1
|
Azizian-Farsani F, Weixelbaumer K, Mascher D, Klang A, Högler S, Dinhopl N, Bauder B, Weissenböck H, Tichy A, Schmidt P, Mascher H, Osuchowski MF. Lethal versus surviving sepsis phenotypes displayed a partly differential regional expression of neurotransmitters and inflammation and did not modify the blood-brain barrier permeability in female CLP mice. Intensive Care Med Exp 2024; 12:96. [PMID: 39497013 PMCID: PMC11535104 DOI: 10.1186/s40635-024-00688-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 10/15/2024] [Indexed: 11/06/2024] Open
Abstract
BACKGROUND Septic encephalopathy is frequent but its pathophysiology is enigmatic. We studied expression of neurotransmitters, inflammation and integrity of the blood-brain barrier (BBB) in several brain regions during abdominal sepsis. We compared mice with either lethal or surviving phenotype in the first 4 sepsis days. Mature CD-1 females underwent cecal ligation and puncture (CLP). Body temperature (BT) was measured daily and predicted-to-die (within 24 h) mice (for P-DIE; BT < 28 °C) were sacrificed together (1:1 ratio) with mice predicted-to-survive (P-SUR; BT > 35 °C), and healthy controls (CON). Brains were dissected into neocortex, cerebellum, midbrain, medulla, striatum, hypothalamus and hippocampus. RESULTS CLP mice showed an up to threefold rise of serotonin in the hippocampus, 5-hydroxyindoleacetic and homovanillic acid (HVA) in nearly all regions vs. CON. Compared to P-SUR, P-DIE mice showed a 1.7 to twofold rise of HVA (386 ng/g of tissue), dopamine (265 ng/g) and 3,4-Dihydroxyphenylacetic acid (DOPAC; 140 ng/g) in the hippocampus, hypothalamus and medulla (174, 156, 82 ng/g of tissue, respectively). CLP increased expression of TNFα, IL-1β and IL-6 mRNA by several folds in the midbrain, cerebellum and hippocampus versus CON. The same cytokines were further elevated in P-DIE vs P-SUR in the midbrain and cerebellum. Activation of astrocytes and microglia was robust across regions but remained typically phenotype independent. There was a similar influx of sodium fluorescein across the BBB in both P-DIE and P-SUR mice. CONCLUSIONS Compared to survivors, the lethal phenotype induced a stronger deregulation of amine metabolism and cytokine expression in selected brain regions, but the BBB permeability remained similar regardless of the predicted outcome.
Collapse
Affiliation(s)
- Fatemeh Azizian-Farsani
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, Donaueschingenstraße 13, 1200, Vienna, Austria
| | - Katrin Weixelbaumer
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, Donaueschingenstraße 13, 1200, Vienna, Austria
| | | | - Andrea Klang
- Institute of Pathology, University of Veterinary Medicine, Vienna, Austria
| | - Sandra Högler
- Institute of Pathology, University of Veterinary Medicine, Vienna, Austria
| | - Nora Dinhopl
- Institute of Pathology, University of Veterinary Medicine, Vienna, Austria
| | - Barbara Bauder
- Institute of Pathology, University of Veterinary Medicine, Vienna, Austria
| | | | - Alexander Tichy
- Institute of Medical Physics and Biostatistics, University of Veterinary Medicine, Vienna, Austria
| | - Peter Schmidt
- Institute of Pathology, University of Veterinary Medicine, Vienna, Austria
| | | | - Marcin F Osuchowski
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, Donaueschingenstraße 13, 1200, Vienna, Austria.
| |
Collapse
|
2
|
Siao SF, Zheng YY, Wei YC, Boehm LM, Chen CCH. Delirium and Weakness Acquired in the Intensive Care Unit: Individual and Combined Effects on 90-Day Mortality in Survivors of Critical Illness. J Clin Nurs 2024. [PMID: 39468861 DOI: 10.1111/jocn.17517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/18/2024] [Accepted: 10/09/2024] [Indexed: 10/30/2024]
Abstract
AIMS To compare the individual and combined effects on 90-day mortality among four critically ill survivor groups: normal (without ICU-acquired delirium or ICU-acquired weakness), delirium-only (with ICU-acquired delirium only), weakness-only (with ICU-acquired weakness only) and delirium-weakness (combined ICU-acquired delirium and weakness). METHODS A prospective cohort study consecutively recruited delirium-free critically ill patients admitted to six medical ICUs at a university hospital. Delirium was assessed once daily for 14 days (or until death or ICU discharge) using the Confusion Assessment Method for the ICU. Participants who were discharged from the ICUs were assessed for weakness using the Medical Research Council scale. A summed score below 48 defines ICU-acquired weakness. These survivors were evaluated again for 90-day mortality. The study is reported using the STROBE checklist. RESULTS Delirium developed in 107 (43.2%) participants during their first 14 days of ICU stay; 55 (22.2%) met criteria for weakness by ICU discharge. Participants with delirium were at increased risk for also developing ICU-acquired weakness, and the 90-day mortality was 18.2%. Independent of age and Acute Physiology and Chronic Health Evaluation II score at ICU admission, delirium-only and weakness-only were not associated with higher 90-day mortality, while participants in the delirium-weakness group had a 3.69-fold higher risk of death, compared to those who were normal during the ICU stay. A non-significant interaction was found, suggesting the joint effect of delirium and weakness on mortality is not higher than the sum of both effects individually. CONCLUSIONS Mortality is substantially high among critically ill survivors who experience both delirium and weakness, although no additive effect on mortality was observed when these conditions occur together. Our findings highlight the urgent need to optimise ICU care by prioritising the prevention, early identification and management of these two common ICU-acquired conditions. PATIENT CONTRIBUTION Study participation and completion of all assessments. TRIAL REGISTRATION ClinicalTrials.gov identifier: NCT04206306.
Collapse
Affiliation(s)
- Shu-Fen Siao
- School of Nursing, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Ya-Yun Zheng
- School of Nursing, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yu-Chung Wei
- Graduate Institute of Statistics and Information Science, National Changhua University of Education, Changhua, Taiwan
| | - Leanne M Boehm
- Vanderbilt University School of Nursing, Nashville, Tennessee, USA
- Critical Illness, Brain Dysfunction, and Survivorship Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Cheryl Chia-Hui Chen
- School of Nursing, National Taiwan University College of Medicine, Taipei, Taiwan
- Department of Nursing, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
3
|
Xu Y, Zhu Y, Shi Y, Ye B, Bo L, Tao T. Immune Checkpoint VISTA Negatively Regulates Microglia Glycolysis and Activation via TRIM28-Mediated Ubiquitination of HK2 in Sepsis-Associated Encephalopathy. Mol Neurobiol 2024:10.1007/s12035-024-04572-z. [PMID: 39455538 DOI: 10.1007/s12035-024-04572-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024]
Abstract
V-domain immunoglobulin suppressor of T cell activation (VISTA) has emerged as a crucial player in the pathogenesis of neurological disorders. However, the specific mechanism by which VISTA regulates microglial activation remains unclear. Septic mice were intracerebroventricularly injected with an agonistic anti-VISTA antibody or isotype control. To investigate the differential gene expression profiles, RNA sequencing was conducted on brain tissues from these mice. In vitro, VISTA was silenced in BV2 microglial cells using shRNA. Co-immunoprecipitation assays were performed to identify protein-protein interactions involving hexokinase 2 (HK2), and ubiquitination assays were used to examine the ubiquitination status of HK2. Additionally, BV2 cells were transfected with either tripartite motif-containing 28 overexpression plasmids (TRIM28-PcDNA3.1( +)) or TRIM28-specific siRNA to assess the impact of TRIM28 on VISTA-mediated microglial activation. The cellular glycolytic activity was measured using extracellular acidification rate assays, and proinflammatory cytokine and chemokines were quantified. Treatment with VISTA antibodies significantly alleviated microglial activation and prevented cognitive impairment in septic mice. In contrast, VISTA silencing in BV2 microglia led to the overexpression of proinflammatory cytokines and enhanced glycolysis in an HK2-dependent manner. Mechanistically, HK2 expression was regulated by the E3 ubiquitin ligase TRIM28 through K63-linked ubiquitination, which targeted HK2 for proteasomal degradation. Furthermore, knockdown of TRIM28 reduced the elevated glycolysis and proinflammatory response observed in VISTA-silenced microglia. VISTA modulates microglial activation in sepsis-associated encephalopathy by regulating HK2 expression through TRIM28-mediated K63-linked ubiquitination. These findings highlight VISTA as a potential therapeutic target for modulating microglial activation in sepsis.
Collapse
Affiliation(s)
- Yuhai Xu
- Department of Anesthesiology, Air Force Medical Center, Beijing, 100142, China
| | - Ying Zhu
- Department of Pulmonary and Critical Care Medicine, 7Th Medical Center of Chinese PLA General Hospital, Beijing, 100700, China
| | - Yue Shi
- Department of Anesthesiology, Air Force Medical Center, Beijing, 100142, China
| | - Bo Ye
- Department of Anesthesiology, Air Force Medical Center, Beijing, 100142, China
| | - Lulong Bo
- Faculty of Anesthesiology, Changhai Hospital, Shanghai, 200433, China.
| | - Tianzhu Tao
- Department of Anesthesiology, Air Force Medical Center, Beijing, 100142, China.
| |
Collapse
|
4
|
Gong H, Xia Y, Jing G, Yuan M, Zhou H, Wu D, Zuo J, Lei C, Aidebaike D, Wu X, Song X. Berberine alleviates neuroinflammation by downregulating NFκB/LCN2 pathway in sepsis-associated encephalopathy: network pharmacology, bioinformatics, and experimental validation. Int Immunopharmacol 2024; 133:112036. [PMID: 38640713 DOI: 10.1016/j.intimp.2024.112036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/12/2024] [Accepted: 04/05/2024] [Indexed: 04/21/2024]
Abstract
BACKGROUND Sepsis refers to a systemic inflammatory response caused by infection, involving multiple organs. Sepsis-associated encephalopathy (SAE), as one of the most common complications in patients with severe sepsis, refers to the diffuse brain dysfunction caused by sepsis without central nervous system infection. However, there is no clear diagnostic criteria and lack of specific diagnostic markers. METHODS The main active ingredients of coptidis rhizoma(CR) were identified from TCMSP and SwissADME databases. SwissTargetPrediction and PharmMapper databases were used to obtain targets of CR. OMIM, DisGeNET and Genecards databases were used to explore targets of SAE. Limma differential analysis was used to identify the differential expressed genes(DEGs) in GSE167610 and GSE198861 datasets. WGCNA was used to identify feature module. GO and KEGG enrichment analysis were performed using Metascape, DAVID and STRING databases. The PPI network was constructed by STRING database and analyzed by Cytoscape software. AutoDock and PyMOL software were used for molecular docking and visualization. Cecal ligation and puncture(CLP) was used to construct a mouse model of SAE, and the core targets were verified in vivo experiments. RESULTS 277 common targets were identified by taking the intersection of 4730 targets related to SAE and 509 targets of 9 main active ingredients of CR. 52 common DEGs were mined from GSE167610 and GSE198861 datasets. Among the 25,864 DEGs in GSE198861, LCN2 showed the most significant difference (logFC = 6.9). GO and KEGG enrichment analysis showed that these 52 DEGs were closely related to "inflammatory response" and "innate immunity". A network containing 38 genes was obtained by PPI analysis, among which LCN2 ranked the first in Degree value. Molecular docking results showed that berberine had a well binding affinity with LCN2. Animal experiments results showed that berberine could inhibit the high expression of LCN2,S100A9 and TGM2 induced by CLP in the hippocampus of mice, as well as the high expression of inflammatory factors (TNFα, IL-6 and IL-1β). In addition, berberine might reduce inflammation and neuronal cell death by partially inhibiting NFκB/LCN2 pathway in the hippocampus of CLP models, thereby alleviating SAE. CONCLUSION Overall, Berberine may exert anti-inflammatory effects through multi-ingredients, multi-targets and multi-pathways to partially rescue neuronal death and alleviate SAE.
Collapse
Affiliation(s)
- Hailong Gong
- Research Centre of Anesthesiology and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei Province 430071, China
| | - Yun Xia
- Research Centre of Anesthesiology and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei Province 430071, China
| | - Guoqing Jing
- Research Centre of Anesthesiology and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei Province 430071, China
| | - Min Yuan
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province 430060, China
| | - Huimin Zhou
- Research Centre of Anesthesiology and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei Province 430071, China
| | - Die Wu
- Research Centre of Anesthesiology and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei Province 430071, China
| | - Jing Zuo
- Research Centre of Anesthesiology and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei Province 430071, China
| | - Chuntian Lei
- Research Centre of Anesthesiology and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei Province 430071, China
| | - Delida Aidebaike
- Research Centre of Anesthesiology and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei Province 430071, China
| | - Xiaojing Wu
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province 430060, China.
| | - Xuemin Song
- Research Centre of Anesthesiology and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei Province 430071, China.
| |
Collapse
|
5
|
Liu X, Niu H, Peng J. Enhancing predictions with a stacking ensemble model for ICU mortality risk in patients with sepsis-associated encephalopathy. J Int Med Res 2024; 52:3000605241239013. [PMID: 38530021 DOI: 10.1177/03000605241239013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024] Open
Abstract
OBJECTIVE We identified predictive factors and developed a novel machine learning (ML) model for predicting mortality risk in patients with sepsis-associated encephalopathy (SAE). METHODS In this retrospective cohort study, data from the Medical Information Mart for Intensive Care IV (MIMIC-IV) and eICU Collaborative Research Database were used for model development and external validation. The primary outcome was the in-hospital mortality rate among patients with SAE; the observed in-hospital mortality rate was 14.74% (MIMIC IV: 1112, eICU: 594). Using the least absolute shrinkage and selection operator (LASSO), we built nine ML models and a stacking ensemble model and determined the optimal model based on the area under the receiver operating characteristic curve (AUC). We used the Shapley additive explanations (SHAP) algorithm to determine the optimal model. RESULTS The study included 9943 patients. LASSO identified 15 variables. The stacking ensemble model achieved the highest AUC on the test set (0.807) and 0.671 on external validation. SHAP analysis highlighted Glasgow Coma Scale (GCS) and age as key variables. The model (https://sic1.shinyapps.io/SSAAEE/) can predict in-hospital mortality risk for patients with SAE. CONCLUSIONS We developed a stacked ensemble model with enhanced generalization capabilities using novel data to predict mortality risk in patients with SAE.
Collapse
Affiliation(s)
- Xuhui Liu
- Baise People's Hospital, Baise, Guangxi Province, China
- Department of Critical Care Medicine, Affiliated Southwest Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi Province, China
| | - Hao Niu
- Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jiahua Peng
- Department of Critical Care Medicine, Affiliated Southwest Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi Province, China
| |
Collapse
|
6
|
Shi X, Yang L, Bai W, Jing L, Qin L. Evaluating early lymphocyte-to-monocyte ratio as a predictive biomarker for delirium in older adult patients with sepsis: insights from a retrospective cohort analysis. Front Med (Lausanne) 2024; 11:1342568. [PMID: 38357643 PMCID: PMC10864594 DOI: 10.3389/fmed.2024.1342568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 01/15/2024] [Indexed: 02/16/2024] Open
Abstract
Background This study aims to explore the value of the Lymphocyte-to-Monocyte Ratio (LMR) in predicting delirium among older adult patients with sepsis. Methods Retrospective data were obtained from the MIMIC-IV database in accordance with the STROBE guidelines. Patients aged 65 and above, meeting the Sepsis 3.0 criteria, were selected for this study. Delirium was assessed using the Confusion Assessment Method for the ICU (CAM-ICU). Demographic information, comorbid conditions, severity of illness scores, vital sign measurements, and laboratory test results were meticulously extracted. The prognostic utility of the Lymphocyte-to-Monocyte Ratio (LMR) in predicting delirium was assessed through logistic regression models, which were carefully adjusted for potential confounding factors. Results In the studied cohort of 32,971 sepsis patients, 2,327 were identified as meeting the inclusion criteria. The incidence of delirium within this subgroup was observed to be 55%. A univariate analysis revealed a statistically significant inverse correlation between the Lymphocyte-to-Monocyte Ratio (LMR) and the risk of delirium (p < 0.001). Subsequent multivariate analysis, which accounted for comorbidities and illness severity scores, substantiated the role of LMR as a significant predictive marker. An optimized model, achieving the lowest Akaike Information Criterion (AIC), incorporated 17 variables and continued to demonstrate LMR as a significant prognostic factor (p < 0.01). Analysis of the Receiver Operating Characteristic (ROC) curve indicated a significant enhancement in the Area Under the Curve (AUC) upon the inclusion of LMR (p = 0.035). Conclusion The Lymphocyte-to-Monocyte Ratio (LMR) serves as a significant, independent prognostic indicator for the occurrence of delirium in older adult patients with sepsis. Integrating LMR into existing predictive models markedly improves the identification of patients at elevated risk, thereby informing and potentially guiding early intervention strategies.
Collapse
Affiliation(s)
| | | | | | | | - Lijie Qin
- Department of Emergency, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Zhengzhou, China
| |
Collapse
|
7
|
Plaschke K, Brenner T, Fiedler MO, Hölle T, von der Forst M, Wolf RC, Kopitz J, Gebert J, Weigand MA. Extracellular Vesicles as Possible Plasma Markers and Mediators in Patients with Sepsis-Associated Delirium-A Pilot Study. Int J Mol Sci 2023; 24:15781. [PMID: 37958765 PMCID: PMC10649316 DOI: 10.3390/ijms242115781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023] Open
Abstract
Patients with sepsis-associated delirium (SAD) show severe neurological impairment, often require an intensive care unit (ICU) stay and have a high risk of mortality. Hence, useful biomarkers for early detection of SAD are urgently needed. Extracellular vesicles (EVs) and their cargo are known to maintain normal physiology but also have been linked to numerous disease states. Here, we sought to identify differentially expressed proteins in plasma EVs from SAD patients as potential biomarkers for SAD. Plasma EVs from 11 SAD patients and 11 age-matched septic patients without delirium (non-SAD) were isolated by differential centrifugation, characterized by nanoparticle tracking analysis, transmission electron microscopy and Western blot analysis. Differential EV protein expression was determined by mass spectrometry and the resulting proteomes were characterized by Gene Ontology term and between-group statistics. As preliminary results because of the small group size, five distinct proteins showed significantly different expression pattern between SAD and non-SAD patients (p ≤ 0.05). In SAD patients, upregulated proteins included paraoxonase-1 (PON1), thrombospondin 1 (THBS1), and full fibrinogen gamma chain (FGG), whereas downregulated proteins comprised immunoglobulin (IgHV3) and complement subcomponent (C1QC). Thus, plasma EVs of SAD patients show significant changes in the expression of distinct proteins involved in immune system regulation and blood coagulation as well as in lipid metabolism in this pilot study. They might be a potential indicator for to the pathogenesis of SAD and thus warrant further examination as potential biomarkers, but further research is needed to expand on these findings in longitudinal study designs with larger samples and comprehensive polymodal data collection.
Collapse
Affiliation(s)
- Konstanze Plaschke
- Department of Anesthesiology, University Hospital Heidelberg, Im Neuenheimer Feld 420, 69120 Heidelberg, Germany; (T.B.); (M.O.F.); (T.H.); (M.v.d.F.)
| | - Thorsten Brenner
- Department of Anesthesiology, University Hospital Heidelberg, Im Neuenheimer Feld 420, 69120 Heidelberg, Germany; (T.B.); (M.O.F.); (T.H.); (M.v.d.F.)
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Essen, University Duisburg-Essen, Hufelandstr. 55, 45147 Essen, Germany
| | - Mascha O. Fiedler
- Department of Anesthesiology, University Hospital Heidelberg, Im Neuenheimer Feld 420, 69120 Heidelberg, Germany; (T.B.); (M.O.F.); (T.H.); (M.v.d.F.)
| | - Tobias Hölle
- Department of Anesthesiology, University Hospital Heidelberg, Im Neuenheimer Feld 420, 69120 Heidelberg, Germany; (T.B.); (M.O.F.); (T.H.); (M.v.d.F.)
| | - Maik von der Forst
- Department of Anesthesiology, University Hospital Heidelberg, Im Neuenheimer Feld 420, 69120 Heidelberg, Germany; (T.B.); (M.O.F.); (T.H.); (M.v.d.F.)
| | - Robert Christian Wolf
- Center for Psychosocial Medicine, Department of General Psychiatry, University Hospital Heidelberg, Vossstraße 4, 69115 Heidelberg, Germany;
| | - Jürgen Kopitz
- Department of Applied Tumor Biology, University Hospital Heidelberg, Im Neuenheimer Feld 224, 69120 Heidelberg, Germany; (J.K.); (J.G.)
| | - Johannes Gebert
- Department of Applied Tumor Biology, University Hospital Heidelberg, Im Neuenheimer Feld 224, 69120 Heidelberg, Germany; (J.K.); (J.G.)
| | - Markus A. Weigand
- Department of Anesthesiology, University Hospital Heidelberg, Im Neuenheimer Feld 420, 69120 Heidelberg, Germany; (T.B.); (M.O.F.); (T.H.); (M.v.d.F.)
| |
Collapse
|
8
|
Bircak-Kuchtova B, Chung HY, Wickel J, Ehler J, Geis C. Neurofilament light chains to assess sepsis-associated encephalopathy: Are we on the track toward clinical implementation? Crit Care 2023; 27:214. [PMID: 37259091 DOI: 10.1186/s13054-023-04497-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 05/18/2023] [Indexed: 06/02/2023] Open
Abstract
Sepsis is the most common cause of admission to intensive care units worldwide. Sepsis patients frequently suffer from sepsis-associated encephalopathy (SAE) reflecting acute brain dysfunction. SAE may result in increased mortality, extended length of hospital stay, and long-term cognitive dysfunction. The diagnosis of SAE is based on clinical assessments, but a valid biomarker to identify and confirm SAE and to assess SAE severity is missing. Several blood-based biomarkers indicating neuronal injury have been evaluated in sepsis and their potential role as early diagnosis and prognostic markers has been studied. Among those, the neuroaxonal injury marker neurofilament light chain (NfL) was identified to potentially serve as a prognostic biomarker for SAE and to predict long-term cognitive impairment. In this review, we summarize the current knowledge of biomarkers, especially NfL, in SAE and discuss a possible future clinical application considering existing limitations.
Collapse
Affiliation(s)
- Barbora Bircak-Kuchtova
- Section Translational Neuroimmunology, Department for Neurology, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany
| | - Ha-Yeun Chung
- Section Translational Neuroimmunology, Department for Neurology, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany.
- Center for Sepsis Control and Care, Jena University Hospital, 07747, Jena, Germany.
| | - Jonathan Wickel
- Section Translational Neuroimmunology, Department for Neurology, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany
- Center for Sepsis Control and Care, Jena University Hospital, 07747, Jena, Germany
| | - Johannes Ehler
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, 07747, Jena, Germany
| | - Christian Geis
- Section Translational Neuroimmunology, Department for Neurology, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany
- Center for Sepsis Control and Care, Jena University Hospital, 07747, Jena, Germany
| |
Collapse
|
9
|
DeWulf B, Minsart L, Verdonk F, Kruys V, Piagnerelli M, Maze M, Saxena S. High Mobility Group Box 1 (HMGB1): Potential Target in Sepsis-Associated Encephalopathy. Cells 2023; 12:cells12071088. [PMID: 37048161 PMCID: PMC10093266 DOI: 10.3390/cells12071088] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/29/2023] [Accepted: 03/31/2023] [Indexed: 04/07/2023] Open
Abstract
Sepsis-associated encephalopathy (SAE) remains a challenge for intensivists that is exacerbated by lack of an effective diagnostic tool and an unambiguous definition to properly identify SAE patients. Risk factors for SAE development include age, genetic factors as well as pre-existing neuropsychiatric conditions. Sepsis due to certain infection sites/origins might be more prone to encephalopathy development than other cases. Currently, ICU management of SAE is mainly based on non-pharmacological support. Pre-clinical studies have described the role of the alarmin high mobility group box 1 (HMGB1) in the complex pathogenesis of SAE. Although there are limited data available about the role of HMGB1 in neuroinflammation following sepsis, it has been implicated in other neurologic disorders, where its translocation from the nucleus to the extracellular space has been found to trigger neuroinflammatory reactions and disrupt the blood–brain barrier. Negating the inflammatory cascade, by targeting HMGB1, may be a strategy to complement non-pharmacologic interventions directed against encephalopathy. This review describes inflammatory cascades implicating HMGB1 and strategies for its use to mitigate sepsis-induced encephalopathy.
Collapse
Affiliation(s)
- Bram DeWulf
- Department of Anesthesia—Critical Care, AZ Sint-Jan Brugge Oostende AV, 8000 Bruges, Belgium
| | - Laurens Minsart
- Department of Anesthesia, Antwerp University Hospital (UZA), 2650 Edegem, Belgium
| | - Franck Verdonk
- Department of Anesthesiology and Intensive Care, GRC 29, DMU DREAM, Hôpital Saint-Antoine and Sorbonne University, Assistance Publique-Hôpitaux de Paris, 75012 Paris, France
| | - Véronique Kruys
- Laboratory of Molecular Biology of the Gene, Department of Molecular Biology, Free University of Brussels (ULB), 6041 Gosselies, Belgium
| | - Michael Piagnerelli
- Department of Intensive Care, CHU-Charleroi, Université Libre de Bruxelles, 6042 Charleroi, Belgium
- Experimental Medicine Laboratory (ULB Unit 222), CHU-Charleroi, Université Libre de Bruxelles, 6110 Montigny-le-Tilleul, Belgium
| | - Mervyn Maze
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California San Francisco, San Francisco, CA 94143, USA
| | - Sarah Saxena
- Department of Anesthesia—Critical Care, AZ Sint-Jan Brugge Oostende AV, 8000 Bruges, Belgium
- Laboratory of Molecular Biology of the Gene, Department of Molecular Biology, Free University of Brussels (ULB), 6041 Gosselies, Belgium
| |
Collapse
|
10
|
Abstract
PURPOSE OF REVIEW Sepsis, defined as life-threatening organ dysfunction caused by a dysregulated host response to infection, is a leading cause of hospital and ICU admission. The central and peripheral nervous system may be the first organ system to show signs of dysfunction, leading to clinical manifestations such as sepsis-associated encephalopathy (SAE) with delirium or coma and ICU-acquired weakness (ICUAW). In the current review, we want to highlight developing insights into the epidemiology, diagnosis, prognosis, and treatment of patients with SAE and ICUAW. RECENT FINDINGS The diagnosis of neurological complications of sepsis remains clinical, although the use of electroencephalography and electromyography can support the diagnosis, especially in noncollaborative patients, and can help in defining disease severity. Moreover, recent studies suggest new insights into the long-term effects associated with SAE and ICUAW, highlighting the need for effective prevention and treatment. SUMMARY In this manuscript, we provide an overview of recent insights and developments in the prevention, diagnosis, and treatment of patients with SAE and ICUAW.
Collapse
Affiliation(s)
- Simone Piva
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia
- Department of Anesthesia, Critical Care and Emergency, Spedali Civili University Hospital
| | - Michele Bertoni
- Department of Anesthesia, Critical Care and Emergency, Spedali Civili University Hospital
| | - Nicola Gitti
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia
| | - Francesco A. Rasulo
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia
- Department of Anesthesia, Critical Care and Emergency, Spedali Civili University Hospital
- ’Alessandra Bono’ University Research Center on Long-term Outcome in Critical Illness Survivors, University of Brescia, Brescia, Italy
| | - Nicola Latronico
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia
- Department of Anesthesia, Critical Care and Emergency, Spedali Civili University Hospital
- ’Alessandra Bono’ University Research Center on Long-term Outcome in Critical Illness Survivors, University of Brescia, Brescia, Italy
| |
Collapse
|
11
|
Yuechen Z, Shaosong X, Zhouxing Z, Fuli G, Wei H. A summary of the current diagnostic methods for, and exploration of the value of microRNAs as biomarkers in, sepsis-associated encephalopathy. Front Neurosci 2023; 17:1125888. [PMID: 37008225 PMCID: PMC10060640 DOI: 10.3389/fnins.2023.1125888] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 03/02/2023] [Indexed: 03/18/2023] Open
Abstract
Sepsis-associated encephalopathy (SAE) is an acute neurological deficit caused by severe sepsis without signs of direct brain infection, characterized by the systemic inflammation and disturbance of the blood-brain barrier. SAE is associated with a poor prognosis and high mortality in patients with sepsis. Survivors may exhibit long-term or permanent sequelae, including behavioral changes, cognitive impairment, and decreased quality of life. Early detection of SAE can help ameliorate long-term sequelae and reduce mortality. Half of the patients with sepsis suffer from SAE in the intensive care unit, but its physiopathological mechanism remains unknown. Therefore, the diagnosis of SAE remains a challenge. The current clinical diagnosis of SAE is a diagnosis of exclusion; this makes the process complex and time-consuming and delays early intervention by clinicians. Furthermore, the scoring scales and laboratory indicators involved have many problems, including insufficient specificity or sensitivity. Thus, a new biomarker with excellent sensitivity and specificity is urgently needed to guide the diagnosis of SAE. MicroRNAs have attracted attention as putative diagnostic and therapeutic targets for neurodegenerative diseases. They exist in various body fluids and are highly stable. Based on the outstanding performance of microRNAs as biomarkers for other neurodegenerative diseases, it is reasonable to infer that microRNAs will be excellent biomarkers for SAE. This review explores the current diagnostic methods for sepsis-associated encephalopathy (SAE). We also explore the role that microRNAs could play in SAE diagnosis and if they can be used to make the SAE diagnosis faster and more specific. We believe that our review makes a significant contribution to the literature because it summarizes some of the important diagnostic methods for SAE, highlighting their advantages and disadvantages in clinical use, and could benefit the field as it highlights the potential of miRNAs as SAE diagnostic markers.
Collapse
Affiliation(s)
| | - Xi Shaosong
- Department of Critical Care Medicine, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | | | | | - Hu Wei
- Department of Critical Care Medicine, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
12
|
Dumbuya JS, Li S, Liang L, Zeng Q. Paediatric sepsis-associated encephalopathy (SAE): a comprehensive review. Mol Med 2023; 29:27. [PMID: 36823611 PMCID: PMC9951490 DOI: 10.1186/s10020-023-00621-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 02/10/2023] [Indexed: 02/25/2023] Open
Abstract
Sepsis-associated encephalopathy (SAE) is one of the most common types of organ dysfunction without overt central nervous system (CNS) infection. It is associated with higher mortality, low quality of life, and long-term neurological sequelae, its mortality in patients diagnosed with sepsis, progressing to SAE, is 9% to 76%. The pathophysiology of SAE is still unknown, but its mechanisms are well elaborated, including oxidative stress, increased cytokines and proinflammatory factors levels, disturbances in the cerebral circulation, changes in blood-brain barrier permeability, injury to the brain's vascular endothelium, altered levels of neurotransmitters, changes in amino acid levels, dysfunction of cerebral microvascular cells, mitochondria dysfunction, activation of microglia and astrocytes, and neuronal death. The diagnosis of SAE involves excluding direct CNS infection or other types of encephalopathies, which might hinder its early detection and appropriate implementation of management protocols, especially in paediatric patients where only a few cases have been reported in the literature. The most commonly applied diagnostic tools include electroencephalography, neurological imaging, and biomarker detection. SAE treatment mainly focuses on managing underlying conditions and using antibiotics and supportive therapy. In contrast, sedative medication is used judiciously to treat those showing features such as agitation. The most widely used medication is dexmedetomidine which is neuroprotective by inhibiting neuronal apoptosis and reducing a sepsis-associated inflammatory response, resulting in improved short-term mortality and shorter time on a ventilator. Other agents, such as dexamethasone, melatonin, and magnesium, are also being explored in vivo and ex vivo with encouraging results. Managing modifiable factors associated with SAE is crucial in improving generalised neurological outcomes. From those mentioned above, there are still only a few experimentation models of paediatric SAE and its treatment strategies. Extrapolation of adult SAE models is challenging because of the evolving brain and technical complexity of the model being investigated. Here, we reviewed the current understanding of paediatric SAE, its pathophysiological mechanisms, diagnostic methods, therapeutic interventions, and potential emerging neuroprotective agents.
Collapse
Affiliation(s)
- John Sieh Dumbuya
- Department of Paediatrics, Zhujiang Hospital of Southern Medical University, Guangzhou, 510282, People's Republic of China
| | - Siqi Li
- Department of Paediatrics, Zhujiang Hospital of Southern Medical University, Guangzhou, 510282, People's Republic of China
| | - Lili Liang
- Department of Paediatrics, Zhujiang Hospital of Southern Medical University, Guangzhou, 510282, People's Republic of China
| | - Qiyi Zeng
- Department of Paediatrics, Zhujiang Hospital of Southern Medical University, Guangzhou, 510282, People's Republic of China.
| |
Collapse
|
13
|
Tokuda R, Nakamura K, Takatani Y, Tanaka C, Kondo Y, Ohbe H, Kamijo H, Otake K, Nakamura A, Ishikura H, Kawazoe Y. Sepsis-Associated Delirium: A Narrative Review. J Clin Med 2023; 12:1273. [PMID: 36835809 PMCID: PMC9962483 DOI: 10.3390/jcm12041273] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 01/21/2023] [Accepted: 01/30/2023] [Indexed: 02/09/2023] Open
Abstract
Delirium is characterized by an acutely altered mental status accompanied by reductions in cognitive function and attention. Delirium in septic patients, termed sepsis-associated delirium (SAD), differs in several specific aspects from the other types of delirium that are typically encountered in intensive care units. Since sepsis and delirium are both closely associated with increased morbidity and mortality, it is important to not only prevent but also promptly diagnose and treat SAD. We herein reviewed the etiology, pathogenesis, risk factors, prevention, diagnosis, treatment, and prognosis of SAD, including coronavirus disease 2019 (COVID-19)-related delirium. Delirium by itself not only worsens long-term prognosis, but it is also regarded as an important factor affecting the outcome of post-intensive care syndrome. In COVID-19 patients, the difficulties associated with adequately implementing the ABCDEF bundle (Assess, prevent, and manage pain; Both spontaneous awakening and breathing trials: Choice of analgesia and sedation; Delirium assess, prevent, and manage; Early mobility and exercise; Family engagement/empowerment) and the need for social isolation are issues that require the development of conventional care for SAD.
Collapse
Affiliation(s)
- Rina Tokuda
- Tajima Emergency and Critical Care Medical Center, Toyooka Public Hospital, Hyogo 668-8501, Japan
| | - Kensuke Nakamura
- Department of Emergency and Critical Care Medicine, Teikyo University Hospital, Tokyo 173-8606, Japan
| | - Yudai Takatani
- Department of Primary Care and Emergency Medicine, Kyoto University Hospital, Kyoto 606-8507, Japan
| | - Chie Tanaka
- Department of Emergency and Critical Care Medicine, Nippon Medical School Tama Nagayama Hospital, Tokyo 206-8512, Japan
| | - Yutaka Kondo
- Department of Emergency and Critical Care Medicine, Juntendo University Urayasu Hospital, Chiba 279-0021, Japan
| | - Hiroyuki Ohbe
- Department of Clinical Epidemiology and Health Economics, School of Public Health, The University of Tokyo, Tokyo 113-8654, Japan
| | - Hiroshi Kamijo
- Department of Emergency and Critical Care Medicine, Shinshu University Hospital, Nagano 390-0802, Japan
| | - Kosuke Otake
- Department of Emergency and Critical Care Center, Nippon Medical School Musashikosugi Hospital, Kanagawa 211-8533, Japan
| | - Atsuo Nakamura
- Department of Emergency and Critical Care Medicine, Iizuka City Hospital, Fukuoka 820-8505, Japan
| | - Hiroyasu Ishikura
- Department of Emergency and Critical Care Medicine, Faculty of Medicine, Fukuoka University, Fukuoka 814-0180, Japan
| | - Yu Kawazoe
- Department of Emergency Critical Care Center, Sendai Medical Center, Miyagi 983-0045, Japan
| | | |
Collapse
|
14
|
Alves VS, da Silva JP, Rodrigues FC, Araújo SMB, Gouvêa AL, Leite-Aguiar R, Santos SACS, da Silva MSP, Ferreira FS, Marques EP, dos Passos BABR, Maron-Gutierrez T, Kurtenbach E, da Costa R, Figueiredo CP, Wyse ATS, Coutinho-Silva R, Savio LEB. P2X7 receptor contributes to long-term neuroinflammation and cognitive impairment in sepsis-surviving mice. Front Pharmacol 2023; 14:1179723. [PMID: 37153798 PMCID: PMC10160626 DOI: 10.3389/fphar.2023.1179723] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 04/12/2023] [Indexed: 05/10/2023] Open
Abstract
Introduction: Sepsis is defined as a multifactorial debilitating condition with high risks of death. The intense inflammatory response causes deleterious effects on the brain, a condition called sepsis-associated encephalopathy. Neuroinflammation or pathogen recognition are able to stress cells, resulting in ATP (Adenosine Triphosphate) release and P2X7 receptor activation, which is abundantly expressed in the brain. The P2X7 receptor contributes to chronic neurodegenerative and neuroinflammatory diseases; however, its function in long-term neurological impairment caused by sepsis remains unclear. Therefore, we sought to evaluate the effects of P2X7 receptor activation in neuroinflammatory and behavioral changes in sepsis-surviving mice. Methods: Sepsis was induced in wild-type (WT), P2X7-/-, and BBG (Brilliant Blue G)-treated mice by cecal ligation and perforation (CLP). On the thirteenth day after the surgery, the cognitive function of mice was assessed using the novel recognition object and Water T-maze tests. Acetylcholinesterase (AChE) activity, microglial and astrocytic activation markers, and cytokine production were also evaluated. Results: Initially, we observed that both WT and P2X7-/- sepsis-surviving mice showed memory impairment 13 days after surgery, once they did not differentiate between novel and familiar objects. Both groups of animals presented increased AChE activity in the hippocampus and cerebral cortex. However, the absence of P2X7 prevented partly this increase in the cerebral cortex. Likewise, P2X7 absence decreased ionized calcium-binding protein 1 (Iba-1) and glial fibrillary acidic protein (GFAP) upregulation in the cerebral cortex of sepsis-surviving animals. There was an increase in GFAP protein levels in the cerebral cortex but not in the hippocampus of both WT and P2X7-/- sepsis-surviving animals. Pharmacological inhibition or genetic deletion of P2X7 receptor attenuated the production of Interleukin-1β (IL-1β), Tumor necrosis factor-α (TNF-α), and Interleukin-10 (IL-10). Conclusion: The modulation of the P2X7 receptor in sepsis-surviving animals may reduce neuroinflammation and prevent cognitive impairment due to sepsis-associated encephalopathy, being considered an important therapeutic target.
Collapse
Affiliation(s)
- Vinícius Santos Alves
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Joyce Pereira da Silva
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fabiana Cristina Rodrigues
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - André Luiz Gouvêa
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Raíssa Leite-Aguiar
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | - Fernanda Silva Ferreira
- Laboratório de Neuroproteção e Doenças Metabólicas, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Eduardo Peil Marques
- Laboratório de Neuroproteção e Doenças Metabólicas, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | | | - Eleonora Kurtenbach
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Robson da Costa
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Angela T. S. Wyse
- Laboratório de Neuroproteção e Doenças Metabólicas, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Robson Coutinho-Silva
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luiz Eduardo Baggio Savio
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- *Correspondence: Luiz Eduardo Baggio Savio,
| |
Collapse
|
15
|
Gao S, Jiang Y, Chen Z, Zhao X, Gu J, Wu H, Liao Y, Sun H, Wang J, Chen W. Metabolic Reprogramming of Microglia in Sepsis-Associated Encephalopathy: Insights from Neuroinflammation. Curr Neuropharmacol 2023; 21:1992-2005. [PMID: 36529923 PMCID: PMC10514522 DOI: 10.2174/1570159x21666221216162606] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 10/29/2022] [Accepted: 11/18/2022] [Indexed: 12/23/2022] Open
Abstract
Sepsis-associated encephalopathy (SAE) is a diffuse brain dysfunction caused by sepsis that manifests as a range of brain dysfunctions from delirium to coma. It is a relatively common complication of sepsis associated with poor patient prognosis and mortality. The pathogenesis of SAE involves neuroinflammatory responses, neurotransmitter dysfunction, blood-brain barrier (BBB) disruption, abnormal blood flow regulation, etc. Neuroinflammation caused by hyperactivation of microglia is considered to be a key factor in disease development, which can cause a series of chain reactions, including BBB disruption and oxidative stress. Metabolic reprogramming has been found to play a central role in microglial activation and executive functions. In this review, we describe the pivotal role of energy metabolism in microglial activation and functional execution and demonstrate that the regulation of microglial metabolic reprogramming might be crucial in the development of clinical therapeutics for neuroinflammatory diseases like SAE.
Collapse
Affiliation(s)
- Shenjia Gao
- Department of Anesthesiology, Cancer Center, Zhongshan Hospital, Fudan University, 180# Feng-Lin Road, Shanghai, 200032, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Yi Jiang
- Department of Anesthesiology, Cancer Center, Zhongshan Hospital, Fudan University, 180# Feng-Lin Road, Shanghai, 200032, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Zhaoyuan Chen
- Department of Anesthesiology, Cancer Center, Zhongshan Hospital, Fudan University, 180# Feng-Lin Road, Shanghai, 200032, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Xiaoqiang Zhao
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, 200032, China
| | - Jiahui Gu
- Department of Anesthesiology, Cancer Center, Zhongshan Hospital, Fudan University, 180# Feng-Lin Road, Shanghai, 200032, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Han Wu
- Department of Anesthesiology, Cancer Center, Zhongshan Hospital, Fudan University, 180# Feng-Lin Road, Shanghai, 200032, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Yun Liao
- Shanghai Medical College of Fudan University, Shanghai, China
| | - Hao Sun
- Department of Anesthesiology, Cancer Center, Zhongshan Hospital, Fudan University, 180# Feng-Lin Road, Shanghai, 200032, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Jun Wang
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Wankun Chen
- Department of Anesthesiology, Cancer Center, Zhongshan Hospital, Fudan University, 180# Feng-Lin Road, Shanghai, 200032, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
- Fudan Zhangjiang Institute, Shanghai, 201203, China
| |
Collapse
|
16
|
Zhao L, Liu B, Wang Y, Wang Z, Xie K, Li Y. New Strategies to Optimize Hemodynamics for Sepsis-Associated Encephalopathy. J Pers Med 2022; 12:jpm12121967. [PMID: 36556188 PMCID: PMC9784429 DOI: 10.3390/jpm12121967] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/07/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
Background: Sepsis-associated encephalopathy (SAE) is associated with high morbidity and mortality. Hemodynamic dysfunction plays a significant role in the incidence and mortality of SAE. Therefore, this study aimed to explore the relationship between hemodynamic indicators and SAE. Methods: 9033 patients with sepsis 3.0 were selected in a prospective study cohort. The LASSO regression model was used to select characteristic variables and remove the collinearity between them. In addition, a generalized additive model was used to find the optimal hemodynamic index value for patients with SAE. Multivariate logistic regression models, propensity matching scores, inverse probability weighting, and doubly robust estimation confirmed the reliability of the study results (i.e., the optimal hemodynamic indicators targeting patients with SAE). Results: A mean arterial pressure ≥ 65 mmHg, systolic blood pressure ≥ 90 mmHg, and lactate levels ≤ 3.5 mmol/L decrease the incidence of SAE, whereas a mean arterial pressure ≥ 59 mmHg and lactate levels ≤ 4.5 mmol/L decrease the 28-day mortality in patients with SAE. Conclusions: The hemodynamic indices of patients with SAE should be maintained at certain levels to reduce the incidence and mortality in patients with SAE, such that the mean arterial pressure is ≥65 mmHg, lactate levels are ≤3.5 mmol/L, and systolic blood pressure is ≥90 mmHg. These hemodynamic indicators should be targeted in patients with SAE.
Collapse
Affiliation(s)
- Lina Zhao
- Department of Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Bin Liu
- Department of Emergency, Chongqing University Central Hospital, Chongqing Emergency Medical Center, No.1 Jiankang Road, Yuzhong District, Chongqing 400014, China
| | - Yunying Wang
- Department of Critical Care Medicine, Chifeng Municipal Hospital, Chifeng Clinical Medical College of Inner Mongolia Medical University, Chifeng 024000, China
| | - Zhiwei Wang
- Department of Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Keliang Xie
- Department of Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin 300052, China
- Department of Anesthesiology, Tianjin Institute of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China
- Correspondence:
| | - Yun Li
- Department of Anesthesiology, Tianjin Institute of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China
| |
Collapse
|
17
|
Dumbuya JS, Li S, Liang L, Chen Y, Du J, Zeng Q. Effects of hydrogen-rich saline in neuroinflammation and mitochondrial dysfunction in rat model of sepsis-associated encephalopathy. J Transl Med 2022; 20:546. [DOI: 10.1186/s12967-022-03746-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 10/31/2022] [Indexed: 11/28/2022] Open
Abstract
Abstract
Background
Sepsis-associated encephalopathy (SAE) is one of the most common types of sepsis-related organ dysfunction without overt central nervous system (CNS) infection. It is associated with higher mortality, low quality of life, and long-term neurological sequelae in suspected patients. At present there is no specific treatment for SAE rather than supportive therapy and judicious use of antibiotics, which are sometimes associated with adverse effects. Molecular hydrogen (H2) has been reported to play crucial role in regulating inflammatory responses, neuronal injury, apoptosis and mitochondrial dysfunction in adult models of SAE. Here we report the protective effect of hydrogen-rich saline in juvenile SAE rat model and its possible underling mechanism(s).
Materials and methods
Rats were challenged with lipopolysaccharide (LPS) at a dose of 8 mg/kg injected intraperitoneally to induce sepsis and hydrogen-rich saline (HRS) administered 1 h following LPS induction at a dose of 5 ml/kg. Rats were divided into: sham, sham + HRS, LPS and LPS + HRS. At 48 h, rats were sacrificed and Nissl staining for neuronal injury, TUNEL assay for apoptotic cells detection, immunohistochemistry, and ELISA protocol for inflammatory cytokines determination, mitochondrial dysfunction parameters, electron microscopy and western blot analysis were studied to examine the effect of HRS in LPS-induced septic rats.
Results
Rats treated with HRS improved neuronal injury, improvement in rats’ survival rate. ELISA analysis showed decreased TNF-α and IL-1β and increased IL-10 expression levels in the HRS-treated group. Apoptotic cells were decreased after HRS administration in septic rats. The numbers of GFAP and IBA-1positive cells were attenuated in the HRS-treated group when compared to the LPS group. Subsequently, GFAP and IBA-1 immunoreactivity were decreased after HRS treatment. Mitochondrial membrane potential detected by JC-1 dye and ATP content were decreased in septic rats, which were improved after HRS treatment, while release of ROS was increased in the LPS group reverted by HRS treatment, ameliorating mitochondrial dysfunction. Further analysis by transmission electron microscopy showed decreased number of mitochondria and synapses, and disrupted mitochondrial membrane ultrastructure in the LPS group, while HRS administration increased mitochondria and synapses number.
Conclusion
These data demonstrated that HRS can improve survival rate, attenuate neuroinflammation, astrocyte and microglial activation, neuronal injury and mitochondrial dysfunction in juvenile SAE rat model, making it a potential therapeutic candidate in treating paediatric SAE.
Collapse
|
18
|
Sepsis-Induced Brain Dysfunction: Pathogenesis, Diagnosis, and Treatment. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1328729. [PMID: 36062193 PMCID: PMC9433216 DOI: 10.1155/2022/1328729] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 04/30/2022] [Accepted: 06/28/2022] [Indexed: 11/18/2022]
Abstract
Dysregulated host response to infection, which cause life-threatening organ dysfunction, was defined as sepsis. Sepsis can cause acute and long-term brain dysfunction, namely, sepsis-associated encephalopathy (SAE) and cognitive impairment. SAE refers to changes in consciousness without direct evidence of central nervous system infection. It is highly prevalent and may cause poor outcomes in sepsis patients. Cognitive impairment seriously affects the life quality of sepsis patients and increases the medical burden. The pathogenesis of sepsis-induced brain dysfunction is mainly characterized by the interaction of systemic inflammation, blood-brain barrier (BBB) dysfunction, neuroinflammation, microcirculation dysfunction, and brain dysfunction. Currently, the diagnosis of sepsis-induced brain dysfunction is based on clinical manifestation of altered consciousness along with neuropathological examination, and the treatment is mainly involves controlling sepsis. Although treatments for sepsis-induced brain dysfunction have been tested in animals, clinical treat sepsis-induced brain dysfunction is still difficult. Therefore, we review the underlying mechanisms of sepsis-induced brain injury, which mainly focus on the influence of systemic inflammation on BBB, neuroinflammation, brain microcirculation, and the brain function, which want to bring new mechanism-based directions for future basic and clinical research aimed at preventing or ameliorating brain dysfunction.
Collapse
|
19
|
Furr MO. Neurologic Disorders of the Foal. Vet Clin North Am Equine Pract 2022; 38:283-297. [PMID: 35811202 DOI: 10.1016/j.cveq.2022.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Neurologic disease of foals is a diagnostic and therapeutic challenge for veterinarians. Disease conditions such as neonatal encephalopathy are seen as well as developmental and congenital defects, bacterial infections, and trauma. Neonatal encephalopathy can be considered a "syndrome" with a variety of causes resulting in a similar clinical presentation. These causes can be categorized as maladaptation, hypoxic/ischemic encephalopathy, and metabolic abnormalities, all leading to signs of cerebral and brainstem disease. Spinal cord signs may occasionally be seen, but these signs are usually overshadowed by cerebral disease. Treatment in most cases involves supportive care and outcome is favorable in most cases.
Collapse
Affiliation(s)
- Martin O Furr
- Department of Physiological Sciences, College of Veterinary Medicine, Oklahoma State University, Room 264 McElroy Hall, Stillwater, Ok, USA.
| |
Collapse
|
20
|
Chen Y, Hu Y, Li X, Chen P, Wang C, Wang J, Wu J, Sun Y, Zheng G, Lu Y, Guo Y. Clinical Features and Factors Associated With Sepsis-Associated Encephalopathy in Children: Retrospective Single-Center Clinical Study. Front Neurol 2022; 13:838746. [PMID: 35711261 PMCID: PMC9196026 DOI: 10.3389/fneur.2022.838746] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 04/11/2022] [Indexed: 12/03/2022] Open
Abstract
Background Sepsis-associated encephalopathy (SAE) is a common complication in septic patients with a higher ICU and hospital mortality in adults and poorer long-term outcomes. Clinical presentation may range from mild confusion to convulsions and deep coma; however, little is known about SAE in children. We aimed to retrospectively analyze the data for children with sepsis, to illustrate the epidemiology, performance, and adverse outcome, and to evaluate the association between risk factors and SAE in children. Methods All children with sepsis who were admitted to the Department of Pediatrics, Guangdong Provincial People's Hospital, Guangzhou, Guangdong, China from January 2010 to December 2020 were retrospectively analyzed. Results A total of 210 patients with sepsis were retrospectively assigned to the SAE and non-SAE groups, of which 91 (43.33%) were diagnosed with SAE with a mortality of 6.70% (14/210). Significant differences were observed in the level of white blood platelet, platelets, international normalized ratio, prothrombin time, activated partial thromboplastin time, total protein, Ccr, UREA, blood urea nitrogen, alanine transaminase, aspartate transaminase, creatine kinase, creatine kinase isoenzymes, lactate dehydrogenase, procalcitonin, and lactic acid (p < 0.05). In the risk assessment scales, significant differences were observed in the modified Glasgow Coma score, PCIS, Pediatric Logistic Organ Dysfunction Score 2 (PELOD-2), Pediatric Sequential Organ Failure Assessment Score, and Pediatric Risk of Mortality III (p < 0.05). The incidence of septic shock, acute kidney disease, liver dysfunction, and coagulation disorder were higher in the SAE group (p < 0.05). The mechanical ventilation time ([6.57 d ± 16.86 d] vs. [2.05 d ± 5.79 d]; p < 0.001), CRRT time ([1.74 d ± 6.77 d] vs. [0.11 d ± 0.63 d]; p < 0.001), ICU stay time ([299.90 h ± 449.50 h] vs. [177.67 h ± 245.36 h]); p < 0.001 was longer than that of non-SAE. Both the PCT, Ca2+, septic shock, PELOD-2, and midazolam were identified as independent risk factors, and fentanyl was a protective factor for SAE in pediatric patients (p < 0.05). The main clinical neurological symptoms consisted of agitation, hypnosia, hypnosis alternates agitated, anterior fontanelle full/bulging/high tension, coma, muscle hypertonia, muscle hypotonia, hyperreflexia, focal seizure, and generalized seizure. Conclusions The incidence of SAE in children was found high and the prognosis poor. In this retrospective study, the identified patients were more susceptible to SAE, with an inflammatory storm with hypocalcemia or septic shock. The use of midazolam will increase the occurrence of SAE, whereas fentanyl will reduce the incidence of SAE, and PELOD-2 may predict the occurrence of SAE.
Collapse
Affiliation(s)
- Yihao Chen
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,Pediatric Intensive Care Unit, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yan Hu
- Pediatric Intensive Care Unit, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Xufeng Li
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,Pediatric Intensive Care Unit, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Peiling Chen
- Pediatric Intensive Care Unit, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Chun Wang
- Pediatric Intensive Care Unit, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Jing Wang
- Pediatric Intensive Care Unit, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Jiaxing Wu
- Pediatric Intensive Care Unit, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yueyu Sun
- Pediatric Intensive Care Unit, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Guilang Zheng
- Pediatric Intensive Care Unit, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yiyun Lu
- Pediatric Intensive Care Unit, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yuxiong Guo
- Pediatric Intensive Care Unit, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China.,Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| |
Collapse
|
21
|
Junior MM, Kumar A, Kumar P, Gupta P. Assessment of Delirium as an Independent Predictor of Outcome among Critically Ill Patients in Intensive Care Unit: A Prospective Study. Indian J Crit Care Med 2022; 26:676-681. [PMID: 35836643 PMCID: PMC9237160 DOI: 10.5005/jp-journals-10071-23907] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Affiliation(s)
- Mahendran Marriapan Junior
- Department of Anaesthesia and Intensive Care, Safdarjung Hospital and Vardhman Mahavir Medical College, New Delhi, India
| | - Ajay Kumar
- Department of Anaesthesia and Intensive Care, Safdarjung Hospital and Vardhman Mahavir Medical College, New Delhi, India
| | - Pravin Kumar
- Department of Anaesthesia and Intensive Care, Safdarjung Hospital and Vardhman Mahavir Medical College, New Delhi, India
| | - Poonam Gupta
- Department of Anaesthesia and Intensive Care, Safdarjung Hospital and Vardhman Mahavir Medical College, New Delhi, India
- Poonam Gupta, Department of Anaesthesia and Intensive Care, Safdarjung Hospital and Vardhman Mahavir Medical College, New Delhi, India, Phone: +91 9818623450, e-mail:
| |
Collapse
|
22
|
Zhang Y, Xing CJ, Liu X, Li YH, Jia J, Feng JG, Yang CJ, Chen Y, Zhou J. Thioredoxin-Interacting Protein (TXNIP) Knockdown Protects against Sepsis-Induced Brain Injury and Cognitive Decline in Mice by Suppressing Oxidative Stress and Neuroinflammation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:8645714. [PMID: 35571246 PMCID: PMC9098358 DOI: 10.1155/2022/8645714] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 04/17/2022] [Accepted: 04/23/2022] [Indexed: 11/19/2022]
Abstract
Sepsis-associated encephalopathy (SAE) is linked to increased morbidity and mortality rates in patients with sepsis. Increased cytokine production and neuronal apoptosis are implicated in the pathogenesis of the SAE. Neuroinflammation plays a major role in sepsis-induced brain injury. Thioredoxin-interacting protein (TXNIP), an inhibitor of thioredoxin, is associated with oxidative stress and inflammation. However, whether the TXNIP is involved in the sepsis-induced brain injury and the underlying mechanism is yet to be elucidated. Therefore, the present study was aimed at elucidating the effects of TXNIP knockdown on sepsis-induced brain injury and cognitive decline in mice. Lipopolysaccharide (LPS) was injected intraperitoneally to induce sepsis brain injury in mice. The virus-carrying control or TXNIP shRNA was injected into the lateral ventricle of the brain 4 weeks before the LPS treatment. The histological changes in the hippocampal tissues, encephaledema, and cognitive function were detected, respectively. Also, the 7-day survival rate was recorded. Furthermore, the alterations in microglial activity, oxidative response, proinflammatory factors, apoptosis, protein levels (TXNIP and NLRP3 inflammasome), and apoptosis were examined in the hippocampal tissues. The results demonstrated that the TXNIP and NLRP3 inflammasome expression levels were increased at 6, 12, and 24 h post-LPS injection. TXNIP knockdown dramatically ameliorated the 7-day survival rate, cognitive decline, brain damage, neuronal apoptosis, and the brain water content, inhibited the activation of microglia, downregulated the NLRP3/caspase-1 signaling pathway, and reduced the oxidative stress and the neuroinflammatory cytokine levels at 24 h post-LPS injection. These results suggested a crucial effect of TXNIP knockdown on the mechanism of brain injury and cognitive decline in sepsis mice via suppressing oxidative stress and neuroinflammation. Thus, TXNIP might be a potential therapeutic target for SAE patients.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Cheng-Jun Xing
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xiao Liu
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Ya-Hong Li
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jing Jia
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Laboratory of Anesthesiology, Southwest Medical University, Luzhou, China
| | - Jian-Guo Feng
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Laboratory of Anesthesiology, Southwest Medical University, Luzhou, China
| | - Cheng-Jie Yang
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Laboratory of Anesthesiology, Southwest Medical University, Luzhou, China
| | - Ye Chen
- Department of Traditional Chinese Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jun Zhou
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Laboratory of Anesthesiology, Southwest Medical University, Luzhou, China
| |
Collapse
|
23
|
Chen Y, Chi M, Qiao X, Wang J, Jin Y. Anti-inflammatory effect of ginsenoside Rg1 on LPS-induced septic encephalopathy and associated mechanism. Curr Neurovasc Res 2022; 19:38-46. [PMID: 35430992 DOI: 10.2174/1567202619666220414093130] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 12/31/2021] [Accepted: 01/06/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Sepsis frequently occurs in patients after infection and is highly associated with death. Septic encephalopathy is characterized by dysfunction of the central nervous system, of which the root cause is a systemic inflammatory response. Sepsis-associated encephalopathy is a severe disease that frequently occurs in children, resulting in high morbidity and mortality. OBJECTIVES In the present study, we aim to investigate the neuroprotective mechanism of ginsenoside Rg1 in response to septic encephalopathy. METHODS Effects of ginsenoside Rg1 on septic encephalopathy were determined by cell viability, cytotoxicity, ROS responses, and apoptosis assays and histological examination of brain. Inflammatory activities were evaluated by expression levels of IL-1β, IL-6, IL-10, TNF-α, and MCP-1 using qPCR and ELISA. Activities of signaling pathways in inflammation were estimated by the production of p-Erk1/2/Erk1/2, p-JNK/JNK, p-p38/p38, p-p65/p65, and p-IkBα/IkBα using western blot. RESULTS LPS simulation resulted in a significant increase in cytotoxicity, ROS responses, and apoptosis and a significant decrease in cell viability in CTX TNA2 cells, as well as brain damage in rats. Moreover, the production of IL-1β, IL-6, IL-10, TNF-α, and MCP-1 was significantly stimulated both in CTX TNA2 cells and in the brain, which confirmed the establishment of vitro and in vivo models of septic encephalopathy. The damage and inflammatory responses induced by LPS were significantly decreased by treatment with Rg1. Western blot analyses indicated Rg1 significantly decreased the production of p-Erk1/2/Erk1/2, p-JNK/JNK, p-p38/p38, p-p65/p65, and p-IkBα/IkBα in LPS-induced CTX TNA2 cells and in the brain. CONCLUSIONS These findings suggested that Rg1 inhibited the activation of NF-κB and MAPK signaling pathways, which activate the production of proinflammatory cytokines and chemokines. The findings of this study suggest that ginsenoside Rg1 is a candidate treatment for septic encephalopathy.
Collapse
Affiliation(s)
- Yuan Chen
- Municipal Hospital Affiliated to Taizhou University, Taizhou 318000, China
| | - Miaomiao Chi
- Municipal Hospital Affiliated to Taizhou University, Taizhou 318000, China
| | - Xinyu Qiao
- Municipal Hospital Affiliated to Taizhou University, Taizhou 318000, China
| | - Jiabing Wang
- Municipal Hospital Affiliated to Taizhou University, Taizhou 318000, China
| | - Yong Jin
- Municipal Hospital Affiliated to Taizhou University, Taizhou 318000, China
| |
Collapse
|
24
|
Caldas J, Quispe-Cornejo AA, Crippa IA, Subira C, Creteur J, Panerai R, Taccone FS. Cerebral Autoregulation Indices Are Not Interchangeable in Patients With Sepsis. Front Neurol 2022; 13:760293. [PMID: 35350400 PMCID: PMC8957883 DOI: 10.3389/fneur.2022.760293] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 01/26/2022] [Indexed: 12/21/2022] Open
Abstract
Introduction Dynamic cerebral autoregulation (dCA) is frequently altered in patients with sepsis and may be associated with sepsis-associated brain dysfunction. However, the optimal index to quantify dCA in patients with sepsis is currently unknown. Objective To assess the agreement between two validated dCA indices in patients with sepsis. Methods Retrospective analysis of prospectively collected data in patients with sepsis; those with acute or chronic intracranial disease, arrhythmias, mechanical cardiac support, or history of supra-aortic vascular disease were excluded. Transcranial Doppler was performed on the right or left middle cerebral artery (MCA) with a 2-MHz probe, and MCA blood flow velocity (FV) and arterial pressure (BP) signals were simultaneously recorded. We calculated two indices of dCA: the mean flow index (Mxa), which is the Pearson correlation coefficient between BP and FV (MATLAB, MathWorks), and the autoregulation index (ARI), which is the transfer function analysis of spontaneous fluctuations in BP and FV (custom-written FORTRAN code). Impaired dCA was defined as Mxa >0.3 or ARI ≤ 4. The agreement between the two indices was assessed by Cohen's kappa coefficient. Results We included 95 patients (age 64 ± 13 years old; male 74%); ARI was 4.38 [2.83-6.04] and Mxa was 0.32 [0.14-0.59], respectively. There was no correlation between ARI and Mxa (r = -0.08; p = 0.39). dCA was altered in 40 (42%) patients according to ARI and in 50 (53%) patients according to Mxa. ARI and Mxa were concordant in classifying 23 (24%) patients as having impaired dCA and 28 (29%) patients as having intact dCA. Cohen's kappa coefficient was 0.08, suggesting poor agreement. ARI was altered more frequently in patients on mechanical ventilation than others (27/52, 52% vs. 13/43, 30%, p = 0.04), whereas Mxa did not differ between those two groups. On the contrary, Mxa was altered more frequently in patients receiving sedatives than others (23/34, 68% vs. 27/61, 44%, p = 0.03), whereas ARI did not differ between these two groups. Conclusions Agreement between ARI and Mxa in assessing dCA in patients with sepsis was poor. The identification of specific factors influencing the dCA analysis might lead to a better selection of the adequate cerebral autoregulation (CAR) index in critically ill patients with sepsis.
Collapse
Affiliation(s)
- Juliana Caldas
- Escola Bahiana de Medicina e Saúde Pública, Salvador, Brazil
- Universidade de Salvador, Universidade y Faculdade Salvador (UNIFACS), Salvador, Brazil
- Instituto D'Or de Pesquisa e Ensino (IDOR), Salvador, Brazil
| | | | - Ilaria Alice Crippa
- Department of Intensive Care Unit, Erasme Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Carles Subira
- Department of Intensive Care Medicine, Alhaia Xarxa Assistencial Universitaria de Manresa, Barcelona, Spain
| | - Jacques Creteur
- Department of Intensive Care Unit, Erasme Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Ronney Panerai
- Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom
- National Institute for Health Research (NIHR) Leicester Biomedical Research Centre, Leicester, United Kingdom
| | - Fabio Silvio Taccone
- Department of Intensive Care Unit, Erasme Hospital, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
25
|
Luz LFDS, Santos MCD, Ramos TA, Almeida CBD, Rover MC, Dal'Pizzol CP, Pohren CLDS, Martins AVDS, Boniatti MM. Delirium and quality of life in critically ill patients: a prospective cohort study. Rev Bras Ter Intensiva 2021; 32:426-432. [PMID: 33053033 PMCID: PMC7595710 DOI: 10.5935/0103-507x.20200072] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 03/23/2020] [Indexed: 11/20/2022] Open
Abstract
Objective To evaluate the association between the incidence of delirium in the intensive care unit and quality of life 1 month after hospital discharge. Methods This was a prospective cohort study conducted in the intensive care units of two medium-complexity hospitals from December 2015 to December 2016. Delirium was identified using the Confusion Assessment Method for the Intensive Care Unit scale. At the time of hospital discharge, functional capacity and cognition were assessed with the Barthel index and the Mini Mental State Examination, respectively. Thirty days after patient discharge, the World Health Organization Quality of Life-BREF questionnaire was administered by telephone. Results A total of 216 patients were included. Delirium was identified in 127 (58.8%) of them. Patients with delirium exhibited greater functional dependence (median Barthel index 50.0 [21.2 - 70.0] versus 80.0 [60.0 - 95.0]; p < 0.001) and lower cognition (Mini Mental State Examination score 12.9 ± 7.5 versus 20.7 ± 9.8; p < 0.001) at hospital discharge. There was no difference in any of the quality-of-life domains evaluated 1 month after hospital discharge between patients with and without delirium. Conclusion Our findings suggest that patients with delirium in the intensive care unit do not have worse quality of life 1 month after hospital discharge, despite presenting greater cognitive impairment and functional disability at the time of hospital discharge.
Collapse
Affiliation(s)
| | | | - Tiago Almeida Ramos
- Serviço de Medicina Intensiva, Hospital de Clínicas de Porto Alegre - Porto Alegre (RS), Brasil
| | | | | | | | | | | | | |
Collapse
|
26
|
Lopez-Rodriguez AB, Hennessy E, Murray CL, Nazmi A, Delaney HJ, Healy D, Fagan SG, Rooney M, Stewart E, Lewis A, de Barra N, Scarry P, Riggs-Miller L, Boche D, Cunningham MO, Cunningham C. Acute systemic inflammation exacerbates neuroinflammation in Alzheimer's disease: IL-1β drives amplified responses in primed astrocytes and neuronal network dysfunction. Alzheimers Dement 2021; 17:1735-1755. [PMID: 34080771 DOI: 10.1002/alz.12341] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 03/03/2021] [Accepted: 03/04/2021] [Indexed: 12/14/2022]
Abstract
Neuroinflammation contributes to Alzheimer's disease (AD) progression. Secondary inflammatory insults trigger delirium and can accelerate cognitive decline. Individual cellular contributors to this vulnerability require elucidation. Using APP/PS1 mice and AD brain, we studied secondary inflammatory insults to investigate hypersensitive responses in microglia, astrocytes, neurons, and human brain tissue. The NLRP3 inflammasome was assembled surrounding amyloid beta, and microglia were primed, facilitating exaggerated interleukin-1β (IL-1β) responses to subsequent LPS stimulation. Astrocytes were primed to produce exaggerated chemokine responses to intrahippocampal IL-1β. Systemic LPS triggered microglial IL-1β, astrocytic chemokines, IL-6, and acute cognitive dysfunction, whereas IL-1β disrupted hippocampal gamma rhythm, all selectively in APP/PS1 mice. Brains from AD patients with infection showed elevated IL-1β and IL-6 levels. Therefore, amyloid leaves the brain vulnerable to secondary inflammation at microglial, astrocytic, neuronal, and cognitive levels, and infection amplifies neuroinflammatory cytokine synthesis in humans. Exacerbation of neuroinflammation to produce deleterious outcomes like delirium and accelerated disease progression merits careful investigation in humans.
Collapse
Affiliation(s)
- Ana Belen Lopez-Rodriguez
- School of Biochemistry & Immunology, Trinity Biomedical Sciences Institute and Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Rep. of Ireland
| | - Edel Hennessy
- School of Biochemistry & Immunology, Trinity Biomedical Sciences Institute and Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Rep. of Ireland
| | - Carol L Murray
- School of Biochemistry & Immunology, Trinity Biomedical Sciences Institute and Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Rep. of Ireland
| | - Arshed Nazmi
- School of Biochemistry & Immunology, Trinity Biomedical Sciences Institute and Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Rep. of Ireland
| | - Hugh J Delaney
- School of Biochemistry & Immunology, Trinity Biomedical Sciences Institute and Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Rep. of Ireland.,Discipline of Physiology, School of Medicine, Trinity College Dublin, Dublin, Rep. of Ireland
| | - Dáire Healy
- School of Biochemistry & Immunology, Trinity Biomedical Sciences Institute and Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Rep. of Ireland
| | - Steven G Fagan
- School of Biochemistry & Immunology, Trinity Biomedical Sciences Institute and Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Rep. of Ireland
| | - Michael Rooney
- School of Biochemistry & Immunology, Trinity Biomedical Sciences Institute and Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Rep. of Ireland
| | - Erika Stewart
- School of Biochemistry & Immunology, Trinity Biomedical Sciences Institute and Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Rep. of Ireland
| | - Anouchka Lewis
- School of Biochemistry & Immunology, Trinity Biomedical Sciences Institute and Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Rep. of Ireland
| | - Niamh de Barra
- School of Biochemistry & Immunology, Trinity Biomedical Sciences Institute and Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Rep. of Ireland
| | - Philip Scarry
- School of Biochemistry & Immunology, Trinity Biomedical Sciences Institute and Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Rep. of Ireland
| | - Louise Riggs-Miller
- School of Biochemistry & Immunology, Trinity Biomedical Sciences Institute and Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Rep. of Ireland
| | - Delphine Boche
- Clinical Neurosciences, Clinical and Experimental Sciences Academic Unit, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Mark O Cunningham
- Discipline of Physiology, School of Medicine, Trinity College Dublin, Dublin, Rep. of Ireland
| | - Colm Cunningham
- School of Biochemistry & Immunology, Trinity Biomedical Sciences Institute and Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Rep. of Ireland
| |
Collapse
|
27
|
Wu Z, Li H, Liao K, Wang Y. Association Between Dexamethasone and Delirium in Critically Ill Patients: A Retrospective Cohort Study of a Large Clinical Database. J Surg Res 2021; 263:89-101. [PMID: 33639374 DOI: 10.1016/j.jss.2021.01.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 01/01/2021] [Accepted: 01/22/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND Delirium is a common complication in intensive care unit (ICU) patients, and it can significantly increase the length of hospital stay and cost. Dexamethasone is widely used in various inflammatory diseases and must be used with caution in critically ill patients. Previous studies have shown that the effect of corticosteroid use on the development of delirium in critically ill patients is still controversial, and there is inconclusive conclusion about the effect of dexamethasone on delirium in such patients. Therefore, this study aimed to confirm the effect of dexamethasone use and the dose on the incidence of delirium and patient prognosis in critically ill patients through a large cohort study. METHODS A retrospective cohort study was conducted using data extracted from the Medical Information Mart for Intensive Care III database, which is a large and freely available database of all 46,476 patients who visited Beth Israel Deaconess Medical Center in Boston, Massachusetts, USA and were admitted to the ICU between 2001 and 2012. The primary outcome was the development of delirium, using multivariate logistic regression analysis to reveal the relationship between dexamethasone and delirium. Secondary endpoints were in-hospital mortality, ICU mortality, total length of stay, and length of ICU stay, and the relationship between dexamethasone and prognosis was assessed with Cox proportional hazards models. Propensity score matching with 1:1 grouping was used to eliminate the effect of confounders on both cohorts. The locally weighted scatter plot smoothing technique was used to investigate the dose correlation between dexamethasone and outcomes, subgroup analysis was used to account for heterogeneity, and different correction models and propensity matching analysis were used to eliminate potential confounders. RESULTS Finally, 38,509 patients were included, and 2204 (5.7%) used dexamethasone. No significant statistical difference was observed in basic demographic information after propensity score matching between the two study groups. A significantly higher incidence of delirium (5.0% versus 3.4%, P < 0.001), increased in-hospital mortality (14.9% versus 10.3%, P < 0.001), ICU mortality (9.0% versus 7.5%, P = 0.008), and longer length of stay and ICU stay were observed in patients taking dexamethasone compared with those not taking dexamethasone. Multivariate logistic and Cox regression analyses confirmed that dexamethasone was significantly associated with delirium (adjusted odds ratio = 1.48, 95% confidence interval [CI] = 1.09-2.00, P = 0.012), in-hospital mortality (adjusted hazard ratio = 1.19, 95% CI = 1.02-1.40, P = 0.032), and ICU mortality (adjusted hazard ratio = 1.62, 95% CI = 1.22-2.15, P = 0.001). Compared with critically ill patients using high-dose dexamethasone, the risk of delirium was lower in the dose less than the 10 mg group, and patients using 10-14 mg may be associated with a lower risk of in-hospital death and the least ICU mortality, length of hospital stay, and ICU stay. CONCLUSIONS This study demonstrated that the use of dexamethasone in critically ill patients exacerbated the occurrence of delirium while increasing the risk of in-hospital death, ICU death, and length of hospital stay, with a lower risk of delirium and a shorter total length of hospital stay with low-dose dexamethasone than with larger doses.
Collapse
Affiliation(s)
- Zehao Wu
- Department of Anesthesiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Huili Li
- Department of Anesthesiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Kaihua Liao
- Department of Anesthesiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Yun Wang
- Department of Anesthesiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
28
|
Catarina AV, Branchini G, Bettoni L, De Oliveira JR, Nunes FB. Sepsis-Associated Encephalopathy: from Pathophysiology to Progress in Experimental Studies. Mol Neurobiol 2021; 58:2770-2779. [PMID: 33495934 DOI: 10.1007/s12035-021-02303-2] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 01/18/2021] [Indexed: 12/14/2022]
Abstract
Sepsis is an organ dysfunction caused by an uncontrolled inflammatory response from the host to an infection. Sepsis is the main cause of morbidity and mortality in intensive care units (ICU) worldwide. One of the first organs to suffer from injuries resulting from sepsis is the brain. The central nervous system (CNS) is particularly vulnerable to damage, mediated by inflammatory and oxidative processes, which can cause the sepsis-associated encephalopathy (SAE), being reported in up to 70% of septic patients. This review aims to bring a summary of the main pathophysiological changes and dysfunctions in SAE, and the main focuses of current experimental studies for new treatments and therapies. The pathophysiology of SAE is complex and multifactorial, combining intertwined processes, and is promoted by countless alterations and dysfunctions resulting from sepsis, such as inflammation, neuroinflammation, oxidative stress, reduced brain metabolism, and injuries to the integrity of the blood-brain barrier (BBB). The treatment is limited once its cause is not completely understood. The patient's sedation is far to provide an adequate treatment to this complex condition. Studies and experimental advances are important for a better understanding of its pathophysiology and for the development of new treatments, medicines, and therapies for the treatment of SAE and to reduce its effects during and after sepsis.
Collapse
Affiliation(s)
- Anderson Velasque Catarina
- Programa de Pós-graduação em Patologia, Universidade Federal de Ciências da Saúde de Porto Alegre - UFCSPA, Porto Alegre, RS, 90050-170, Brazil.
| | - Gisele Branchini
- Programa de Pós-graduação em Patologia, Universidade Federal de Ciências da Saúde de Porto Alegre - UFCSPA, Porto Alegre, RS, 90050-170, Brazil
| | - Lais Bettoni
- Programa de Pós-graduação em Patologia, Universidade Federal de Ciências da Saúde de Porto Alegre - UFCSPA, Porto Alegre, RS, 90050-170, Brazil
| | - Jarbas Rodrigues De Oliveira
- Laboratório de Biofísica Celular e Inflamação, Pontifícia Universidade Católica do Rio Grande do Sul - PUCRS, Porto Alegre, Brazil
| | - Fernanda Bordignon Nunes
- Programa de Pós-graduação em Patologia, Universidade Federal de Ciências da Saúde de Porto Alegre - UFCSPA, Porto Alegre, RS, 90050-170, Brazil.,Laboratório de Biofísica Celular e Inflamação, Pontifícia Universidade Católica do Rio Grande do Sul - PUCRS, Porto Alegre, Brazil
| |
Collapse
|
29
|
Shimizu J, Fujino K, Sawai T, Tsujita Y, Tabata T, Eguchi Y. Association between plasma complement factor H concentration and clinical outcomes in patients with sepsis. Acute Med Surg 2021; 8:e625. [PMID: 33510899 PMCID: PMC7814988 DOI: 10.1002/ams2.625] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 12/13/2020] [Accepted: 12/22/2020] [Indexed: 12/29/2022] Open
Abstract
Aim The complement system is important for defending against pathogens, however, excessive complement activation is associated with a poor prognosis and organ dysfunction in sepsis. Complement factor H (CFH) acts to prevent excessive complement activation and damage to the self through the regulation of the complement alternative pathway. We investigated the association between plasma CFH levels on admission to the intensive care unit (ICU) and 90‐day mortality, severity scores, and organ dysfunction in patients with sepsis. Methods We assessed the relationship between the plasma CFH on admission to the ICU and 90‐day mortality, severity scores such as the Acute Physiology and Chronic Health Evaluation II score, Sequential Organ Failure Assessment score, and Simplified Acute Physiology Score 2, and organ dysfunction. Results This analysis included 62 patients. The plasma CFH levels were significantly lower in 90‐day non‐survivors than in survivors (70.0 μg/mL [interquartile range, 51.2–97.6] versus 104.8 μg/mL [interquartile range, 66.8–124.2]; P = 0.006) . The plasma CFH levels were associated with 90‐day mortality (odds ratio 0.977; 95% confidence interval, 0.957–0.994; P = 0.01). The plasma CFH levels were negatively correlated with severity scores. The Sequential Organ Failure Assessment scores for the coagulation and neurological components were negatively correlated with the CFH concentration. Conclusion Lower plasma levels of CFH were associated with increased severity and mortality in patients with sepsis on admission to the ICU and were correlated with central nervous system dysfunction and coagulopathy.
Collapse
Affiliation(s)
- Junji Shimizu
- Emergency and Intensive Care Unit Shiga University of Medical Science Hospital Otsu Japan
| | - Kazunori Fujino
- Department of Critical and Intensive Care Medicine Shiga University of Medical Science Shiga Japan
| | - Toshihiro Sawai
- Department of Pediatrics Shiga University of Medical Science Shiga Japan
| | - Yasuyuki Tsujita
- Emergency and Intensive Care Unit Shiga University of Medical Science Hospital Otsu Japan
| | - Takahisa Tabata
- Department of Critical and Intensive Care Medicine Shiga University of Medical Science Shiga Japan
| | - Yutaka Eguchi
- Department of Critical and Intensive Care Medicine Shiga University of Medical Science Shiga Japan
| |
Collapse
|
30
|
Li D, Zhang J, Bai G, Chen J, Cheng W, Cui N. Lymphocyte and NK Cell Counts Can Predict Sepsis-Associated Delirium in Elderly Patients. Front Aging Neurosci 2021; 12:621298. [PMID: 33505303 PMCID: PMC7829191 DOI: 10.3389/fnagi.2020.621298] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 12/15/2020] [Indexed: 11/18/2022] Open
Abstract
Background: Sepsis-associated delirium (SAD) is prevalent in elderly patients and is recognized as brain dysfunction associated with increased inflammatory response in the central nervous system during sepsis. Neuroinflammation was demonstrated to be part of its mechanism and we aimed to validate the role of immunity imbalance in a combined retrospective and prospective cohort study. Methods: We performed a retrospective study analyzing the association between SAD and lymphocyte counts in the peripheral blood, alongside a prospective trial evaluating the quantitative changes in lymphocyte subsets and their predictive value for early diagnosis of SAD. Results: In the retrospective study, among 1,010 enrolled adult patients (age ≥65 years), 297 patients were diagnosed with delirium during intensive care unit (ICU) stay and lymphocyte counts at ICU admission in the SAD group were significantly higher than in non-delirious counterparts (1.09 ± 0.32 vs. 0.82 ± 0.24, respectively, p = 0.001). In the prospective study, lymphocyte counts [0.83 (0.56, 1.15) vs. 0.72 (0.40, 1.06) × 109/L, p = 0.020] and natural killer (NK) cell counts [96 (68, 118) vs. 56 (26, 92) cells/μl, p = 0.024] were significantly higher in the SAD group. The area under the curve value of NK cell count was 0.895 [95% confidence interval (CI): 0.857, 0.933] and of lymphocyte count was 0.728 (95% CI: 0.662, 0.795). An NK cell count cut-off value of 87 cells/ml in septic patients at ICU admission was predictive of delirium with a sensitivity of 80.2% and specificity of 80.8%. Conclusions: We found that lymphocyte and NK cell counts were significantly higher in senior patients with SAD and that NK cell count may be valuable for the prediction of SAD within elderly patient cohorts.
Collapse
Affiliation(s)
- Dongkai Li
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Beijing, China
| | - Jiahui Zhang
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Beijing, China
| | - Guangxu Bai
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Beijing, China
| | - Jianwei Chen
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Beijing, China
| | - Wei Cheng
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Beijing, China
| | - Na Cui
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Beijing, China
| |
Collapse
|
31
|
Kim YR, Kim YM, Lee J, Park J, Lee JE, Hyun YM. Neutrophils Return to Bloodstream Through the Brain Blood Vessel After Crosstalk With Microglia During LPS-Induced Neuroinflammation. Front Cell Dev Biol 2020; 8:613733. [PMID: 33364241 PMCID: PMC7753044 DOI: 10.3389/fcell.2020.613733] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 11/20/2020] [Indexed: 12/20/2022] Open
Abstract
The circulatory neutrophil and brain tissue-resident microglia are two important immune cells involved in neuroinflammation. Since neutrophils that infiltrate through the brain vascular vessel may affect the immune function of microglia in the brain, close investigation of the interaction between these cells is important in understanding neuroinflammatory phenomena and immunological aftermaths that follow. This study aimed to observe how morphology and function of both neutrophils and microglia are converted in the inflamed brain. To directly investigate cellular responses of neutrophils and microglia, LysMGFP/+ and CX3CR1GFP/+ mice were used for the observation of neutrophils and microglia, respectively. In addition, low-dose lipopolysaccharide (LPS) was utilized to induce acute inflammation in the central nervous system (CNS) of mice. Real-time observation on mice brain undergoing neuroinflammation via two-photon intravital microscopy revealed various changes in neutrophils and microglia; namely, neutrophil infiltration and movement within the brain tissue increased, while microglia displayed morphological changes suggesting an activated state. Furthermore, neutrophils seemed to not only actively interact with microglial processes but also exhibit reverse transendothelial migration (rTEM) back to the bloodstream. Thus, it may be postulated that, through crosstalk with neutrophils, macrophages are primed to initiate a neuroinflammatory immune response; also, during pathogenic events in the brain, neutrophils that engage in rTEM may deliver proinflammatory signals to peripheral organs outside the brain. Taken together, these results both show that neuroinflammation results in significant alterations in neutrophils and microglia and lay the pavement for further studies on the molecular mechanisms behind such changes.
Collapse
Affiliation(s)
- Yu Rim Kim
- Department of Anatomy, Yonsei University College of Medicine, Seoul, South Korea.,BK21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Young Min Kim
- Department of Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Jaeho Lee
- Department of Anatomy, Yonsei University College of Medicine, Seoul, South Korea.,BK21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Joohyun Park
- Department of Anatomy, Yonsei University College of Medicine, Seoul, South Korea.,BK21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Jong Eun Lee
- Department of Anatomy, Yonsei University College of Medicine, Seoul, South Korea.,BK21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Young-Min Hyun
- Department of Anatomy, Yonsei University College of Medicine, Seoul, South Korea.,BK21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
32
|
Verkhratsky A, Li Q, Melino S, Melino G, Shi Y. Can COVID-19 pandemic boost the epidemic of neurodegenerative diseases? Biol Direct 2020; 15:28. [PMID: 33246479 PMCID: PMC7691955 DOI: 10.1186/s13062-020-00282-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 11/19/2020] [Indexed: 12/11/2022] Open
Abstract
The pandemic of Coronavirus Disease 2019 (COVID-19) presents the world with the medical challenge associated with multifactorial nature of this pathology. Indeed COVID-19 affects several organs and systems and presents diversified clinical picture. COVID-19 affects the brain in many ways including direct infection of neural cells with SARS-CoV-2, severe systemic inflammation which floods the brain with pro-inflammatory agents thus damaging nervous cells, global brain ischaemia linked to a respiratory failure, thromboembolic strokes related to increased intravascular clotting and severe psychological stress. Often the COVID-19 is manifested by neurological and neuropsychiatric symptoms that include dizziness, disturbed sleep, cognitive deficits, delirium, hallucinations and depression. All these indicate the damage to the nervous tissue which may substantially increase the incidence of neurodegenerative diseases and promote dementia.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT UK
- Achucarro Center for Neuroscience, IKERBASQUE, 48011 Bilbao, Spain
| | - Qing Li
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031 China
| | - Sonia Melino
- University of Rome Tor Vergata, via Cracovia 1, 00133 Rome, Italy
| | - Gerry Melino
- University of Rome Tor Vergata, via Cracovia 1, 00133 Rome, Italy
| | - Yufang Shi
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031 China
- State Key Laboratory of Radiation Medicine and Protection, The First Affiliated Hospital of Soochow University, Institutes for Translational Medicine, Soochow University Medical College, Suzhou, 215123 Jiangsu China
| |
Collapse
|
33
|
van der Slikke EC, An AY, Hancock REW, Bouma HR. Exploring the pathophysiology of post-sepsis syndrome to identify therapeutic opportunities. EBioMedicine 2020; 61:103044. [PMID: 33039713 PMCID: PMC7544455 DOI: 10.1016/j.ebiom.2020.103044] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/09/2020] [Accepted: 09/16/2020] [Indexed: 12/14/2022] Open
Abstract
Sepsis is a major health problem worldwide. As the number of sepsis cases increases, so does the number of sepsis survivors who suffer from “post-sepsis syndrome” after hospital discharge. This syndrome involves deficits in multiple systems, including the immune, cognitive, psychiatric, cardiovascular, and renal systems. Combined, these detrimental consequences lead to rehospitalizations, poorer quality of life, and increased mortality. Understanding the pathophysiology of these issues is crucial to develop new therapeutic opportunities to improve survival rate and quality of life of sepsis survivors. Such novel strategies include modulating the immune system and addressing mitochondrial dysfunction. A sepsis follow-up clinic may be useful to identify long-term health issues associated with post-sepsis syndrome and evaluate existing and novel strategies to improve the lives of sepsis survivors.
Collapse
Affiliation(s)
- Elisabeth C van der Slikke
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, , P.O. Box 30.001, EB70, 9700 RB, Groningen, The Netherlands
| | - Andy Y An
- Centre for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, BC, Canada
| | - Robert E W Hancock
- Centre for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, BC, Canada
| | - Hjalmar R Bouma
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, , P.O. Box 30.001, EB70, 9700 RB, Groningen, The Netherlands; Department of Internal Medicine, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
34
|
Tauber SC, Djukic M, Gossner J, Eiffert H, Brück W, Nau R. Sepsis-associated encephalopathy and septic encephalitis: an update. Expert Rev Anti Infect Ther 2020; 19:215-231. [PMID: 32808580 DOI: 10.1080/14787210.2020.1812384] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Sepsis-associated encephalopathy (SAE) and septic encephalitis (SE) are associated with increased mortality, long-term cognitive impairment, and focal neurological deficits. AREAS COVERED The PUBMED database was searched 2016-2020. The clinical manifestation of SAE is delirium, SE additionally is characterized by focal neurological symptoms. SAE is caused by inflammation with endothelial/microglial activation, increase of permeability of the blood-brain-barrier, hypoxia, imbalance of neurotransmitters, glial activation, axonal, and neuronal loss. Septic-embolic (SEE) and septic-metastatic encephalitis (SME) are characterized by focal ischemia (SEE) and small abscesses (SME). The continuum between SAE, SME, and SEE is documented by imaging techniques and autopsies. The backbone of treatment is rapid optimum antibiotic therapy. Experimental approaches focus on modulation of inflammation, stabilization of the blood-brain barrier, and restoration of membrane/mitochondrial function. EXPERT OPINION The most promising diagnostic approaches are new imaging techniques. The most important measure to fight delirium remains establishment of daily structure and adequate sensory stimuli. Dexmedetomidine and melatonin appear to reduce the frequency of delirium, their efficacy in SAE and SE remains to be established. Drugs already licensed for other indications or available as food supplements which may be effective in SAE are statins, L-DOPA/benserazide, β-hydroxybutyrate, palmitoylethanolamide, and tetracyclines or other bactericidal non-lytic antibiotics.
Collapse
Affiliation(s)
- Simone C Tauber
- Department of Neurology, Rheinisch-Westfälische Technische Hochschule (RWTH) , Aachen, Germany
| | - Marija Djukic
- Institute of Neuropathology, University Medical Center , Göttingen, Germany.,Department of Geriatrics, Protestant Hospital Göttingen-Weende , Göttingen, Germany
| | - Johannes Gossner
- Department of Diagnostic and Interventional Radiology, Protestant Hospital Göttingen-Weende , Göttingen, Germany
| | - Helmut Eiffert
- Amedes MVZ for Laboratory Medicine, Medical Microbiology and Infectiology , Göttingen, Germany
| | - Wolfgang Brück
- Institute of Neuropathology, University Medical Center , Göttingen, Germany
| | - Roland Nau
- Institute of Neuropathology, University Medical Center , Göttingen, Germany.,Department of Geriatrics, Protestant Hospital Göttingen-Weende , Göttingen, Germany
| |
Collapse
|
35
|
Khan AU, Muhammad Khan A, Khan A, Shal B, Aziz A, Ahmed MN, Khan S. The newly synthesized compounds (NCHDH and NTHDH) attenuates LPS-induced septicemia and multi-organ failure via Nrf2/HO1 and HSP/TRVP1 signaling in mice. Chem Biol Interact 2020; 329:109220. [PMID: 32763245 DOI: 10.1016/j.cbi.2020.109220] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 07/07/2020] [Accepted: 07/31/2020] [Indexed: 01/01/2023]
Abstract
The sepsis is considered as serious clinic-pathological condition related with high rate of morbidity and mortality in critical care settings. In the proposed study, the hydrazides derivatives N-(benzylidene)-2-((2-hydroxynaphthalen-1-yl)diazenyl)benzohydrazides (1-2) (NCHDH and NTHDH) were investigated against the LPS-induced sepsis in rodents. The NCHDH and NTHDH markedly improved the physiological sign and symptoms associated with the sepsis such as mortality, temperature, and clinical scoring compared to negative control group, which received only LPS (i.p.). The NCHDH and NTHDH also inhibited the production of the NO and MPO compared to the negative control. Furthermore, the treatment control improved the histological changes markedly of all the vital organs. Additionally, the Masson's trichrome and PAS (Periodic Acid Schiff) staining also showed improvement in the NCHDH and NTHDH treated group in contrast to LPS-induced group. The antioxidants were enhanced by the intervention of the NCHDH and NTHDH and the level of the MDA and POD were attenuated marginally compared to the LPS-induced group. The hematology study showed marked improvement and the reversal of the LPS-induced changes in blood composition compared to the negative control. The synthetic function of the liver and kidney were preserved in the NCHDH and NTHDH treated group compared to the LPS-induced group. The NCHDH and NTHDH markedly enhanced the Nrf2, HO-1 (Heme oxygenase-1), while attenuated the Keap1 and TRPV1 expression level as compared to LPS treated group. Furthermore, the NCHDH and NTHDH treatment showed marked increased in the mRNA expression level of the HSP70/90 proteins compared to the negative control.
Collapse
Affiliation(s)
- Ashraf Ullah Khan
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Amir Muhammad Khan
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Adnan Khan
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Bushra Shal
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Abdul Aziz
- Department of Chemistry, The University of Azad Jammu and Kashmir, Muzaffarabad, 13100, Pakistan
| | - Muhammad Naeem Ahmed
- Department of Chemistry, The University of Azad Jammu and Kashmir, Muzaffarabad, 13100, Pakistan
| | - Salman Khan
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.
| |
Collapse
|
36
|
Yang Y, Liang S, Geng J, Wang Q, Wang P, Cao Y, Li R, Gao G, Li L. Development of a nomogram to predict 30-day mortality of patients with sepsis-associated encephalopathy: a retrospective cohort study. J Intensive Care 2020; 8:45. [PMID: 32637121 PMCID: PMC7331133 DOI: 10.1186/s40560-020-00459-y] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 06/10/2020] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Sepsis-associated encephalopathy (SAE) is related to increased short-term mortality in patients with sepsis. We aim to establish a user-friendly nomogram for individual prediction of 30-day risk of mortality in patients with SAE. METHODS Data were retrospectively retrieved from the Medical Information Mart for Intensive Care (MIMIC III) open source clinical database. SAE was defined by Glasgow Coma Score (GCS) < 15 or delirium at the presence of sepsis. Prediction model with a nomogram was constructed in the training set by logistic regression analysis and then undergone internal validation and sensitivity analysis. RESULTS SAE accounted for about 50% in patients with sepsis and was independently associated with the 30-day mortality of sepsis. Variables eligible for the nomogram included patient's age and clinical parameters on the first day of ICU admission including the GCS score, lactate, bilirubin, red blood cell distribution width (RDW), mean value of respiratory rate and temperature, and the use of vasopressor. Compared with Sequential Organ Failure Assessment (SOFA) and Logistic Organ Dysfunction System (LODS), the nomogram exhibited better discrimination with an area under the receiver operating characteristic curve (AUROC) of 0.763 (95%CI 0.736-0.791, p < 0.001) and 0.753 (95%CI 0.713-0.794, p < 0.001) in the training and validation sets, respectively. The calibration plot revealed an adequate fit of the nomogram for predicting the risk of 30-day mortality in both sets. Regarding to clinical usefulness, the DCA of the nomogram exhibited greater net benefit than SOFA and LODS in both of the training and validation sets. Besides, the nomogram exhibited acceptable discrimination, calibration, and clinical usefulness in sensitivity analysis. CONCLUSIONS SAE is related to increased 30-day mortality of patients with sepsis. The nomogram presents excellent performance in predicting 30-day risk of mortality in SAE patients, which can be used to evaluate the prognosis of patients with SAE and may be more beneficial once specific treatments towards SAE are developed.
Collapse
Affiliation(s)
- Yang Yang
- Department of Neurosurgery, Tangdu Hospital, Air Force Medical University, Xi’an, 710038 China
| | - Shengru Liang
- Department of Endocrinology, Xijing Hospital, Air Force Medical University, Xi’an, 710032 China
| | - Jie Geng
- Department of Surgery, Tangdu Hospital, Air Force Medical University, Xi’an, 710038 China
| | - Qiuhe Wang
- Department of Liver Disease and Digestive Interventional Radiology, National Clinical Research Centre for Digestive Disease and Xijing Hospital of Digestive Diseases, Air Force Medical University, Xi’an, 710032 China
| | - Pan Wang
- Institute of Medical Research Northwestern Polytechnical University, Xi’an, 710072 China
| | - Yuan Cao
- Department of Neurosurgery, Xijing Hospital, Air Force Medical University, Xi’an, 710032 China
| | - Rong Li
- Department of Neurosurgery, The 986th Hospital of Chinese People’s Libertation Army, Xi’an, 710054 China
| | - Guodong Gao
- Department of Neurosurgery, Tangdu Hospital, Air Force Medical University, Xi’an, 710038 China
| | - Lihong Li
- Department of Emergency, Tangdu Hospital, Air Force Medical University, Xi’an, 710038 China
| |
Collapse
|
37
|
Zhong X, Xie L, Yang X, Liang F, Yang Y, Tong J, Zhong Y, Zhao K, Tang Y, Yuan C. Ethyl pyruvate protects against sepsis-associated encephalopathy through inhibiting the NLRP3 inflammasome. Mol Med 2020; 26:55. [PMID: 32517686 PMCID: PMC7285451 DOI: 10.1186/s10020-020-00181-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 05/18/2020] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND With the advance of antibiotics and life support therapy, the mortality of sepsis has been decreasing in recent years. However, the incidence of sepsis-associated encephalopathy (SAE), a common complication of sepsis, is still high. There are few effective therapies to treat clinical SAE. We previously found that ethyl pyruvate (EP), a metabolite derivative, is able to effectively inhibit the NLRP3 inflammasome activation. Administration of ethyl pyruvate protects mice against polymicrobial sepsis in cecal ligation and puncture (CLP) model. The aim of present study is to investigate if ethyl pyruvate is able to attenuate SAE. METHODS After CLP, C57BL/6 mice were intraperitoneally or intrathecally injected with saline or ethyl pyruvate using the sham-operated mice as control. New Object Recognition (NOR) and Morris Water Maze (MWM) were conducted to determine the cognitive function. Brain pathology was assessed via immunohistochemistry. To investigate the mechanisms by which ethyl pyruvate prevent SAE, the activation of NLRP3 in the hippocampus and the microglia were determined using western blotting, and cognitive function, microglia activation, and neurogenesis were assessed using WT, Nlrp3-/- and Asc-/- mice in the sublethal CLP model. In addition, Nlrp3-/- and Asc-/- mice treated with saline or ethyl pyruvate were subjected to CLP. RESULTS Ethyl pyruvate treatment significantly attenuated CLP-induced cognitive decline, microglia activation, and impaired neurogenesis. In addition, EP significantly decreased the NLRP3 level in the hippocampus of the CLP mice, and inhibited the cleavage of IL-1β induced by NLRP3 inflammsome in microglia. NLRP3 and ASC deficiency demonstrated similar protective effects against SAE. Nlrp3-/- and Asc-/- mice significantly improved cognitive function and brain pathology when compared with WT mice in the CLP models. Moreover, ethyl pyruvate did not have additional effects against SAE in Nlrp3-/- and Asc-/- mice. CONCLUSION The results demonstrated that ethyl pyruvate confers protection against SAE through inhibiting the NLRP3 inflammasome.
Collapse
Affiliation(s)
- Xiaoli Zhong
- Department of Hematology and Critical Care Medicine, The 3rd Xiangya Hospital, Central South University, Changsha, Hunan Province, 410000, P. R. China
- Department of Pathophysiology, School of Basic Medical Science, Central South University, 138 Tong-zi-po Road, Changsha, Hunan Province, 410000, P. R. China
| | - Lingli Xie
- Department of Hematology and Critical Care Medicine, The 3rd Xiangya Hospital, Central South University, Changsha, Hunan Province, 410000, P. R. China
- Department of Pathophysiology, School of Basic Medical Science, Central South University, 138 Tong-zi-po Road, Changsha, Hunan Province, 410000, P. R. China
| | - Xiaolong Yang
- Department of Hematology and Critical Care Medicine, The 3rd Xiangya Hospital, Central South University, Changsha, Hunan Province, 410000, P. R. China
- Department of Pathophysiology, School of Basic Medical Science, Central South University, 138 Tong-zi-po Road, Changsha, Hunan Province, 410000, P. R. China
| | - Fang Liang
- Department of Hematology and Critical Care Medicine, The 3rd Xiangya Hospital, Central South University, Changsha, Hunan Province, 410000, P. R. China
| | - Yanliang Yang
- Department of Pathophysiology, School of Basic Medical Science, Central South University, 138 Tong-zi-po Road, Changsha, Hunan Province, 410000, P. R. China
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan Province, 410000, P. R. China
| | - Jianbin Tong
- Department of Anesthesiology, Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yanjun Zhong
- Department of Hematology and Critical Care Medicine, The 3rd Xiangya Hospital, Central South University, Changsha, Hunan Province, 410000, P. R. China
- Department of Pathophysiology, School of Basic Medical Science, Central South University, 138 Tong-zi-po Road, Changsha, Hunan Province, 410000, P. R. China
- ICU Center, The Second Xiangya Hospital, Central South University, No. 139 Renmin Middle Road, Furong, Changsha, 410011, Hunan, China
| | - Kai Zhao
- Department of Hematology and Critical Care Medicine, The 3rd Xiangya Hospital, Central South University, Changsha, Hunan Province, 410000, P. R. China
| | - Yiting Tang
- Department of Pathophysiology, School of Basic Medical Science, Central South University, 138 Tong-zi-po Road, Changsha, Hunan Province, 410000, P. R. China.
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan Province, 410000, P. R. China.
| | - Chuang Yuan
- Department of Hematology and Critical Care Medicine, The 3rd Xiangya Hospital, Central South University, Changsha, Hunan Province, 410000, P. R. China.
- Department of Pathophysiology, School of Basic Medical Science, Central South University, 138 Tong-zi-po Road, Changsha, Hunan Province, 410000, P. R. China.
| |
Collapse
|
38
|
Li T, Zheng LN, Han XH. Fenretinide attenuates lipopolysaccharide (LPS)-induced blood-brain barrier (BBB) and depressive-like behavior in mice by targeting Nrf-2 signaling. Biomed Pharmacother 2020; 125:109680. [DOI: 10.1016/j.biopha.2019.109680] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 11/07/2019] [Accepted: 11/16/2019] [Indexed: 11/27/2022] Open
|
39
|
Yamamoto T, Mizobata Y, Kawazoe Y, Miyamoto K, Ohta Y, Morimoto T, Yamamura H. Incidence, risk factors, and outcomes for sepsis-associated delirium in patients with mechanical ventilation: A sub-analysis of a multicenter randomized controlled trial. J Crit Care 2020; 56:140-144. [DOI: 10.1016/j.jcrc.2019.12.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 11/28/2019] [Accepted: 12/20/2019] [Indexed: 11/25/2022]
|
40
|
Griton M, Dhaya I, Nicolas R, Raffard G, Periot O, Hiba B, Konsman JP. Experimental sepsis-associated encephalopathy is accompanied by altered cerebral blood perfusion and water diffusion and related to changes in cyclooxygenase-2 expression and glial cell morphology but not to blood-brain barrier breakdown. Brain Behav Immun 2020; 83:200-213. [PMID: 31622656 DOI: 10.1016/j.bbi.2019.10.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 10/02/2019] [Accepted: 10/10/2019] [Indexed: 12/21/2022] Open
Abstract
Sepsis-associated encephalopathy (SAE) refers to brain dysfunction, including delirium, occurs during severe infection and is associated with development of post-traumatic stress disorder. SAE has been proposed to be related to reduced cerebral blood flow (CBF), blood-brain barrier breakdown (BBB), white matter edema and disruption and glia cell activation, but their exact relationships remain to be determined. In the present work, we set out to study CBF using Arterial Spin Labeling (ASL) and grey and white matter structure with T2- and diffusion magnetic resonance imaging (dMRI) in rats with cecal ligation and puncture (CLP)-induced encephalopathy. Using immunohistochemistry, the distribution of the vasoactive prostaglandin-synthesizing enzyme cyclooxygenase-2 (COX-2), perivascular immunoglobulins G (IgG), aquaporin-4 (AQP4) and the morphology of glial cell were subsequently assessed in brains of the same animals. CLP induced deficits in the righting reflex and resulted in higher T2-weighted contrast intensities in the cortex, striatum and at the base of the brain, decreased blood perfusion distribution to the cortex and increased water diffusion parallel to the fibers of the corpus callosum compared to sham surgery. In addition, CLP reduced staining for microglia- and astrocytic-specific proteins in the corpus callosum, decreased neuronal COX-2 and AQP4 expression in the cortex while inducing perivascular COX-2 expression, but did not induce widespread perivascular IgG diffusion. In conclusion, our findings indicate that experimental SAE can occur in the absence of BBB breakdown and is accompanied by increased water diffusion anisotropy and altered glia cell morphology in brain white matter.
Collapse
Affiliation(s)
- Marion Griton
- INCIA, Institut de Neurosciences Cognitive et Intégrative d'Aquitaine, UMR 5287, Bordeaux, France; Univ. Bordeaux, INCIA, UMR 5287, Bordeaux, France; Service de Réanimation Anesthésie Neurochirurgicale, Centre Hospitalier Universitaire (CHU) de Bordeaux, Bordeaux, France
| | - Ibtihel Dhaya
- INCIA, Institut de Neurosciences Cognitive et Intégrative d'Aquitaine, UMR 5287, Bordeaux, France; Univ. Bordeaux, INCIA, UMR 5287, Bordeaux, France; Laboratoire de Neurophysiologie Fonctionnelle et Pathologies, UR/11ES09, Faculté des Sciences Mathématiques, Physiques et Naturelles, Université de Tunis El Manar, Tunis, Tunisia
| | - Renaud Nicolas
- INCIA, Institut de Neurosciences Cognitive et Intégrative d'Aquitaine, UMR 5287, Bordeaux, France; Univ. Bordeaux, INCIA, UMR 5287, Bordeaux, France
| | - Gérard Raffard
- CNRS, Résonance Magnétique des Systèmes Biologiques, UMR 5536, Bordeaux, France; Univ. Bordeaux, RMSB, UMR 5536, Bordeaux, France
| | - Olivier Periot
- INCIA, Institut de Neurosciences Cognitive et Intégrative d'Aquitaine, UMR 5287, Bordeaux, France; Univ. Bordeaux, INCIA, UMR 5287, Bordeaux, France; Service de Médecine Nucléaire, Centre Hospitalier Universitaire (CHU) de Bordeaux, Bordeaux, France
| | - Bassem Hiba
- INCIA, Institut de Neurosciences Cognitive et Intégrative d'Aquitaine, UMR 5287, Bordeaux, France; Univ. Bordeaux, INCIA, UMR 5287, Bordeaux, France; CNRS UMR 5229, Centre de Neurosciences Cognitives Marc Jeannerod, Bron, France
| | - Jan Pieter Konsman
- INCIA, Institut de Neurosciences Cognitive et Intégrative d'Aquitaine, UMR 5287, Bordeaux, France; Univ. Bordeaux, INCIA, UMR 5287, Bordeaux, France.
| |
Collapse
|
41
|
Muzambi R, Bhaskaran K, Brayne C, Davidson JA, Smeeth L, Warren-Gash C. Common Bacterial Infections and Risk of Dementia or Cognitive Decline: A Systematic Review. J Alzheimers Dis 2020; 76:1609-1626. [PMID: 32651320 PMCID: PMC7504996 DOI: 10.3233/jad-200303] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/29/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Bacterial infections may be associated with dementia, but the temporality of any relationship remains unclear. OBJECTIVES To summarize existing literature on the association between common bacterial infections and the risk of dementia and cognitive decline in longitudinal studies. METHODS We performed a comprehensive search of 10 databases of published and grey literature from inception to 18 March 2019 using search terms for common bacterial infections, dementia, cognitive decline, and longitudinal study designs. Two reviewers independently performed the study selection, data extraction, risk of bias and overall quality assessment. Data were summarized through a narrative synthesis as high heterogeneity precluded a meta-analysis. RESULTS We identified 3,488 studies. 9 met the eligibility criteria; 6 were conducted in the United States and 3 in Taiwan. 7 studies reported on dementia and 2 investigated cognitive decline. Multiple infections were assessed in two studies. All studies found sepsis (n = 6), pneumonia (n = 3), urinary tract infection (n = 1), and cellulitis (n = 1) increased dementia risk (HR 1.10; 95% CI 1.02-1.19) to (OR 2.60; 95% CI 1.84-3.66). The range of effect estimates was similar when limited to three studies with no domains at high risk of bias. However, the overall quality of evidence was rated very low. Studies on cognitive decline found no association with infection but had low power. CONCLUSION Our review suggests common bacterial infections may be associated with an increased risk of subsequent dementia, after adjustment for multiple confounders, but further high-quality, large-scale longitudinal studies, across different healthcare settings, are recommended to further explore this association.
Collapse
Affiliation(s)
- Rutendo Muzambi
- Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, UK
| | - Krishnan Bhaskaran
- Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, UK
| | - Carol Brayne
- Cambridge Institute of Public Health, Cambridge University, Cambridge, UK
| | - Jennifer A. Davidson
- Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, UK
| | - Liam Smeeth
- Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, UK
| | - Charlotte Warren-Gash
- Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, UK
| |
Collapse
|
42
|
Gutierrez C, Chen M, Feng L, Tummala S. Non-convulsive seizures in the encephalopathic critically ill cancer patient does not necessarily portend a poor prognosis. J Intensive Care 2019; 7:62. [PMID: 31890224 PMCID: PMC6915900 DOI: 10.1186/s40560-019-0414-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 11/19/2019] [Indexed: 12/18/2022] Open
Abstract
Background Non-convulsive status epilepticus (NCSE) is present in 10–30% of ICU patients with altered mental status (AMS) and is associated to poor outcomes. To our knowledge, there is no data describing the prevalence and outcomes of critically ill cancer patients with AMS associated to non-convulsive seizures (NCS) or NCSE. We aim to describe the outcomes and risk factors of critically ill cancer patients with encephalopathy associated with non-convulsive seizures (NCS). Methods This is a 3-year prospective observational study in a mixed oncological ICU at MD Anderson Cancer Center. Data of ICU patients with moderate to severe encephalopathy (Glasgow Coma Score < 13) that underwent EEG monitoring to rule out NCS were collected. Multivariate logistic regression was performed to identify risk factors and outcomes. Results Of the 317 patients with encephalopathy who underwent EEG monitoring, 14.5% had NCS. Known risk factors such as sepsis, CNS infection, antibiotics, and cardiac arrest were not associated with increased risk of NCS. Patients with NCS were more likely to have received recent chemotherapy (41.3% vs 21.4%; p = 0.0036), have a CNS disease (39% vs 24.4%; p = 0.035), and abnormal brain imaging (60.9% vs 44.6%; p = 0.041). Patients with lower SOFA scores, normal renal function, and absence of shock were likely to have NCS as the cause of their encephalopathy (p < 0.03). After multivariate analysis, only abnormal brain imaging and absence of renal failure were associated with NCS. Mortality was significantly lower in patients with non-convulsive seizures when compared to those without seizures (45.7% vs 64%; p = 0.022); however, there was no significant association of seizures and mortality on a multivariable logistic regression analysis. Conclusions NCS in critically ill cancer patients is associated with abnormalities on brain imaging and lower prevalence of organ failure. Diagnosis and treatment of NCS should be a priority in encephalopathic cancer patients, as they can have lower mortality than non-seizing patients. Opposite to other populations, NCS should not be considered a poor prognostic factor in critically ill encephalopathic cancer patients as they reflect a reversible cause for altered mentation.
Collapse
Affiliation(s)
- Cristina Gutierrez
- 1Critical Care Department, Division of Anesthesia and Critical Care, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, unit 112 Room B7.4320, Houston, TX 770130 USA
| | - Merry Chen
- 2Department of Neuro-Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Lei Feng
- 3Department of Biostatistics, Division of Quantitative Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Sudhakar Tummala
- 4Department of Neuro-Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| |
Collapse
|
43
|
van den Boogaard M, Slooter AJC. Delirium in critically ill patients: current knowledge and future perspectives. BJA Educ 2019; 19:398-404. [PMID: 33456864 DOI: 10.1016/j.bjae.2019.09.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/10/2019] [Indexed: 12/22/2022] Open
Affiliation(s)
| | - A J C Slooter
- University Medical Center Utrecht Brain Center, Utrecht, the Netherlands
| |
Collapse
|
44
|
Damme NM, Fernandez DP, Wang LM, Wu Q, Kirk RA, Towner RA, McNally JS, Hoffman JM, Morton KA. Analysis of retention of gadolinium by brain, bone, and blood following linear gadolinium-based contrast agent administration in rats with experimental sepsis. Magn Reson Med 2019; 83:1930-1939. [PMID: 31677194 DOI: 10.1002/mrm.28060] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 10/09/2019] [Accepted: 10/10/2019] [Indexed: 02/03/2023]
Abstract
PURPOSE It is important to identify populations that may be vulnerable to the brain deposition of gadolinium (Gd) from MRI contrast agents. At intervals from 24 hours to 6 weeks following injection of a linear Gd contrast agent, the brain, blood and bone content of Gd were compared between control rats and those with experimental endotoxin-induced sepsis that results in neuroinflammation and blood-brain barrier disruption. METHODS Male rats were injected intraperitoneally with 10 mg/kg lipopolysaccharide. Control animals received no injection. Twenty-four hours later, 0.2 mmol/kg of gadobenate dimeglumine was injected intravenously. Brain, blood, and bone Gd levels were measured at 24 hours, 1 week, 3 weeks, and 6 weeks by inductively coupled plasma mass spectroscopy. RESULTS Blood Gd decreased rapidly between 24 hours and 1 week, and thereafter was undetectable, with no significant difference between lipopolysaccharide and control rats. Brain levels of Gd were significantly higher (4.29-2.36-fold) and bone levels slightly higher (1.35-1.11-fold) in lipopolysaccharide than control rats at all time points with significant retention at 6 weeks. CONCLUSION Experimental sepsis results in significantly higher deposition of Gd in the brain and bone in rats. While blood Gd clears rapidly, brain and bone retained substantial Gd even at 6 weeks following contrast injection.
Collapse
Affiliation(s)
- Nikolas M Damme
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, Utah
| | - Diego P Fernandez
- Department of Geology and Geophysics, University of Utah, Salt Lake City, Utah
| | - Li-Ming Wang
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, Utah
| | - Qi Wu
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, Utah
| | - Ryan A Kirk
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, Utah
| | - Rheal A Towner
- Advanced Magnetic Resonance Center, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma
| | - J Scott McNally
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, Utah
| | - John M Hoffman
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, Utah
| | - Kathryn A Morton
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, Utah
| |
Collapse
|
45
|
Odagiri T, Morita T, Sakurai H, Yamada H, Matsuo N, Matsumoto Y, Matsuda Y, Yoshioka A, Watanabe H, Shimoyama S, Kohara H. A Multicenter Cohort Study to Explore Differentiating Factors between Tumor Fever and Infection among Advanced Cancer Patients. J Palliat Med 2019; 22:1331-1336. [PMID: 31566480 DOI: 10.1089/jpm.2018.0594] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Background: Tumor fever and infection are common febrile etiologies among advanced cancer patients. To date, only few studies have been conducted to differentiate between tumor fever and infections. Objective: This study aimed to identify discriminating factors that provide rapid results and are feasible and minimally invasive for discriminating between tumor fever and infection in advanced cancer patients. Methods: This is a retrospective cohort study. Advanced cancer patients with clinically diagnosed tumor fever or infection, who received medical treatment from palliative care specialists in 10 nationwide Japanese hospitals, were consecutively identified during August 2012 and November 2014. The symptoms, physical findings, blood test results at baseline and during fever, imaging findings, and sociodemographic factors of these patients were retrospectively extracted. Results: Thirty-three patients with tumor fever and 72 patients with infection were identified. Their mean age was 68.8 years, 68 (64.8%) were men, and the median palliative performance status (PPS) was 50. Statistically significant factors predicting tumor fever by logistic regression analysis were as follows: deterioration of PPS (odds ratio, 0.078), shaking chills during fever (0.067), and change from baseline data of neutrophil/lymphocyte ratio of ≥5 (0.14). Conclusions: Shaking chills during fever, and changes from baseline of performance status and white blood cell differentiation can be useful to differentiate between tumor fever and infection among advanced cancer patients. Further confirmatory studies are needed.
Collapse
Affiliation(s)
- Takuya Odagiri
- Department of Palliative Care, Komaki City Hospital, Komaki, Japan
| | - Tatsuya Morita
- Department of Palliative and Supportive Care, Seirei Mikatahara General Hospital, Shizuoka, Japan
| | - Hiroki Sakurai
- Department of Palliative Care and Pain Management, The Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Hirohide Yamada
- Department of Palliative Medicine, Seirei Hamamatsu General Hospital, Shizuoka, Japan
| | - Naoki Matsuo
- Hospice, Medical Corporation Junkei-kai, Sotoasahikawa Hospital, Akita, Japan
| | - Yoshihisa Matsumoto
- Department of Palliative Medicine, National Cancer Center Hospital East, Chiba, Japan
| | - Yoshinobu Matsuda
- Department of Psychosomatic Internal Medicine, National Hospital Organization Kinki-chuo Chest Medical Center, Sakai, Japan
| | - Akira Yoshioka
- Department of Palliative Medicine, Mitsubishi Kyoto Hospital, Kyoto, Japan
| | - Hiroaki Watanabe
- Department of Palliative Care, Komaki City Hospital, Komaki, Japan
| | - Satofumi Shimoyama
- Department of Palliative Care, Aichi Cancer Center Hospital, Aichi, Japan
| | - Hiroyuki Kohara
- Department of Palliative Care, Hiroshima Prefectural Hospital, Hiroshima, Japan
| |
Collapse
|
46
|
Burry L, Hutton B, Williamson DR, Mehta S, Adhikari NKJ, Cheng W, Ely EW, Egerod I, Fergusson DA, Rose L. Pharmacological interventions for the treatment of delirium in critically ill adults. Cochrane Database Syst Rev 2019; 9:CD011749. [PMID: 31479532 PMCID: PMC6719921 DOI: 10.1002/14651858.cd011749.pub2] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND Although delirium is typically an acute reversible cognitive impairment, its presence is associated with devastating impact on both short-term and long-term outcomes for critically ill patients. Advances in our understanding of the negative impact of delirium on patient outcomes have prompted trials evaluating multiple pharmacological interventions. However, considerable uncertainty surrounds the relative benefits and safety of available pharmacological interventions for this population. OBJECTIVES Primary objective1. To assess the effects of pharmacological interventions for treatment of delirium on duration of delirium in critically ill adults with confirmed or documented high risk of deliriumSecondary objectivesTo assess the following:1. effects of pharmacological interventions on delirium-free and coma-free days; days with coma; delirium relapse; duration of mechanical ventilation; intensive care unit (ICU) and hospital length of stay; mortality; and long-term outcomes (e.g. cognitive; discharge disposition; health-related quality of life); and2. the safety of such treatments for critically ill adult patients. SEARCH METHODS We searched the following databases from their inception date to 21 March 2019: Ovid MEDLINE®, Ovid MEDLINE® In-Process & Other Non-Indexed Citations, Embase Classic+Embase, and PsycINFO using the Ovid platform. We also searched the Cochrane Library on Wiley, the International Prospective Register of Systematic Reviews (PROSPERO) (http://www.crd.york.ac.uk/PROSPERO/), the Cumulative Index to Nursing and Allied Health Literature (CINAHL), and Web of Science. We performed a grey literature search of relevant databases and websites using the resources listed in Grey Matters developed by the Canadian Agency for Drugs and Technologies in Health (CADTH). We also searched trial registries and abstracts from annual scientific critical care and delirium society meetings. SELECTION CRITERIA We sought randomized controlled trials (RCTs), including quasi-RCTs, of any pharmacological (drug) for treatment of delirium in critically ill adults. The drug intervention was to be compared to another active drug treatment, placebo, or a non-pharmacological intervention (e.g. mobilization). We did not apply any restrictions in terms of drug class, dose, route of administration, or duration of delirium or drug exposure. We defined critically ill patients as those treated in an ICU of any specialty (e.g. burn, cardiac, medical, surgical, trauma) or high-dependency unit. DATA COLLECTION AND ANALYSIS Two review authors independently identified studies from the search results; four review authors (in pairs) performed data extraction and assessed risk of bias independently. We performed data synthesis through pairwise meta-analysis and network meta-analysis (NMA). Our hypothetical network structure was designed to be analysed at the drug class level and illustrated a network diagram of 'nodes' (i.e. drug classes) and 'edges' (i.e. comparisons between different drug classes from existing trials), thus describing a treatment network of all possible comparisons between drug classes. We assessed the quality of the body of evidence according to GRADE, as very low, low, moderate, or high. MAIN RESULTS We screened 7674 citations, from which 14 trials with 1844 participants met our inclusion criteria. Ten RCTs were placebo-controlled, and four reported comparisons of different drugs. Drugs examined in these trials were the following: antipsychotics (n = 10), alpha2 agonists (n = 3; all dexmedetomidine), statins (n = 2), opioids (n = 1; morphine), serotonin antagonists (n = 1; ondansetron), and cholinesterase (CHE) inhibitors (n = 1; rivastigmine). Only one of these trials consistently used non-pharmacological interventions that are known to improve patient outcomes in both intervention and control groups.Eleven studies (n = 1153 participants) contributed to analysis of the primary outcome. Results of the NMA showed that the intervention with the smallest ratio of means (RoM) (i.e. most preferred) compared with placebo was the alpha2 agonist dexmedetomidine (0.58; 95% credible interval (CrI) 0.26 to 1.27; surface under the cumulative ranking curve (SUCRA) 0.895; moderate-quality evidence). In order of descending SUCRA values (best to worst), the next best interventions were atypical antipsychotics (RoM 0.80, 95% CrI 0.50 to 1.11; SUCRA 0.738; moderate-quality evidence), opioids (RoM 0.88, 95% CrI 0.37 to 2.01; SUCRA 0.578; very-low quality evidence), and typical antipsychotics (RoM 0.96, 95% CrI 0.64 to1.36; SUCRA 0.468; high-quality evidence).The NMAs of multiple secondary outcomes revealed that only the alpha2 agonist dexmedetomidine was associated with a shorter duration of mechanical ventilation (RoM 0.55, 95% CrI 0.34 to 0.89; moderate-quality evidence), and the CHE inhibitor rivastigmine was associated with a longer ICU stay (RoM 2.19, 95% CrI 1.47 to 3.27; moderate-quality evidence). Adverse events often were not reported in these trials or, when reported, were rare; pair-wise analysis of QTc prolongation in seven studies did not show significant differences between antipsychotics, ondansetron, dexmedetomidine, and placebo. AUTHORS' CONCLUSIONS We identified trials of varying quality that examined six different drug classes for treatment of delirium in critically ill adults. We found evidence that the alpha2 agonist dexmedetomidine may shorten delirium duration, although this small effect (compared with placebo) was seen in pairwise analyses based on a single study and was not seen in the NMA results. Alpha2 agonists also ranked best for duration of mechanical ventilation and length of ICU stay, whereas the CHE inhibitor rivastigmine was associated with longer ICU stay. We found no evidence of a difference between placebo and any drug in terms of delirium-free and coma-free days, days with coma, physical restraint use, length of stay, long-term cognitive outcomes, or mortality. No studies reported delirium relapse, resolution of symptoms, or quality of life. The ten ongoing studies and the six studies awaiting classification that we identified, once published and assessed, may alter the conclusions of the review.
Collapse
Affiliation(s)
- Lisa Burry
- Mount Sinai Hospital, Leslie Dan Faculty of Pharmacy, University of TorontoDepartment of Pharmacy600 University Avenue, Room 18‐377TorontoONCanadaM5G 1X5
| | - Brian Hutton
- Ottawa Hospital Research InstituteKnowledge Synthesis Group501 Smyth RoadOttawaONCanadaK1H 8L6
| | - David R Williamson
- Université de Montréal / Höpital du Sacré‐Coeur de MontréalFaculty of Pharmacy / Department of Pharmacy5400 Gouin WMontrealQCCanadaH4J 1C5
| | - Sangeeta Mehta
- Mount Sinai Hospital, University of TorontoInterdepartmental Division of Critical Care Medicine600 University Ave, Rm 1504TorontoONCanadaM5G 1X5
| | - Neill KJ Adhikari
- University of TorontoInterdepartmental Division of Critical Care Medicine2075 Bayview AvenueTorontoONCanadaM4N 3M5
- Sunnybrook Health Sciences CentreDepartment of Critical Care Medicine2075 Bayview AvenueTorontoCanadaM4N 3M5
| | - Wei Cheng
- Ottawa Hospital Research InstituteKnowledge Synthesis Group501 Smyth RoadOttawaONCanadaK1H 8L6
| | - E. Wesley Ely
- Vanderbilt University School of MedicineCenter for Health Services Research1215 21st Avenue South, MCE Suite 6100NashvilleTNUSA37232‐8300
- Veteran’s Affairs Tennessee ValleyGeriatric Research Education Clinical Center (GRECC)NashvilleUSA
| | - Ingrid Egerod
- Rigshospitalet, University of CopenhagenIntensive Care Unit 4131Blegdamsvej 9Copenhagen ØDenmark2100
| | - Dean A Fergusson
- Ottawa Hospital Research InstituteClinical Epidemiology Program501 Smyth RoadOttawaONCanadaK1H 8L6
| | - Louise Rose
- Sunnybrook Health Sciences Centre and Sunnybrook Research InstituteDepartment of Critical Care MedicineTorontoCanada
| | | |
Collapse
|
47
|
Kirk RA, Kesner RP, Wang LM, Wu Q, Towner RA, Hoffman JM, Morton KA. Lipopolysaccharide exposure in a rat sepsis model results in hippocampal amyloid-β plaque and phosphorylated tau deposition and corresponding behavioral deficits. GeroScience 2019; 41:467-481. [PMID: 31473912 DOI: 10.1007/s11357-019-00089-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Accepted: 07/31/2019] [Indexed: 02/06/2023] Open
Abstract
Sepsis is a severe systemic inflammatory response to infection associated with acute and chronic neurocognitive consequences, including an increased risk of later-life dementia. In a lipopolysaccharide-induced rat sepsis model, we have demonstrated neuroinflammation, cortical amyloid-beta plaque deposition, and increased whole brain levels of phosphorylated tau. Hippocampal abnormalities, particularly those of the dentate gyrus, are seen in Alzheimer's disease and age-related memory loss. The focus of this study was to determine whether Aβ plaques and phosphorylated tau aggregates occur in the hippocampus as a consequence of lipopolysaccharide administration, and whether behavioral abnormalities related to the hippocampus, particularly the dentate gyrus, can be demonstrated. Male Sprague Dawley rats received an intraperitoneal injection of 10 mg/kg of lipopolysaccharide endotoxin. Control animals received a saline injection. Seven days post injection, Aβ plaques and phosphorylated tau in the hippocampus were quantified following immunostaining. Behavioral tests that have previously been shown to result in specific deficits in dentate gyrus-lesioned rats were administered. Lipopolysaccharide treatment results in the deposition of beta amyloid plaques and intracellular phosphorylated tau in the hippocampus, including the dorsal dentate gyrus. Lipopolysaccharide treatment resulted in behavioral deficits attributable to the dorsal dentate gyrus, including episodic-like memory function that primarily involves spatial, contextual, and temporal orientation and integration. Lipopolysaccharide administration results in hippocampal deposition of amyloid-beta plaques and intracellular phosphorylated tau and results in specific behavioral deficits attributable to the dorsal dentate gyrus. These findings, if persistent, could provide a basis for the higher rate of dementia in longitudinal studies of sepsis survivors.
Collapse
Affiliation(s)
- Ryan A Kirk
- Center for Quantitative Cancer Imaging, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Raymond P Kesner
- Department of Psychology (Professor Emeritus), University of Utah, Salt Lake City, UT, USA
| | - Li-Ming Wang
- Department of Radiology and Imaging Sciences, University of Utah, 20 N 1900 E, Room 1A071, Salt Lake City, UT, 84132, USA
| | - Qi Wu
- Department of Radiology and Imaging Sciences, University of Utah, 20 N 1900 E, Room 1A071, Salt Lake City, UT, 84132, USA
| | - Rheal A Towner
- Advanced Magnetic Resonance Center, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA.,Oklahoma Nathan Shock Aging Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.,Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - John M Hoffman
- Center for Quantitative Cancer Imaging, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA.,Department of Radiology and Imaging Sciences, University of Utah, 20 N 1900 E, Room 1A071, Salt Lake City, UT, 84132, USA
| | - Kathryn A Morton
- Department of Radiology and Imaging Sciences, University of Utah, 20 N 1900 E, Room 1A071, Salt Lake City, UT, 84132, USA.
| |
Collapse
|
48
|
Zhong J, Guo C, Hou W, Shen N, Miao C. Effects of MFHAS1 on cognitive impairment and dendritic pathology in the hippocampus of septic rats. Life Sci 2019; 235:116822. [PMID: 31476310 DOI: 10.1016/j.lfs.2019.116822] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 08/21/2019] [Accepted: 08/29/2019] [Indexed: 01/31/2023]
Abstract
AIMS To investigate the effects of malignant fibrous histiocytoma amplified sequence 1 (MFHAS1) on cognitive dysfunction, the expression of tumor necrosis factor-α (TNF-α), interleukin (IL)-1β and amyloid β peptide (Aβ) in the hippocampus, as well as dendritic pathology in the hippocampal CA1 region in sepsis-associated encephalopathy (SAE) rats. MAIN METHODS The rats were randomly divided into four groups: 1) control group (subjected to sham surgery), 2) control plus Mfhas1 siRNA group (rats received intracerebroventricular injection of Mfhas1 siRNA after sham surgery), 3) CLP plus control siRNA group (rats received intracerebroventricular injection of control siRNA after cecal ligation and puncture (CLP)), 4) CLP plus Mfhas1 siRNA group (rats received intracerebroventricular injection of Mfhas1 siRNA after CLP). The learning and memory capabilities of the rats were examined by means of fear conditioning and Barnes maze test. The concentration of TNF-α and IL-1β was determined by enzyme-linked immunosorbent assay. The efficiency of siRNA transfection, MFHAS1 and Aβ expression were detected by Western blotting. Total branch lengths of pyramidal dendrites of the CA1 basilar trees and spine density were determined by Golgi staining. KEY FINDINGS We observed that MFHAS1 knock-down by Mfhas1 siRNA intracerebroventricular injection could improve cognitive impairment, reduce the expression of TNF-α, IL-1β and Aβ in the hippocampus induced by CLP, and alleviate the dendritic spinal loss of the pyramidal neurons, as well as increase the dendritic branching of the CA1 basilar trees of septic rats. SIGNIFICANCE MFHAS1 knock-down can alleviate cognitive impairment, neuroinflammation and dendritic spinal loss in SAE rats.
Collapse
Affiliation(s)
- Jing Zhong
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Chenyue Guo
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wenting Hou
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Na Shen
- Department of Otolaryngology, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Changhong Miao
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
49
|
|
50
|
Rosenblatt K, Walker KA, Goodson C, Olson E, Maher D, Brown CH, Nyquist P. Cerebral Autoregulation-Guided Optimal Blood Pressure in Sepsis-Associated Encephalopathy: A Case Series. J Intensive Care Med 2019; 35:1453-1464. [PMID: 30760173 PMCID: PMC6692246 DOI: 10.1177/0885066619828293] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Impaired cerebral autoregulation and cerebral hypoperfusion may play a critical role in the high morbidity and mortality in patients with sepsis-associated encephalopathy (SAE). Bedside assessment of cerebral autoregulation may help individualize hemodynamic targets that optimize brain perfusion. We hypothesize that near-infrared spectroscopy (NIRS)-derived cerebral oximetry can identify blood pressure ranges that enhance autoregulation in patients with SAE and that disturbances in autoregulation are associated with severity of encephalopathy. METHODS Adult patients with acute encephalopathy directly attributable to sepsis were followed using NIRS-based multimodal monitoring for 12 consecutive hours. We used the correlation in time between regional cerebral oxygen saturation and mean arterial pressure (MAP) to determine the cerebral oximetry index (COx) as a measure of cerebral autoregulation. Autoregulation curves were constructed for each patient with averaged COx values sorted by MAP in 3 sequential 4-hour periods; the optimal pressure (MAPOPT), defined as the MAP associated with most robust autoregulation (lowest COx), was identified in each period. Severity of encephalopathy was measured with Glasgow coma scale (GCS). RESULTS Six patients with extracranial sepsis met the stringent criteria specified, including no pharmacological sedation or neurologic premorbidity. Optimal MAP was identified in all patients and ranged from 55 to 115 mmHg. Additionally, MAPOPT varied within individual patients over time during monitoring. Disturbed autoregulation, based on COx, was associated with worse neurologic status (GCS < 13) both with and without controlling for age and severity of sepsis (adjusted odds ratio [OR]: 2.11; 95% confidence interval [CI]: 1.77-2.52; P < .001; OR: 2.97; 95% CI: 1.63-5.43; P < .001). CONCLUSIONS In this high-fidelity group of patients with SAE, continuous, NIRS-based monitoring can identify blood pressure ranges that improve autoregulation. This is important given the association between cerebral autoregulatory function and severity of encephalopathy. Individualizing blood pressure goals using bedside autoregulation monitoring may better preserve cerebral perfusion in SAE than current practice.
Collapse
Affiliation(s)
- Kathryn Rosenblatt
- Department of Anesthesiology and Critical Care Medicine, 1466Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Neurology, 1466Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Keenan A Walker
- Department of Neurology, 1466Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Carrie Goodson
- Department of Pulmonary and Critical Care, 1466Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Elsa Olson
- Department of Anesthesiology and Critical Care Medicine, 1466Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Dermot Maher
- Department of Anesthesiology and Critical Care Medicine, 1466Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Charles H Brown
- Department of Anesthesiology and Critical Care Medicine, 1466Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Paul Nyquist
- Department of Anesthesiology and Critical Care Medicine, 1466Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Neurology, 1466Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|