1
|
Shi Y, Nakamura S, Mitomo H, Yonamine Y, Wang G, Ijiro K. Plasmonic circular dichroism-based metal ion detection using gold nanorod-DNA complexes. Chem Commun (Camb) 2024; 60:11794-11797. [PMID: 39330876 DOI: 10.1039/d4cc04017a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
We report that complexes formed between gold nanorods (AuNRs) and metal-mediated DNA exhibit plasmonic circular dichroism (CD) signals up to ∼400 times stronger than the molecular CD signal of DNA. This substantial enhancement enables the detection of metal ions, offering a promising approach to analytical applications in chiral biochemistry.
Collapse
Affiliation(s)
- Yali Shi
- Graduate School of Life Science, Hokkaido University, Kita 10, Nishi 8, Kita-Ku, Sapporo 060-0810, Japan
| | - Satoshi Nakamura
- Research Institute for Electronic Science, Hokkaido University, Kita 21, Nishi 10, Kita-ku, Sapporo, Hokkaido 001-0021, Japan.
- Institute for the Promotion of General Graduate Education (IPGE), Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan.
| | - Hideyuki Mitomo
- Research Institute for Electronic Science, Hokkaido University, Kita 21, Nishi 10, Kita-ku, Sapporo, Hokkaido 001-0021, Japan.
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, 980-8577, Japan
| | - Yusuke Yonamine
- Research Institute for Electronic Science, Hokkaido University, Kita 21, Nishi 10, Kita-ku, Sapporo, Hokkaido 001-0021, Japan.
| | - Guoqing Wang
- MOE Key Laboratory of Evolution and Marine Biodiversity and Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Kuniharu Ijiro
- Research Institute for Electronic Science, Hokkaido University, Kita 21, Nishi 10, Kita-ku, Sapporo, Hokkaido 001-0021, Japan.
| |
Collapse
|
2
|
Zhu J, Yin H, Zheng S, Yu H, Yang L, Wang L, Geng X, Deng Y. Tag-free fluorometric aptasensor for detection of chromium(VI) in foods via SYBR Green I signal amplification and aptamer structure transition. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:8008-8021. [PMID: 38828647 DOI: 10.1002/jsfa.13631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 04/08/2024] [Accepted: 05/02/2024] [Indexed: 06/05/2024]
Abstract
BACKGROUND In response to growing concerns regarding heavy metal contamination in food, particularly chromium (Cr)(VI) contamination, this study presented a simple, sensitive and practical method for Cr(VI) detection. RESULTS A magnetic separation-based capture-exponential enrichment ligand system evolution (SELEX) method was used to identify and characterize DNA aptamers with a high affinity for Cr(VI). An aptamer, Cr-15, with a dissociation constant (Kd) of 4.42 ± 0.44 μmol L-1 was obtained after only eight rounds of selection. Further innovative methods combining molecular docking, dynamic simulation and thermodynamic analysis revealed that CrO4 2- could bind to the 19th and 20th guanine bases of Cr-15 via hydrogen bonds. Crucially, a label-free fluorometric aptasensor based on SYBR Green I was successfully constructed to detect CrO4 2-, achieving a linear detection range of 60-300 nmol L-1 with a lower limit of detection of 44.31 nmol L-1. Additionally, this aptasensor was able to quantitatively detect CrO4 2- in grapes and broccoli within 40 min, with spike recovery rates ranging from 89.22% to 108.05%. The designed fluorometric aptasensor exhibited high selectivity and could detect CrO4 2- in real samples without sample processing or target pre-enrichment. CONCLUSION The aptasensor demonstrated its potential as a reliable tool for monitoring Cr(VI) contamination in fruit and vegetable products. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jiangxiong Zhu
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- Yunnan Dali Research Institute of Shanghai Jiao Tong University, Shanghai, China
| | - Hao Yin
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- Yunnan Dali Research Institute of Shanghai Jiao Tong University, Shanghai, China
| | - Sisi Zheng
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Hong Yu
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- Yunnan Dali Research Institute of Shanghai Jiao Tong University, Shanghai, China
| | - Linnan Yang
- School of Big Data, Yunnan Agricultural University, Kunming, China
| | - Lumei Wang
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- Yunnan Dali Research Institute of Shanghai Jiao Tong University, Shanghai, China
| | - Xueqing Geng
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Yun Deng
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- Yunnan Dali Research Institute of Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
3
|
Park KS, Cha H, Niu J, Soh HT, Lee JH, Pack SP. DNA-controlled protein fluorescence: Design of aptamer-split peptide hetero-modulator for GFP to respond to intracellular ATP levels. Nucleic Acids Res 2024; 52:8063-8071. [PMID: 38917331 DOI: 10.1093/nar/gkae532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 05/15/2024] [Accepted: 06/10/2024] [Indexed: 06/27/2024] Open
Abstract
Enabling the precise control of protein functions with artificially programmed reaction patterns is beneficial for investigating biological processes. Although several strategies have been established that employ the programmability of nucleic acid, they have been limited to DNA hybridization without external stimuli or target binding. Here, we report an approach for the DNA-mediated control of the tripartite split-GFP assembly via aptamers with responsiveness to intracellular small molecules as stimuli. We designed a novel structure-switching aptamer-peptide conjugate as a hetero modulator for split GFP in response to ATP. By conjugating two peptides (S10/11) derived from the tripartite split-GFP to ATP aptamer, we achieved GFP reassembly using only ATP as a trigger molecule. The response to ATP at ≥4 mM concentrations indicated that it can be applied to respond to intracellular ATP in live cells. Furthermore, our hetero-modulator exhibited high and long-term stability, with a half-life of approximately four days in a serum stability assay, demonstrating resistance to nuclease degradation. We validated that our aptamer-modulator split GFP was successfully reconstituted in the cell in response to intracellular ATP levels. Our aptamer-modulated split GFP platform can be utilized to monitor a wide range of intracellular metabolites by replacing the aptamer sequence.
Collapse
Affiliation(s)
- Ki Sung Park
- Department of Biotechnology and Bioinformatics, Korea University, Sejong 30019, Republic of Korea
- Biological Clock-based Anti-Aging Convergence RLRC, Korea University, Sejong 30019, Republic of Korea
| | - Hanvit Cha
- Biological Clock-based Anti-Aging Convergence RLRC, Korea University, Sejong 30019, Republic of Korea
- Department of Food and Biotechnology, Korea University, Sejong 30019, Republic of Korea
| | - Jia Niu
- Department of Chemistry, Boston College, Chestnut Hill, MA 02467, USA
| | - Hyongsok Tom Soh
- Department of Electrical Engineering, Stanford University, Stanford, CA 94305, USA
- Department of Radiology, Stanford University, Stanford, CA 94305, USA
| | - Jin Hyup Lee
- Biological Clock-based Anti-Aging Convergence RLRC, Korea University, Sejong 30019, Republic of Korea
- Department of Food and Biotechnology, Korea University, Sejong 30019, Republic of Korea
| | - Seung Pil Pack
- Department of Biotechnology and Bioinformatics, Korea University, Sejong 30019, Republic of Korea
- Biological Clock-based Anti-Aging Convergence RLRC, Korea University, Sejong 30019, Republic of Korea
| |
Collapse
|
4
|
Liu Y, Wang X, Liu J. Unexpected enrichment of DNA aptamers for Zn 2+ ions from an insulin selection. Chem Commun (Camb) 2024; 60:6280-6283. [PMID: 38809225 DOI: 10.1039/d4cc01546k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
We serendipitously discovered Zn2+-binding DNA aptamers when selecting insulin aptamers. The Zn-1 aptamer binds to Zn2+ with a dissociation constant (Kd) of ∼1 μM, and has 450-fold higher selectivity for Zn2+ over Cd2+. A strand-displacement based fluorescent sensor achieved a limit of detection of 0.2 μM Zn2+.
Collapse
Affiliation(s)
- Yibo Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada.
- Centre for Eye and Vision Research (CEVR), 17W Hong Kong Science Park, Hong Kong, China
| | - Xiaoqin Wang
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada.
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada.
- Centre for Eye and Vision Research (CEVR), 17W Hong Kong Science Park, Hong Kong, China
| |
Collapse
|
5
|
Xu C, Tan Y, Zhang LY, Luo XJ, Wu JF, Ma L, Deng F. The Application of Aptamer and Research Progress in Liver Disease. Mol Biotechnol 2024; 66:1000-1018. [PMID: 38305844 PMCID: PMC11087326 DOI: 10.1007/s12033-023-01030-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 12/15/2023] [Indexed: 02/03/2024]
Abstract
Aptamers, as a kind of small-molecule nucleic acid, have attracted much attention since their discovery. Compared with biological reagents such as antibodies, aptamers have the advantages of small molecular weight, low immunogenicity, low cost, and easy modification. At present, aptamers are mainly used in disease biomarker discovery, disease diagnosis, treatment, and targeted drug delivery vectors. In the process of screening and optimizing aptamers, it is found that there are still many problems need to be solved such as the design of the library, optimization of screening conditions, the truncation of screened aptamer, and the stability and toxicity of the aptamer. In recent years, the incidence of liver-related diseases is increasing year by year and the treatment measures are relatively lacking, which has attracted the people's attention in the application of aptamers in liver diseases. This article mainly summarizes the research status of aptamers in disease diagnosis and treatment, especially focusing on the application of aptamers in liver diseases, showing the crucial significance of aptamers in the diagnosis and treatment of liver diseases, and the use of Discovery Studio software to find the binding target and sequence of aptamers, and explore their possible interaction sites.
Collapse
Affiliation(s)
- Cheng Xu
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, China
- College of Basic Medical Science, China Three Gorges University, Yichang, 443002, Hubei, China
- Institute of Organ Fibrosis and Targeted Drug Delivery, China Three Gorges University, Yichang, China
| | - Yong Tan
- Hubei Selenium and Human Health Institute, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, Hubei, China
| | - Li-Ye Zhang
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, China
- College of Basic Medical Science, China Three Gorges University, Yichang, 443002, Hubei, China
- Institute of Organ Fibrosis and Targeted Drug Delivery, China Three Gorges University, Yichang, China
| | - Xiao-Jie Luo
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, China
- College of Basic Medical Science, China Three Gorges University, Yichang, 443002, Hubei, China
- Institute of Organ Fibrosis and Targeted Drug Delivery, China Three Gorges University, Yichang, China
| | - Jiang-Feng Wu
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, China
- College of Basic Medical Science, China Three Gorges University, Yichang, 443002, Hubei, China
- Institute of Organ Fibrosis and Targeted Drug Delivery, China Three Gorges University, Yichang, China
| | - Lan Ma
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, China.
- College of Basic Medical Science, China Three Gorges University, Yichang, 443002, Hubei, China.
- Institute of Organ Fibrosis and Targeted Drug Delivery, China Three Gorges University, Yichang, China.
| | - Fei Deng
- Department of Oncology, The Second People's Hospital of China Three Gorges University, Yichang, 443000, China.
| |
Collapse
|
6
|
Quint I, Simantzik J, Kaiser L, Laufer S, Csuk R, Smith D, Kohl M, Deigner HP. Ready-to-use nanopore platform for label-free small molecule quantification: Ethanolamine as first example. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2024; 55:102724. [PMID: 38007066 DOI: 10.1016/j.nano.2023.102724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 10/06/2023] [Accepted: 10/26/2023] [Indexed: 11/27/2023]
Abstract
In recent decades, nanopores have become a promising diagnostic tool. Protein and solid-state nanopores are increasingly used for both RNA/DNA sequencing and small molecule detection. The latter is of great importance, as their detection is difficult or expensive using available methods such as HPLC or LC-MS. DNA aptamers are an excellent detection element for sensitive and specific detection of small molecules. Herein, a method for quantifying small molecules using a ready-to-use sequencing platform is described. Taking ethanolamine as an example, a strand displacement assay is developed in which the target-binding aptamer is displaced from the surface of magnetic particles by ethanolamine. Non-displaced aptamer and thus the ethanolamine concentration are detected by the nanopore system and can be quantified in the micromolar range using our in-house developed analysis software. This method is thus the first to describe a label-free approach for the detection of small molecules in a protein nanopore system.
Collapse
Affiliation(s)
- Isabel Quint
- Institute of Precision Medicine, Furtwangen University, Jakob-Kienzle-Strasse 17, Villingen-Schwenningen 78054, Germany; Institute of Pharmaceutical Sciences, Department of Pharmacy and Biochemistry, Eberhard-Karls-University Tuebingen, Auf der Morgenstelle 8, Tuebingen 72076, Germany
| | - Jonathan Simantzik
- Institute of Precision Medicine, Furtwangen University, Jakob-Kienzle-Strasse 17, Villingen-Schwenningen 78054, Germany
| | - Lars Kaiser
- Institute of Precision Medicine, Furtwangen University, Jakob-Kienzle-Strasse 17, Villingen-Schwenningen 78054, Germany
| | - Stefan Laufer
- Institute of Pharmaceutical Sciences, Department of Pharmacy and Biochemistry, Eberhard-Karls-University Tuebingen, Auf der Morgenstelle 8, Tuebingen 72076, Germany; Tuebingen Center for Academic Drug Discovery & Development (TüCAD2), 72076 Tuebingen, Germany
| | - Rene' Csuk
- Institute of Organic Chemistry, Martin-Luther University Halle-Wittenberg, Kurt-Mothes-Str. 2, 06120 Halle (Saale), Germany
| | - David Smith
- Fraunhofer Institute IZI (Leipzig), Perlickstrasse 1, 04103 Leipzig, Germany
| | - Matthias Kohl
- Institute of Precision Medicine, Furtwangen University, Jakob-Kienzle-Strasse 17, Villingen-Schwenningen 78054, Germany.
| | - Hans-Peter Deigner
- Institute of Precision Medicine, Furtwangen University, Jakob-Kienzle-Strasse 17, Villingen-Schwenningen 78054, Germany; EXIM Department, Fraunhofer Institute IZI (Leipzig), Schillingallee 68, 18057 Rostock, Germany; Faculty of Science, Eberhard-Karls-University Tuebingen, Auf der Morgenstelle 8, Tuebingen, 72076, Germany.
| |
Collapse
|
7
|
Yang K, Mitchell NM, Banerjee S, Cheng Z, Taylor S, Kostic AM, Wong I, Sajjath S, Zhang Y, Stevens J, Mohan S, Landry DW, Worgall TS, Andrews AM, Stojanovic MN. A functional group-guided approach to aptamers for small molecules. Science 2023; 380:942-948. [PMID: 37262137 PMCID: PMC10686217 DOI: 10.1126/science.abn9859] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 05/03/2023] [Indexed: 06/03/2023]
Abstract
Aptameric receptors are important biosensor components, yet our ability to identify them depends on the target structures. We analyzed the contributions of individual functional groups on small molecules to binding within 27 target-aptamer pairs, identifying potential hindrances to receptor isolation-for example, negative cooperativity between sterically hindered functional groups. To increase the probability of aptamer isolation for important targets, such as leucine and voriconazole, for which multiple previous selection attempts failed, we designed tailored strategies focused on overcoming individual structural barriers to successful selections. This approach enables us to move beyond standardized protocols into functional group-guided searches, relying on sequences common to receptors for targets and their analogs to serve as anchors in regions of vast oligonucleotide spaces wherein useful reagents are likely to be found.
Collapse
Affiliation(s)
- Kyungae Yang
- Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Noelle M. Mitchell
- Department of Chemistry & Biochemistry and California Nanosystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Saswata Banerjee
- Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Zhenzhuang Cheng
- Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Steven Taylor
- Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Aleksandra M. Kostic
- Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Isabel Wong
- Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Sairaj Sajjath
- Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Yameng Zhang
- Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Jacob Stevens
- Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Sumit Mohan
- Department of Epidemiology, Mailman School of Public Health, New York, NY 10032, USA
| | - Donald W. Landry
- Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Tilla S. Worgall
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Anne M. Andrews
- Department of Chemistry & Biochemistry and California Nanosystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Psychiatry & Biobehavioral Sciences and Hatos Center for Neuropharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Milan N. Stojanovic
- Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
- Departments of Biomedical Engineering, Fu Foundation School of Engineering and Applied Science, and Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| |
Collapse
|
8
|
Yang LT, Abudureheman T, Zheng WW, Zhou H, Chen J, Duan CW, Chen KM. A novel His-tag-binding aptamer for recombinant protein detection and T cell-based immunotherapy. Talanta 2023; 263:124722. [PMID: 37247456 DOI: 10.1016/j.talanta.2023.124722] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/04/2023] [Accepted: 05/22/2023] [Indexed: 05/31/2023]
Abstract
Screening novel aptamers for recombinant protein detection is of great significance in industrial mass production of antibody drugs. In addition, construction of structurally stable bispecific circular aptamers (bc-apts) may provide a tumor-targeted treatment strategy by simultaneously binding two different cell types. In this study, we obtained a high-affinity hexahistidine tag (His-tag)-binding aptamer 20S and explored its application in recombinant protein detection and T cell-based immunotherapy. We developed a new molecular beacon (MB) 20S-MB to detect His-tagged proteins in vitro and in vivo with high sensitivity and specificity, and the results showed high consistency with the enzyme-linked immunosorbent assay (ELISA). Moreover, we constructed two kinds of bc-apts by cyclizing 20S or another His-tag-binding aptamer, 6H5-MU, with Sgc8, which specifically recognizes protein tyrosine kinase 7 (PTK7) on tumor cells. After forming a complex with His-tagged OKT3, an anti-CD3 antibody for T cell activation, we utilized these aptamer-antibody complexes (ap-ab complex) to enhance cytotoxicity of T cells by linking T cells and target cells together, and 20S-sgc8 exhibited antitumor efficacy superior to that of 6H5-sgc8. In conclusion, we screened a novel His-tag-binding aptamer and used it to construct a new type of MB for rapid detection of recombinant proteins, as well as establish a feasible approach for T cell-based immunotherapy.
Collapse
Affiliation(s)
- Li-Ting Yang
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health and Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tuersunayi Abudureheman
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health and Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei-Wei Zheng
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health and Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hang Zhou
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health and Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Chen
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health and Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Cai-Wen Duan
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health and Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Pathology, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China; Fujian Branch of Shanghai Children's Medical Center Affiliated to Shanghai Jiaotong University School of Medicine, And Fujian Children's Hospital, China; Key Laboratory of Technical Evaluation of Fertility Regulation for Non-human Primate, National Health Commission, Fujian Maternity and Child Health Hospital, China.
| | - Kai-Ming Chen
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health and Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Fujian Branch of Shanghai Children's Medical Center Affiliated to Shanghai Jiaotong University School of Medicine, And Fujian Children's Hospital, China.
| |
Collapse
|
9
|
Zhou M, Xu T, Xia K, Gao H, Li W, Zhai T, Gu H. Small DNAs That Specifically and Tightly Bind Transition Metal Ions. J Am Chem Soc 2023; 145:8776-8780. [PMID: 37052572 DOI: 10.1021/jacs.3c01276] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Specific DNA-binding to metal ions is a long-standing fundamental research topic with great potential to transform into nano/biotechnology and therapeutics applications. Herein, based on the mobility change of DNA in denaturing gels, we develop a selection strategy to discover a series of 40-45 nt small DNAs that can bind Zn2+ and Cd2+ specifically and tightly. The Zn2+- and Cd2+-bound DNA complexes can even tolerate harsh denaturing conditions of 8 M urea and 50 mM EDTA. The discovery not only exposes a new class of transition metal ion-binding DNAs but also provides potentially a new tool for targeting drug therapies based on metal ions.
Collapse
Affiliation(s)
- Mo Zhou
- Fudan University Shanghai Cancer Center, and the Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Shanghai Stomatological Hospital, Fudan University, Shanghai 200032, China
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 200433, China
| | - Tianbin Xu
- Fudan University Shanghai Cancer Center, and the Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Shanghai Stomatological Hospital, Fudan University, Shanghai 200032, China
| | - Kai Xia
- Fudan University Shanghai Cancer Center, and the Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Shanghai Stomatological Hospital, Fudan University, Shanghai 200032, China
| | - Haiqing Gao
- Fudan University Shanghai Cancer Center, and the Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Shanghai Stomatological Hospital, Fudan University, Shanghai 200032, China
| | - Wei Li
- Fudan University Shanghai Cancer Center, and the Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Shanghai Stomatological Hospital, Fudan University, Shanghai 200032, China
| | - Tingting Zhai
- Department of Chemical Biology, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, National Center for Translational Medicine, and School of Global Health, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hongzhou Gu
- Fudan University Shanghai Cancer Center, and the Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Shanghai Stomatological Hospital, Fudan University, Shanghai 200032, China
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 200433, China
- Department of Chemical Biology, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, National Center for Translational Medicine, and School of Global Health, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
10
|
Lee SY, Jang DH, Kim H, Yun M. Removal and isolation of radioactive cobalt using DNA aptamers. RADIOCHIM ACTA 2023. [DOI: 10.1515/ract-2022-0112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Abstract
Electricity generation using nuclear power has various advantages, such as carbon reduction, but the treatment of nuclear waste is emerging as a big issue in many countries. The development of technology that can selectively remove radionuclides from liquid radioactive waste is one of the ways to reduce nuclear waste. Here, we assessed a new way of removing radioactive cobalt from a liquid using an aptamer. Aptamers specifically binding cobalt ions were selected through systematic evolution of ligands by exponential enrichment (SELEX). Their binding strength and stability of their complexes with cobalt were analyzed through surface plasmon resonance assay and 2D program Mfold, respectively. The optimal aptamer/bead conjugate conditions for binding cobalt were established using an FA-C1 aptamer with the strongest binding to cobalt. Under these conditions, more than 80% of radioactive cobalt was removed, and more than 99.95% of removed cobalt was recovered. These results proved that radioactive cobalt removal using this aptamer can effectively reduce liquid radioactive waste. This means that the aptamer/bead complex can be utilized to remove various radioactive metal ions.
Collapse
Affiliation(s)
- Sun Young Lee
- Laboratory of Functional Aptamers, Department of Bioindustry and Bioresource Engineering , College of Life Sciences, Sejong University , Seoul , South Korea
- Resource Upcycling and Discovery Research Institute, Sejong University , Seoul , South Korea
| | - Dae Hyuk Jang
- Laboratory of Functional Aptamers, Department of Bioindustry and Bioresource Engineering , College of Life Sciences, Sejong University , Seoul , South Korea
- Resource Upcycling and Discovery Research Institute, Sejong University , Seoul , South Korea
| | - Hyuncheol Kim
- Environmental Radioactivity Assessment Team , Korea Atomic Energy Research Institute , Daejeon , South Korea
| | - Miyong Yun
- Laboratory of Functional Aptamers, Department of Bioindustry and Bioresource Engineering , College of Life Sciences, Sejong University , Seoul , South Korea
- Environmental Radioactivity Assessment Team , Korea Atomic Energy Research Institute , Daejeon , South Korea
| |
Collapse
|
11
|
Cox CA, Ogorek AN, Habumugisha JP, Martell JD. Switchable DNA Photocatalysts for Radical Polymerization Controlled by Chemical Stimuli. J Am Chem Soc 2023; 145:1818-1825. [PMID: 36629375 DOI: 10.1021/jacs.2c11199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Polymerization catalysts that activate in response to specific chemical triggers offer spatial and temporal control over polymer synthesis, facilitating the development of responsive materials and custom polymer coatings. However, existing catalysts switch their activity through mechanisms that are not generalizable to chemically diverse stimuli. To approach the level of control exhibited in biological polymer synthesis, switchable polymerization catalysts need to be configurable for activation in response to diverse chemical stimuli. Here, we combine synthetic photocatalysts with conformation-switching DNA aptamers to create polymerization catalysts that respond to diverse chemical stimuli. We use the secondary structure of DNA to bring a photocatalyst and quencher dye into proximity, turning off photocatalysis. The DNA structure can be precisely designed to change conformation in response to a molecular trigger, moving the photocatalyst far from the quencher and activating photocatalysis. We show these photocatalysts can initiate free-radical polymerization to form bulk hydrogels in response to complementary DNA, a metal ion (Zn2+), or small molecules (glucose and hydrocortisone). We demonstrate the biocompatibility of these switchable photocatalysts by triggering their activation on the surface of yeast cells. Finally, we perform reversible-deactivation radical polymerization through photoinduced electron/energy transfer reversible addition-fragmentation chain-transfer in a dual-stimulus manner, in which catalytic activity is regulated reversibly by photoirradiation and the conformational state of the DNA catalyst. These results demonstrate that DNA conformational changes triggered by chemically diverse stimuli can regulate the activity of radical polymerization photocatalysts. This platform offers new capabilities in spatially and temporally controlled polymer synthesis, with potential applications in diagnostics, sensing, and environmentally responsive materials.
Collapse
Affiliation(s)
- Caleb A Cox
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Ashley N Ogorek
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Jean Paul Habumugisha
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Jeffrey D Martell
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53705, United States
| |
Collapse
|
12
|
Li CH, Chan MH, Chang YC, Hsiao M. Gold Nanoparticles as a Biosensor for Cancer Biomarker Determination. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28010364. [PMID: 36615558 PMCID: PMC9822408 DOI: 10.3390/molecules28010364] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 01/04/2023]
Abstract
Molecular biology applications based on gold nanotechnology have revolutionary impacts, especially in diagnosing and treating molecular and cellular levels. The combination of plasmonic resonance, biochemistry, and optoelectronic engineering has increased the detection of molecules and the possibility of atoms. These advantages have brought medical research to the cellular level for application potential. Many research groups are working towards this. The superior analytical properties of gold nanoparticles can not only be used as an effective drug screening instrument for gene sequencing in new drug development but also as an essential tool for detecting physiological functions, such as blood glucose, antigen-antibody analysis, etc. The review introduces the principles of biomedical sensing systems, the principles of nanomaterial analysis applied to biomedicine at home and abroad, and the chemical surface modification of various gold nanoparticles.
Collapse
Affiliation(s)
- Chien-Hsiu Li
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Ming-Hsien Chan
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Yu-Chan Chang
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Michael Hsiao
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
- Department and Graduate Institute of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei 106, Taiwan
- Correspondence:
| |
Collapse
|
13
|
Carter E, Davis SA, Hill DJ. Rapid Detection of Neisseria gonorrhoeae Genomic DNA Using Gold Nanoprobes Which Target the Gonococcal DNA Uptake Sequence. Front Cell Infect Microbiol 2022; 12:920447. [PMID: 35873173 PMCID: PMC9304934 DOI: 10.3389/fcimb.2022.920447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 06/10/2022] [Indexed: 11/13/2022] Open
Abstract
The rapid spread of antimicrobial resistant Neisseria gonorrhoeae continues to pose a serious threat to global health. To successfully treat and control gonococcal infections, rapid diagnosis is critical. Currently, nucleic acid amplification tests are the recommended diagnostic, however, these are both technically demanding and time consuming, making them unsuitable for resource-poor clinics. Consequently, there is a substantial need for an affordable, point-of-care diagnostic to use in these settings. In this study, DNA-functionalised gold nanoparticles (gold nanoprobes), with the ability to specifically detect the DNA Uptake Sequence (DUS) of Neisseria gonorrhoeae, were prepared. Using complementary annealing, the gold nanoprobes were shown to hybridise to genomic gonococcal DNA, causing a significant shift in their salt stability. By exploiting the shift in nanoprobe stability under the presence of target DNA, a solution-based colorimetric diagnostic for gonococcal DNA was prepared. Detection of purified genomic DNA was achieved in under 30 minutes, with a detection limit of 15.0 ng. Significantly, testing with DNA extracted from an off-target control organism suggested specificity for Neisseria. These results highlight the potential of DUS-specific gold nanoprobes in the rapid point-of-care diagnosis of gonococcal infections.
Collapse
Affiliation(s)
- Ella Carter
- School of Chemistry, University of Bristol, Bristol, United Kingdom
- Bristol Centre for Functional Nanomaterials, University of Bristol, Bristol, United Kingdom
| | - Sean A. Davis
- School of Chemistry, University of Bristol, Bristol, United Kingdom
- *Correspondence: Darryl Hill, ; Sean Davis,
| | - Darryl J. Hill
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
- *Correspondence: Darryl Hill, ; Sean Davis,
| |
Collapse
|
14
|
Arshavsky‐Graham S, Heuer C, Jiang X, Segal E. Aptasensors versus immunosensors-Which will prevail? Eng Life Sci 2022; 22:319-333. [PMID: 35382545 PMCID: PMC8961048 DOI: 10.1002/elsc.202100148] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/21/2021] [Accepted: 12/24/2021] [Indexed: 12/11/2022] Open
Abstract
Since the invention of the first biosensors 70 years ago, they have turned into valuable and versatile tools for various applications, ranging from disease diagnosis to environmental monitoring. Traditionally, antibodies have been employed as the capture probes in most biosensors, owing to their innate ability to bind their target with high affinity and specificity, and are still considered as the gold standard. Yet, the resulting immunosensors often suffer from considerable limitations, which are mainly ascribed to the antibody size, conjugation chemistry, stability, and costs. Over the past decade, aptamers have emerged as promising alternative capture probes presenting some advantages over existing constraints of immunosensors, as well as new biosensing concepts. Herein, we review the employment of antibodies and aptamers as capture probes in biosensing platforms, addressing the main aspects of biosensor design and mechanism. We also aim to compare both capture probe classes from theoretical and experimental perspectives. Yet, we highlight that such comparisons are not straightforward, and these two families of capture probes should not be necessarily perceived as competing but rather as complementary. We, thus, elaborate on their combined use in hybrid biosensing schemes benefiting from the advantages of each biorecognition element.
Collapse
Affiliation(s)
- Sofia Arshavsky‐Graham
- Faculty of Biotechnology and Food EngineeringTechnion ‐ Israel Institute of TechnologyHaifaIsrael
| | - Christopher Heuer
- Faculty of Biotechnology and Food EngineeringTechnion ‐ Israel Institute of TechnologyHaifaIsrael
- Institute of Technical ChemistryLeibniz University HannoverHannoverGermany
| | - Xin Jiang
- Faculty of Biotechnology and Food EngineeringTechnion ‐ Israel Institute of TechnologyHaifaIsrael
| | - Ester Segal
- Faculty of Biotechnology and Food EngineeringTechnion ‐ Israel Institute of TechnologyHaifaIsrael
- Russell Berrie Nanotechnology InstituteTechnion ‐ Israel Institute of TechnologyHaifaIsrael
| |
Collapse
|
15
|
Huang PJJ, Liu J. Selection of Aptamers for Sensing Caffeine and Discrimination of Its Three Single Demethylated Analogues. Anal Chem 2022; 94:3142-3149. [PMID: 35143165 DOI: 10.1021/acs.analchem.1c04349] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
With the growing consumption of caffeine-containing beverages, detection of caffeine has become an important biomedical, bioanalytical, and environmental topic. We herein isolated four high-quality aptamers for caffeine with dissociation constants ranging from 2.2 to 14.6 μM as characterized using isothermal titration calorimetry. Different binding patterns were obtained for the three single demethylated analogues: theobromine, theophylline, and paraxanthine, highlighting the effect of the molecular symmetry of the arrangement of the three methyl groups in caffeine. A structure-switching fluorescent sensor was designed showing a detection limit of 1.2 μM caffeine, which reflected the labeled caffeine concentration within 6.1% difference for eight commercial beverages. In 20% human serum, a detection limit of 4.0 μM caffeine was achieved. With the four aptamer sensors forming an array, caffeine and the three analogues were well separated from nine other closely related molecules.
Collapse
Affiliation(s)
- Po-Jung Jimmy Huang
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
16
|
|
17
|
Huang Z, Niu L. RNA aptamers for AMPA receptors. Neuropharmacology 2021; 199:108761. [PMID: 34509496 DOI: 10.1016/j.neuropharm.2021.108761] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 08/07/2021] [Accepted: 08/19/2021] [Indexed: 12/16/2022]
Abstract
RNA aptamers are single-stranded RNA molecules, and they are selected against a target of interest so that they can bind to and modulate the activity of the target, such as inhibiting the target activity, with high potency and selectivity. Antagonists, such as RNA aptamers, acting on AMPA receptors, a major subtype of ionotropic glutamate receptors, are potential drug candidates for treatment of a number of CNS diseases that involve excessive receptor activation and/or elevated receptor expression. Here we review the approach to discover RNA aptamers targeting AMPA receptors from a random sequence library (∼1014 sequences) through a process called systematic evolution of ligands by exponential enrichment (SELEX). As compared with small-molecule compounds, RNA aptamers are a new class of regulatory agents with interesting and desirable pharmacological properties. Some AMPA receptor aptamers we have developed are presented in this review. The promises and challenges of translating RNA aptamers into potential drugs and treatment options are also discussed. This article is part of the special Issue on 'Glutamate Receptors - AMPA receptors'.
Collapse
Affiliation(s)
- Zhen Huang
- Chemistry Department, Center for Neuroscience Research, University at Albany, State University of New York (SUNY), Albany, NY, USA
| | - Li Niu
- Chemistry Department, Center for Neuroscience Research, University at Albany, State University of New York (SUNY), Albany, NY, USA.
| |
Collapse
|
18
|
Li D, Liu Y, Yu S, Zhang D, Wang X, Zhong H, He K, Wang Y, Wu YX. A two-photon fluorescence silica nanoparticle-based FRET nanoprobe platform for effective ratiometric bioimaging of intracellular endogenous adenosine triphosphate. Analyst 2021; 146:4945-4953. [PMID: 34259245 DOI: 10.1039/d1an00419k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two-photon fluorescence imaging is one of the most attractive imaging techniques for monitoring important biomolecules in the biomedical field due to its advantages of low light scattering, high penetration depth, and suppressed photodamage/phototoxicity under near-infrared excitation. However, in actual biological imaging, organic two-photon fluorescent dyes have disadvantages such as high biological toxicity and their fluorescence efficiency is easily affected by the complex environment in organisms. In this study, a novel nanoprobe platform with two-photon dye-doped silica nanoparticles was developed for FRET-based ratiometric biosensing and bioimaging, with endogenous ATP chosen as the target for detection. The nanoprobe has three components: (1) a two-photon dye-doped silica nanoparticle core, which serves as an energy donor for FRET; (2) amino-modified hairpin primers with carboxy fluorescein as an energy acceptor for FRET; (3) an aptamer acting as a recognition unit to realize the probing function. The nanoprobe showed ratiometric fluorescence responses for ATP detection with high sensitivity and high selectivity in vivo. Moreover, the nanoprobe showed satisfactory ratiometric two-photon fluorescence imaging of endogenous ATP in living cells and tissues (penetration depth of 190 nm). These results indicated that novel two-photon silica nanoparticles can be constructed by doping a two-photon fluorescent dye into silica nanoparticles, and they can effectively solve the disadvantages of two-photon fluorescent dyes. These excellent performances indicate that this novel nanoprobe platform will become a very valuable molecular imaging tool, which can be widely used in the biomedical field for drug screening and disease diagnosis and other related research.
Collapse
Affiliation(s)
- Dian Li
- State Key Laboratory Base of Novel Functional Materials and Preparation Science, Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Guo W, Zhang C, Ma T, Liu X, Chen Z, Li S, Deng Y. Advances in aptamer screening and aptasensors' detection of heavy metal ions. J Nanobiotechnology 2021; 19:166. [PMID: 34074287 PMCID: PMC8171055 DOI: 10.1186/s12951-021-00914-4] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 05/26/2021] [Indexed: 02/07/2023] Open
Abstract
Heavy metal pollution has become more and more serious with industrial development and resource exploitation. Because heavy metal ions are difficult to be biodegraded, they accumulate in the human body and cause serious threat to human health. However, the conventional methods to detect heavy metal ions are more strictly to the requirements by detection equipment, sample pretreatment, experimental environment, etc. Aptasensor has the advantages of strong specificity, high sensitivity and simple preparation to detect small molecules, which provides a new direction platform in the detection of heavy metal ions. This paper reviews the selection of aptamers as target for heavy metal ions since the 21th century and aptasensors application for detection of heavy metal ions that were reported in the past five years. Firstly, the selection methods for aptamers with high specificity and high affinity are introduced. Construction methods and research progress on sensor based aptamers as recognition element are also introduced systematically. Finally, the challenges and future opportunities of aptasensors in detecting heavy metal ions are discussed.
Collapse
Affiliation(s)
- Wenfei Guo
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, 412007 China
| | - Chuanxiang Zhang
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, 412007 China
| | - Tingting Ma
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, 412007 China
| | - Xueying Liu
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, 412007 China
| | - Zhu Chen
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, 412007 China
| | - Song Li
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, 412007 China
| | - Yan Deng
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, 412007 China
| |
Collapse
|
20
|
Roy D, Pascher A, Juratli MA, Sporn JC. The Potential of Aptamer-Mediated Liquid Biopsy for Early Detection of Cancer. Int J Mol Sci 2021; 22:ijms22115601. [PMID: 34070509 PMCID: PMC8199038 DOI: 10.3390/ijms22115601] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 05/08/2021] [Accepted: 05/18/2021] [Indexed: 01/08/2023] Open
Abstract
The early detection of cancer favors a greater chance of curative treatment and long-term survival. Exciting new technologies have been developed that can help to catch the disease early. Liquid biopsy is a promising non-invasive tool to detect cancer, even at an early stage, as well as to continuously monitor disease progression and treatment efficacy. Various methods have been implemented to isolate and purify bio-analytes in liquid biopsy specimens. Aptamers are short oligonucleotides consisting of either DNA or RNA that are capable of binding to target molecules with high specificity. Due to their unique properties, they are considered promising recognition ligands for the early detection of cancer by liquid biopsy. A variety of circulating targets have been isolated with high affinity and specificity by facile modification and affinity regulation of the aptamers. In this review, we discuss recent progress in aptamer-mediated liquid biopsy for cancer detection, its associated challenges, and its future potential for clinical applications.
Collapse
Affiliation(s)
- Dhruvajyoti Roy
- Helio Health, Irvine, CA 92618, USA
- Correspondence: ; Tel.: +1-949-8722383
| | - Andreas Pascher
- Department of General, Visceral and Transplant Surgery, University Hospital Münster, 48149 Münster, Germany; (A.P.); (M.A.J.); (J.C.S.)
| | - Mazen A. Juratli
- Department of General, Visceral and Transplant Surgery, University Hospital Münster, 48149 Münster, Germany; (A.P.); (M.A.J.); (J.C.S.)
| | - Judith C. Sporn
- Department of General, Visceral and Transplant Surgery, University Hospital Münster, 48149 Münster, Germany; (A.P.); (M.A.J.); (J.C.S.)
| |
Collapse
|
21
|
Lyu C, Khan IM, Wang Z. Capture-SELEX for aptamer selection: A short review. Talanta 2021; 229:122274. [PMID: 33838776 DOI: 10.1016/j.talanta.2021.122274] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/26/2021] [Accepted: 03/01/2021] [Indexed: 12/18/2022]
Abstract
The emerging aptamer, developed through the systematic evolution of ligands by exponential enrichment (SELEX) process, has revolutionized and facilitated the discoveries in basic research. Among all SELEX technology, Capture-SELEX is a variant of the in vitro selection process, which is suitable for isolating aptamers against small molecules. Capture-SELEX library was developed to enable the immobilization of the oligonucleotides instead of the target molecules during the aptamer selection process. The review provides an update on the recent-advances in this new screening method with particular emphasis on key points of capture protocol and its applications. The limitations and the prospects of the Capture-SELEX are also discussed. We hope that present review will inspire more researchers to understand the selection problems from the perspective of Capture-SELEX. Moreover, it will open new pave to improve the efficiency and success of screening to meet the growing demand for aptasensor discovery in small molecules.
Collapse
Affiliation(s)
- Chen Lyu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China; School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Imran Mahmood Khan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China; School of Food Science and Technology, Jiangnan University, Wuxi, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China; Synergetic Innovation Center of Food Safety and Quality Control of Jiangsu Province, China
| | - Zhouping Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China; School of Food Science and Technology, Jiangnan University, Wuxi, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China; Synergetic Innovation Center of Food Safety and Quality Control of Jiangsu Province, China.
| |
Collapse
|
22
|
Prommapan P, Brljak N, Lowry TW, Van Winkle D, Lenhert S. Aptamer Functionalized Lipid Multilayer Gratings for Label-Free Analyte Detection. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:nano10122433. [PMID: 33291389 PMCID: PMC7762078 DOI: 10.3390/nano10122433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/24/2020] [Accepted: 11/27/2020] [Indexed: 06/12/2023]
Abstract
Lipid multilayer gratings are promising optical biosensor elements that are capable of transducing analyte binding events into changes in an optical signal. Unlike solid state transducers, reagents related to molecular recognition and signal amplification can be incorporated into the lipid grating ink volume prior to fabrication. Here we describe a strategy for functionalizing lipid multilayer gratings with a DNA aptamer for the protein thrombin that allows label-free analyte detection. A double cholesterol-tagged, double-stranded DNA linker was used to attach the aptamer to the lipid gratings. This approach was found to be sufficient for binding fluorescently labeled thrombin to lipid multilayers with micrometer-scale thickness. In order to achieve label-free detection with the sub-100 nm-thick lipid multilayer grating lines, the binding affinity was improved by varying the lipid composition. A colorimetric image analysis of the light diffracted from the gratings using a color camera was then used to identify the grating nanostructures that lead to an optimal signal. Lipid composition and multilayer thickness were found to be critical parameters for the signal transduction from the aptamer functionalized lipid multilayer gratings.
Collapse
Affiliation(s)
- Plengchart Prommapan
- Department of Physics, Florida State University, Tallahassee, FL 32306, USA; (P.P.); (T.W.L.); (D.V.W.)
| | - Nermina Brljak
- Department of Chemistry, Florida State University, Tallahassee, FL 32306, USA;
| | - Troy W. Lowry
- Department of Physics, Florida State University, Tallahassee, FL 32306, USA; (P.P.); (T.W.L.); (D.V.W.)
- Department of Biological Science and Integrative Nanoscience Institute, Florida State University, 77 Chieftan Way, Tallahassee, FL 32306, USA
| | - David Van Winkle
- Department of Physics, Florida State University, Tallahassee, FL 32306, USA; (P.P.); (T.W.L.); (D.V.W.)
| | - Steven Lenhert
- Department of Biological Science and Integrative Nanoscience Institute, Florida State University, 77 Chieftan Way, Tallahassee, FL 32306, USA
| |
Collapse
|
23
|
Moon WJ, Yang Y, Liu J. Zn 2+ -Dependent DNAzymes: From Solution Chemistry to Analytical, Materials and Therapeutic Applications. Chembiochem 2020; 22:779-789. [PMID: 33007113 DOI: 10.1002/cbic.202000586] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 10/01/2020] [Indexed: 12/20/2022]
Abstract
Since 1994, deoxyribozymes or DNAzymes have been in vitro selected to catalyze various types of reactions. Metal ions play a critical role in DNAzyme catalysis, and Zn2+ is a very important one among them. Zn2+ has good biocompatibility and can be used for intracellular applications. Chemically, Zn2+ is a Lewis acid and it can bind to both the phosphate backbone and the nucleobases of DNA. Zn2+ undergoes hydrolysis even at neutral pH, and the partially hydrolyzed polynuclear complexes can affect the interactions with DNA. These features have made Zn2+ a unique cofactor for DNAzyme reactions. This review summarizes Zn2+ -dependent DNAzymes with an emphasis on RNA-/DNA-cleaving reactions. A key feature is the sharp Zn2+ concentration and pH-dependent activity for many of the DNAzymes. The applications of these DNAzymes as biosensors for Zn2+ , as therapeutic agents to cleave intracellular RNA, and as chemical biology tools to manipulate DNA are discussed. Future studies can focus on the selection of new DNAzymes with improved performance and detailed biochemical characterizations to understand the role of Zn2+ , which can facilitate practical applications of Zn2+ -dependent DNAzymes.
Collapse
Affiliation(s)
- Woohyun J Moon
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Yongjie Yang
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada.,Department of Food and Biological Science, College of Agricultural, Yanbian University, Yanbian Chaoxianzuzizhizhou, Yanji, 133002, P. R. China
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada.,Centre for Eye and Vision Research, 17W Hong Kong Science Park, Hong Kong, China
| |
Collapse
|
24
|
Şahin S, Caglayan MO, Üstündağ Z. Recent advances in aptamer-based sensors for breast cancer diagnosis: special cases for nanomaterial-based VEGF, HER2, and MUC1 aptasensors. Mikrochim Acta 2020; 187:549. [PMID: 32888061 DOI: 10.1007/s00604-020-04526-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 08/20/2020] [Indexed: 02/07/2023]
Abstract
Cancer is one of the most common and important diseases with a high mortality rate. Breast cancer is among the three most common types of cancer in women, and the mortality rate has reached 0.024% in some countries. For early-stage preclinical diagnosis of breast cancer, sensitive and reliable tools are needed. Today, there are many types of biomarkers that have been identified for cancer diagnosis. A wide variety of detection strategies have also been developed for the detection of these biomarkers from serum or other body fluids at physiological concentrations. Aptamers are single-stranded DNA or RNA oligonucleotides and promising in the production of more sensitive and reliable biosensor platforms in combination with a wide range of nanomaterials. Conformational changes triggered by the target analyte have been successfully applied in fluorometric, colorimetric, plasmonic, and electrochemical-based detection strategies. This review article presents aptasensor approaches used in the detection of vascular endothelial growth factor (VEGF), human epidermal growth factor receptor 2 (HER2), and mucin-1 glycoprotein (MUC1) biomarkers, which are frequently studied in the diagnosis of breast cancer. The focus of this review article is on developments of the last decade for detecting these biomarkers using various sensitivity enhancement techniques and nanomaterials.
Collapse
Affiliation(s)
- Samet Şahin
- Department of Bioengineering, Bilecik Şeyh Edebali University, 11230, Bilecik, Turkey.
| | | | - Zafer Üstündağ
- Department of Chemistry, Kütahya Dumlupınar University, 43100, Kütahya, Turkey
| |
Collapse
|
25
|
Caglayan MO, Şahin S, Üstündağ Z. Detection Strategies of Zearalenone for Food Safety: A Review. Crit Rev Anal Chem 2020; 52:294-313. [PMID: 32715728 DOI: 10.1080/10408347.2020.1797468] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Zearalenone (ZEN) is a toxic compound produced by the metabolism of fungi (genus Fusarium) that threaten the food and agricultural industry belonging to the in foods and feeds. ZEN has toxic effects on human and animal health due to its mutagenicity, teratogenicity, carcinogenicity, nephrotoxicity, immunotoxicity, and genotoxicity. To ensure food safety, rapid, precise, and reliable analytical methods can be developed for the detection of toxins such as ZEN. Different selective molecular diagnostic elements are used in conjunction with different detection strategies to achieve this goal. In this review, the use of electrochemical, colorimetric, fluorometric, refractometric as well as other strategies were discussed for ZEN detection. The success of the sensors in analytical performance depends on the development of receptors with increased affinity to the target. This requirement has been met with different immunoassays, aptamer-assays, and molecular imprinting techniques. The immobilization techniques and analysis strategies developed with the combination of nanomaterials provided high precision, reliability, and convenience in ZEN detection, in which electrochemical strategies perform the best.
Collapse
Affiliation(s)
| | - Samet Şahin
- Department of Bioengineering, Bilecik Şeyh Edebali University, Bilecik, Turkey
| | - Zafer Üstündağ
- Department of Chemistry, Kütahya Dumlupınar University, Kütahya, Turkey
| |
Collapse
|
26
|
Berzal-Herranz A, Romero-López C. Two Examples of RNA Aptamers with Antiviral Activity. Are Aptamers the Wished Antiviral Drugs? Pharmaceuticals (Basel) 2020; 13:157. [PMID: 32707768 PMCID: PMC7463695 DOI: 10.3390/ph13080157] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/03/2020] [Accepted: 07/20/2020] [Indexed: 02/06/2023] Open
Abstract
The current Covid-19 pandemic has pointed out some major deficiencies of the even most advanced societies to fight against viral RNA infections. Once more, it has been demonstrated that there is a lack of efficient drugs to control RNA viruses. Aptamers are efficient ligands of a great variety of molecules including proteins and nucleic acids. Their specificity and mechanism of action make them very promising molecules for interfering with the function encoded in viral RNA genomes. RNA viruses store essential information in conserved structural genomic RNA elements that promote important steps for the consecution of the infective cycle. This work describes two well documented examples of RNA aptamers with antiviral activity against highly conserved structural domains of the HIV-1 and HCV RNA genome, respectively, performed in our laboratory. They are two good examples that illustrate the potential of the aptamers to fill the therapeutic gaps in the fight against RNA viruses.
Collapse
Affiliation(s)
- Alfredo Berzal-Herranz
- Instituto de Parasitología y Biomedicina López-Neyra, (IPBLN-CSIC), Av. del Conocimiento 17, PTS Granada, Armilla, 18016 Granada, Spain;
| | | |
Collapse
|
27
|
Zhu L, Li G, Shao X, Huang K, Luo Y, Xu W. A colorimetric zinc(II) assay based on the use of hairpin DNAzyme recycling and a hemin/G-quadruplex lighted DNA nanoladder. Mikrochim Acta 2019; 187:26. [DOI: 10.1007/s00604-019-3996-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 11/03/2019] [Indexed: 11/28/2022]
|
28
|
Dauphin-Ducharme P, Yang K, Arroyo-Currás N, Ploense KL, Zhang Y, Gerson J, Kurnik M, Kippin TE, Stojanovic MN, Plaxco KW. Electrochemical Aptamer-Based Sensors for Improved Therapeutic Drug Monitoring and High-Precision, Feedback-Controlled Drug Delivery. ACS Sens 2019; 4:2832-2837. [PMID: 31556293 PMCID: PMC6886665 DOI: 10.1021/acssensors.9b01616] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The electrochemical aptamer-based (E-AB) sensing platform appears to be a convenient (rapid, single-step, and calibration-free) and modular approach to measure concentrations of specific molecules (irrespective of their chemical reactivity) directly in blood and even in situ in the living body. Given these attributes, the platform may thus provide significant opportunities to render therapeutic drug monitoring (the clinical practice in which dosing is adjusted in response to plasma drug measurements) as frequent and convenient as the measurement of blood sugar has become for diabetics. The ability to measure arbitrary molecules in the body in real time could even enable closed-loop feedback control over plasma drug levels in a manner analogous to the recently commercialized controlled blood sugar systems. As initial exploration of this, we describe here the selection of an aptamer against vancomycin, a narrow therapeutic window antibiotic for which therapeutic monitoring is a critical part of the standard of care, and its adaptation into an electrochemical aptamer-based (E-AB) sensor. Using this sensor, we then demonstrate: (i) rapid (seconds) and convenient (single-step and calibration-free) measurement of plasma vancomycin in finger-prick-scale samples of whole blood, (ii) high-precision measurement of subject-specific vancomycin pharmacokinetics (in a rat animal model), and (iii) high-precision, closed-loop feedback control over plasma levels of the drug (in a rat animal model). The ability to not only track (with continuous-glucose-monitor-like measurement frequency and convenience) but also actively control plasma drug levels provides an unprecedented route toward improving therapeutic drug monitoring and, more generally, the personalized, high-precision delivery of pharmacological interventions.
Collapse
Affiliation(s)
- Philippe Dauphin-Ducharme
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93106, United States
- Center for Bioengineering, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - Kyungae Yang
- Center for Innovative Diagnostic and Therapeutic Approaches, Department of Medicine, Columbia University, New York, New York 10032, United States
| | - Netzahualcóyotl Arroyo-Currás
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, United States
| | - Kyle L. Ploense
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93106, United States
- Center for Bioengineering, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - Yameng Zhang
- Center for Innovative Diagnostic and Therapeutic Approaches, Department of Medicine, Columbia University, New York, New York 10032, United States
| | - Julian Gerson
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, California 93106, United States
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, California 93106, United States
- Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - Martin Kurnik
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93106, United States
- Center for Bioengineering, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - Tod E. Kippin
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, California 93106, United States
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, California 93106, United States
- Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - Milan N. Stojanovic
- Center for Innovative Diagnostic and Therapeutic Approaches, Department of Medicine, Columbia University, New York, New York 10032, United States
- Department of Biomedical Engineering and Systems Biology, Columbia University, New York, New York 10032, United States
| | - Kevin W. Plaxco
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93106, United States
- Center for Bioengineering, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| |
Collapse
|
29
|
Zong C, Liu J. The Arsenic-Binding Aptamer Cannot Bind Arsenic: Critical Evaluation of Aptamer Selection and Binding. Anal Chem 2019; 91:10887-10893. [PMID: 31340640 DOI: 10.1021/acs.analchem.9b02789] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
An arsenic-binding aptamer named Ars-3 was reported in 2009, and it has been used for detection of As(III) in more than two dozen papers. In this work, we performed extensive binding assays using isothermal titration calorimetry, various DNA-staining dyes, and gold nanoparticles. By carefully comparing Ars-3 and a few random control DNA sequences, no specific binding of As(III) was observed in each case. Therefore, we conclude that Ars-3 cannot bind As(III). Possible reasons for some of the previously reported binding and detection were speculated to be related to the adsorption of As(III) onto gold surfaces, which were used in many related sensor designs, and As(III)/Au interactions were not considered before. The selection data in the original paper were then analyzed in terms of sequence alignment, secondary structure prediction, and dissociation constant measurement. These steps need rigorous testing before confirming specific binding of newly selected aptamers. This study calls for attention to the gap between aptamer selection and biosensor design, and the gap needs to be filled by careful binding assays to further the growth of the aptamer field.
Collapse
Affiliation(s)
- Chenghua Zong
- Department of Chemistry and Materials Science, Jiangsu Key Laboratory of Green Synthesis for Functional Materials , Jiangsu Normal University , Xuzhou , Jiangsu 221116 , P.R. China.,Department of Chemistry, Waterloo Institute for Nanotechnology , University of Waterloo , Waterloo , Ontario N2L 3G1 , Canada
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology , University of Waterloo , Waterloo , Ontario N2L 3G1 , Canada
| |
Collapse
|
30
|
He Y, Chang Y, Chen D, Liu J. Probing Local Folding Allows Robust Metal Sensing Based on a Na + -Specific DNAzyme. Chembiochem 2019; 20:2241-2247. [PMID: 30989776 DOI: 10.1002/cbic.201900143] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Indexed: 12/26/2022]
Abstract
Fluorescent metal sensors based on DNA often rely on changes in end-to-end distance or local environmental near fluorophore labels. Because metal ions can also nonspecifically interact with DNA through various mechanisms, such as charge screening, base binding, and increase or decrease in duplex stability, robust and specific sensing of metal ions has been quite challenging. In this work, a side-by-side comparison of two signaling strategies on a Na+ -specific DNAzyme that contained a Na+ -binding aptamer was performed. The duplex regions of the DNAzyme was systematically shortened and its effect was studied by using a 2-aminopurine (2AP)-labeled substrate strand. Na+ binding affected the local environmental of the 2AP label and increased its fluorescence. A synergistic process of Na+ binding and forming the duplex on the 5'-end of the enzyme strand was observed, and this end was close to the aptamer loop. Effective Na+ binding was achieved with a five base-pair stem. The effect on the 3'-end is more continuous, and the stem needs to form first before Na+ can bind. With an optimized substrate binding arm, a FRET-based sensor has been designed by labeling the two ends of a cis form of the DNAzyme with two fluorophores. In this case, Na+ failed to show a distinct difference from that of Li+ or K+ ; thus indicating that probing changes to the local environment allows more robust sensing of metal ions.
Collapse
Affiliation(s)
- Yanping He
- State Key Laboratory of Precision Measurement Technology and, Instruments, Tianjin University, Tianjin, 300072, P.R. China.,Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Yangyang Chang
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada.,School of Environmental Science and Technology, Key Laboratory of Industrial Ecology and Environmental Engineering, (Ministry of Education), Dalian University of Technology, Dalian, 116024, P.R. China
| | - Da Chen
- State Key Laboratory of Precision Measurement Technology and, Instruments, Tianjin University, Tianjin, 300072, P.R. China
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| |
Collapse
|
31
|
Sun C, Ou X, Cheng Y, Zhai T, Liu B, Lou X, Xia F. Coordination-induced structural changes of DNA-based optical and electrochemical sensors for metal ions detection. Dalton Trans 2019; 48:5879-5891. [PMID: 30681098 DOI: 10.1039/c8dt04733b] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Metal ions play a critical role in human health and abnormal levels are closely related to various diseases. Therefore, the detection of metal ions with high selectivity, sensitivity and accuracy is particularly important. This article highlights and comments on the coordination-induced structural changes of DNA-based optical, electrochemical and optical-electrochemical-combined sensors for metal ions detection. Challenges and potential solutions of DNA-based sensors for the simultaneous detection of multiple metal ions are also discussed for further development and exploitation.
Collapse
Affiliation(s)
- Chunli Sun
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering; Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering; National Engineering Research Center for Nanomedicine, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| | | | | | | | | | | | | |
Collapse
|
32
|
He Y, Lopez A, Zhang Z, Chen D, Yang R, Liu J. Nucleotide and DNA coordinated lanthanides: From fundamentals to applications. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.02.020] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
33
|
Developing RNA aptamers for potential treatment of neurological diseases. Future Med Chem 2019; 11:551-565. [PMID: 30912676 DOI: 10.4155/fmc-2018-0364] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
AMPA receptor antagonists are drug candidates for potential treatment of a number of CNS diseases that involve excessive receptor activation. To date, small-molecule compounds are the dominating drug candidates in the field. However, lower potency, cross activity and poor water solubility are generally associated with these compounds. Here we show the potential of RNA-based antagonists or RNA aptamers as drug candidates and some strategies to discover these aptamers from a random sequence library (∼1014 sequences). As an alternative to small molecule compounds, our aptamers exhibit higher potency and selectivity toward AMPA receptors. Because aptamers are RNA molecules, they are naturally water soluble. We also discuss the major challenges of translating RNA aptamers as lead molecules into drugs/treatment options.
Collapse
|
34
|
Berzal-Herranz A, Romero-López C, Berzal-Herranz B, Ramos-Lorente S. Potential of the Other Genetic Information Coded by the Viral RNA Genomes as Antiviral Target. Pharmaceuticals (Basel) 2019; 12:ph12010038. [PMID: 30871174 PMCID: PMC6469156 DOI: 10.3390/ph12010038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 03/07/2019] [Accepted: 03/10/2019] [Indexed: 02/05/2023] Open
Abstract
In addition to the protein coding information, viral RNA genomes code functional information in structurally conserved units termed functional RNA domains. These RNA domains play essential roles in the viral cycle (e.g., replication and translation). Understanding the molecular mechanisms behind their function is essential to understanding the viral infective cycle. Further, interfering with the function of the genomic RNA domains offers a potential means of developing antiviral strategies. Aptamers are good candidates for targeting structural RNA domains. Besides its potential as therapeutics, aptamers also provide an excellent tool for investigating the functionality of RNA domains in viral genomes. This review briefly summarizes the work carried out in our laboratory aimed at the structural and functional characterization of the hepatitis C virus (HCV) genomic RNA domains. It also describes the efforts we carried out for the development of antiviral aptamers targeting specific genomic domains of the HCV and the human immunodeficiency virus type-1 (HIV-1).
Collapse
Affiliation(s)
- Alfredo Berzal-Herranz
- Instituto de Parasitología y Biomedicina López-Neyra, (IPBLN-CSIC); Av. del Conocimiento 17, PTS Granada, Armilla, 18016 Granada, Spain.
| | - Cristina Romero-López
- Instituto de Parasitología y Biomedicina López-Neyra, (IPBLN-CSIC); Av. del Conocimiento 17, PTS Granada, Armilla, 18016 Granada, Spain.
| | - Beatriz Berzal-Herranz
- Instituto de Parasitología y Biomedicina López-Neyra, (IPBLN-CSIC); Av. del Conocimiento 17, PTS Granada, Armilla, 18016 Granada, Spain.
| | - Sara Ramos-Lorente
- Instituto de Parasitología y Biomedicina López-Neyra, (IPBLN-CSIC); Av. del Conocimiento 17, PTS Granada, Armilla, 18016 Granada, Spain.
| |
Collapse
|
35
|
Munzar JD, Ng A, Juncker D. Duplexed aptamers: history, design, theory, and application to biosensing. Chem Soc Rev 2019; 48:1390-1419. [PMID: 30707214 DOI: 10.1039/c8cs00880a] [Citation(s) in RCA: 127] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Nucleic acid aptamers are single stranded DNA or RNA sequences that specifically bind a cognate ligand. In addition to their widespread use as stand-alone affinity binding reagents in analytical chemistry, aptamers have been engineered into a variety of ligand-specific biosensors, termed aptasensors. One of the most common aptasensor formats is the duplexed aptamer (DA). As defined herein, DAs are aptasensors containing two nucleic acid elements coupled via Watson-Crick base pairing: (i) an aptamer sequence, which serves as a ligand-specific receptor, and (ii) an aptamer-complementary element (ACE), such as a short DNA oligonucleotide, which is designed to hybridize to the aptamer. The ACE competes with ligand binding, such that DAs generate a signal upon ligand-dependent ACE-aptamer dehybridization. DAs possess intrinsic advantages over other aptasensor designs. For example, DA biosensing designs generalize across DNA and RNA aptamers, DAs are compatible with many readout methods, and DAs are inherently tunable on the basis of nucleic acid hybridization. However, despite their utility and popularity, DAs have not been well defined in the literature, leading to confusion over the differences between DAs and other aptasensor formats. In this review, we introduce a framework for DAs based on ACEs, and use this framework to distinguish DAs from other aptasensor formats and to categorize cis- and trans-DA designs. We then explore the ligand binding dynamics and chemical properties that underpin DA systems, which fall under conformational selection and induced fit models, and which mirror classical SN1 and SN2 models of nucleophilic substitution reactions. We further review a variety of in vitro and in vivo applications of DAs in the chemical and biological sciences, including riboswitches and riboregulators. Finally, we present future directions of DAs as ligand-responsive nucleic acids. Owing to their tractability, versatility and ease of engineering, DA biosensors bear a great potential for the development of new applications and technologies in fields ranging from analytical chemistry and mechanistic modeling to medicine and synthetic biology.
Collapse
Affiliation(s)
- Jeffrey D Munzar
- McGill University and Genome Quebec Innovation Centre, Montreal, Quebec, Canada.
| | | | | |
Collapse
|
36
|
Shu Y, Zheng N, Zheng AQ, Guo TT, Yu YL, Wang JH. Intracellular Zinc Quantification by Fluorescence Imaging with a FRET System. Anal Chem 2019; 91:4157-4163. [DOI: 10.1021/acs.analchem.9b00018] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Yang Shu
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Na Zheng
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - An-Qi Zheng
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Ting-Ting Guo
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Yong-Liang Yu
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Jian-Hua Wang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| |
Collapse
|
37
|
Ma X, Qiao S, Sun H, Su R, Sun C, Zhang M. Development of Structure-Switching Aptamers for Kanamycin Detection Based on Fluorescence Resonance Energy Transfer. Front Chem 2019; 7:29. [PMID: 30792976 PMCID: PMC6374352 DOI: 10.3389/fchem.2019.00029] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Accepted: 01/11/2019] [Indexed: 12/21/2022] Open
Abstract
The structure-switching aptamers are designed for the simple and rapid detection of kanamycin based on the signal transduction principle of fluorescence resonance energy transfer (FRET). The structure switch is composed of kanamycin-binding aptamers and the complementary strands, respectively labeled with fluorophore and quencher, denoted as FDNA and QDNA. In the absence of kanamycin, FDNA and QDNA form the double helix structure through the complementary pairing of bases. The fluorophore and the quencher are brought into close proximity, which results in the fluorescence quenching because of the FRET mechanism. In the presence of kanamycin, the FDNA specifically bind to the target due to the high affinity of aptamers, and the QDNA are dissociated. The specific recognition between aptamers and kanamycin will obstruct the formation of structure switch and reduce the efficiency of FRET between FDNA and QDNA, thus leading to the fluorescence enhancement. Therefore, based on the structure-switching aptamers, a simple fluorescent assay for rapid detection of kanamycin was developed. Under optimal conditions, there was a good linear relationship between kanamycin concentration and the fluorescence signal recovery. The linear range of this method in milk samples was 100-600 nM with the detection limit of 13.52 nM (3σ), which is well below the maximum residue limit (MRL) of kanamycin in milk. This method shows excellent selectivity for kanamycin over the other common antibiotics. The structure-switching aptamers have been successfully applied to the detection of kanamycin spiked in milk samples with the satisfying recoveries between 101.3 and 109.1%, which is well-consistent with the results from LC-MS/MS. Due to the outstanding advantages of facile operation, rapid detection, high sensitivity, excellent specificity, and low cost, the application and extension of this strategy for rapid determination of antibiotics in food samples may greatly improve the efficiency in food safety and quality supervision.
Collapse
Affiliation(s)
- Xinyue Ma
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun, China
| | - Shangna Qiao
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun, China
| | - Hongjing Sun
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun, China
| | - Ruifang Su
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun, China
| | - Chunyan Sun
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun, China
| | - Mingdi Zhang
- Department of Food Science and Engineering, College of Food Science and Engineering, Jilin University, Changchun, China
| |
Collapse
|
38
|
Wang J, Wang Y, Hu X, Zhu C, Ma Q, Liang L, Li Z, Yuan Q. Dual-Aptamer-Conjugated Molecular Modulator for Detecting Bioactive Metal Ions and Inhibiting Metal-Mediated Protein Aggregation. Anal Chem 2018; 91:823-829. [PMID: 30501186 DOI: 10.1021/acs.analchem.8b03007] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Bioactive metal ions play important roles in both physiological and pathological processes. Developing biosensing probes for bioactive metal ion detection can contribute to fields including disease diagnosis and therapy and studying the mechanisms of biological activities. In this work, we designed a dual-aptamer-conjugated molecular modulator that can detect Zn2+ and further inhibit Zn2+-induced amyloid β (Aβ) aggregation. The molecular modulator is able to selectively target Aβ species and block Zn2+ due to the specific recognition capability of aptamers. With the binding of Zn2+, the fluorescence signal of this molecular modulator is restored, thus allowing for Zn2+ detection. More importantly, this molecular modulator can inhibit the generation of Zn2+-triggered Aβ aggregates due to the trapping of Zn2+ around Aβ species. Circular dichroism measurements reveal that the dual-aptamer-conjugated molecular modulator prevents the conformational transition of the Aβ monomer from a random coil to a β-sheet. Furthermore, after treating with the molecular modulator, no Aβ aggregate is observed in the Aβ solution with added Zn2+, demonstrating that Aβ aggregation is successfully inhibited by this molecular modulator. Our approach provides a promising tool for detecting bioactive metal ions and studying the molecular mechanisms behind life activities.
Collapse
Affiliation(s)
- Jie Wang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences , Wuhan University , Wuhan 430072 , China
| | - Yingqian Wang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences , Wuhan University , Wuhan 430072 , China
| | - Xiaoxia Hu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences , Wuhan University , Wuhan 430072 , China
| | - Chunli Zhu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences , Wuhan University , Wuhan 430072 , China
| | - Qinqin Ma
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences , Wuhan University , Wuhan 430072 , China
| | - Ling Liang
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering and College of Biology, Collaborative Innovation Center for Chemistry and Molecular Medicine , Hunan University , Changsha 410082 , China
| | - Zhihao Li
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences , Wuhan University , Wuhan 430072 , China
| | - Quan Yuan
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences , Wuhan University , Wuhan 430072 , China
| |
Collapse
|
39
|
Kim J, Jang D, Park H, Jung S, Kim DH, Kim WJ. Functional-DNA-Driven Dynamic Nanoconstructs for Biomolecule Capture and Drug Delivery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1707351. [PMID: 30062803 DOI: 10.1002/adma.201707351] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 03/13/2018] [Indexed: 06/08/2023]
Abstract
The discovery of sequence-specific hybridization has allowed the development of DNA nanotechnology, which is divided into two categories: 1) structural DNA nanotechnology, which utilizes DNA as a biopolymer; and 2) dynamic DNA nanotechnology, which focuses on the catalytic reactions or displacement of DNA structures. Recently, numerous attempts have been made to combine DNA nanotechnologies with functional DNAs such as aptamers, DNAzymes, amplified DNA, polymer-conjugated DNA, and DNA loaded on functional nanoparticles for various applications; thus, the new interdisciplinary research field of "functional DNA nanotechnology" is initiated. In particular, a fine-tuned nanostructure composed of functional DNAs has shown immense potential as a programmable nanomachine by controlling DNA dynamics triggered by specific environments. Moreover, the programmability and predictability of functional DNA have enabled the use of DNA nanostructures as nanomedicines for various biomedical applications, such as cargo delivery and molecular drugs via stimuli-mediated dynamic structural changes of functional DNAs. Here, the concepts and recent case studies of functional DNA nanotechnology and nanostructures in nanomedicine are reviewed, and future prospects of functional DNA for nanomedicine are indicated.
Collapse
Affiliation(s)
- Jinhwan Kim
- Center for Self-Assembly and Complexity, Institute for Basic Science (IBS), Pohang, 37673, Korea
| | - Donghyun Jang
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Korea
| | - Hyeongmok Park
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Korea
| | - Sungjin Jung
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Korea
| | - Dae Heon Kim
- Department of Biology, Sunchon National University, Sunchon, 57922, Korea
| | - Won Jong Kim
- Center for Self-Assembly and Complexity, Institute for Basic Science (IBS), Pohang, 37673, Korea
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Korea
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Korea
| |
Collapse
|
40
|
Morse DP, Nevins CE, Aggrey-Fynn J, Bravo RJ, Pfaeffle HOI, Laney JE. Sensitive and specific detection of ligands using engineered riboswitches. J Biotechnol 2018. [PMID: 29518463 DOI: 10.1016/j.jbiotec.2018.03.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Riboswitches are RNA elements found in non-coding regions of messenger RNAs that regulate gene expression through a ligand-triggered conformational change. Riboswitches typically bind tightly and specifically to their ligands, so they have the potential to serve as highly effective sensors in vitro. In B. subtilis and other gram-positive bacteria, purine nucleotide synthesis is regulated by riboswitches that bind to guanine. We modified the xpt-pbuX guanine riboswitch for use in a fluorescence quenching assay that allowed us to specifically detect and quantify guanine in vitro. Using this assay, we reproducibly detected as little as 5 nM guanine. We then produced sensors for 2'-deoxyguanosine and cyclic diguanylate (c-diGMP) by appending the P1 stem of the guanine riboswitch to the ligand-binding domains of a 2'-deoxyguanosine riboswitch and a c-diGMP riboswitch. These hybrid sensors could detect 15 nM 2'-deoxyguanosine and 3 nM c-diGMP, respectively. Each sensor retained the ligand specificity of its corresponding natural riboswitch. In order to extend the utility of our approach, we developed a strategy for the in vitro selection of sensors with novel ligand specificity. Here we report a proof-of-principle experiment that demonstrated the feasibility of our selection strategy.
Collapse
Affiliation(s)
- Daniel P Morse
- Department of Chemistry, United States Naval Academy, Annapolis, MD 21402, USA.
| | - Colin E Nevins
- Department of Chemistry, United States Naval Academy, Annapolis, MD 21402, USA
| | - Joana Aggrey-Fynn
- Department of Biochemistry, Cell, and Molecular Biology, University of Ghana, Accra, Ghana
| | - Rick J Bravo
- Department of Chemistry, United States Naval Academy, Annapolis, MD 21402, USA
| | - Herman O I Pfaeffle
- Department of Chemistry, United States Naval Academy, Annapolis, MD 21402, USA
| | - Jess E Laney
- Department of Chemistry, United States Naval Academy, Annapolis, MD 21402, USA
| |
Collapse
|
41
|
Vorobyeva MA, Davydova AS, Vorobjev PE, Pyshnyi DV, Venyaminova AG. Key Aspects of Nucleic Acid Library Design for in Vitro Selection. Int J Mol Sci 2018; 19:E470. [PMID: 29401748 PMCID: PMC5855692 DOI: 10.3390/ijms19020470] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 01/31/2018] [Accepted: 02/02/2018] [Indexed: 02/07/2023] Open
Abstract
Nucleic acid aptamers capable of selectively recognizing their target molecules have nowadays been established as powerful and tunable tools for biospecific applications, be it therapeutics, drug delivery systems or biosensors. It is now generally acknowledged that in vitro selection enables one to generate aptamers to almost any target of interest. However, the success of selection and the affinity of the resulting aptamers depend to a large extent on the nature and design of an initial random nucleic acid library. In this review, we summarize and discuss the most important features of the design of nucleic acid libraries for in vitro selection such as the nature of the library (DNA, RNA or modified nucleotides), the length of a randomized region and the presence of fixed sequences. We also compare and contrast different randomization strategies and consider computer methods of library design and some other aspects.
Collapse
Affiliation(s)
- Maria A. Vorobyeva
- Institute of Chemical Biology and Fundamental Medicine, Siberian Division of Russian Academy of Sciences, Lavrentiev Ave., 8, 630090 Novosibirsk, Russia; (A.S.D.); (P.E.V.); (D.V.P.); (A.G.V.)
| | - Anna S. Davydova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Division of Russian Academy of Sciences, Lavrentiev Ave., 8, 630090 Novosibirsk, Russia; (A.S.D.); (P.E.V.); (D.V.P.); (A.G.V.)
| | - Pavel E. Vorobjev
- Institute of Chemical Biology and Fundamental Medicine, Siberian Division of Russian Academy of Sciences, Lavrentiev Ave., 8, 630090 Novosibirsk, Russia; (A.S.D.); (P.E.V.); (D.V.P.); (A.G.V.)
- Department of Natural Sciences, Novosibirsk State University, Pirogova St., 2, 630090 Novosibirsk, Russia
| | - Dmitrii V. Pyshnyi
- Institute of Chemical Biology and Fundamental Medicine, Siberian Division of Russian Academy of Sciences, Lavrentiev Ave., 8, 630090 Novosibirsk, Russia; (A.S.D.); (P.E.V.); (D.V.P.); (A.G.V.)
- Department of Natural Sciences, Novosibirsk State University, Pirogova St., 2, 630090 Novosibirsk, Russia
| | - Alya G. Venyaminova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Division of Russian Academy of Sciences, Lavrentiev Ave., 8, 630090 Novosibirsk, Russia; (A.S.D.); (P.E.V.); (D.V.P.); (A.G.V.)
| |
Collapse
|
42
|
Hori SI, Herrera A, Rossi JJ, Zhou J. Current Advances in Aptamers for Cancer Diagnosis and Therapy. Cancers (Basel) 2018; 10:cancers10010009. [PMID: 29301363 PMCID: PMC5789359 DOI: 10.3390/cancers10010009] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 12/22/2017] [Accepted: 12/26/2017] [Indexed: 12/24/2022] Open
Abstract
Nucleic acid aptamers are single-stranded oligonucleotides that interact with target molecules with high affinity and specificity in unique three-dimensional structures. Aptamers are generally isolated by a simple selection process called systematic evolution of ligands by exponential enrichment (SELEX) and then can be chemically synthesized and modified. Because of their high affinity and specificity, aptamers are promising agents for biomarker discovery, as well as cancer diagnosis and therapy. In this review, we present recent progress and challenges in aptamer and SELEX technology and highlight some representative applications of aptamers in cancer therapy.
Collapse
Affiliation(s)
- Shin-Ichiro Hori
- Department of Molecular and Cellular Biology, Beckman Research Institute of City of Hope, 1500 E. Duarte Rd, Duarte, CA 91010, USA.
- Drug Discovery & Disease Research Laboratory, Shionogi & Co., Ltd., 3-1-1, Futaba-cho, Toyonaka, Osaka 561-0825, Japan.
| | - Alberto Herrera
- Department of Molecular and Cellular Biology, Beckman Research Institute of City of Hope, 1500 E. Duarte Rd, Duarte, CA 91010, USA.
- Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of City of Hope, 1500 E. Duarte Rd, Duarte, CA 91010, USA.
| | - John J Rossi
- Department of Molecular and Cellular Biology, Beckman Research Institute of City of Hope, 1500 E. Duarte Rd, Duarte, CA 91010, USA.
- Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of City of Hope, 1500 E. Duarte Rd, Duarte, CA 91010, USA.
| | - Jiehua Zhou
- Department of Molecular and Cellular Biology, Beckman Research Institute of City of Hope, 1500 E. Duarte Rd, Duarte, CA 91010, USA.
| |
Collapse
|
43
|
Li Q, Jia Y, Feng Z, Liu F. A highly sensitive and selective fluorescent probe without quencher for detection of Pb2+ ions based on aggregation-caused quenching phenomenon. RSC Adv 2018; 8:38929-38934. [PMID: 35558300 PMCID: PMC9090614 DOI: 10.1039/c8ra07903j] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Accepted: 11/06/2018] [Indexed: 11/21/2022] Open
Abstract
Lead is a highly toxic heavy metal, and various functional nucleic acid (FNA)-based biosensors have been developed for the detection of Pb2+ in environmental monitoring. However, most fluorescence biosensors that have been reported were designed on the basis of a double-labeled (fluorophore and quencher group) DNA sequence, which not only involved an inconvenient organic synthesis but also restricted their wider use in practical applications. Here, we utilized a G-rich DNA sequence as a recognition probe and conjugated fluorene (CF) to develop a fluorescence sensor without a quencher based on the aggregation-caused quenching (ACQ) effect. In the presence of Pb2+, the degree of aggregation of CF was reduced because Pb2+ induced the formation of a G-quadruplex structure of the CF-DNA probe, and the fluorescence signal increased with the concentration of Pb2+ (0–1 μM), with a limit of detection of 0.36 nM. This fluorescent probe without a quencher enables the sensitive and selective detection of Pb2+. On the basis of these advantages, the CF-DNA probe represents a promising analytical method for detecting Pb2+. Fluorescent probe with only a fluorophore but no quencher for detecting Pb2+ on the basis of the aggregation-caused quenching (ACQ) phenomenon.![]()
Collapse
Affiliation(s)
- Qianyun Li
- School of Materials Science and Engineering
- South China University of Technology
- Guangzhou 510640
- China
- Institute for Advanced Materials
| | - Yongmei Jia
- Institute for Advanced Materials
- Lingnan Normal University
- Zhanjiang 524048
- China
| | - Zongcai Feng
- Institute for Advanced Materials
- Lingnan Normal University
- Zhanjiang 524048
- China
| | - Fang Liu
- School of Materials Science and Engineering
- South China University of Technology
- Guangzhou 510640
- China
| |
Collapse
|
44
|
Abstract
Nucleic acid enzymes require metal ions for activity, and many recently discovered enzymes can use multiple metals, either binding to the scissile phosphate or also playing an allosteric role.
Collapse
Affiliation(s)
- Wenhu Zhou
- Xiangya School of Pharmaceutical Sciences
- Central South University
- Changsha
- China
| | - Juewen Liu
- Department of Chemistry
- Water Institute, and Waterloo Institute for Nanotechnology
- University of Waterloo
- Waterloo
- Canada
| |
Collapse
|
45
|
Andrianova M, Komarova N, Grudtsov V, Kuznetsov E, Kuznetsov A. Amplified Detection of the Aptamer-Vanillin Complex with the Use of Bsm DNA Polymerase. SENSORS (BASEL, SWITZERLAND) 2017; 18:E49. [PMID: 29278396 PMCID: PMC5795474 DOI: 10.3390/s18010049] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 12/19/2017] [Accepted: 12/20/2017] [Indexed: 12/01/2022]
Abstract
The electrochemical detection of interactions between aptamers and low-molecular-weight targets often lacks sensitivity. Signal amplification improves the detection of the aptamer-analyte complex; Bsm DNA polymerase was used to amplify the signal from the interaction of vanillin and its aptamer named Van_74 on an ion-sensitive field-effect transistor (ISFET)-based biosensor. The aptamer was immobilized on the ISFET sensitive surface. A short DNA probe was hybridized with the aptamer and dissociated from it upon vanillin addition. A free probe interacted with a special DNA molecular beacon initiated the Bsm DNA polymerase reaction that was detected by ISFET. A buffer solution suitable for both aptamer action and Bsm DNA polymerase activity was determined. The ISFET was shown to detect the Bsm DNA polymerase reaction under the selected conditions. Vanillin at different concentrations (1 × 10-6-1 × 10-8 M) was detected using the biosensor with signal amplification. The developed detection system allowed for the determination of vanillin, starting at a 10-8 M concentration. Application of the Bsm DNA polymerase resulted in a 15.5 times lower LoD when compared to the biosensor without signal amplification (10.1007/s00604-017-2586-4).
Collapse
Affiliation(s)
- Mariia Andrianova
- Scientific-Manufacturing Complex Technological Centre, 1-7 Shokin Square, Zelenograd, 124498 Moscow, Russia.
| | - Natalia Komarova
- Scientific-Manufacturing Complex Technological Centre, 1-7 Shokin Square, Zelenograd, 124498 Moscow, Russia.
| | - Vitaliy Grudtsov
- Scientific-Manufacturing Complex Technological Centre, 1-7 Shokin Square, Zelenograd, 124498 Moscow, Russia.
| | - Evgeniy Kuznetsov
- Scientific-Manufacturing Complex Technological Centre, 1-7 Shokin Square, Zelenograd, 124498 Moscow, Russia.
| | - Alexander Kuznetsov
- Scientific-Manufacturing Complex Technological Centre, 1-7 Shokin Square, Zelenograd, 124498 Moscow, Russia.
| |
Collapse
|
46
|
Abstract
Nucleic acid aptamers have tremendous potential as molecular recognition elements in biomedical targeting, analytical arrays, and self-signaling sensors. However, practical limitations and inefficiencies in the process of selecting novel aptamers (SELEX) have hampered widespread adoption of aptamer technologies. Many factors have recently contributed to more effective aptamer screening, but no influence has done more to increase the efficiency, scale, and automation of aptamer selection than that of new microfluidic SELEX techniques. This review introduces aptamers as a powerful chemical and biological tool, briefly highlights traditional SELEX techniques and their limitations, covers in detail the recent advancements in microfluidic methods of aptamer selection and characterization, and suggests possible future directions of the field.
Collapse
Affiliation(s)
- Sean K Dembowski
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, USA.
| | | |
Collapse
|
47
|
Tan J, Yang N, Zhong L, Tan J, Hu Z, Zhao Q, Gong W, Zhang Z, Zheng R, Lai Z, Li Y, Zhou C, Zhang G, Zheng D, Zhang Y, Wu S, Jiang X, Zhong J, Huang Y, Zhou S, Zhao Y. A New Theranostic System Based on Endoglin Aptamer Conjugated Fluorescent Silica Nanoparticles. Am J Cancer Res 2017; 7:4862-4876. [PMID: 29187909 PMCID: PMC5706105 DOI: 10.7150/thno.19101] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Accepted: 08/11/2017] [Indexed: 12/14/2022] Open
Abstract
Background: Tumor vessels can potentially serve as diagnostic, prognostic and therapeutic targets for solid tumors. Fluorescent dyes are commonly used as biological indicators, while photobleaching seriously hinders their application. In this study, we aim to generate a fluorescent silica nanoparticles (FSiNPs) theranostic system marked by the mouse endgolin (mEND) aptamer, YQ26. Methods: A highly specific YQ26 was selected by using gene-modified cell line-based SELEX technique. FSiNPs were prepared via the reverse microemulsion method. The YQ26-FSiNPs theranostic system was developed by combining YQ26 with the FSiNPs for in vivo tumor imaging, treatment and monitoring. Results: Both in vitro experiments (i.e. cellular and tumor tissue targeting assays) and in vivo animal studies (i.e. in vivo imaging and antitumor efficacy of YQ26-FSiNPs) clearly demonstrated that YQ26-FSiNPs could achieve prominently high targeting efficiency and therapeutic effects via aptamer YQ26-mediated binding to endoglin (END) molecule. Conclusion: This simple, sensitive, and specific YQ26-FSiNPs theranostic system has a great potential for clinical tumor targeting imaging and treatment.
Collapse
|
48
|
Ye H, Duan N, Wu S, Tan G, Gu H, Li J, Wang H, Wang Z. Orientation selection of broad-spectrum aptamers against lipopolysaccharides based on capture-SELEX by using magnetic nanoparticles. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2453-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
49
|
Affiliation(s)
- Wenhu Zhou
- Xiangya
School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
- Department
of Chemistry, Water Institute, and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Runjhun Saran
- Department
of Chemistry, Water Institute, and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Juewen Liu
- Department
of Chemistry, Water Institute, and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
50
|
Romero-López C, Berzal-Herranz A. Aptamers: Biomedical Interest and Applications. Pharmaceuticals (Basel) 2017; 10:ph10010032. [PMID: 28300769 PMCID: PMC5374436 DOI: 10.3390/ph10010032] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 03/14/2017] [Indexed: 02/05/2023] Open
Abstract
Aptamers are short DNA or RNA oligonucleotides specialized in the specific and efficient binding to a target molecule. They are obtained by in vitro selection or evolution processes. It was in 1990 that two independent research groups described the bases of a new in vitro technology for the identification of RNA molecules able to specifically bind to a target [1,2]. Tuerk and Gold established the principals of the in vitro selection process that was named SELEX (Systematic Evolution of Ligands by Exponential enrichment), which is based on iterative cycles of binding, partitioning, and amplification of oligonucleotides from a pool of variant sequences [2]. Ellington and Szostak coined the term aptamer to define the selected molecules by the application of this method [1]. To date, numerous reports have described the isolation of aptamers directed against a great variety of targets covering a wide diversity of molecules varying in nature, size, and complexity ranging from ions to whole cells, including small molecules (e.g., aminoacids, nucleotides, antibiotics), peptides, proteins, nucleic acids, and viruses, among others (for example, see [3-6]). Modifications and optimization of the SELEX procedure aimed to get newly modified aptamers has also attracted much interest (examples can be found in [7,8]). These advances along with the parallel progresses in the nucleic acids chemistry and cellular delivery fields have allowed for the rise of a new hope in developing aptamers as efficient molecular tools for diagnostics and therapeutics (for recent comprehensive reviews, see [9-11]).
Collapse
Affiliation(s)
- Cristina Romero-López
- Instituto de Parasitología y Biomedicina "López-Neyra", (IPBLN-CSIC), 18016 Armilla, Granada, Spain.
| | - Alfredo Berzal-Herranz
- Instituto de Parasitología y Biomedicina "López-Neyra", (IPBLN-CSIC), 18016 Armilla, Granada, Spain.
| |
Collapse
|