1
|
Zakaria MF, Kato H, Sonoda S, Kato K, Uehara N, Kyumoto-Nakamura Y, Sharifa MM, Yu L, Dai L, Yamaza H, Kajioka S, Nishimura F, Yamaza T. NaV1.1 contributes to the cell cycle of human mesenchymal stem cells by regulating AKT and CDK2. J Cell Sci 2024; 137:jcs261732. [PMID: 39258309 PMCID: PMC11491812 DOI: 10.1242/jcs.261732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 08/28/2024] [Indexed: 09/12/2024] Open
Abstract
Non-excitable cells express sodium voltage-gated channel alpha subunit 1 gene and protein (known as SCN1A and NaV1.1, respectively); however, the functions of NaV1.1 are unclear. In this study, we investigated the role of SCN1A and NaV1.1 in human mesenchymal stem cells (MSCs). We found that SCN1A was expressed in MSCs, and abundant expression of NaV1.1 was observed in the endoplasmic reticulum; however, this expression was not found to be related to Na+ currents. SCN1A-silencing reduced MSC proliferation and delayed the cell cycle in the S phase. SCN1A silencing also suppressed the protein levels of CDK2 and AKT (herein referring to total AKT), despite similar mRNA expression, and inhibited AKT phosphorylation in MSCs. A cycloheximide-chase assay showed that SCN1A-silencing induced CDK2 but not AKT protein degradation in MSCs. A proteolysis inhibition assay using epoxomicin, bafilomycin A1 and NH4Cl revealed that both the ubiquitin-proteasome system and the autophagy and endo-lysosome system were irrelevant to CDK2 and AKT protein reduction in SCN1A-silenced MSCs. The AKT inhibitor LY294002 did not affect the degradation and nuclear localization of CDK2 in MSCs. Likewise, the AKT activator SC79 did not attenuate the SCN1A-silencing effects on CDK2 in MSCs. These results suggest that NaV1.1 contributes to the cell cycle of MSCs by regulating the post-translational control of AKT and CDK2.
Collapse
Affiliation(s)
- Mohammed Fouad Zakaria
- Department of Molecular Cell Biology and Oral Anatomy, Kyushu University Graduate School of Dental Science, Fukuoka 812-8582, Japan
- Department of Periodontology, Faculty of Dental Science, Kyushu University, Fukuoka 812-8582, Japan
| | - Hiroki Kato
- Department of Molecular Cell Biology and Oral Anatomy, Kyushu University Graduate School of Dental Science, Fukuoka 812-8582, Japan
| | - Soichiro Sonoda
- Department of Molecular Cell Biology and Oral Anatomy, Kyushu University Graduate School of Dental Science, Fukuoka 812-8582, Japan
| | - Kenichi Kato
- Department of Nursing, Fukuoka School of Health Sciences, Fukuoka 814-0005, Japan
| | - Norihisa Uehara
- Department of Molecular Cell Biology and Oral Anatomy, Kyushu University Graduate School of Dental Science, Fukuoka 812-8582, Japan
| | - Yukari Kyumoto-Nakamura
- Department of Molecular Cell Biology and Oral Anatomy, Kyushu University Graduate School of Dental Science, Fukuoka 812-8582, Japan
| | - Mohammed Majd Sharifa
- Department of Molecular Cell Biology and Oral Anatomy, Kyushu University Graduate School of Dental Science, Fukuoka 812-8582, Japan
| | - Liting Yu
- Department of Molecular Cell Biology and Oral Anatomy, Kyushu University Graduate School of Dental Science, Fukuoka 812-8582, Japan
| | - Lisha Dai
- Department of Molecular Cell Biology and Oral Anatomy, Kyushu University Graduate School of Dental Science, Fukuoka 812-8582, Japan
| | - Haruyoshi Yamaza
- Department of Pediatric Dentistry, Kyushu University Graduate School of Dental Science, Fukuoka 812-8582, Japan
| | - Shunichi Kajioka
- Department of Pharmacy in Fukuoka, International University of Health and Welfare, Okawa 831-8501, Japan
| | - Fusanori Nishimura
- Department of Periodontology, Faculty of Dental Science, Kyushu University, Fukuoka 812-8582, Japan
| | - Takayoshi Yamaza
- Department of Molecular Cell Biology and Oral Anatomy, Kyushu University Graduate School of Dental Science, Fukuoka 812-8582, Japan
| |
Collapse
|
2
|
Liu J, Chen H, Liu L, Meng X, Liu Q, Ye Q, Wen J, Wang T, Dong J. A cargo sorting receptor mediates chloroplast protein trafficking through the secretory pathway. THE PLANT CELL 2024; 36:3770-3786. [PMID: 38963880 PMCID: PMC11371137 DOI: 10.1093/plcell/koae197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 06/05/2024] [Accepted: 06/07/2024] [Indexed: 07/06/2024]
Abstract
Nucleus-encoded chloroplast proteins can be transported via the secretory pathway. The molecular mechanisms underlying the trafficking of chloroplast proteins between the intracellular compartments are largely unclear, and a cargo sorting receptor has not previously been identified in the secretory pathway. Here, we report a cargo sorting receptor that is specifically present in Viridiplantae and mediates the transport of cargo proteins to the chloroplast. Using a forward genetic analysis, we identified a gene encoding a transmembrane protein (MtTP930) in barrel medic (Medicago truncatula). Mutation of MtTP930 resulted in impaired chloroplast function and a dwarf phenotype. MtTP930 is highly expressed in the aerial parts of the plant and is localized to the endoplasmic reticulum (ER) exit sites and Golgi. MtTP930 contains typical cargo sorting receptor motifs, interacts with Sar1, Sec12, and Sec24, and participates in coat protein complex II vesicular transport. Importantly, MtTP930 can recognize the cargo proteins plastidial N-glycosylated nucleotide pyrophosphatase/phosphodiesterase (MtNPP) and α-carbonic anhydrase (MtCAH) in the ER and then transport them to the chloroplast via the secretory pathway. Mutation of a homolog of MtTP930 in Arabidopsis (Arabidopsis thaliana) resulted in a similar dwarf phenotype. Furthermore, MtNPP-GFP failed to localize to chloroplasts when transgenically expressed in Attp930 protoplasts, implying that these cargo sorting receptors are conserved in plants. These findings fill a gap in our understanding of the mechanism by which chloroplast proteins are sorted and transported via the secretory pathway.
Collapse
Affiliation(s)
- Jinling Liu
- College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Hong Chen
- College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Li Liu
- College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Xiangzhao Meng
- College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Qianwen Liu
- College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Qinyi Ye
- College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jiangqi Wen
- Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, OK 73401, USA
- Department of Plant and Soil Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| | - Tao Wang
- College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jiangli Dong
- College of Biological Sciences, China Agricultural University, Beijing 100193, China
| |
Collapse
|
3
|
Dey D, Qing E, He Y, Chen Y, Jennings B, Cohn W, Singh S, Gakhar L, Schnicker NJ, Pierce BG, Whitelegge JP, Doray B, Orban J, Gallagher T, Hasan SS. A single C-terminal residue controls SARS-CoV-2 spike trafficking and incorporation into VLPs. Nat Commun 2023; 14:8358. [PMID: 38102143 PMCID: PMC10724246 DOI: 10.1038/s41467-023-44076-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 11/29/2023] [Indexed: 12/17/2023] Open
Abstract
The spike (S) protein of SARS-CoV-2 is delivered to the virion assembly site in the ER-Golgi Intermediate Compartment (ERGIC) from both the ER and cis-Golgi in infected cells. However, the relevance and modulatory mechanism of this bidirectional trafficking are unclear. Here, using structure-function analyses, we show that S incorporation into virus-like particles (VLP) and VLP fusogenicity are determined by coatomer-dependent S delivery from the cis-Golgi and restricted by S-coatomer dissociation. Although S mimicry of the host coatomer-binding dibasic motif ensures retrograde trafficking to the ERGIC, avoidance of the host-like C-terminal acidic residue is critical for S-coatomer dissociation and therefore incorporation into virions or export for cell-cell fusion. Because this C-terminal residue is the key determinant of SARS-CoV-2 assembly and fusogenicity, our work provides a framework for the export of S protein encoded in genetic vaccines for surface display and immune activation.
Collapse
Affiliation(s)
- Debajit Dey
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Enya Qing
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, IL, 60153, USA
| | - Yanan He
- University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, MD, 20850, USA
| | - Yihong Chen
- University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, MD, 20850, USA
| | - Benjamin Jennings
- Department of Internal Medicine, Hematology Division, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Whitaker Cohn
- Pasarow Mass Spectrometry Laboratory, The Jane and Terry Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Suruchi Singh
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Lokesh Gakhar
- Department of Biochemistry and Molecular Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
- Protein and Crystallography Facility, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
- PAQ Therapeutics, Burlington, MA, 01803, USA
| | - Nicholas J Schnicker
- Protein and Crystallography Facility, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Brian G Pierce
- University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, MD, 20850, USA
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, 20742, USA
| | - Julian P Whitelegge
- Pasarow Mass Spectrometry Laboratory, The Jane and Terry Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Balraj Doray
- Department of Internal Medicine, Hematology Division, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - John Orban
- University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, MD, 20850, USA
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, 20742, USA
| | - Tom Gallagher
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, IL, 60153, USA
| | - S Saif Hasan
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
- University of Maryland Marlene and Stewart Greenebaum Cancer Center, University of Maryland Medical Center, Baltimore, MD, 21201, USA.
- Center for Biomolecular Therapeutics, University of Maryland School of Medicine, Rockville, MD, 20850, USA.
| |
Collapse
|
4
|
Zeng Y, Liang Z, Liu Z, Li B, Cui Y, Gao C, Shen J, Wang X, Zhao Q, Zhuang X, Erdmann PS, Wong KB, Jiang L. Recent advances in plant endomembrane research and new microscopical techniques. THE NEW PHYTOLOGIST 2023; 240:41-60. [PMID: 37507353 DOI: 10.1111/nph.19134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 06/19/2023] [Indexed: 07/30/2023]
Abstract
The endomembrane system consists of various membrane-bound organelles including the endoplasmic reticulum (ER), Golgi apparatus, trans-Golgi network (TGN), endosomes, and the lysosome/vacuole. Membrane trafficking between distinct compartments is mainly achieved by vesicular transport. As the endomembrane compartments and the machineries regulating the membrane trafficking are largely conserved across all eukaryotes, our current knowledge on organelle biogenesis and endomembrane trafficking in plants has mainly been shaped by corresponding studies in mammals and yeast. However, unique perspectives have emerged from plant cell biology research through the characterization of plant-specific regulators as well as the development and application of the state-of-the-art microscopical techniques. In this review, we summarize our current knowledge on the plant endomembrane system, with a focus on several distinct pathways: ER-to-Golgi transport, protein sorting at the TGN, endosomal sorting on multivesicular bodies, vacuolar trafficking/vacuole biogenesis, and the autophagy pathway. We also give an update on advanced imaging techniques for the plant cell biology research.
Collapse
Affiliation(s)
- Yonglun Zeng
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Zizhen Liang
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Zhiqi Liu
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Baiying Li
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Yong Cui
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Caiji Gao
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Jinbo Shen
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China
| | - Xiangfeng Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Qiong Zhao
- School of Life Sciences, East China Normal University, Shanghai, 200062, China
| | - Xiaohong Zhuang
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Philipp S Erdmann
- Human Technopole, Viale Rita Levi-Montalcini, 1, Milan, I-20157, Italy
| | - Kam-Bo Wong
- Centre for Protein Science and Crystallography, School of Life Sciences, The Chinese University of Hong Kong (CUHK), Shatin, Hong Kong, China
| | - Liwen Jiang
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
- The CUHK Shenzhen Research Institute, Shenzhen, 518057, China
- Institute of Plant Molecular Biology and Agricultural Biotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| |
Collapse
|
5
|
Barker J, daSilva LLP, Crump CM. Mechanisms of bunyavirus morphogenesis and egress. J Gen Virol 2023; 104. [PMID: 37083579 DOI: 10.1099/jgv.0.001845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023] Open
Abstract
Unlike many segmented negative-sense RNA viruses, most members of the Bunyavirales bud at Golgi membranes, as opposed to the plasma membrane. Central players in this assembly process are the envelope glycoproteins, Gn and Gc, which upon translation undergo proteolytic processing, glycosylation and trafficking to the Golgi, where they interact with ribonucleoprotein genome segments and bud into Golgi-derived compartments. The processes involved in genome packaging during virion assembly can lead to the generation of reassorted viruses, if a cell is co-infected with two different bunyaviruses, due to mismatching of viral genome segment packaging. This can lead to viruses with high pathogenic potential, as demonstrated by the emergence of Schmallenberg virus. This review focuses on the assembly pathways of tri-segmented bunyaviruses, highlighting some areas in need of further research to understand these important pathogens with zoonotic potential.
Collapse
Affiliation(s)
- Jake Barker
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge, UK
| | - Luis L P daSilva
- Departamento de Biologia Celular e Molecular, Centro de Pesquisa em Virologia, Faculdade de Medicina de Ribeirão Preto, University of São Paulo, State of São Paulo, Brazil
| | - Colin M Crump
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge, UK
| |
Collapse
|
6
|
Nakano A. The Golgi Apparatus and its Next-Door Neighbors. Front Cell Dev Biol 2022; 10:884360. [PMID: 35573670 PMCID: PMC9096111 DOI: 10.3389/fcell.2022.884360] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 03/28/2022] [Indexed: 12/20/2022] Open
Abstract
The Golgi apparatus represents a central compartment of membrane traffic. Its apparent architecture, however, differs considerably among species, from unstacked and scattered cisternae in the budding yeast Saccharomyces cerevisiae to beautiful ministacks in plants and further to gigantic ribbon structures typically seen in mammals. Considering the well-conserved functions of the Golgi, its fundamental structure must have been optimized despite seemingly different architectures. In addition to the core layers of cisternae, the Golgi is usually accompanied by next-door compartments on its cis and trans sides. The trans-Golgi network (TGN) can be now considered as a compartment independent from the Golgi stack. On the cis side, the intermediate compartment between the ER and the Golgi (ERGIC) has been known in mammalian cells, and its functional equivalent is now suggested for yeast and plant cells. High-resolution live imaging is extremely powerful for elucidating the dynamics of these compartments and has revealed amazing similarities in their behaviors, indicating common mechanisms conserved along the long course of evolution. From these new findings, I would like to propose reconsideration of compartments and suggest a new concept to describe their roles comprehensively around the Golgi and in the post-Golgi trafficking.
Collapse
|
7
|
Chen X, Mayr C. A working model for condensate RNA-binding proteins as matchmakers for protein complex assembly. RNA (NEW YORK, N.Y.) 2022; 28:76-87. [PMID: 34706978 PMCID: PMC8675283 DOI: 10.1261/rna.078995.121] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Most cellular processes are carried out by protein complexes, but it is still largely unknown how the subunits of lowly expressed complexes find each other in the crowded cellular environment. Here, we will describe a working model where RNA-binding proteins in cytoplasmic condensates act as matchmakers between their bound proteins (called protein targets) and newly translated proteins of their RNA targets to promote their assembly into complexes. Different RNA-binding proteins act as scaffolds for various cytoplasmic condensates with several of them supporting translation. mRNAs and proteins are recruited into the cytoplasmic condensates through binding to specific domains in the RNA-binding proteins. Scaffold RNA-binding proteins have a high valency. In our model, they use homotypic interactions to assemble condensates and they use heterotypic interactions to recruit protein targets into the condensates. We propose that unoccupied binding sites in the scaffold RNA-binding proteins transiently retain recruited and newly translated proteins in the condensates, thus promoting their assembly into complexes. Taken together, we propose that lowly expressed subunits of protein complexes combine information in their mRNAs and proteins to colocalize in the cytoplasm. The efficiency of protein complex assembly is increased by transient entrapment accomplished by multivalent RNA-binding proteins within cytoplasmic condensates.
Collapse
Affiliation(s)
- Xiuzhen Chen
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Christine Mayr
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| |
Collapse
|
8
|
Huang N, Barndt RB, Lu DD, Wang Q, Huang SM, Wang JK, Chang PY, Chen CY, Hu JM, Su HC, Johnson MD, Lin CY. The difference in the intracellular Arg/Lys-rich and EHLVY motifs contributes to distinct subcellular distribution of HAI-1 versus HAI-2. Hum Cell 2021; 35:163-178. [PMID: 34643933 DOI: 10.1007/s13577-021-00632-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 10/04/2021] [Indexed: 11/26/2022]
Abstract
The integral membrane, Kunitz-type, serine protease inhibitors, HAI-1 and HAI-2, closely resemble one another structurally and with regard to their specificity and potency against proteases. Structural complementarity between the Kunitz domains and serine protease domains renders the membrane-associated serine proteases, matriptase and prostasin, the primary target proteases of the HAIs. The shared biochemical enzyme-inhibitor relationships are, however, at odds with their behavior at the cellular level, where HAI-1 appears to be the default inhibitor of these proteases and HAI-2 a cell-type-selective inhibitor, even though they are widely co-expressed. The limited motility of these proteins caused by their membrane anchorages may require their co-localization within a certain distance to allow the establishment of a cellular level functional relationship between the proteases and the inhibitors. The differences in their subcellular localization with HAI-1 both inside the cell and on the cell surface, compared to HAI-2 predominately in intracellular granules has, therefore, been implicated in the differential manner of their control of matriptase and prostasin proteolysis. The targeting signals present in the intracellular domains of the HAIs are systematically investigated herein. Studies involving domain swap and point mutation, in combination with immunocytochemistry and cell surface biotinylation/avidin depletion, reveal that the different subcellular localization between the HAIs can largely be attributed to differences in the intracellular Arg/Lys-rich and EHLVY motifs. These intrinsic differences in the targeting signal render the HAIs as two independent rather than redundant proteolysis regulators.
Collapse
Affiliation(s)
- Nanxi Huang
- Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University, W412, W416 Research Building 3970 Reservoir Road NW, Washington, DC, 20057, USA
| | - Robert B Barndt
- Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University, W412, W416 Research Building 3970 Reservoir Road NW, Washington, DC, 20057, USA
| | - Dajun D Lu
- Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University, W412, W416 Research Building 3970 Reservoir Road NW, Washington, DC, 20057, USA
| | - Qiaochu Wang
- Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University, W412, W416 Research Building 3970 Reservoir Road NW, Washington, DC, 20057, USA
| | - Shih-Ming Huang
- Department of Biochemistry, National Defense Medical Center, Taipei, 114, Taiwan, ROC
| | - Jehng-Kang Wang
- Department of Biochemistry, National Defense Medical Center, Taipei, 114, Taiwan, ROC
| | - Ping-Ying Chang
- Division of Hematology/Oncology, Department of Internal Medicine, Tri-Service General Hospital, Taipei, Taiwan, ROC
- School of Medicine, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Chao-Yang Chen
- School of Medicine, National Defense Medical Center, Taipei, Taiwan, ROC
- Division of Colorectal Surgery, Department of Surgery, Tri-Service General Hospital Taipei, Taipei, Taiwan, ROC
| | - Je-Ming Hu
- School of Medicine, National Defense Medical Center, Taipei, Taiwan, ROC
- Division of Colorectal Surgery, Department of Surgery, Tri-Service General Hospital Taipei, Taipei, Taiwan, ROC
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Hui-Chen Su
- Department of Pharmacy, Chi-Mei Medical Center, Tainan, Taiwan, ROC.
| | - Michael D Johnson
- Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University, W412, W416 Research Building 3970 Reservoir Road NW, Washington, DC, 20057, USA.
| | - Chen-Yong Lin
- Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University, W412, W416 Research Building 3970 Reservoir Road NW, Washington, DC, 20057, USA.
- Department of Pharmacy, Chi-Mei Medical Center, Tainan, Taiwan, ROC.
| |
Collapse
|
9
|
Lujan P, Campelo F. Should I stay or should I go? Golgi membrane spatial organization for protein sorting and retention. Arch Biochem Biophys 2021; 707:108921. [PMID: 34038703 DOI: 10.1016/j.abb.2021.108921] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 04/12/2021] [Accepted: 05/03/2021] [Indexed: 12/23/2022]
Abstract
The Golgi complex is the membrane-bound organelle that lies at the center of the secretory pathway. Its main functions are to maintain cellular lipid homeostasis, to orchestrate protein processing and maturation, and to mediate protein sorting and export. These functions are not independent of one another, and they all require that the membranes of the Golgi complex have a well-defined biochemical composition. Importantly, a finely-regulated spatiotemporal organization of the Golgi membrane components is essential for the correct performance of the organelle. In here, we review our current mechanistic and molecular understanding of how Golgi membranes are spatially organized in the lateral and axial directions to fulfill their functions. In particular, we highlight the current evidence and proposed models of intra-Golgi transport, as well as the known mechanisms for the retention of Golgi residents and for the sorting and export of transmembrane cargo proteins. Despite the controversies, conflicting evidence, clashes between models, and technical limitations, the field has moved forward and we have gained extensive knowledge in this fascinating topic. However, there are still many important questions that remain to be completely answered. We hope that this review will help boost future investigations on these issues.
Collapse
Affiliation(s)
- Pablo Lujan
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860, Barcelona, Spain.
| | - Felix Campelo
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860, Barcelona, Spain.
| |
Collapse
|
10
|
Kotthoff M, Bauer J, Haag F, Krautwurst D. Conserved C-terminal motifs in odorant receptors instruct their cell surface expression and cAMP signaling. FASEB J 2021; 35:e21274. [PMID: 33464692 DOI: 10.1096/fj.202000182rr] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 10/30/2020] [Accepted: 11/30/2020] [Indexed: 11/11/2022]
Abstract
The highly individual plasma membrane expression and cAMP signaling of odorant receptors have hampered their ligand assignment and functional characterization in test cell systems. Chaperones have been identified to support the cell surface expression of only a portion of odorant receptors, with mechanisms remaining unclear. The presence of amino acid motifs that might be responsible for odorant receptors' individual intracellular retention or cell surface expression, and thus, for cAMP signaling, is under debate: so far, no such protein motifs have been suggested. Here, we demonstrate the existence of highly conserved C-terminal amino acid motifs, which discriminate at least between class-I and class-II odorant receptors, with their numbers of motifs increasing during evolution, by comparing C-terminal protein sequences from 4808 receptors across eight species. Truncation experiments and mutation analysis of C-terminal motifs, largely overlapping with helix 8, revealed single amino acids and their combinations to have differential impact on the cell surface expression and on stimulus-dependent cAMP signaling of odorant receptors in NxG 108CC15 cells. Our results demonstrate class-specific and individual C-terminal motif equipment of odorant receptors, which instruct their functional expression in a test cell system, and in situ may regulate their individual cell surface expression and intracellular cAMP signaling.
Collapse
Affiliation(s)
| | - Julia Bauer
- Leibniz-Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany
| | - Franziska Haag
- Leibniz-Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany
| | - Dietmar Krautwurst
- Leibniz-Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany
| |
Collapse
|
11
|
Zhang C, Sui D, Zhang T, Hu J. Molecular Basis of Zinc-Dependent Endocytosis of Human ZIP4 Transceptor. Cell Rep 2021; 31:107582. [PMID: 32348750 PMCID: PMC7661102 DOI: 10.1016/j.celrep.2020.107582] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 02/03/2020] [Accepted: 04/07/2020] [Indexed: 12/05/2022] Open
Abstract
Nutrient transporters can be rapidly removed from the cell surface via substrate-stimulated endocytosis as a way to control nutrient influx, but the molecular underpinnings are not well understood. In this work, we focus on zinc-dependent endocytosis of human ZIP4 (hZIP4), a zinc transporter that is essential for dietary zinc uptake. Structure-guided mutagenesis and internalization assay reveal that hZIP4 per se acts as the exclusive zinc sensor, with the transport site’s being responsible for zinc sensing. In an effort of seeking sorting signal, a scan of the longest cytosolic loop (L2) leads to identification of a conserved Leu-Gln-Leu motif that is essential for endocytosis. Partial proteolysis of purified hZIP4 demonstrates a structural coupling between the transport site and the L2 upon zinc binding, which supports a working model of how zinc ions at physiological concentration trigger a conformation-dependent endocytosis of the zinc transporter. This work provides a paradigm on post-translational regulation of nutrient transporters. Cell surface expression of ZIP4, a transporter for intestinal zinc uptake, is regulated by zinc availability. Zhang et al. report that human ZIP4 acts as the exclusive zinc sensor in initiating the zinc-dependent endocytosis, and a cytosolic motif is essential for sorting signal formation, indicating that ZIP4 is a transceptor.
Collapse
Affiliation(s)
- Chi Zhang
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Dexin Sui
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Tuo Zhang
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Jian Hu
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA; Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
12
|
Saito M, Nakayama M, Fujita K, Uchida A, Yano H, Goto S, Okazawa H, Sone M. Role of the Drosophila YATA protein in the proper subcellular localization of COPI revealed by in vivo analysis. Genes Genet Syst 2021; 95:303-314. [PMID: 33583916 DOI: 10.1266/ggs.20-00027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
yata mutants of Drosophila melanogaster exhibit phenotypes including progressive brain shrinkage, developmental abnormalities and shortened lifespan, whereas in mammals, null mutations of the yata ortholog Scyl1 result in motor neuron degeneration. yata mutation also causes defects in the anterograde intracellular trafficking of a subset of proteins including APPL, which is the Drosophila ortholog of mammalian APP, a causative molecule in Alzheimer's disease. SCYL1 binds and regulates the function of coat protein complex I (COPI) in secretory vesicles. Here, we reveal a role for the Drosophila YATA protein in the proper localization of COPI. Immunohistochemical analyses performed using confocal microscopy and structured illumination microscopy showed that YATA colocalizes with COPI and GM130, a cis-Golgi marker. Analyses using transgenically expressed YATA with a modified N-terminal sequence revealed that the N-terminal portion of YATA is required for the proper subcellular localization of YATA. Analysis using transgenically expressed YATA proteins in which the C-terminal sequence was modified revealed a function for the C-terminal portion of YATA in the subcellular localization of COPI. Notably, when YATA was mislocalized, it also caused the mislocalization of COPI, indicating that YATA plays a role in directing COPI to the proper subcellular site. Moreover, when both YATA and COPI were mislocalized, the staining pattern of GM130 revealed Golgi with abnormal elongated shapes. Thus, our in vivo data indicate that YATA plays a role in the proper subcellular localization of COPI.
Collapse
Affiliation(s)
- Maiko Saito
- Department of Biomolecular Science, Faculty of Science, Toho University
| | - Minoru Nakayama
- Department of Biomolecular Science, Faculty of Science, Toho University
| | - Kyota Fujita
- Department of Neuropathology, Medical Research Institute, Tokyo Medical and Dental University
| | - Atsuko Uchida
- Department of Neuroscience, The Ohio State University
| | | | - Satoshi Goto
- Department of Life Science, College of Science, Rikkyo University
| | - Hitoshi Okazawa
- Department of Neuropathology, Medical Research Institute, Tokyo Medical and Dental University
| | - Masaki Sone
- Department of Biomolecular Science, Faculty of Science, Toho University
| |
Collapse
|
13
|
Chau S, Fujii A, Wang Y, Vandebroek A, Goda W, Yasui M, Abe Y. Di-lysine motif-like sequences formed by deleting the C-terminal domain of aquaporin-4 prevent its trafficking to the plasma membrane. Genes Cells 2021; 26:152-164. [PMID: 33474763 DOI: 10.1111/gtc.12829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/17/2021] [Accepted: 01/17/2021] [Indexed: 11/30/2022]
Abstract
Aquaporin-4 is a transmembrane water channel protein, the C-terminal domain of which is facing the cytosol. In the process of investigating the role of the C-terminal domain of aquaporin-4 with regard to intracellular trafficking, we observed that a derivative of aquaporin-4, in which the C-terminal 53 amino acids had been removed (Δ271-323), was localized to intracellular compartments, including the endoplasmic reticulum, but was not expressed on the plasma membranes. This was determined by immunofluorescence staining and labeling of the cells with monoclonal antibody specifically recognizing the extracellular domain of aquaporin-4, followed by confocal microscopy and flow cytometry. Deletion of additional amino acids in the C-terminal domain of aquaporin-4 led to its redistribution to the plasma membrane. This suggests that the effect of the 53-amino acid deletion on the subcellular localization of aquaporin-4 could be attributed to the formation of a signal at the C terminus that retained aquaporin-4 in intracellular compartments, rather than the loss of a signal required for plasma membrane targeting. Substitution of the lysine at position 268 with alanine could rescue the Δ271-323-associated retention in the cytosol, suggesting that the C-terminal sequence of the mutant served as a signal similar to a di-lysine motif.
Collapse
Affiliation(s)
- Simon Chau
- Department of Pharmacology, Keio University School of Medicine, Tokyo, Japan
| | - Atsushi Fujii
- Department of Pharmacology, Keio University School of Medicine, Tokyo, Japan
| | - Yingqi Wang
- Department of Pharmacology, Keio University School of Medicine, Tokyo, Japan
| | - Arno Vandebroek
- Department of Pharmacology, Keio University School of Medicine, Tokyo, Japan
| | - Wakami Goda
- Department of Pharmacology, Keio University School of Medicine, Tokyo, Japan
| | - Masato Yasui
- Department of Pharmacology, Keio University School of Medicine, Tokyo, Japan.,Center for Water Biology & Medicine, Keio University Global Research Institute, Tokyo, Japan
| | - Yoichiro Abe
- Department of Pharmacology, Keio University School of Medicine, Tokyo, Japan.,Center for Water Biology & Medicine, Keio University Global Research Institute, Tokyo, Japan
| |
Collapse
|
14
|
DeNies MS, Smrcka AV, Schnell S, Liu AP. β-arrestin mediates communication between plasma membrane and intracellular GPCRs to regulate signaling. Commun Biol 2020; 3:789. [PMID: 33339901 PMCID: PMC7749148 DOI: 10.1038/s42003-020-01510-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 11/16/2020] [Indexed: 01/14/2023] Open
Abstract
It has become increasingly apparent that G protein-coupled receptor (GPCR) localization is a master regulator of cell signaling. However, the molecular mechanisms involved in this process are not well understood. To date, observations of intracellular GPCR activation can be organized into two categories: a dependence on OCT3 cationic channel-permeable ligands or the necessity of endocytic trafficking. Using CXC chemokine receptor 4 (CXCR4) as a model, we identified a third mechanism of intracellular GPCR signaling. We show that independent of membrane permeable ligands and endocytosis, upon stimulation, plasma membrane and internal pools of CXCR4 are post-translationally modified and collectively regulate EGR1 transcription. We found that β-arrestin-1 (arrestin 2) is necessary to mediate communication between plasma membrane and internal pools of CXCR4. Notably, these observations may explain that while CXCR4 overexpression is highly correlated with cancer metastasis and mortality, plasma membrane localization is not. Together these data support a model where a small initial pool of plasma membrane-localized GPCRs are capable of activating internal receptor-dependent signaling events. DeNies et al. identify a new mechanism of intracellular GPCR signalling. Using CXC chemokine receptor 4 (CXCR4) as a model, they show that upon stimulation with receptor agonists that not only plasma membrane-localized receptors, but also intracellular CXCR4 molecules are post-translationally modified and regulate transcription. This study suggests that a small pool of plasma membrane-localized GPCRs can activate internal receptor-dependent signaling, and that β-arrestin-1 mediates this activation.
Collapse
Affiliation(s)
- Maxwell S DeNies
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI, USA
| | - Alan V Smrcka
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Santiago Schnell
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI, USA.,Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA.,Department of Computational Medicine & Bioinformatics, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Allen P Liu
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI, USA. .,Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA. .,Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA. .,Department of Biophysics, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
15
|
Miyauchi Y, Kurohara K, Kimura A, Esaki M, Fujimoto K, Hirota Y, Takechi S, Mackenzie PI, Ishii Y, Tanaka Y. The carboxyl-terminal di-lysine motif is essential for catalytic activity of UDP-glucuronosyltransferase 1A9. Drug Metab Pharmacokinet 2020; 35:466-474. [PMID: 32883578 DOI: 10.1016/j.dmpk.2020.07.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 07/29/2020] [Accepted: 07/29/2020] [Indexed: 11/25/2022]
Abstract
UDP-Glucuronosyltransferase (UGT) is a type I membrane protein localized to the endoplasmic reticulum (ER). UGT has a di-lysine motif (KKXX/KXKXX) in its cytoplasmic domain, which is defined as an ER retention signal. However, our previous study has revealed that UGT2B7, one of the major UGT isoform in human, localizes to the ER in a manner that is independent of this motif. In this study, we focused on another UGT isoform, UGT1A9, and investigated the role of the di-lysine motif in its ER localization, glucuronidation activity, and homo-oligomer formation. Immunofluorescence microscopy indicated that the cytoplasmic domain of UGT1A9 functioned as an ER retention signal in a chimeric protein with CD4, but UGT1A9 itself could localize to the ER in a di-lysine motif-independent manner. In addition, UGT1A9 formed homo-oligomers in the absence of the motif. However, deletion of the di-lysine motif or substitution of lysines in the motif for alanines, severely impaired glucuronidation activity of UGT1A9. This is the first study that re-defines the cytoplasmic di-lysine motif of UGT as an essential peptide for retaining glucuronidation capacity.
Collapse
Affiliation(s)
- Yuu Miyauchi
- Division of Pharmaceutical Cell Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan; Laboratory of Hygienic Chemistry, Faculty of Pharmaceutical Sciences, Sojo University, Kumamoto, Japan.
| | - Ken Kurohara
- Division of Pharmaceutical Cell Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Akane Kimura
- Division of Pharmaceutical Cell Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Madoka Esaki
- Laboratory of Hygienic Chemistry, Faculty of Pharmaceutical Sciences, Sojo University, Kumamoto, Japan
| | - Keiko Fujimoto
- Division of Pharmaceutical Cell Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Yuko Hirota
- Division of Pharmaceutical Cell Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Shinji Takechi
- Laboratory of Hygienic Chemistry, Faculty of Pharmaceutical Sciences, Sojo University, Kumamoto, Japan
| | - Peter I Mackenzie
- Clinical Pharmacology, College of Medicine and Public Health, Flinders Medical Centre and Flinders University, Adelaide, Australia
| | - Yuji Ishii
- Division of Pharmaceutical Cell Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan; Laboratory of Molecular Life Sciences, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan.
| | - Yoshitaka Tanaka
- Division of Pharmaceutical Cell Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
16
|
Wang ZJ, Blanco I, Hayoz S, Brelidze TI. The HCN domain is required for HCN channel cell-surface expression and couples voltage- and cAMP-dependent gating mechanisms. J Biol Chem 2020; 295:8164-8173. [PMID: 32341127 DOI: 10.1074/jbc.ra120.013281] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 04/23/2020] [Indexed: 11/06/2022] Open
Abstract
Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels are major regulators of synaptic plasticity and rhythmic activity in the heart and brain. Opening of HCN channels requires membrane hyperpolarization and is further facilitated by intracellular cyclic nucleotides (cNMPs). In HCN channels, membrane hyperpolarization is sensed by the membrane-spanning voltage sensor domain (VSD), and the cNMP-dependent gating is mediated by the intracellular cyclic nucleotide-binding domain (CNBD) connected to the pore-forming S6 transmembrane segment via the C-linker. Previous functional analysis of HCN channels has suggested a direct or allosteric coupling between the voltage- and cNMP-dependent activation mechanisms. However, the specifics of this coupling remain unclear. The first cryo-EM structure of an HCN1 channel revealed that a novel structural element, dubbed the HCN domain (HCND), forms a direct structural link between the VSD and C-linker-CNBD. In this study, we investigated the functional significance of the HCND. Deletion of the HCND prevented surface expression of HCN2 channels. Based on the HCN1 structure analysis, we identified Arg237 and Gly239 residues on the S2 of the VSD that form direct interactions with Ile135 on the HCND. Disrupting these interactions abolished HCN2 currents. We also identified three residues on the C-linker-CNBD (Glu478, Gln482, and His559) that form direct interactions with residues Arg154 and Ser158 on the HCND. Disrupting these interactions affected both voltage- and cAMP-dependent gating of HCN2 channels. These findings indicate that the HCND is necessary for the cell-surface expression of HCN channels and provides a functional link between voltage- and cAMP-dependent mechanisms of HCN channel gating.
Collapse
Affiliation(s)
- Ze-Jun Wang
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, D. C., USA
| | - Ismary Blanco
- Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, Washington, D. C., USA
| | - Sebastien Hayoz
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, D. C., USA
| | - Tinatin I Brelidze
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, D. C., USA .,Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, Washington, D. C., USA
| |
Collapse
|
17
|
Oliveira ERA, Bouvier M. Immune evasion by adenoviruses: a window into host-virus adaptation. FEBS Lett 2019; 593:3496-3503. [PMID: 31736048 DOI: 10.1002/1873-3468.13682] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 10/31/2019] [Accepted: 11/01/2019] [Indexed: 11/09/2022]
Abstract
Human adenoviruses (HAdVs) are widespread pathogens that cause a number of partially overlapping, species-specific infections associated with respiratory, urinary, gastrointestinal, and ocular diseases. The early 3 (E3) region of adenoviruses is highly divergent between different species, and it encodes a multitude of proteins with immunomodulatory functions. The study of genetic diversity in the E3 region offers a unique opportunity to gain insight into how the various HAdVs have evolutionarily adapted in response to the selection pressures exerted by host immune defenses. The objective of this review was to discuss subversion of host antiviral immune responses by HAdVs, with a focus on suppression of MHC class I antigen presentation, as a window into host-HAdV adaptation.
Collapse
Affiliation(s)
- Edson R A Oliveira
- Department of Microbiology and Immunology, University of Illinois at Chicago, IL, USA
| | - Marlene Bouvier
- Department of Microbiology and Immunology, University of Illinois at Chicago, IL, USA
| |
Collapse
|
18
|
Welch LG, Munro S. A tale of short tails, through thick and thin: investigating the sorting mechanisms of Golgi enzymes. FEBS Lett 2019; 593:2452-2465. [DOI: 10.1002/1873-3468.13553] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 07/18/2019] [Accepted: 07/19/2019] [Indexed: 01/28/2023]
Affiliation(s)
- Lawrence G. Welch
- MRC Laboratory of Molecular Biology Francis Crick Avenue Cambridge UK
| | - Sean Munro
- MRC Laboratory of Molecular Biology Francis Crick Avenue Cambridge UK
| |
Collapse
|
19
|
Kamiya T, Seow SV, Wong D, Robinson M, Campana D. Blocking expression of inhibitory receptor NKG2A overcomes tumor resistance to NK cells. J Clin Invest 2019; 129:2094-2106. [PMID: 30860984 PMCID: PMC6486333 DOI: 10.1172/jci123955] [Citation(s) in RCA: 227] [Impact Index Per Article: 45.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 02/26/2019] [Indexed: 12/14/2022] Open
Abstract
A key mechanism of tumor resistance to immune cells is mediated by expression of peptide-loaded HLA-E in tumor cells, which suppresses natural killer (NK) cell activity via ligation of the NK inhibitory receptor CD94/NKG2A. Gene expression data from approximately 10,000 tumor samples showed widespread HLAE expression, with levels correlating with those of KLRC1 (NKG2A) and KLRD1 (CD94). To bypass HLA-E inhibition, we developed a way to generate highly functional NK cells lacking NKG2A. Constructs containing a single-chain variable fragment derived from an anti-NKG2A antibody were linked to endoplasmic reticulum-retention domains. After retroviral transduction in human peripheral blood NK cells, these NKG2A Protein Expression Blockers (PEBLs) abrogated NKG2A expression. The resulting NKG2Anull NK cells had higher cytotoxicity against HLA-E-expressing tumor cells. Transduction of anti-NKG2A PEBL produced more potent cytotoxicity than interference with an anti-NKG2A antibody and prevented de novo NKG2A expression, without affecting NK cell proliferation. In immunodeficient mice, NKG2Anull NK cells were significantly more powerful than NKG2A+ NK cells against HLA-E-expressing tumors. Thus, NKG2A downregulation evades the HLA-E cancer immune-checkpoint, and increases the anti-tumor activity of NK cell infusions. Because this strategy is easily adaptable to current protocols for clinical-grade immune cell processing, its clinical testing is feasible and warranted.
Collapse
Affiliation(s)
- Takahiro Kamiya
- Department of Pediatrics and National University Cancer Institute Singapore, National University of Singapore, Singapore
| | - See Voon Seow
- Department of Pediatrics and National University Cancer Institute Singapore, National University of Singapore, Singapore
| | - Desmond Wong
- Department of Pediatrics and National University Cancer Institute Singapore, National University of Singapore, Singapore
| | | | - Dario Campana
- Department of Pediatrics and National University Cancer Institute Singapore, National University of Singapore, Singapore
| |
Collapse
|
20
|
Miyauchi Y, Kimura S, Kimura A, Kurohara K, Hirota Y, Fujimoto K, Mackenzie PI, Tanaka Y, Ishii Y. Investigation of the Endoplasmic Reticulum Localization of UDP-Glucuronosyltransferase 2B7 with Systematic Deletion Mutants. Mol Pharmacol 2019; 95:551-562. [PMID: 30944207 DOI: 10.1124/mol.118.113902] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 03/05/2019] [Indexed: 11/22/2022] Open
Abstract
UDP-Glucuronosyltransferase (UGT) plays an important role in the metabolism of endogenous and exogenous compounds. UGT is a type I membrane protein, and has a dilysine motif (KKXX/KXKXX) in its C-terminal cytoplasmic domain. Although a dilysine motif is defined as an endoplasmic reticulum (ER) retrieval signal, it remains a matter of debate whether this motif functions in the ER localization of UGT. To address this issue, we generated systematic deletion mutants of UGT2B7, a major human isoform, and compared their subcellular localizations with that of an ER marker protein calnexin (CNX), using subcellular fractionation and immunofluorescent microscopy. We found that although the dilysine motif functioned as the ER retention signal in a chimera that replaced the cytoplasmic domain of CD4 with that of UGT2B7, UGT2B7 truncated mutants lacking this motif extensively colocalized with CNX, indicating dilysine motif-independent ER retention of UGT2B7. Moreover, deletion of the C-terminal transmembrane and cytoplasmic domains did not affect ER localization of UGT2B7, suggesting that the signal necessary for ER retention of UGT2B7 is present in its luminal domain. Serial deletions of the luminal domain, however, did not affect the ER retention of the mutants. Further, a cytoplasmic and transmembrane domain-deleted mutant of UGT2B7 was localized to the ER without being secreted. These results suggest that UGT2B7 could localize to the ER without any retention signal, and lead to the conclusion that the static localization of UGT results from lack of a signal for export from the ER.
Collapse
Affiliation(s)
- Yuu Miyauchi
- Division of Pharmaceutical Cell Biology, Graduate School of Pharmaceutical Sciences (Y.M., A.K., K.K., Y.H., K.F., Y.T.) and Laboratory of Molecular Life Sciences, Graduate School of Pharmaceutical Sciences (Y.M., S.K., Y.I.), Kyushu University, Fukuoka, Japan; and Department of Clinical Pharmacology, Flinders Medical Centre and Flinders University, Adelaide, South Australia, Australia (P.I.M.)
| | - Sora Kimura
- Division of Pharmaceutical Cell Biology, Graduate School of Pharmaceutical Sciences (Y.M., A.K., K.K., Y.H., K.F., Y.T.) and Laboratory of Molecular Life Sciences, Graduate School of Pharmaceutical Sciences (Y.M., S.K., Y.I.), Kyushu University, Fukuoka, Japan; and Department of Clinical Pharmacology, Flinders Medical Centre and Flinders University, Adelaide, South Australia, Australia (P.I.M.)
| | - Akane Kimura
- Division of Pharmaceutical Cell Biology, Graduate School of Pharmaceutical Sciences (Y.M., A.K., K.K., Y.H., K.F., Y.T.) and Laboratory of Molecular Life Sciences, Graduate School of Pharmaceutical Sciences (Y.M., S.K., Y.I.), Kyushu University, Fukuoka, Japan; and Department of Clinical Pharmacology, Flinders Medical Centre and Flinders University, Adelaide, South Australia, Australia (P.I.M.)
| | - Ken Kurohara
- Division of Pharmaceutical Cell Biology, Graduate School of Pharmaceutical Sciences (Y.M., A.K., K.K., Y.H., K.F., Y.T.) and Laboratory of Molecular Life Sciences, Graduate School of Pharmaceutical Sciences (Y.M., S.K., Y.I.), Kyushu University, Fukuoka, Japan; and Department of Clinical Pharmacology, Flinders Medical Centre and Flinders University, Adelaide, South Australia, Australia (P.I.M.)
| | - Yuko Hirota
- Division of Pharmaceutical Cell Biology, Graduate School of Pharmaceutical Sciences (Y.M., A.K., K.K., Y.H., K.F., Y.T.) and Laboratory of Molecular Life Sciences, Graduate School of Pharmaceutical Sciences (Y.M., S.K., Y.I.), Kyushu University, Fukuoka, Japan; and Department of Clinical Pharmacology, Flinders Medical Centre and Flinders University, Adelaide, South Australia, Australia (P.I.M.)
| | - Keiko Fujimoto
- Division of Pharmaceutical Cell Biology, Graduate School of Pharmaceutical Sciences (Y.M., A.K., K.K., Y.H., K.F., Y.T.) and Laboratory of Molecular Life Sciences, Graduate School of Pharmaceutical Sciences (Y.M., S.K., Y.I.), Kyushu University, Fukuoka, Japan; and Department of Clinical Pharmacology, Flinders Medical Centre and Flinders University, Adelaide, South Australia, Australia (P.I.M.)
| | - Peter I Mackenzie
- Division of Pharmaceutical Cell Biology, Graduate School of Pharmaceutical Sciences (Y.M., A.K., K.K., Y.H., K.F., Y.T.) and Laboratory of Molecular Life Sciences, Graduate School of Pharmaceutical Sciences (Y.M., S.K., Y.I.), Kyushu University, Fukuoka, Japan; and Department of Clinical Pharmacology, Flinders Medical Centre and Flinders University, Adelaide, South Australia, Australia (P.I.M.)
| | - Yoshitaka Tanaka
- Division of Pharmaceutical Cell Biology, Graduate School of Pharmaceutical Sciences (Y.M., A.K., K.K., Y.H., K.F., Y.T.) and Laboratory of Molecular Life Sciences, Graduate School of Pharmaceutical Sciences (Y.M., S.K., Y.I.), Kyushu University, Fukuoka, Japan; and Department of Clinical Pharmacology, Flinders Medical Centre and Flinders University, Adelaide, South Australia, Australia (P.I.M.)
| | - Yuji Ishii
- Division of Pharmaceutical Cell Biology, Graduate School of Pharmaceutical Sciences (Y.M., A.K., K.K., Y.H., K.F., Y.T.) and Laboratory of Molecular Life Sciences, Graduate School of Pharmaceutical Sciences (Y.M., S.K., Y.I.), Kyushu University, Fukuoka, Japan; and Department of Clinical Pharmacology, Flinders Medical Centre and Flinders University, Adelaide, South Australia, Australia (P.I.M.)
| |
Collapse
|
21
|
Ilca FT, Neerincx A, Wills MR, de la Roche M, Boyle LH. Utilizing TAPBPR to promote exogenous peptide loading onto cell surface MHC I molecules. Proc Natl Acad Sci U S A 2018; 115:E9353-E9361. [PMID: 30213851 PMCID: PMC6176578 DOI: 10.1073/pnas.1809465115] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The repertoire of peptides displayed at the cell surface by MHC I molecules is shaped by two intracellular peptide editors, tapasin and TAPBPR. While cell-free assays have proven extremely useful in identifying the function of both of these proteins, here we explored whether a more physiological system could be developed to assess TAPBPR-mediated peptide editing on MHC I. We reveal that membrane-associated TAPBPR targeted to the plasma membrane retains its ability to function as a peptide editor and efficiently catalyzes peptide exchange on surface-expressed MHC I molecules. Additionally, we show that soluble TAPBPR, consisting of the luminal domain alone, added to intact cells, also functions as an effective peptide editor on surface MHC I molecules. Thus, we have established two systems in which TAPBPR-mediated peptide exchange on MHC class I can be interrogated. Furthermore, we could use both plasma membrane-targeted and exogenous soluble TAPBPR to display immunogenic peptides on surface MHC I molecules and consequently induce T cell receptor engagement, IFN-γ secretion, and T cell-mediated killing of target cells. Thus, we have developed an efficient way to by-pass the natural antigen presentation pathway of cells and load immunogenic peptides of choice onto cells. Our findings highlight a potential therapeutic use for TAPBPR in increasing the immunogenicity of tumors in the future.
Collapse
Affiliation(s)
- F Tudor Ilca
- Department of Pathology, University of Cambridge, CB2 1QP Cambridge, United Kingdom
| | - Andreas Neerincx
- Department of Pathology, University of Cambridge, CB2 1QP Cambridge, United Kingdom
| | - Mark R Wills
- Department of Medicine, University of Cambridge, Addenbrookes Hospital, CB2 0QQ Cambridge, United Kingdom
| | - Maike de la Roche
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, CB2 0RE Cambridge, United Kingdom
| | - Louise H Boyle
- Department of Pathology, University of Cambridge, CB2 1QP Cambridge, United Kingdom;
| |
Collapse
|
22
|
Saraste J, Marie M. Intermediate compartment (IC): from pre-Golgi vacuoles to a semi-autonomous membrane system. Histochem Cell Biol 2018; 150:407-430. [PMID: 30173361 PMCID: PMC6182704 DOI: 10.1007/s00418-018-1717-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/27/2018] [Indexed: 12/19/2022]
Abstract
Despite its discovery more than three decades ago and well-established role in protein sorting and trafficking in the early secretory pathway, the intermediate compartment (IC) has remained enigmatic. The prevailing view is that the IC evolved as a specialized organelle to mediate long-distance endoplasmic reticulum (ER)–Golgi communication in metazoan cells, but is lacking in other eukaryotes, such as plants and fungi. However, this distinction is difficult to reconcile with the high conservation of the core machineries that regulate early secretory trafficking from yeast to man. Also, it has remained unclear whether the pleiomorphic IC components—vacuoles, tubules and vesicles—represent transient transport carriers or building blocks of a permanent pre-Golgi organelle. Interestingly, recent studies have revealed that the IC maintains its compositional, structural and spatial properties throughout the cell cycle, supporting a model that combines the dynamic and stable aspects of the organelle. Moreover, the IC has been assigned novel functions, such as cell signaling, Golgi-independent trafficking and autophagy. The emerging permanent nature of the IC and its connections with the centrosome and the endocytic recycling system encourage reconsideration of its relationship with the Golgi ribbon, role in Golgi biogenesis and ubiquitous presence in eukaryotic cells.
Collapse
Affiliation(s)
- Jaakko Saraste
- Department of Biomedicine and Molecular Imaging Center (MIC), University of Bergen, Jonas Lies vei 91, 5009, Bergen, Norway.
| | - Michaël Marie
- Department of Biomedicine and Molecular Imaging Center (MIC), University of Bergen, Jonas Lies vei 91, 5009, Bergen, Norway
| |
Collapse
|
23
|
Abstract
Intracellular trafficking and localization studies of spike protein from SARS and OC43 showed that SARS spike protein is localized in the ER or ERGIC compartment and OC43 spike protein is predominantly localized in the lysosome. Differential localization can be explained by signal sequence. The sequence alignment using Clustal W shows that the signal sequence present at the cytoplasmic tail plays an important role in spike protein localization. A unique GYQEL motif is identified at the cytoplasmic terminal of OC43 spike protein which helps in localization in the lysosome, and a novel KLHYT motif is identified in the cytoplasmic tail of SARS spike protein which helps in ER or ERGIC localization. This study sheds some light on the role of cytoplasmic tail of spike protein in cell-to-cell fusion, coronavirus host cell fusion and subsequent pathogenicity.
Collapse
|
24
|
Wang X, Chung KP, Lin W, Jiang L. Protein secretion in plants: conventional and unconventional pathways and new techniques. JOURNAL OF EXPERIMENTAL BOTANY 2017; 69:21-37. [PMID: 28992209 DOI: 10.1093/jxb/erx262] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Protein secretion is an essential process in all eukaryotic cells and its mechanisms have been extensively studied. Proteins with an N-terminal leading sequence or transmembrane domain are delivered through the conventional protein secretion (CPS) pathway from the endoplasmic reticulum (ER) to the Golgi apparatus. This feature is conserved in yeast, animals, and plants. In contrast, the transport of leaderless secretory proteins (LSPs) from the cytosol to the cell exterior is accomplished via the unconventional protein secretion (UPS) pathway. So far, the CPS pathway has been well characterized in plants, with several recent studies providing new information about the regulatory mechanisms involved. On the other hand, studies on UPS pathways in plants remain descriptive, although a connection between UPS and the plant defense response is becoming more and more apparent. In this review, we present an update on CPS and UPS. With the emergence of new techniques, a more comprehensive understanding of protein secretion in plants can be expected in the future.
Collapse
Affiliation(s)
- Xiangfeng Wang
- State Key Laboratory of Agrobiotechnology, Centre for Cell and Developmental Biology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, China
| | - Kin Pan Chung
- State Key Laboratory of Agrobiotechnology, Centre for Cell and Developmental Biology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, China
| | - Weili Lin
- State Key Laboratory of Agrobiotechnology, Centre for Cell and Developmental Biology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, China
| | - Liwen Jiang
- State Key Laboratory of Agrobiotechnology, Centre for Cell and Developmental Biology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, China
- CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, China
| |
Collapse
|
25
|
Rujano MA, Cannata Serio M, Panasyuk G, Péanne R, Reunert J, Rymen D, Hauser V, Park JH, Freisinger P, Souche E, Guida MC, Maier EM, Wada Y, Jäger S, Krogan NJ, Kretz O, Nobre S, Garcia P, Quelhas D, Bird TD, Raskind WH, Schwake M, Duvet S, Foulquier F, Matthijs G, Marquardt T, Simons M. Mutations in the X-linked ATP6AP2 cause a glycosylation disorder with autophagic defects. J Exp Med 2017; 214:3707-3729. [PMID: 29127204 PMCID: PMC5716037 DOI: 10.1084/jem.20170453] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 08/01/2017] [Accepted: 09/22/2017] [Indexed: 12/25/2022] Open
Abstract
Rujano et al. report mutations in ATP6AP2 leading to liver disease, immunodeficiency, and psychomotor impairment. ATP6AP2 deficiency impairs the assembly and function of the V-ATPase proton pump, causing defects in protein glycosylation and autophagy. The biogenesis of the multi-subunit vacuolar-type H+-ATPase (V-ATPase) is initiated in the endoplasmic reticulum with the assembly of the proton pore V0, which is controlled by a group of assembly factors. Here, we identify two hemizygous missense mutations in the extracellular domain of the accessory V-ATPase subunit ATP6AP2 (also known as the [pro]renin receptor) responsible for a glycosylation disorder with liver disease, immunodeficiency, cutis laxa, and psychomotor impairment. We show that ATP6AP2 deficiency in the mouse liver caused hypoglycosylation of serum proteins and autophagy defects. The introduction of one of the missense mutations into Drosophila led to reduced survival and altered lipid metabolism. We further demonstrate that in the liver-like fat body, the autophagic dysregulation was associated with defects in lysosomal acidification and mammalian target of rapamycin (mTOR) signaling. Finally, both ATP6AP2 mutations impaired protein stability and the interaction with ATP6AP1, a member of the V0 assembly complex. Collectively, our data suggest that the missense mutations in ATP6AP2 lead to impaired V-ATPase assembly and subsequent defects in glycosylation and autophagy.
Collapse
Affiliation(s)
- Maria A Rujano
- Laboratory of Epithelial Biology and Disease, Imagine Institute, Paris, France.,Université Paris Descartes-Sorbonne Paris Cité, Imagine Institute, Paris, France
| | - Magda Cannata Serio
- Laboratory of Epithelial Biology and Disease, Imagine Institute, Paris, France.,Université Paris Descartes-Sorbonne Paris Cité, Imagine Institute, Paris, France
| | - Ganna Panasyuk
- Institut Necker-Enfants Malades, Paris, France.,Institut National de la Santé et de la Recherche Medicale U1151/Centre National de la Recherche Scientifique UMR 8253, Paris, France
| | - Romain Péanne
- University of Leuven (KU Leuven), Center for Human Genetics, Leuven, Belgium
| | - Janine Reunert
- Universitätsklinikum Münster, Klinik für Kinder- und Jugendmedizin, Münster, Germany
| | - Daisy Rymen
- University of Leuven (KU Leuven), Center for Human Genetics, Leuven, Belgium
| | - Virginie Hauser
- Laboratory of Epithelial Biology and Disease, Imagine Institute, Paris, France.,Institut National de la Santé et de la Recherche Medicale U1151/Centre National de la Recherche Scientifique UMR 8253, Paris, France
| | - Julien H Park
- Universitätsklinikum Münster, Klinik für Kinder- und Jugendmedizin, Münster, Germany
| | - Peter Freisinger
- Kreiskliniken Reutlingen, Klinik für Kinder- und Jugendmedizin, Klinikum am Steinenberg, Reutlingen, Germany
| | - Erika Souche
- University of Leuven (KU Leuven), Center for Human Genetics, Leuven, Belgium
| | - Maria Clara Guida
- Laboratory of Epithelial Biology and Disease, Imagine Institute, Paris, France.,Institut National de la Santé et de la Recherche Medicale U1151/Centre National de la Recherche Scientifique UMR 8253, Paris, France
| | - Esther M Maier
- Dr. von Haunersches Kinderspital der Universität München, München, Germany
| | - Yoshinao Wada
- Osaka Medical Center and Research Institute for Maternal and Child Health, Osaka, Japan
| | - Stefanie Jäger
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA
| | - Nevan J Krogan
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA
| | - Oliver Kretz
- Centre for Biological Signaling Studies BIOSS, University of Freiburg, Freiburg, Germany
| | - Susana Nobre
- Metabolic Reference Center, Coimbra University Hospital Center, Coimbra, Portugal
| | - Paula Garcia
- Metabolic Reference Center, Coimbra University Hospital Center, Coimbra, Portugal
| | - Dulce Quelhas
- Biochemical Genetics Unit, Centro de Genética Médica Doutor Jacinto Magalhães, Centro Hospitalar do Porto, Abel Salazar Institute of Biomedical Sciences, University of Porto, Porto, Portugal
| | - Thomas D Bird
- Department of Neurology, University of Washington, Seattle, WA.,Geriatric Research Center, Veterans Administration Medical Center, Seattle, WA
| | - Wendy H Raskind
- Department of Medicine, University of Washington, Seattle, WA
| | - Michael Schwake
- Faculty of Chemistry/Biochemistry III, University Bielefeld, Bielefeld, Germany
| | - Sandrine Duvet
- Université Lille, Centre National de la Recherche Scientifique UMR 8576, Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Francois Foulquier
- Université Lille, Centre National de la Recherche Scientifique UMR 8576, Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Gert Matthijs
- University of Leuven (KU Leuven), Center for Human Genetics, Leuven, Belgium
| | - Thorsten Marquardt
- Universitätsklinikum Münster, Klinik für Kinder- und Jugendmedizin, Münster, Germany
| | - Matias Simons
- Laboratory of Epithelial Biology and Disease, Imagine Institute, Paris, France .,Université Paris Descartes-Sorbonne Paris Cité, Imagine Institute, Paris, France
| |
Collapse
|
26
|
Kumar R, Kumari B, Kumar M. Prediction of endoplasmic reticulum resident proteins using fragmented amino acid composition and support vector machine. PeerJ 2017; 5:e3561. [PMID: 28890846 PMCID: PMC5588793 DOI: 10.7717/peerj.3561] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 06/20/2017] [Indexed: 12/15/2022] Open
Abstract
Background The endoplasmic reticulum plays an important role in many cellular processes, which includes protein synthesis, folding and post-translational processing of newly synthesized proteins. It is also the site for quality control of misfolded proteins and entry point of extracellular proteins to the secretory pathway. Hence at any given point of time, endoplasmic reticulum contains two different cohorts of proteins, (i) proteins involved in endoplasmic reticulum-specific function, which reside in the lumen of the endoplasmic reticulum, called as endoplasmic reticulum resident proteins and (ii) proteins which are in process of moving to the extracellular space. Thus, endoplasmic reticulum resident proteins must somehow be distinguished from newly synthesized secretory proteins, which pass through the endoplasmic reticulum on their way out of the cell. Approximately only 50% of the proteins used in this study as training data had endoplasmic reticulum retention signal, which shows that these signals are not essentially present in all endoplasmic reticulum resident proteins. This also strongly indicates the role of additional factors in retention of endoplasmic reticulum-specific proteins inside the endoplasmic reticulum. Methods This is a support vector machine based method, where we had used different forms of protein features as inputs for support vector machine to develop the prediction models. During training leave-one-out approach of cross-validation was used. Maximum performance was obtained with a combination of amino acid compositions of different part of proteins. Results In this study, we have reported a novel support vector machine based method for predicting endoplasmic reticulum resident proteins, named as ERPred. During training we achieved a maximum accuracy of 81.42% with leave-one-out approach of cross-validation. When evaluated on independent dataset, ERPred did prediction with sensitivity of 72.31% and specificity of 83.69%. We have also annotated six different proteomes to predict the candidate endoplasmic reticulum resident proteins in them. A webserver, ERPred, was developed to make the method available to the scientific community, which can be accessed at http://proteininformatics.org/mkumar/erpred/index.html. Discussion We found that out of 124 proteins of the training dataset, only 66 proteins had endoplasmic reticulum retention signals, which shows that these signals are not an absolute necessity for endoplasmic reticulum resident proteins to remain inside the endoplasmic reticulum. This observation also strongly indicates the role of additional factors in retention of proteins inside the endoplasmic reticulum. Our proposed predictor, ERPred, is a signal independent tool. It is tuned for the prediction of endoplasmic reticulum resident proteins, even if the query protein does not contain specific ER-retention signal.
Collapse
Affiliation(s)
- Ravindra Kumar
- Department of Biophysics, University of Delhi South Campus, New Delhi, India.,Current affiliation: Newe-Ya'ar Research Center, Agricultural Research Organization, Ramat Yishay, Israel
| | - Bandana Kumari
- Department of Biophysics, University of Delhi South Campus, New Delhi, India
| | - Manish Kumar
- Department of Biophysics, University of Delhi South Campus, New Delhi, India
| |
Collapse
|
27
|
Jin H, Komita M, Aoe T. The Role of BiP Retrieval by the KDEL Receptor in the Early Secretory Pathway and its Effect on Protein Quality Control and Neurodegeneration. Front Mol Neurosci 2017; 10:222. [PMID: 28769758 PMCID: PMC5511815 DOI: 10.3389/fnmol.2017.00222] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Accepted: 06/27/2017] [Indexed: 12/14/2022] Open
Abstract
Protein quality control in the early secretory pathway is a ubiquitous eukaryotic mechanism for adaptation to endoplasmic reticulum (ER) stress. An ER molecular chaperone, immunoglobulin heavy chain-binding protein (BiP), is one of the essential components in this process. BiP interacts with nascent proteins to facilitate their folding. BiP also plays an important role in preventing aggregation of misfolded proteins and regulating the ER stress response when cells suffer various injuries. BiP is a member of the 70-kDa heat shock protein (HSP70) family of molecular chaperones that resides in the ER. Interaction between BiP and unfolded proteins is mediated by a substrate-binding domain and a nucleotide-binding domain for ATPase activity, leading to protein folding and maturation. BiP also possesses a retrieval motif in its carboxyl terminal. When BiP is secreted from the ER, the Lys-Asp-Glu-Leu (KDEL) receptor in the post-ER compartments binds with the carboxyl terminal KDEL sequence of BiP and returns BiP to the ER via coat protein complex I (COPI) vesicular transport. Although yeast studies showed that BiP retrieval by the KDEL receptor is not essential in single cells, it is crucial for multicellular organisms, where some essential proteins require retrieval to facilitate folding and maturation. Experiments in knock-in mice expressing mutant BiP with the retrieval motif deleted revealed a unique role of BiP retrieval by the KDEL receptor in neuronal development and age-related neurodegeneration.
Collapse
Affiliation(s)
- Hisayo Jin
- Department of Anesthesiology, Graduate School of Medicine, Chiba UniversityChiba, Japan
| | - Mari Komita
- Department of Anesthesiology, Chiba Rosai HospitalIchihara, Japan
| | - Tomohiko Aoe
- Pain Center, Chiba Medical Center, Teikyo UniversityIchihara, Japan
| |
Collapse
|
28
|
Aguilera-Gomez A, Rabouille C. Membrane-bound organelles versus membrane-less compartments and their control of anabolic pathways in Drosophila. Dev Biol 2017; 428:310-317. [PMID: 28377034 DOI: 10.1016/j.ydbio.2017.03.029] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 03/27/2017] [Accepted: 03/27/2017] [Indexed: 12/29/2022]
Abstract
Classically, we think of cell compartmentalization as being achieved by membrane-bound organelles. It has nevertheless emerged that membrane-less assemblies also largely contribute to this compartmentalization. Here, we compare the characteristics of both types of compartmentalization in term of maintenance of functional identities. Furthermore, membrane less-compartments are critical for sustaining developmental and cell biological events as they control major metabolic pathways. We describe two examples related to this issue in Drosophila, the role of P-bodies in the translational control of gurken in the Drosophila oocyte, and the formation of Sec bodies upon amino-acid starvation in Drosophila cells.
Collapse
Affiliation(s)
| | - Catherine Rabouille
- Hubrecht Institute of the KNAW & UMC Utrecht, 3584 CT Utrecht, The Netherlands; Department of Cell Biology, UMC Utrecht, The Netherlands; Department of Cell Biology, UMC Groningen, The Netherlands.
| |
Collapse
|
29
|
Abstract
The delivery of proteins to the apoplast or protein secretion is an essential process in plant cells. Proteins are secreted to perform various biological functions such as cell wall modification and defense response. Conserved from yeast to mammals, both conventional and unconventional protein secretion pathways have been demonstrated in plants. In the conventional protein secretion pathway, secretory proteins with an N-terminal signal peptide are transported to the extracellular region via the endoplasmic reticulum-Golgi apparatus and the subsequent endomembrane system. By contrast, multiple unconventional protein secretion pathways are proposed to mediate the secretion of the leaderless secretory proteins. In this review, we summarize the recent findings and provide a comprehensive overview of protein secretion pathways in plant cells.
Collapse
Affiliation(s)
- Kin Pan Chung
- State Key Laboratory of Agrobiotechnology, Centre for Cell and Developmental Biology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China.
| | - Yonglun Zeng
- State Key Laboratory of Agrobiotechnology, Centre for Cell and Developmental Biology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China.
| |
Collapse
|
30
|
Robinson DG, Neuhaus JM. Receptor-mediated sorting of soluble vacuolar proteins: myths, facts, and a new model. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:4435-49. [PMID: 27262127 DOI: 10.1093/jxb/erw222] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
To prevent their being released to the cell exterior, acid hydrolases are recognized by receptors at some point in the secretory pathway and diverted towards the lytic compartment of the cell (lysosome or vacuole). In animal cells, the receptor is called the mannosyl 6-phosphate receptor (MPR) and it binds hydrolase ligands in the trans-Golgi network (TGN). These ligands are then sequestered into clathrin-coated vesicles (CCVs) because of motifs in the cytosolic tail of the MPR which interact first with monomeric adaptors (Golgi-localized, Gamma-ear-containing, ARF-binding proteins, GGAs) and then with tetrameric (adaptin) adaptor complexes. The CCVs then fuse with an early endosome, whose more acidic lumen causes the ligands to dissociate. The MPRs are then recycled back to the TGN via retromer-coated carriers. Plants have vacuolar sorting receptors (VSRs) which were originally identified in CCVs isolated from pea (Pisum sativum L.) cotyledons. It was therefore assumed that VSRs would have an analogous function in plants to MPRs in animals. Although this dogma has enjoyed wide support over the last 20 years there are many inconsistencies. Recently, results have been published which are quite contrary to it. It now emerges that VSRs and their ligands can interact very early in the secretory pathway, and dissociate in the TGN, which, in contrast to its mammalian counterpart, has a pH of 5.5. Multivesicular endosomes in plants lack proton pump complexes and consequently have an almost neutral internal pH, which discounts them as organelles of pH-dependent receptor-ligand dissociation. These data force a critical re-evaluation of the role of CCVs at the TGN, especially considering that vacuolar cargo ligands have never been identified in them. We propose that one population of TGN-derived CCVs participate in retrograde transport of VSRs from the TGN. We also present a new model to explain how secretory and vacuolar cargo proteins are effectively separated after entering the late Golgi/TGN compartments.
Collapse
Affiliation(s)
- David G Robinson
- Centre for Organismal Studies (COS), University of Heidelberg, Germany
| | - Jean-Marc Neuhaus
- Institute of Biology, Laboratory of Cell and Molecular Biology, University of Neuchatel, Switzerland
| |
Collapse
|
31
|
The Role of Phlebovirus Glycoproteins in Viral Entry, Assembly and Release. Viruses 2016; 8:v8070202. [PMID: 27455305 PMCID: PMC4974537 DOI: 10.3390/v8070202] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 07/13/2016] [Accepted: 07/14/2016] [Indexed: 01/08/2023] Open
Abstract
Bunyaviruses are enveloped viruses with a tripartite RNA genome that can pose a serious threat to animal and human health. Members of the Phlebovirus genus of the family Bunyaviridae are transmitted by mosquitos and ticks to humans and include highly pathogenic agents like Rift Valley fever virus (RVFV) and severe fever with thrombocytopenia syndrome virus (SFTSV) as well as viruses that do not cause disease in humans, like Uukuniemi virus (UUKV). Phleboviruses and other bunyaviruses use their envelope proteins, Gn and Gc, for entry into target cells and for assembly of progeny particles in infected cells. Thus, binding of Gn and Gc to cell surface factors promotes viral attachment and uptake into cells and exposure to endosomal low pH induces Gc-driven fusion of the viral and the vesicle membranes. Moreover, Gn and Gc facilitate virion incorporation of the viral genome via their intracellular domains and Gn and Gc interactions allow the formation of a highly ordered glycoprotein lattice on the virion surface. Studies conducted in the last decade provided important insights into the configuration of phlebovirus Gn and Gc proteins in the viral membrane, the cellular factors used by phleboviruses for entry and the mechanisms employed by phlebovirus Gc proteins for membrane fusion. Here, we will review our knowledge on the glycoprotein biogenesis and the role of Gn and Gc proteins in the phlebovirus replication cycle.
Collapse
|
32
|
Zhang J, Sun A, Xu R, Tao X, Dong Y, Lv X, Wei D. Cell-penetrating and endoplasmic reticulum-locating TAT-IL-24-KDEL fusion protein induces tumor apoptosis. J Cell Physiol 2016; 231:84-93. [PMID: 26031207 DOI: 10.1002/jcp.25054] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 05/20/2015] [Indexed: 01/27/2023]
Abstract
Interleukin-24 (IL-24) is a unique IL-10 family cytokine that could selectively induce apoptosis in cancer cells without harming normal cells. Previous research demonstrated that intracellular IL-24 protein induces an endoplasmic reticulum (ER) stress response only in cancer cells, culminating in apoptosis. In this study, we developed a novel recombinant fusion protein to penetrate into cancer cells and locate on ER. It is composed of three distinct functional domains, IL-24, and the targeting domain of transactivator of transcription (TAT) and an ER retention four-peptide sequence KDEL (Lys-Asp-Glu-Leu) that link at its NH2 and COOH terminal, respectively. The in vitro results indicated that TAT-IL-24-KDEL inhibited growth in bladder cancer cells, as well as in non-small cell lung cancer cell line and breast cancer cell line, but the normal human lung fibroblast cell line was not affected, indicating the cancer specificity of TAT-IL-24-KDEL. Western blot analysis showed that apoptosis activation was induced by TAT-IL-24-KDEL through the ER stress-mediated cell death pathway. Treatment with TAT-IL-24-KDEL significantly inhibited the growth of human H460 xenografts in nude mice, and the tumor growth inhibition was correlated with increased hematoxylin and eosin (H&E) staining and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) staining. These findings suggest that the artificially designed recombinant fusion protein TAT-IL-24-KDEL may be highly effective in cancer therapy and worthy of further evaluation and development.
Collapse
Affiliation(s)
- Jian Zhang
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Aiyou Sun
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Rui Xu
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Xinyi Tao
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Yuguo Dong
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Xinxin Lv
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Dongzhi Wei
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, Shanghai, People's Republic of China
| |
Collapse
|
33
|
Saraste J, Marie M. Intermediate Compartment: A Sorting Station between the Endoplasmic Reticulum and the Golgi Apparatus. ENCYCLOPEDIA OF CELL BIOLOGY 2016. [PMCID: PMC7150006 DOI: 10.1016/b978-0-12-394447-4.20013-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
34
|
The trials and tubule-ations of Rab6 involvement in Golgi-to-ER retrograde transport. Biochem Soc Trans 2015; 42:1453-9. [PMID: 25233431 DOI: 10.1042/bst20140178] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
In the early secretory pathway, membrane flow in the anterograde direction from the endoplasmic reticulum (ER) to the Golgi complex needs to be tightly co-ordinated with retrograde flow to maintain the size, composition and functionality of these two organelles. At least two mechanisms of transport move material in the retrograde direction: one regulated by the cytoplasmic coatomer protein I complex (COPI), and a second COPI-independent pathway utilizing the small GTP-binding protein Rab6. Although the COPI-independent pathway was discovered 15 years ago, it remains relatively poorly characterized, with only a handful of machinery molecules associated with its operation. One feature that makes this pathway somewhat unusual, and potentially difficult to study, is that the transport carriers predominantly seem to be tubular rather than vesicular in nature. This suggests that the regulatory machinery is likely to be different from that associated with vesicular transport pathways controlled by conventional coat complexes. In the present mini-review, we have highlighted the key experiments that have characterized this transport pathway so far and also have discussed the challenges that lie ahead with respect to its further characterization.
Collapse
|
35
|
Gao C, Cai Y, Wang Y, Kang BH, Aniento F, Robinson DG, Jiang L. Retention mechanisms for ER and Golgi membrane proteins. TRENDS IN PLANT SCIENCE 2014; 19:508-15. [PMID: 24794130 DOI: 10.1016/j.tplants.2014.04.004] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 03/27/2014] [Accepted: 04/03/2014] [Indexed: 05/18/2023]
Abstract
Unless there are mechanisms to selectively retain membrane proteins in the endoplasmic reticulum (ER) or in the Golgi apparatus, they automatically proceed downstream to the plasma or vacuole membranes. Two types of coat protein complex I (COPI)-interacting motifs in the cytosolic tails of membrane proteins seem to facilitate membrane retention in the early secretory pathway of plants: a dilysine (KKXX) motif (which is typical of p24 proteins) for the ER and a KXE/D motif (which occurs in the Arabidopsis endomembrane protein EMP12) for the Golgi apparatus. The KXE/D motif is highly conserved in all eukaryotic EMPs and is additionally present in hundreds of other proteins of unknown subcellular localization and function. This novel signal may represent a new general mechanism for Golgi targeting and the retention of polytopic integral membrane proteins.
Collapse
Affiliation(s)
- Caiji Gao
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Yi Cai
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Yejun Wang
- Vaccine and Infectious Disease Organization, University of Saskatchewan, 120 Veterinary Road, Saskatoon, SK, S7N5E3, Canada
| | - Byung-Ho Kang
- Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA
| | - Fernando Aniento
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Valencia, Spain
| | - David G Robinson
- Department of Plant Cell Biology, Centre for Organismal Studies, University of Heidelberg, D-69120 Heidelberg, Germany
| | - Liwen Jiang
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China.
| |
Collapse
|
36
|
Structure and mechanism of COPI vesicle biogenesis. Curr Opin Cell Biol 2014; 29:67-73. [PMID: 24840894 DOI: 10.1016/j.ceb.2014.04.009] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 04/01/2014] [Accepted: 04/23/2014] [Indexed: 11/22/2022]
Abstract
Distinct trafficking pathways within the secretory and endocytic systems ensure prompt and precise delivery of specific cargo molecules to different cellular compartments via small vesicular (50-150nm) and tubular carriers. The COPI vesicular coat is required for retrograde trafficking from the cis-Golgi back to the ER and within the Golgi stack. Recent structural data have been obtained from X-ray crystallographic studies on COPI coat components alone and on COPI subunits in complex with either cargo motifs or Arf1, and from reconstructions of COPI coated vesicles by electron tomography. These studies provide important molecular information and indicate key differences in COPI coat assembly as compared with clathrin-based and COPII-based coats.
Collapse
|
37
|
Yu J, Chia J, Canning C, Jones C, Bard F, Virshup D. WLS Retrograde Transport to the Endoplasmic Reticulum during Wnt Secretion. Dev Cell 2014; 29:277-91. [DOI: 10.1016/j.devcel.2014.03.016] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2012] [Revised: 03/05/2014] [Accepted: 03/21/2014] [Indexed: 01/01/2023]
|
38
|
Yang H, Krebs M, Stierhof YD, Ludewig U. Characterization of the putative amino acid transporter genes AtCAT2, 3 &4: the tonoplast localized AtCAT2 regulates soluble leaf amino acids. JOURNAL OF PLANT PHYSIOLOGY 2014; 171:594-601. [PMID: 24709150 DOI: 10.1016/j.jplph.2013.11.012] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 11/26/2013] [Accepted: 11/26/2013] [Indexed: 05/03/2023]
Abstract
The plant vacuole constitutes a large transient storage compartment for nutrients, proteins and metabolites, and is a major cellular sink for toxic waste compounds. Amino acids can cross the vacuolar membrane via specific transport proteins, which are molecularly not well characterized. Two members of a small subfamily of the cationic amino acid transporters, AtCAT2 and AtCAT4, were primarily localized at the tonoplast when tagged with GFP. The closely related AtCAT3, by contrast, was detected in the endoplasmic reticulum membrane. The exchange of a di-acidic motif at the carboxy-tail affected their sub-cellular localization, with larger effects visible in transiently transformed protoplasts compared to stably expressing plant lines. The genes have broad, partially overlapping tissue expression, with CAT2 dominating in most tissues. Loss-of-function mutants of individual CATs showed no visible phenotype under various conditions, but the overall tissue concentration of amino acids was increased in soil-grown cat2 mutants. The data suggest that CAT2 is a critical target of leaf amino acid concentrations and manipulation of this tonoplast transporter can significantly alter total tissue amino acid concentrations.
Collapse
Affiliation(s)
- Huaiyu Yang
- Institute of Crop Science, Nutritional Crop Physiology, University of Hohenheim, Fruwirthstr. 20, 70593 Stuttgart, Germany; Center for Molecular Biology of Plants (ZMBP), Microscopy Unit, University of Tübingen, Auf der Morgenstelle 5, 72076 Tübingen, Germany
| | - Melanie Krebs
- Center for Molecular Biology of Plants (ZMBP), Microscopy Unit, University of Tübingen, Auf der Morgenstelle 5, 72076 Tübingen, Germany
| | - York-Dieter Stierhof
- Center for Molecular Biology of Plants (ZMBP), Microscopy Unit, University of Tübingen, Auf der Morgenstelle 5, 72076 Tübingen, Germany
| | - Uwe Ludewig
- Institute of Crop Science, Nutritional Crop Physiology, University of Hohenheim, Fruwirthstr. 20, 70593 Stuttgart, Germany; Center for Molecular Biology of Plants (ZMBP), Microscopy Unit, University of Tübingen, Auf der Morgenstelle 5, 72076 Tübingen, Germany.
| |
Collapse
|
39
|
Ruhanen H, Hurley D, Ghosh A, O'Brien KT, Johnston CR, Shields DC. Potential of known and short prokaryotic protein motifs as a basis for novel peptide-based antibacterial therapeutics: a computational survey. Front Microbiol 2014; 5:4. [PMID: 24478765 PMCID: PMC3896991 DOI: 10.3389/fmicb.2014.00004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Accepted: 01/05/2014] [Indexed: 11/13/2022] Open
Abstract
Short linear motifs (SLiMs) are functional stretches of protein sequence that are of crucial importance for numerous biological processes by mediating protein-protein interactions. These motifs often comprise peptides of less than 10 amino acids that modulate protein-protein interactions. While well-characterized in eukaryotic intracellular signaling, their role in prokaryotic signaling is less well-understood. We surveyed the distribution of known motifs in prokaryotic extracellular and virulence proteins across a range of bacterial species and conducted searches for novel motifs in virulence proteins. Many known motifs in virulence effector proteins mimic eukaryotic motifs and enable the pathogen to control the intracellular processes of their hosts. Novel motifs were detected by finding those that had evolved independently in three or more unrelated virulence proteins. The search returned several significantly over-represented linear motifs of which some were known motifs and others are novel candidates with potential roles in bacterial pathogenesis. A putative C-terminal G[AG].$ motif found in type IV secretion system proteins was among the most significant detected. A KK$ motif that has been previously identified in a plasminogen-binding protein, was demonstrated to be enriched across a number of adhesion and lipoproteins. While there is some potential to develop peptide drugs against bacterial infection based on bacterial peptides that mimic host components, this could have unwanted effects on host signaling. Thus, novel SLiMs in virulence factors that do not mimic host components but are crucial for bacterial pathogenesis, such as the type IV secretion system, may be more useful to develop as leads for anti-microbial peptides or drugs.
Collapse
Affiliation(s)
- Heini Ruhanen
- Complex and Adaptive Systems Laboratory, University College Dublin Dublin, Ireland ; Conway Institute of Biomolecular and Biomedical Science, University College Dublin Dublin, Ireland ; School of Medicine and Medical Science, University College Dublin Dublin, Ireland
| | - Daniel Hurley
- Complex and Adaptive Systems Laboratory, University College Dublin Dublin, Ireland ; Conway Institute of Biomolecular and Biomedical Science, University College Dublin Dublin, Ireland ; School of Medicine and Medical Science, University College Dublin Dublin, Ireland
| | - Ambarnil Ghosh
- Crystallography and Molecular Biology Department, Saha Institute of Nuclear Physics Kolkata, India
| | - Kevin T O'Brien
- Complex and Adaptive Systems Laboratory, University College Dublin Dublin, Ireland ; Conway Institute of Biomolecular and Biomedical Science, University College Dublin Dublin, Ireland ; School of Medicine and Medical Science, University College Dublin Dublin, Ireland
| | | | - Denis C Shields
- Complex and Adaptive Systems Laboratory, University College Dublin Dublin, Ireland ; Conway Institute of Biomolecular and Biomedical Science, University College Dublin Dublin, Ireland ; School of Medicine and Medical Science, University College Dublin Dublin, Ireland
| |
Collapse
|
40
|
A novel GABRG2 mutation, p.R136*, in a family with GEFS+ and extended phenotypes. Neurobiol Dis 2014; 64:131-141. [PMID: 24407264 DOI: 10.1016/j.nbd.2013.12.013] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 12/19/2013] [Accepted: 12/26/2013] [Indexed: 01/06/2023] Open
Abstract
Genetic mutations in voltage-gated and ligand-gated ion channel genes have been identified in a small number of Mendelian families with genetic generalised epilepsies (GGEs). They are commonly associated with febrile seizures (FS), childhood absence epilepsy (CAE) and particularly with generalised or genetic epilepsy with febrile seizures plus (GEFS+). In clinical practice, despite efforts to categorise epilepsy and epilepsy families into syndromic diagnoses, many generalised epilepsies remain unclassified with a presumed genetic basis. During the systematic collection of epilepsy families, we assembled a cohort of families with evidence of GEFS+ and screened for variations in the γ2 subunit of the γ-aminobutyric acid (GABA) type A receptor gene (GABRG2). We detected a novel GABRG2(p.R136*) premature translation termination codon in one index-case from a two-generation nuclear family, presenting with an unclassified GGE, a borderline GEFS+ phenotype with learning difficulties and extended behavioural presentation. The GABRG2(p.R136*) mutation segregates with the febrile seizure component of this family's GGE and is absent in 190 healthy control samples. In vitro expression assays demonstrated that γ2(p.R136*) subunits were produced, but had reduced cell-surface and total expression. When γ2(p.R136*) subunits were co-expressed with α1 and β2 subunits in HEK 293T cells, GABA-evoked currents were reduced. Furthermore, γ2(p.R136*) subunits were highly-expressed in intracellular aggregations surrounding the nucleus and endoplasmic reticulum (ER), suggesting compromised receptor trafficking. A novel GABRG2(p.R136*) mutation extends the spectrum of GABRG2 mutations identified in GEFS+ and GGE phenotypes, causes GABAA receptor dysfunction, and represents a putative epilepsy mechanism.
Collapse
|
41
|
Zhao L, Teklemariam T, Hantash BM. Mutated HLA-G3 localizes to the cell surface but does not inhibit cytotoxicity of natural killer cells. Cell Immunol 2013; 287:23-6. [PMID: 24355712 DOI: 10.1016/j.cellimm.2013.11.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 11/19/2013] [Accepted: 11/21/2013] [Indexed: 11/29/2022]
Abstract
HLA-G plays an important role in the induction of immune tolerance. Various attempts to produce good manufacturing practice levels of HLA-G as a therapeutic molecule have failed to date partly due to the complicated structure of full-length HLA-G1. Truncated HLA-G3 is simpler and easier to produce than HLA-G1 and contains the expected functional epitope in its only α1 monomorphic domain. In this study, we engineered the ER retrieval and retention signal on HLA-G3's cytoplasmic tail by replacing its RKKSSD motif with RAASSD. We observed that mutated HLA-G3 was highly expressed on the cell surface of transduced K562 cells but did not inhibit cytotoxicity of natural killer cells.
Collapse
Affiliation(s)
- Longmei Zhao
- Escape Therapeutics, Inc., San Jose, CA, United States
| | | | | |
Collapse
|
42
|
Timms RT, Duncan LM, Tchasovnikarova IA, Antrobus R, Smith DL, Dougan G, Weekes MP, Lehner PJ. Haploid genetic screens identify an essential role for PLP2 in the downregulation of novel plasma membrane targets by viral E3 ubiquitin ligases. PLoS Pathog 2013; 9:e1003772. [PMID: 24278019 PMCID: PMC3836740 DOI: 10.1371/journal.ppat.1003772] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 09/27/2013] [Indexed: 11/19/2022] Open
Abstract
The Kaposi's sarcoma-associated herpesvirus gene products K3 and K5 are viral ubiquitin E3 ligases which downregulate MHC-I and additional cell surface immunoreceptors. To identify novel cellular genes required for K5 function we performed a forward genetic screen in near-haploid human KBM7 cells. The screen identified proteolipid protein 2 (PLP2), a MARVEL domain protein of unknown function, as essential for K5 activity. Genetic loss of PLP2 traps the viral ligase in the endoplasmic reticulum, where it is unable to ubiquitinate and degrade its substrates. Subsequent analysis of the plasma membrane proteome of K5-expressing KBM7 cells in the presence and absence of PLP2 revealed a wide range of novel K5 targets, all of which required PLP2 for their K5-mediated downregulation. This work ascribes a critical function to PLP2 for viral ligase activity and underlines the power of non-lethal haploid genetic screens in human cells to identify the genes involved in pathogen manipulation of the host immune system.
Collapse
Affiliation(s)
- Richard T. Timms
- Cambridge Institute for Medical Research, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Lidia M. Duncan
- Cambridge Institute for Medical Research, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Iva A. Tchasovnikarova
- Cambridge Institute for Medical Research, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Robin Antrobus
- Cambridge Institute for Medical Research, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Duncan L. Smith
- Paterson Institute for Cancer Research, University of Manchester, Withington, Manchester, United Kingdom
| | - Gordon Dougan
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, United Kingdom
| | - Michael P. Weekes
- Cambridge Institute for Medical Research, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Paul J. Lehner
- Cambridge Institute for Medical Research, Addenbrooke's Hospital, Cambridge, United Kingdom
- * E-mail:
| |
Collapse
|
43
|
Yan SE, Lemmin T, Salvi S, Lausch E, Superti-Furga A, Rokicki D, Dal Peraro M, van der Goot FG. In-depth analysis of hyaline fibromatosis syndrome frameshift mutations at the same site reveal the necessity of personalized therapy. Hum Mutat 2013; 34:1005-17. [PMID: 23554269 DOI: 10.1002/humu.22324] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Accepted: 03/20/2013] [Indexed: 11/07/2022]
Abstract
Hyaline fibromatosis syndrome is an autosomal recessive disease caused by mutations in ANTXR2, a gene involved in extracellular matrix homeostasis. Sixty percent of patients carry frameshift mutations at a mutational hotspot in exon 13. We show in patient cells that these mutations lead to low ANTXR2 mRNA and undetectable protein levels. Ectopic expression of the proteins encoded by the mutated genes reveals that a two base insertion leads to the synthesis of a protein that is rapidly targeted to the ER-associated degradation pathway due to the modified structure of the cytosolic tail, which instead of being hydrophilic and highly disordered as in wild type ANTXR2, is folded and exposes hydrophobic patches. In contrast, one base insertion leads to a truncated protein that properly localizes to the plasma membrane and retains partial function. We next show that targeting the nonsense mediated mRNA decay pathway in patient cells leads to a rescue of ANTXR2 protein in patients carrying one base insertion but not in those carrying two base insertions. This study highlights the importance of in-depth analysis of the molecular consequences of specific patient mutations, which even when they occur at the same site can have drastically different consequences.
Collapse
Affiliation(s)
- Shixu E Yan
- Global Health Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Lavieu G, Zheng H, Rothman JE. Stapled Golgi cisternae remain in place as cargo passes through the stack. eLife 2013; 2:e00558. [PMID: 23755362 PMCID: PMC3673335 DOI: 10.7554/elife.00558] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Accepted: 04/26/2013] [Indexed: 12/16/2022] Open
Abstract
We have designed a membrane ‘staple’, which consists of membrane-anchored repeats of the trans-aggregating FM domain that face the lumen of the secretory pathway. In the presence of the disaggregating drug these proteins transit the secretory pathway. When the drug is removed these proteins form electron-dense plaques which we term staples. Unexpectedly, when initially positioned within the cis-Golgi, staples remained at the cis face of the Golgi even after many hours. By contrast, soluble FM-aggregates transited the Golgi. Staples and soluble aggregates placed in cis-Golgi cisternae therefore have different fates. Whereas the membrane staples are located in the flattened, stacked central regions of the cisternae, the soluble aggregates are in the dilated rims. This suggests that while the cisternae are static on the time scale of protein traffic, the dilated rims are mobile and progress in the cis → trans direction via a mechanism that we term ‘Rim Progression’. DOI:http://dx.doi.org/10.7554/eLife.00558.001 Most plant and animal cells contain an organelle known as the Golgi apparatus, which consists of a series of four to six stacked cisternae. Almost all the proteins that are secreted from the cell, or targeted to its plasma membrane, transit through the Golgi. This process takes roughly 5–20 min. Although transport of proteins through the Golgi was first observed more than 50 years ago, it is still unclear exactly how this process occurs. One possibility is that proteins to be packaged move through the cisternae enclosed in vesicles, as if on a conveyor belt. Alternatively, the proteins themselves may remain stationary while the Golgi cisternae move over them. Now, Lavieu et al. provide evidence that the Golgi shows both mobile and static behaviour depending on the type and size of the cargo being processed. To distinguish between these two mechanisms, they created a new type of protein cargo—which they called a ‘staple’—that became fixed to the walls on each side of the cisternae and could not, therefore, move freely through the Golgi. They compared the processing of this protein to that of a more typical soluble protein cargo, which could move freely through the Golgi stack. Surprisingly, the Golgi processed these two types of cargo in very different ways. The staples remained embedded in the walls in the center of the cisternae, whereas the conventional soluble cargo was transported past the staples and collected at the edges of the cisternae, which are known as rims. These are wider than the center of the cisternae, and the staples are too narrow to span them. Lavieu et al. suggest that the Golgi cisternae can be divided into two functionally distinct domains: the centers of cisternae, which remain stationary, and the edges or rims, which can move. In addition to increasing our understanding of how proteins are prepared for transport inside cells, this new mechanism reconciles seemingly conflicting data by revealing that the Golgi can be both mobile and static. DOI:http://dx.doi.org/10.7554/eLife.00558.002
Collapse
Affiliation(s)
- Gregory Lavieu
- Department of Cell Biology , Yale University School of Medicine , New Haven , United States
| | | | | |
Collapse
|
45
|
Mukhopadhyay S, Linstedt AD. Retrograde trafficking of AB₅ toxins: mechanisms to therapeutics. J Mol Med (Berl) 2013; 91:1131-41. [PMID: 23665994 DOI: 10.1007/s00109-013-1048-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Revised: 04/23/2013] [Accepted: 04/24/2013] [Indexed: 01/28/2023]
Abstract
Bacterial AB5 toxins are a clinically relevant class of exotoxins that include several well-known members such as Shiga, cholera, and pertussis toxins. Infections with toxin-producing bacteria cause devastating human diseases that affect millions of individuals each year and have no definitive medical treatment. The molecular targets of AB5 toxins reside in the cytosol of infected cells, and the toxins reach the cytosol by trafficking through the retrograde membrane transport pathway that avoids degradative late endosomes and lysosomes. Focusing on Shiga toxin as the archetype member, we review recent advances in understanding the molecular mechanisms involved in the retrograde trafficking of AB5 toxins and highlight how these basic science advances are leading to the development of a promising new therapeutic approach based on inhibiting toxin transport.
Collapse
Affiliation(s)
- Somshuvra Mukhopadhyay
- Division of Pharmacology & Toxicology, College of Pharmacy and Institute for Cellular & Molecular Biology, The University of Texas at Austin, Austin, TX, 78712, USA
| | | |
Collapse
|
46
|
Holloway ZG, Velayos-Baeza A, Howell GJ, Levecque C, Ponnambalam S, Sztul E, Monaco AP. Trafficking of the Menkes copper transporter ATP7A is regulated by clathrin-, AP-2-, AP-1-, and Rab22-dependent steps. Mol Biol Cell 2013; 24:1735-48, S1-8. [PMID: 23596324 PMCID: PMC3667726 DOI: 10.1091/mbc.e12-08-0625] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
ATP7A mediates copper absorption and feeds cuproenzymes in the trans-Golgi network. To regulate copper homeostasis, ATP7A cycles between the TGN and plasma membrane. The roles of clathrin, adaptor complexes, lipid rafts, and Rab22a are assessed in an attempt to decipher the regulatory proteins involved in ATP7A cycling. The transporter ATP7A mediates systemic copper absorption and provides cuproenzymes in the trans-Golgi network (TGN) with copper. To regulate metal homeostasis, ATP7A constitutively cycles between the TGN and plasma membrane (PM). ATP7A trafficking to the PM is elevated in response to increased copper load and is reversed when copper concentrations are lowered. Molecular mechanisms underlying this trafficking are poorly understood. We assess the role of clathrin, adaptor complexes, lipid rafts, and Rab22a in an attempt to decipher the regulatory proteins involved in ATP7A cycling. While RNA interference (RNAi)–mediated depletion of caveolin 1/2 or flotillin had no effect on ATP7A localization, clathrin heavy chain depletion or expression of AP180 dominant-negative mutant not only disrupted clathrin-regulated pathways, but also blocked PM-to-TGN internalization of ATP7A. Depletion of the μ subunits of either adaptor protein-2 (AP-2) or AP-1 using RNAi further provides evidence that both clathrin adaptors are important for trafficking of ATP7A from the PM to the TGN. Expression of the GTP-locked Rab22aQ64L mutant caused fragmentation of TGN membrane domains enriched for ATP7A. These appear to be a subdomain of the mammalian TGN, showing only partial overlap with the TGN marker golgin-97. Of importance, ATP7A remained in the Rab22aQ64L-generated structures after copper treatment and washout, suggesting that forward trafficking out of this compartment was blocked. This study provides evidence that multiple membrane-associated factors, including clathrin, AP-2, AP-1, and Rab22, are regulators of ATP7A trafficking.
Collapse
Affiliation(s)
- Zoe G Holloway
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
47
|
Gutiérrez-Martínez E, Fernández-Ulibarri I, Lázaro-Diéguez F, Johannes L, Pyne S, Sarri E, Egea G. Lipid phosphate phosphatase 3 participates in transport carrier formation and protein trafficking in the early secretory pathway. J Cell Sci 2013; 126:2641-55. [PMID: 23591818 DOI: 10.1242/jcs.117705] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The inhibition of phosphatidic acid phosphatase (PAP) activity by propanolol indicates that diacylglycerol (DAG) is required for the formation of transport carriers at the Golgi and for retrograde trafficking to the ER. Here we report that the PAP2 family member lipid phosphate phosphatase 3 (LPP3, also known as PAP2b) localizes in compartments of the secretory pathway from ER export sites to the Golgi complex. The depletion of human LPP3: (i) reduces the number of tubules generated from the ER-Golgi intermediate compartment and the Golgi, with those formed from the Golgi being longer in LPP3-silenced cells than in control cells; (ii) impairs the Rab6-dependent retrograde transport of Shiga toxin subunit B from the Golgi to the ER, but not the anterograde transport of VSV-G or ssDsRed; and (iii) induces a high accumulation of Golgi-associated membrane buds. LPP3 depletion also reduces levels of de novo synthesized DAG and the Golgi-associated DAG contents. Remarkably, overexpression of a catalytically inactive form of LPP3 mimics the effects of LPP3 knockdown on Rab6-dependent retrograde transport. We conclude that LPP3 participates in the formation of retrograde transport carriers at the ER-Golgi interface, where it transitorily cycles, and during its route to the plasma membrane.
Collapse
Affiliation(s)
- Enric Gutiérrez-Martínez
- Departament de Biologia Cel·lular, Immunologia i Neurociències, Facultat de Medicina, Universitat de Barcelona, 08036 Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|
48
|
The transmembrane domain of the adenovirus E3/19K protein acts as an endoplasmic reticulum retention signal and contributes to intracellular sequestration of major histocompatibility complex class I molecules. J Virol 2013; 87:6104-17. [PMID: 23514889 DOI: 10.1128/jvi.03391-12] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The human adenovirus E3/19K protein is a type I transmembrane glycoprotein of the endoplasmic reticulum (ER) that abrogates cell surface transport of major histocompatibility complex class I (MHC-I) and MHC-I-related chain A and B (MICA/B) molecules. Previous data suggested that E3/19K comprises two functional modules: a luminal domain for interaction with MHC-I and MICA/B molecules and a dilysine motif in the cytoplasmic tail that confers retrieval from the Golgi apparatus back to the ER. This study was prompted by the unexpected phenotype of an E3/19K molecule that was largely retained intracellularly despite having a mutated ER retrieval motif. To identify additional structural determinants responsible for ER localization, chimeric molecules were generated containing the luminal E3/19K domain and the cytoplasmic and/or transmembrane domain (TMD) of the cell surface protein MHC-I K(d). These chimeras were analyzed for transport, cell surface expression, and impact on MHC-I and MICA/B downregulation. As with the retrieval mutant, replacement of the cytoplasmic tail of E3/19K allowed only limited transport of the chimera to the cell surface. Efficient cell surface expression was achieved only by additionally replacing the TMD of E3/19K with that of MHC-I, suggesting that the E3/19K TMD may confer static ER retention. This was verified by ER retention of an MHC-I K(d) molecule with the TMD replaced by that of E3/19K. Thus, we have identified the E3/19K TMD as a novel functional element that mediates static ER retention, thereby increasing the concentration of E3/19K in the ER. Remarkably, the ER retrieval signal alone, without the E3/19K TMD, did not mediate efficient HLA downregulation, even in the context of infection. This suggests that the TMD is required together with the ER retrieval function to ensure efficient ER localization and transport inhibition of MHC-I and MICA/B molecules.
Collapse
|
49
|
Ma W, Goldberg J. Rules for the recognition of dilysine retrieval motifs by coatomer. EMBO J 2013; 32:926-37. [PMID: 23481256 PMCID: PMC3616288 DOI: 10.1038/emboj.2013.41] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Accepted: 02/07/2013] [Indexed: 12/29/2022] Open
Abstract
Cytoplasmic dilysine motifs on transmembrane proteins are captured by coatomer α-COP and β′-COP subunits and packaged into COPI-coated vesicles for Golgi-to-ER retrieval. Numerous ER/Golgi proteins contain K(x)Kxx motifs, but the rules for their recognition are unclear. We present crystal structures of α-COP and β′-COP bound to a series of naturally occurring retrieval motifs—encompassing KKxx, KxKxx and non-canonical RKxx and viral KxHxx sequences. Binding experiments show that α-COP and β′-COP have generally the same specificity for KKxx and KxKxx, but only β′-COP recognizes the RKxx signal. Dilysine motif recognition involves lysine side-chain interactions with two acidic patches. Surprisingly, however, KKxx and KxKxx motifs bind differently, with their lysine residues transposed at the binding patches. We derive rules for retrieval motif recognition from key structural features: the reversed binding modes, the recognition of the C-terminal carboxylate group which enforces lysine positional context, and the tolerance of the acidic patches for non-lysine residues. Transmembrane proteins interact with COPI coatomers for their vesicular Golgi-ER transport. Crystal structures of the coatomers α-COP and β′-COP bound to a series of cargo retrieval motifs uncover the molecular basis of distinct recognition mechanisms.
Collapse
Affiliation(s)
- Wenfu Ma
- Memorial Sloan-Kettering Cancer Center, Howard Hughes Medical Institute and the Structural Biology Program, New York, NY, USA
| | | |
Collapse
|
50
|
Bourgeois-Daigneault MC, Thibodeau J. Identification of a novel motif that affects the conformation and activity of the MARCH1 E3 ubiquitin ligase. J Cell Sci 2012; 126:989-98. [PMID: 23264739 DOI: 10.1242/jcs.117804] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
MARCH1, a member of the membrane-associated RING-CH family of E3 ubiquitin ligases, regulates antigen presentation by downregulating the cell surface expression of Major Histocompatibility Complex class II and CD86 molecules. MARCH1 is a transmembrane protein that exposes both its N- and C-terminus to the cytoplasm. We have conducted a structure-function analysis of its two cytoplasmic tails to gain insights into the trafficking of MARCH1 in the endocytic pathway. Fusion of the N-terminal portion of MARCH1 to a type II transmembrane reporter molecule revealed that this cytoplasmic tail contains endosomal sorting motifs. The C-terminal domain also appears to contain intracellular sorting signals because it reduced surface expression of a type I transmembrane reporter molecule. Mutation of the two putative C-terminal tyrosine-based sorting signals did not affect the activity of human MARCH1; however, it did reduce its incorporation into exosomes. Moreover, site-directed mutagenesis pointed to a functional C-terminal 221VQNC224 sequence that affects the spatial organization of the two cytoplasmic regions. This motif is also found in other RING-type E3 ubiquitin ligases, such as parkin. Altogether, these findings highlight the complex regulation of MARCH1 trafficking in the endocytic pathway as well as the intricate interactions between its cytoplasmic tails.
Collapse
|