1
|
Milholland KL, Waddey BT, Velázquez-Marrero KG, Lihon MV, Danzeisen EL, Naughton NH, Adams TJ, Schwartz JL, Liu X, Hall MC. Cdc14 phosphatases use an intramolecular pseudosubstrate motif to stimulate and regulate catalysis. J Biol Chem 2024; 300:107644. [PMID: 39122012 PMCID: PMC11407943 DOI: 10.1016/j.jbc.2024.107644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/22/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
Cdc14 phosphatases are related structurally and mechanistically to protein tyrosine phosphatases (PTPs) but evolved a unique specificity for phosphoSer-Pro-X-Lys/Arg sites primarily deposited by cyclin-dependent kinases. This specialization is widely conserved in eukaryotes. The evolutionary reconfiguration of the Cdc14 active site to selectively accommodate phosphoSer-Pro likely required modification to the canonical PTP catalytic cycle. While studying Saccharomyces cerevisiae Cdc14, we discovered a short sequence in the disordered C terminus, distal to the catalytic domain, which mimics an optimal substrate. Kinetic analyses demonstrated this pseudosubstrate binds the active site and strongly stimulates rate-limiting phosphoenzyme hydrolysis, and we named it "substrate-like catalytic enhancer" (SLiCE). The SLiCE motif is found in all Dikarya fungal Cdc14 orthologs and contains an invariant glutamine, which we propose is positioned via substrate-like contacts to assist orientation of the hydrolytic water, similar to a conserved active site glutamine in other PTPs that Cdc14 lacks. AlphaFold2 predictions revealed vertebrate Cdc14 orthologs contain a conserved C-terminal alpha helix bound to the active site. Although apparently unrelated to the fungal sequence, this motif also makes substrate-like contacts and has an invariant glutamine in the catalytic pocket. Altering these residues in human Cdc14A and Cdc14B demonstrated that it functions by the same mechanism as the fungal motif. However, the fungal and vertebrate SLiCE motifs were not functionally interchangeable, illuminating potential active site differences during catalysis. Finally, we show that the fungal SLiCE motif is a target for phosphoregulation of Cdc14 activity. Our study uncovered evolution of an unusual stimulatory pseudosubstrate motif in Cdc14 phosphatases.
Collapse
Affiliation(s)
| | - Benjamin T Waddey
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, USA
| | | | - Michelle V Lihon
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, USA
| | - Emily L Danzeisen
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, USA
| | - Noelle H Naughton
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, USA
| | - Timothy J Adams
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, USA
| | - Jack L Schwartz
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, USA
| | - Xing Liu
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, USA; Center for Plant Biology, Purdue University, West Lafayette, Indiana, USA
| | - Mark C Hall
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, USA; Institute for Cancer Research, Purdue University, West Lafayette, Indiana, USA; Institute for Drug Discovery, Purdue University, West Lafayette, Indiana, USA; Institute of Inflammation, Immunology, and Infectious Disease, Purdue University, West Lafayette, Indiana, USA.
| |
Collapse
|
2
|
Kugler V, Schwaighofer S, Feichtner A, Enzler F, Fleischmann J, Strich S, Schwarz S, Wilson R, Tschaikner P, Troppmair J, Sexl V, Meier P, Kaserer T, Stefan E. Impact of protein and small molecule interactions on kinase conformations. eLife 2024; 13:RP94755. [PMID: 39088265 PMCID: PMC11293870 DOI: 10.7554/elife.94755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024] Open
Abstract
Protein kinases act as central molecular switches in the control of cellular functions. Alterations in the regulation and function of protein kinases may provoke diseases including cancer. In this study we investigate the conformational states of such disease-associated kinases using the high sensitivity of the kinase conformation (KinCon) reporter system. We first track BRAF kinase activity conformational changes upon melanoma drug binding. Second, we also use the KinCon reporter technology to examine the impact of regulatory protein interactions on LKB1 kinase tumor suppressor functions. Third, we explore the conformational dynamics of RIP kinases in response to TNF pathway activation and small molecule interactions. Finally, we show that CDK4/6 interactions with regulatory proteins alter conformations which remain unaffected in the presence of clinically applied inhibitors. Apart from its predictive value, the KinCon technology helps to identify cellular factors that impact drug efficacies. The understanding of the structural dynamics of full-length protein kinases when interacting with small molecule inhibitors or regulatory proteins is crucial for designing more effective therapeutic strategies.
Collapse
Affiliation(s)
- Valentina Kugler
- Institute for Molecular Biology and Center for Molecular Biosciences Innsbruck (CMBI), University of InnsbruckInnsbruckAustria
- Tyrolean Cancer Research Institute (TKFI)InnsbruckAustria
| | - Selina Schwaighofer
- Institute for Molecular Biology and Center for Molecular Biosciences Innsbruck (CMBI), University of InnsbruckInnsbruckAustria
- Tyrolean Cancer Research Institute (TKFI)InnsbruckAustria
| | - Andreas Feichtner
- Institute for Molecular Biology and Center for Molecular Biosciences Innsbruck (CMBI), University of InnsbruckInnsbruckAustria
- Tyrolean Cancer Research Institute (TKFI)InnsbruckAustria
| | - Florian Enzler
- Daniel Swarovski Research Laboratory, Department of Visceral, Transplant and Thoracic Surgery, Medical University of InnsbruckInnsbruckAustria
| | - Jakob Fleischmann
- Institute for Molecular Biology and Center for Molecular Biosciences Innsbruck (CMBI), University of InnsbruckInnsbruckAustria
- Tyrolean Cancer Research Institute (TKFI)InnsbruckAustria
| | - Sophie Strich
- Institute for Molecular Biology and Center for Molecular Biosciences Innsbruck (CMBI), University of InnsbruckInnsbruckAustria
- Tyrolean Cancer Research Institute (TKFI)InnsbruckAustria
| | - Sarah Schwarz
- Tyrolean Cancer Research Institute (TKFI)InnsbruckAustria
| | - Rebecca Wilson
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer ResearchLondonUnited Kingdom
| | - Philipp Tschaikner
- Tyrolean Cancer Research Institute (TKFI)InnsbruckAustria
- KinCon biolabs GmbHInnsbruckAustria
| | - Jakob Troppmair
- Daniel Swarovski Research Laboratory, Department of Visceral, Transplant and Thoracic Surgery, Medical University of InnsbruckInnsbruckAustria
| | | | - Pascal Meier
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer ResearchLondonUnited Kingdom
| | - Teresa Kaserer
- Institute of Pharmacy/Pharmaceutical Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of InnsbruckInnsbruckAustria
| | - Eduard Stefan
- Institute for Molecular Biology and Center for Molecular Biosciences Innsbruck (CMBI), University of InnsbruckInnsbruckAustria
- Tyrolean Cancer Research Institute (TKFI)InnsbruckAustria
- KinCon biolabs GmbHInnsbruckAustria
| |
Collapse
|
3
|
Zhang Q, Yan L, Zhang Y, Zhang L, Yu J, You Q, Wang L. Rational design of peptide inhibitors targeting HSP90-CDC37 protein-protein interaction. Future Med Chem 2024; 16:125-138. [PMID: 38189168 DOI: 10.4155/fmc-2023-0320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 12/06/2023] [Indexed: 01/09/2024] Open
Abstract
Background: Specifically blocking HSP90-CDC37 interaction is emerging as a prospective strategy for cancer therapy. Aim: Applying a kinase pseudopeptide rationale to the discovery of HSP90-CDC37 protein-protein interaction (PPI) inhibitors. Methods: Pseudosubstrates were identified through sequence alignment and evaluated by biolayer interferometry assay, co-immunoprecipitation assay and antiproliferation assay. Results: TAT-DDO-59120 was identified to disrupt HSP90-CDC37 PPI through directly binding to HSP90, both extracellularly and intracellularly. In addition, the identified peptide showed ideal antiproliferative activity against the colorectal cancer cell HCT116 (IC50 = 12.82 μM). Conclusion: Compared with the traditional method of screening a large compound library to identify PPI inhibitors, this method is rapid and efficient with strong purpose, which provides a novel strategy for designing HSP90-CDC37 PPI inhibitors.
Collapse
Affiliation(s)
- Qiuyue Zhang
- State Key Laboratory of Natural Medicines & Jiangsu Key Laboratory of Drug Design & Optimization, China Pharmaceutical University, Nanjing, 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Ling Yan
- State Key Laboratory of Natural Medicines & Jiangsu Key Laboratory of Drug Design & Optimization, China Pharmaceutical University, Nanjing, 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Yuxuan Zhang
- State Key Laboratory of Natural Medicines & Jiangsu Key Laboratory of Drug Design & Optimization, China Pharmaceutical University, Nanjing, 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Lixiao Zhang
- State Key Laboratory of Natural Medicines & Jiangsu Key Laboratory of Drug Design & Optimization, China Pharmaceutical University, Nanjing, 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Jia Yu
- State Key Laboratory of Natural Medicines & Jiangsu Key Laboratory of Drug Design & Optimization, China Pharmaceutical University, Nanjing, 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Qidong You
- State Key Laboratory of Natural Medicines & Jiangsu Key Laboratory of Drug Design & Optimization, China Pharmaceutical University, Nanjing, 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Lei Wang
- State Key Laboratory of Natural Medicines & Jiangsu Key Laboratory of Drug Design & Optimization, China Pharmaceutical University, Nanjing, 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| |
Collapse
|
4
|
Torres S, Ortiz C, Bachtler N, Gu W, Grünewald LD, Kraus N, Schierwagen R, Hieber C, Meier C, Tyc O, Joseph Brol M, Uschner FE, Nijmeijer B, Welsch C, Berres M, Garcia‐Ruiz C, Fernandez‐Checa JC, Trautwein C, Vogl TJ, Zeuzem S, Trebicka J, Klein S. Janus kinase 2 inhibition by pacritinib as potential therapeutic target for liver fibrosis. Hepatology 2023; 77:1228-1240. [PMID: 35993369 PMCID: PMC10026969 DOI: 10.1002/hep.32746] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 07/26/2022] [Accepted: 08/03/2022] [Indexed: 12/08/2022]
Abstract
BACKGROUND AND AIMS Janus kinase 2 (JAK2) signaling is increased in human and experimental liver fibrosis with portal hypertension. JAK2 inhibitors, such as pacritinib, are already in advanced clinical development for other indications and might also be effective in liver fibrosis. Here, we investigated the antifibrotic role of the JAK2 inhibitor pacritinib on activated hepatic stellate cells (HSCs) in vitro and in two animal models of liver fibrosis in vivo . APPROACH AND RESULTS Transcriptome analyses of JAK2 in human livers and other targets of pacritinib have been shown to correlate with profibrotic factors. Although transcription of JAK2 correlated significantly with type I collagen expression and other profibrotic genes, no correlation was observed for interleukin-1 receptor-associated kinase and colony-stimulating factor 1 receptor. Pacritinib decreased gene expression of fibrosis markers in mouse primary and human-derived HSCs in vitro . Moreover, pacritinib decreased the proliferation, contraction, and migration of HSCs. C 57 BL/6J mice received ethanol in drinking water (16%) or Western diet in combination with carbon tetrachloride intoxication for 7 weeks to induce alcoholic or nonalcoholic fatty liver disease. Pacritinib significantly reduced liver fibrosis assessed by gene expression and Sirius red staining, as well as HSC activation assessed by alpha-smooth muscle actin immunostaining in fibrotic mice. Furthermore, pacritinib decreased the gene expression of hepatic steatosis markers in experimental alcoholic liver disease. Additionally, pacritinib protected against liver injury as assessed by aminotransferase levels. CONCLUSIONS This study demonstrates that the JAK2 inhibitor pacritinib may be promising for the treatment of alcoholic and nonalcoholic liver fibrosis and may be therefore relevant for human pathology.
Collapse
Affiliation(s)
- Sandra Torres
- Department of Internal Medicine I, Goethe University Clinic Frankfurt, Frankfurt, Germany
- Department of Cell Death and Proliferation, Instituto Investigaciones Biomédicas de Barcelona (IIBB), Spanish National Research Council (CSIC), Barcelona, Spain
- Liver Unit‐IDIBAPS and Centro de Investigación Biomédica en Red (CIBERehd), Barcelona, Spain
| | - Cristina Ortiz
- Department of Internal Medicine I, Goethe University Clinic Frankfurt, Frankfurt, Germany
| | - Nadine Bachtler
- Department of Internal Medicine I, Goethe University Clinic Frankfurt, Frankfurt, Germany
| | - Wenyi Gu
- Department of Internal Medicine I, Goethe University Clinic Frankfurt, Frankfurt, Germany
- Department of Internal Medicine B, University of Münster, Münster, Germany
| | - Leon D. Grünewald
- Department of Diagnostic and Interventional Radiology, Universit+y Hospital Frankfurt, Frankfurt am Main, Germany
| | - Nico Kraus
- Department of Internal Medicine I, Goethe University Clinic Frankfurt, Frankfurt, Germany
| | - Robert Schierwagen
- Department of Internal Medicine I, Goethe University Clinic Frankfurt, Frankfurt, Germany
- Department of Internal Medicine B, University of Münster, Münster, Germany
| | - Christoph Hieber
- Department of Internal Medicine I, Goethe University Clinic Frankfurt, Frankfurt, Germany
| | - Caroline Meier
- Department of Internal Medicine I, Goethe University Clinic Frankfurt, Frankfurt, Germany
| | - Olaf Tyc
- Department of Internal Medicine I, Goethe University Clinic Frankfurt, Frankfurt, Germany
| | - Maximilian Joseph Brol
- Department of Internal Medicine I, Goethe University Clinic Frankfurt, Frankfurt, Germany
- Department of Internal Medicine B, University of Münster, Münster, Germany
| | - Frank Erhard Uschner
- Department of Internal Medicine I, Goethe University Clinic Frankfurt, Frankfurt, Germany
- Department of Internal Medicine B, University of Münster, Münster, Germany
| | - Bart Nijmeijer
- Research and Development Department, Linxis BV, Amsterdam, The Netherlands
| | - Christoph Welsch
- Department of Internal Medicine I, Goethe University Clinic Frankfurt, Frankfurt, Germany
| | - Marie‐Luise Berres
- Department of Internal Medicine III, Aachen University Hospital, Aachen, Germany
| | - Carmen Garcia‐Ruiz
- Department of Cell Death and Proliferation, Instituto Investigaciones Biomédicas de Barcelona (IIBB), Spanish National Research Council (CSIC), Barcelona, Spain
- Liver Unit‐IDIBAPS and Centro de Investigación Biomédica en Red (CIBERehd), Barcelona, Spain
- Department of Medicine, University of Southern California, Research Center for Alcoholic Liver and Pancreatic Diseases and Cirrhosis, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Jose Carlos Fernandez‐Checa
- Department of Cell Death and Proliferation, Instituto Investigaciones Biomédicas de Barcelona (IIBB), Spanish National Research Council (CSIC), Barcelona, Spain
- Liver Unit‐IDIBAPS and Centro de Investigación Biomédica en Red (CIBERehd), Barcelona, Spain
- Department of Medicine, University of Southern California, Research Center for Alcoholic Liver and Pancreatic Diseases and Cirrhosis, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Christian Trautwein
- Department of Internal Medicine III, Aachen University Hospital, Aachen, Germany
| | - Thomas J. Vogl
- Department of Diagnostic and Interventional Radiology, Universit+y Hospital Frankfurt, Frankfurt am Main, Germany
| | - Stefan Zeuzem
- Department of Internal Medicine I, Goethe University Clinic Frankfurt, Frankfurt, Germany
| | - Jonel Trebicka
- Department of Internal Medicine I, Goethe University Clinic Frankfurt, Frankfurt, Germany
- Department of Internal Medicine B, University of Münster, Münster, Germany
- European Foundation for the Study of Chronic Liver Failure – EF Clif, Barcelona, Spain
| | - Sabine Klein
- Department of Internal Medicine I, Goethe University Clinic Frankfurt, Frankfurt, Germany
- Department of Internal Medicine B, University of Münster, Münster, Germany
| |
Collapse
|
5
|
Cheng L, Yang Z, Guo W, Wu C, Liang S, Tong A, Cao Z, Thorne RF, Yang SY, Yu Y, Chen Q. DCLK1 autoinhibition and activation in tumorigenesis. Innovation (N Y) 2022; 3:100191. [PMID: 34977835 PMCID: PMC8686072 DOI: 10.1016/j.xinn.2021.100191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 11/23/2021] [Indexed: 02/05/2023] Open
Abstract
Doublecortin-like kinase 1 (DCLK1) is upregulated in many tumors and is a marker for tumor stem cells. Accumulating evidence suggests DCLK1 constitutes a promising drug target for cancer therapy. However, the regulation of DCLK1 kinase activity is poorly understood, particularly the function of its autoinhibitory domain (AID), and, moreover, no physiological activators of DCLK1 have presently been reported. Here we determined the first DCLK1 kinase structure in the autoinhibited state and identified the neuronal calcium sensor HPCAL1 as an activator of DCLK1. The C-terminal AID functions to block the ATP-binding site and is competitive with ATP. HPCAL1 binds directly to the AID in a Ca2+-dependent manner, which releases the autoinhibition. We also analyzed cancer-associated mutations occurring in the AID and elucidate how these mutations disrupt DCLK1 autoinhibition to elicit kinase activity upregulation. Our results present a molecular mechanism for autoinhibition and activation of DCLK1 kinase activity and provide insights into DCLK1-associated tumorigenesis.
Collapse
Affiliation(s)
- Linna Cheng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China.,Institute of Hematology, Henan Key Laboratory of Stem Cell Differentiation and Modification, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou 450003, China
| | - Zejing Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Wenhao Guo
- Department of Abdominal Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
| | - Chengyong Wu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Shufang Liang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Aiping Tong
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Zhongwei Cao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Rick F Thorne
- Translational Research Institute, Henan Provincial People's Hospital, Academy of Medical Science, Zhengzhou University, Zhengzhou 450003, China
| | - Sheng-Yong Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Yamei Yu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Qiang Chen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| |
Collapse
|
6
|
Knape MJ, Wallbott M, Burghardt NCG, Bertinetti D, Hornung J, Schmidt SH, Lorenz R, Herberg FW. Molecular Basis for Ser/Thr Specificity in PKA Signaling. Cells 2020; 9:cells9061548. [PMID: 32630525 PMCID: PMC7361990 DOI: 10.3390/cells9061548] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/22/2020] [Accepted: 06/23/2020] [Indexed: 12/17/2022] Open
Abstract
cAMP-dependent protein kinase (PKA) is the major receptor of the second messenger cAMP and a prototype for Ser/Thr-specific protein kinases. Although PKA strongly prefers serine over threonine substrates, little is known about the molecular basis of this substrate specificity. We employ classical enzyme kinetics and a surface plasmon resonance (SPR)-based method to analyze each step of the kinase reaction. In the absence of divalent metal ions and nucleotides, PKA binds serine (PKS) and threonine (PKT) substrates, derived from the heat-stable protein kinase inhibitor (PKI), with similar affinities. However, in the presence of metal ions and adenine nucleotides, the Michaelis complex for PKT is unstable. PKA phosphorylates PKT with a higher turnover due to a faster dissociation of the product complex. Thus, threonine substrates are not necessarily poor substrates of PKA. Mutation of the DFG+1 phenylalanine to β-branched amino acids increases the catalytic efficiency of PKA for a threonine peptide substrate up to 200-fold. The PKA Cα mutant F187V forms a stable Michaelis complex with PKT and shows no preference for serine versus threonine substrates. Disease-associated mutations of the DFG+1 position in other protein kinases underline the importance of substrate specificity for keeping signaling pathways segregated and precisely regulated.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Robin Lorenz
- Correspondence: (R.L.); (F.W.H.); Tel.: +49-561-804-4539 (R.L.); +49-561-804-4511 (F.W.H.)
| | - Friedrich W. Herberg
- Correspondence: (R.L.); (F.W.H.); Tel.: +49-561-804-4539 (R.L.); +49-561-804-4511 (F.W.H.)
| |
Collapse
|
7
|
Bhattacharyya M, Karandur D, Kuriyan J. Structural Insights into the Regulation of Ca 2+/Calmodulin-Dependent Protein Kinase II (CaMKII). Cold Spring Harb Perspect Biol 2020; 12:cshperspect.a035147. [PMID: 31653643 DOI: 10.1101/cshperspect.a035147] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Ca2+/calmodulin-dependent protein kinase II (CaMKII) is a highly conserved serine/threonine kinase that is ubiquitously expressed throughout the human body. Specialized isoforms of CaMKII play key roles in neuronal and cardiac signaling. The distinctive holoenzyme architecture of CaMKII, with 12-14 kinase domains attached by flexible linkers to a central hub, poses formidable challenges for structural characterization. Nevertheless, progress in determining the structural mechanisms underlying CaMKII functions has come from studying the kinase domain and the hub separately, as well as from a recent electron microscopic investigation of the intact holoenzyme. In this review, we discuss our current understanding of the structure of CaMKII. We also discuss the intriguing finding that the CaMKII holoenzyme can undergo activation-triggered subunit exchange, a process that has implications for the potentiation and perpetuation of CaMKII activity.
Collapse
Affiliation(s)
- Moitrayee Bhattacharyya
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720.,California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, California 94720.,Howard Hughes Medical Institute, University of California, Berkeley, California 94720
| | - Deepti Karandur
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720.,California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, California 94720.,Howard Hughes Medical Institute, University of California, Berkeley, California 94720
| | - John Kuriyan
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720.,California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, California 94720.,Howard Hughes Medical Institute, University of California, Berkeley, California 94720.,Department of Chemistry, University of California, Berkeley, California 94720.,Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| |
Collapse
|
8
|
Enzler F, Tschaikner P, Schneider R, Stefan E. KinCon: Cell-based recording of full-length kinase conformations. IUBMB Life 2020; 72:1168-1174. [PMID: 32027084 PMCID: PMC7318358 DOI: 10.1002/iub.2241] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 01/16/2020] [Indexed: 01/26/2023]
Abstract
The spectrum of kinase alterations displays distinct functional characteristics and requires kinase mutation-oriented strategies for therapeutic interference. Besides phosphotransferase activity, protein abundance, and intermolecular interactions, particular patient-mutations promote pathological kinase conformations. Despite major advances in identifying lead molecules targeting clinically relevant oncokinase functions, still many kinases are neglected and not part of drug discovery efforts. One explanation is attributed to challenges in tracking kinase activities. Chemical probes are needed to functionally annotate kinase functions, whose activities may not always depend on catalyzing phospho-transfer. Such non-catalytic kinase functions are related to transitions of full-length kinase conformations. Recent findings underline that cell-based reporter systems can be adapted to record conformation changes of kinases. Here, we discuss the possible applications of an extendable kinase conformation (KinCon) reporter toolbox for live-cell recording of kinase states. KinCon is a genetically encoded bioluminescence-based biosensor platform, which can be subjected for measurements of conformation dynamics of mutated kinases upon small molecule inhibitor exposure. We hypothesize that such biosensors can be utilized to delineate the molecular modus operandi for kinase and pseudokinase regulation. This should pave the path for full-length kinase-targeted drug discovery efforts aiming to identify single and combinatory kinase inhibitor therapies with increased specificity and efficacy.
Collapse
Affiliation(s)
- Florian Enzler
- Institute of Biochemistry and Center for Molecular Biosciences, University of InnsbruckInnsbruckAustria
| | - Philipp Tschaikner
- Institute of Biochemistry and Center for Molecular Biosciences, University of InnsbruckInnsbruckAustria
| | - Rainer Schneider
- Institute of Biochemistry and Center for Molecular Biosciences, University of InnsbruckInnsbruckAustria
| | - Eduard Stefan
- Institute of Biochemistry and Center for Molecular Biosciences, University of InnsbruckInnsbruckAustria
| |
Collapse
|
9
|
Qvit N, Disatnik MH, Sho J, Mochly-Rosen D. Selective Phosphorylation Inhibitor of Delta Protein Kinase C-Pyruvate Dehydrogenase Kinase Protein-Protein Interactions: Application for Myocardial Injury in Vivo. J Am Chem Soc 2016; 138:7626-35. [PMID: 27218445 PMCID: PMC5065007 DOI: 10.1021/jacs.6b02724] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Protein kinases regulate numerous cellular processes, including cell growth, metabolism, and cell death. Because the primary sequence and the three-dimensional structure of many kinases are highly similar, the development of selective inhibitors for only one kinase is challenging. Furthermore, many protein kinases are pleiotropic, mediating diverse and sometimes even opposing functions by phosphorylating multiple protein substrates. Here, we set out to develop an inhibitor of a selective protein kinase phosphorylation of only one of its substrates. Focusing on the pleiotropic delta protein kinase C (δPKC), we used a rational approach to identify a distal docking site on δPKC for its substrate, pyruvate dehydrogenase kinase (PDK). We reasoned that an inhibitor of PDK's docking should selectively inhibit the phosphorylation of only PDK without affecting phosphorylation of the other δPKC substrates. Our approach identified a selective inhibitor of PDK docking to δPKC with an in vitro Kd of ∼50 nM and reducing cardiac injury IC50 of ∼5 nM. This inhibitor, which did not affect the phosphorylation of other δPKC substrates even at 1 μM, demonstrated that PDK phosphorylation alone is critical for δPKC-mediated injury by heart attack. The approach we describe is likely applicable for the identification of other substrate-specific kinase inhibitors.
Collapse
Affiliation(s)
- Nir Qvit
- Department of Chemical and Systems Biology, Stanford University, School of Medicine, Stanford CA 94305-5174 USA
| | - Marie-Hélène Disatnik
- Department of Chemical and Systems Biology, Stanford University, School of Medicine, Stanford CA 94305-5174 USA
| | - Jie Sho
- Kunming Biomed International Chenggong, Kunming, P.R. China
| | - Daria Mochly-Rosen
- Department of Chemical and Systems Biology, Stanford University, School of Medicine, Stanford CA 94305-5174 USA
| |
Collapse
|
10
|
Araujo NA, Guevara A, Lorenzo MA, Calabokis M, Bubis J. Fluram-Kemptide-Lys8 Non-radioactive Assay for Protein Kinase A. Protein J 2016; 35:247-55. [DOI: 10.1007/s10930-016-9667-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
11
|
Wiśniewska M, Sobolewski E, Ołdziej S, Liwo A, Scheraga HA, Makowski M. Theoretical Studies of Interactions between O-Phosphorylated and Standard Amino-Acid Side-Chain Models in Water. J Phys Chem B 2015; 119:8526-34. [PMID: 26100791 PMCID: PMC4664056 DOI: 10.1021/acs.jpcb.5b04782] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Phosphorylation is a common post-translational modification of the amino-acid side chains (serine, tyrosine, and threonine) that contain hydroxyl groups. The transfer of the negatively charged phosphate group from an ATP molecule to such amino-acid side chains leads to changes in the local conformations of proteins and the pattern of interactions with other amino-acid side-chains. A convenient characteristic of the side chain-side chain interactions in the context of an aqueous environment is the potential of mean force (PMF) in water. A series of umbrella-sampling molecular dynamic (MD) simulations with the AMBER force field were carried out for pairs of O-phosphorylated serine (pSer), threonine (pThr), and tyrosine, (pTyr) with natural amino acids in a TIP3P water model as a solvent at 298 K. The weighted-histogram analysis method was used to calculate the four-dimensional potentials of mean force. The results demonstrate that the positions and depths of the contact minima and the positions and heights of the desolvation maxima, including their dependence on the relative orientation depend on the character of the interacting pairs. More distinct minima are observed for oppositely charged pairs such as, e.g., O-phosphorylated side-chains and positively charged ones, such as the side-chains of lysine and arginine.
Collapse
Affiliation(s)
- Marta Wiśniewska
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Emil Sobolewski
- Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Kładki 24, 80-822 Gdańsk, Poland
| | - Stanisław Ołdziej
- Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Kładki 24, 80-822 Gdańsk, Poland
| | - Adam Liwo
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Harold A. Scheraga
- Baker Laboratory of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853-1301
| | - Mariusz Makowski
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| |
Collapse
|
12
|
Simon B, Huart AS, Wilmanns M. Molecular mechanisms of protein kinase regulation by calcium/calmodulin. Bioorg Med Chem 2015; 23:2749-60. [PMID: 25963826 DOI: 10.1016/j.bmc.2015.04.051] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 04/13/2015] [Accepted: 04/15/2015] [Indexed: 01/02/2023]
Abstract
Many human protein kinases are regulated by the calcium-sensor protein calmodulin, which binds to a short flexible segment C-terminal to the enzyme's catalytic kinase domain. Our understanding of the molecular mechanism of kinase activity regulation by calcium/calmodulin has been advanced by the structures of two protein kinases-calmodulin kinase II and death-associated protein kinase 1-bound to calcium/calmodulin. Comparison of these two structures reveals a surprising level of diversity in the overall kinase-calcium/calmodulin arrangement and functional readout of activity, as well as complementary mechanisms of kinase regulation such as phosphorylation.
Collapse
Affiliation(s)
- Bertrand Simon
- EMBL Hamburg, c/o DESY, Building 25A, Notkestraße 85, 22603 Hamburg, Germany
| | - Anne-Sophie Huart
- EMBL Hamburg, c/o DESY, Building 25A, Notkestraße 85, 22603 Hamburg, Germany
| | - Matthias Wilmanns
- EMBL Hamburg, c/o DESY, Building 25A, Notkestraße 85, 22603 Hamburg, Germany.
| |
Collapse
|
13
|
Lv DW, Li X, Zhang M, Gu AQ, Zhen SM, Wang C, Li XH, Yan YM. Large-scale phosphoproteome analysis in seedling leaves of Brachypodium distachyon L. BMC Genomics 2014; 15:375. [PMID: 24885693 PMCID: PMC4079959 DOI: 10.1186/1471-2164-15-375] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2014] [Accepted: 05/06/2014] [Indexed: 01/03/2023] Open
Abstract
Background Protein phosphorylation is one of the most important post-translational modifications involved in the regulation of plant growth and development as well as diverse stress response. As a member of the Poaceae, Brachypodium distachyon L. is a new model plant for wheat and barley as well as several potential biofuel grasses such as switchgrass. Vegetative growth is vital for biomass accumulation of plants, but knowledge regarding the role of protein phosphorylation modification during vegetative growth, especially in biofuel plants, is far from comprehensive. Results In this study, we carried out the first large-scale phosphoproteome analysis of seedling leaves in Brachypodium accession Bd21 using TiO2 microcolumns combined with liquid chromatography-tandem mass spectrometry (LC-MS/MS) and MaxQuant software. A total of 1470 phosphorylation sites in 950 phosphoproteins were identified, and these phosphoproteins were implicated in various molecular functions and basic cellular processes by gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses. Among the 950 phosphoproteins identified, 127 contained 3 to 8 phosphorylation sites. Conservation analysis showed that 93.4% of the 950 phosphoproteins had phosphorylation orthologs in other plant species. Motif-X analysis of the phosphorylation sites identified 13 significantly enriched phosphorylation motifs, of which 3 were novel phosphorylation motifs. Meanwhile, there were 91 phosphoproteins with both multiple phosphorylation sites and multiple phosphorylation motifs. In addition, we identified 58 phosphorylated transcription factors across 21 families and found out 6 significantly over-represented transcription factor families (C3H, Trihelix, CAMTA, TALE, MYB_related and CPP). Eighty-four protein kinases (PKs), 8 protein phosphatases (PPs) and 6 CESAs were recognized as phosphoproteins. Conclusions Through a large-scale bioinformatics analysis of the phosphorylation data in seedling leaves, a complicated PKs- and PPs- centered network related to rapid vegetative growth was deciphered in B. distachyon. We revealed a MAPK cascade network that might play the crucial roles during the phosphorylation signal transduction in leaf growth and development. The phosphoproteins and phosphosites identified from our study expanded our knowledge of protein phosphorylation modification in plants, especially in monocots. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-375) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yue-Ming Yan
- College of Life Science, Capital Normal University, Beijing 100048, China.
| |
Collapse
|
14
|
Lv DW, Ge P, Zhang M, Cheng ZW, Li XH, Yan YM. Integrative network analysis of the signaling cascades in seedling leaves of bread wheat by large-scale phosphoproteomic profiling. J Proteome Res 2014; 13:2381-95. [PMID: 24679076 DOI: 10.1021/pr401184v] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Here, we conducted the first large-scale leaf phosphoproteome analysis of two bread wheat cultivars by liquid chromatography-tandem mass spectrometry. Altogether, 1802 unambiguous phosphorylation sites representing 1175 phosphoproteins implicated in various molecular functions and cellular processes were identified by gene ontology enrichment analysis. Among the 1175 phosphoproteins, 141 contained 3-10 phosphorylation sites. The phosphorylation sites were located more frequently in the N- and C-terminal regions than in internal regions, and ∼70% were located outside the conserved regions. Conservation analysis showed that 90.5% of the phosphoproteins had phosphorylated orthologs in other plant species. Eighteen significantly enriched phosphorylation motifs, of which six were new wheat phosphorylation motifs, were identified. In particular, 52 phosphorylated transcription factors (TFs), 85 protein kinases (PKs), and 16 protein phosphatases (PPs) were classified and analyzed in depth. All the Tyr phosphorylation sites were in PKs such as mitogen-activated PKs (MAPKs) and SHAGGY-like kinases. A complicated cross-talk phosphorylation regulatory network based on PKs such as Snf1-related kinases (SnRKs), calcium-dependent PKs (CDPKs), and glycogen synthase kinase 3 (GSK3) and PPs including PP2C, PP2A, and BRI1 suppressor 1 (BSU1)-like protein (BSL) was constructed and was found to be potentially involved in rapid leaf growth. Our results provide a series of phosphoproteins and phosphorylation sites in addition to a potential network of phosphorylation signaling cascades in wheat seedling leaves.
Collapse
Affiliation(s)
- Dong-Wen Lv
- College of Life Science, Capital Normal University , 100048 Beijing, China
| | | | | | | | | | | |
Collapse
|
15
|
Temmerman K, de Diego I, Pogenberg V, Simon B, Jonko W, Li X, Wilmanns M. A PEF/Y Substrate Recognition and Signature Motif Plays a Critical Role in DAPK-Related Kinase Activity. ACTA ACUST UNITED AC 2014; 21:264-73. [DOI: 10.1016/j.chembiol.2013.12.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 12/06/2013] [Accepted: 12/08/2013] [Indexed: 10/25/2022]
|
16
|
Temmerman K, Simon B, Wilmanns M. Structural and functional diversity in the activity and regulation of DAPK-related protein kinases. FEBS J 2013; 280:5533-50. [PMID: 23745726 DOI: 10.1111/febs.12384] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Revised: 06/06/2013] [Accepted: 06/07/2013] [Indexed: 11/30/2022]
Abstract
Within the large group of calcium/calmodulin-dependent protein kinases (CAMKs) of the human kinome, there is a distinct branch of highly related kinases that includes three families: death-associated protein-related kinases, myosin light-chain-related kinases and triple functional domain protein-related kinases. In this review, we refer to these collectively as DMT kinases. There are several functional features that span the three families, such as a broad involvement in apoptotic processes, cytoskeletal association and cellular plasticity. Other CAMKs contain a highly conserved HRD motif, which is a prerequisite for kinase regulation through activation-loop phosphorylation, but in all 16 members of the DMT branch, this is replaced by an HF/LD motif. This DMT kinase signature motif substitutes phosphorylation-dependent active-site interactions with a local hydrophobic core that maintains an active kinase conformation. Only about half of the DMT kinases have an additional autoregulatory domain, C-terminal to the kinase domain that binds calcium/calmodulin in order to regulate kinase activity. Protein substrates have been identified for some of the DMT kinases, but little is known about the mechanism of recognition. Substrate conformation could be an equally important parameter in substrate recognition as specific preferences in sequence position. Taking the data together, this kinase branch encapsulates a treasure trove of features that renders it distinct from many other protein kinases and calls for future research activities in this field.
Collapse
|
17
|
Stratton MM, Chao LH, Schulman H, Kuriyan J. Structural studies on the regulation of Ca2+/calmodulin dependent protein kinase II. Curr Opin Struct Biol 2013; 23:292-301. [PMID: 23632248 DOI: 10.1016/j.sbi.2013.04.002] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Revised: 03/24/2013] [Accepted: 04/02/2013] [Indexed: 11/15/2022]
Abstract
Ca(2+)/calmodulin dependent protein kinase II (CaMKII) is a broadly distributed metazoan Ser/Thr protein kinase that is important in neuronal and cardiac signaling. CaMKII forms oligomeric assemblies, typically dodecameric, in which the calcium-responsive kinase domains are organized around a central hub. We review the results of crystallographic analyses of CaMKII, including the recently determined structure of a full-length and autoinhibited form of the holoenzyme. These structures, when combined with other data, allow informed speculation about how CaMKII escapes calcium-dependence when calcium spikes exceed threshold frequencies.
Collapse
Affiliation(s)
- Margaret M Stratton
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | | | | | | |
Collapse
|
18
|
Ojuka EO, Goyaram V, Smith JAH. The role of CaMKII in regulating GLUT4 expression in skeletal muscle. Am J Physiol Endocrinol Metab 2012; 303:E322-31. [PMID: 22496345 DOI: 10.1152/ajpendo.00091.2012] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Contractile activity during physical exercise induces an increase in GLUT4 expression in skeletal muscle, helping to improve glucose transport capacity and insulin sensitivity. An important mechanism by which exercise upregulates GLUT4 is through the activation of Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) in response to elevated levels of cytosolic Ca(2+) during muscle contraction. This review discusses the mechanism by which Ca(2+) activates CaMKII, explains research techniques currently used to alter CaMK activity in cells, and highlights various exercise models and pharmacological agents that have been used to provide evidence that CaMKII plays an important role in regulating GLUT4 expression. With regard to transcriptional mechanisms, the key research studies that identified myocyte enhancer factor 2 (MEF2) and GLUT4 enhancer factor as the major transcription factors regulating glut4 gene expression, together with their binding domains, are underlined. Experimental evidence showing that CaMK activation induces hyperacetylation of histones in the vicinity of the MEF2 domain and increases MEF2 binding to its cis element to influence MEF2-dependent Glut4 gene expression are also given along with data suggesting that p300 might be involved in acetylating histones on the Glut4 gene. Finally, an appraisal of the roles of other calcium- and non-calcium-dependent mechanisms, including the major HDAC kinases in GLUT4 expression, is also given.
Collapse
Affiliation(s)
- Edward O Ojuka
- University of Capetown/Medical Research Center Research Unit for Exercise Science & Sports Medicine, Department of Human Biology, Univeristy of Cape Town, Cape Town, South Africa.
| | | | | |
Collapse
|
19
|
ATP competitive protein kinase C inhibitors demonstrate distinct state-dependent inhibition. PLoS One 2011; 6:e26338. [PMID: 22043317 PMCID: PMC3197134 DOI: 10.1371/journal.pone.0026338] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Accepted: 09/25/2011] [Indexed: 01/07/2023] Open
Abstract
We previously reported that some ATP competitive protein kinase C (PKC) inhibitors are either competitive or uncompetitive inhibitors with respect to substrate peptides. In this report, we demonstrate how the interactions between PKC and inhibitors change PKC activation kinetics. A substrate competitive inhibitor, bisindolylmaleimide I, targets activated PKC and stabilizes PKC in the activated conformation. This leads to transient activation and prolonged deactivation of PKC in the presence of bisindolylmaleimide I. In contrast, an uncompetitive substrate inhibitor, bisindolylmaleimide IV, targets quiescent PKC and stabilizes PKC in the quiescent conformation, which generates slower activation and suppressed translocation upon activation of PKC.
Collapse
|
20
|
Schindler K. Protein kinases and protein phosphatases that regulate meiotic maturation in mouse oocytes. Results Probl Cell Differ 2011; 53:309-341. [PMID: 21630151 DOI: 10.1007/978-3-642-19065-0_14] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Oocytes arrest at prophase of meiosis I (MI) and in vivo do not resume meiosis until they receive ovulatory cues. Meiotic resumption entails two rounds of chromosome segregation without an intervening round of DNA replication and an arrest at metaphase of meiosis II (MII); fertilization triggers exit from MII and entry into interphase. During meiotic resumption, there is a burst of protein phosphorylation and dephosphorylation that dramatically changes during the course of oocyte meiotic maturation. Many of these phosphorylation and dephosphorylation events are key to regulating meiotic cell cycle arrest and/or progression, chromosome dynamics, and meiotic spindle assembly and disassembly. This review, which is subdivided into sections based upon meiotic cell cycle stages, focuses on the major protein kinases and phosphatases that have defined requirements during meiosis in mouse oocytes and, when possible, connects these regulatory pathways.
Collapse
Affiliation(s)
- Karen Schindler
- Department of Biology, University of Pennsylvania, 433 S. University Avenue, Philadelphia, PA 19104, USA.
| |
Collapse
|
21
|
Korzeniowski MK, Manjarrés IM, Varnai P, Balla T. Activation of STIM1-Orai1 involves an intramolecular switching mechanism. Sci Signal 2010; 3:ra82. [PMID: 21081754 PMCID: PMC3408607 DOI: 10.1126/scisignal.2001122] [Citation(s) in RCA: 168] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Stromal interaction molecule 1 (STIM1) stimulates calcium ion (Ca(2+)) entry through plasma membrane Orai1 channels in response to decreased Ca(2+) concentrations in the endoplasmic reticulum lumen. We identified an acidic motif within the STIM1 coiled-coil region that keeps its Ca(2+) activation domain [Ca(2+) release-activated Ca(2+) (CRAC) activation domain/STIM1-Orai activating region (CAD/SOAR)]-a cytoplasmic region required for its activation of Orai1-inactive. The sequence of the STIM1 acidic motif shows substantial similarity to that of the carboxyl-terminal coiled-coil segment of Orai1, which is the postulated site of interaction with STIM1. Mutations within this acidic region rendered STIM1 constitutively active, whereas mutations within a short basic segment of CAD/SOAR prevented Orai1 activation. We propose that the CAD/SOAR domain is released from an intramolecular clamp during STIM1 activation, allowing the basic segment to activate Orai1 channels. This evolutionarily conserved mechanism of STIM1 activation resembles the regulation of protein kinases by intramolecular silencing through pseudosubstrate binding.
Collapse
Affiliation(s)
- Marek K. Korzeniowski
- Section on Molecular Signal Transduction, Program for Developmental Neuroscience, NICHD, National Institutes of Health, Bethesda, MD 20892
| | | | - Peter Varnai
- Department of Physiology, Semmelweis University, Faculty of Medicine, Budapest, Hungary
| | - Tamas Balla
- Section on Molecular Signal Transduction, Program for Developmental Neuroscience, NICHD, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
22
|
Ulke-Lemée A, MacDonald JA. Opportunities to Target Specific Contractile Abnormalities with Smooth Muscle Protein Kinase Inhibitors. Pharmaceuticals (Basel) 2010; 3:1739-1760. [PMID: 27713327 PMCID: PMC4033950 DOI: 10.3390/ph3061739] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2010] [Revised: 04/26/2010] [Accepted: 05/24/2010] [Indexed: 12/14/2022] Open
Abstract
Smooth muscle is a major component of most hollow organ systems (e.g., airways, vasculature, bladder and gut/gastrointestine); therefore, the coordinated regulation of contraction is a key property of smooth muscle. When smooth muscle functions normally, it contributes to general health and wellness, but its dysfunction is associated with morbidity and mortality. Rho-associated protein kinase (ROCK) is central to calcium-independent, actomyosin-mediated contractile force generation in the vasculature, thereby playing a role in smooth muscle contraction, cell motility and adhesion. Recent evidence supports an important role for ROCK in the increased vasoconstriction and remodeling observed in various models of hypertension. This review will provide a commentary on the development of specific ROCK inhibitors and their clinical application. Fasudil will be discussed as an example of bench-to-bedside development of a clinical therapeutic that is used to treat conditions of vascular hypercontractility. Due to the wide spectrum of biological processes regulated by ROCK, many additional clinical indications might also benefit from ROCK inhibition. Apart from the importance of ROCK in smooth muscle contraction, a variety of other protein kinases are known to play similar roles in regulating contractile force. The zipper-interacting protein kinase (ZIPK) and integrin-linked kinase (ILK) are two well-described regulators of contraction. The relative contribution of each kinase to contraction depends on the muscle bed as well as hormonal and neuronal stimulation. Unfortunately, specific inhibitors for ZIPK and ILK are still in the development phase, but the success of fasudil suggests that inhibitors for these other kinases may also have valuable clinical applications. Notably, the directed inhibition of ZIPK with a pseudosubstrate molecule shows unexpected effects on the contractility of gastrointestinal smooth muscle.
Collapse
Affiliation(s)
- Annegret Ulke-Lemée
- Smooth Muscle Research Group and Department of Biochemistry & Molecular Biology, University of Calgary, 3280 Hospital Drive NW, Calgary, Alberta, T2N 4Z6, Canada.
| | - Justin A MacDonald
- Smooth Muscle Research Group and Department of Biochemistry & Molecular Biology, University of Calgary, 3280 Hospital Drive NW, Calgary, Alberta, T2N 4Z6, Canada.
| |
Collapse
|
23
|
Roy J, Cyert MS. Cracking the phosphatase code: docking interactions determine substrate specificity. Sci Signal 2009; 2:re9. [PMID: 19996458 DOI: 10.1126/scisignal.2100re9] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Phosphoserine- and phosphothreonine-directed phosphatases display remarkable substrate specificity, yet the sites that they dephosphorylate show little similarity in amino acid sequence. Studies reveal that docking interactions are key for the recognition of substrates and regulators by two conserved phosphatases, protein phosphatase 1 (PP1) and the Ca2+-calmodulin-dependent phosphatase calcineurin. In each case, a small degenerate sequence motif in the interacting protein directs low-affinity binding to a docking surface on the phosphatase that is distinct from the active site; several such interactions combine to confer overall binding specificity. Some docking surfaces are conserved, such as a hydrophobic groove on a face opposite the active site that serves as a major recognition surface for the "RVxF" motif of proteins that interact with PP1 and the "PxIxIT" motif of substrates of calcineurin. Secondary motifs combine with this primary targeting sequence to specify phosphatase binding. A comprehensive interactome for mammalian PP1 was described, analysis of which defines several PP1-binding motifs. Studies of "LxVP," a secondary calcineurin-binding sequence, establish that this motif is a conserved feature of calcineurin substrates and that the immunosuppressants FK506 and cyclosporin A inhibit the phosphatase by interfering with LxVP-mediated docking.
Collapse
Affiliation(s)
- Jagoree Roy
- Department of Biology, Stanford University, 371 Serra Mall, Stanford, CA 94305-5020, USA
| | | |
Collapse
|
24
|
Lou BS, Lin TH, Lo CZ. The interactions of phenytoin and its binding site in DI-S6 segment of Na+ channel voltage-gated peptide by NMR spectroscopy and molecular modeling study. ACTA ACUST UNITED AC 2008; 66:27-38. [PMID: 15946193 DOI: 10.1111/j.1399-3011.2005.00269.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Nuclear magnetic resonance (NMR) spectra of a model peptide (BL-DIS6), in the presence of anticonvulsant diphenyl drug, phenytoin (DPH), were measured to obtain the interactions between the selected drug and the model peptide. BL-DIS6's sequence corresponds to the S6 segment in domain I of rat brain type IIA Na+-channel. NMR studies have demonstrated that the magnitude of the chemical shifts of amide- and alpha-protons can be used as a measurement of the complex stability and binding site of the peptide. Our NMR results propose a 3(10)-helical structure for BL-DIS6, and suggest a binding cavity for DPH that involves the hydrophobic particles of residues Ans-7, Leu-8, Val-11, and Val-12. Furthermore, molecular modeling was performed to provide a possible complex conformation that the phenyl portion of DPH is accommodated in the proximity of the C-terminal residues Ala-11 and Val-12, and simultaneously the heterocyclic amine ring of DPH is perching at the residue Asn-7 periphery and stabilizing the phenyl portion deep insertion into the peptide.
Collapse
Affiliation(s)
- B-S Lou
- Chemistry Division, Center for General Education, Chang Gung University, Tao-Yuan, Taiwan.
| | | | | |
Collapse
|
25
|
The Transmembrane Segment of Tom20 Is Recognized by Mim1 for Docking to the Mitochondrial TOM Complex. J Mol Biol 2008; 376:694-704. [DOI: 10.1016/j.jmb.2007.12.021] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2007] [Revised: 12/09/2007] [Accepted: 12/11/2007] [Indexed: 11/18/2022]
|
26
|
Wang J, Wang Z. Negative regulation of caspase 3-cleaved PAK2 activity by protein phosphatase 1. SCIENCE IN CHINA. SERIES C, LIFE SCIENCES 2008; 51:1-11. [PMID: 18176785 DOI: 10.1007/s11427-008-0006-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2007] [Accepted: 11/11/2007] [Indexed: 05/25/2023]
Abstract
The p21-activated kinase 2 (PAK2) is activated by binding of small G proteins, Cdc42 and Rac, or through proteolytic cleavage by caspases or caspase-like proteases. Activation by both small G protein and caspase requires autophosphorylation at Thr-402 of PAK2. Although activation of PAK2 has been investigated for nearly a decade, the mechanism of PAK2 downregulation is unclear. In this study, we have applied the kinetic theory of substrate reaction during modification of enzyme activity to study the regulation mechanism of PAK2 activity by the catalytic subunit of protein phosphatase 1 (PP1alpha). On the basis of the kinetic equation of the substrate reaction during the reversible phosphorylation of PAK2, all microscopic kinetic constants for the free enzyme and enzyme-substrate(s) complexes have been determined. The results indicate that (1) PP1alpha can act directly on phosphorylated Thr-402 in the activation loop of PAK2 and down-regulate its kinase activity; (2) binding of the exogenous protein/peptide substrates at the active site of PAK2 decreases both the rates of PAK2 autoactivation and inactivation. The present method provides a novel approach for studying reversible phosphorylation reactions. The advantage of this method is not only its usefulness in study of substrate effects on enzyme modification but also its convenience in study of modification reaction directly involved in regulation of enzyme activity. This initial study should provide a foundation for future structural and mechanistic work of protein kinases and phosphatases.
Collapse
Affiliation(s)
- JinJun Wang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | | |
Collapse
|
27
|
Strahl T, Huttner IG, Lusin JD, Osawa M, King D, Thorner J, Ames JB. Structural insights into activation of phosphatidylinositol 4-kinase (Pik1) by yeast frequenin (Frq1). J Biol Chem 2007; 282:30949-59. [PMID: 17720810 DOI: 10.1074/jbc.m705499200] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Yeast frequenin (Frq1), a small N-myristoylated EF-hand protein, activates phosphatidylinositol 4-kinase Pik1. The NMR structure of Ca2+-bound Frq1 complexed to an N-terminal Pik1 fragment (residues 121-174) was determined. The Frq1 main chain is similar to that in free Frq1 and related proteins in the same branch of the calmodulin superfamily. The myristoyl group and first eight residues of Frq1 are solvent-exposed, and Ca2+ binds the second, third, and fourth EF-hands, which associate to create a groove with two pockets. The Pik1 peptide forms two helices (125-135 and 156-169) connected by a 20-residue loop. Side chains in the Pik1 N-terminal helix (Val-127, Ala-128, Val-131, Leu-132, and Leu-135) interact with solvent-exposed residues in the Frq1 C-terminal pocket (Leu-101, Trp-103, Val-125, Leu-138, Ile-152, and Leu-155); side chains in the Pik1 C-terminal helix (Ala-157, Ala-159, Leu-160, Val-161, Met-165, and Met-167) contact solvent-exposed residues in the Frq1 N-terminal pocket (Trp-30, Phe-34, Phe-48, Ile-51, Tyr-52, Phe-55, Phe-85, and Leu-89). This defined complex confirms that residues in Pik1 pinpointed as necessary for Frq1 binding by site-directed mutagenesis are indeed sufficient for binding. Removal of the Pik1 N-terminal region (residues 8-760) from its catalytic domain (residues 792-1066) abolishes lipid kinase activity, inconsistent with Frq1 binding simply relieving an autoinhibitory constraint. Deletion of the lipid kinase unique motif (residues 35-110) also eliminates Pik1 activity. In the complex, binding of Ca2+-bound Frq1 forces the Pik1 chain into a U-turn. Frq1 may activate Pik1 by facilitating membrane targeting via the exposed N-myristoyl group and by imposing a structural transition that promotes association of the lipid kinase unique motif with the kinase domain.
Collapse
Affiliation(s)
- Thomas Strahl
- Department of Molecular and Cell Biology, Division of Biochemistry and Molecular Biology, University of California, Berkeley, California 94720-3202, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
Abramczyk O, Rainey MA, Barnes R, Martin L, Dalby KN. Expanding the repertoire of an ERK2 recruitment site: cysteine footprinting identifies the D-recruitment site as a mediator of Ets-1 binding. Biochemistry 2007; 46:9174-86. [PMID: 17658891 PMCID: PMC2897722 DOI: 10.1021/bi7002058] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Many substrates of ERK2 contain a D-site, a sequence recognized by ERK2 that is used to promote catalysis. Despite lacking a canonical D-site, the substrate Ets-1 is displaced from ERK2 by peptides containing one. This suggests that Ets-1 may contain a novel or cryptic D-site. To investigate this possibility a protein footprinting strategy was developed to elucidate ERK2-ligand interactions. Using this approach, single cysteine reporters were placed in the D-recruitment site (DRS) of ERK2 and the resulting ERK2 proteins subjected to alkylation by iodoacetamide. The ability of residues 1-138 of Ets-1 to protect the cysteines from alkylation was determined. The pattern of protection observed is consistent with Ets-1 occupying a hydrophobic binding site within the DRS of ERK2. Significantly, a peptide derived from the D-site of Elk-1, which is known to bind the DRS, exhibits a similar pattern of cysteine protection. This analysis expands the repertoire of the DRS on ERK2 and suggests that other targeting sequences remain to be identified. Furthermore, cysteine-footprinting is presented as a useful way to interrogate protein-ligand interactions at the resolution of a single amino acid.
Collapse
Affiliation(s)
- Olga Abramczyk
- Division of Medicinal Chemistry, University of Texas at Austin, Texas 78712
| | - Mark A. Rainey
- Graduate Program in Molecular Biology, University of Texas at Austin, Texas 78712
| | - Richard Barnes
- Graduate Program in Biochemistry, University of Texas at Austin, Texas 78712
| | - Lance Martin
- Department of Biochemistry, Stanford University, Stanford, California 94305
| | - Kevin N. Dalby
- Division of Medicinal Chemistry, University of Texas at Austin, Texas 78712
- Graduate Program in Molecular Biology, University of Texas at Austin, Texas 78712
- Graduate Program in Biochemistry, University of Texas at Austin, Texas 78712
- Corresponding author. Division of Medicinal Chemistry, College of Pharmacy, University of Texas at Austin, TX 78712. Tel: 512-4719267. Fax: 512-2322606.
| |
Collapse
|
29
|
Scott JW, Ross FA, Liu JKD, Hardie DG. Regulation of AMP-activated protein kinase by a pseudosubstrate sequence on the gamma subunit. EMBO J 2007; 26:806-15. [PMID: 17255938 PMCID: PMC1794397 DOI: 10.1038/sj.emboj.7601542] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2006] [Accepted: 12/14/2006] [Indexed: 01/12/2023] Open
Abstract
The AMP-activated protein kinase (AMPK) system monitors cellular energy status by sensing AMP and ATP, and is a key regulator of energy balance at the cellular and whole-body levels. AMPK exists as heterotrimeric alphabetagamma complexes, and the gamma subunits contain two tandem domains that bind the regulatory nucleotides. There is a sequence in the first of these domains that is conserved in gamma subunit homologues in all eukaryotes, and which resembles the sequence around sites phosphorylated on target proteins of AMPK, except that it has a non-phosphorylatable residue in place of serine. We propose that in the absence of AMP this pseudosubstrate sequence binds to the active site groove on the alpha subunit, preventing phosphorylation by the upstream kinase, LKB1, and access to downstream targets. Binding of AMP causes a conformational change that prevents this interaction and relieves the inhibition. We present several lines of evidence supporting this hypothesis.
Collapse
Affiliation(s)
- John W Scott
- Division of Molecular Physiology, College of Life Sciences, University of Dundee, Sir James Black Centre, Dundee, UK
| | - Fiona A Ross
- Division of Molecular Physiology, College of Life Sciences, University of Dundee, Sir James Black Centre, Dundee, UK
| | - J K David Liu
- Division of Molecular Physiology, College of Life Sciences, University of Dundee, Sir James Black Centre, Dundee, UK
| | - D Grahame Hardie
- Division of Molecular Physiology, College of Life Sciences, University of Dundee, Sir James Black Centre, Dundee, UK
| |
Collapse
|
30
|
Deminoff SJ, Howard SC, Hester A, Warner S, Herman PK. Using substrate-binding variants of the cAMP-dependent protein kinase to identify novel targets and a kinase domain important for substrate interactions in Saccharomyces cerevisiae. Genetics 2006; 173:1909-17. [PMID: 16751660 PMCID: PMC1569720 DOI: 10.1534/genetics.106.059238] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Protein kinases mediate much of the signal transduction in eukaryotic cells and defects in kinase function are associated with a variety of human diseases. To understand and correct these defects, we will need to identify the physiologically relevant substrates of these enzymes. The work presented here describes a novel approach to this identification process for the cAMP-dependent protein kinase (PKA) in Saccharomyces cerevisiae. This approach takes advantage of two catalytically inactive PKA variants, Tpk1K336A/H338A and Tpk1R324A, that exhibit a stable binding to their substrates. Most protein kinases, including the wild-type PKA, associate with substrates with a relatively low affinity. The binding observed here was specific to substrates and was dependent upon PKA residues known to be important for interactions with peptide substrates. The general utility of this approach was demonstrated by the ability to identify both previously described and novel PKA substrates in S. cerevisiae. Interestingly, the positions of the residues altered in these variants implicated a particular region within the PKA kinase domain, corresponding to subdomain XI, in the binding and/or release of protein substrates. Moreover, the high conservation of the residues altered and, in particular, the invariant nature of the R324 position suggest that this approach might be generally applicable to other protein kinases.
Collapse
Affiliation(s)
- Stephen J Deminoff
- Department of Molecular Genetics, Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | | | |
Collapse
|
31
|
Kuznetsov A, Uri A, Raidaru G, Järv J. Kinetic analysis of inhibition of cAMP-dependent protein kinase catalytic subunit by the peptide-nucleoside conjugate AdcAhxArg6. Bioorg Chem 2005; 32:527-35. [PMID: 15530993 DOI: 10.1016/j.bioorg.2004.05.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2004] [Indexed: 10/26/2022]
Abstract
Kinetic analysis of the inhibition of the phosphorylation of Kemptide, (LRRASLG), catalyzed by the catalytic subunit of cAMP-dependent protein kinase, by a peptide-nucleoside conjugate inhibitor AdcAhxArg6 was carried out over a wide range of ATP and peptide concentrations. A simple procedure was proposed for characterization of the interaction of this inhibitor with the free enzyme, and with the enzyme-ATP and enzyme-peptide complexes. The second-order rate constants, calculated from the steady-state reaction kinetics, were used for this analysis to avoid the complications related to the complex catalytic mechanism of the protein kinase catalyzed reaction.
Collapse
Affiliation(s)
- Aleksei Kuznetsov
- Institute of Organic and Bioorganic Chemistry, University of Tartu, 2 Jakobi Str, 51014, Estonia
| | | | | | | |
Collapse
|
32
|
Dey M, Trieselmann B, Locke EG, Lu J, Cao C, Dar AC, Krishnamoorthy T, Dong J, Sicheri F, Dever TE. PKR and GCN2 kinases and guanine nucleotide exchange factor eukaryotic translation initiation factor 2B (eIF2B) recognize overlapping surfaces on eIF2alpha. Mol Cell Biol 2005; 25:3063-75. [PMID: 15798194 PMCID: PMC1069625 DOI: 10.1128/mcb.25.8.3063-3075.2005] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Four stress-responsive protein kinases, including GCN2 and PKR, phosphorylate eukaryotic translation initiation factor 2alpha (eIF2alpha) on Ser51 to regulate general and gene-specific protein synthesis. Phosphorylated eIF2 is an inhibitor of its guanine nucleotide exchange factor, eIF2B. Mutations that block translational regulation were isolated throughout the N-terminal OB-fold domain in Saccharomyces cerevisiae eIF2alpha, including those at residues flanking Ser51 and around 20 A away in the conserved motif K79GYID83. Any mutation at Glu49 or Asp83 blocked translational regulation; however, only a subset of these mutations impaired Ser51 phosphorylation. Substitution of Ala for Asp83 eliminated phosphorylation by GCN2 and PKR both in vivo and in vitro, establishing the critical contributions of remote residues to kinase-substrate recognition. In contrast, mutations that blocked translational regulation but not Ser51 phosphorylation impaired the binding of eIF2B to phosphorylated eIF2alpha. Thus, two structurally distinct effectors of eIF2 function, eIF2alpha kinases and eIF2B, have evolved to recognize the same surface and overlapping determinants on eIF2alpha.
Collapse
Affiliation(s)
- Madhusudan Dey
- National Institutes of Health, 6 Center Dr., Bethesda, MD 20892-2427, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Liu JH, Wang ZX. Kinetic analysis of ligand-induced autocatalytic reactions. Biochem J 2004; 379:697-702. [PMID: 14705964 PMCID: PMC1224100 DOI: 10.1042/bj20031365] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2003] [Revised: 11/26/2003] [Accepted: 12/23/2003] [Indexed: 11/17/2022]
Abstract
Protein phosphorylation and limited proteolysis are two most common regulatory mechanisms involving the energy-dependent covalent modification of regulatory enzymes. In addition to modifying other proteins, many protein kinases and proteases catalyse automodification reactions (i.e. reactions in which the kinase or zymogen serves as its own substrate), and their activities are frequently regulated by other regulatory ligands. In the present study, a kinetic analysis of autocatalytic reaction modulated by regulatory ligands is presented. On the basis of the kinetic equation, a novel procedure is developed to evaluate the kinetic parameters of the reaction. As an example of an application of this method, the effects of calcium ions on the autoacatalytic activation of trypsinogen by trypsin is re-examined. The results indicate that the binding affinity for Ca2+-bound trypsinogen to trypsin is at least two orders of magnitude higher than that for Ca2+-free trypsinogen, and therefore that the effect of Ca2+ ions on K(m*) values for trypsinogen is very much greater than that for the model peptides. Based on the experimental results, one possible molecular mechanism has been proposed.
Collapse
Affiliation(s)
- Jiang-Hong Liu
- National Laboratory of Biomacromolecules, Center for Molecular Biology, Institute of Biophysics, Academia Sinica, Beijing 100101, People's Republic of China
| | | |
Collapse
|
34
|
Fan YX, Wong L, Deb TB, Johnson GR. Ligand regulates epidermal growth factor receptor kinase specificity: activation increases preference for GAB1 and SHC versus autophosphorylation sites. J Biol Chem 2004; 279:38143-50. [PMID: 15231819 DOI: 10.1074/jbc.m405760200] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The epidermal growth factor receptor (EGFR) kinase catalyzes phosphorylation of tyrosines in its C terminus and in other cellular targets upon epidermal growth factor (EGF) stimulation. Here, by using peptides derived from EGFR autophosphorylation sites and cellular substrates, we tested the hypothesis that ligand may function to regulate EGFR kinase specificity by modulating the binding affinity of peptide sequences to the active site. Measurement of the steady-state kinetic parameters, K(m) and k(cat), revealed that EGF did not affect the binding of EGFR peptides but increased the binding affinity for peptides corresponding to the major EGFR-mediated phosphorylation sites of the adaptor proteins Gab1 (Tyr-627) and Shc (Tyr-317), and for peptides containing the previously identified optimal EGFR kinase substrate sequence EEEEYFELV (3-7-fold). Conversely, EGF stimulation increased k(cat) approximately 5-fold for all peptides. Thus, ligand changed the relative preference of the EGFR kinase for substrates as evidenced by EGF increases of approximately 5-fold in the specificity constants (k(cat)/K(m)) for EGFR peptides, whereas approximately 15-40-fold increases were observed for other peptides, such as Gab1 Tyr-627. Furthermore, we demonstrate that EGF (i) increased the binding affinity of EGFR to Gab1 Tyr-627 and Shc Tyr-317 sites in purified GST fusion proteins approximately 4-6-fold, and (ii) EGF significantly enhanced the phosphorylation of these sites, relative to EGFR autophosphorylation, in cell lysates containing the full-length Gab1 and Shc proteins. Analysis of peptides containing amino acid substitutions indicated that residues C-terminal to the target tyrosine were critical for EGF-stimulated increases in substrate binding and regulation of kinase specificity. To our knowledge, this represents the first demonstration that ligand can alter specificity of a receptor kinase toward physiologically relevant targets.
Collapse
Affiliation(s)
- Ying-Xin Fan
- Division of Therapeutic Proteins, Center for Drug Evaluation and Research, Food and Drug Administration, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|
35
|
Abstract
The p21-activated kinases (PAKs) play an important role in diverse cellular processes. PAK2 is activated by autophosphorylation upon binding of small G proteins such as Cdc42 and Rac in the GTP-bound state. However, the mechanism of PAK2 autophosphorylation in vitro is unclear. In the present study, the kinetic theory of the substrate reaction during modification of enzyme activity has been applied to a study of the autoactivation of PAK2. On the basis of the kinetic equation of the substrate reaction during the autophosphorylation of PAK2, the activation rate constants for the free enzyme and enzyme-substrate complex have been determined. The results indicate that 1) in the presence of Cdc42, PAK2 autophosphorylation is a bipartite mechanism, with the regulatory domain autophosphorylated at multiple residues, whereas activation coincides with autophosphorylation of the catalytic domain at Thr-402; 2) the autophosphorylation reactions in regulatory domain are either a nonlimiting step or not required for activation of enzyme; 3) the autophosphorylation at site Thr-402 on the catalytic domain occurs by an intermolecular mechanism and is required for phosphorylation of exogenous substrates examined; 4) binding of the exogenous protein/peptide substrates at the active site of PAK2 has little or no effect on the autoactivation of PAK2, suggesting that multiple regions of PAK2 are involved in the enzyme-substrate recognition. The present method also provides a novel approach for studying autophosphorylation reactions. Since the experimental conditions used resemble more closely the in vivo situation where the substrate is constantly being turned over while the enzyme is being modified, this new method would be particularly useful when the regulatory mechanisms of the reversible phosphorylation reaction toward certain enzymes are being assessed.
Collapse
Affiliation(s)
- Hao Wu
- National Laboratory of Biomacromolecules, Center for Molecular Biology, Institute of Biophysics, Academia Sinica, Beijing 100101, China
| | | |
Collapse
|
36
|
Kinoshita N, Iioka H, Miyakoshi A, Ueno N. PKC delta is essential for Dishevelled function in a noncanonical Wnt pathway that regulates Xenopus convergent extension movements. Genes Dev 2003; 17:1663-76. [PMID: 12842914 PMCID: PMC196137 DOI: 10.1101/gad.1101303] [Citation(s) in RCA: 149] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2003] [Accepted: 05/01/2003] [Indexed: 11/25/2022]
Abstract
Protein kinase C (PKC) has been implicated in the Wnt signaling pathway; however, its molecular role is poorly understood. We identified novel genes encoding delta-type PKC in the Xenopus EST databases. Loss of PKC delta function revealed that it was essential for convergent extension during gastrulation. We then examined the relationship between PKC delta and the Wnt pathway. PKC delta was translocated to the plasma membrane in response to Frizzled signaling. In addition, loss of PKC delta function inhibited the translocation of Dishevelled and the activation of c-Jun N-terminal kinase (JNK) by Frizzled. Furthermore, PKC delta formed a complex with Dishevelled, and the activation of PKC delta by phorbol ester was sufficient for Dishevelled translocation and JNK activation. Thus, PKC delta plays an essential role in the Wnt/JNK pathway by regulating the localization and activity of Dishevelled.
Collapse
Affiliation(s)
- Noriyuki Kinoshita
- Department of Developmental Biology, National Institute for Basic Biology, Myodaiji, Okazaki, Aichi 444-8585, Japan.
| | | | | | | |
Collapse
|
37
|
Biondi RM, Nebreda AR. Signalling specificity of Ser/Thr protein kinases through docking-site-mediated interactions. Biochem J 2003; 372:1-13. [PMID: 12600273 PMCID: PMC1223382 DOI: 10.1042/bj20021641] [Citation(s) in RCA: 242] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2002] [Revised: 02/20/2003] [Accepted: 02/25/2003] [Indexed: 12/15/2022]
Abstract
Signal transduction pathways use protein kinases for the modification of protein function by phosphorylation. A major question in the field is how protein kinases achieve the specificity required to regulate multiple cellular functions. Here we review recent studies that illuminate the mechanisms used by three families of Ser/Thr protein kinases to achieve substrate specificity. These kinases rely on direct docking interactions with substrates, using sites distinct from the phospho-acceptor sequences. Docking interactions also contribute to the specificity and regulation of protein kinase activities. Mitogen-activated protein kinase (MAPK) family members can associate with and phosphorylate specific substrates by virtue of minor variations in their docking sequences. Interestingly, the same MAPK docking pocket that binds substrates also binds docking sequences of positive and negative MAPK regulators. In the case of glycogen synthase kinase 3 (GSK3), the presence of a phosphate-binding site allows docking of previously phosphorylated (primed) substrates; this docking site is also required for the mechanism of GSK3 inhibition by phosphorylation. In contrast, non-primed substrates interact with a different region of GSK3. Phosphoinositide-dependent protein kinase-1 (PDK1) contains a hydrophobic pocket that interacts with a hydrophobic motif present in all known substrates, enabling their efficient phosphorylation. Binding of the substrate hydrophobic motifs to the pocket in the kinase domain activates PDK1 and other members of the AGC family of protein kinases. Finally, the analysis of protein kinase structures indicates that the sites used for docking substrates can also bind N- and C-terminal extensions to the kinase catalytic core and participate in the regulation of its activity.
Collapse
Affiliation(s)
- Ricardo M Biondi
- Division of Signal Transduction Therapy, School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, U.K.
| | | |
Collapse
|
38
|
Wang ZX, Wu JW. Autophosphorylation kinetics of protein kinases. Biochem J 2002; 368:947-52. [PMID: 12190618 PMCID: PMC1223023 DOI: 10.1042/bj20020557] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2002] [Revised: 07/29/2002] [Accepted: 08/22/2002] [Indexed: 11/17/2022]
Abstract
Protein kinases play a central role in cellular signal transduction, by transmitting biochemical information between activated membrane-bound receptors and physiological target proteins. In addition to phosphorylating other proteins, almost all protein kinases catalyse autophosphorylation reactions (i.e. reactions in which the kinase serves as its own substrate). The autophosphorylation reactions can be intramolecular or intermolecular. In the present study, a detailed kinetic analysis of the intermolecular autophosphorylation reaction is presented. On the basis of the kinetic equations, a new procedure is developed to evaluate the kinetic parameters of the autophosphorylation reaction. This method was used to analyse the intermolecular autophosphorylation of an S6/H4 kinase from human placenta. At a fixed ATP concentration of 0.125 mM, the apparent catalytic-centre activity (turnover number; k (cat)) and apparent Michaelis-Menten constant ( K (m)) for the autophosphorylation reaction were determined to be 0.91 min(-1) and 0.86 microM respectively.
Collapse
Affiliation(s)
- Zhi-Xin Wang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Academia Sinica, Beijing 100101, P.R. China.
| | | |
Collapse
|
39
|
Hudmon A, Schulman H. Neuronal CA2+/calmodulin-dependent protein kinase II: the role of structure and autoregulation in cellular function. Annu Rev Biochem 2002; 71:473-510. [PMID: 12045104 DOI: 10.1146/annurev.biochem.71.110601.135410] [Citation(s) in RCA: 506] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Highly enriched in brain tissue and present throughout the body, Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) is central to the coordination and execution of Ca(2+) signal transduction. The substrates phosphorylated by CaMKII are implicated in homeostatic regulation of the cell, as well as in activity-dependent changes in neuronal function that appear to underlie complex cognitive and behavioral responses, including learning and memory. The architecture of CaMKII holoenzymes is unique in nature. The kinase functional domains (12 per holoenzyme) are attached by stalklike appendages to a gear-shaped core, grouped into two clusters of six. Each subunit contains a catalytic, an autoregulatory, and an association domain. Ca(2+)/calmodulin (CaM) binding disinhibits the autoregulatory domain, allowing autophosphorylation and complex changes in the enzyme's sensitivity to Ca(2+)/CaM, including the generation of Ca(2+)/CaM-independent activity, CaM trapping, and CaM capping. These processes confer a type of molecular memory to the autoregulation and activity of CaMKII. Its function is intimately shaped by its multimeric structure, autoregulation, isozymic type, and subcellular localization; these features and processes are discussed as they relate to known and potential cellular functions of this multifunctional protein kinase.
Collapse
Affiliation(s)
- Andy Hudmon
- Department of Neurobiology, Stanford University School of Medicine, 299 Campus Drive, Stanford, California 94305, USA.
| | | |
Collapse
|
40
|
Hudmon A, Schulman H. Structure-function of the multifunctional Ca2+/calmodulin-dependent protein kinase II. Biochem J 2002; 364:593-611. [PMID: 11931644 PMCID: PMC1222606 DOI: 10.1042/bj20020228] [Citation(s) in RCA: 441] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2002] [Revised: 03/20/2002] [Accepted: 04/04/2002] [Indexed: 11/17/2022]
Abstract
Ca2+/calmodulin (CaM)-dependent protein kinase (CaMKII) is a ubiquitous mediator of Ca2+-linked signalling that phosphorylates a wide range of substrates to co-ordinate and regulate Ca2+-mediated alterations in cellular function. The transmission of information by the kinase from extracellular stimuli and the intracellular Ca2+ rise is not passive. Rather, its multimeric structure and autoregulation enable this enzyme to participate actively in the sensitivity, timing and location of its action. CaMKII can: (i) be activated in a Ca2+-spike frequency-dependent manner; (ii) become independent of its initial Ca2+/CaM activators; and (iii) undergo a 'molecular switch-like' behaviour, which is crucial for certain forms of learning and memory. CaMKII is derived from a family of four homologous but distinct genes, with over 30 alternatively spliced isoforms described at present. These isoforms possess diverse developmental and anatomical expression patterns, as well as subcellular localization. Six independent catalytic/autoregulatory domains are connected by a narrow stalk-like appendage to each hexameric ring within the dodecameric structure. Ca2+/CaM binding activates the enzyme by disinhibiting the autoregulatory domain; this process initiates an intra-holoenzyme autophosphorylation reaction that induces complex changes in the enzyme's sensitivity to Ca2+/CaM, including the generation of Ca2+/CaM-independent (autonomous) activity and marked increase in affinity for CaM. The role of CaMKII in Ca2+ signal transduction is shaped by its autoregulation, isoenzymic type and subcellular localization. The molecular determinants and mechanisms producing these processes are discussed as they relate to the structure-function of this multifunctional protein kinase.
Collapse
Affiliation(s)
- Andy Hudmon
- Department of Neurobiology, Fairchild Bldg, D217 299 Campus Drive, Stanford University Medical School, Stanford, CA 94305-5125, USA.
| | | |
Collapse
|
41
|
Howard SC, Budovskaya YV, Chang YW, Herman PK. The C-terminal domain of the largest subunit of RNA polymerase II is required for stationary phase entry and functionally interacts with the Ras/PKA signaling pathway. J Biol Chem 2002; 277:19488-97. [PMID: 12032176 DOI: 10.1074/jbc.m201878200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The Saccharomyces cerevisiae Ras proteins control cell growth by regulating the activity of the cAMP-dependent protein kinase (PKA). In this study, a genetic approach was used to identify cellular processes that were regulated by Ras/PKA signaling activity. Interestingly, we found that mutations affecting the C-terminal domain (CTD), of Rpb1p, the largest subunit of RNA polymerase II, were very sensitive to changes in Ras signaling activity. The Rpb1p CTD is a highly conserved, repetitive structure that is a key site of control during the production of a mature mRNA molecule. We found that mutations compromising the CTD were synthetically lethal with alterations that led to elevated levels of Ras/PKA signaling. Altogether, the data suggested that Ras/PKA activity was negatively regulating a protein that functioned in concert with the CTD during RNA pol II transcription. Consistent with this prediction, we found that elevated levels of Ras signaling caused growth and transcription defects that were very similar to those observed in mutants encoding an Rpb1p with a truncated CTD. In all, these data suggested that S. cerevisiae growth control and RNA pol II transcription might be coupled by using the Ras pathway to regulate CTD function.
Collapse
Affiliation(s)
- Susie C Howard
- Department of Molecular Genetics and Program in Molecular, Cellular, and Developmental Biology, Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | |
Collapse
|
42
|
Huang JZ, Huber SC. Phosphorylation of synthetic peptides by a CDPK and plant SNF1-related protein kinase. Influence of proline and basic amino acid residues at selected positions. PLANT & CELL PHYSIOLOGY 2001; 42:1079-1087. [PMID: 11673623 DOI: 10.1093/pcp/pce137] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Spinach (Spinacia oleracea L.) leaf sucrose-phosphate synthase (SPS) can be inactivated by phosphorylation of Ser-158 by calmodulin-like domain protein kinases (CDPKs) or SNF1-related protein kinases (SnRK1) in vitro. While the phosphorylation site sequence is relatively conserved, most of the deduced sequences of SPS from dicot species surrounding the Ser-158 regulatory phosphorylation site contain a Pro residue at P-4 (where P is the phosphorylated Ser); spinach is the exception and contains an Arg at P-4. We show that a Pro at P-4 selectively inhibits phosphorylation of the peptide by a CDPK relative to a SnRK1. The presence of a Pro at P-4, by allowing a tight turn in the peptide substrate, may interfere with proper binding of residues at P-5 and beyond. Both kinases had greater activity with peptides having basic residues at P-6 and P+5 (in addition to the known requirement for an Arg at P-3/P-4), and when the residue at P-6 was a His, the pH optimum for phosphorylation of the peptide was acid shifted. The results are used to predict proteins that may be selectively phosphorylated by SnRK1s (as opposed to CDPKs), such as SPS in dicot species, or may be phosphorylated in a pH-dependent manner.
Collapse
Affiliation(s)
- J Z Huang
- Department of Biological Sciences, Zhejiang University, Hangzhou, Zhejiang, 310029 People's Republic of China.
| | | |
Collapse
|
43
|
Engh RA, Bossemeyer D. The protein kinase activity modulation sites: mechanisms for cellular regulation - targets for therapeutic intervention. ADVANCES IN ENZYME REGULATION 2001; 41:121-49. [PMID: 11384741 DOI: 10.1016/s0065-2571(00)00010-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- R A Engh
- Roche Diagnostics GmbH, Pharma Research Penzberg, Germany
| | | |
Collapse
|
44
|
Tan I, Seow KT, Lim L, Leung T. Intermolecular and intramolecular interactions regulate catalytic activity of myotonic dystrophy kinase-related Cdc42-binding kinase alpha. Mol Cell Biol 2001; 21:2767-78. [PMID: 11283256 PMCID: PMC86907 DOI: 10.1128/mcb.21.8.2767-2778.2001] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Myotonic dystrophy kinase-related Cdc42-binding kinase (MRCK) is a Cdc42-binding serine/threonine kinase with multiple functional domains. We had previously shown MRCKalpha to be implicated in Cdc42-mediated peripheral actin formation and neurite outgrowth in HeLa and PC12 cells, respectively. Here we demonstrate that native MRCK exists in high-molecular-weight complexes. We further show that the three independent coiled-coil (CC) domains and the N-terminal region preceding the kinase domain are responsible for intermolecular interactions leading to MRCKalpha multimerization. N terminus-mediated dimerization and consequent transautophosphorylation are critical processes regulating MRCKalpha catalytic activities. A region containing the two distal CC domains (CC2 and CC3; residues 658 to 930) was found to interact intramolecularly with the kinase domain and negatively regulates its activity. Its deletion also resulted in an active kinase, confirming a negative autoregulatory role. We provide evidence that the N terminus-mediated dimerization and activation of MRCK and the negative autoregulatory kinase-distal CC interaction are two mutually exclusive events that tightly regulate the catalytic state of the kinase. Disruption of this interaction by a mutant kinase domain resulted in increased kinase activity. MRCK kinase activity was also elevated when cells were treated with phorbol ester, which can interact directly with a cysteine-rich domain next to the distal CC domain. We therefore suggest that binding of phorbol ester to MRCK releases its autoinhibition, allowing N-terminal dimerization and subsequent kinase activation.
Collapse
Affiliation(s)
- I Tan
- Glaxo-IMCB Group, Institute of Molecular & Cell Biology, Singapore 117609, Singapore
| | | | | | | |
Collapse
|
45
|
Bardwell AJ, Flatauer LJ, Matsukuma K, Thorner J, Bardwell L. A conserved docking site in MEKs mediates high-affinity binding to MAP kinases and cooperates with a scaffold protein to enhance signal transmission. J Biol Chem 2001; 276:10374-86. [PMID: 11134045 PMCID: PMC3021106 DOI: 10.1074/jbc.m010271200] [Citation(s) in RCA: 139] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The recognition of mitogen-activated protein kinases (MAPKs) by their upstream activators, MAPK/ERK kinases (MEKs), is crucial for the effective and accurate transmission of many signals. We demonstrated previously that the yeast MAPKs Kss1 and Fus3 bind with high affinity to the N terminus of the MEK Ste7, and proposed that a conserved motif in Ste7, the MAPK-docking site, mediates this interaction. Here we show that the corresponding sequences in human MEK1 and MEK2 are necessary and sufficient for the direct binding of the MAPKs ERK1 and ERK2. Mutations in MEK1, MEK2, or Ste7 that altered conserved residues in the docking site diminished binding of the cognate MAPKs. Furthermore, short peptides corresponding to the docking sites in these MEKs inhibited MEK1-mediated phosphorylation of ERK2 in vitro. In yeast cells, docking-defective alleles of Ste7 were modestly compromised in their ability to transmit the mating pheromone signal. This deficiency was dramatically enhanced when the ability of the Ste5 scaffold protein to associate with components of the MAPK cascade was also compromised. Thus, both the MEK-MAPK docking interaction and binding to the Ste5 scaffold make mutually reinforcing contributions to the efficiency of signaling by this MAPK cascade in vivo.
Collapse
Affiliation(s)
- A J Bardwell
- Department of Developmental and Cell Biology, University of California, Irvine, California 92697, USA.
| | | | | | | | | |
Collapse
|
46
|
The Regulation of Enzymatic Activity and Metabolism. Biochemistry 2001. [DOI: 10.1016/b978-012492543-4/50014-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
47
|
Budde SM, van den Heuvel LP, Janssen AJ, Smeets RJ, Buskens CA, DeMeirleir L, Van Coster R, Baethmann M, Voit T, Trijbels JM, Smeitink JA. Combined enzymatic complex I and III deficiency associated with mutations in the nuclear encoded NDUFS4 gene. Biochem Biophys Res Commun 2000; 275:63-8. [PMID: 10944442 DOI: 10.1006/bbrc.2000.3257] [Citation(s) in RCA: 148] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Combined OXPHOS-system enzyme deficiencies are observed in approximately 25% of all OXPHOS-system disturbances. Of these, combined complex I and III deficiency is relatively scarce. So far, only mtDNA and thymidine phosphorylase (TP) mutations have been associated with combined OXPHOS-system disturbances. In this report we show, for the first time, that a nuclear gene mutation in a structural, nuclear encoded complex I gene is associated with combined complex I and III deficiency. After our initial report we describe mutations in the NDUFS4 gene of complex I in two additional patients. The first mutation is a deletion of G at position 289 or 290. Amino acid 96 changes from a tryptophan to a stop codon. The mutation was found homozygous in the patient; both parents are heterozygous for the mutation. The second mutation is a transition from C to T at cDNA position 316. Codon is changed from CGA (arginine) to TGA (stop). The patient is homozygous for the mutation; both parents are heterozygous. Both mutations in the NDUFS4 gene led to a premature stop in Leigh-like patients with an early lethal phenotype. We hypothesise that the structural integrity of the OXPHOS system, in mammal supermolecular structures, may be responsible for the observed biochemical features.
Collapse
Affiliation(s)
- S M Budde
- Nijmegen Centre for Mitochondrial Disorders, University Medical Centre Nijmegen, Nijmegen, The Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Saharinen P, Takaluoma K, Silvennoinen O. Regulation of the Jak2 tyrosine kinase by its pseudokinase domain. Mol Cell Biol 2000; 20:3387-95. [PMID: 10779328 PMCID: PMC85631 DOI: 10.1128/mcb.20.10.3387-3395.2000] [Citation(s) in RCA: 259] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/1999] [Accepted: 02/14/2000] [Indexed: 11/20/2022] Open
Abstract
Activation of Jak tyrosine kinases through hematopoietic cytokine receptors occurs as a consequence of ligand-induced aggregation of receptor-associated Jaks and their subsequent autophosphorylation. Jak kinases consist of a C-terminal tyrosine kinase domain, a pseudokinase domain of unknown function, and Jak homology (JH) domains 3 to 7, implicated in receptor-Jak interaction. We analyzed the functional roles of the different protein domains in activation of Jak2. Deletion analysis of Jak2 showed that the pseudokinase domain but not JH domains 3 to 7 negatively regulated the catalytic activity of Jak2 as well as Jak2-mediated activation of Stat5. Phosphorylation of Stat5 by wild-type Jak2 was dependent on the SH2 domain of Stat5; however, this requirement was lost upon deletion of the pseudokinase domain of Jak2. Investigation of the mechanisms of the pseudokinase domain-mediated inhibition of Jak2 suggested that this regulation did not involve protein tyrosine phosphatases. Instead, analysis of interactions between the tyrosine kinase domain and Jak2 suggested that the pseudokinase domain interacted with the kinase domain. Furthermore, coexpression of the pseudokinase domain inhibited the activity of the single tyrosine kinase domain. Finally, deletion of the pseudokinase domain of Jak2 deregulated signal transduction through the gamma interferon receptor by significantly increasing ligand-independent activation of Stat transcription factors. These results indicate that the pseudokinase domain negatively regulates the activity of Jak2, probably through an interaction with the kinase domain, and this regulation is required to keep Jak2 inactive in the absence of ligand stimulation. Furthermore, the pseudokinase domain may have a role in regulation of Jak2-substrate interactions.
Collapse
Affiliation(s)
- P Saharinen
- Department of Virology, Haartman Institute, FIN-00014 University of Helsinki, Finland
| | | | | |
Collapse
|
49
|
Hutchins JR, Hughes M, Clarke PR. Substrate specificity determinants of the checkpoint protein kinase Chk1. FEBS Lett 2000; 466:91-5. [PMID: 10648819 DOI: 10.1016/s0014-5793(99)01763-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The Chk1 protein kinase plays a critical role in a DNA damage checkpoint pathway conserved between fission yeast and animals. We have developed a quantitative assay for Chk1 activity, using a peptide derived from a region of Xenopus Cdc25C containing Ser-287, a known target of Chk1. Variants of this peptide were used to determine the residues involved in substrate recognition by Chk1, revealing the phosphorylation motif Phi-X-beta-X-X-(S/T)*, where * indicates the phosphorylated residue, Phi is a hydrophobic residue (M>I>L>V), beta is a basic residue (R>K) and X is any amino acid. This motif suggests that Chk1 is a member of a group of stress-response protein kinases which phosphorylate target proteins with related specificities.
Collapse
Affiliation(s)
- J R Hutchins
- Biomedical Research Centre, University of Dundee, Level 5, Ninewells Hospital and Medical School, Dundee, UK
| | | | | |
Collapse
|
50
|
Yuasa K, Michibata H, Omori K, Yanaka N. Identification of a conserved residue responsible for the autoinhibition of cGMP-dependent protein kinase Ialpha and beta. FEBS Lett 2000; 466:175-8. [PMID: 10648836 DOI: 10.1016/s0014-5793(99)01786-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We isolated a constitutively active form of cGMP-dependent protein kinase Ialpha (cGK Ialpha) by PCR-driven random mutagenesis. The replacement of Ile-63 by Thr in the autoinhibitory domain results in the enhancement of autophosphorylation and the basal kinase activity in the absence of cGMP. The hydrophobicity at position 63 is essential for the inactive state of cGK Ialpha, and Ile-78 of cGK Ibeta is also required for the autoinhibitory property. Furthermore, cGK Ialpha (Ile-63-Thr) is constitutively active in vivo. These findings suggest that a conserved residue in the autoinhibitory domain was involved in the autoinhibition of both cGK Is.
Collapse
Affiliation(s)
- K Yuasa
- Discovery Research Laboratory, Tanabe Seiyaku Co. Ltd., 2-50, Kawagishi 2-chome, Toda, Saitama, Japan
| | | | | | | |
Collapse
|