1
|
Cordeiro CAMM, Pardal A, Giménez L, Ciotti ÁM, Jenkins SR, Burrows MT, Williams GA, Christofoletti RA. Environmental factors have stronger effects than biotic processes in patterns of intertidal populations along the southeast coast of Brazil. MARINE ENVIRONMENTAL RESEARCH 2024; 200:106646. [PMID: 39048495 DOI: 10.1016/j.marenvres.2024.106646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/02/2024] [Accepted: 07/15/2024] [Indexed: 07/27/2024]
Abstract
Rocky shore communities are shaped by complex interactions among environmental drivers and a range of biological processes. Here, we investigated the importance of abiotic and biotic drivers on the population structure of key rocky intertidal species at 62 sites, spanning ∼50% of the Brazilian rocky shoreline (i.e., ∼500 km). Large-scale population patterns were generally explained by differences in ocean temperature and wave exposure. For the gastropod species Lottia subrugosa, differences at smaller scales (i.e., 0.1-1 km) were better explained by other abiotic influences such as freshwater discharge and substrate roughness. Based on the general population patterns of intertidal species identified, three main oceanographic groups were observed: a cold-oligotrophic grouping at northern sites (Lakes sub-region), a eutrophic group associated with large estuaries and urban zones (Santos and Guanabara bays); and a transitional warm-water group found between the two more productive areas. Larger individuals of Stramonita brasiliensis, L. subrugosa and Echinolittorina lineolata were generally found in the cold-oligotrophic system (i.e., upwelling region), while small suspension feeders dominate the warm-eutrophic systems. Evidence of bottom-up regulation was not observed, and top-down regulation effects were only observed between the whelk S. brasiliensis and its mussel prey Pernaperna. Environmental drivers as compared to biotic interactions, therefore, play a key role determining the population structure of multiple intertidal species, across a range of spatial scales along the SW Atlantic shores.
Collapse
Affiliation(s)
- Cesar A M M Cordeiro
- Laboratory of Environmental Sciences, Universidade Estadual do Norte Fluminense (UENF), Av. Alberto Lamego 2000, 28013-602, Campos dos Goytacazes, RJ, Brazil.
| | - André Pardal
- Center of Natural and Human Sciences, Federal University of ABC (CCNH/UFABC), Rua Santa Adélia 166, Santo André, SP, 09210-170, Brazil; Institute of Marine Science, Federal University of São Paulo (IMar/UNIFESP), Rua Dr Carvalho de Mendonça 144, Santos, SP, 11070-100, Brazil
| | - Luis Giménez
- School of Ocean Sciences, Bangor University, Menai Bridge, Anglesey, LL59 5AB, UK
| | - Áurea M Ciotti
- Center for Marine Biology, University of São Paulo (CEBIMar/USP), Rod. Manoel Hipólito do Rego, km 131.5, São Sebastião, SP, 1160-000, Brazil
| | - Stuart R Jenkins
- School of Ocean Sciences, Bangor University, Menai Bridge, Anglesey, LL59 5AB, UK
| | - Michael T Burrows
- Department of Ecology, Scottish Association for Marine Science, Scottish Marine Institute, Oban, Argyll, PA37 1QA, UK
| | - Gray A Williams
- The Swire Institute of Marine Science and Area of Ecology & Biodiversity, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Ronaldo A Christofoletti
- Institute of Marine Science, Federal University of São Paulo (IMar/UNIFESP), Rua Dr Carvalho de Mendonça 144, Santos, SP, 11070-100, Brazil
| |
Collapse
|
2
|
Smith CS, Zhang YS, Hensel MJS, Pennings SC, Silliman BR. Long-term data reveal that grazer density mediates climatic stress in salt marshes. Ecology 2024; 105:e4323. [PMID: 38769601 DOI: 10.1002/ecy.4323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 02/22/2024] [Accepted: 04/09/2024] [Indexed: 05/22/2024]
Abstract
Understanding how climate and local stressors interact is paramount for predicting future ecosystem structure. The effects of multiple stressors are often examined in small-scale and short-term field experiments, limiting understanding of the spatial and temporal generality of the findings. Using a 22-year observational dataset of plant and grazer abundance in a southeastern US salt marsh, we analyzed how changes in drought and grazer density combined to affect plant biomass. We found: (1) increased drought severity and higher snail density both correlated with lower plant biomass; (2) drought and snail effects interacted additively; and, (3) snail effects had a threshold, with additive top-down effects only occurring when snails were present at high densities. These results suggest that the emergence of multiple stressor effects can be density dependent, and they validate short-term experimental evidence that consumers can augment environmental stress. These findings have important implications for predicting future ecosystem structure and managing natural ecosystems.
Collapse
Affiliation(s)
- Carter S Smith
- Nicholas School of the Environment, Duke University Marine Lab, Beaufort, North Carolina, USA
| | - Y Stacy Zhang
- Department of Marine, Earth and Atmospheric Sciences, North Carolina State University, Raleigh, North Carolina, USA
| | - Marc J S Hensel
- Department of Biological Sciences, Virginia Institute of Marine Sciences, College of William and Mary, Gloucester, Virginia, USA
- Nature Coast Biological Station, University of Florida, Cedar Key, Florida, USA
| | - Steven C Pennings
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA
| | - Brian R Silliman
- Nicholas School of the Environment, Duke University Marine Lab, Beaufort, North Carolina, USA
| |
Collapse
|
3
|
Rossaro B, Marziali L. Response of Chironomids (Diptera, Chironomidae) to Environmental Factors at Different Spatial Scales. INSECTS 2024; 15:272. [PMID: 38667402 PMCID: PMC11050053 DOI: 10.3390/insects15040272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/12/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024]
Abstract
Factors responsible for species distribution of benthic macroinvertebrates, including responses at different spatial scales, have been previously investigated. The aim of the present research was to review the most relevant factors explaining chironomid species distribution focusing on factors operating at different spatial scales, such as latitude, longitude, altitude, substrate, salinity, water temperature, current velocity, conductivity, acidity, dissolved oxygen, nutrient content etc. acting at regional levels and at a large or small water basin level. Data including chironomid species abundances from different lentic and lotic waters in Italy and other surrounding countries were analyzed using partial canonical correspondence analysis (pCCA) and multiple discriminant analysis (DISCR). Spatial analyses, including univariate Moran's I correlograms, multivariate Mantel correlograms and Moran's eigenvector maps (MEMs), were thereafter carried out. The results showed that habitat type, including different types of lotic waters (i.e., kryal, crenal, rhithral, potamal) and different lake types (i.e., littoral, sublittoral, profundal zones), is the most significant factor separating chironomid assemblages, while spatial factors act only as indirect influencers.
Collapse
Affiliation(s)
- Bruno Rossaro
- Department of Agricultural and Environmental Sciences (DISAA), University of Milan, Via Celoria 2, 20133 Milan, Italy
| | - Laura Marziali
- National Research Council—Water Research Institute (CNR-IRSA), Via del Mulino 19, 20861 Brugherio, Italy;
| |
Collapse
|
4
|
Leggett MA, Vink CJ, Nelson XJ. Adaptation and Survival of Marine-Associated Spiders (Araneae). ANNUAL REVIEW OF ENTOMOLOGY 2024; 69:481-501. [PMID: 37788437 DOI: 10.1146/annurev-ento-062923-102457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Aquatic environments are an unusual habitat for most arthropods. Nevertheless, many arthropod species that were once terrestrial dwelling have transitioned back to marine and freshwater environments, either as semiaquatic or, more rarely, as fully aquatic inhabitants. Transition to water from land is exceptional, and without respiratory modifications to allow for extended submergence and the associated hypoxic conditions, survival is limited. In this article, we review marine-associated species that have made this rare transition in a generally terrestrial group, spiders. We include several freshwater spider species for comparative purposes. Marine-associated spiders comprise less than 0.3% of spider species worldwide but are found in over 14% of all spider families. As we discuss, these spiders live in environments that, with tidal action, hydraulic forces, and saltwater, are more extreme than freshwater habitats, often requiring physiological and behavioral adaptations to survive. Spiders employ many methods to survive inundation from encroaching tides, such as air bubble respiration, airtight nests, hypoxic comas, and fleeing incoming tides. While airway protection is the primary survival strategy, further survival adaptations include saltwater-induced osmotic regulation, dietary composition, predator avoidance, reproduction, locomotory responses, and adaptation to extreme temperatures and hydrostatic pressures that challenge existence in marine environments.
Collapse
Affiliation(s)
- Marlene A Leggett
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand;
| | - Cor J Vink
- Department of Pest Management and Conservation, Lincoln University, Lincoln, New Zealand
| | - Ximena J Nelson
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand;
| |
Collapse
|
5
|
Jackson-Bué T, Evans AJ, Lawrence PJ, Brooks PR, Ward SL, Jenkins SR, Moore PJ, Crowe TP, Neill SP, Davies AJ. Habitat structure shapes temperate reef assemblages across regional environmental gradients. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167494. [PMID: 37806568 DOI: 10.1016/j.scitotenv.2023.167494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 09/26/2023] [Accepted: 09/28/2023] [Indexed: 10/10/2023]
Abstract
Intertidal artificial habitats are proliferating, but are generally simpler in structure and host lower biodiversity than natural rocky reefs. Eco-engineering aims to enhance the biodiversity of coastal infrastructure, often through physical structural modifications that mimic topographic properties of natural shores. Relationships between biotic assemblages and structural properties of natural and artificial reefs have been extensively studied at sampling scales of up to 1 m2. But evidence that quantified local structural variation has an appreciable influence on biotic assemblages, at a shore-wide scale across regional environmental gradients, is lacking. Here we addressed this knowledge gap with an observational study at 32 natural and artificial intertidal reef sites in Wales, UK. We used multivariate community analysis and permutation tests to examine associations between local physical structure, regional environmental variables and sessile biotic assemblages. A potential influence of local habitat structure on assemblage composition was evident across regional-scale environmental gradients. Compared to natural sites, artificial reefs had lower taxonomic richness, distinct and more variable assemblage composition, and different physical structure. After removing the effect of habitat (natural or artificial), canonical correspondence analysis showed that environmental variables (wave exposure, sea surface temperature and salinity variation), along with two metrics of physical structure (standard deviation in log-transformed detrended roughness and skewness of surface verticality, both at 0.5 m scale), explained 40 % of the variation in assemblage composition among sites. The two structural metrics independently explained 14.5 % of the variation. Associations identified between individual taxa and environmental variables indicated that sites with a higher proportion of horizontal surfaces hosted more canopy macroalgae, which in turn support other algae and invertebrates. Our findings provide evidence to inform scaling-up of structural eco-engineering interventions from experimental contexts to enhance the biodiversity of coastal infrastructure across regional extents.
Collapse
Affiliation(s)
- Tim Jackson-Bué
- School of Ocean Sciences, Bangor University, Askew St, Menai Bridge LL59 5AB, UK.
| | - Ally J Evans
- Department of Life Sciences, Aberystwyth University, Aberystwyth SY23 3DA, UK
| | - Peter J Lawrence
- Institute of Science and Environment, University of Cumbria, Ambleside LA22 9BB, UK
| | - Paul R Brooks
- Earth Institute and School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | - Sophie L Ward
- School of Ocean Sciences, Bangor University, Askew St, Menai Bridge LL59 5AB, UK
| | - Stuart R Jenkins
- School of Ocean Sciences, Bangor University, Askew St, Menai Bridge LL59 5AB, UK
| | - Pippa J Moore
- Department of Life Sciences, Aberystwyth University, Aberystwyth SY23 3DA, UK; Dove Marine Laboratory, School of Natural and Environmental Sciences, Newcastle University, Newcastle-upon-Tyne NE1 7RU, UK
| | - Tasman P Crowe
- Earth Institute and School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | - Simon P Neill
- School of Ocean Sciences, Bangor University, Askew St, Menai Bridge LL59 5AB, UK
| | - Andrew J Davies
- University of Rhode Island, Department of Biological Sciences, 120 Flagg Road, Kingston, RI 02881, USA; University of Rhode Island, Graduate School of Oceanography, Narragansett, RI 02882, USA
| |
Collapse
|
6
|
Ceccarelli DM, Evans RD, Logan M, Jones GP, Puotinen M, Petus C, Russ GR, Srinivasan M, Williamson DH. Physical, biological and anthropogenic drivers of spatial patterns of coral reef fish assemblages at regional and local scales. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166695. [PMID: 37660823 DOI: 10.1016/j.scitotenv.2023.166695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 08/16/2023] [Accepted: 08/28/2023] [Indexed: 09/05/2023]
Abstract
Species abundance, diversity and community assemblage structure are determined by multiple physical, habitat and management drivers that operate across multiple spatial scales. Here we used a multi-scale coral reef monitoring dataset to examine regional and local differences in the abundance, species richness and composition of fish assemblages in no-take marine reserve (NTMR) and fished zones at four island groups in the Great Barrier Reef Marine Park, Australia. We applied boosted regression trees to quantify the influence of 20 potential drivers on the coral reef fish assemblages. Reefs in two locations, Magnetic Island and the Keppel Islands, had distinctive fish assemblages and low species richness, while the Palm and Whitsunday Islands had similar species composition and higher species richness. Overall, our analyses identified several important physical (temperature, wave exposure) and biological (coral, turf, macroalgal and unconsolidated substratum cover) drivers of inshore reef fish communities, some of which are being altered by human activities. Of these, sea surface temperature (SST) was more influential at large scales, while wave exposure was important both within and between island groups. Species richness declined with increasing macroalgal cover and exposure to cyclones, and increased with SST. Species composition was most strongly influenced by mean SST and percent cover of macroalgae. There was substantial regional variation in the local drivers of spatial patterns. Although NTMR zoning influenced total fish density in some regions, it had negligible effects on fish species richness, composition and trophic structure because of the relatively small number of species targeted by the fishery. These findings show that inshore reef fishes are directly influenced by disturbances typical of the nearshore Great Barrier Reef, highlighting the need to complement global action on climate change with more targeted localised efforts to maintain or improve the condition of coral reef habitats.
Collapse
Affiliation(s)
- Daniela M Ceccarelli
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811, Australia; Australian Institute of Marine Science, Townsville, QLD 4810, Australia.
| | - Richard D Evans
- Department of Biodiversity, Conservation and Attractions, Kensington, WA 6151, Australia; Oceans Institute, University of Western Australia, Crawley, WA 6009, Australia
| | - Murray Logan
- Australian Institute of Marine Science, Townsville, QLD 4810, Australia
| | - Geoffrey P Jones
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811, Australia; College of Science & Engineering, James Cook University, Townsville, QLD 4811, Australia
| | - Marji Puotinen
- Australian Institute of Marine Science, Townsville, QLD 4810, Australia
| | - Caroline Petus
- Centre for Tropical Water and Aquatic System Research, James Cook University, Townsville, QLD 4811, Australia
| | - Garry R Russ
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811, Australia; College of Science & Engineering, James Cook University, Townsville, QLD 4811, Australia
| | - Maya Srinivasan
- College of Science & Engineering, James Cook University, Townsville, QLD 4811, Australia; Centre for Tropical Water and Aquatic System Research, James Cook University, Townsville, QLD 4811, Australia
| | - David H Williamson
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811, Australia; Great Barrier Reef Marine Park Authority, Townsville, QLD 4811, Australia
| |
Collapse
|
7
|
Måsviken J, Dalén L, Norén K, Dalerum F. The relative importance of abiotic and biotic environmental conditions for taxonomic, phylogenetic, and functional diversity of spiders across spatial scales. Oecologia 2023; 202:261-273. [PMID: 37261510 PMCID: PMC10307692 DOI: 10.1007/s00442-023-05383-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 05/08/2023] [Indexed: 06/02/2023]
Abstract
Both abiotic and biotic conditions may be important for biodiversity. However, their relative importance may vary among different diversity dimensions as well as across spatial scales. Spiders (Araneae) offer an ecologically relevant system for evaluating variation in the relative strength abiotic and biotic biodiversity regulation. We quantified the relative importance of abiotic and biotic conditions for three diversity dimensions of spider communities quantified across two spatial scales. Spiders were surveyed along elevation gradients in northern Sweden. We focused our analysis on geomorphological and climatic conditions as well as vegetation characteristics, and quantified the relative importance of these conditions for the taxonomic, phylogenetic, and functional diversity of spider communities sampled across one intermediate (500 m) and one local (25 m) scale. There were stronger relationships among diversity dimensions at the local than the intermediate scale. There were also variation in the relative influence of abiotic and biotic conditions among diversity dimensions, but this variation was not consistent across spatial scales. Across both spatial scales, vegetation was related to all diversity dimensions whereas climate was important for phylogenetic and functional diversity. Our study does not fully support stronger abiotic regulation at coarser scales, and conversely stronger abiotic regulation at more local scales. Instead, our results indicate that community assembly is shaped by interactions between abiotic constrains in species distributions and biotic conditions, and that such interactions may be both scale and context dependent.
Collapse
Affiliation(s)
- Johannes Måsviken
- Department of Zoology, Stockholm University, Stockholm, Sweden
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden
- Centre for Palaeogenetics, Stockholm, Sweden
| | - Love Dalén
- Department of Zoology, Stockholm University, Stockholm, Sweden
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden
- Centre for Palaeogenetics, Stockholm, Sweden
| | - Karin Norén
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Fredrik Dalerum
- Department of Zoology, Stockholm University, Stockholm, Sweden.
- Biodiversity Research Institute (University of Oviedo-Principality of Asturias-CSIC), Spanish National Research Council, Research Building, Mieres Campus, 33600, Mieres, Spain.
- Department of Zoology and Entomology, Mammal Research Institute, University of Pretoria, Hatfield, South Africa.
| |
Collapse
|
8
|
Menge BA. Community theory: Testing environmental stress models. Ecol Lett 2023. [PMID: 37157930 DOI: 10.1111/ele.14240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 05/10/2023]
Abstract
Intensifying climate change and an increasing need for understanding its impacts on ecological communities places new emphasis on testing environmental stress models (ESMs). Using a prior literature search plus references from a more recent search, I evaluated empirical support for ESMs, focusing on whether consumer pressure on prey decreased (consumer stress model; CSM) or increased (prey stress model; PSM) with increasing environmental stress. Applying the criterion that testing ESMs requires conducting research at multiple sites along environmental stress gradients, the analysis found that CSMs were most frequent, with 'No Effect' and PSMs occurring at low but similar frequencies. This result contrasts to a prior survey in which 'No Effect' studies were most frequent, thus suggesting that consumers are generally more suppressed by stress than prey. Thus, increased climate change-induced environmental stress seems likely to reduce, not increase impacts of consumers on prey more often than the reverse.
Collapse
|
9
|
Currie-Olsen D, Hesketh AV, Grimm J, Kennedy J, Marshall KE, Harley CDG. Lethal and sublethal implications of low temperature exposure for three intertidal predators. J Therm Biol 2023; 114:103549. [PMID: 37244058 DOI: 10.1016/j.jtherbio.2023.103549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 03/15/2023] [Accepted: 03/15/2023] [Indexed: 05/29/2023]
Abstract
Benthic invertebrate predators play a key role in top-down trophic regulation in intertidal ecosystems. While the physiological and ecological consequences of predator exposure to high temperatures during summer low tides are increasingly well-studied, the effects of cold exposure during winter low tides remain poorly understood. To address this knowledge gap, we measured the supercooling points, survival, and feeding rates of three intertidal predator species in British Columbia, Canada - the sea stars Pisaster ochraceus and Evasterias troschelii and the dogwhelk Nucella lamellosa - in response to exposure to sub-zero air temperatures. Overall, we found that all three predators exhibited evidence of internal freezing at relatively mild sub-zero temperatures, with sea stars exhibiting an average supercooling point of -2.50 °C, and the dogwhelk averaging approximately -3.99 °C. None of the tested species are strongly freeze tolerant, as evidenced by moderate-to-low survival rates after exposure to -8 °C air. All three predators exhibited significantly reduced feeding rates over a two-week period following a single 3-h sublethal (-0.5 °C) exposure event. We also quantified variation in predator body temperature among thermal microhabitats during winter low tides. Predators that were found at the base of large boulders, on the sediment, and within crevices had higher body temperatures during winter low tides, as compared to those situated in other microhabitats. However, we did not find evidence of behavioural thermoregulation via selective microhabitat use during cold weather. Since these intertidal predators are less freeze tolerant than their preferred prey, winter low temperature exposures can have important implications for organism survival and predator-prey dynamics across thermal gradients at both local (habitat-driven) and geographic (climate-driven) scales.
Collapse
Affiliation(s)
- Danja Currie-Olsen
- Department of Zoology, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada.
| | - Amelia V Hesketh
- Department of Zoology, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Jaime Grimm
- Department of Zoology, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Jessica Kennedy
- Department of Zoology, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Katie E Marshall
- Department of Zoology, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Christopher D G Harley
- Department of Zoology, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada; Institute for the Oceans and Fisheries, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| |
Collapse
|
10
|
Assessing the Zooplankton Metacommunity (Branchiopoda and Copepoda) from Mediterranean Wetlands in Agricultural Landscapes. DIVERSITY 2023. [DOI: 10.3390/d15030362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Mediterranean wetlands are suitable ecosystems for studying metacommunity theory, since they are isolated ecosystems within a land matrix with well-established limits, often with watersheds destined for agricultural uses. The zooplankton community of wetlands in agricultural landscapes is the result of processes that operate in a different multiscale context. We selected 24 ponds in Alto Guadalquivir region (SE Spain) with different local environmental variables (biological, limnological and land uses). The zooplankton community of the wetlands under study consists of a total of 60 species: 38 branchiopods and 22 copepods. This community (total, branchiopods and copepods) was analysed through two different and complementary metacommunity approaches. The pattern approach determines the species distribution along environmental gradients, and the mechanistic approach considers the involved processes, such as environmental control and dispersal limitation. The results indicated a nested metacommunity, in which five limnological variables, three land uses and six spatial variables are the main drivers that explain zooplankton distribution in these wetlands. In conclusion, species sorting and dispersal processes play a role in the structuring of the zooplankton metacommunity. This conclusion has implications for the development of adequate management policies on Mediterranean wetland protection and diversity conservation in agricultural contexts.
Collapse
|
11
|
Bagchi D, Arumugam R, Chandrasekar V, Senthilkumar D. Metacommunity stability and persistence for predation turnoff in selective patches. Ecol Modell 2022. [DOI: 10.1016/j.ecolmodel.2022.110014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
12
|
Geraldi NR, Vozzo ML, Fegley SR, Anton A, Peterson CH. Oyster abundance on subtidal reefs depends on predation, location, and experimental duration. Ecosphere 2022. [DOI: 10.1002/ecs2.4087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Affiliation(s)
- Nathan R. Geraldi
- Department of Marine Sciences, University of North Carolina at Chapel Hill Institute of Marine Sciences Morehead City North Carolina USA
- Department of Bioscience Aarhus University Silkeborg Denmark
| | - Maria L. Vozzo
- Sydney Institute of Marine Science Mosman New South Wales Australia
| | - Stephen R. Fegley
- Department of Marine Sciences, University of North Carolina at Chapel Hill Institute of Marine Sciences Morehead City North Carolina USA
| | - Andrea Anton
- Global Change Research Group, IMEDEA (CSIC‐UIB) Mediterranean Institute for Advanced Studies Esporles Illes Balears Spain
| | - Charles H. Peterson
- Department of Marine Sciences, University of North Carolina at Chapel Hill Institute of Marine Sciences Morehead City North Carolina USA
| |
Collapse
|
13
|
Spatio-temporal distribution and habitat preference of necrophagous Calliphoridae based on 160 real cases from Switzerland. Int J Legal Med 2022; 136:923-934. [PMID: 35064810 PMCID: PMC9005434 DOI: 10.1007/s00414-021-02769-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 12/20/2021] [Indexed: 12/02/2022]
Abstract
Necrophagous blowflies (Diptera: Calliphoridae) are of great importance particularly during investigations of suspicious deaths. Many studies have analyzed the distribution of blowflies based on pig experiments and baited trapping; however, data from real case scenarios are rarely used. In this article, the distribution of blowflies found during investigations of 160 real cases during 1993–2007 in Switzerland is evaluated based on habitat, altitude, and season. Ten species of blowflies were present in 145 out of the 160 cases. The most common species was Calliphora vicina, which occurs throughout the year and was present in 69 % of all cases. Lucilia sericata, Calliphora vomitoria, and L. caesar were identified among the rest of the flies as species of great forensic importance mainly due to their distributional patterns. After a comparison with a similar dataset from Frankfurt, Germany, some surprising differences were determined and discussed. The biggest discrepancies between our dataset and the German dataset were in the occurrences of L. sericata (30 % vs. 86 %, respectively), Phormia regina (5 % vs. 43 %), and L. ampullacea (1 % vs. 45 %). The life-history strategies and intraspecific behavioral variability of blowflies remain understudied, although they can be essential for an unbiased approach during a death investigation. Further research and comparison of occurrence patterns across the area of distribution of blowflies are therefore needed and recommended.
Collapse
|
14
|
Kroeker KJ, Sanford E. Ecological Leverage Points: Species Interactions Amplify the Physiological Effects of Global Environmental Change in the Ocean. ANNUAL REVIEW OF MARINE SCIENCE 2022; 14:75-103. [PMID: 34416127 DOI: 10.1146/annurev-marine-042021-051211] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Marine ecosystems are increasingly impacted by global environmental changes, including warming temperatures, deoxygenation, and ocean acidification. Marine scientists recognize intuitively that these environmental changes are translated into community changes via organismal physiology. However, physiology remains a black box in many ecological studies, and coexisting species in a community are often assumed to respond similarly to environmental stressors. Here, we emphasize how greater attention to physiology can improve our ability to predict the emergent effects of ocean change. In particular, understanding shifts in the intensity and outcome of species interactions such as competition and predation requires a sharpened focus on physiological variation among community members and the energetic demands and trophic mismatches generated by environmental changes. Our review also highlights how key species interactions that are sensitive to environmental change can operate as ecological leverage points through which small changes in abiotic conditions are amplified into large changes in marine ecosystems.
Collapse
Affiliation(s)
- Kristy J Kroeker
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, California 95064, USA;
| | - Eric Sanford
- Bodega Marine Laboratory, University of California, Davis, Bodega Bay, California 94923, USA;
- Department of Evolution and Ecology, University of California, Davis, California 95616, USA
| |
Collapse
|
15
|
Fricker GA, Crampton LH, Gallerani EM, Hite JM, Inman R, Gillespie TW. Application of lidar for critical endangered bird species conservation on the island of Kauai, Hawaii. Ecosphere 2021. [DOI: 10.1002/ecs2.3554] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Geoffrey A. Fricker
- Social Sciences Department California Polytechnic University, San Luis Obispo Building 47‐13 San Luis Obispo California93407USA
- Department of Geography University of California Los Angeles 1255 Bunche HallBox 951524 Los Angeles California90095USA
- School of Geographical Sciences and Urban Planning Arizona State University PO Box 875302 Tempe Arizona85287USA
| | - Lisa H. Crampton
- Kaua‘i Forest Bird Recovery Project Pacific Cooperative Studies Unit PO Box 27 Hanapepe Hawaii96716USA
| | - Erica M. Gallerani
- Kaua‘i Forest Bird Recovery Project Pacific Cooperative Studies Unit PO Box 27 Hanapepe Hawaii96716USA
| | - Justin M. Hite
- Kaua‘i Forest Bird Recovery Project Pacific Cooperative Studies Unit PO Box 27 Hanapepe Hawaii96716USA
| | - Richard Inman
- School of Geographical Sciences and Urban Planning Arizona State University PO Box 875302 Tempe Arizona85287USA
| | - Thomas W. Gillespie
- Department of Geography University of California Los Angeles 1255 Bunche HallBox 951524 Los Angeles California90095USA
| |
Collapse
|
16
|
Cacabelos E, Neto AI, Martins GM. Gastropods with different development modes respond differently to habitat fragmentation. MARINE ENVIRONMENTAL RESEARCH 2021; 167:105287. [PMID: 33657495 DOI: 10.1016/j.marenvres.2021.105287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 02/17/2021] [Accepted: 02/19/2021] [Indexed: 06/12/2023]
Abstract
The role of the human-made structures in coastal ecosystems can determine the spatial distribution or patterns of spatial abundances of marine organisms. To contribute to the understanding of linkages between different components of habitats (i.e. natural and artificial structures), we explored the role of type of larval development (planktotrophic vs. non-planktotrophic) on patterns of spatial variation of gastropods on rocky shores, elucidating the possible responsibility of habitat fragmentation on their distribution. Obtained results suggest that habitat fragmentation affects differently the patterns of variability of species with different types of larval development. Namely, fragmentation caused by artificial structures mostly influence variability of species with non-planktotrophic development. Moreover, although abundance of the species with non-planktotrophic development varied at small spatial scales, suggesting that processes operating at this scale are likely the main drivers of their distribution, changes in species variability were not associated with differences in species abundance among habitats.
Collapse
Affiliation(s)
- E Cacabelos
- MARE - Marine and Environmental Sciences Centre, Agência Regional para o Desenvolvimento da Investigação Tecnologia e Inovação (ARDITI), Edifício Madeira Tecnopolo, Piso 0, Caminho da Penteada, 9020-105, Funchal, Madeira, Portugal; cE3c/GBA-Centre for Ecology, Evolution and Environmental Changes/Azorean Biodiversity Group, Ponta Delgada, Azores, Portugal.
| | - A I Neto
- cE3c/GBA-Centre for Ecology, Evolution and Environmental Changes/Azorean Biodiversity Group, Ponta Delgada, Azores, Portugal; Faculdade de Ciências e Tecnologia, Departamento de Biologia, Universidade dos Açores, Ponta Delgada, Azores, Portugal
| | - G M Martins
- cE3c/GBA-Centre for Ecology, Evolution and Environmental Changes/Azorean Biodiversity Group, Ponta Delgada, Azores, Portugal
| |
Collapse
|
17
|
Wheatley R, Buettel JC, Brook BW, Johnson CN, Wilson RP. Accidents alter animal fitness landscapes. Ecol Lett 2021; 24:920-934. [PMID: 33751743 DOI: 10.1111/ele.13705] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/13/2020] [Accepted: 01/25/2021] [Indexed: 01/08/2023]
Abstract
Animals alter their habitat use in response to the energetic demands of movement ('energy landscapes') and the risk of predation ('the landscape of fear'). Recent research suggests that animals also select habitats and move in ways that minimise their chance of temporarily losing control of movement and thereby suffering slips, falls, collisions or other accidents, particularly when the consequences are likely to be severe (resulting in injury or death). We propose that animals respond to the costs of an 'accident landscape' in conjunction with predation risk and energetic costs when deciding when, where, and how to move in their daily lives. We develop a novel theoretical framework describing how features of physical landscapes interact with animal size, morphology, and behaviour to affect the risk and severity of accidents, and predict how accident risk might interact with predation risk and energetic costs to dictate movement decisions across the physical landscape. Future research should focus on testing the hypotheses presented here for different real-world systems to gain insight into the relative importance of theorised effects in the field.
Collapse
Affiliation(s)
- Rebecca Wheatley
- School of Natural Sciences and the Australian Research Council Centre of Excellence for Australian Biodiversity and Heritage, University of Tasmania, Hobart, Tasmania, Australia
| | - Jessie C Buettel
- School of Natural Sciences and the Australian Research Council Centre of Excellence for Australian Biodiversity and Heritage, University of Tasmania, Hobart, Tasmania, Australia
| | - Barry W Brook
- School of Natural Sciences and the Australian Research Council Centre of Excellence for Australian Biodiversity and Heritage, University of Tasmania, Hobart, Tasmania, Australia
| | - Christopher N Johnson
- School of Natural Sciences and the Australian Research Council Centre of Excellence for Australian Biodiversity and Heritage, University of Tasmania, Hobart, Tasmania, Australia
| | - Rory P Wilson
- Department of Biosciences, Swansea University, Swansea, UK
| |
Collapse
|
18
|
Pruett JL, Weissburg MJ. Environmental stress gradients regulate the relative importance of predator density- and trait-mediated indirect effects in oyster reef communities. Ecol Evol 2021; 11:796-805. [PMID: 33520167 PMCID: PMC7820151 DOI: 10.1002/ece3.7082] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 10/15/2020] [Accepted: 11/13/2020] [Indexed: 11/24/2022] Open
Abstract
Predators affect community structure by influencing prey density and traits, but the importance of these effects often is difficult to predict. We measured the strength of blue crab predator effects on mud crab prey consumption of juvenile oysters across a flow gradient that inflicts both physical and sensory stress to determine how the relative importance of top predator density-mediated indirect effects (DMIEs) and trait-mediated indirect effects (TMIEs) change within systems. Overall, TMIEs dominated in relatively benign flow conditions where blue crab predator cues increased oyster survivorship by reducing mud crab-oyster consumption. Blue crab DMIEs became more important in high sensory stress conditions, which impaired mud crab perception of blue crab chemical cues. At high physical stress, the environment benefitted oyster survival by physically constraining mud crabs. Thus, factors that structure communities may be predicted based on an understanding of how physical and sensory performances change across environmental stress gradients.
Collapse
Affiliation(s)
- Jessica L. Pruett
- School of Biological SciencesGeorgia Institute of TechnologyAtlantaGAUSA
| | - Marc J. Weissburg
- School of Biological SciencesGeorgia Institute of TechnologyAtlantaGAUSA
| |
Collapse
|
19
|
Menge BA, Foley MM, Robart MJ, Richmond E, Noble M, Chan F. Keystone predation: trait‐based or driven by extrinsic processes? Assessment using a comparative‐experimental approach. ECOL MONOGR 2020. [DOI: 10.1002/ecm.1436] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Bruce A. Menge
- Department of Integrative Biology Oregon State University Corvallis Oregon 97331‐2914 USA
| | - Melissa M. Foley
- Department of Integrative Biology Oregon State University Corvallis Oregon 97331‐2914 USA
- San Francisco Estuary Institute 4911 Central Avenue Richmond California 94804 USA
| | - Matthew J. Robart
- Department of Integrative Biology Oregon State University Corvallis Oregon 97331‐2914 USA
- Vantuna Research Group Occidental College 1600 Campus Road Los Angeles California 90041 USA
| | - Erin Richmond
- Department of Integrative Biology Oregon State University Corvallis Oregon 97331‐2914 USA
- Joint Institute for the Study of the Atmosphere and the Ocean University of Washington Seattle Washington 98115 USA
- Marine Mammal Laboratory Alaska Fisheries Science Center NOAA Seattle Washington 98105 USA
| | - Mae Noble
- Department of Integrative Biology Oregon State University Corvallis Oregon 97331‐2914 USA
- Fenner School of Environment and Society The Australian National University B48 Linnaeus Way Acton Australian Capital Territory 2601 Australia
| | - Francis Chan
- Department of Integrative Biology Oregon State University Corvallis Oregon 97331‐2914 USA
| |
Collapse
|
20
|
Lagarde R, Teichert N, Valade P, Ponton D. Structure of small tropical island freshwater fish and crustacean communities: A niche‐or dispersal‐based process? Biotropica 2020. [DOI: 10.1111/btp.12865] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Raphael Lagarde
- Centre de Formation et de Recherche sur les Environnements Méditerranéens UMR 5110 Université de Perpignan Via Domitia Perpignan France
- Centre de Formation et de Recherche sur les Environnements Méditerranéens UMR 5110 CNRS Perpignan France
| | - Nils Teichert
- UMR 7208 BOREA (Biologie des Organismes et Ecosystèmes Aquatiques) Sorbonne Université MNHN CNRS UMPC Université Caen IRD – Station Marine de Dinard – CRESCO University of Antilles Guadeloupe France
| | | | - Dominique Ponton
- ENTROPIE IRD Université de La Réunion CNRS Université de la Nouvelle‐Calédonie – Ifremer c/o Institut Halieutique et des Sciences Marines (IH.SM) Université de Toliara Toliara Madagascar
| |
Collapse
|
21
|
Gifford SJ, Gese EM, Parmenter RR. FOOD HABITS OF COYOTES (CANIS LATRANS) IN THE VALLES CALDERA NATIONAL PRESERVE, NEW MEXICO. SOUTHWEST NAT 2020. [DOI: 10.1894/0038-4909-64-2-122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Suzanne J. Gifford
- Department of Wildland Resources, Utah State University, Logan, UT 84322 (SJG)
| | - Eric M. Gese
- United States Department of Agriculture, Wildlife Services, National Wildlife Research Center, Department of Wildland Resources, Utah State University, Logan, UT 84322 (EMG)
| | - Robert R. Parmenter
- Valles Caldera National Preserve, P.O. Box 359, Jemez Springs, NM 87025 (RRP)
| |
Collapse
|
22
|
Collins CL, Burnett NP, Ramsey MJ, Wagner K, Zippay ML. Physiological responses to heat stress in an invasive mussel Mytilus galloprovincialis depend on tidal habitat. MARINE ENVIRONMENTAL RESEARCH 2020; 154:104849. [PMID: 32056704 DOI: 10.1016/j.marenvres.2019.104849] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 11/26/2019] [Accepted: 11/30/2019] [Indexed: 06/10/2023]
Abstract
Mussels are ecologically important organisms that can survive in subtidal and intertidal zones where they experience thermal stress. We know little about how mussels from different tidal habitats respond to thermal stress. We used the mussel Mytilus galloprovincialis from separate subtidal and intertidal populations to test whether heart rate and indicators of potential aerobic (citrate synthase activity) and anaerobic (cytosolic malate dehydrogenase activity) metabolic capacity are affected by increased temperatures while exposed to air or submerged in water. Subtidal mussels were affected by warming when submerged in water (decreased heart rate) but showed no effect in air. In contrast, intertidal mussels were affected by exposure to air (increased anaerobic capacity) but not by warming. Overall, physiological responses of mussels to thermal stress were dependent on their tidal habitat. These results highlight the importance of considering the natural habitat of mussels when assessing their responses to environmental challenges.
Collapse
Affiliation(s)
- Christina L Collins
- Department of Biology, Sonoma State University, 1801 East Cotati Avenue, Rohnert Park, CA, 94928, USA
| | - Nicholas P Burnett
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, 1 Shields Avenue, Davis, CA, 95616, USA
| | - Matthew J Ramsey
- Department of Biology, Sonoma State University, 1801 East Cotati Avenue, Rohnert Park, CA, 94928, USA
| | - Kaitlyn Wagner
- Department of Biology, Sonoma State University, 1801 East Cotati Avenue, Rohnert Park, CA, 94928, USA
| | - Mackenzie L Zippay
- Department of Biology, Sonoma State University, 1801 East Cotati Avenue, Rohnert Park, CA, 94928, USA.
| |
Collapse
|
23
|
Wallingford PD, Sorte CJB. Community regulation models as a framework for direct and indirect effects of climate change on species distributions. Ecosphere 2019. [DOI: 10.1002/ecs2.2790] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Piper D. Wallingford
- Department of Ecology and Evolutionary Biology University of California Irvine California USA
| | - Cascade J. B. Sorte
- Department of Ecology and Evolutionary Biology University of California Irvine California USA
| |
Collapse
|
24
|
Jung AS, van der Veer HW, van der Meer MTJ, Philippart CJM. Seasonal variation in the diet of estuarine bivalves. PLoS One 2019; 14:e0217003. [PMID: 31206548 PMCID: PMC6579449 DOI: 10.1371/journal.pone.0217003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 05/02/2019] [Indexed: 11/23/2022] Open
Abstract
Estuarine food webs are generally considered to be supported by marine pelagic and benthic primary producers and by the import of dead organic matter from the open sea. Although estuaries receive considerable amounts of freshwater phytoplankton and organic compounds from adjacent rivers, the potential contribution of these living and dead matter to estuarine food webs is often assumed to be negligible and, therefore, not examined. Based on stable isotope analyses, we report the importance of freshwater suspended particulate organic matter (FW-SPOM) for fuelling estuarine food webs in comparison to estuarine SPOM and microphytobenthos. This previously neglected food source contributed 50–60% (annual average) of food intake of suspension-feeding bivalves such as cockles (Cerastoderma edule), mussels (Mytilus edulis) and Pacific oysters (Magallana gigas) at the Balgzand tidal flats, an estuarine site in the western Wadden Sea (12–32 psu). For these species, this proportion was particularly high in autumn during strong run-off of SPOM-rich freshwater, whilst estuarine SPOM (20%-25%) and microphytobenthos (15%-30%) were relatively important in summer when the freshwater run-off was very low. These findings have implications for our understanding of the trophic interactions within coastal food webs and for freshwater management of estuarine ecosystems.
Collapse
Affiliation(s)
- Alexa Sarina Jung
- NIOZ Royal Netherlands Institute for Sea Research, Department of Coastal Systems, Utrecht University, AB Den Burg, Texel, The Netherlands
- * E-mail:
| | - Henk W. van der Veer
- NIOZ Royal Netherlands Institute for Sea Research, Department of Coastal Systems, Utrecht University, AB Den Burg, Texel, The Netherlands
| | - Marcel T. J. van der Meer
- NIOZ Royal Netherlands Institute for Sea Research, Department of Microbiology & Biogeochemistry, Utrecht University, AB Den Burg, Texel, The Netherlands
| | - Catharina J. M. Philippart
- NIOZ Royal Netherlands Institute for Sea Research, Department of Coastal Systems, Utrecht University, AB Den Burg, Texel, The Netherlands
- University of Utrecht, Department of Physical Geography, TC Utrecht, The Netherlands
| |
Collapse
|
25
|
Amburgey SM, Miller DAW, Brand A, Dietrich A, Campbell Grant EH. Knowing your limits: estimating range boundaries and co‐occurrence zones for two competing plethodontid salamanders. Ecosphere 2019. [DOI: 10.1002/ecs2.2727] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- S. M. Amburgey
- Department of Ecosystem Sciences and Management The Pennsylvania State University University Park Pennsylvania 16802 USA
- Intercollege Graduate Ecology Program The Pennsylvania State University University Park Pennsylvania 16802 USA
| | - D. A. W. Miller
- Department of Ecosystem Sciences and Management The Pennsylvania State University University Park Pennsylvania 16802 USA
| | - A. Brand
- USGS Patuxent Wildlife Research Center SO Conte Anadromous Fish Research Center Turners Falls Massachusetts 01376 USA
| | - A. Dietrich
- USGS Patuxent Wildlife Research Center Laurel Maryland 20708 USA
| | - E. H. Campbell Grant
- USGS Patuxent Wildlife Research Center SO Conte Anadromous Fish Research Center Turners Falls Massachusetts 01376 USA
| |
Collapse
|
26
|
Kirk D, Luijckx P, Stanic A, Krkošek M. Predicting the Thermal and Allometric Dependencies of Disease Transmission via the Metabolic Theory of Ecology. Am Nat 2019; 193:661-676. [PMID: 31002572 DOI: 10.1086/702846] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The metabolic theory of ecology (MTE) provides a general framework of allometric and thermal dependence that may be useful for predicting how climate change will affect disease spread. Using Daphnia magna and a microsporidian gut parasite, we conducted two experiments across a wide thermal range and fitted transmission models that utilize MTE submodels for transmission parameters. We decomposed transmission into contact rate and probability of infection and further decomposed probability of infection into a product of gut residence time (GRT) and per-parasite infection rate of gut cells. Contact rate generally increased with temperature and scaled positively with body size, whereas infection rate had a narrow hump-shaped thermal response and scaled negatively with body size. GRT increased with host size and was longest at extreme temperatures. GRT and infection rate inside the gut combined to create a 3.5 times higher probability of infection for the smallest relative to the largest individuals. Small temperature changes caused large differences in transmission. We also fit several alternative transmission models to data at individual temperatures. The more complex models-parasite antagonism or synergism and host heterogeneity-did not substantially improve the fit to the data. Our results show that transmission rate is the product of several distinct thermal and allometric functions that can be predicted continuously across temperature and host size using the MTE.
Collapse
|
27
|
Rotundo MM, Severino-Rodrigues E, Barrella W, Petrere Junior M, Ramires M. Checklist of marine demersal fishes captured by the pair trawl fisheries in Southern (RJ-SC) Brazil. BIOTA NEOTROPICA 2019. [DOI: 10.1590/1676-0611-bn-2017-0432] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Abstract: Demersal fishery resources are abundant on continental shelves, on the tropical and subtropical coasts, making up a significant part of the marine environment. Marine demersal fishery resources are captured by various fishing methods, often unsustainably, which has led to the depletion of their stocks. In order to inventory the marine demersal ichthyofauna on the Southern Brazilian coast, as well as their conservation status and distribution, this study analyzed the composition and frequency of occurrence of fish captured by pair trawling in 117 fishery fleet landings based in the State of São Paulo between 2005 and 2012. The ichthyofauna consisted of 245 species (81 families, 32 orders and 2 classes). Among the species, 50 species were classified as constant, 38 accessory and 157 accidental. Still, 13.47% of the species were listed as endangered; 35.29% of the Chondrichthyes and 11.85% of the Actinopterygii (15.1% of the total species) belong to the endemic fauna of the Biogeographic Province of Argentina. The richness was directly related to the oceanographic features of the study area, which determined the southern boundary of occurrence of several tropical species and the northern boundary of occurrence for temperate species. This is the region with the highest abundance of fishery resources in Brazil.
Collapse
Affiliation(s)
- Matheus Marcos Rotundo
- Universidade Santa Cecilia, Brasil; Instituto de Pesca, Brasil; Universidade Federal de São Carlos, Brasil; Universidade Santa Cecília, Brasil
| | | | - Walter Barrella
- Universidade Santa Cecília, Brasil; Universidade Santa Cecília, Brasil
| | | | - Milena Ramires
- Universidade Santa Cecília, Brasil; Universidade Santa Cecília, Brasil
| |
Collapse
|
28
|
Checon HH, Costa TM. The importance of considering small-scale variability in macrobenthic distribution: spatial segregation between two fiddler crab species (genus Leptuca) (Decapoda, Ocypodidae). IHERINGIA. SERIE ZOOLOGIA 2018. [DOI: 10.1590/1678-4766e2018034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
ABSTRACT Defining the appropriate scale is important when trying to understand distribution patterns in community studies. Fiddler crabs are among the most common organisms inhabiting estuarine environments, and despite having a wide latitudinal distribution, are limited by shifts in temperature, current and wind pattern. Thus, many co-occur at a local scale, where their distribution is influenced by variables such as mean sediment grain diameter, salinity and tidal level. Our goal was to test intra and interspecific segregation in two similar and commonly co-occurring fiddler crabs species (Leptuca leptodactyla and Leptuca uruguayensis) at a small scale (10 m²). Interspecific segregation was observed, with L. leptodactyla occurring mainly at the upper level in relation to the water line and L. uruguayensis, at the lower. However, this pattern was irrespective of sex and developmental stage, as no intraspecific segregation was seen. Possible impacts of tidal level, soil silt/clay content and competition on interspecific segregation are discussed. Although L. leptodactyla and L. uruguayensis overlap in their occurrence when intertidal zonation is disregarded, they segregate when tidal levels are individually sampled as habitats. This highlights the importance of small-scale studies to identify patterns unobserved at regional scales, even when no environmental gradient is readily apparent.
Collapse
Affiliation(s)
- Helio H. Checon
- Universidade Estadual de Campinas, Brazil; Universidade de São Paulo, Brazil
| | | |
Collapse
|
29
|
Kenworthy JM, Rolland G, Samadi S, Lejeusne C. Local variation within marinas: Effects of pollutants and implications for invasive species. MARINE POLLUTION BULLETIN 2018; 133:96-106. [PMID: 30041398 DOI: 10.1016/j.marpolbul.2018.05.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Revised: 03/26/2018] [Accepted: 05/01/2018] [Indexed: 06/08/2023]
Abstract
Urban structures like marinas are dominant features of our coasts, often hotspots for invasive species. The processes that govern the distribution of invasive species within and between marinas are not well understood. We therefore investigated the impacts of local-scale variability within and between marinas, analysing fouling communities at two zones (inner and outer) within three close marinas in accordance with pollutants recorded in the water and sediment. Communities varied between zones, however no significant differences in abundances of invasive species was recorded. The inner zones contained higher levels of copper and other pollutants and were correlated with lower biodiversity and abundances of many species in comparison to the outer zones. Only the native Ascidiella aspersa was found in greater abundances in the inner zones. This local-scale variability and how it impacts biodiversity is important for consideration for coastal managers in mitigating the build-up of pollutants and spread of invasive species.
Collapse
Affiliation(s)
- Joseph M Kenworthy
- Sorbonne Université, CNRS, Adaptation et Diversité en Milieu Marin AD2M UMR 7144, Station Biologique de Roscoff, Place Georges Teissier CS90074, F-29688 Roscoff, France.
| | - Guillaume Rolland
- Sorbonne Université, CNRS, Adaptation et Diversité en Milieu Marin AD2M UMR 7144, Station Biologique de Roscoff, Place Georges Teissier CS90074, F-29688 Roscoff, France
| | - Sarah Samadi
- Muséum National d'Histoire Naturelle, Sorbonne Universités, ISYEB (UMR 7205 CNRS, MNHN, UPMC, EPHE), CP26, 57 rue Cuvier, F-75005 Paris, France.
| | - Christophe Lejeusne
- Sorbonne Université, CNRS, Adaptation et Diversité en Milieu Marin AD2M UMR 7144, Station Biologique de Roscoff, Place Georges Teissier CS90074, F-29688 Roscoff, France.
| |
Collapse
|
30
|
Silliman BR, He Q. Physical Stress, Consumer Control, and New Theory in Ecology. Trends Ecol Evol 2018; 33:492-503. [DOI: 10.1016/j.tree.2018.04.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 04/07/2018] [Accepted: 04/27/2018] [Indexed: 12/24/2022]
|
31
|
Hydrodynamics affect predator controls through physical and sensory stressors. Oecologia 2018; 186:1079-1089. [PMID: 29460028 DOI: 10.1007/s00442-018-4092-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 02/10/2018] [Indexed: 10/18/2022]
Abstract
Predators influence communities through either consuming prey (consumptive effects, CEs) or altering prey traits (non-consumptive effects, NCEs), which has cascading effects on lower trophic levels. CEs are well known to decrease in physically stressful environments, but NCEs may be reduced at physically benign levels that affect the ability of prey to detect and respond to predators (i.e., sensory stress). We investigated the influence of physical and sensory stressors created by spatial and temporal differences in tidal flow on predator controls in a tritrophic system. We estimated mud crab reactive ranges to blue crab NCEs by evaluating mud crab CEs on juvenile oysters at different distances away from caged blue crabs across flow conditions. Mud crab reactive ranges were large at lower physical and sensory stress levels and blue crabs had a positive cascading effect on oyster survival. Blue crab NCEs were not important at higher flow conditions. Oyster survival was a complicated function of both types of stressors. Physical stress (i.e., current speed) had a positive effect on oyster survival by physically limiting mud crab CEs at high current speeds. Sensory stress (i.e., turbulence) interfered with the propagation of blue crab chemical cues used by mud crabs for predator detection, which removed blue crab NCEs. Mud crab CEs increased as a result and had a negative effect on oyster survival in turbulent conditions. Thus, environmental properties, such as fluid flow, can inflict physical and sensory stressors that have distinct effects on basal prey performance through impacts on different predator effects.
Collapse
|
32
|
Vieira EA, Filgueiras HR, Bueno M, Leite FPP, Dias GM. Co-occurring morphologically distinct algae support a diverse associated fauna in the intertidal zone of Araçá Bay, Brazil. BIOTA NEOTROPICA 2018. [DOI: 10.1590/1676-0611-bn-2017-0464] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Abstract Species diversity is regulated by historical, neutral and niche processes, with species tolerance, dispersal and productivity guiding diversity at larger scales, while habitat heterogeneity and biotic interactions acts in smaller scales. In rocky shores, several organisms provide secondary substrates for mobile fauna, with macroalgae being the most abundant and diverse ones. The patchiness promoted by different macroalgae hosts enhances small-scale heterogeneity and may increase and maintain the diversity of the mobile organisms, since there is a close relationship between the associated fauna and its hosts. In this study we selected three morphologically different macroalgae that coexist in the same rocky shore height in the Araçá Bay, an area under the threat of the nearby harbor expansion, and evaluated the fauna associated to each algal host. Even under similar abiotic pressure (same rocky shore height), the associated fauna of each algal host varied in number and composition, revealing a close relationship. The poorly branched foliose Ulva lactuca sustained a lower density of organisms and was dominated by isopods, while the heavily branched turf and Bostrychietum community showed a high density of organisms, with a dominance of peracarid crustaceans and annelids on the turf and more resistant groups, such as bivalves, acaris and terrestrial insects on the Bostrychietum. Previous studies in the Araçá Bay already revealed a large spatial heterogeneity in the processes and sessile organisms distribution, and here we highlight that this heterogeneity can be observed in an even smaller scale, with different algal hosts mediating the turnover of species in a scale of centimeters and meters, resulting in diversity maintenance of the associated fauna. Since the harbor expansion may prevent the occurrence of macroalgae as a result of light limitation by suspended platforms, we may expect not only a decrease in algal cover but also in the total diversity of the associated fauna in the Araçá Bay.
Collapse
|
33
|
Lamy T, Reed DC, Rassweiler A, Siegel DA, Kui L, Bell TW, Simons RD, Miller RJ. Scale-specific drivers of kelp forest communities. Oecologia 2018; 186:217-233. [PMID: 29101467 DOI: 10.1007/s00442-017-3994-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 10/25/2017] [Indexed: 12/01/2022]
Abstract
Identifying spatial scales of variation in natural communities and the processes driving them is critical for obtaining a predictive understanding of biodiversity. In this study, we focused on diverse communities inhabiting productive kelp forests on shallow subtidal rocky reefs in southern California, USA. We combined long-term community surveys from 86 sites with detailed environmental data to determine what structures assemblages of fishes, invertebrates and algae at multiple spatial scales. We identified the spatial scales of variation in species composition using a hierarchical analysis based on eigenfunctions, and assessed how sea surface temperature (SST), water column chlorophyll, giant kelp biomass, wave exposure and potential propagule delivery strength contributed to community variation at each scale. Spatial effects occurring at multiple scales explained 60% of the variation in fish assemblages and 52% of the variation in the assemblages of invertebrates and algae. Most variation occurred over broad spatial scales (> 200 km) consistent with spatial heterogeneity in SST and potential propagule delivery strength, while the latter also explained community variation at medium scales (65-200 km). Small scale (1-65 km) community variation was substantial but not linked to any of the measured drivers. Conclusions were consistent for both reef fishes and benthic invertebrates and algae, despite sharp differences in their adult mobility. Our results demonstrate the scale dependence of environmental drivers on kelp forest communities, showing that most species were strongly sorted along oceanographic conditions over various spatial scales. Such spatial effects must be integrated into models assessing the response of marine ecosystems to climate change.
Collapse
Affiliation(s)
- Thomas Lamy
- Marine Science Institute, University of California, Santa Barbara, CA, 93106, USA.
| | - Daniel C Reed
- Marine Science Institute, University of California, Santa Barbara, CA, 93106, USA
| | - Andrew Rassweiler
- Marine Science Institute, University of California, Santa Barbara, CA, 93106, USA
- Department of Biological Science, Florida State University, Tallahassee, FL, 32304, USA
| | - David A Siegel
- Marine Science Institute, University of California, Santa Barbara, CA, 93106, USA
- Earth Research Institute, University of California, CA, 93106, Santa Barbara, USA
- Department of Geography, University of California, Santa Barbara, CA, 93106, USA
| | - Li Kui
- Marine Science Institute, University of California, Santa Barbara, CA, 93106, USA
| | - Tom W Bell
- Earth Research Institute, University of California, CA, 93106, Santa Barbara, USA
| | - Rachel D Simons
- Earth Research Institute, University of California, CA, 93106, Santa Barbara, USA
| | - Robert J Miller
- Marine Science Institute, University of California, Santa Barbara, CA, 93106, USA
| |
Collapse
|
34
|
Amburgey SM, Miller DAW, Campbell Grant EH, Rittenhouse TAG, Benard MF, Richardson JL, Urban MC, Hughson W, Brand AB, Davis CJ, Hardin CR, Paton PWC, Raithel CJ, Relyea RA, Scott AF, Skelly DK, Skidds DE, Smith CK, Werner EE. Range position and climate sensitivity: The structure of among-population demographic responses to climatic variation. GLOBAL CHANGE BIOLOGY 2018; 24:439-454. [PMID: 28833972 DOI: 10.1111/gcb.13817] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 06/26/2017] [Indexed: 05/28/2023]
Abstract
Species' distributions will respond to climate change based on the relationship between local demographic processes and climate and how this relationship varies based on range position. A rarely tested demographic prediction is that populations at the extremes of a species' climate envelope (e.g., populations in areas with the highest mean annual temperature) will be most sensitive to local shifts in climate (i.e., warming). We tested this prediction using a dynamic species distribution model linking demographic rates to variation in temperature and precipitation for wood frogs (Lithobates sylvaticus) in North America. Using long-term monitoring data from 746 populations in 27 study areas, we determined how climatic variation affected population growth rates and how these relationships varied with respect to long-term climate. Some models supported the predicted pattern, with negative effects of extreme summer temperatures in hotter areas and positive effects on recruitment for summer water availability in drier areas. We also found evidence of interacting temperature and precipitation influencing population size, such as extreme heat having less of a negative effect in wetter areas. Other results were contrary to predictions, such as positive effects of summer water availability in wetter parts of the range and positive responses to winter warming especially in milder areas. In general, we found wood frogs were more sensitive to changes in temperature or temperature interacting with precipitation than to changes in precipitation alone. Our results suggest that sensitivity to changes in climate cannot be predicted simply by knowing locations within the species' climate envelope. Many climate processes did not affect population growth rates in the predicted direction based on range position. Processes such as species-interactions, local adaptation, and interactions with the physical landscape likely affect the responses we observed. Our work highlights the need to measure demographic responses to changing climate.
Collapse
Affiliation(s)
- Staci M Amburgey
- Department of Ecosystem Sciences and Management, The Pennsylvania State University, University Park, PA, USA
- Intercollege Graduate Ecology Program, The Pennsylvania State University, University Park, PA, USA
| | - David A W Miller
- Department of Ecosystem Sciences and Management, The Pennsylvania State University, University Park, PA, USA
| | - Evan H Campbell Grant
- USGS Patuxent Wildlife Research Center, SO Conte Anadromous Fish Research Center, Turners Falls, MA, USA
| | - Tracy A G Rittenhouse
- Department of Natural Resources and the Environment, University of Connecticut, Storrs, CT, USA
| | - Michael F Benard
- Department of Biology, Case Western Reserve University, Cleveland, OH, USA
| | | | - Mark C Urban
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, USA
| | | | - Adrianne B Brand
- USGS Patuxent Wildlife Research Center, SO Conte Anadromous Fish Research Center, Turners Falls, MA, USA
| | - Christopher J Davis
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Carmen R Hardin
- Forestry Division, Wisconsin Department of Natural Resources, Madison, WI, USA
| | - Peter W C Paton
- Department of Natural Resources Science, University of Rhode Island, Kingston, RI, USA
| | - Christopher J Raithel
- Division of Fish and Wildlife, Rhode Island Department of Environmental Management, West Kingston, RI, USA
| | - Rick A Relyea
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - A Floyd Scott
- Department of Biology, Austin Peay State University, Clarksville, TN, USA
| | - David K Skelly
- School of Forestry and Environmental Studies, Yale University, New Haven, CT, USA
| | - Dennis E Skidds
- Northeast Coastal and Barrier Network, National Parks Service, Kingston, RI, USA
| | - Charles K Smith
- Department of Biology, High Point University, High Point, NC, USA
| | - Earl E Werner
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
35
|
Salas-Morales SH, González EJ, Meave JA. Canopy height variation and environmental heterogeneity in the tropical dry forests of coastal Oaxaca, Mexico. Biotropica 2017. [DOI: 10.1111/btp.12491] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Silvia H. Salas-Morales
- Departamento de Ecología y Recursos Naturales; Facultad de Ciencias; Universidad Nacional Autónoma de México; Circuito Exterior s/n, Ciudad Universitaria, Coyoacán Mexico City 04510 Mexico
- Sociedad para el Estudio de los Recursos Bióticos de Oaxaca; Asociación Civil; Camino Nacional # 80-b, San Sebastián Tutla 71246 Oaxaca Mexico
| | - Edgar J. González
- Departamento de Ecología y Recursos Naturales; Facultad de Ciencias; Universidad Nacional Autónoma de México; Circuito Exterior s/n, Ciudad Universitaria, Coyoacán Mexico City 04510 Mexico
| | - Jorge A. Meave
- Departamento de Ecología y Recursos Naturales; Facultad de Ciencias; Universidad Nacional Autónoma de México; Circuito Exterior s/n, Ciudad Universitaria, Coyoacán Mexico City 04510 Mexico
| |
Collapse
|
36
|
Coleoptera in the Altai Mountains (Mongolia): species richness and community patterns along an ecological gradient. JOURNAL OF ASIA-PACIFIC BIODIVERSITY 2017. [DOI: 10.1016/j.japb.2017.06.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
37
|
Mascia MB, Fox HE, Glew L, Ahmadia GN, Agrawal A, Barnes M, Basurto X, Craigie I, Darling E, Geldmann J, Gill D, Holst Rice S, Jensen OP, Lester SE, McConney P, Mumby PJ, Nenadovic M, Parks JE, Pomeroy RS, White AT. A novel framework for analyzing conservation impacts: evaluation, theory, and marine protected areas. Ann N Y Acad Sci 2017; 1399:93-115. [PMID: 28719737 DOI: 10.1111/nyas.13428] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Revised: 04/14/2017] [Accepted: 06/12/2017] [Indexed: 01/19/2023]
Abstract
Environmental conservation initiatives, including marine protected areas (MPAs), have proliferated in recent decades. Designed to conserve marine biodiversity, many MPAs also seek to foster sustainable development. As is the case for many other environmental policies and programs, the impacts of MPAs are poorly understood. Social-ecological systems, impact evaluation, and common-pool resource governance are three complementary scientific frameworks for documenting and explaining the ecological and social impacts of conservation interventions. We review key components of these three frameworks and their implications for the study of conservation policy, program, and project outcomes. Using MPAs as an illustrative example, we then draw upon these three frameworks to describe an integrated approach for rigorous empirical documentation and causal explanation of conservation impacts. This integrated three-framework approach for impact evaluation of governance in social-ecological systems (3FIGS) accounts for alternative explanations, builds upon and advances social theory, and provides novel policy insights in ways that no single approach affords. Despite the inherent complexity of social-ecological systems and the difficulty of causal inference, the 3FIGS approach can dramatically advance our understanding of, and the evidentiary basis for, effective MPAs and other conservation initiatives.
Collapse
Affiliation(s)
- Michael B Mascia
- Betty and Gordon Moore Center for Science, Conservation International, Arlington, Virginia
| | | | | | | | - Arun Agrawal
- School of Natural Resources & Environment, University of Michigan, Ann Arbor, Michigan
| | - Megan Barnes
- Natural Resources and Environmental Management, University of Hawaii at Manoa, Honolulu, Hawaii.,Centre for Excellence in Environmental Decisions, University of Queensland, Brisbane, Queensland, Australia
| | - Xavier Basurto
- Nicholas School of the Environment, Duke University, Beaufort, North Carolina
| | - Ian Craigie
- ARC Center of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, Australia
| | - Emily Darling
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada.,Marine Program, Wildlife Conservation Society, Bronx, New York
| | - Jonas Geldmann
- Conservation Science Group, Department of Zoology, University of Cambridge, Cambridge, UK; and Center for Macroecology, Evolution, and Climate, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - David Gill
- National Socio-Environmental Synthesis Center (SESYNC), Annapolis, Maryland.,Luc Hoffmann Institute, WWF International, Gland, Switzerland
| | - Susie Holst Rice
- Coral Reef Conservation Program, National Oceanic and Atmospheric Administration, Silver Spring, Maryland
| | - Olaf P Jensen
- Institute of Marine & Coastal Sciences, Rutgers University, New Brunswick, New Jersey
| | - Sarah E Lester
- Department of Geography, Florida State University, Tallahassee, Florida
| | - Patrick McConney
- Centre for Resource Management and Environmental Studies (CERMES), University of the West Indies, Cave Hill, Barbados
| | - Peter J Mumby
- Marine Spatial Ecology Lab, School of Biological Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Mateja Nenadovic
- Nicholas School of the Environment, Duke University, Beaufort, North Carolina
| | | | - Robert S Pomeroy
- Department of Agricultural and Resource Economics, University of Connecticut-Avery Point, Groton, Connecticut
| | - Alan T White
- Asia-Pacific Program, The Nature Conservancy, Honolulu, Hawaii
| |
Collapse
|
38
|
Abstract
SYNOPSIS Predicting the effects of climate change on species and communities remains a pre-eminent challenge for biologists. Critical among this is understanding the indirect effects of climate change, which arise when the direct, physiological effects of climate on one species change the outcome of its interaction with a second species, altering the success of the second species. A diverse array of approaches to predicting indirect effects exists from mechanistic models, which attempt to build-up from physiological changes to ecological consequences, to ecological models that focus solely on the ecological scale. Here I review studies of the indirect effects of temperature on two predator-prey systems in rocky intertidal habitats. Laboratory and field studies have shown that temperature can indirectly affect interactions through both physiological and behavioral changes in predator and prey, but no model yet captures the full range of these effects. The three main categories of changes are metabolic rate effects, stress effects, and behavioral avoidance. Mechanistic models best capture the first two of these three dynamics, while ecological models have focused mainly on the last two. The challenge remains to correctly identify a species' vulnerability to climate change, which differs from its physiological sensitivity. The best approach may be to use detailed physiological-scale studies of indirect effect in a few systems to ground truth simpler models that can be applied more broadly. Model development and testing is also hampered by the small number of field studies of indirect effects in natural systems, particularly studies that examine natural temporal or spatial variation in climate.
Collapse
Affiliation(s)
- Sarah E Gilman
- The W.M. Keck Science Department, Claremont McKenna, Scripps and Pitzer Colleges, 925 N. Mills Avenue, Claremont, CA 91711, USA
| |
Collapse
|
39
|
Toews M, Juanes F, Burton AC. Mammal responses to human footprint vary with spatial extent but not with spatial grain. Ecosphere 2017. [DOI: 10.1002/ecs2.1735] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Mary Toews
- Department of Biology; University of Victoria; PO Box 1700, Station CSC Victoria British Columbia V8W 2Y2 Canada
| | - Francis Juanes
- Department of Biology; University of Victoria; PO Box 1700, Station CSC Victoria British Columbia V8W 2Y2 Canada
| | - A. Cole Burton
- Department of Biology; University of Victoria; PO Box 1700, Station CSC Victoria British Columbia V8W 2Y2 Canada
- Department of Forest Resources Management; Faculty of Forestry; University of British Columbia; 2045 - 2424 Main Mall Vancouver British Columbia V6T 1Z4 Canada
| |
Collapse
|
40
|
Dominios climáticos de la Sierra Madre Oriental y su relación con la diversidad florística. REV MEX BIODIVERS 2017. [DOI: 10.1016/j.rmb.2017.01.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
41
|
Marino NAC, Srivastava DS, MacDonald AAM, Leal JS, Campos ABA, Farjalla VF. Rainfall and hydrological stability alter the impact of top predators on food web structure and function. GLOBAL CHANGE BIOLOGY 2017; 23:673-685. [PMID: 27344007 DOI: 10.1111/gcb.13399] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 06/14/2016] [Indexed: 05/28/2023]
Abstract
Climate change will alter the distribution of rainfall, with potential consequences for the hydrological dynamics of aquatic habitats. Hydrological stability can be an important determinant of diversity in temporary aquatic habitats, affecting species persistence and the importance of predation on community dynamics. As such, prey are not only affected by drought-induced mortality but also the risk of predation [a non-consumptive effect (NCE)] and actual consumption by predators [a consumptive effect (CE)]. Climate-induced changes in rainfall may directly, or via altered hydrological stability, affect predator-prey interactions and their cascading effects on the food web, but this has rarely been explored, especially in natural food webs. To address this question, we performed a field experiment using tank bromeliads and their aquatic food web, composed of predatory damselfly larvae, macroinvertebrate prey and bacteria. We manipulated the presence and consumption ability of damselfly larvae under three rainfall scenarios (ambient, few large rainfall events and several small rainfall events), recorded the hydrological dynamics within bromeliads and examined the effects on macroinvertebrate colonization, nutrient cycling and bacterial biomass and turnover. Despite our large perturbations of rainfall, rainfall scenario had no effect on the hydrological dynamics of bromeliads. As a result, macroinvertebrate colonization and nutrient cycling depended on the hydrological stability of bromeliads, with no direct effect of rainfall or predation. In contrast, rainfall scenario determined the direction of the indirect effects of predators on bacteria, driven by both predator CEs and NCEs. These results suggest that rainfall and the hydrological stability of bromeliads had indirect effects on the food web through changes in the CEs and NCEs of predators. We suggest that future studies should consider the importance of the variability in hydrological dynamics among habitats as well as the biological mechanisms underlying the ecological responses to climate change.
Collapse
Affiliation(s)
- Nicholas A C Marino
- Laboratório de Limnologia, Departamento de Ecologia, Instituto de Biologia, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, PO Box 68020, Rio de Janeiro, RJ, Brazil
| | - Diane S Srivastava
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, 6270 University Boulevard, Vancouver, BC, V6T 1Z4, Canada
| | - A Andrew M MacDonald
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, 6270 University Boulevard, Vancouver, BC, V6T 1Z4, Canada
| | - Juliana S Leal
- Laboratório de Limnologia, Departamento de Ecologia, Instituto de Biologia, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, PO Box 68020, Rio de Janeiro, RJ, Brazil
| | - Alice B A Campos
- Laboratório de Limnologia, Departamento de Ecologia, Instituto de Biologia, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, PO Box 68020, Rio de Janeiro, RJ, Brazil
| | - Vinicius F Farjalla
- Laboratório de Limnologia, Departamento de Ecologia, Instituto de Biologia, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, PO Box 68020, Rio de Janeiro, RJ, Brazil
- Laboratorio Internacional en Cambio Global (LINCGlobal)
| |
Collapse
|
42
|
Monaco CJ, Wethey DS, Helmuth B. Thermal sensitivity and the role of behavior in driving an intertidal predator–prey interaction. ECOL MONOGR 2016. [DOI: 10.1002/ecm.1230] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Cristián J. Monaco
- Department of Biological Sciences University of South Carolina Columbia South Carolina 29208 USA
| | - David S. Wethey
- Department of Biological Sciences University of South Carolina Columbia South Carolina 29208 USA
| | - Brian Helmuth
- Marine Science Center Northeastern University Nahant Massachusetts 01908 USA
| |
Collapse
|
43
|
Seitz RD, Lipcius RN, Hines AH. Consumer versus resource control and the importance of habitat heterogeneity for estuarine bivalves. OIKOS 2016. [DOI: 10.1111/oik.03330] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Rochelle D. Seitz
- Virginia Inst. of Marine Science College of William & Mary PO Box 1346 Gloucester Point VA 23062 USA
| | - Romuald N. Lipcius
- Virginia Inst. of Marine Science College of William & Mary PO Box 1346 Gloucester Point VA 23062 USA
| | - Anson H. Hines
- Smithsonian Environmental Research Center Edgewater MD USA
| |
Collapse
|
44
|
Tran TT, Janssens L, Dinh KV, Op de Beeck L, Stoks R. Evolution determines how global warming and pesticide exposure will shape predator-prey interactions with vector mosquitoes. Evol Appl 2016; 9:818-30. [PMID: 27330557 PMCID: PMC4908467 DOI: 10.1111/eva.12390] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Accepted: 04/25/2016] [Indexed: 01/16/2023] Open
Abstract
How evolution may mitigate the effects of global warming and pesticide exposure on predator-prey interactions is directly relevant for vector control. Using a space-for-time substitution approach, we addressed how 4°C warming and exposure to the pesticide endosulfan shape the predation on Culex pipiens mosquitoes by damselfly predators from replicated low- and high-latitude populations. Although warming was only lethal for the mosquitoes, it reduced predation rates on these prey. Possibly, under warming escape speeds of the mosquitoes increased more than the attack efficiency of the predators. Endosulfan imposed mortality and induced behavioral changes (including increased filtering and thrashing and a positional shift away from the bottom) in mosquito larvae. Although the pesticide was only lethal for the mosquitoes, it reduced predation rates by the low-latitude predators. This can be explained by the combination of the evolution of a faster life history and associated higher vulnerabilities to the pesticide (in terms of growth rate and lowered foraging activity) in the low-latitude predators and pesticide-induced survival selection in the mosquitoes. Our results suggest that predation rates on mosquitoes at the high latitude will be reduced under warming unless predators evolve toward the current low-latitude phenotype or low-latitude predators move poleward.
Collapse
Affiliation(s)
- Tam T Tran
- Institute of AquacultureNha Trang UniversityNha TrangVietnam; Laboratory of Aquatic Ecology, Evolution and ConservationUniversity of LeuvenLeuvenBelgium
| | - Lizanne Janssens
- Laboratory of Aquatic Ecology, Evolution and Conservation University of Leuven Leuven Belgium
| | - Khuong V Dinh
- Institute of AquacultureNha Trang UniversityNha TrangVietnam; National Institute of Aquatic ResourcesTechnical University of DenmarkCopenhagenDenmark
| | - Lin Op de Beeck
- Laboratory of Aquatic Ecology, Evolution and Conservation University of Leuven Leuven Belgium
| | - Robby Stoks
- Laboratory of Aquatic Ecology, Evolution and Conservation University of Leuven Leuven Belgium
| |
Collapse
|
45
|
Abstract
Effects of predators on prey populations can be especially strong in aquatic ecosystems, but disturbances may mediate the strength of predator limitation and even allow outbreaks of some prey populations. In a two-year study we investigated the numerical responses of crayfish (Procambarus fallax) and small fishes (Poeciliidae and Fundulidae) to a brief hydrological disturbance in replicated freshwater wetlands with an experimental drying and large predatory fish reduction. The experiment and an in situ predation assay tested the component of the consumer stress model positing that disturbances release prey from predator limitation. In the disturbed wetlands, abundances of large predatory fish were seasonally reduced, similar to dynamics in the Everglades (southern Florida). Densities of small fish were unaffected by the disturbance, but crayfish densities, which were similar across all wetlands before drying, increased almost threefold in the year after the disturbance. Upon re-flooding, juvenile crayfish survival was inversely related to the abundance of large fish across wetlands, but we found no evidence for enhanced algal food quality. At a larger landscape scale (500 km2 of the Everglades), crayfish densities over eight years were positively correlated with the severity of local dry disturbances (up to 99 days dry) during the preceding dry season. In contrast, densities of small-bodied fishes in the same wetlands were seasonally depressed by dry disturbances. The results from our experimental wetland drought and the observations of crayfish densities in the Everglades represent a large-scale example of prey population release following a hydrological disturbance in a freshwater ecosystem. The conditions producing crayfish pulses in the Everglades appear consistent with the mechanics of the consumer stress model, and we suggest crayfish pulses may influence the number of nesting wading birds in the Everglades.
Collapse
|
46
|
Eddy EN, Roman CT. Relationship Between Epibenthic Invertebrate Species Assemblages and Environmental Variables in Boston Harbor's Intertidal Habitat. Northeast Nat (Steuben) 2016. [DOI: 10.1656/045.023.0104] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
47
|
Kleisner KM, Fogarty MJ, McGee S, Barnett A, Fratantoni P, Greene J, Hare JA, Lucey SM, McGuire C, Odell J, Saba VS, Smith L, Weaver KJ, Pinsky ML. The Effects of Sub-Regional Climate Velocity on the Distribution and Spatial Extent of Marine Species Assemblages. PLoS One 2016; 11:e0149220. [PMID: 26901435 PMCID: PMC4762943 DOI: 10.1371/journal.pone.0149220] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 01/28/2016] [Indexed: 11/29/2022] Open
Abstract
Many studies illustrate variable patterns in individual species distribution shifts in response to changing temperature. However, an assemblage, a group of species that shares a common environmental niche, will likely exhibit similar responses to climate changes, and these community-level responses may have significant implications for ecosystem function. Therefore, we examine the relationship between observed shifts of species in assemblages and regional climate velocity (i.e., the rate and direction of change of temperature isotherms). The assemblages are defined in two sub-regions of the U.S. Northeast Shelf that have heterogeneous oceanography and bathymetry using four decades of bottom trawl survey data and we explore temporal changes in distribution, spatial range extent, thermal habitat area, and biomass, within assemblages. These sub-regional analyses allow the dissection of the relative roles of regional climate velocity and local physiography in shaping observed distribution shifts. We find that assemblages of species associated with shallower, warmer waters tend to shift west-southwest and to shallower waters over time, possibly towards cooler temperatures in the semi-enclosed Gulf of Maine, while species assemblages associated with relatively cooler and deeper waters shift deeper, but with little latitudinal change. Conversely, species assemblages associated with warmer and shallower water on the broad, shallow continental shelf from the Mid-Atlantic Bight to Georges Bank shift strongly northeast along latitudinal gradients with little change in depth. Shifts in depth among the southern species associated with deeper and cooler waters are more variable, although predominantly shifts are toward deeper waters. In addition, spatial expansion and contraction of species assemblages in each region corresponds to the area of suitable thermal habitat, but is inversely related to assemblage biomass. This suggests that assemblage distribution shifts in conjunction with expansion or contraction of thermal habitat acts to compress or stretch marine species assemblages, which may respectively amplify or dilute species interactions to an extent that is rarely considered. Overall, regional differences in climate change effects on the movement and extent of species assemblages hold important implications for management, mitigation, and adaptation on the U.S. Northeast Shelf.
Collapse
Affiliation(s)
- Kristin M. Kleisner
- National Oceanic and Atmospheric Administration (NOAA), Northeast Fisheries Science Center, Woods Hole, Massachusetts, United States of America
- * E-mail:
| | - Michael J. Fogarty
- National Oceanic and Atmospheric Administration (NOAA), Northeast Fisheries Science Center, Woods Hole, Massachusetts, United States of America
| | - Sally McGee
- The Nature Conservancy, Boston, Massachusetts, United States of America
| | - Analie Barnett
- The Nature Conservancy, Boston, Massachusetts, United States of America
| | - Paula Fratantoni
- National Oceanic and Atmospheric Administration (NOAA), Northeast Fisheries Science Center, Woods Hole, Massachusetts, United States of America
| | - Jennifer Greene
- The Nature Conservancy, Boston, Massachusetts, United States of America
| | - Jonathan A. Hare
- National Oceanic and Atmospheric Administration (NOAA), Northeast Fisheries Science Center, Narragansett, Rhode Island, United States of America
| | - Sean M. Lucey
- National Oceanic and Atmospheric Administration (NOAA), Northeast Fisheries Science Center, Woods Hole, Massachusetts, United States of America
| | | | - Jay Odell
- The Nature Conservancy, Boston, Massachusetts, United States of America
| | - Vincent S. Saba
- National Oceanic and Atmospheric Administration (NOAA), Northeast Fisheries Science Center, c/o Geophysical Fluid Dynamics Laboratory, Princeton University Forrestal Campus, Princeton, New Jersey, United States of America
| | - Laurel Smith
- National Oceanic and Atmospheric Administration (NOAA), Northeast Fisheries Science Center, Woods Hole, Massachusetts, United States of America
| | | | - Malin L. Pinsky
- Dept. of Ecology, Evolution, and Natural Resources, Rutgers University, New Brunswick, New Jersey, United States of America
| |
Collapse
|
48
|
Brown LR, Komoroske LM, Wagner RW, Morgan-King T, May JT, Connon RE, Fangue NA. Coupled Downscaled Climate Models and Ecophysiological Metrics Forecast Habitat Compression for an Endangered Estuarine Fish. PLoS One 2016; 11:e0146724. [PMID: 26796147 PMCID: PMC4721863 DOI: 10.1371/journal.pone.0146724] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 12/20/2015] [Indexed: 01/04/2023] Open
Abstract
Climate change is driving rapid changes in environmental conditions and affecting population and species’ persistence across spatial and temporal scales. Integrating climate change assessments into biological resource management, such as conserving endangered species, is a substantial challenge, partly due to a mismatch between global climate forecasts and local or regional conservation planning. Here, we demonstrate how outputs of global climate change models can be downscaled to the watershed scale, and then coupled with ecophysiological metrics to assess climate change effects on organisms of conservation concern. We employed models to estimate future water temperatures (2010–2099) under several climate change scenarios within the large heterogeneous San Francisco Estuary. We then assessed the warming effects on the endangered, endemic Delta Smelt, Hypomesus transpacificus, by integrating localized projected water temperatures with thermal sensitivity metrics (tolerance, spawning and maturation windows, and sublethal stress thresholds) across life stages. Lethal temperatures occurred under several scenarios, but sublethal effects resulting from chronic stressful temperatures were more common across the estuary (median >60 days above threshold for >50% locations by the end of the century). Behavioral avoidance of such stressful temperatures would make a large portion of the potential range of Delta Smelt unavailable during the summer and fall. Since Delta Smelt are not likely to migrate to other estuaries, these changes are likely to result in substantial habitat compression. Additionally, the Delta Smelt maturation window was shortened by 18–85 days, revealing cumulative effects of stressful summer and fall temperatures with early initiation of spring spawning that may negatively impact fitness. Our findings highlight the value of integrating sublethal thresholds, life history, and in situ thermal heterogeneity into global change impact assessments. As downscaled climate models are becoming widely available, we conclude that similar assessments at management-relevant scales will improve the scientific basis for resource management decisions.
Collapse
Affiliation(s)
- Larry R Brown
- California Water Science Center, United States Geological Survey, Sacramento, California, United States of America
| | - Lisa M Komoroske
- National Research Council under Contract to Southwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, La Jolla, California, United States of America.,Department of Wildlife, Fish, and Conservation Biology, University of California, Davis, California, United States of America
| | - R Wayne Wagner
- Department of Geological Sciences, University of Texas, Austin, Texas, United States of America
| | - Tara Morgan-King
- California Water Science Center, United States Geological Survey, Sacramento, California, United States of America
| | - Jason T May
- California Water Science Center, United States Geological Survey, Sacramento, California, United States of America
| | - Richard E Connon
- School of Veterinary Medicine, University of California, Davis, California, United States of America
| | - Nann A Fangue
- Department of Wildlife, Fish, and Conservation Biology, University of California, Davis, California, United States of America
| |
Collapse
|
49
|
Torossian J, Kordas R, Helmuth B. Cross-Scale Approaches to Forecasting Biogeographic Responses to Climate Change. ADV ECOL RES 2016. [DOI: 10.1016/bs.aecr.2016.08.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
50
|
Daleo P, Alberti J, Bruschetti CM, Pascual J, Iribarne O, Silliman BR. Physical stress modifies top-down and bottom-up forcing on plant growth and reproduction in a coastal ecosystem. Ecology 2015; 96:2147-56. [DOI: 10.1890/14-1776.1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|