateral nucleus.
Collapse
Affiliation(s)
- F Sato
- Department of Anatomy, Faculty of Medicine, Tokyo Medical and Dental University, Japan
| | | | | |
Collapse
|
26
|
Nakajima J, Saito N, Kani K, Maeda T. Morphologic analysis of rat retino-collicular neuron terminals containing monoamine oxidase. Brain Res Bull 1996; 40:209-17. [PMID: 8736583 DOI: 10.1016/0361-9230(96)00009-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The retino-collicular neuron terminals containing type A monoamine oxidase (MAO-A) in the stratum griseum superficiale of the rat superior colliculus were analyzed to provide a morphologic basis for the physiologic role of these neurons in the visual pathway. A computer-assisted, three-dimensional reconstruction of the terminal complex associated with the MAO-A-positive terminals was performed. MAO-A-positive terminals originated in the retina and terminated in the stratum griseum superficiale. This was confirmed by tract tracing and enucleation experiments. The terminals were densely grouped in clusters of irregularly shaped swellings. Electron microscopy revealed that the MAO-A-positive terminals were located in a glomerulus-like structure. In this terminal complex, a significant proportion of the axonal profiles (42.96%) synapsed with the MAO-A-positive terminals. Most of the profiles (24.16%) resembled presynaptic dendrites, which represent intermediate elements between the retinal terminals and conventional dendrites. Unlike the glomerulus in the dorsal lateral geniculate body, the MAO-A-positive terminal swellings were not located in the central part of the terminal complex. The terminals had an irregular shape and were located in the complex. The terminal complex was partially ensheathed by glial processes. Furthermore, the membrane surfaces exhibiting synaptic specializations were very small compared with the total surface of the terminal swellings. The membrane length of the synaptic specialization was 5.38% of the total perimeter of the MAO-A-positive terminals.
Collapse
Affiliation(s)
- J Nakajima
- Department of Ophthalmology, Shiga University of Medical Science, Japan
| | | | | | | |
Collapse
|
27
|
Dinopoulos A, Dori I, Parnavelas JG. Serotonergic innervation of the lateral geniculate nucleus of the rat during postnatal development: a light and electron microscopic immunocytochemical analysis. J Comp Neurol 1995; 363:532-544. [PMID: 8847416 DOI: 10.1002/cne.903630403] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The serotonergic innervation of the developing lateral geniculate nucleus of the rat was studied with immunocytochemical techniques at the light and electron microscope levels. A relatively small number of thick serotonergic fibers were observed at the time of birth, distributed more densely in the ventral portion of the nucleus and in the intergeniculate leaflet than in the dorsal lateral geniculate nucleus. By the end of the first postnatal week, this distribution pattern was more clearly established, but the number of immunoreactive fibers was increased. Thereafter, and until the adult pattern was established at the end of the third postnatal week, serotonergic fibers increased further in number and changed morphologically (e.g., they became finer and more ramified with closely spaced varicosities), but their pattern of distribution remained unchanged. Electron microscopical analysis of the dorsal lateral geniculate nucleus revealed that the vast majority of serotonin varicosities formed asymmetrical synapses with dendritic shafts; axosomatic synapses were a feature of the nucleus only at the time of birth. The proportion of serotonin varicosities forming synapses increased gradually from birth to reach a peak at the end of the second postnatal week, then declined markedly in the following week before increasing again at a later stage. It may be speculated that synapses formed during the first two weeks of life may be related to the involvement of serotonin in the morphogenesis of the lateral geniculate nucleus, whereas those formed later in development may be involved in the mediation of neurotransmitter effects.
Collapse
Affiliation(s)
- A Dinopoulos
- Department of Anatomy, School of Veterinary Medicine, University of Thessaloniki, Greece
| | | | | |
Collapse
|
28
|
Gabbott PL, Bacon SJ. An oriented framework of neuronal processes in the ventral lateral geniculate nucleus of the rat demonstrated by NADPH diaphorase histochemistry and GABA immunocytochemistry. Neuroscience 1994; 60:417-40. [PMID: 7521023 DOI: 10.1016/0306-4522(94)90254-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
This study investigated the morphology and quantitative distribution of neurons containing NADPH diaphorase activity in the ventral lateral geniculate nucleus of the rat. The pattern of diaphorase staining revealed a strongly reactive lateral subdivision and a weakly staining medial subdivision. A characteristic feature of the diaphorase staining in the lateral part was its "stripe-like" appearance. These "diaphorase stripes" resulted from regions of strong somatic and neuropil diaphorase activity lying between unstained fibre bundles coursing dorsoventrally through the nucleus. Two distinct populations of diaphorase reactive cell types were present--class A and class B neurons. The ratio of class A to class B diaphorase neurons was approximately 14:1 (A:B). Diaphorase reactive neurons made up 73% of the total neuron population in the lateral subdivision, and 31% in the medial subdivision. A third population of cells was found exclusively in the optic tract--class C neurons. Quantitative analyses in the coronal and sagittal planes indicated that the principal processes of both class A and class B neurons were oriented preferentially--either parallel with, or perpendicular to the outlying optic tract. Diaphorase enzyme histochemistry in combination with GABA immunocytochemistry demonstrated the co-localization of GABA immunoreactivity in the majority of class B neurons, whereas class A and class C neurons were GABA immunonegative. Furthermore a large population of GABA-immunoreactive neurons was present that were not stained for diaphorase activity. From this and previous studies, it can be concluded that a high proportion of the diaphorase reaction class A neurons are geniculotectal projection cells, while diaphorase reaction class B neurons represent a numerically small subpopulation of "local-circuit" inhibitory neurons. Since diaphorase activity co-localizes with nitric oxide synthase, the results indicate the likely involvement of nitric oxide in the neuronal operations of both subpopulations of geniculotectal projection neurons and "local-circuit" GABAergic neurons in the rat's ventral lateral geniculate nucleus.
Collapse
Affiliation(s)
- P L Gabbott
- University Department of Pharmacology, Oxford, U.K
| | | |
Collapse
|
29
|
Ohara PT, Lieberman AR. Some aspects of the synaptic circuitry underlying inhibition in the ventrobasal thalamus. JOURNAL OF NEUROCYTOLOGY 1993; 22:815-25. [PMID: 8270964 DOI: 10.1007/bf01181326] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
We describe here, and review, the ultrastructural features and synaptic relationships of flat-vesicle containing, presumptively inhibitory presynaptic elements in the glomerular and extraglomerular neuropils of the thalamic ventrobasal (VB) nucleus in monkey, cat and rat. This account is based on EM study of normal material, LM and EM immunocytochemistry for GABA, anterograde tracing with HRP and EM of physiologically characterized interneurons intracellularly injected with HRP. It emerges clearly from this study that attempts to categorize flat-vesicle containing terminals in thalamic tissue as either F-boutons (axon terminals with flattened synaptic vesicles and Gray type II synaptic specializations) or P-boutons (dendritic appendages of interneurons with flattened vesicles) by examining only single sections are likely to produce unreliable results. In many cases it is only by studying serial sections that such profiles can be unambiguously identified. Within glomeruli the P-boutons participate in triplet (triadic) synapses which are thought to mediate rapid feed forward inhibition of projection cells, and serial synaptic arrays involving other P-boutons. Since P-boutons from more than one interneuron are present in individual VB glomeruli, P-bouton to P-bouton synapses may mediate disinhibition of interneurons. We show that dendritic shafts of interneurons make and receive synaptic contacts and that in the monkey, at least, reciprocal synaptic contacts between shafts or between a shaft and a P-bouton are not uncommon. Finally, we confirm that in the rat VB there are insignificant numbers of P-boutons or cells with the morphological and transmitter characteristics of interneurons and we suggest that comparative electrophysiological studies of inhibitory events in rat VB versus those in cat or monkey VB during transmission of somatosensory information might help to clarify the roles of thalamic intrinsic neurons.
Collapse
Affiliation(s)
- P T Ohara
- Department of Anatomy, University of California at San Francisco 94194-0452
| | | |
Collapse
|
30
|
Xiong M, Finlay BL. Changes in synaptic density after developmental compression or expansion of retinal input to the superior colliculus. J Comp Neurol 1993; 330:455-63. [PMID: 8320337 DOI: 10.1002/cne.903300402] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The retinal projection to the superior colliculus can be made abnormally dense by inducing a "compressed" retinal projection into a subnormal tectal volume, or abnormally sparse by monocular enucleation early in development. Any or all of the features of cell number, axonal arbor, dendritic arbor, and synaptic density could potentially be adjusted to compensate for such variations in the convergence of one cell population on another. We have examined the consequences of neonatal partial tectal ablation or monocular enucleation for synaptic length, density, and relative numbers of synapse classes in the superficial gray layer of the hamster superior colliculus. Monocular enucleation resulted in a reduction of synaptic density in the superficial gray layer of the colliculus ipsilateral to the remaining eye. This decrease in density was entirely accounted for by a reduction of the number of synapses with round vesicles, large asymmetric terminal specializations, and pale mitochondria characteristic of retinocollicular terminals (RLP synapses). There was no compensatory increase in any other synaptic class. RLP synapses were larger in monocular enucleates. Partial tectal ablation had no effect on synaptic density, nor on the relative proportions of different synaptic types. Synapses of the RLP class were slightly smaller than normal. These results suggest that synaptic density is normally at a maximum that cannot be altered by increases in potential input. However, density may be reduced by decreasing the number of inputs. Terminal classes do not appear to compete with each other within the collicular volume, suggesting that postsynaptic cells controls both the classes and numbers of their potential inputs.
Collapse
Affiliation(s)
- M Xiong
- Department of Psychology, Cornell University, Ithaca, New York 14853
| | | |
Collapse
|
31
|
Williamson AM, Ralston HJ. Fine structure of calcitonin gene-related peptide immunoreactive synaptic contacts in the thalamus of the rat. J Comp Neurol 1993; 328:130-44. [PMID: 8429125 DOI: 10.1002/cne.903280110] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Recent studies have shown a prominent calcitonin gene-related peptide immunoreactive (CGRP-ir) pathway extending from the external medial and external lateral para-brachial nuclei to the area surrounding and including the gustatory nuclei in the thalamus, and the cortex and amygdala. The function of the CGRP-ir pathway is not completely understood, but may be involved with the processing of both nociceptive and gustatory information in the thalamus. The purpose of this study was to characterize the nature of the CGRP-ir synaptic contacts in the gustatory nucleus. Electron microscopic examination of CGRP-ir synaptic contacts revealed two classes of CGRP-ir terminals. One class, which was large, formed asymmetric synaptic contacts on dendritic appendages, had many small, round synaptic vesicles, and heavy patches of reaction product which obscured any underlying organelles. Since similar terminals in unstained tissue contained large numbers of dense-cored vesicles, it was concluded that CGRP-ir was contained predominantly in dense-cored vesicles. A second class of CGRP-ir terminals was smaller and made either asymmetric or symmetric synaptic contacts. Both symmetric and asymmetric small terminals contained small, round synaptic vesicles and fewer patches of dense reaction product. Several of the CGRP-ir terminals making symmetric contacts also contained pleomorphic vesicles. There were very few contacts on cell bodies. There were no contacts on other CGRP-ir elements, somal or dendritic, or on axon terminals. None of the CGRP-ir terminal elements were postsynaptic to unlabeled terminals. Axons containing CGRP-ir were primarily unmyelinated, but a few myelinated axons were also seen.
Collapse
Affiliation(s)
- A M Williamson
- Department of Anatomy, University of California, San Francisco 94143-0452
| | | |
Collapse
|
32
|
Arai M, Arai R, Kani K, Jacobowitz DM. Immunohistochemical localization of calretinin in the rat lateral geniculate nucleus and its retino-geniculate projection. Brain Res 1992; 596:215-22. [PMID: 1467985 DOI: 10.1016/0006-8993(92)91550-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In the present study, we examined the distribution of calretinin-immunoreactive neuronal cell bodies and fibers in the lateral geniculate nucleus of the rat. In normal rats, clusters of immunoreactive cell bodies were found in: (i) the rostral portion of the ventral lateral geniculate nucleus pars medialis (VLGM), (ii) the intergeniculate leaflet (IGL), (iii) the intermediate region between the VLGM and the ventral lateral geniculate nucleus pars lateralis (VLGL), (iv) the caudomedial portion of the VLGM, and (v) the caudolateral portion of the VLGM. In the dorsal lateral geniculate nucleus (DLG), immunoreactive cell bodies were rarely observed. After uni- or bilateral eye enucleation, no significant alteration in the morphological features or distribution of immunoreactive cell bodies was detected in the lateral geniculate nucleus. In normal rats, immunoreactive fibers formed dense plexuses in: (i) the DLG, (ii) the external layer of the VLGL, (iii) the internal layer of the VLGL, (iv) the IGL, (v) the caudomedial portion of the VLGM, and (vi) the optic tract. After unilateral eye enucleation, immunoreactive fibers in the external layer of the VLG and in the optic tract almost totally disappeared on the contralateral side to the lesion. Unilateral eye enucleation caused a significant decrease of immunoreactive fibers in the DLG and in the internal layer of the VLGL, but a substantial number of immunoreactive fibers still remained there. In the IGL and the caudomedial portion of the VLGM, no observable alteration in the distribution of immunoreactive fibers was detected after uni- or bilateral eye enucleation.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- M Arai
- Department of Ophthalmology, Shiga University of Medical Science, Japan
| | | | | | | |
Collapse
|
33
|
Campbell G, Lieberman AR, Anderson PN, Turmaine M. Regeneration of adult rat CNS axons into peripheral nerve autografts: ultrastructural studies of the early stages of axonal sprouting and regenerative axonal growth. JOURNAL OF NEUROCYTOLOGY 1992; 21:755-87. [PMID: 1279130 DOI: 10.1007/bf01237903] [Citation(s) in RCA: 58] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
If one end of a segment of peripheral nerve is inserted into the brain or spinal cord, neuronal perikarya in the vicinity of the graft tip can be labelled with retrogradely transported tracers applied to the distal end of the graft several weeks later, showing that CNS axons can regenerate into and along such grafts. We have used transmission EM to examine some of the cellular responses that underlie this regenerative phenomenon, particularly its early stages. Segments of autologous peroneal or tibial nerve were inserted vertically into the thalamus of anaesthetized adult albino rats. The distal end of the graft was left beneath the scalp. Between five days and two months later the animals were killed and the brains prepared for ultrastructural study. Semi-thin and thin sections through the graft and surrounding brain were examined at two levels 6-7 mm apart in all animals: close to the tip of the graft in the thalamus (proximal graft) and at the top of the cerebral cortex (distal graft). In another series of animals with similar grafts, horseradish peroxidase was applied to the distal end of the graft 24-48 h before death. Examination by LM of appropriately processed serial coronal sections of the brains from these animals confirmed that up to several hundred neurons were retrogradely labelled in the thalamus, particularly in the thalamic reticular nucleus. Between five and 14 days after grafting, large numbers of tiny (0.05-0.20 microns diameter) nonmyelinated axonal profiles, considered to be axonal sprouts, were observed by EM within the narrow zone of abnormal thalamic parenchyma bordering the graft. The sprouts were much more numerous (commonly in large fascicles), smoother surfaced, and more rounded than nonmyelinated axons further from the graft or in corresponding areas on the contralateral side of animals with implants or in normal animals. At longer post-graft survival times, the number of such axons in the parenchyma around the graft declined. At five days, some axonal sprouts had entered the junctional zone between the brain and the graft. By eight days there were many sprouts in the junctional zone and some had penetrated the proximal graft to lie between its basal lamina-enclosed columns of Schwann cells, macrophages and myelin debris. Within the brain, sprouts were in contact predominantly with other sprouts but also with all types of glial cell.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- G Campbell
- Department of Anatomy and Developmental Biology, University College London, UK
| | | | | | | |
Collapse
|
34
|
Schmidt-Kastner R, Meller D, Eysel UT. Immunohistochemical changes of neuronal calcium-binding proteins parvalbumin and calbindin-D-28k following unilateral deafferentation in the rat visual system. Exp Neurol 1992; 117:230-46. [PMID: 1397159 DOI: 10.1016/0014-4886(92)90132-a] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The neuron-specific calcium-binding proteins, parvalbumin and calbindin-D-28k, were studied in the subcortical visual system of normal and unilaterally deafferented albino rats. Immunohistochemistry with monoclonal antibodies was used on vibratome sections through optic tract (OT), dorsal lateral geniculate nucleus (dLGN), olivary pretectal nucleus (OPN), and superior colliculus (SC). In controls, OT stained strongly for parvalbumin and weakly for calbindin-D-28k. The dLGN contained a plexus of parvalbumin-positive fibers. In dLGN, calbindin-D-28k-antibodies showed strong labeling of some neurons with long dendrites and weak staining of the cytoplasm in other neurons. In OPN, parvalbumin stained a ring of neurons and terminals in the shell region, whereas calbindin-D-28k was contained in medial cell populations. In SC, parvalbumin was contained in fibers, terminals, and neurons throughout the visual layer. Calbindin-D-28k showed a laminar distribution of neurons with a predominance in deep portions of superficial grey matter and in ventral portions of stratum opticum. Following unilateral deafferentation induced by optic nerve section, retinal axons showed immunohistochemical changes related to Wallerian degeneration and target neurons reacted by changes of calcium-binding proteins. Parvalbumin and calbindin-D-28k immunostaining decreased during Wallerian degeneration of OT. In the deafferented dLGN, immunohistochemical labeling for calbindin-D-28k declined in strongly stained neurons from 4 to 21 days after lesion. Measurement of dendritic length per number of cells or per area of dLGN showed a significant decline for the contralateral side at 4, 8, and 21 days (ANOVA, P less than 0.05). In deafferented OPN, terminal-like staining for parvalbumin decreased and neuronal labeling was enhanced. In deafferented SC, the neuronal and dendritic staining for parvalbumin increased beginning from Day 1 on and persisting at Day 21, whereas fibers and terminal-like elements decreased in staining. Measurement of parvalbumin-positive neurons per area of SC showed a significant increase of labeling in the contralateral side from Day 1 to Day 21 (ANOVA, P less than 0.05). These studies show that cellular responses to deafferentation of visual neurons involve a regulation of calcium-binding proteins. The decline in staining for calbindin-D-28k in dLGN may relate to reduced retinal afferent activity. The progressive cellular changes in parvalbumin staining may be related to unmasking of intrinsic neurons after removal of parvalbumin-containing, afferent fibers and terminals. Additionally, the changes of parvalbumin labeling in SC neurons may reflect a plastic reorganization of local circuits known to occur in rat SC in response to deafferentation.
Collapse
Affiliation(s)
- R Schmidt-Kastner
- Department of Neurophysiology, Medical Faculty, Ruhr-Universität Bochum, Germany
| | | | | |
Collapse
|
35
|
Chazal G, Baude A, Barbe A, Puizillout JJ. Ultrastructural organization of the interstitial subnucleus of the nucleus of the tractus solitarius in the cat: identification of vagal afferents. JOURNAL OF NEUROCYTOLOGY 1991; 20:859-74. [PMID: 1761973 DOI: 10.1007/bf01190465] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
This electron microscopic study, based on serial section analysis, describes the synaptic organization of the interstitial subnucleus of the nucleus of the solitary tract and identifies the terminals of the vagal primary afferents utilizing degeneration and HRP transport. The interstitial subnucleus contains sparsely scattered cell bodies, numerous dendrites and axon terminals, and bundles of unmyelinated and myelinated axons. The cell bodies which are small in diameter have an organelle poor cytoplasm and a large invaginated nucleus. Axon terminals can be classified into two main types according to their vesicular shape. The first type contains clear, round vesicles and can be further subdivided into two subgroups on the basis of their morphology and the size of their vesicles. In the first subgroup the terminals are small, contain a few mitochondria and their vesicles are densely packed with an homogeneous size. In the second subgroup the terminals which vary from small to large, contain many mitochondria and contain round vesicles which are heterogeneous in size. The second main terminal type consists of axon terminals containing pleomorphic vesicles which are associated with asymmetrical or symmetrical synaptic contacts on dendrites. Axo-axonic contacts are present in the interstitial subnucleus. In general, the presynaptic axon terminals contain pleomorphic vesicles and the postsynaptic elements contain round vesicles of varying size. In some dendrites, identified by the presence of ribosomes, groups of round and/or pleomorphic vesicles are found associated with synaptic contacts. These dendrites are presynaptic to conventional dendrites and postsynaptic to axon terminals. After removal of the nodose ganglion, degenerative alterations are seen only at the caudal and middle levels of the interstitial subnucleus. Degeneration occurs in a few myelinated axons and in axon terminals which usually contain a mixture of small and larger round, clear vesicles. After HRP injection into the vagus nerve, the HRP reaction product is visible in axon terminals filled with clear, round vesicles which are heterogeneous in size. The labelled axon terminals establish single or multiple synaptic contacts. This study demonstrates that terminals of vagal primary afferents consist principally of terminals of the second subgroup. The morphology of these terminals are compared to primary afferents in the brainstem and spinal cord.
Collapse
Affiliation(s)
- G Chazal
- INSERM U6/CNRS U634, Marseille, France
| | | | | | | |
Collapse
|
36
|
Harting JK, Van Lieshout DP, Feig S. Connectional studies of the primate lateral geniculate nucleus: distribution of axons arising from the thalamic reticular nucleus of Galago crassicaudatus. J Comp Neurol 1991; 310:411-27. [PMID: 1723991 DOI: 10.1002/cne.903100310] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Anterograde and retrograde transport methods have been used to explore the interconnections between the thalamic reticular nucleus (TRN) and the dorsal lateral geniculate nucleus of Galago crassicaudatus. We first defined the region of the TRN, which is connected to the lateral geniculate nucleus, by examining the distribution of geniculo-TRN axons, cortico-TRN axons arising from area 17, and the location of TRN-geniculate neurons. Following an intraocular injection of 3H-proline/3 H-leucine, trans-synaptically transported protein is present bilaterally within the lateral portion of the caudal TRN. This same caudal and lateral region is also targeted by cortico-TRN axons and contains neurons which project upon the lateral geniculate nucleus. Light microscopic anterograde transport methods were used to analyze the distribution of TRN-geniculate axons. Our data reveal that all layers and interlaminar zones of the dorsal lateral geniculate nucleus contain TRN axons. Electron microscopic-autoradiographic data support and extend our light microscopic findings by revealing labeled TRN terminals within all geniculate layers. These TRN profiles are the same size throughout the geniculate and exhibit morphological characteristics similar to F1 terminals described by others. That is, they possess predominantly pleomorphic vesicles, a dark cytoplasmic matrix, dark mitochondria, and symmetrical synaptic contacts. Two additional features of TRN terminals have been observed in some profiles. These include dense-core vesicles and a dense, punctate cytoplasmic matrix, which is sometimes associated with the postsynaptic specialization. In addition to their morphology and size, the postsynaptic targets of TRN terminals are similar within the three sets (parvi-, magno-, and koniocellular) of geniculate layers. TRN profiles terminate upon dendrites of all sizes and somata. These findings suggest that the TRN modulates the retino-geniculocortical pathway and that this modulation is occurring in all three streams.
Collapse
Affiliation(s)
- J K Harting
- Department of Anatomy, University of Wisconsin, Madison 53706
| | | | | |
Collapse
|
37
|
Pinard R, Benfares J, Lanoir J. Electron microscopic study of GABA-immunoreactive neuronal processes in the superficial gray layer of the rat superior colliculus: their relationships with degenerating retinal nerve endings. JOURNAL OF NEUROCYTOLOGY 1991; 20:262-76. [PMID: 1646864 DOI: 10.1007/bf01235544] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
GABA-immunoreactive neuronal elements were detected in the stratum griseum superficiale or superficial gray layer of the rat superior colliculus in an electron microscopic study, using postembedding immunocytochemistry with protein A-gold as a marker. In addition to neuronal somata, two types of GABA-immunoreactive neuronal processes were observed. Numerous profiles of axon terminals (1 microns in diameter) with clear round or pleomorphic synaptic vesicles and mitochondria were found to establish mostly symmetrical synaptic contacts with GABA-immunonegative dendrites of various diameters. Some axosomatic synapses could also be observed. The gold particle density in this axon terminal compartment was between seven and 13 times the background level. The stratum griseum superficiale also included GABA-immunoreactive dendrites, some of which contained clear synaptic vesicles. These dendritic profiles always formed the presynaptic component of dendrodendritic synaptic contacts. The density of the gold particles in the dendritic compartment, taken as a whole, was between three and 13 times the background level. Furthermore, the relationship between the GABA-immunoreactive neuronal elements and degenerating retinal nerve endings identified in the left stratum griseum superficiale following enucleation of the right eye was investigated after a 7-day survival period. The profiles of degenerating retinal nerve endings (0.7 microns in diameter) were found to be devoid of any specific labelling. Most of the retinal boutons established axodendritic synapses of the asymmetrical type with an immunonegative dendrite, which was also contacted in some cases by a GABA-immunopositive axon terminal. Other retinal endings were presynaptic to GABA-immunopositive dendritic profiles with synaptic vesicles, some of which were found to contact in turn an unlabelled dendrite, thereby completing serial synaptic relationships. More rarely, retinal endings formed the presynaptic component of possible axoaxonic synapses with GABA-positive terminals presumed to be axonic in nature. It can be concluded that the retinal input to the superficial gray layer often converges with a GABAergic axonal input on a dendritic target, the neurotransmitter specificity of which is unknown. In other cases, retinal terminals synaptically contact GABA-immunolabelled conventional and presynaptic dendrites and probably also some axon terminals; this might provide an anatomical substrate for the control of GABA release from these GABAergic processes. These results indicate that transmitter GABA plays an important role in retinocollicular transmission.
Collapse
Affiliation(s)
- R Pinard
- CNRS Laboratoire de Neurobiologie, Département Voies et Neurotransmission Centrales, Marseille, France
| | | | | |
Collapse
|
38
|
Carmona R, Calvente R, Abadía-Molina F, Abadía-Fenoll F. Morphometry and frequency of afferent synaptic terminals in the rabbit dorsal-lateral geniculate nucleus. Anat Rec (Hoboken) 1990; 228:327-38. [PMID: 2260787 DOI: 10.1002/ar.1092280312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Morphological and morphometric features of the retinal synaptic terminals (RLP) and cortical synaptic terminals (RSD) were analyzed in the alpha E sector of the rabbit dorsal-lateral geniculate nucleus (dLGN). A methodological approach was selected which allowed us to determine volume of the neuropil and elsewhere record variations in the size and distribution of the two types of terminals found in the three zones (superior, middle, and inferior) from up to down into which the alpha E sector of the dLGN was divided. After obtaining an isotropic, uniform, and pseudorandom (IUR) sample, the terminals were examined on the basis of a set of morphometric parameters. An analysis of these data showed the retinal terminals (RLP) to be more numerous and to occupy a greater total area of the neuropil in the dorsal (superior) zone of the nucleus, whereas the number and total area occupied by cortical terminals (RSD) did not vary in the superior, middle, and inferior zones. Upon comparing the two types of terminals, the RLP were larger and more widely distributed, the greatest differences between the two appearing in the dorsal (superior) zone of the dLGN.
Collapse
Affiliation(s)
- R Carmona
- Departamento de Biología Celular, Facultad de Ciencias, Universidad de Granada, Spain
| | | | | | | |
Collapse
|
39
|
Hallanger AE, Price SD, Lee HJ, Steininger TL, Wainer BH. Ultrastructure of cholinergic synaptic terminals in the thalamic anteroventral, ventroposterior, and dorsal lateral geniculate nuclei of the rat. J Comp Neurol 1990; 299:482-92. [PMID: 2243163 DOI: 10.1002/cne.902990408] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The principal relay nuclei of the thalamus receive their cholinergic innervation from two midbrain cholinergic groups: the pedunculopontine tegmental nucleus and the laterodorsal tegmental nucleus. The different thalamic nuclei exhibit populations of cholinergic axons which vary in density and morphology when examined at the light microscopic level. However, the ultrastructure of the cholinergic terminals in different thalamic nuclei has not been described. This study was undertaken to confirm that synaptic contacts are formed by cholinergic axons in several principal thalamic relay nuclei, to describe their ultrastructural morphology, and to identify the types of postsynaptic elements contacted by cholinergic synaptic terminals. The thalamic nuclei examined in this study are the dorsal lateral geniculate nucleus, ventroposteromedial nucleus, ventroposterolateral nucleus, and anteroventral nucleus. Our results confirm that cholinergic axons form synaptic terminals in these thalamic nuclei. Cholinergic synaptic terminals contact structures outside the characteristic synaptic glomeruli, are never postsynaptic, and have morphologies and postsynaptic targets which differ among the thalamic nuclei. In the ventroposterior nuclei, cholinergic terminals form asymmetric synaptic contacts onto larger dendrites in the extraglomerular neuropil. In the anteroventral nucleus, cholinergic terminals form both symmetric and asymmetric synaptic contacts onto dendrites and somata. Cholinergic terminals in the anteroventral nucleus are larger than those in other nuclei. In the dorsal lateral geniculate nucleus, cholinergic terminals contact both somata and dendrites in the extraglomerular neuropil, but the synaptic contacts in this nucleus are symmetric in morphology.
Collapse
Affiliation(s)
- A E Hallanger
- Committee on Neurobiology, University of Chicago, Illinois 60637
| | | | | | | | | |
Collapse
|
40
|
Papadopoulos GC, Parnavelas JG. Distribution and synaptic organization of serotoninergic and noradrenergic axons in the lateral geniculate nucleus of the rat. J Comp Neurol 1990; 294:345-55. [PMID: 2341614 DOI: 10.1002/cne.902940304] [Citation(s) in RCA: 60] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Antisera raised against the monoamines serotonin (5-HT) and noradrenaline (NA) were employed in a study designed to provide a detailed description of the distribution, morphology, and synaptic organization of the serotoninergic and noradrenergic afferents in the lateral geniculate nucleus (LGN) of the rat. The distribution patterns of the two types of immunoreactive fibers were distinct and largely complementary to each other. NA axons were particularly concentrated in the dorsal lateral geniculate nucleus (LGd), with the ventral lateral geniculate nucleus (LGv) and the intergeniculate leaflet (IGL) receiving substantially fewer fibers. In contrast, 5-HT axons, although present throughout the LGN, were preferentially concentrated in the LGv and IGL. 5-HT and NA axon terminals and axonal varicosities, examined in single and serial ultrathin sections, formed conventional synapses in the extraglomerular neuropil. The types of synapses and the nature of the postsynaptic targets were different for the two monoamines. 5-HT afferents formed asymmetrical synapses on dendritic spines and shafts of both presumptive relay cells and interneurons but established symmetrical synapses on cell bodies. However, NA afferents formed almost exclusively symmetrical synapses on dendritic spines and shafts and made no contacts with cell bodies. The present findings suggest that the 5-HT and NA afferents of the rat LGN, which are likely to influence certain stages of visual processing, exhibit distinct organizational principles and act at restricted sites as do other classical neurotransmitter systems.
Collapse
Affiliation(s)
- G C Papadopoulos
- Laboratory of Anatomy, Veterinary School, University of Thessaloniki, Greece
| | | |
Collapse
|
41
|
Aggelopoulos N, Parnavelas JG, Edmunds S. Synaptogenesis in the dorsal lateral geniculate nucleus of the rat. ANATOMY AND EMBRYOLOGY 1989; 180:243-57. [PMID: 2596705 DOI: 10.1007/bf00315883] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Synapse formation and maturation were examined in the rat dorsal lateral geniculate nucleus (dLGN) from birth to adulthood. Examination of animals, whose ages were closely spaced in time, showed that the maturation of the synaptic organization of the nucleus takes place chiefly during the first 3 weeks of postnatal life. This period of maturation may be divided into 3 broad stages. During the first stage, which spans the first 4 days of life, there are only a few immature synapses scattered throughout the nucleus; occasionally aggregates of 3 or 4 synapses are encountered. Dendrodendritic synapses first appear at the end of this stage. The second stage, which lasts from the end of the first stage through day 8, is characterized by intensive synaptogenesis as well as extensive growth and degeneration. For the first time, large boutons resembling retinal terminals form multiple synaptic contacts with dendrites and dendritic protrusions; these synaptic arrangements are partially covered by glial processes. A feature characteristic of the developing dLGN during the first 2 postnatal weeks, and particularly during the second stage, is the presence of membrane specializations that resemble vacant postsynaptic densities. These specializations, which may be unapposed or opposite another neuronal process, decrease in frequency as the number of synapses increases. It is not known whether these densities are converted to synapses or whether they result from loss of presynaptic elements. The third stage in the process of synaptogenesis, which spans a period between days 10 and 20, is characterized by myelination and by the diminution of growth cones, degenerating profiles and vacant postsynaptic densities. There is also a very significant increase in the number and maturation of synapses including synaptic glomeruli. However, it is not until the end of this stage that synapses appear qualitatively indistinguishable from synaptic arrangements identified in adult animals.
Collapse
Affiliation(s)
- N Aggelopoulos
- Department of Anatomy and Development Biology, University College London, United Kingdom
| | | | | |
Collapse
|
42
|
Ohara PT, Chazal G, Ralston HJ. Ultrastructural analysis of GABA-immunoreactive elements in the monkey thalamic ventrobasal complex. J Comp Neurol 1989; 283:541-58. [PMID: 2745753 DOI: 10.1002/cne.902830408] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
This study describes the ventrobasal complex of the primate by using GABA immunocytochemistry at the electron microscopic level. The primate ventrobasal complex has a similar synaptic organization to sensory thalamic nuclei in other species. Two synaptic profiles within the ventrobasal complex contain flattened or pleomorphic synaptic vesicles and are GABA-immunoreactive. F-boutons (= F1 type, Guillery's classification; Guillery: Z. Zellforsch. 96:1-38, '69) are located principally in the extraglomerular neuropil and contain densely packed flattened synaptic vesicles and several elongate mitochondria and establish symmetric (Gray's type II) synaptic contacts. These boutons are not found postsynaptic to any other element and are presynaptic principally to nonimmunoreactive elements that are thought to be thalamocortical relay cell dendrites. PSD-boutons (= F2 type, Guillery's classification) contain a moderate number of flattened or pleomorphic synaptic vesicles and fewer mitochondria than F-boutons. PSD-boutons are found in glomerular and extraglomerular areas of neuropil and establish symmetric synaptic contacts. These boutons are considered to be appendages of interneuron dendrites and are postsynaptic to RL-, RS (Guillery's classification)-, F-, and other PSD-boutons. PSD-boutons are presynaptic to thalamocortical relay neurons and interneuron dendrites including PSD-boutons. Problems in distinguishing F- from PSD-boutons are addressed by comparing immunostained and nonimmunostained material and by the use of serial sections. The majority of synaptic contacts between pleomorphic vesicle-containing profiles appear to be between PSD-boutons and other components of interneurons. Few contacts between F-boutons and local circuit neurons are seen. These data suggest the principal GABAergic input to interneurons in the primate ventrobasal complex is derived from other interneurons.
Collapse
Affiliation(s)
- P T Ohara
- Department of Anatomy, University of California San Francisco 94143
| | | | | |
Collapse
|
43
|
Soltesz I, Lightowler S, Leresche N, Crunelli V. Optic tract stimulation evokes GABAA but not GABAB IPSPs in the rat ventral lateral geniculate nucleus. Brain Res 1989; 479:49-55. [PMID: 2924152 DOI: 10.1016/0006-8993(89)91334-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The inhibitory postsynaptic potentials (IPSPs) evoked in neurons of the rat ventral geniculate nucleus (vLGN) by electrical stimulation of the optic tract and the action of GABA and baclofen on the same cells were studied using intracellular recording technique in an in vitro slice preparation. A short latency short duration IPSP always followed the monosynaptic excitatory postsynaptic potential (EPSP). This IPSP reversed in polarity at about -65 mV and was reversibly blocked by bicuculline (50 microM) thus indicating that it represents a GABAA receptor-mediated IPSP. No long-lasting IPSP was evoked in vLGN cells by stimulation of the optic tract, while in the same slice, long-lasting GABAB IPSPs were routinely recorded in the dorsal lateral geniculate nucleus. GABA applied by ionophoresis evoked a hyperpolarization that had a reversal potential close to -70 mV and was antagonized by bicuculline. Baclofen hyperpolarized vLGN neurons and its action was reversibly blocked by the selective GABAB antagonist phaclofen (1 mM). In the presence of bicuculline GABA also produced a hyperpolarization that had properties similar to that evoked by baclofen. These results indicate that, although functional GABAA and GABAB receptors are present on vLGN neurons, stimulation of the optic tract evokes only GABAA but not GABAB mediated IPSPs. The lack of long-lasting GABAB IPSPs could explain the absence of long-lasting inhibition observed in vLGN neurons in vivo following stimulation of the optic tract.
Collapse
Affiliation(s)
- I Soltesz
- Department of Pharmacology, St. George's Hospital Medical School, London, U.K
| | | | | | | |
Collapse
|
44
|
Campbell G, Frost DO. Synaptic organization of anomalous retinal projections to the somatosensory and auditory thalamus: target-controlled morphogenesis of axon terminals and synaptic glomeruli. J Comp Neurol 1988; 272:383-408. [PMID: 2843579 DOI: 10.1002/cne.902720308] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
These experiments examine which morphological features of axon terminals and their synaptic glomeruli are determined by afferent axons, and which by their targets. In normal, adult hamsters, electron microscopy reveals that, with respect to multiple ultrastructural features, the terminals and synaptic glomeruli of retinal afferent axons in the dorsal lateral geniculate nucleus differ from those of ascending auditory and somatosensory afferents in the medial geniculate and ventrobasal nuclei, respectively. These features include: (1) the location of specific sensory axon terminals on the somata and dendrites of their targets neurons, (2) the constitutents of the glomeruli and their synaptic relationships, (3) the number of specific sensory terminal boutons per glomerulus, (4) bouton size, (5) the number of dendritic and somatic appendages contacted by each bouton, and (6) the mitochondrial morphology of the specific sensory afferent boutons. In order to ascertain which of these features are determined by afferent axons and which by their targets, we subjected newborn Syrian hamsters to surgical procedures known to produce permanent, abnormal retinal projections to the main thalamic auditory (medial geniculate) and somatosensory (ventrobasal) nuclei. When the animals were adults, we examined the terminals and synaptic glomeruli of abnormal retino-auditory and retino-somatosensory axons that were anterogradely labeled by intraocular injection of horseradish peroxidase. With respect to all of the preceding features except mitochondrial morphology, the terminals and synaptic glomeruli of retino-medial geniculate and retino-ventrobasal axons more nearly resembled those of normal, auditory and somatosensory afferent axons, respectively, than they did those of normal, retino-lateral geniculate axons. These results demonstrate that the differentiation of all the features that we have examined, except mitochondrial morphology, is determined by factors in target neurons or their environment. This finding suggests that the differentiation of morphological features involved in contacts among neurons (including the type, number and size of interconnected neuronal elements and the loci at which they contact each other) is responsive to interactions among the connected elements, or between neural elements and their environment (e.g., glia, extracellular matrix), whereas the differentiation of structures reflecting intrinsic functions of individual neuronal elements is not responsive to such interactions.
Collapse
Affiliation(s)
- G Campbell
- Section of Neuroanatomy, Yale Medical School, New Haven, Connecticut 06510
| | | |
Collapse
|
45
|
Gabbott PL, Somogyi J, Stewart MG, Hamori J. The orientation of interneurones in the dorsal lateral geniculate nucleus of the rat: a quantitative study. Brain Res 1988; 438:379-84. [PMID: 2449934 DOI: 10.1016/0006-8993(88)91368-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The orientation of the processes of 60 Golgi-impregnated interneurones in the rat dorsal lateral geniculate nucleus (dLGN) was studied quantitatively. A statistical analysis of the orientation of 238 interneuronal processes (dendrites and axon-like processes) showed that they were aligned preferentially along a dorsoventral axis through the dLGN and were predominantly oriented parallel with the outlying optic tract. Computer reconstructions of two of the Golgi-impregnated dLGN interneurones and their subsequent 3-dimensional computer rotations showed that their processes ramified in long columnar-shaped territories aligned dorsoventrally. There was little extension of these processes along the rostrocaudal axis of the nucleus. The data of this investigation provide evidence that the processes of 'inhibitory' interneurones in the rat dLGN are predominantly aligned along the dorsoventral axis, parallel with both the optic tract and with the afferent and efferent fibre tracts coursing through the nucleus.
Collapse
Affiliation(s)
- P L Gabbott
- First Department of Anatomy, Semmelweis University Medical School, Budapest, Tuzolto, Hungary
| | | | | | | |
Collapse
|
46
|
Campbell G, Frost DO. Target-controlled differentiation of axon terminals and synaptic organization. Proc Natl Acad Sci U S A 1987; 84:6929-33. [PMID: 2443913 PMCID: PMC299198 DOI: 10.1073/pnas.84.19.6929] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
These experiments investigate the processes regulating the morphological differentiation of synaptic connections. Electron microscopy showed that the terminal boutons and synaptic complexes of retinal afferent axons in the main thalamic visual nucleus, the dorsal lateral geniculate nucleus, differ in their morphology from those of ascending afferent axons in the main thalamic somatosensory (ventrobasal) nucleus. Developing retinal ganglion cell axons in hamsters were made to project permanently to the ventrobasal nucleus, rather than to the lateral geniculate nucleus. With respect to most of the ultrastructural features examined, the terminals and synaptic complexes of mature, anterogradely labeled retino-ventrobasal axons more closely resembled those of normal somatosensory afferents to the ventrobasal nucleus than they did those of normal retinofugal axons within the lateral geniculate nucleus. These results suggest that the ultrastructural differentiation of axon terminals and synaptic complexes is regulated largely by the target environment, although some features appear to be intrinsic to the afferent axons themselves.
Collapse
Affiliation(s)
- G Campbell
- Section of Neuroanatomy, School of Medicine, Yale University, New Haven, CT 06510
| | | |
Collapse
|
47
|
Abstract
Synaptic glomeruli in the nucleus submedius of the rat are described and the source of some of the component terminals identified. The glomeruli consist of large terminals with round synaptic vesicles establishing Gray type I contacts with dendrites and surrounded by layers of astrocyte derived membranes. The astrocyte processes may be composed of cell membranes with minimal interventing cytoplasm or, less frequently, contain larger amounts of cytoplasm. Horseradish peroxidase injected into the trigeminal nucleus caudalis labels some of the large astrocyte-enclosed terminals in nucleus submedius.
Collapse
|
48
|
Nunes Cardozo JJ, Van der Want JJ. Synaptic organization of the nucleus of the optic tract in the rabbit: a combined Golgi-electron microscopic study. JOURNAL OF NEUROCYTOLOGY 1987; 16:389-401. [PMID: 3612186 DOI: 10.1007/bf01611349] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The organization of the nucleus of the optic tract was investigated with light and electron microscopy in combination with Golgi impregnation. In Golgi material, neurons ranged in size from 10 to 25 microns with three to seven principal dendrites extending predominantly parallel to the fibres of the optic tract, irrespective of their location within the nucleus. In some areas dendrites extended into the neuropil of the adjacent dorsal terminal nucleus of the accessory optic system and the posterior pretectal nucleus. Occasionally spines and appendages were observed. The fine structure of the nuclei, perikarya and the dendritic arborization did not allow a well-defined distinction between interneurons and projection neurons. The synaptic organization of the nucleus of the optic tract showed great resemblance to the neuropil of the lateral geniculate nucleus and the superior colliculus. Similar types of presynaptic terminals were noticed: (i) R-terminals were either large and scalloped or small and regular in outline with spherical vesicles and electron-lucent mitochondria, and showed asymmetric contact zones; (ii) F-terminals with flattened vesicles, opaque mitochondria and symmetric contact zones; (iii) RLD-terminals with spherical vesicles and electron-dense mitochondria and asymmetric contact zones; (iv) P-terminals with pleomorphic vesicles and electron-lucent or opaque mitochondria and asymmetric synaptic thickenings. These different types of terminal were found isolated in the neuropil or in clusters of synapses. The most striking differences between the nucleus of the optic tract and the lateral geniculate nucleus were the relative scarcity of F-terminals in the clusters, the paucity of triadic arrangements and the relatively small size of the R-terminals. The differences in ultrastructure may be related to retinal W-type ganglion cells, which form the main retinal input to the nucleus of the optic tract and could also be related to the physiologically identified direction-selective units within the nucleus of the optic tract.
Collapse
|
49
|
Kitao Y, Nakamura Y. An ultrastructural analysis of afferent terminals to the anterior pretectal nucleus in the cat. J Comp Neurol 1987; 259:348-63. [PMID: 3584560 DOI: 10.1002/cne.902590304] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The synaptic organization of three kinds of afferent projections in the feline anterior pretectal nucleus (PTA) was analyzed by a combination of the degeneration and retrograde transport of horseradish peroxidase (HRP) techniques, along with that of the degeneration and anterograde transport of HRP techniques. Retrograde labeling of PTA neurons was performed by injections of HRP in the dorsal accessory olivary nucleus (DAO). Three kinds of afferent sources of the PTA--the cerebral motor cortex, the anterior interpositus nucleus of the cerebellum, and the gracile nucleus--were subjected to electrolysis, suction, or injection of kainic acid or HRP for identification of axon terminals of each system. Axon terminals of these different afferent sources identified by degeneration or anterograde HRP transport techniques showed similar morphological features: They were relatively large (1-6.5 microns in diameter), contained round or ovoid synaptic vesicles, and made asymmetrical synaptic contacts. When the degeneration study was combined with the retrograde HRP transport technique, some degenerating terminals from the motor cortex, anterior interpositus, or gracile nuclei were found to synapse directly with HRP-labeled dendrites or somata of the PTA neurons projecting to the DAO. Each combination of the degeneration and anterograde HRP transport techniques revealed the fact that neither degenerating nor HRP-labeled terminals were found to synapse with the same neuronal structure. These observations indicate that the PTA neurons relay afferent inputs from three different sources directly to the DAO, and that there is a possibility of parallel processing rather than convergence of three different afferent systems via the PTA to the DAO.
Collapse
|
50
|
Harris RM, Hendrickson AE. Local circuit neurons in the rat ventrobasal thalamus--a GABA immunocytochemical study. Neuroscience 1987; 21:229-36. [PMID: 3299139 DOI: 10.1016/0306-4522(87)90335-6] [Citation(s) in RCA: 122] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The ventrobasal thalamus of seven rats was processed for immunocytochemistry using antisera to glutamate decarboxylase or gamma-aminobutyrate (GABA). Glutamate decarboxylase-stained sections showed a network of stained fibers and terminals but no stained cell bodies. GABA-stained sections had fewer stained fibers and terminals but did show a few stained cell bodies. Cell bodies were especially apparent when carbazole was used for a chromogen for the peroxidase-antiperoxidase visualization. The GABA-stained cells were found to be distributed throughout the ventrobasal complex, to have smaller soma cross-sectional areas than most other cells (81 +/- 34 microns vs 105 +/- 36 microns for all cells) and to make up 0.4 +/- 0.3% of the neuronal population of the ventrobasal complex. Injections of horseradish peroxidase into the somatosensory cortex (SI) retrogradely filled many neurons in the ventrobasal thalamus, but none of these labeled neurons were double labeled with GABA. These results indicate that the GABA-labeled cells probably represent a small population of local circuit neurons in the rat ventrobasal thalamus.
Collapse
|