1
|
Hajizadeh Y, Badmasti F, Oloomi M. Inhibition of the bla OXA-48 gene expression in Klebsiella pneumoniae by a plasmid carrying CRISPRi-Cas9 system. Gene 2024; 910:148332. [PMID: 38431235 DOI: 10.1016/j.gene.2024.148332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/06/2024] [Accepted: 02/28/2024] [Indexed: 03/05/2024]
Abstract
Antibiotic resistance is an increasing concern that threatens the effectiveness of treating bacterial infections. The spread of carbapenem resistant Klebsiella pneumoniae poses a significant threat to global public health. To combat this issue, the clustered regularly interspaced short palindromic repeats interference (CRISPRi) system is being developed. This system includes a single guide RNA (sgRNA) and a nuclease dead Cas9 (dCas9), which work together to downregulate gene expression. Our project involved the use of the CRISPRi system to reduce gene expression of the beta-lactamase oxacillin-48 (blaOXA-48) gene in K. pneumoniae. We designed a sgRNA and cloned it into pJMP1363 plasmid harboring the CRISPRi system. The pJMP1363-sgRNA construct was transformed in K. pneumoniae harboring the blaOXA-48 gene. The MIC test was used to evaluate the antimicrobial resistance, and quantitative real-time RT-PCR was used to confirm the inhibition of the OXA-48 producing K. pneumoniae harboring the pJMP1363-sgRNA construct expression. The Galleria mellonella larvae model was also utilized for in vivo assay. Following the transformation, the MIC test indicated a 4-fold reduction in meropenem resistance, and qRT-PCR analysis revealed a 60-fold decrease in the mRNA OXA-48 harboring the pJMP1363-sgRNA construct expression. Additionally, G. mellonella larvae infected with OXA-48 producing K. pneumoniae harboring the pJMP1363-sgRNA showed higher survival rates. Based on the findings, it can be concluded that the CRISPR interference technique has successfully reduced antibiotic resistance and virulence in the K. pneumoniae harboring the blaOXA-48 gene.
Collapse
Affiliation(s)
- Yeganeh Hajizadeh
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Farzad Badmasti
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
| | - Mana Oloomi
- Department of Molecular Biology, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
2
|
Sidarta M, Lorente Martín AI, Monsalve A, Marinho Righetto G, Schäfer AB, Wenzel M. Lipid phase separation impairs membrane thickness sensing by the Bacillus subtilis sensor kinase DesK. Microbiol Spectr 2024; 12:e0392523. [PMID: 38717171 PMCID: PMC11237406 DOI: 10.1128/spectrum.03925-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 04/08/2024] [Indexed: 06/06/2024] Open
Abstract
Membrane fluidity and thickness have emerged as crucial factors for the activity of and resistance to several antimicrobials. However, the lack of tools to study membrane fluidity and, in particular, thickness in living bacteria limits our understanding of this interplay. The Bacillus subtilis histidine kinase/phosphatase DesK is a molecular sensor that directly detects membrane thickness. It controls activity of DesR, which regulates expression of the lipid desaturase Des, known for its role in cold adaptation and daptomycin susceptibility. We hypothesized that this property could be exploited to develop biosensors and reporters for antibiotic-induced changes in membrane fluidity and thickness. To test this, we designed three assays based on the des system: activation of the Pdes promoter as reporter for membrane thickening, localization of DesK-GFP(green-fluorescent protein) as proxy for rigidified membrane domains, and antibiotic sensitivity of des, desK, and desR deletion mutants as readout for the importance of membrane rigidification/thickening under the tested condition. While we could not confirm the suitability of the des system as reporter for antibiotic-induced changes in membrane thickness, we did observe that des expression is only activated by mild temperature shocks, likely due to partitioning of the sensor DesK into fluid membrane domains upon phase separation, precluding effective thickness sensing under harsh cold shock and antibiotic stress conditions. Similarly, we did not observe any sensitivity of the deletion mutants to either temperature or antibiotic stress, raising the question to what extent the des system contributes to fluidity adaptation under these conditions. IMPORTANCE The B. subtilis des system is a prime model for direct molecular membrane thickness sensor and, as such, has been well studied in vitro. Our study shows that our understanding of its function in vivo and its importance under temperature and antibiotic stress is still very limited. Specifically, our results suggest that (i) the des system senses very subtle membrane fluidity changes that escape detection by established fluidity reporters like laurdan; (ii) membrane thickness sensing by DesK is impaired by phase separation due to partitioning of the protein into the fluid phase; and (iii) fluidity adaptations by Des are too subtle to elicit growth defects under rigidifying conditions, raising the question of how much the des system contributes to adaptation of overall membrane fluidity.
Collapse
Affiliation(s)
- Margareth Sidarta
- Division of Chemical Biology, Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden
- Centre for Antibiotic Resistance Research in Gothenburg (CARe), Gothenburg, Sweden
| | - Ana I. Lorente Martín
- Division of Chemical Biology, Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden
| | - Anuntxi Monsalve
- Division of Chemical Biology, Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden
| | - Gabriela Marinho Righetto
- Division of Chemical Biology, Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden
- Centre for Antibiotic Resistance Research in Gothenburg (CARe), Gothenburg, Sweden
| | - Ann-Britt Schäfer
- Division of Chemical Biology, Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden
- Centre for Antibiotic Resistance Research in Gothenburg (CARe), Gothenburg, Sweden
| | - Michaela Wenzel
- Division of Chemical Biology, Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden
- Centre for Antibiotic Resistance Research in Gothenburg (CARe), Gothenburg, Sweden
| |
Collapse
|
3
|
Kes MB, Wang B, van Ulsen P, Hamoen LW, Luirink J. Development of a split-luciferase assay to establish optimal protein secretion conditions for protein production by Bacillus subtilis. MICROBIOLOGY (READING, ENGLAND) 2024; 170:001460. [PMID: 38847798 PMCID: PMC11261832 DOI: 10.1099/mic.0.001460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 04/26/2024] [Indexed: 07/24/2024]
Abstract
Bacillus subtilis is a Gram-positive bacterium that is frequently used in the bioindustry for the production of various proteins, because of its superior protein secretion capacities. To determine optimal conditions for protein secretion by B. subtilis, a quick and sensitive method for measuring protein secretion is crucial. A fast and universal assay is most useful for detecting diverse proteins in a high-throughput manner. In this study, we introduce a split-luciferase-based method for measuring protein secretion by B. subtilis. The NanoBiT system was used to monitor secretion of four different proteins: xylanase A, amylase M, protein glutaminase A, and GFP nanobody. Our findings underscore the split-luciferase system as a quick, sensitive, and user-friendly method.
Collapse
Affiliation(s)
- Mariah B.M.J. Kes
- Molecular Microbiology, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
| | - Biwen Wang
- Bacterial Cell Biology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Peter van Ulsen
- Molecular Microbiology, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
| | - Leendert W. Hamoen
- Bacterial Cell Biology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Joen Luirink
- Molecular Microbiology, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
| |
Collapse
|
4
|
Rajacharya GH, Sharma A, Yazdani SS. Proteomics and metabolic burden analysis to understand the impact of recombinant protein production in E. coli. Sci Rep 2024; 14:12271. [PMID: 38806637 PMCID: PMC11133349 DOI: 10.1038/s41598-024-63148-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 05/24/2024] [Indexed: 05/30/2024] Open
Abstract
The impact of recombinant protein production (RPP) on host cells and the metabolic burden associated with it undermine the efficiency of the production system. This study utilized proteomics to investigate the dynamics of parent and recombinant cells induced at different time points for RPP. The results revealed significant changes in both transcriptional and translational machinery that may have impacted the metabolic burden, growth rate of the culture and the RPP. The timing of protein synthesis induction also played a critical role in the fate of the recombinant protein within the host cell, affecting protein and product yield. The study identified significant differences in the expression of proteins involved in fatty acid and lipid biosynthesis pathways between two E. coli host strains (M15 and DH5⍺), with the E. coli M15 strain demonstrating superior expression characteristics for the recombinant protein. Overall, these findings contribute to the knowledge base for rational strain engineering for optimized recombinant protein production.
Collapse
Affiliation(s)
- Girish H Rajacharya
- Microbial Engineering Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi, 110067, India
- DBT-ICGEB Centre for Advanced Bio-Energy Research, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
- School of Interdisciplinary Research (SIRe), Indian Institute of Technology, New Delhi, India
| | - Ashima Sharma
- DBT-ICGEB Centre for Advanced Bio-Energy Research, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
- Department of Life Sciences, J.C. Bose University of Science and Technology, YMCA, Faridabad, Haryana, India
| | - Syed Shams Yazdani
- Microbial Engineering Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi, 110067, India.
- DBT-ICGEB Centre for Advanced Bio-Energy Research, International Centre for Genetic Engineering and Biotechnology, New Delhi, India.
| |
Collapse
|
5
|
Krishna S, Jung ST, Lee EY. Escherichia coli and Pichia pastoris: microbial cell-factory platform for -full-length IgG production. Crit Rev Biotechnol 2024:1-23. [PMID: 38797692 DOI: 10.1080/07388551.2024.2342969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 03/18/2024] [Indexed: 05/29/2024]
Abstract
Owing to the unmet demand, the pharmaceutical industry is investigating an alternative host to mammalian cells to produce antibodies for a variety of therapeutic and research applications. Regardless of some disadvantages, Escherichia coli and Pichia pastoris are the preferred microbial hosts for antibody production. Despite the fact that the production of full-length antibodies has been successfully demonstrated in E. coli, which has mostly been used to produce antibody fragments, such as: antigen-binding fragments (Fab), single-chain fragment variable (scFv), and nanobodies. In contrast, Pichia, a eukaryotic microbial host, is mostly used to produce glycosylated full-length antibodies, though hypermannosylated glycan is a major challenge. Advanced strategies, such as the introduction of human-like glycosylation in endotoxin-edited E. coli and cell-free system-based glycosylation, are making progress in creating human-like glycosylation profiles of antibodies in these microbes. This review begins by explaining the structural and functional requirements of antibodies and continues by describing and analyzing the potential of E. coli and P. pastoris as hosts for providing a favorable environment to create a fully functional antibody. In addition, authors compare these microbes on certain features and predict their future in antibody production. Briefly, this review analyzes, compares, and highlights E. coli and P. pastoris as potential hosts for antibody production.
Collapse
Affiliation(s)
- Shyam Krishna
- Department of Chemical Engineering (BK21 FOUR Integrated Engineering Program), Kyung Hee University, Yongin-si, Gyeonggi-do, Republic of Korea
| | - Sang Taek Jung
- BK21 Graduate Program, Department of Biomedical Sciences, Graduate School, Korea University, Seoul, Republic of Korea
| | - Eun Yeol Lee
- Department of Chemical Engineering (BK21 FOUR Integrated Engineering Program), Kyung Hee University, Yongin-si, Gyeonggi-do, Republic of Korea
| |
Collapse
|
6
|
Linnik D, Maslov I, Punter CM, Poolman B. Dynamic structure of E. coli cytoplasm: supramolecular complexes and cell aging impact spatial distribution and mobility of proteins. Commun Biol 2024; 7:508. [PMID: 38678067 PMCID: PMC11055878 DOI: 10.1038/s42003-024-06216-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 04/18/2024] [Indexed: 04/29/2024] Open
Abstract
Protein diffusion is a critical factor governing the functioning and organization of a cell's cytoplasm. In this study, we investigate the influence of (poly)ribosome distribution, cell aging, protein aggregation, and biomolecular condensate formation on protein mobility within the E. coli cytoplasm. We employ nanoscale single-molecule displacement mapping (SMdM) to determine the spatial distribution of the proteins and to meticulously track their diffusion. We show that the distribution of polysomes does not impact the lateral diffusion coefficients of proteins. However, the degradation of mRNA induced by rifampicin treatment leads to an increase in protein mobility within the cytoplasm. Additionally, we establish a significant correlation between cell aging, the asymmetric localization of protein aggregates and reduced diffusion coefficients at the cell poles. Notably, we observe variations in the hindrance of diffusion at the poles and the central nucleoid region for small and large proteins, and we reveal differences between the old and new pole of the cell. Collectively, our research highlights cellular processes and mechanisms responsible for spatially organizing the bacterial cytoplasm into domains with different structural features and apparent viscosity.
Collapse
Affiliation(s)
- Dmitrii Linnik
- Department of Biochemistry, University of Groningen, Groningen, Nijenborgh 4, 9747 AG, the Netherlands
| | - Ivan Maslov
- Department of Biochemistry, University of Groningen, Groningen, Nijenborgh 4, 9747 AG, the Netherlands
| | - Christiaan Michiel Punter
- Department of Biochemistry, University of Groningen, Groningen, Nijenborgh 4, 9747 AG, the Netherlands
| | - Bert Poolman
- Department of Biochemistry, University of Groningen, Groningen, Nijenborgh 4, 9747 AG, the Netherlands.
| |
Collapse
|
7
|
Tunsakul N, Wongsaroj L, Janchot K, Pongpirul K, Somboonna N. Non-significant influence between aerobic and anaerobic sample transport materials on gut (fecal) microbiota in healthy and fat-metabolic disorder Thai adults. PeerJ 2024; 12:e17270. [PMID: 38650647 PMCID: PMC11034497 DOI: 10.7717/peerj.17270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 03/29/2024] [Indexed: 04/25/2024] Open
Abstract
Background The appropriate sample handling for human fecal microbiota studies is essential to prevent changes in bacterial composition and quantities that could lead to misinterpretation of the data. Methods This study firstly identified the potential effect of aerobic and anaerobic fecal sample collection and transport materials on microbiota and quantitative microbiota in healthy and fat-metabolic disorder Thai adults aged 23-43 years. We employed metagenomics followed by 16S rRNA gene sequencing and 16S rRNA gene qPCR, to analyze taxonomic composition, alpha diversity, beta diversity, bacterial quantification, Pearson's correlation with clinical factors for fat-metabolic disorder, and the microbial community and species potential metabolic functions. Results Our study successfully obtained microbiota results in percent and quantitative compositions. Each sample exhibited quality sequences with a >99% Good's coverage index, and a relatively plateau rarefaction curve. Alpha diversity indices showed no statistical difference in percent and quantitative microbiota OTU richness and evenness, between aerobic and anaerobic sample transport materials. Obligate and facultative anaerobic species were analyzed and no statistical difference was observed. Supportively, the beta diversity analysis by non-metric multidimensional scale (NMDS) constructed using various beta diversity coefficients showed resembling microbiota community structures between aerobic and anaerobic sample transport groups (P = 0.86). On the other hand, the beta diversity could distinguish microbiota community structures between healthy and fat-metabolic disorder groups (P = 0.02), along with Pearson's correlated clinical parameters (i.e., age, liver stiffness, GGT, BMI, and TC), the significantly associated bacterial species and their microbial metabolic functions. For example, genera such as Ruminococcus and Bifidobacterium in healthy human gut provide functions in metabolisms of cofactors and vitamins, biosynthesis of secondary metabolites against gut pathogens, energy metabolisms, digestive system, and carbohydrate metabolism. These microbial functional characteristics were also predicted as healthy individual biomarkers by LEfSe scores. In conclusion, this study demonstrated that aerobic sample collection and transport (<48 h) did not statistically affect the microbiota and quantitative microbiota analyses in alpha and beta diversity measurements. The study also showed that the short-term aerobic sample collection and transport still allowed fecal microbiota differentiation between healthy and fat-metabolic disorder subjects, similar to anaerobic sample collection and transport. The core microbiota were analyzed, and the findings were consistent. Moreover, the microbiota-related metabolic potentials and bacterial species biomarkers in healthy and fat-metabolic disorder were suggested with statistical bioinformatics (i.e., Bacteroides plebeius).
Collapse
Affiliation(s)
- Naruemon Tunsakul
- Program in Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Lampet Wongsaroj
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Kantima Janchot
- Center of Excellence in Preventive and Integrative Medicine (CE-PIM) and Department of Preventive and Social Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Krit Pongpirul
- Center of Excellence in Preventive and Integrative Medicine (CE-PIM) and Department of Preventive and Social Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Naraporn Somboonna
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- Microbiome Research Unit for Probiotics in Food and Cosmetics, Chulalongkorn University, Bangkok, Thailand
- Omics Sciences and Bioinformatics Center, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- Multi-Omics for Functional Products in Food, Cosmetics and Animals Research Unit, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
8
|
Girardin Y, Galle M, Vanden Abeele Y, De Greve H, Loris R. Evaluation of different strategies to produce Vibrio cholerae ParE2 toxin. Protein Expr Purif 2024; 215:106403. [PMID: 37977515 DOI: 10.1016/j.pep.2023.106403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/08/2023] [Accepted: 11/12/2023] [Indexed: 11/19/2023]
Abstract
Toxin-antitoxin (TA) systems are small operons that are omnipresent in bacteria and archaea with suggested roles in stabilization of mobile genetic elements, bacteriophage protection, stress response and possibly persister formation. A major bottleneck in the study of TA toxins is the production of sufficient amounts of well-folded, functional protein. Here we examine alternative approaches for obtaining the VcParE2 toxin from Vibrio cholerae. VcParE2 can be successfully produced via bacterial expression in presence of its cognate antitoxin VcParD2, followed by on-column unfolding and refolding. Alternatively, the toxin can be expressed in Spodoptera frugiperda (Sf9) insect cells. The latter requires disruption of the VcparE2 gene via introduction of an insect cell intron. Both methods provide protein with similar structural and functional characteristics.
Collapse
Affiliation(s)
- Yana Girardin
- Molecular Recognition Unit, Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium; Center for Structural Biology, Vlaams Instituut voor Biotechnologie, Pleinlaan 2, 1050, Brussels, Belgium
| | - Margot Galle
- Molecular Recognition Unit, Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium; Center for Structural Biology, Vlaams Instituut voor Biotechnologie, Pleinlaan 2, 1050, Brussels, Belgium
| | - Yaël Vanden Abeele
- Molecular Recognition Unit, Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium
| | - Henri De Greve
- Molecular Recognition Unit, Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium
| | - Remy Loris
- Molecular Recognition Unit, Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium; Center for Structural Biology, Vlaams Instituut voor Biotechnologie, Pleinlaan 2, 1050, Brussels, Belgium.
| |
Collapse
|
9
|
Rizzo SM, Vergna LM, Alessandri G, Lee C, Fontana F, Lugli GA, Carnevali L, Bianchi MG, Barbetti M, Taurino G, Sgoifo A, Bussolati O, Turroni F, van Sinderen D, Ventura M. GH136-encoding gene (perB) is involved in gut colonization and persistence by Bifidobacterium bifidum PRL2010. Microb Biotechnol 2024; 17:e14406. [PMID: 38271233 PMCID: PMC10884991 DOI: 10.1111/1751-7915.14406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 12/21/2023] [Accepted: 12/26/2023] [Indexed: 01/27/2024] Open
Abstract
Bifidobacteria are commensal microorganisms that typically inhabit the mammalian gut, including that of humans. As they may be vertically transmitted, they commonly colonize the human intestine from the very first day following birth and may persist until adulthood and old age, although generally at a reduced relative abundance and prevalence compared to infancy. The ability of bifidobacteria to persist in the human intestinal environment has been attributed to genes involved in adhesion to epithelial cells and the encoding of complex carbohydrate-degrading enzymes. Recently, a putative mucin-degrading glycosyl hydrolase belonging to the GH136 family and encoded by the perB gene has been implicated in gut persistence of certain bifidobacterial strains. In the current study, to better characterize the function of this gene, a comparative genomic analysis was performed, revealing the presence of perB homologues in just eight bifidobacterial species known to colonize the human gut, including Bifidobacterium bifidum and Bifidobacterium longum subsp. longum strains, or in non-human primates. Mucin-mediated growth and adhesion to human intestinal cells, in addition to a rodent model colonization assay, were performed using B. bifidum PRL2010 as a perB prototype and its isogenic perB-insertion mutant. These results demonstrate that perB inactivation reduces the ability of B. bifidum PRL2010 to grow on and adhere to mucin, as well as to persist in the rodent gut niche. These results corroborate the notion that the perB gene is one of the genetic determinants involved in the persistence of B. bifidum PRL2010 in the human gut.
Collapse
Affiliation(s)
- Sonia Mirjam Rizzo
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental SustainabilityUniversity of ParmaParmaItaly
| | - Laura Maria Vergna
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental SustainabilityUniversity of ParmaParmaItaly
| | - Giulia Alessandri
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental SustainabilityUniversity of ParmaParmaItaly
| | - Ciaran Lee
- APC Microbiome Institute and School of Microbiology, Bioscience InstituteNational University of IrelandCorkIreland
| | - Federico Fontana
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental SustainabilityUniversity of ParmaParmaItaly
- GenProbio srlParmaItaly
| | - Gabriele Andrea Lugli
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental SustainabilityUniversity of ParmaParmaItaly
- Interdepartmental Research Centre “Microbiome Research Hub”University of ParmaParmaItaly
| | - Luca Carnevali
- Interdepartmental Research Centre “Microbiome Research Hub”University of ParmaParmaItaly
- Stress Physiology Lab, Department of Chemistry, Life Sciences and Environmental SustainabilityUniversity of ParmaParmaItaly
| | - Massimiliano G. Bianchi
- Interdepartmental Research Centre “Microbiome Research Hub”University of ParmaParmaItaly
- Laboratory of General Pathology, Department of Medicine and SurgeryUniversity of ParmaParmaItaly
| | - Margherita Barbetti
- Stress Physiology Lab, Department of Chemistry, Life Sciences and Environmental SustainabilityUniversity of ParmaParmaItaly
| | - Giuseppe Taurino
- Interdepartmental Research Centre “Microbiome Research Hub”University of ParmaParmaItaly
- Laboratory of General Pathology, Department of Medicine and SurgeryUniversity of ParmaParmaItaly
| | - Andrea Sgoifo
- Interdepartmental Research Centre “Microbiome Research Hub”University of ParmaParmaItaly
- Stress Physiology Lab, Department of Chemistry, Life Sciences and Environmental SustainabilityUniversity of ParmaParmaItaly
| | - Ovidio Bussolati
- Interdepartmental Research Centre “Microbiome Research Hub”University of ParmaParmaItaly
- Laboratory of General Pathology, Department of Medicine and SurgeryUniversity of ParmaParmaItaly
| | - Francesca Turroni
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental SustainabilityUniversity of ParmaParmaItaly
- Interdepartmental Research Centre “Microbiome Research Hub”University of ParmaParmaItaly
| | - Douwe van Sinderen
- APC Microbiome Institute and School of Microbiology, Bioscience InstituteNational University of IrelandCorkIreland
| | - Marco Ventura
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental SustainabilityUniversity of ParmaParmaItaly
- Interdepartmental Research Centre “Microbiome Research Hub”University of ParmaParmaItaly
| |
Collapse
|
10
|
Hussein SM, Sofoluwe A, Paleja A, Duhme-Klair A, Thomas MS. Identification of a system for hydroxamate xenosiderophore-mediated iron transport in Burkholderia cenocepacia. MICROBIOLOGY (READING, ENGLAND) 2024; 170:001425. [PMID: 38189440 PMCID: PMC10866019 DOI: 10.1099/mic.0.001425] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 12/19/2023] [Indexed: 01/09/2024]
Abstract
One of the mechanisms employed by the opportunistic pathogen Burkholderia cenocepacia to acquire the essential element iron is the production and release of two ferric iron chelating compounds (siderophores), ornibactin and pyochelin. Here we show that B. cenocepacia is also able to take advantage of a range of siderophores produced by other bacteria and fungi ('xenosiderophores') that chelate iron exclusively by means of hydroxamate groups. These include the tris-hydroxamate siderophores ferrioxamine B, ferrichrome, ferricrocin and triacetylfusarinine C, the bis-hydroxamates alcaligin and rhodotorulic acid, and the monohydroxamate siderophore cepabactin. We also show that of the 24 TonB-dependent transporters encoded by the B. cenocepacia genome, two (FhuA and FeuA) are involved in the uptake of hydroxamate xenosiderophores, with FhuA serving as the exclusive transporter of iron-loaded ferrioxamine B, triacetylfusarinine C, alcaligin and rhodotorulic acid, while both FhuA and FeuA are able to translocate ferrichrome-type siderophores across the outer membrane. Finally, we identified FhuB, a putative cytoplasmic membrane-anchored ferric-siderophore reductase, as being obligatory for utilization of all of the tested bis- and tris-hydroxamate xenosiderophores apart from alcaligin.
Collapse
Affiliation(s)
- Syakira Mohammed Hussein
- Division of Clinical Medicine, School of Medicine and Population Health, University of Sheffield, Medical School, Beech Hill Road, Sheffield S10 2RX, UK
| | - Aderonke Sofoluwe
- Division of Clinical Medicine, School of Medicine and Population Health, University of Sheffield, Medical School, Beech Hill Road, Sheffield S10 2RX, UK
- Department of Immunobiology, School of Immunology & Microbial Sciences, King’s College London, London WC2R 2LS, UK
| | - Ameya Paleja
- Division of Clinical Medicine, School of Medicine and Population Health, University of Sheffield, Medical School, Beech Hill Road, Sheffield S10 2RX, UK
| | - Anne Duhme-Klair
- Department of Chemistry, University of York, Heslington, York YO10 5DD, UK
| | - Mark S. Thomas
- Division of Clinical Medicine, School of Medicine and Population Health, University of Sheffield, Medical School, Beech Hill Road, Sheffield S10 2RX, UK
| |
Collapse
|
11
|
Cronan JE. Two neglected but valuable genetic tools for Escherichia coli and other bacteria: In vivo cosmid packaging and inducible plasmid replication. Mol Microbiol 2023; 120:783-790. [PMID: 37770255 DOI: 10.1111/mmi.15171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/13/2023] [Accepted: 09/17/2023] [Indexed: 09/30/2023]
Abstract
In physiology and synthetic biology, it can be advantageous to introduce a gene into a naive bacterial host under conditions in which all cells receive the gene and remain fully functional. This cannot be done by the usual chemical transformation and electroporation methods due to low efficiency and cell death, respectively. However, in vivo packaging of plasmids (called cosmids) that contain the 223 bp cos site of phage λ results in phage particles that contain concatemers of the cosmid that can be transduced into all cells of a culture. An historical shortcoming of in vivo packaging of cosmids was inefficient packaging and contamination of the particles containing cosmid DNA with a great excess of infectious λ phage. Manipulation of the packaging phage and the host has eliminated these shortcomings resulting in particles that contain only cosmid DNA. Plasmids have the drawback that they can be difficult to remove from cells. Plasmids with conditional replication provide a means to "cure" plasmids from cells. The prevalent conditional replication plasmids are temperature-sensitive plasmids, which are cured at high growth temperature. However, inducible replication plasmids are in some cases more useful, especially since this approach has been applied to plasmids having diverse replication and compatibility properties.
Collapse
Affiliation(s)
- John E Cronan
- Departments of Microbiology and Biochemistry, University of Illinois, Urbana, Illinois, USA
| |
Collapse
|
12
|
Tan Y, Liang J, Lai M, Wan S, Luo X, Li F. Advances in synthetic biology toolboxes paving the way for mechanistic understanding and strain engineering of gut commensal Bacteroides spp. and Clostridium spp. Biotechnol Adv 2023; 69:108272. [PMID: 37844770 DOI: 10.1016/j.biotechadv.2023.108272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 10/10/2023] [Accepted: 10/13/2023] [Indexed: 10/18/2023]
Abstract
The gut microbiota plays a significant role in influencing human immunity, metabolism, development, and behavior by producing a wide range of metabolites. While there is accumulating data on several microbiota-derived small molecules that contribute to host health and disease, our knowledge regarding the molecular mechanisms underlying metabolite-mediated microbe-host interactions remains limited. This is primarily due to the lack of efficient genetic tools for most commensal bacteria, especially those belonging to the dominant phyla Bacteroides spp. and Clostridium spp., which hinders the application of synthetic biology to these gut commensal bacteria. In this review, we provide an overview of recent advances in synthetic biology tools developed for the two dominant genera, as well as their applications in deciphering the mechanisms of microbe-host interactions mediated by microbiota-derived small molecules. We also discuss the potential biomedical applications of engineering commensal bacteria using these toolboxes. Finally, we share our perspective on the future development of synthetic biology tools for a better understanding of small molecule-mediated microbe-host interactions and their engineering for biomedical purposes.
Collapse
Affiliation(s)
- Yang Tan
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao C1 Refinery Engineering Research Center, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; Shandong Energy Institute, Qingdao 266101, China; Qingdao New Energy Shandong Laboratory, Qingdao 266101, China.
| | - Jing Liang
- Center for Synthetic Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Mingchi Lai
- College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Sai Wan
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao C1 Refinery Engineering Research Center, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; Shandong Energy Institute, Qingdao 266101, China; Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
| | - Xiaozhou Luo
- Center for Synthetic Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Fuli Li
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao C1 Refinery Engineering Research Center, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; Shandong Energy Institute, Qingdao 266101, China; Qingdao New Energy Shandong Laboratory, Qingdao 266101, China.
| |
Collapse
|
13
|
Wang B, van der Kloet F, Hamoen LW. Induction of the CtsR regulon improves Xylanase production in Bacillus subtilis. Microb Cell Fact 2023; 22:231. [PMID: 37946188 PMCID: PMC10633939 DOI: 10.1186/s12934-023-02239-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 10/27/2023] [Indexed: 11/12/2023] Open
Abstract
BACKGROUND The bacterium Bacillus subtilis is extensively used for the commercial production of enzymes due to its efficient protein secretion capacity. However, the efficiency of secretion varies greatly between enzymes, and despite many years of research, optimization of enzyme production is still largely a matter of trial-and-error. Genome-wide transcriptome analysis seems a useful tool to identify relevant secretion bottlenecks, yet to this day, only a limited number of transcriptome studies have been published that focus on enzyme secretion in B. subtilis. Here, we examined the effect of high-level expression of the commercially important enzyme endo-1,4-β-xylanase XynA on the B. subtilis transcriptome using RNA-seq. RESULTS Using the novel gene-set analysis tool GINtool, we found a reduced activity of the CtsR regulon when XynA was overproduced. This regulon comprises several protein chaperone genes, including clpC, clpE and clpX, and is controlled by transcriptional repression. CtsR levels are directly controlled by regulated proteolysis, involving ClpC and its cognate protease ClpP. When we abolished this negative feedback, by inactivating the repressor CtsR, the XynA production increased by 25%. CONCLUSIONS Overproduction of enzymes can reduce the pool of Clp protein chaperones in B. subtilis, presumably due to negative feedback regulation. Breaking this feedback can improve enzyme production yields. Considering the conserved nature of Clp chaperones and their regulation, this method might benefit high-yield enzyme production in other organisms.
Collapse
Affiliation(s)
- Biwen Wang
- Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, C3.108, 1098 XH, Amsterdam, The Netherlands
| | - Frans van der Kloet
- Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, C3.108, 1098 XH, Amsterdam, The Netherlands
| | - Leendert W Hamoen
- Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, C3.108, 1098 XH, Amsterdam, The Netherlands.
| |
Collapse
|
14
|
Lauer S, Luo J, Lazar-Stefanita L, Zhang W, McCulloch LH, Fanfani V, Lobzaev E, Haase MA, Easo N, Zhao Y, Yu F, Cai J, Bader JS, Stracquadanio G, Boeke JD. Context-dependent neocentromere activity in synthetic yeast chromosome VIII. CELL GENOMICS 2023; 3:100437. [PMID: 38020969 PMCID: PMC10667555 DOI: 10.1016/j.xgen.2023.100437] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 07/20/2023] [Accepted: 10/11/2023] [Indexed: 12/01/2023]
Abstract
Pioneering advances in genome engineering, and specifically in genome writing, have revolutionized the field of synthetic biology, propelling us toward the creation of synthetic genomes. The Sc2.0 project aims to build the first fully synthetic eukaryotic organism by assembling the genome of Saccharomyces cerevisiae. With the completion of synthetic chromosome VIII (synVIII) described here, this goal is within reach. In addition to writing the yeast genome, we sought to manipulate an essential functional element: the point centromere. By relocating the native centromere sequence to various positions along chromosome VIII, we discovered that the minimal 118-bp CEN8 sequence is insufficient for conferring chromosomal stability at ectopic locations. Expanding the transplanted sequence to include a small segment (∼500 bp) of the CDEIII-proximal pericentromere improved chromosome stability, demonstrating that minimal centromeres display context-dependent functionality.
Collapse
Affiliation(s)
- Stephanie Lauer
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA
| | - Jingchuan Luo
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA
| | - Luciana Lazar-Stefanita
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA
| | - Weimin Zhang
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA
| | - Laura H. McCulloch
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA
| | - Viola Fanfani
- School of Biological Sciences, The University of Edinburgh, Edinburgh, UK
| | - Evgenii Lobzaev
- School of Biological Sciences, The University of Edinburgh, Edinburgh, UK
- School of Informatics, The University of Edinburgh, Edinburgh, UK
| | - Max A.B. Haase
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA
| | - Nicole Easo
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA
| | - Yu Zhao
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA
| | - Fangzhou Yu
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA
| | - Jitong Cai
- Department of Biomedical Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Joel S. Bader
- Department of Biomedical Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
| | | | - Jef D. Boeke
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA
- Department of Biomedical Engineering, NYU Tandon School of Engineering, Brooklyn, NY, USA
| |
Collapse
|
15
|
Cassidy CK, Qin Z, Frosio T, Gosink K, Yang Z, Sansom MSP, Stansfeld PJ, Parkinson JS, Zhang P. Structure of the native chemotaxis core signaling unit from phage E-protein lysed E. coli cells. mBio 2023; 14:e0079323. [PMID: 37772839 PMCID: PMC10653900 DOI: 10.1128/mbio.00793-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 08/09/2023] [Indexed: 09/30/2023] Open
Abstract
IMPORTANCE Bacterial chemotaxis is a ubiquitous behavior that enables cell movement toward or away from specific chemicals. It serves as an important model for understanding cell sensory signal transduction and motility. Characterization of the molecular mechanisms underlying chemotaxis is of fundamental interest and requires a high-resolution structural picture of the sensing machinery, the chemosensory array. In this study, we combine cryo-electron tomography and molecular simulation to present the complete structure of the core signaling unit, the basic building block of chemosensory arrays, from Escherichia coli. Our results provide new insight into previously poorly-resolved regions of the complex and offer a structural basis for designing new experiments to test mechanistic hypotheses.
Collapse
Affiliation(s)
- C. Keith Cassidy
- Diamond Light Source, Didcot, United Kingdom
- Department of Physics and Astronomy, University of Missouri-Columbia, Columbia, Missouri, USA
| | - Zhuan Qin
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | | | - Khoosheh Gosink
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, USA
| | | | - Mark S. P. Sansom
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | | | - John S. Parkinson
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, USA
| | - Peijun Zhang
- Diamond Light Source, Didcot, United Kingdom
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
- Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
16
|
Yang Z, Li Z, Li B, Bu R, Tan GY, Wang Z, Yan H, Xin Z, Zhang G, Li M, Xiang H, Zhang L, Wang W. A thermostable type I-B CRISPR-Cas system for orthogonal and multiplexed genetic engineering. Nat Commun 2023; 14:6193. [PMID: 37794017 PMCID: PMC10551041 DOI: 10.1038/s41467-023-41973-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 09/26/2023] [Indexed: 10/06/2023] Open
Abstract
Thermophilic cell factories have remarkably broad potential for industrial applications, but are limited by a lack of genetic manipulation tools and recalcitrance to transformation. Here, we identify a thermophilic type I-B CRISPR-Cas system from Parageobacillus thermoglucosidasius and find it displays highly efficient transcriptional repression or DNA cleavage activity that can be switched by adjusting crRNA length to less than or greater than 26 bp, respectively, without ablating Cas3 nuclease. We then develop an orthogonal tool for genome editing and transcriptional repression using this type I-B system in both thermophile and mesophile hosts. Empowered by this tool, we design a strategy to screen the genome-scale targets involved in transformation efficiency and established dynamically controlled supercompetent P. thermoglucosidasius cells with high efficiency ( ~ 108 CFU/μg DNA) by temporal multiplexed repression. We also demonstrate the construction of thermophilic riboflavin cell factory with hitherto highest titers in high temperature fermentation by genome-scale identification and combinatorial manipulation of multiple targets. This work enables diverse high-efficiency genetic manipulation in P. thermoglucosidasius and facilitates the engineering of thermophilic cell factories.
Collapse
Affiliation(s)
- Zhiheng Yang
- State Key Laboratory of Bioreactor Engineering, and School of Biotechnology, East China University of Science and Technology (ECUST), 200237, Shanghai, China
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, China
| | - Zilong Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, China
| | - Bixiao Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, China
| | - Ruihong Bu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, China
- School of Medicine and Pharmacy, Ocean University of China, 266003, Qingdao, China
| | - Gao-Yi Tan
- State Key Laboratory of Bioreactor Engineering, and School of Biotechnology, East China University of Science and Technology (ECUST), 200237, Shanghai, China
| | - Zhengduo Wang
- State Key Laboratory of Bioreactor Engineering, and School of Biotechnology, East China University of Science and Technology (ECUST), 200237, Shanghai, China
| | - Hao Yan
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, China
| | - Zhenguo Xin
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, China
| | - Guojian Zhang
- School of Medicine and Pharmacy, Ocean University of China, 266003, Qingdao, China
| | - Ming Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Hua Xiang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Lixin Zhang
- State Key Laboratory of Bioreactor Engineering, and School of Biotechnology, East China University of Science and Technology (ECUST), 200237, Shanghai, China.
| | - Weishan Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, China.
- University of Chinese Academy of Sciences, 100049, Beijing, China.
| |
Collapse
|
17
|
Nagel A, Leonard M, Maurus I, Starke J, Schmitt K, Valerius O, Harting R, Braus GH. The Frq-Frh Complex Light-Dependently Delays Sfl1-Induced Microsclerotia Formation in Verticillium dahliae. J Fungi (Basel) 2023; 9:725. [PMID: 37504714 PMCID: PMC10381341 DOI: 10.3390/jof9070725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/19/2023] [Accepted: 06/28/2023] [Indexed: 07/29/2023] Open
Abstract
The vascular plant pathogenic fungus Verticillium dahliae has to adapt to environmental changes outside and inside its host. V. dahliae harbors homologs of Neurospora crassa clock genes. The molecular functions and interactions of Frequency (Frq) and Frq-interacting RNA helicase (Frh) in controlling conidia or microsclerotia development were investigated in V. dahliae JR2. Fungal mutant strains carrying clock gene deletions, an FRH point mutation, or GFP gene fusions were analyzed on transcript, protein, and phenotypic levels as well as in pathogenicity assays on tomato plants. Our results support that the Frq-Frh complex is formed and that it promotes conidiation, but also that it suppresses and therefore delays V. dahliae microsclerotia formation in response to light. We investigated a possible link between the negative element Frq and positive regulator Suppressor of flocculation 1 (Sfl1) in microsclerotia formation to elucidate the regulatory molecular mechanism. Both Frq and Sfl1 are mainly present during the onset of microsclerotia formation with decreasing protein levels during further development. Induction of microsclerotia formation requires Sfl1 and can be delayed at early time points in the light through the Frq-Frh complex. Gaining further molecular knowledge on V. dahliae development will improve control of fungal growth and Verticillium wilt disease.
Collapse
Affiliation(s)
- Alexandra Nagel
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics and Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, Grisebachstr. 8, D-37077 Göttingen, Germany
| | - Miriam Leonard
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics and Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, Grisebachstr. 8, D-37077 Göttingen, Germany
| | - Isabel Maurus
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics and Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, Grisebachstr. 8, D-37077 Göttingen, Germany
| | - Jessica Starke
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics and Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, Grisebachstr. 8, D-37077 Göttingen, Germany
| | - Kerstin Schmitt
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics and Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, Grisebachstr. 8, D-37077 Göttingen, Germany
| | - Oliver Valerius
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics and Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, Grisebachstr. 8, D-37077 Göttingen, Germany
| | - Rebekka Harting
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics and Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, Grisebachstr. 8, D-37077 Göttingen, Germany
| | - Gerhard H Braus
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics and Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, Grisebachstr. 8, D-37077 Göttingen, Germany
| |
Collapse
|
18
|
Bird AR, Molloy JC, Hall EAH. Biocatalytic synthesis of 2'-deoxynucleotide 5'-triphosphates from bacterial genomic DNA: Proof of principle. Biotechnol Bioeng 2023; 120:1531-1544. [PMID: 36919278 PMCID: PMC10952841 DOI: 10.1002/bit.28374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/25/2023] [Accepted: 03/05/2023] [Indexed: 03/16/2023]
Abstract
2'-deoxynucleoside 5'-triphosphates (dNTPs) are the building blocks of DNA and are key reagents which are incorporated by polymerase enzymes during nucleic acid amplification techniques, such as polymerase chain reaction (PCR). These techniques are of high importance, not only in molecular biology research, but also in molecular diagnostics. dNTPs are generally produced by a bottom-up technique which relies on synthesis or isolation of purified small molecules like deoxynucleosides. However, the disproportionately high cost of dNTPs in low- and middle-income countries (LMICs) and the requirement for cold chain storage during international shipping makes an adequate supply of these molecules challenging. To reduce supply chain dependency and promote domestic manufacturing in LMICs, a unique top-down biocatalytic synthesis method is described to produce dNTPs. Readily available bacterial genomic DNA provides a crude source material to generate dNTPs and is extracted directly from Escherichia coli (step 1). Nuclease enzymes are then used to digest the genomic DNA creating monophosphorylated deoxynucleotides (dNMPs) (step 2). Design and recombinant production and characterization of E. coli nucleotide kinases is presented to further phosphorylate the monophosphorylated products to generate dNTPs (step 3). Direct use of the in-house produced dNTPs in nucleic acid amplification is shown (step 4) and their successful use as reagents in the application of PCR, thereby providing proof of principle for the future development of recombinant nucleases and design of a recombinant solid-state bioreactor for on-demand dNTP production.
Collapse
Affiliation(s)
- Anna R. Bird
- Chemical Engineering and BiotechnologyUniversity of CambridgeCambridgeUK
| | - Jennifer C. Molloy
- Chemical Engineering and BiotechnologyUniversity of CambridgeCambridgeUK
| | | |
Collapse
|
19
|
Bisaro F, Shuman HA, Feldman MF, Gebhardt MJ, Pukatzki S. Acinetobacter baumannii ATCC 17978 encodes a microcin system with antimicrobial properties for contact-independent competition. MICROBIOLOGY (READING, ENGLAND) 2023; 169:001346. [PMID: 37289493 PMCID: PMC10333792 DOI: 10.1099/mic.0.001346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 05/25/2023] [Indexed: 06/09/2023]
Abstract
Acinetobacter baumannii is a multidrug-resistant opportunistic pathogen that persists in the hospital environment and causes various clinical infections, primarily affecting immunocompromised patients. A. baumannii has evolved a wide range of mechanisms to compete with neighbouring bacteria. One such competition strategy depends on small secreted peptides called microcins, which exert antimicrobial effects in a contact-independent manner. Here, we report that A. baumannii ATCC 17978 (AB17978) encodes the class II microcin 17 978 (Mcc17978) with antimicrobial activity against closely related Acinetobacter, and surprisingly, also Escherichia coli strains. We identified the genetic locus encoding the Mcc17978 system in AB17978. Using classical bacterial genetic approaches, we determined that the molecular receptor of Mcc17978 in E. coli is the iron-catecholate transporter Fiu, and in Acinetobacter is Fiu's homolog, PiuA. In bacteria, the Ferric uptake regulator (Fur) positively regulates siderophore systems and microcin systems under iron-deprived environments. We found that the Mcc17978 system is upregulated under low-iron conditions commonly found in the host environment and identified a putative Fur binding site upstream of the mcc17978 gene. When we tested the antimicrobial activity of Mcc17978 under different levels of iron availability, we observed that low iron levels not only triggered transcriptional induction of the microcin, but also led to enhanced microcin activity. Taken together, our findings suggest that A. baumannii may utilize microcins to compete with other microbes for resources during infection.
Collapse
Affiliation(s)
- Fabiana Bisaro
- Department of Biology, The City College, City University of New York, New York, NY 10031, USA
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, St. Louis MO 63110, USA
| | - Howard A. Shuman
- Department of Microbiology, The University of Chicago, Chicago, IL 60637, USA
- Present address: P.O. Box 1088, Sheffield, MA 01257, USA
| | - Mario F. Feldman
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, St. Louis MO 63110, USA
| | - Michael J. Gebhardt
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa 52242, USA
| | - Stefan Pukatzki
- Department of Biology, The City College, City University of New York, New York, NY 10031, USA
| |
Collapse
|
20
|
Winterhalter C, Pelliciari S, Stevens D, Fenyk S, Marchand E, Cronin N, Soultanas P, Costa TD, Ilangovan A, Murray H. The DNA replication initiation protein DnaD recognises a specific strand of the Bacillus subtilis chromosome origin. Nucleic Acids Res 2023; 51:4322-4340. [PMID: 37093985 PMCID: PMC10201434 DOI: 10.1093/nar/gkad277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 03/28/2023] [Accepted: 04/04/2023] [Indexed: 04/26/2023] Open
Abstract
Genome replication is a fundamental biological activity shared by all organisms. Chromosomal replication proceeds bidirectionally from origins, requiring the loading of two helicases, one for each replisome. However, the molecular mechanisms underpinning helicase loading at bacterial chromosome origins (oriC) are unclear. Here we investigated the essential DNA replication initiation protein DnaD in the model organism Bacillus subtilis. A set of DnaD residues required for ssDNA binding was identified, and photo-crosslinking revealed that this ssDNA binding region interacts preferentially with one strand of oriC. Biochemical and genetic data support the model that DnaD recognizes a new single-stranded DNA (ssDNA) motif located in oriC, the DnaD Recognition Element (DRE). Considered with single particle cryo-electron microscopy (cryo-EM) imaging of DnaD, we propose that the location of the DRE within oriC orchestrates strand-specific recruitment of helicase during DNA replication initiation. These findings significantly advance our mechanistic understanding of bidirectional replication from a bacterial chromosome origin.
Collapse
Affiliation(s)
- Charles Winterhalter
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle Upon Tyne NE2 4AX, UK
| | - Simone Pelliciari
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle Upon Tyne NE2 4AX, UK
| | - Daniel Stevens
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle Upon Tyne NE2 4AX, UK
| | - Stepan Fenyk
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle Upon Tyne NE2 4AX, UK
| | - Elie Marchand
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle Upon Tyne NE2 4AX, UK
| | - Nora B Cronin
- LonCEM, London Consortium for Cryo-EM, The Francis Crick Institute, London NW1 1AT, UK
| | - Panos Soultanas
- Biodiscovery Institute, School of Chemistry, University of Nottingham, Nottingham NG7 2RD, UK
| | - Tiago R D Costa
- Centre for Bacterial Resistance Biology, Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Aravindan Ilangovan
- Department of Biochemistry, School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - Heath Murray
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle Upon Tyne NE2 4AX, UK
| |
Collapse
|
21
|
Mejias-Gomez O, Madsen AV, Pedersen LE, Kristensen P, Goletz S. Eliminating OFF-frame clones in randomized gene libraries: An improved split β-lactamase enrichment system. N Biotechnol 2023; 75:13-20. [PMID: 36889578 DOI: 10.1016/j.nbt.2023.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/20/2023] [Accepted: 03/04/2023] [Indexed: 03/08/2023]
Abstract
Large, randomized libraries are a key technology for many biotechnological applications. While genetic diversity is the main parameter most libraries direct their resources on, less focus is devoted to ensuring functional IN-frame expression. This study describes a faster and more efficient system based on a split β-lactamase complementation for removal of OFF-frame clones and increase of functional diversity, suitable for construction of randomized libraries. The gene of interest is inserted between two fragments of the β-lactamase gene, conferring resistance to β-lactam drugs only upon expression of an inserted IN-frame gene without stop codons or frameshifts. The preinduction-free system was capable of eliminating OFF-frame clones in starting mixtures of as little as 1% IN-frame clones and enriching to about 70% IN-frame clones, even when their starting rate was as low as 0.001%. The curation system was verified by constructing a single-domain antibody phage display library using trinucleotide phosphoramidites for randomizing a complementary determining region, while eliminating OFF-frame clones and maximizing functional diversity.
Collapse
Affiliation(s)
- Oscar Mejias-Gomez
- Department of Biotechnology and Biomedicine, Section for Protein Science and Biotherapeutics, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Andreas V Madsen
- Department of Biotechnology and Biomedicine, Section for Protein Science and Biotherapeutics, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Lasse E Pedersen
- Department of Biotechnology and Biomedicine, Section for Protein Science and Biotherapeutics, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Peter Kristensen
- Department of Chemistry and Bioscience, Section for Bioscience and Engineering, Aalborg University, Aalborg, Denmark
| | - Steffen Goletz
- Department of Biotechnology and Biomedicine, Section for Protein Science and Biotherapeutics, Technical University of Denmark, Kongens Lyngby, Denmark.
| |
Collapse
|
22
|
Classical Recombinant DNA Cloning. Methods Mol Biol 2023; 2633:1-24. [PMID: 36853452 DOI: 10.1007/978-1-0716-3004-4_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
Traditional molecular cloning involves a series of linked experimental steps performed with the overall goal of isolating ("cloning") a specific DNA sequence-often a gene. The main purpose of cloning is to study either that DNA sequence or the RNA or protein product it encodes. Building on key enzymatic discoveries in the late 1960s, gene cloning was pioneered in the early 1970s. Since then, DNA cloning and manipulation have been used in every area of biological and biomedical research, from molecular genetics, structural biology, and developmental biology to neurobiology, ancient DNA studies, and immunology. It is a versatile technique that can be applied to a variety of starting DNA types and lengths, including cDNAs, genes, gene fragments, chromosomal regions, or shorter fragments such as PCR products and functional control regions such as enhancers or promoters. The starting DNA can originate from any cell, tissue, or organism. In this chapter we will cover traditional ("classic") molecular cloning strategy. This comprises six linked stages in which (1) PCR is used to amplify a DNA region of interest that is then (2) digested with restriction enzymes, alongside a selected vector, to produce complementary ends crucial for the two molecules to be (3) ligated by an ATP-dependent DNA ligase, creating a recombinant DNA molecule. The recombinant DNA is then (4) introduced into competent bacterial cells by transformation and (5) grown on a selective agar media, followed by (6) colony-PCR for screening purposes. We provide a worked example to demonstrate the cloning of an average-size gene (in this case the 2 kb DNA ligase A gene) from E. coli into a common plasmid expression vector. We have included six color figures and two tables to depict the key stages of a classical molecular cloning protocol. If you are cloning a segment of DNA or a gene, remember that each DNA cloning experiment is unique in terms of sequence, length, and experimental purpose. However, the principles of traditional cloning covered in this chapter are the same for any DNA sequence; we have included a detailed notes section, so you should easily be able to transfer them to your own work. Some of the following chapters in this volume will cover other, more recently developed, cloning protocols.
Collapse
|
23
|
Schmitt I, Meyer F, Krahn I, Henke NA, Peters-Wendisch P, Wendisch VF. From Aquaculture to Aquaculture: Production of the Fish Feed Additive Astaxanthin by Corynebacterium glutamicum Using Aquaculture Sidestream. Molecules 2023; 28:molecules28041996. [PMID: 36838984 PMCID: PMC9958746 DOI: 10.3390/molecules28041996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/31/2023] [Accepted: 02/17/2023] [Indexed: 02/24/2023] Open
Abstract
Circular economy holds great potential to minimize the use of finite resources, and reduce waste formation by the creation of closed-loop systems. This also pertains to the utilization of sidestreams in large-scale biotechnological processes. A flexible feedstock concept has been established for the industrially relevant Corynebacterium glutamicum, which naturally synthesizes the yellow C50 carotenoid decaprenoxanthin. In this study, we aimed to use a preprocessed aquaculture sidestream for production of carotenoids, including the fish feed ingredient astaxanthin by C. glutamicum. The addition of a preprocessed aquaculture sidestream to the culture medium did not inhibit growth, obviated the need for addition of several components of the mineral salt's medium, and notably enhanced production of astaxanthin by an engineered C. glutamicum producer strain. Improved astaxanthin production was scaled to 2 L bioreactor fermentations. This strategy to improve astaxanthin production was shown to be transferable to production of several native and non-native carotenoids. Thus, this study provides a proof-of-principle for improving carotenoid production by C. glutamicum upon supplementation of a preprocessed aquaculture sidestream. Moreover, in the case of astaxanthin production it may be a potential component of a circular economy in aquaculture.
Collapse
|
24
|
Maurus I, Harting R, Herrfurth C, Starke J, Nagel A, Mohnike L, Chen YY, Schmitt K, Bastakis E, Süß MT, Leonard M, Heimel K, Valerius O, Feussner I, Kronstad JW, Braus GH. Verticillium dahliae Vta3 promotes ELV1 virulence factor gene expression in xylem sap, but tames Mtf1-mediated late stages of fungus-plant interactions and microsclerotia formation. PLoS Pathog 2023; 19:e1011100. [PMID: 36716333 PMCID: PMC9910802 DOI: 10.1371/journal.ppat.1011100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 02/09/2023] [Accepted: 01/04/2023] [Indexed: 02/01/2023] Open
Abstract
Verticillium transcription activator of adhesion 3 (Vta3) is required for plant root colonization and pathogenicity of the soil-borne vascular fungus Verticillium dahliae. RNA sequencing identified Vta3-dependent genetic networks required for growth in tomato xylem sap. Vta3 affects the expression of more than 1,000 transcripts, including candidates with predicted functions in virulence and morphogenesis such as Egh16-like virulence factor 1 (Elv1) and Master transcription factor 1 (Mtf1). The genes encoding Elv1 and Mtf1 were deleted and their functions in V. dahliae growth and virulence on tomato (Solanum lycopersicum) plants were investigated using genetics, plant infection experiments, gene expression studies and phytohormone analyses. Vta3 contributes to virulence by promoting ELV1 expression, which is dispensable for vegetative growth and conidiation. Vta3 decreases disease symptoms mediated by Mtf1 in advanced stages of tomato plant colonization, while Mtf1 induces the expression of fungal effector genes and tomato pathogenesis-related protein genes. The levels of pipecolic and salicylic acids functioning in tomato defense signaling against (hemi-) biotrophic pathogens depend on the presence of MTF1, which promotes the formation of resting structures at the end of the infection cycle. In summary, the presence of VTA3 alters gene expression of virulence factors and tames the Mtf1 genetic subnetwork for late stages of plant disease progression and subsequent survival of the fungus in the soil.
Collapse
Affiliation(s)
- Isabel Maurus
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics and Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Goettingen, Germany
| | - Rebekka Harting
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics and Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Goettingen, Germany
| | - Cornelia Herrfurth
- Department of Plant Biochemistry and Service Unit for Metabolomics and Lipidomics, Albrecht-von-Haller-Institute for Plant Sciences and Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Goettingen, Germany
| | - Jessica Starke
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics and Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Goettingen, Germany
| | - Alexandra Nagel
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics and Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Goettingen, Germany
| | - Lennart Mohnike
- Department of Plant Biochemistry and Service Unit for Metabolomics and Lipidomics, Albrecht-von-Haller-Institute for Plant Sciences and Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Goettingen, Germany
| | - Ying-Yu Chen
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics and Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Goettingen, Germany
| | - Kerstin Schmitt
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics and Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Goettingen, Germany
| | - Emmanouil Bastakis
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics and Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Goettingen, Germany
| | - Marian T. Süß
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics and Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Goettingen, Germany
| | - Miriam Leonard
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics and Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Goettingen, Germany
| | - Kai Heimel
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics and Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Goettingen, Germany
| | - Oliver Valerius
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics and Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Goettingen, Germany
| | - Ivo Feussner
- Department of Plant Biochemistry and Service Unit for Metabolomics and Lipidomics, Albrecht-von-Haller-Institute for Plant Sciences and Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Goettingen, Germany
| | - James W. Kronstad
- Michael Smith Laboratories, Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada
| | - Gerhard H. Braus
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics and Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Goettingen, Germany
- * E-mail:
| |
Collapse
|
25
|
Tonui R, John RO, Edkins AL. Optimized Microscale Protein Aggregation Suppression Assay: A Method for Evaluating the Holdase Activity of Chaperones. Methods Mol Biol 2023; 2693:113-123. [PMID: 37540431 DOI: 10.1007/978-1-0716-3342-7_10] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Many molecular chaperones act as holdases by binding hydrophobic regions of substrates to prevent aggregation. Therefore, measuring holdase activity is an amenable method to determine chaperone activity. The holdase function is reliably and easily achieved by monitoring the suppression of heat-induced aggregation of well-characterized model protein substrates. However, the standard assay format requires large amounts of protein and hence is not applicable to all proteins. Using DnaK from Escherichia coli and heat-induced aggregation of malate dehydrogenase, we describe a protocol for absorbance and fluorescence-based miniaturized versions of the standard aggregation suppression assay that are affordable and have wide application for low abundance holdases. The assay can be used for both fundamental characterization of holdase function in proteins and screening of inhibitors of holdase activity.
Collapse
Affiliation(s)
- Ronald Tonui
- Biomedical Biotechnology Research Unit (BioBRU), Department of Biochemistry and Microbiology, Rhodes University, Makhanda, South Africa
| | - Ruth O John
- Biomedical Biotechnology Research Unit (BioBRU), Department of Biochemistry and Microbiology, Rhodes University, Makhanda, South Africa
| | - Adrienne L Edkins
- Biomedical Biotechnology Research Unit (BioBRU), Department of Biochemistry and Microbiology, Rhodes University, Makhanda, South Africa.
| |
Collapse
|
26
|
Bryant JA, Kellinger M, Longmire C, Miller R, Wright RC. AssemblyTron: flexible automation of DNA assembly with Opentrons OT-2 lab robots. SYNTHETIC BIOLOGY (OXFORD, ENGLAND) 2022; 8:ysac032. [PMID: 36644757 PMCID: PMC9832943 DOI: 10.1093/synbio/ysac032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/25/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022]
Abstract
As one of the newest fields of engineering, synthetic biology relies upon a trial-and-error Design-Build-Test-Learn (DBTL) approach to simultaneously learn how a function is encoded in biology and attempt to engineer it. Many software and hardware platforms have been developed to automate, optimize and algorithmically perform each step of the DBTL cycle. However, there are many fewer options for automating the build step. Build typically involves deoxyribonucleic acid (DNA) assembly, which remains manual, low throughput and unreliable in most cases and limits our ability to advance the science and engineering of biology. Here, we present AssemblyTron, an open-source Python package to integrate j5 DNA assembly design software outputs with build implementation in Opentrons liquid handling robotics with minimal human intervention. We demonstrate the versatility of AssemblyTron through several scarless, multipart DNA assemblies, beginning from fragment amplification. We show that AssemblyTron can perform polymerase chain reactions across a range of fragment lengths and annealing temperatures by using an optimal annealing temperature gradient calculation algorithm. We then demonstrate that AssemblyTron can perform Golden Gate and homology-dependent in vivo assemblies (IVAs) with comparable fidelity to manual assemblies by simultaneously building four four-fragment assemblies of chromoprotein reporter expression plasmids. Finally, we used AssemblyTron to perform site-directed mutagenesis reactions via homology-dependent IVA also achieving comparable fidelity to manual assemblies as assessed by sequencing. AssemblyTron can reduce the time, training, costs and wastes associated with synthetic biology, which, along with open-source and affordable automation, will further foster the accessibility of synthetic biology and accelerate biological research and engineering.
Collapse
Affiliation(s)
- John A Bryant
- Department of Biological Systems Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Mason Kellinger
- Department of Biological Systems Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Cameron Longmire
- Department of Biological Systems Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Ryan Miller
- Department of Biological Systems Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | | |
Collapse
|
27
|
An Optimized Transformation Protocol for Escherichia coli BW3KD with Supreme DNA Assembly Efficiency. Microbiol Spectr 2022; 10:e0249722. [PMID: 36317996 PMCID: PMC9769673 DOI: 10.1128/spectrum.02497-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
DNA cloning requires two steps: the assembly of recombinant DNA molecules and the transformation of the product into a host organism for replication. High efficiencies in both processes can increase the success rate. Recently, we developed an Escherichia coli BW3KD strain with higher transformation efficiency than commonly used cloning strains. Here, we further developed a simple method named TSS-HI (transformation storage solution optimized by Hannahan and Inoue method) for competent cell preparation, which combined the advantages of three common methods for operational simplicity and high transformation efficiency. When competent BW3KD cells were prepared using this developed method, the transformation efficiency reached up to (7.21 ± 1.85) × 109 CFU/μg DNA, which exceeded the levels of commercial chemically competent cells and homemade electrocompetent cells. BW3KD cells formed colonies within 7 h on lysogeny broth agar plates, quicker than the well-known fast-growing E. coli cloning strain Mach1. The competent cells worked effectively for the transformation of assembled DNA of 1 to 7 fragments in one step and promoted efficiencies of transformation or cloning with large plasmids. The cloning efficiency of BW3KD cells prepared by this method increased up to 828-fold over that of E. coli XL1-Blue MRF' cells prepared by a common method. Thus, competent cells are suitable for different cloning jobs and should help with the increased demand for DNA assembly in biological studies and biotechnology. IMPORTANCE DNA transformation is commonly used in cloning; however, high transformation efficiency becomes a limiting factor in many applications, such as the construction of CRISPR and DNA libraries, the assembly of multiple fragments, and the transformation of large plasmids. We developed a new competent cell preparation method with unmatched transformation efficiency. When the BW3KD strain, derived from Escherichia coli BW25113 cells, was prepared by this method, its transformation efficiency reached up to (7.21 ± 1.85) × 109 CFU/μg DNA, which broke the record for chemically prepared competent cells. Routine cloning could be completed in 1 day due to the high growth rate of this strain. The competent cells were shown to be highly efficient for transformation or cloning with large plasmids and for the assembly of multiple fragments. The results highlight the effectiveness of the new protocol and the usefulness of the BW3KD strain as the host.
Collapse
|
28
|
Tomato Xylem Sap Hydrophobins Vdh4 and Vdh5 Are Important for Late Stages of Verticillium dahliae Plant Infection. J Fungi (Basel) 2022; 8:jof8121252. [PMID: 36547586 PMCID: PMC9783231 DOI: 10.3390/jof8121252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/22/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
Verticillium dahliae causes economic losses to a wide range of crops as a vascular fungal pathogen. This filamentous ascomycete spends long periods of its life cycle in the plant xylem, a unique environment that requires adaptive processes. Specifically, fungal proteins produced in the xylem sap of the plant host may play important roles in colonizing the plant vasculature and in inducing disease symptoms. RNA sequencing revealed over 1500 fungal transcripts that are significantly more abundant in cells grown in tomato xylem sap compared with pectin-rich medium. Of the 85 genes that are strongly induced in the xylem sap, four genes encode the hydrophobins Vdh1, Vdh2, Vdh4 and Vdh5. Vdh4 and Vhd5 are structurally distinct from each other and from the three other hydrophobins (Vdh1-3) annotated in V. dahliae JR2. Their functions in the life cycle and virulence of V. dahliae were explored using genetics, cell biology and plant infection experiments. Our data revealed that Vdh4 and Vdh5 are dispensable for V. dahliae development and stress response, while both contribute to full disease development in tomato plants by acting at later colonization stages. We conclude that Vdh4 and Vdh5 are functionally specialized fungal hydrophobins that support pathogenicity against plants.
Collapse
|
29
|
Winterhalter C, Stevens D, Fenyk S, Pelliciari S, Marchand E, Soultanas P, Ilangovan A, Murray H. SirA inhibits the essential DnaA:DnaD interaction to block helicase recruitment during Bacillus subtilis sporulation. Nucleic Acids Res 2022; 51:4302-4321. [PMID: 36416272 DOI: 10.1093/nar/gkac1060] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 10/04/2022] [Accepted: 10/24/2022] [Indexed: 11/24/2022] Open
Abstract
Bidirectional DNA replication from a chromosome origin requires the asymmetric loading of two helicases, one for each replisome. Our understanding of the molecular mechanisms underpinning helicase loading at bacterial chromosome origins is incomplete. Here we report both positive and negative mechanisms for directing helicase recruitment in the model organism Bacillus subtilis. Systematic characterization of the essential initiation protein DnaD revealed distinct protein interfaces required for homo-oligomerization, interaction with the master initiator protein DnaA, and interaction with the helicase co-loader protein DnaB. Informed by these properties of DnaD, we went on to find that the developmentally expressed repressor of DNA replication initiation, SirA, blocks the interaction between DnaD and DnaA, thereby restricting helicase recruitment from the origin during sporulation to inhibit further initiation events. These results advance our understanding of the mechanisms underpinning DNA replication initiation in B. subtilis, as well as guiding the search for essential cellular activities to target for antimicrobial drug design.
Collapse
Affiliation(s)
- Charles Winterhalter
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle Upon Tyne NE2 4AX, UK
| | - Daniel Stevens
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle Upon Tyne NE2 4AX, UK
| | - Stepan Fenyk
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle Upon Tyne NE2 4AX, UK
| | - Simone Pelliciari
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle Upon Tyne NE2 4AX, UK
| | - Elie Marchand
- Research Unit in Biology of Microorganisms, Department of Biology, Université de Namur, Namur, Belgium
| | - Panos Soultanas
- Biodiscovery Institute, School of Chemistry, University of Nottingham, Nottingham NG7 2RD, UK
| | - Aravindan Ilangovan
- Blizard Institute, School of Biological and Behavioural Sciences, Queen Mary University of London, Newark street, London E1 2AT, UK
| | - Heath Murray
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle Upon Tyne NE2 4AX, UK
| |
Collapse
|
30
|
Köbel T, Melo Palhares R, Fromm C, Szymanski W, Angelidou G, Glatter T, Georg J, Berghoff BA, Schindler D. An Easy-to-Use Plasmid Toolset for Efficient Generation and Benchmarking of Synthetic Small RNAs in Bacteria. ACS Synth Biol 2022; 11:2989-3003. [PMID: 36044590 PMCID: PMC9486967 DOI: 10.1021/acssynbio.2c00164] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Synthetic biology approaches life from the perspective of an engineer. Standardized and de novo design of genetic parts to subsequently build reproducible and controllable modules, for example, for circuit design, is a key element. To achieve this, natural systems and elements often serve as a blueprint for researchers. Regulation of protein abundance is controlled at DNA, mRNA, and protein levels. Many tools for the activation or repression of transcription or the destabilization of proteins are available, but easy-to-handle minimal regulatory elements on the mRNA level are preferable when translation needs to be modulated. Regulatory RNAs contribute considerably to regulatory networks in all domains of life. In particular, bacteria use small regulatory RNAs (sRNAs) to regulate mRNA translation. Slowly, sRNAs are attracting the interest of using them for broad applications in synthetic biology. Here, we promote a "plug and play" plasmid toolset to quickly and efficiently create synthetic sRNAs to study sRNA biology or their application in bacteria. We propose a simple benchmarking assay by targeting the acrA gene of Escherichia coli and rendering cells sensitive toward the β-lactam antibiotic oxacillin. We further highlight that it may be necessary to test multiple seed regions and sRNA scaffolds to achieve the desired regulatory effect. The described plasmid toolset allows quick construction and testing of various synthetic sRNAs based on the user's needs.
Collapse
Affiliation(s)
- Tania
S. Köbel
- RG
Schindler, Max-Planck-Institute for Terrestrial
Microbiology, Karl-von-Frisch-Street
10, 35043 Marburg, Germany,MaxGENESYS
Biofoundry, Max-Planck-Institute for Terrestrial
Microbiology, Karl-von-Frisch-Street
10, 35043 Marburg, Germany
| | - Rafael Melo Palhares
- RG
Schindler, Max-Planck-Institute for Terrestrial
Microbiology, Karl-von-Frisch-Street
10, 35043 Marburg, Germany,Institute
for Microbiology and Molecular Biology, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| | - Christin Fromm
- Institute
for Microbiology and Molecular Biology, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| | - Witold Szymanski
- Mass
Spectrometry and Proteomics Core Facility, Max-Planck-Institute for Terrestrial Microbiology, Karl-von-Frisch-Street 10, 35043 Marburg, Germany
| | - Georgia Angelidou
- Mass
Spectrometry and Proteomics Core Facility, Max-Planck-Institute for Terrestrial Microbiology, Karl-von-Frisch-Street 10, 35043 Marburg, Germany
| | - Timo Glatter
- Mass
Spectrometry and Proteomics Core Facility, Max-Planck-Institute for Terrestrial Microbiology, Karl-von-Frisch-Street 10, 35043 Marburg, Germany
| | - Jens Georg
- Institut
für Biologie III, Albert-Ludwigs-Universität
Freiburg, Schänzlestraße
1, 79104 Freiburg, Germany
| | - Bork A. Berghoff
- Institute
for Microbiology and Molecular Biology, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany,
| | - Daniel Schindler
- RG
Schindler, Max-Planck-Institute for Terrestrial
Microbiology, Karl-von-Frisch-Street
10, 35043 Marburg, Germany,MaxGENESYS
Biofoundry, Max-Planck-Institute for Terrestrial
Microbiology, Karl-von-Frisch-Street
10, 35043 Marburg, Germany,
| |
Collapse
|
31
|
Import and Export of Mannosylerythritol Lipids by Ustilago maydis. mBio 2022; 13:e0212322. [PMID: 36069442 PMCID: PMC9600162 DOI: 10.1128/mbio.02123-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Upon nitrogen starvation, the basidiomycete Ustilago maydis, which causes smut disease on corn, secretes amphipathic glycolipids, including mannosylerythritol lipids (MELs). MELs consist of a carbohydrate core whose mannosyl moiety is both acylated with fatty acids of different lengths and acetylated. Here, we report the transport of MELs into and out of the cell depending on the transport protein Mmf1, which belongs to the major facilitator superfamily. Analysis of mmf1 mutants and mutants lacking the acetyltransferase Mat1 revealed that Mmf1 is necessary for the export of acetylated MELs, while MELs without an acetyl group are secreted independently of this transporter. Upon deletion of mmf1, we detected novel MEL species lacking the acyl side chain at C-3′. With the help of feeding experiments, we demonstrate that MELs are taken up by U. maydis in an mmf1-independent manner. This leads to catabolism or rearrangement of acetyl and acyl side groups and subsequent secretion. The catabolism of MELs involves the presence of Mac2, an enzyme required for MEL biosynthesis. In cocultivation experiments, mutual exchange of MELs between different mutants was observed. Thus, we propose a novel function for fungal glycolipids as an external carbon storage.
Collapse
|
32
|
Ilse V, Scholz R, Wermann M, Naumann M, Staege MS, Roßner S, Cynis H. Immunogenicity of the Envelope Surface Unit of Human Endogenous Retrovirus K18 in Mice. Int J Mol Sci 2022; 23:ijms23158330. [PMID: 35955468 PMCID: PMC9369184 DOI: 10.3390/ijms23158330] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/21/2022] [Accepted: 07/25/2022] [Indexed: 02/06/2023] Open
Abstract
The triggers for the development of multiple sclerosis (MS) have not been fully understood to date. One hypothesis proposes a viral etiology. Interestingly, viral proteins from human endogenous retroviruses (HERVs) may play a role in the pathogenesis of MS. Allelic variants of the HERV-K18 env gene represent a genetic risk factor for MS, and the envelope protein is considered to be an Epstein–Barr virus-trans-activated superantigen. To further specify a possible role for HERV-K18 in MS, the present study examined the immunogenicity of the purified surface unit (SU). HERV-K18(SU) induced envelope-specific plasma IgG in immunized mice and triggered proliferation of T cells isolated from these mice. It did not trigger phenotypic changes in a mouse model of experimental autoimmune encephalomyelitis. Further studies are needed to investigate the underlying mechanisms of HERV-K18 interaction with immune system regulators in more detail.
Collapse
Affiliation(s)
- Victoria Ilse
- Department of Drug Design and Target Validation, Fraunhofer Institute for Cell Therapy and Immunology, Weinbergweg 22, 06120 Halle, Germany; (V.I.); (R.S.); (M.W.); (M.N.)
| | - Rebekka Scholz
- Department of Drug Design and Target Validation, Fraunhofer Institute for Cell Therapy and Immunology, Weinbergweg 22, 06120 Halle, Germany; (V.I.); (R.S.); (M.W.); (M.N.)
| | - Michael Wermann
- Department of Drug Design and Target Validation, Fraunhofer Institute for Cell Therapy and Immunology, Weinbergweg 22, 06120 Halle, Germany; (V.I.); (R.S.); (M.W.); (M.N.)
| | - Marcel Naumann
- Department of Drug Design and Target Validation, Fraunhofer Institute for Cell Therapy and Immunology, Weinbergweg 22, 06120 Halle, Germany; (V.I.); (R.S.); (M.W.); (M.N.)
| | - Martin S. Staege
- Department of Surgical and Conservative Pediatrics and Adolescent Medicine, Medical Faculty, Martin Luther University Halle-Wittenberg, Ernst-Grube-Str. 40, 06097 Halle, Germany;
| | - Steffen Roßner
- Paul Flechsig Institute for Brain Research, Leipzig University, Liebigstraße 19, 04103 Leipzig, Germany;
| | - Holger Cynis
- Department of Drug Design and Target Validation, Fraunhofer Institute for Cell Therapy and Immunology, Weinbergweg 22, 06120 Halle, Germany; (V.I.); (R.S.); (M.W.); (M.N.)
- Correspondence: ; Tel.: +49-345-13142835; Fax: +49-345-13142801
| |
Collapse
|
33
|
McCutcheon JG, Lin A, Dennis JJ. Characterization of Stenotrophomonas maltophilia phage AXL1 as a member of the genus Pamexvirus encoding resistance to trimethoprim-sulfamethoxazole. Sci Rep 2022; 12:10299. [PMID: 35717537 PMCID: PMC9206674 DOI: 10.1038/s41598-022-14025-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 05/31/2022] [Indexed: 11/08/2022] Open
Abstract
Stenotrophomonas maltophilia is a ubiquitous environmental bacterium capable of causing disease in humans. Antibiotics are largely ineffective against this pathogen due to numerous chromosomally encoded antibiotic resistance mechanisms. An alternative treatment option is phage therapy, the use of bacteriophages to selectively kill target bacteria that are causing infection. To this aim, we isolated the Siphoviridae bacteriophage AXL1 (vB_SmaS-AXL_1) from soil and herein describe its characterization. Host range analysis on a panel of 30 clinical S. maltophilia strains reveals a moderate tropism that includes cross-species infection of Xanthomonas, with AXL1 using the type IV pilus as its host surface receptor for infection. Complete genome sequencing and analysis revealed a 63,962 bp genome encoding 83 putative proteins. Comparative genomics place AXL1 in the genus Pamexvirus, along with seven other phages that infect one of Stenotrophomonas, Pseudomonas or Xanthomonas species. Functional genomic analyses identified an AXL1-encoded dihydrofolate reductase enzyme that provides additional resistance to the antibiotic combination trimethoprim-sulfamethoxazole, the current recommended treatment option for S. maltophilia infections. This research characterizes the sixth type IV pilus-binding phage of S. maltophilia and is an example of phage-encoded antibiotic resistance.
Collapse
Affiliation(s)
- Jaclyn G McCutcheon
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E9, Canada
| | - Andrea Lin
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E9, Canada
| | - Jonathan J Dennis
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E9, Canada.
| |
Collapse
|
34
|
Ast J, Bäcker N, Bittner E, Martorana D, Ahmad H, Bölker M, Freitag J. Two Pex5 Proteins With Different Cargo Specificity Are Critical for Peroxisome Function in Ustilago maydis. Front Cell Dev Biol 2022; 10:858084. [PMID: 35646929 PMCID: PMC9133605 DOI: 10.3389/fcell.2022.858084] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/31/2022] [Indexed: 11/13/2022] Open
Abstract
Peroxisomes are dynamic multipurpose organelles with a major function in fatty acid oxidation and breakdown of hydrogen peroxide. Many proteins destined for the peroxisomal matrix contain a C-terminal peroxisomal targeting signal type 1 (PTS1), which is recognized by tetratricopeptide repeat (TPR) proteins of the Pex5 family. Various species express at least two different Pex5 proteins, but how this contributes to protein import and organelle function is not fully understood. Here, we analyzed truncated and chimeric variants of two Pex5 proteins, Pex5a and Pex5b, from the fungus Ustilago maydis. Both proteins are required for optimal growth on oleic acid-containing medium. The N-terminal domain (NTD) of Pex5b is critical for import of all investigated peroxisomal matrix proteins including PTS2 proteins and at least one protein without a canonical PTS. In contrast, the NTD of Pex5a is not sufficient for translocation of peroxisomal matrix proteins. In the presence of Pex5b, however, specific cargo can be imported via this domain of Pex5a. The TPR domains of Pex5a and Pex5b differ in their affinity to variations of the PTS1 motif and thus can mediate import of different subsets of matrix proteins. Together, our data reveal that U. maydis employs versatile targeting modules to control peroxisome function. These findings will promote our understanding of peroxisomal protein import also in other biological systems.
Collapse
Affiliation(s)
- Julia Ast
- Department of Biology, Philipps-University Marburg, Marburg, Germany
- Institute of Metabolism and Systems Research (IMSR), and Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Birmingham, United Kingdom
| | - Nils Bäcker
- Department of Biology, Philipps-University Marburg, Marburg, Germany
| | - Elena Bittner
- Department of Biology, Philipps-University Marburg, Marburg, Germany
| | | | - Humda Ahmad
- Department of Biology, Philipps-University Marburg, Marburg, Germany
| | - Michael Bölker
- Department of Biology, Philipps-University Marburg, Marburg, Germany
- Center for Synthetic Microbiology, Philipps-University Marburg, Marburg, Germany
| | - Johannes Freitag
- Department of Biology, Philipps-University Marburg, Marburg, Germany
| |
Collapse
|
35
|
Dorr M, Silver A, Smurlick D, Arukha A, Kariyawasam S, Oladeinde A, Cook K, Denagamage T. Transferability of ESBL-encoding IncN and IncI1 plasmids among field strains of different Salmonella serovars and Escherichia coli. J Glob Antimicrob Resist 2022; 30:88-95. [PMID: 35489678 DOI: 10.1016/j.jgar.2022.04.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/12/2022] [Accepted: 04/14/2022] [Indexed: 11/24/2022] Open
Abstract
OBJECTIVES This study aimed to sequence, assemble and annotate three plasmids (two IncN and one IncI1) carrying the blaCTX-M-1 gene and assess their transmissibility rates between homologous and heterologous serovars and/or species of bacteria. METHODS First, the plasmids were sequenced, assembled, and annotated. They were then transferred from three donor strains (E. coli/IncN, S. Heidelberg/IncN, and S. Heidelberg/IncI1) into nine recipient strains (S. Enteritidis, S. Heidelberg, S. Saint Paul, S. Cero, S. Infantis, S. Braenderup, E. coli 50, and E. coli 2010). The blaCTX-M-1 gene PCR, plasmid isolation, and antimicrobial susceptibility testing were used on the transconjugants to confirm the successful transfer of ESBL plasmids into the recipient strains. RESULTS Both IncN plasmids were 42,407 bp in size and showed >99.4% similarity to the S. Bredeney pET1.2-IncN (GenBank accession CP043224.1) whereas the IncI1 plasmid was 107,635 bp in size and demonstrated >99.9% similarity to the E. coli pCOV33 plasmid (GenBank accession MG649046.1). Successful plasmid transfer was observed between donor E. coli (IncN) and all recipient strains except for E. coli 50 and between donor S. Heidelberg (IncN) and all recipient strains. Successful plasmid transfer was also observed between S. Heidelberg (IncI1) and E. coli 50. CONCLUSIONS Transfer of the bla CTX-M-1 encoding IncN and IncI1 plasmids via conjugation is possible yet occurs at different frequencies depending on the donor strain of bacteria with S. Heidelberg (IncN) having the highest donor-dependent transfer frequency, followed by E. coli 9079 (IncN) and S. Heidelberg (IncI1).
Collapse
Affiliation(s)
- Mackenzie Dorr
- University of Florida College of Veterinary Medicine, 1945 SW 16th Ave. Gainesville, FL 32608, USA
| | - Aryeh Silver
- University of Florida College of Veterinary Medicine, 1945 SW 16th Ave. Gainesville, FL 32608, USA
| | - Dylan Smurlick
- University of Florida College of Veterinary Medicine, 1945 SW 16th Ave. Gainesville, FL 32608, USA
| | - Ananta Arukha
- Department of Comparative, Diagnostic, and Population Medicine, University of Florida College of Veterinary Medicine, 1945 SW 16th Ave. Gainesville, FL 32608, USA
| | - Subhashinie Kariyawasam
- Department of Comparative, Diagnostic, and Population Medicine, University of Florida College of Veterinary Medicine, 1945 SW 16th Ave. Gainesville, FL 32608, USA
| | | | - Kimberly Cook
- U.S. National Poultry Research Center, Athens, GA, 30605, USA
| | - Thomas Denagamage
- Department of Large Animal Clinical Sciences, University of Florida College of Veterinary Medicine, 1945 SW 16th Ave. Gainesville, FL 32608, USA.
| |
Collapse
|
36
|
Yang Y, Yu Q, Wang M, Zhao R, Liu H, Xun L, Xia Y. Escherichia coli BW25113 Competent Cells Prepared Using a Simple Chemical Method Have Unmatched Transformation and Cloning Efficiencies. Front Microbiol 2022; 13:838698. [PMID: 35401484 PMCID: PMC8989280 DOI: 10.3389/fmicb.2022.838698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 03/01/2022] [Indexed: 11/26/2022] Open
Abstract
Escherichia coli recA− strains are usually used for cloning to prevent insert instability via RecA-dependent recombination. Here, we report that E. coli BW25113 (recA+) competent cells prepared by using a previously reported transformation and storage solution (TSS) had 100-fold or higher transformation efficiency than the commonly used E. coli cloning strains, including XL1-Blue MRF’. The cloning success rates with E. coli BW25113 were 440 to 1,267-fold higher than those with E. coli XL1-Blue MRF’ when several inserts were assembled into four vectors by using a simple DNA assembly method. The difference was in part due to RecA, as the recA deletion in E. coli BW25113 reduced the transformation efficiency by 16 folds and cloning success rate by about 10 folds. However, the transformation efficiency and the cloning success rate of the recA deletion mutant of E. coli BW25113 are still 12- and >48-fold higher than those of E. coli XL1-Blue MRF’, which is a commonly used cloning strain. The cloned inserts with different lengths of homologous sequences were assembled into four vectors and transformed into E. coli BW25113, and they were stably maintained in BW25113. Thus, we recommend using E. coli BW25113 for efficient cloning and DNA assembly.
Collapse
Affiliation(s)
- Yuqing Yang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
- Institute of Marine Science and Technology, Shandong University, Qingdao, China
| | - Qiaoli Yu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Min Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Rui Zhao
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Huaiwei Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Luying Xun
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
- School of Molecular Biosciences, Washington State University, Pullman, WA, United States
- *Correspondence: Luying Xun, Yongzhen Xia,
| | - Yongzhen Xia
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
- *Correspondence: Luying Xun, Yongzhen Xia,
| |
Collapse
|
37
|
Turmo A, Hu J, Hausinger RP. Characterization of the nickel-inserting cyclometallase LarC from Moorella thermoacetica and identification of a cytidinylylated reaction intermediate. Metallomics 2022; 14:6539348. [PMID: 35225337 PMCID: PMC8962377 DOI: 10.1093/mtomcs/mfac014] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 02/19/2022] [Indexed: 11/13/2022]
Abstract
LarC catalyzes the CTP-dependent insertion of nickel ion into pyridinium-3,5-bisthiocarboxylic acid mononucleotide (P2TMN), the final biosynthetic step for generating the nickel-pincer nucleotide (NPN) enzyme cofactor. In this study, we characterized a LarC homolog from Moorella thermoacetica (LarCMt) and characterized selected properties of the protein. We ruled out the hypothesis that enzyme inhibition by its product pyrophosphate accounts for its apparent single-turnover activity. Most notably, we identified a cytidinylylated-substrate intermediate that is formed during the reaction of LarCMt. Selected LarCMt variants with substitutions at the predicted CTP-binding site retained substantial amounts of activity, but exhibited greatly reduced levels of the CMP-P2TMN intermediate. In contrast, enhanced amounts of the CMP-P2TMN intermediate were generated when using LarCMt from cells grown on medium without supplemental nickel. On the basis of these results, we propose a functional role for CTP in the unprecedented nickel-insertase reaction during NPN biosynthesis.
Collapse
Affiliation(s)
- Aiko Turmo
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Jian Hu
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA,Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
| | - Robert P Hausinger
- Correspondence: 567 Wilson Rd, Room 2215, Biomedical Physical Sciences, East Lansing, MI 48824, USA. E-mail:
| |
Collapse
|
38
|
Horstmann N, Myers KS, Tran CN, Flores AR, Shelburne III SA. CovS inactivation reduces CovR promoter binding at diverse virulence factor encoding genes in group A Streptococcus. PLoS Pathog 2022; 18:e1010341. [PMID: 35180278 PMCID: PMC8893699 DOI: 10.1371/journal.ppat.1010341] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 03/03/2022] [Accepted: 02/04/2022] [Indexed: 11/18/2022] Open
Abstract
The control of virulence gene regulator (CovR), also called caspsule synthesis regulator (CsrR), is critical to how the major human pathogen group A Streptococcus fine-tunes virulence factor production. CovR phosphorylation (CovR~P) levels are determined by its cognate sensor kinase CovS, and functional abrogating mutations in CovS can occur in invasive GAS isolates leading to hypervirulence. Presently, the mechanism of CovR-DNA binding specificity is unclear, and the impact of CovS inactivation on global CovR binding has not been assessed. Thus, we performed CovR chromatin immunoprecipitation sequencing (ChIP-seq) analysis in the emm1 strain MGAS2221 and its CovS kinase deficient derivative strain 2221-CovS-E281A. We identified that CovR bound in the promoter regions of nearly all virulence factor encoding genes in the CovR regulon. Additionally, direct CovR binding was observed for numerous genes encoding proteins involved in amino acid metabolism, but we found limited direct CovR binding to genes encoding other transcriptional regulators. The consensus sequence AATRANAAAARVABTAAA was present in the promoters of genes directly regulated by CovR, and mutations of highly conserved positions within this motif relieved CovR repression of the hasA and MGAS2221_0187 promoters. Analysis of strain 2221-CovS-E281A revealed that binding of CovR at repressed, but not activated, promoters is highly dependent on CovR~P state. CovR repressed virulence factor encoding genes could be grouped dependent on how CovR~P dependent variation in DNA binding correlated with gene transcript levels. Taken together, the data show that CovR repression of virulence factor encoding genes is primarily direct in nature, involves binding to a newly-identified DNA binding motif, and is relieved by CovS inactivation. These data provide new mechanistic insights into one of the most important bacterial virulence regulators and allow for subsequent focused investigations into how CovR-DNA interaction at directly controlled promoters impacts GAS pathogenesis. Tight regulation of virulence factor production is a critical, but poorly understood aspect of bacterial pathogenesis. The OmpR/PhoB family member control of virulence regulator (CovR) is the master virulence factor controller in group A Streptococcus (GAS), a bacterium which commonly causes a diverse array of human infections. Mutations in the cognate kinase of CovR, CovS, are commonly observed among invasive GAS isolates, but the functional impact of CovS on global CovR function is unknown. Herein, we defined CovR global DNA binding locations, identified a consensus CovR binding motif, and determined how inactivation of the CovR cognate sensor kinase, CovS, impacts CovR-DNA interaction. Our findings show that CovR-repressed virulence factor encoding genes are directly regulated by CovR and that CovS inactivation markedly reduces CovR binding at CovR-repressed promoters. Given the widespread nature of CovR homologues in streptococci and other Gram-positive pathogens, these findings extend understanding of mechanisms by which OmpR/PhoB family members impact the ability of bacteria to cause serious infections.
Collapse
Affiliation(s)
- Nicola Horstmann
- Department of Infectious Diseases, Infection Control and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Kevin S. Myers
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Chau Nguyen Tran
- Department of Infectious Diseases, Infection Control and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Anthony R. Flores
- Center for Antimicrobial Resistance and Microbial Genomics McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, United States of America
- Department of Pediatrics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Samuel A. Shelburne III
- Department of Infectious Diseases, Infection Control and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
39
|
Riboswitch RS thiT as a molecular tool in Lactococcus lactis. Appl Environ Microbiol 2021; 88:e0176421. [PMID: 34936833 PMCID: PMC8862789 DOI: 10.1128/aem.01764-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Previous RNA sequencing has allowed the identification of 129 long 5′ untranslated regions (UTRs) in the Lactococcus lactis MG1363 transcriptome. These sequences potentially harbor cis-acting riboswitches. One of the identified extended 5′ UTRs is a putative thiamine pyrophosphate (TPP) riboswitch. It is located immediately upstream of the thiamine transporter gene thiT (llmg_0334). To confirm this assumption, the 5′-UTR sequence was placed upstream of the gene encoding the superfolder green fluorescent protein (sfGFP), sfgfp, allowing the examination of the expression of sfGFP in the presence or absence of thiamine in the medium. The results show that this sequence indeed represents a thiamine-responsive TPP riboswitch. This RNA-based genetic control device was used to successfully restore the mutant phenotype of an L. lactis strain lacking the major autolysin gene, acmA. The L. lactisthiT TPP riboswitch (RSthiT) is a useful molecular genetic tool enabling the gradual downregulation of the expression of genes under its control by adjusting the thiamine concentration. IMPORTANCE The capacity of microbes with biotechnological importance to adapt to and survive under quickly changing industrial conditions depends on their ability to adequately control gene expression. Riboswitches are important RNA-based elements involved in rapid and precise gene regulation. Here, we present the identification of a natural thiamine-responsive riboswitch of Lactococcus lactis, a bacterium used worldwide in the production of dairy products. We used it to restore a genetic defect in an L. lactis mutant and show that it is a valuable addition to the ever-expanding L. lactis genetic toolbox.
Collapse
|
40
|
Sassine J, Pazos M, Breukink E, Vollmer W. Lytic transglycosylase MltG cleaves in nascent peptidoglycan and produces short glycan strands. Cell Surf 2021; 7:100053. [PMID: 34036206 PMCID: PMC8135044 DOI: 10.1016/j.tcsw.2021.100053] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/17/2021] [Accepted: 04/26/2021] [Indexed: 12/20/2022] Open
Abstract
Bacteria encase their cytoplasmic membrane with peptidoglycan (PG) to maintain the shape of the cell and protect it from bursting. The enlargement of the PG layer is facilitated by the coordinated activities of PG synthesising and -cleaving enzymes. In Escherichia coli, the cytoplasmic membrane-bound lytic transglycosylase MltG associates with PG synthases and was suggested to terminate the polymerisation of PG glycan strands. Using pull-down and surface plasmon resonance, we detected interactions between MltG from Bacillus subtilis and two PG synthases; the class A PBP1 and the class B PBP2B. Using in vitro PG synthesis assays with radio-labelled or fluorophore-labelled B. subtilis-type and/or E. coli-type lipid II, we showed that both, BsMltG and EcMltG, are lytic tranglycosylases and that their activity is higher during ongoing glycan strand polymerisation. MltG competed with the transpeptidase activity of class A PBPs, but had no effect on their glycosyltransferase activity, and produced glycan strands with a length of 7 disaccharide units from cleavage in the nascent strands. We hypothesize that MltG cleaves the nascent strands to produce short glycan strands that are used in the cell for a yet unknown process.
Collapse
Affiliation(s)
- Jad Sassine
- Centre for Bacterial Cell Biology, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Manuel Pazos
- Centre for Bacterial Cell Biology, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Eefjan Breukink
- Membrane Biochemistry and Biophysics, Bijvoet Centre of Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Waldemar Vollmer
- Centre for Bacterial Cell Biology, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
41
|
Dhouib R, Nasreen M, Othman DSMP, Ellis D, Lee S, Essilfie AT, Hansbro PM, McEwan AG, Kappler U. The DmsABC Sulfoxide Reductase Supports Virulence in Non-typeable Haemophilus influenzae. Front Microbiol 2021; 12:686833. [PMID: 34367088 PMCID: PMC8340005 DOI: 10.3389/fmicb.2021.686833] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 06/21/2021] [Indexed: 11/15/2022] Open
Abstract
Although molybdenum-containing enzymes are well-established as having a key role in bacterial respiration, it is increasingly recognized that some may also support bacterial virulence. Here, we show that DmsABC, a putative dimethylsulfoxide (DMSO) reductase, is required for fitness of the respiratory pathogen Haemophilus influenzae (Hi) in different models of infection. Expression of the dmsABC operon increased with decreasing oxygen availability, but despite this, a Hi2019Δd msA strain did not show any defects in anaerobic growth on chemically defined medium (CDM), and viability was also unaffected. Although Hi2019Δd msA exhibited increased biofilm formation in vitro and greater resistance to hypochlorite killing compared to the isogenic wild-type strain, its survival in contact with primary human neutrophils, in infections of cultured tissue cells, or in a mouse model of lung infection was reduced compared to Hi2019WT. The tissue cell infection model revealed a two-fold decrease in intracellular survival, while in the mouse model of lung infection Hi2019Δd msA was strongly attenuated and below detection levels at 48 h post-inoculation. While Hi2019WT was recovered in approximately equal numbers from bronchoalveolar lavage fluid (BALF) and lung tissue, survival of Hi2019Δd msA was reduced in lung tissue compared to BALF samples, indicating that Hi2019Δd msA had reduced access to or survival in the intracellular niche. Our data clearly indicate for the first time a role for DmsABC in H. influenzae infection and that the conditions under which DmsABC is required in this bacterium are closely linked to interactions with the host.
Collapse
Affiliation(s)
- Rabeb Dhouib
- School of Chemistry and Molecular Biosciences, Australian Infectious Disease Research Centre, The University of Queensland, St Lucia, QLD, Australia
| | - Marufa Nasreen
- School of Chemistry and Molecular Biosciences, Australian Infectious Disease Research Centre, The University of Queensland, St Lucia, QLD, Australia
| | - Dk Seti Maimonah Pg Othman
- School of Chemistry and Molecular Biosciences, Australian Infectious Disease Research Centre, The University of Queensland, St Lucia, QLD, Australia
| | - Daniel Ellis
- School of Chemistry and Molecular Biosciences, Australian Infectious Disease Research Centre, The University of Queensland, St Lucia, QLD, Australia
| | - Simon Lee
- School of Chemistry and Molecular Biosciences, Australian Infectious Disease Research Centre, The University of Queensland, St Lucia, QLD, Australia
| | | | - Philip M. Hansbro
- Centre for Inflammation, Centenary Institute, School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
| | - Alastair G. McEwan
- School of Chemistry and Molecular Biosciences, Australian Infectious Disease Research Centre, The University of Queensland, St Lucia, QLD, Australia
| | - Ulrike Kappler
- School of Chemistry and Molecular Biosciences, Australian Infectious Disease Research Centre, The University of Queensland, St Lucia, QLD, Australia
| |
Collapse
|
42
|
Masoudi M, Teimoori A, Tabaraei A, Shahbazi M, Divbandi M, Lorestani N, Yamchi A, Nikoo HR. Advanced sequence optimization for the high efficient yield of human group A rotavirus VP6 recombinant protein in Escherichia coli and its use as immunogen. J Med Virol 2021; 93:3549-3556. [PMID: 32940917 DOI: 10.1002/jmv.26522] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/14/2020] [Accepted: 09/08/2020] [Indexed: 11/09/2022]
Abstract
Rotavirus is the important etiological agents of infectious diarrhea among children under 5 years old. Rotaviruses are divided into 10 serogroups (A-J) and each group is based on genetic properties of major structural protein VP6. We designed a novel VP6 sequence optimization to increase the expression level of this protein. Numerous factors such as codon adaptation index, codon pair bias, and guanine-cytosine content were adapted based on Escherichiacoli codon usage. In addition, the ribosome binding site (RBS) of pET-15b was redesigned by the RBS calculator and the secondary structure of VP6 messenger RNA was optimized in the whole length of the coding sequence. Various factors including isopropyl beta- d-thiogalactoside (IPTG) concentration, temperature, and induction time were analyzed for the optimization of the best expression in E. coli by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and western blotting. The recombinant VP6 (rVP6) protein was purified by the Ni-sepharose and then the hyperimmune sera were generated against rVP6 in rabbits. Among three different temperatures, IPTG concentrations, and postinductions, the level of rVP6 was higher at 37°C, 1 mM of IPTG, and 8 h, respectively. Also, the high expression level of rVP6 was obtained in the insoluble aggregate form (43.8 g/L). After purification, the yield of rVP6 was 10.83 g/L. The rVP6 specific antiserum was confirmed by both immunofluorescent and western blotting. The versatile sequence optimization was the reason to produce a high level of rVP6 compared to other reports and can potentially apply to produce cheaper commercial kits to diagnose serological tests and new rotavirus vaccines.
Collapse
Affiliation(s)
- Maha Masoudi
- Laboratory Sciences Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Ali Teimoori
- Department of Virology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Alijan Tabaraei
- Department of Microbiology, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Majid Shahbazi
- Medical Cellular and Molecular Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Marzieh Divbandi
- Department of Microbiology, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Nazanin Lorestani
- Department of Microbiology, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Ahad Yamchi
- Department of Biotechnology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Hadi Razavi Nikoo
- Laboratory Sciences Research Center, Golestan University of Medical Sciences, Gorgan, Iran
- Department of Microbiology, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| |
Collapse
|
43
|
FNR-Type Regulator GoxR of the Obligatorily Aerobic Acetic Acid Bacterium Gluconobacter oxydans Affects Expression of Genes Involved in Respiration and Redox Metabolism. Appl Environ Microbiol 2021; 87:AEM.00195-21. [PMID: 33741613 DOI: 10.1128/aem.00195-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 03/09/2021] [Indexed: 12/13/2022] Open
Abstract
Gene expression in the obligately aerobic acetic acid bacterium Gluconobacter oxydans responds to oxygen limitation, but the regulators involved are unknown. In this study, we analyzed a transcriptional regulator named GoxR (GOX0974), which is the only member of the fumarate-nitrate reduction regulator (FNR) family in this species. Evidence that GoxR contains an iron-sulfur cluster was obtained, suggesting that GoxR functions as an oxygen sensor similar to FNR. The direct target genes of GoxR were determined by combining several approaches, including a transcriptome comparison of a ΔgoxR mutant with the wild-type strain and detection of in vivo GoxR binding sites by chromatin affinity purification and sequencing (ChAP-Seq). Prominent targets were the cioAB genes encoding a cytochrome bd oxidase with low O2 affinity, which were repressed by GoxR, and the pnt operon, which was activated by GoxR. The pnt operon encodes a transhydrogenase (pntA1A2B), an NADH-dependent oxidoreductase (GOX0313), and another oxidoreductase (GOX0314). Evidence was obtained for GoxR being active despite a high dissolved oxygen concentration in the medium. We suggest a model in which the very high respiration rates of G. oxydans due to periplasmic oxidations cause an oxygen-limited cytoplasm and insufficient reoxidation of NAD(P)H in the respiratory chain, leading to inhibited cytoplasmic carbohydrate degradation. GoxR-triggered induction of the pnt operon enhances fast interconversion of NADPH and NADH by the transhydrogenase and NADH reoxidation by the GOX0313 oxidoreductase via reduction of acetaldehyde formed by pyruvate decarboxylase to ethanol. In fact, small amounts of ethanol were formed by G. oxydans under oxygen-restricted conditions in a GoxR-dependent manner.IMPORTANCE Gluconobacter oxydans serves as a cell factory for oxidative biotransformations based on membrane-bound dehydrogenases and as a model organism for elucidating the metabolism of acetic acid bacteria. Surprisingly, to our knowledge none of the more than 100 transcriptional regulators encoded in the genome of G. oxydans has been studied experimentally until now. In this work, we analyzed the function of a regulator named GoxR, which belongs to the FNR family. Members of this family serve as oxygen sensors by means of an oxygen-sensitive [4Fe-4S] cluster and typically regulate genes important for growth under anoxic conditions by anaerobic respiration or fermentation. Because G. oxydans has an obligatory aerobic respiratory mode of energy metabolism, it was tempting to elucidate the target genes regulated by GoxR. Our results show that GoxR affects the expression of genes that support the interconversion of NADPH and NADH and the NADH reoxidation by reduction of acetaldehyde to ethanol.
Collapse
|
44
|
WUSCHEL Overexpression Promotes Callogenesis and Somatic Embryogenesis in Medicago truncatula Gaertn. PLANTS 2021; 10:plants10040715. [PMID: 33917135 PMCID: PMC8067838 DOI: 10.3390/plants10040715] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 03/30/2021] [Accepted: 04/02/2021] [Indexed: 12/15/2022]
Abstract
The induction of plant somatic embryogenesis is often a limiting step for plant multiplication and genetic manipulation in numerous crops. It depends on multiple signaling developmental processes involving phytohormones and the induction of specific genes. The WUSCHEL gene (WUS) is required for the production of plant embryogenic stem cells. To explore a different approach to induce somatic embryogenesis, we have investigated the effect of the heterologous ArabidopsisWUS gene overexpression under the control of the jasmonate responsive vsp1 promoter on the morphogenic responses of Medicago truncatula explants. WUS expression in leaf explants increased callogenesis and embryogenesis in the absence of growth regulators. Similarly, WUS expression enhanced the embryogenic potential of hairy root fragments. The WUS gene represents thus a promising tool to develop plant growth regulator-free regeneration systems or to improve regeneration and transformation efficiency in recalcitrant crops.
Collapse
|
45
|
Abstract
In Chapter 3 , we described the Structural Genomics Consortium (SGC) process for generating multiple constructs of truncated versions of each protein using LIC. In this chapter we provide a step-by-step procedure of our E. coli system for test expressing intracellular (soluble) proteins in a 96-well format that enables us to identify which proteins or truncated versions are expressed in a soluble and stable form suitable for structural studies. In addition, we detail the process for scaling up cultures for large-scale protein purification. This level of production is required to obtain sufficient quantities (i.e., milligram amounts) of protein for further characterization and/or structural studies (e.g., crystallization or cryo-EM experiments). Our standard process is purification by immobilized metal affinity chromatography (IMAC) using nickel resin followed by size exclusion chromatography (SEC), with additional procedures arising from the complexity of the protein itself.
Collapse
|
46
|
Falco A, Aranaga C, Ocampo I, Takiff H. Overexpression of mfpA Gene Increases Ciprofloxacin Resistance in Mycobacterium smegmatis. Int J Microbiol 2021; 2021:6689186. [PMID: 33824663 PMCID: PMC8007378 DOI: 10.1155/2021/6689186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 02/05/2021] [Accepted: 03/03/2021] [Indexed: 11/17/2022] Open
Abstract
Fluoroquinolones (FQs) are antibiotics useful in the treatment of drug-resistant tuberculosis, but FQ-resistant mutants can be selected rapidly. Although mutations in the DNA gyrase are the principal cause of this resistance, pentapeptide proteins have been found to confer low-level FQ resistance in Gram-negative bacteria. MfpA is a pentapeptide repeat protein conserved in mycobacterial chromosomes, where it is adjacent to a group of four highly conserved genes termed a conservon. We wished to characterize the transcriptional regulation of the mfpA gene and relate its expression to ciprofloxacin resistance in M. smegmatis. Reverse transcription PCR showed that mfpA gene is part of an operon containing the conservon genes. Using a transcriptional fusion, we showed that a promoter was located 5' to the mfpEA operon. We determined the promoter activity under different growth conditions and found that the expression of the operon increases slightly in late growth phases in basic pH and in subinhibitory concentrations of ciprofloxacin. Finally, by cloning the mfpA gene in an inducible vector, we showed that induced expression of mfpA increases the ciprofloxacin Minimal Inhibitory Concentration. These results confirm that increased expression of the mfpA gene, which is part of the mfpEA operon, increases ciprofloxacin resistance in M. smegmatis.
Collapse
Affiliation(s)
- Aura Falco
- Grupo de Investigación en Microbiología, Industria y Ambiente (GIMIA), Facultad de Ciencias Básicas, Universidad Santiago de Cali, Cali, Colombia
- Laboratorio de Genética Molecular, Centro de Microbiología y Biología Celular, Instituto Venezolano de Investigaciones Científicas, Km. 11, Carretera Panamericana, Caracas, Venezuela
| | - Carlos Aranaga
- Grupo de Investigación en Química y Biotecnología (QUIBIO), Facultad de Ciencias Básicas, Universidad Santiago de Cali, Cali, Colombia
| | - Ivan Ocampo
- Grupo de Investigación en Microbiología, Industria y Ambiente (GIMIA), Facultad de Ciencias Básicas, Universidad Santiago de Cali, Cali, Colombia
| | - Howard Takiff
- Grupo de Investigación en Microbiología, Industria y Ambiente (GIMIA), Facultad de Ciencias Básicas, Universidad Santiago de Cali, Cali, Colombia
- Integrated Mycobacterial Pathogenomics, Institut Pasteur, Paris, France
- Department of Tuberculosis Control and Prevention, Shenzhen Nanshan Centre for Chronic Disease Control, Shenzhen, China
| |
Collapse
|
47
|
Ramos LFC, Rangel JHDO, Andrade GC, Lixa C, de Castilho LVA, Nogueira FCS, Pinheiro AS, Gomes FM, AnoBom CD, Almeida RV, de Oliveira DMP. Identification and recombinant expression of an antimicrobial peptide (cecropin B-like) from soybean pest Anticarsia gemmatalis. J Venom Anim Toxins Incl Trop Dis 2021; 27:e20200127. [PMID: 33796137 PMCID: PMC7970720 DOI: 10.1590/1678-9199-jvatitd-2020-0127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 01/11/2021] [Indexed: 11/22/2022] Open
Abstract
ABSTRACT BACKGROUND Insects can be found in numerous diverse environments, being exposed to pathogenic organisms like fungi and bacteria. Once these pathogens cross insect physical barriers, the innate immune system operates through cellular and humoral responses. Antimicrobial peptides are small molecules produced by immune signaling cascades that develop an important and generalist role in insect defenses against a variety of microorganisms. In the present work, a cecropin B-like peptide (AgCecropB) sequence was identified in the velvetbean caterpillar Anticarsia gemmatalis and cloned in a bacterial plasmid vector for further heterologous expression and antimicrobial tests. METHODS AgCecropB sequence (without the signal peptide) was cloned in the plasmid vector pET-M30-MBP and expressed in the Escherichia coli BL21(DE3) expression host. Expression was induced with IPTG and a recombinant peptide was purified using two affinity chromatography steps with Histrap column. The purified peptide was submitted to high-resolution mass spectrometry (HRMS) and structural analyses. Antimicrobial tests were performed using gram-positive (Bacillus thuringiensis) and gram-negative (Burkholderia kururiensis and E. coli) bacteria. RESULTS AgCecropB was expressed in E. coli BL21 (DE3) at 28°C with IPTG 0.5 mM. The recombinant peptide was purified and enriched after purification steps. HRMS confirmed AgCrecropB molecular mass (4.6 kDa) and circular dichroism assay showed α-helix structure in the presence of SDS. AgCrecropB inhibited almost 50% of gram-positive B. thuringiensis bacteria growth. CONCLUSIONS The first cecropin B-like peptide was described in A. gemmatalis and a recombinant peptide was expressed using a bacterial platform. Data confirmed tertiary structure as predicted for the cecropin peptide family. AgCecropB was capable to inhibit B. thuringiensis growth in vitro.
Collapse
Affiliation(s)
- Luís Felipe Costa Ramos
- Department of Biochemistry, Institute of Chemistry, Center of Mathematical and Natural Sciences, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - João Henrique de Oliveira Rangel
- Department of Biochemistry, Institute of Chemistry, Center of Mathematical and Natural Sciences, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Guilherme Caldas Andrade
- Department of Biochemistry, Institute of Chemistry, Center of Mathematical and Natural Sciences, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Carolina Lixa
- Department of Biochemistry, Institute of Chemistry, Center of Mathematical and Natural Sciences, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Livia Vieira Araujo de Castilho
- Department of Biochemistry, Institute of Chemistry, Center of Mathematical and Natural Sciences, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
- Alberto Luiz Coimbra Institute of Graduate Studies and Research (COPPE), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Fábio César Sousa Nogueira
- Department of Biochemistry, Institute of Chemistry, Center of Mathematical and Natural Sciences, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Anderson S Pinheiro
- Department of Biochemistry, Institute of Chemistry, Center of Mathematical and Natural Sciences, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Fabio Mendonça Gomes
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Cristiane Dinis AnoBom
- Department of Biochemistry, Institute of Chemistry, Center of Mathematical and Natural Sciences, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Rodrigo Volcan Almeida
- Department of Biochemistry, Institute of Chemistry, Center of Mathematical and Natural Sciences, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Danielle Maria Perpétua de Oliveira
- Department of Biochemistry, Institute of Chemistry, Center of Mathematical and Natural Sciences, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| |
Collapse
|
48
|
Höfer AM, Harting R, Aßmann NF, Gerke J, Schmitt K, Starke J, Bayram Ö, Tran VT, Valerius O, Braus-Stromeyer SA, Braus GH. The velvet protein Vel1 controls initial plant root colonization and conidia formation for xylem distribution in Verticillium wilt. PLoS Genet 2021; 17:e1009434. [PMID: 33720931 PMCID: PMC7993770 DOI: 10.1371/journal.pgen.1009434] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 03/25/2021] [Accepted: 02/18/2021] [Indexed: 12/19/2022] Open
Abstract
The conserved fungal velvet family regulatory proteins link development and secondary metabolite production. The velvet domain for DNA binding and dimerization is similar to the structure of the Rel homology domain of the mammalian NF-κB transcription factor. A comprehensive study addressed the functions of all four homologs of velvet domain encoding genes in the fungal life cycle of the soil-borne plant pathogenic fungus Verticillium dahliae. Genetic, cell biological, proteomic and metabolomic analyses of Vel1, Vel2, Vel3 and Vos1 were combined with plant pathogenicity experiments. Different phases of fungal growth, development and pathogenicity require V. dahliae velvet proteins, including Vel1-Vel2, Vel2-Vos1 and Vel3-Vos1 heterodimers, which are already present during vegetative hyphal growth. The major novel finding of this study is that Vel1 is necessary for initial plant root colonization and together with Vel3 for propagation in planta by conidiation. Vel1 is needed for disease symptom induction in tomato. Vel1, Vel2, and Vel3 control the formation of microsclerotia in senescent plants. Vel1 is the most important among all four V. dahliae velvet proteins with a wide variety of functions during all phases of the fungal life cycle in as well as ex planta.
Collapse
Affiliation(s)
- Annalena M. Höfer
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics, University of Göttingen and Göttingen Center for Molecular Biosciences (GZMB), Göttingen, Germany
| | - Rebekka Harting
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics, University of Göttingen and Göttingen Center for Molecular Biosciences (GZMB), Göttingen, Germany
| | - Nils F. Aßmann
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics, University of Göttingen and Göttingen Center for Molecular Biosciences (GZMB), Göttingen, Germany
| | - Jennifer Gerke
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics, University of Göttingen and Göttingen Center for Molecular Biosciences (GZMB), Göttingen, Germany
| | - Kerstin Schmitt
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics, University of Göttingen and Göttingen Center for Molecular Biosciences (GZMB), Göttingen, Germany
| | - Jessica Starke
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics, University of Göttingen and Göttingen Center for Molecular Biosciences (GZMB), Göttingen, Germany
| | - Özgür Bayram
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics, University of Göttingen and Göttingen Center for Molecular Biosciences (GZMB), Göttingen, Germany
| | - Van-Tuan Tran
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics, University of Göttingen and Göttingen Center for Molecular Biosciences (GZMB), Göttingen, Germany
| | - Oliver Valerius
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics, University of Göttingen and Göttingen Center for Molecular Biosciences (GZMB), Göttingen, Germany
| | - Susanna A. Braus-Stromeyer
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics, University of Göttingen and Göttingen Center for Molecular Biosciences (GZMB), Göttingen, Germany
| | - Gerhard H. Braus
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics, University of Göttingen and Göttingen Center for Molecular Biosciences (GZMB), Göttingen, Germany
| |
Collapse
|
49
|
Versatile CRISPR/Cas9 Systems for Genome Editing in Ustilago maydis. J Fungi (Basel) 2021; 7:jof7020149. [PMID: 33670568 PMCID: PMC7922307 DOI: 10.3390/jof7020149] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/09/2021] [Accepted: 02/16/2021] [Indexed: 12/24/2022] Open
Abstract
The phytopathogenic smut fungus Ustilago maydis is a versatile model organism to study plant pathology, fungal genetics, and molecular cell biology. Here, we report several strategies to manipulate the genome of U. maydis by the CRISPR/Cas9 technology. These include targeted gene deletion via homologous recombination of short double-stranded oligonucleotides, introduction of point mutations, heterologous complementation at the genomic locus, and endogenous N-terminal tagging with the fluorescent protein mCherry. All applications are independent of a permanent selectable marker and only require transient expression of the endonuclease Cas9hf and sgRNA. The techniques presented here are likely to accelerate research in the U. maydis community but can also act as a template for genome editing in other important fungi.
Collapse
|
50
|
Nasreen M, Fletcher A, Hosmer J, Zhong Q, Essilfie AT, McEwan AG, Kappler U. The Alternative Sigma Factor RpoE2 Is Involved in the Stress Response to Hypochlorite and in vivo Survival of Haemophilus influenzae. Front Microbiol 2021; 12:637213. [PMID: 33643271 PMCID: PMC7907618 DOI: 10.3389/fmicb.2021.637213] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 01/07/2021] [Indexed: 11/29/2022] Open
Abstract
Extracytoplasmic function (ECF) sigma factors underpin the ability of bacteria to adapt to changing environmental conditions, a process that is particularly relevant in human pathogens that inhabit niches where human immune cells contribute to high levels of extracellular stress. Here, we have characterized the previously unstudied RpoE2 ECF sigma factor from the human respiratory pathogen H. influenzae (Hi) and its role in hypochlorite-induced stress. Exposure of H. influenzae to oxidative stress (HOCl, H2O2) increased rpoE2 gene expression, and the activity of RpoE2 was controlled by a cytoplasmic 67-aa anti-sigma factor, HrsE. RpoE2 regulated the expression of the periplasmic MsrAB peptide methionine sulfoxide reductase that, in H. influenzae, is required for HOCl resistance, thus linking RpoE2 to HOCl stress. Interestingly, a HiΔrpoE2 strain had wild-type levels of resistance to oxidative stress in vitro, but HiΔrpoE2 survival was reduced 26-fold in a mouse model of lung infection, demonstrating the relevance of this sigma factor for H. influenzae pathogenesis. The HiRpoE2 system has some similarity to the ECF sigma factors described in Streptomyces and Neisseria sp. that also control the expression of msr genes. However, HiRpoE2 regulation extended to genes encoding other periplasmic damage repair proteins, an operon containing a DoxX-like protein, and also included selected OxyR-controlled genes. Based on our results, we propose that the highly conserved HiRpoE2 sigma factor is a key regulator of H. influenzae responses to oxidative damage in the cell envelope region that controls a variety of target genes required for survival in the host.
Collapse
Affiliation(s)
- Marufa Nasreen
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, Australia
| | - Aidan Fletcher
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, Australia
| | - Jennifer Hosmer
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, Australia
| | - Qifeng Zhong
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, Australia
| | | | - Alastair G McEwan
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, Australia
| | - Ulrike Kappler
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, Australia
| |
Collapse
|