1
|
Mandal V, Ajabiya J, Khan N, Tekade RK, Sengupta P. Advances and challenges in non-targeted analysis: An insight into sample preparation and detection by liquid chromatography-mass spectrometry. J Chromatogr A 2024; 1737:465459. [PMID: 39476774 DOI: 10.1016/j.chroma.2024.465459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 10/16/2024] [Accepted: 10/17/2024] [Indexed: 11/10/2024]
Abstract
Unknown impurities, metabolites and harmful pollutants present in pharmaceutical products, biological and environmental samples, respectively are of high concern in terms of their detection and quantification. The targeted analysis aims to quantify known chemical entities, but it lacks the ability to identify unknown components present in a sample. Non-targeted analysis is an analytical approach that can be made applicable to various disciplines of science to effectively search for unknown chemical, biological, or environmental entities that can answer various baffling mysteries of research. It employs various high-end analytical techniques that can specifically screen out multiple unknown compounds from complex mixtures. Non-targeted analysis is also applicable for complex studies such as metabolomics to search unidentified metabolites of new chemical entities. This review critically discusses the current advancements in non-targeted analysis related to the analysis of pharmaceutical, biological, and environmental samples. Various steps like sample collection, handling, preparation, extraction, its analysis using advanced techniques like high-resolution mass spectrometry, liquid chromatography mass spectrometry, and lastly interpretation of the huge amounts of complex data obtained upon analysis of complex matrices have been discussed broadly in this article. Besides the advantages of non-targeted analysis over targeted analysis, limitations, bioinformatics tools, sources of error, and research gaps have been critically analyzed.
Collapse
Affiliation(s)
- Vivek Mandal
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Palaj, Gandhinagar, Gujarat 382355, India
| | - Jinal Ajabiya
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Palaj, Gandhinagar, Gujarat 382355, India
| | - Nasir Khan
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Palaj, Gandhinagar, Gujarat 382355, India
| | - Rakesh K Tekade
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Palaj, Gandhinagar, Gujarat 382355, India
| | - Pinaki Sengupta
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Palaj, Gandhinagar, Gujarat 382355, India.
| |
Collapse
|
2
|
de Souza FTC, da Silva MZF, de Carvalho HH, Vidal CB, do Nascimento RF, Longhinotti E. Evaluating BTEX in vehicle exhaust gas: A fast and efficient approach using SPME and GC-BID. J Chromatogr A 2024; 1736:465417. [PMID: 39378628 DOI: 10.1016/j.chroma.2024.465417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/01/2024] [Accepted: 10/03/2024] [Indexed: 10/10/2024]
Abstract
Benzene, toluene, ethylbenzene, and the xylene isomers (m, p, and o-xylene) (BTEX) are known for their harmful effects on human health and have been extensively studied across various environmental matrices. However, quantifying BTEX in exhaust gases poses challenges due to the complexity of the matrices. In this study, we investigated a method development strategy involving solid-phase microextraction (SPME) and gas chromatography coupled with a dielectric barrier discharge ionization Detector (BID) for quantifying BTEX emitted from internal combustion engines operating at idle. Sampling was conducted using 1.0 L Tedlar bags, followed by withdrawal of aliquots and dilution with atmospheric air using a novel device (graduated vial) designed for gaseous samples. The SPME-GC-BID method was developed and validated for the conditions: BTEX extraction in CAR/PDMS 75 μm fiber at a contact time of 5.0 min at a temperature of 27 °C, followed by GC-BID analysis. Method validation to ensure the reliability of quantitative results used the merit figures e.g., limits of detection (LOD) and quantification (LOQ), precision, and accuracy (recovery). LOD varied from 0.194 to 0.340 mg m-3, LOQ varied from 0.587 to 1.03 mg m-3, precision ranged from 1.47 to 7.14 %, and recovery varied from 82.34 to 109.5 %. BTEX concentration in vehicle exhaust varied from 3.40 to 16.4 mg m-3. The results showed, concerning the figures of merit analyzed, that the SPME-GC-BID method provides good sensibility, precision, and accuracy for evaluating the presence of BTEX in the exhaust of internal combustion engines, contributing to the understanding of health risks associated with vehicle emissions.
Collapse
Affiliation(s)
| | - Maria Z F da Silva
- Departmento de Química Analítica e Físico-Química, Universidade Federal do Ceará, 60455-970, Fortaleza, Ceará, Brazil
| | | | - Carla B Vidal
- Departmento de Química Analítica e Físico-Química, Universidade Federal do Ceará, 60455-970, Fortaleza, Ceará, Brazil
| | - Ronaldo F do Nascimento
- Departmento de Química Analítica e Físico-Química, Universidade Federal do Ceará, 60455-970, Fortaleza, Ceará, Brazil
| | - Elisane Longhinotti
- Departmento de Química Analítica e Físico-Química, Universidade Federal do Ceará, 60455-970, Fortaleza, Ceará, Brazil; (Actual) Departmento Acadêmico de Química e Biologia, Universidade Tecnológica Federal do Paraná, 812805-340, Curitiba, Paraná, Brazil.
| |
Collapse
|
3
|
Tao Q, Ma P, Chen B, Qu X, Fu H. Hierarchically spherical assembly of carbon nanorods derived from metal-organic framework as solid-phase microextraction coating for nitrated polycyclic aromatic hydrocarbon analysis. J Chromatogr A 2024; 1736:465352. [PMID: 39255650 DOI: 10.1016/j.chroma.2024.465352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/03/2024] [Accepted: 09/05/2024] [Indexed: 09/12/2024]
Abstract
Nitrated polycyclic aromatic hydrocarbons (nitro-PAHs) are pervasive contaminants in aquatic environments. They are characterized by persistence, toxicity, bioaccumulation, and long-range transport, significantly threatening human health. The development of sensitive methods for nitro-PAH analysis in environmental samples is in great need. This study developed a novel carbonaceous SPME coating derived from metal-organic framework (MOF), namely a spherical assembly consisting of carbon nanorods with hierarchical porosity (HP-MOF-C), for the extraction and determination of nitro-PAHs in waters. The HP-MOF-C coated fiber demonstrated superior nitro-PAH extraction efficiencies, with enrichment factors 2∼70 times higher than commercial fibers. This enhancement was due to the strong hydrophobic, π-π electron coupling/stacking, and π-π electron donor-acceptor interactions between the carbonaceous framework of HP-MOF-C and the nitro-PAHs. Moreover, the unique hierarchical porous structure of HP-MOF-C accelerated the diffusion of nitro-PAHs, further facilitating their enrichment. The fiber also exhibited good thermal stability, remarkable chemical stabilities against common acid, base, and polar/non-polar solvents, and long service life (> 150 SPME cycles). The nitro-PAH determination method based on HP-MOF-C coating yielded wide linear ranges, low detection limits (0.4∼5.0 ng L-1), satisfactory repeatability and reproducibility, and good recoveries in real water samples. The proposed method was considered to be green according to the Analytical GREEnness assessment. The present study not only offers an efficient SPME coating for the enrichment of nitro-PAHs, but also provides insights into the design of porous coating materials.
Collapse
Affiliation(s)
- Qingwen Tao
- State Key Laboratory of Pollution Control and Resource Reuse/School of the Environment, Nanjing University, Jiangsu 210046, China
| | - Pu Ma
- State Key Laboratory of Pollution Control and Resource Reuse/School of the Environment, Nanjing University, Jiangsu 210046, China
| | - Beining Chen
- State Key Laboratory of Pollution Control and Resource Reuse/School of the Environment, Nanjing University, Jiangsu 210046, China
| | - Xiaolei Qu
- State Key Laboratory of Pollution Control and Resource Reuse/School of the Environment, Nanjing University, Jiangsu 210046, China
| | - Heyun Fu
- State Key Laboratory of Pollution Control and Resource Reuse/School of the Environment, Nanjing University, Jiangsu 210046, China.
| |
Collapse
|
4
|
El Orche A, Cheikh A, El Khabbaz C, Bouchafra H, Faouzi MEA, Cherrah Y, Ansari SA, Alkahtani HM, Ansari SA, Bouatia M. Advancing Bioanalytical Method Validation: A Comprehensive ICH M10 Approach for Validating LC-MS/MS to Quantify Fluoxetine in Human Plasma and Its Application in Pharmacokinetic Studies. Molecules 2024; 29:4588. [PMID: 39407517 PMCID: PMC11477725 DOI: 10.3390/molecules29194588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/19/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024] Open
Abstract
A fast and sample cleanup approach for fluoxetine in human plasma was developed using protein precipitation coupled with LC-MS-MS. Samples were treated with methanol prior to LC-MS-MS analysis. Chromatographic separation was performed on a reverse phase column with an isocratic mobile phase of methanol and 10 mM ammonium formate pH acidified with formic acid (80:20, v/v) at a flow rate of 0.2 mL/min. The run time was 4 min. Mass parameters were optimized to monitor transitions at m/z [M + H]+ 310 > > 148 for fluoxetine and m/z [M + H]+ 315.1 > > 153 for fluoxetine-d5 as an internal standard. The lower limit of quantification and the dynamic range were 0.25 and 0.25-50 ng/mL, respectively. Linearity was good for intra-day and inter-day validations (R2 = 0.999). The matrix effect was acceptable with CV% < 15 and accuracy% < 15. The hemolytic effect was negligible. Fluoxetine was stable in human plasma for 48 h at room temperature (25 °C), for 12 months frozen at -25 °C, for 48 h in an auto-sampler at 6 °C, and for three freeze/thaw cycles. The validated method was applied in a pharmacokinetic study to determine the concentration of fluoxetine in plasma samples. The study provides a fast and simple bioanalytical method for routine analysis and may be particularly useful for bioequivalence studies. The method was successfully applied to a pharmacokinetic study of fixed-dose fluoxetine in nine healthy volunteers.
Collapse
Affiliation(s)
- Aimen El Orche
- Laboratory of Drugs Sciences, Biomedical Research and Biotechnology, Faculty of Medicine and Pharmacy, Hassan II University of Casablanca, B.P. 9154, Casablanca 20250, Morocco;
| | - Amine Cheikh
- Center for Bioequivalence Studies of the Sheikh Zaid Foundation, Av. Allal Al Fassi, Rabat 10000, Morocco; (A.C.); (C.E.K.); (Y.C.)
| | - Choukri El Khabbaz
- Center for Bioequivalence Studies of the Sheikh Zaid Foundation, Av. Allal Al Fassi, Rabat 10000, Morocco; (A.C.); (C.E.K.); (Y.C.)
| | - Houda Bouchafra
- Laboratory of Drugs Sciences, Biomedical Research and Biotechnology, Faculty of Medicine and Pharmacy, Hassan II University of Casablanca, B.P. 9154, Casablanca 20250, Morocco;
| | - My El Abbes Faouzi
- Laboratory of Pharmacology and Toxicology, Biopharmaceutical and Toxicological Analysis Research Team, Faculty of Medicine and Pharmacy, Mohammed V University, Rabat 10000, Morocco;
| | - Yahya Cherrah
- Center for Bioequivalence Studies of the Sheikh Zaid Foundation, Av. Allal Al Fassi, Rabat 10000, Morocco; (A.C.); (C.E.K.); (Y.C.)
- Laboratory of Pharmacology and Toxicology, Biopharmaceutical and Toxicological Analysis Research Team, Faculty of Medicine and Pharmacy, Mohammed V University, Rabat 10000, Morocco;
| | - Siddique Akber Ansari
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; (S.A.A.); (H.M.A.)
| | - Hamad M. Alkahtani
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; (S.A.A.); (H.M.A.)
| | - Shoeb Anwar Ansari
- Department of Drug Science and Technology, University of Turin, 10124 Turin, Italy;
| | - Mustapha Bouatia
- Laboratory of Analytical Chemistry, Team of Formulation and Quality Control of Health Products, Faculty of Medicine and Pharmacy, Mohammed V University, Rabat 10000, Morocco;
| |
Collapse
|
5
|
Kataoka H, Ishizaki A, Saito K, Ehara K. Developments and Applications of Molecularly Imprinted Polymer-Based In-Tube Solid Phase Microextraction Technique for Efficient Sample Preparation. Molecules 2024; 29:4472. [PMID: 39339467 PMCID: PMC11433927 DOI: 10.3390/molecules29184472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/15/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Despite advancements in the sensitivity and performance of analytical instruments, sample preparation remains a bottleneck in the analytical process. Currently, solid-phase extraction is more widely used than traditional organic solvent extraction due to its ease of use and lower solvent requirements. Moreover, various microextraction techniques such as micro solid-phase extraction, dispersive micro solid-phase extraction, solid-phase microextraction, stir bar sorptive extraction, liquid-phase microextraction, and magnetic bead extraction have been developed to minimize sample size, reduce solvent usage, and enable automation. Among these, in-tube solid-phase microextraction (IT-SPME) using capillaries as extraction devices has gained attention as an advanced "green extraction technique" that combines miniaturization, on-line automation, and reduced solvent consumption. Capillary tubes in IT-SPME are categorized into configurations: inner-wall-coated, particle-packed, fiber-packed, and rod monolith, operating either in a draw/eject system or a flow-through system. Additionally, the developments of novel adsorbents such as monoliths, ionic liquids, restricted-access materials, molecularly imprinted polymers (MIPs), graphene, carbon nanotubes, inorganic nanoparticles, and organometallic frameworks have improved extraction efficiency and selectivity. MIPs, in particular, are stable, custom-made polymers with molecular recognition capabilities formed during synthesis, making them exceptional "smart adsorbents" for selective sample preparation. The MIP fabrication process involves three main stages: pre-arrangement for recognition capability, polymerization, and template removal. After forming the template-monomer complex, polymerization creates a polymer network where the template molecules are anchored, and the final step involves removing the template to produce an MIP with cavities complementary to the template molecules. This review is the first paper to focus on advanced MIP-based IT-SPME, which integrates the selectivity of MIPs into efficient IT-SPME, and summarizes its recent developments and applications.
Collapse
Affiliation(s)
- Hiroyuki Kataoka
- School of Pharmacy, Shujitsu University, Nishigawara, Okayama 703-8516, Japan
| | - Atsushi Ishizaki
- School of Pharmacy, Shujitsu University, Nishigawara, Okayama 703-8516, Japan
| | - Keita Saito
- School of Pharmacy, Shujitsu University, Nishigawara, Okayama 703-8516, Japan
| | - Kentaro Ehara
- School of Pharmacy, Shujitsu University, Nishigawara, Okayama 703-8516, Japan
| |
Collapse
|
6
|
Cuevas-Delgado P, Warmuzińska N, Łuczykowski K, Bojko B, Barbas C. Exploring sample treatment strategies for untargeted metabolomics: A comparative study of solid phase microextraction (SPME) and homogenization with solid-liquid extraction (SLE) in renal tissue. Anal Chim Acta 2024; 1312:342758. [PMID: 38834268 DOI: 10.1016/j.aca.2024.342758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 05/06/2024] [Accepted: 05/20/2024] [Indexed: 06/06/2024]
Abstract
BACKGROUND The selection of the sample treatment strategy is a crucial step in the metabolomics workflow. Solid phase microextraction (SPME) is a sample processing methodology with great potential for use in untargeted metabolomics of tissue samples. However, its utilization is not as widespread as other standard protocols involving steps of tissue collection, metabolism quenching, homogenization, and extraction of metabolites by solvents. Since SPME allows us to perform all these steps in one action in tissue samples, in addition to other advantages, it is necessary to know whether this methodology produces similar or comparable metabolome and lipidome coverage and performance to classical methods. RESULTS SPME and homogenization with solid-liquid extraction (Homo-SLE) sample treatment methods were applied to healthy murine kidney tissue, followed by comprehensive metabolomics and lipidomics analyses. In addition, it has been tested whether freezing and storage of the tissue causes alterations in the renal metabolome and lipidome, so the analyses were performed on fresh and frozen tissue samples Lipidomics analysis revealed the exclusive presence of different structural membrane and intracellular lipids in the Homo-SLE group. Conversely, all annotated metabolites were detected in both groups. Notably, the freezing of the sample mainly causes a decrease in the levels of most lipid species and an increase in metabolites such as amino acids, purines, and pyrimidines. These alterations are principally detected in a statistically significant way by SPME methodology. Finally, the samples of both methodologies show a positive correlation in all the analyses. SIGNIFICANCE These results demonstrate that in SPME processing, as long as the fundamentals of non-exhaustive extraction in a pre-equilibrium kinetic regime, extraction in a tissue localized area, the chemistry of the fiber coating and non-homogenization of the tissue are taken into account, is an excellent method to use in kidney tissue metabolomics; since this methodology presents an easy-to-use, efficient, and less invasive approach that simplifies the different sample processing steps.
Collapse
Affiliation(s)
- Paula Cuevas-Delgado
- Centre for Metabolomics and Bioanalysis (CEMBIO), School of Pharmacy, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Madrid, Spain
| | - Natalia Warmuzińska
- Department of Pharmacodynamics and Molecular Pharmacology, Faculty of Pharmacy, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Kamil Łuczykowski
- Department of Pharmacodynamics and Molecular Pharmacology, Faculty of Pharmacy, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Barbara Bojko
- Department of Pharmacodynamics and Molecular Pharmacology, Faculty of Pharmacy, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Coral Barbas
- Centre for Metabolomics and Bioanalysis (CEMBIO), School of Pharmacy, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Madrid, Spain.
| |
Collapse
|
7
|
Yıldız E, Çabuk H. In-syringe homogeneous liquid-phase microextraction followed by filtration-based phase separation for on-site extraction of chloroanilines from water samples. J Sep Sci 2024; 47:e2400124. [PMID: 38772717 DOI: 10.1002/jssc.202400124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/24/2024] [Accepted: 03/28/2024] [Indexed: 05/23/2024]
Abstract
This study introduces a new in-syringe homogeneous liquid-phase microextraction method for the rapid on-site extraction of chloroanilines from water samples. Extraction was performed using a plastic syringe, eliminating the use of any electrical power source. Di-(2-ethylhexyl) phosphoric acid (DEHPA) served as the extractant. The process initially involved dissolving DEHPA in an alkaline solution to obtain a homogeneous solution. Subsequently, the sodium salt of DEHPA was precipitated by salting-out, and the resulting heterogeneous mixture was filtered using a syringe filter. The precipitate containing the analytes was then dissolved in methanol for analysis by high-performance liquid chromatography. Under optimal conditions, extraction recovery for chloroanilines ranged from 26% to 71%. Method linearity was evaluated within a concentration range of 1.0-100 µg/L, resulting in coefficients of determination exceeding 0.9987 for all analytes. Method detection limits ranged from 0.28 to 0.41 µg/L. Intra and inter-day precision values were below 9.5% and 10.8%, respectively. The developed method was applied to determine chloroanilines in real waters, yielding acceptable recoveries ranging from 80% to 109% for spiked tap, rain, and stream waters. Additionally, the method was successfully employed for on-site extraction of target contaminants, demonstrating no statistically significant differences compared to laboratory results.
Collapse
Affiliation(s)
- Elif Yıldız
- Zonguldak Bülent Ecevit University, Faculty of Sciences, Department of Chemistry, Zonguldak, Türkiye
| | - Hasan Çabuk
- Zonguldak Bülent Ecevit University, Faculty of Sciences, Department of Chemistry, Zonguldak, Türkiye
| |
Collapse
|
8
|
Khan N, Sengupta P. Technological Advancement and Trend in Selective Bioanalytical Sample Extraction through State of the Art 3-D Printing Techniques Aiming 'Sorbent Customization as per need'. Crit Rev Anal Chem 2024:1-21. [PMID: 38319592 DOI: 10.1080/10408347.2024.2305275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
The inherent complexity of biological matrices and presence of several interfering substances in biological samples make them unsuitable for direct analysis. An effective sample preparation technique assists in analyte enrichment, improving selectivity and sensitivity of bioanalytical method. Because of several key benefits of employing 3D printed sorbent in sample extraction, it has recently gained popularity across a variety of industries. Applications for 3D printing in the field of bioanalytical research have grown recently, particularly in the areas of miniaturization, (bio)sensing, sample preparation, and separation sciences. Due to the high expense of the solid phase microextraction cartridge, researcher approaches in-lab production of sorbent material for the extraction of analyte from biological samples. Owing to its distinct advantages such as low costs, automation capabilities, capacity to produce products in a variety of shapes, and reduction of tedious steps of sample preparation, 3D printed sorbents are gaining increased attention in the field of bioanalysis. It is also reported to offer high selectivity and assist in achieving a much lower limit of detection. In this review, we have discussed current advancements in different types of 3D printed sorbents, production methods, and their applications in the field of bioanalytical sample preparation.
Collapse
Affiliation(s)
- Nasir Khan
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Government of India, Gandhinagar, Gujarat, India
| | - Pinaki Sengupta
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Government of India, Gandhinagar, Gujarat, India
| |
Collapse
|
9
|
Zhao MM, Wu HZ, Deng XK, Yi RN, Yang Y. The application progress of magnetic solid-phase extraction for heavy metal analysis in food: a mini review. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:333-343. [PMID: 38126405 DOI: 10.1039/d3ay01617j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
The emerging sample pretreatment technique of magnetic solid-phase extraction (MSPE) has drawn the attention of researchers owing to its advantages of less reagent consumption, fast separation/enrichment process, high adsorption capacity, and simple operation. This paper presents a review of synthesis techniques, classification, and analysis procedures for MSPE in the detection of heavy metals in food. Magnetic adsorbents derived from silica, metal oxides, carbon, polymers, etc., are applied for the detection of heavy metals in food. Then, the recent development of the technology of MSPE for the analysis of heavy metal extraction in food is summarized in detail. Finally, the future outlook for the improvement of MSPE is also discussed.
Collapse
Affiliation(s)
- Ming-Ming Zhao
- Criminal Technology Department, Hunan Police Academy, Changsha, Hunan, 410138, China
| | - Hai-Zhi Wu
- Hunan Province Institute of Product and Goods Quality Inspection, Changsha, Hunan 410007, China.
| | - Xiao-Ke Deng
- Criminal Technology Department, Hunan Police Academy, Changsha, Hunan, 410138, China
| | - Rong-Nan Yi
- Criminal Technology Department, Hunan Police Academy, Changsha, Hunan, 410138, China
| | - Yuan Yang
- College of Resources and Environment, Hunan Agricultural University, Changsha, Hunan 410128, China.
| |
Collapse
|
10
|
Williams ML, Olomukoro AA, Emmons RV, Godage NH, Gionfriddo E. Matrix effects demystified: Strategies for resolving challenges in analytical separations of complex samples. J Sep Sci 2023; 46:e2300571. [PMID: 37897324 DOI: 10.1002/jssc.202300571] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 09/22/2023] [Accepted: 09/29/2023] [Indexed: 10/30/2023]
Abstract
Matrix effects can significantly impede the accuracy, sensitivity, and reliability of separation techniques presenting a formidable challenge to the analytical process. It is crucial to address matrix effects to achieve accurate and precise measurements in complex matrices. The multifaceted nature of matrix effects which can be influenced by factors such as target analyte, sample preparation protocol, composition, and choice of instrument necessitates a pragmatic approach when analyzing complex matrices. This review aims to highlight common challenges associated with matrix effects throughout the entire analytical process with emphasis on gas chromatography-mass spectrometry, liquid chromatography-mass spectrometry, and sample preparation techniques. These techniques are susceptible to matrix effects that could lead to ion suppression/enhancement or impact the analyte signal at various stages of the analytical workflow. The assessment, quantification, and mitigation of matrix effects are necessary in developing any analytical method. Strategies can be implemented to reduce or eliminate the matrix effect by changing the type of ionization, improving extraction and clean-up methods, optimization of chromatography conditions, and corrective calibration methods. While development of an effective strategy to completely mitigate matrix effects remains elusive, an integrated approach that combines sample preparation, analytical extraction, and effective instrumental analysis remains the most promising avenue for identifying and resolving matrix effects.
Collapse
Affiliation(s)
- Madison L Williams
- Department of Chemistry and Biochemistry, The University of Toledo, Toledo, Ohio, USA
- Dr. Nina McClelland Laboratory for Water Chemistry and Environmental Analysis, The University of Toledo, Toledo, Ohio, USA
| | - Aghogho Abigail Olomukoro
- Department of Chemistry and Biochemistry, The University of Toledo, Toledo, Ohio, USA
- Dr. Nina McClelland Laboratory for Water Chemistry and Environmental Analysis, The University of Toledo, Toledo, Ohio, USA
| | - Ronald V Emmons
- Department of Chemistry and Biochemistry, The University of Toledo, Toledo, Ohio, USA
- Dr. Nina McClelland Laboratory for Water Chemistry and Environmental Analysis, The University of Toledo, Toledo, Ohio, USA
| | - Nipunika H Godage
- Department of Chemistry and Biochemistry, The University of Toledo, Toledo, Ohio, USA
- Dr. Nina McClelland Laboratory for Water Chemistry and Environmental Analysis, The University of Toledo, Toledo, Ohio, USA
| | - Emanuela Gionfriddo
- Department of Chemistry and Biochemistry, The University of Toledo, Toledo, Ohio, USA
- Dr. Nina McClelland Laboratory for Water Chemistry and Environmental Analysis, The University of Toledo, Toledo, Ohio, USA
- School of Green Chemistry and Engineering, The University of Toledo, Toledo, Ohio, USA
| |
Collapse
|
11
|
Liu H, He X, Hu X, Pan B, Huang Z, Shen J. Hollow fiber-solid phase microextraction of fatty acid methyl esters from wastewater coupled with micro sample collector assisted injection technique. J Chromatogr A 2023; 1710:464415. [PMID: 37783003 DOI: 10.1016/j.chroma.2023.464415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/15/2023] [Accepted: 09/25/2023] [Indexed: 10/04/2023]
Abstract
Hollow fiber-solid phase microextraction combined with micro sample collector assisted injection technique was developed for the detection of trace fatty acid methyl esters in biodiesel wastewater. Polypropylene hollow fiber was employed as extraction material to absorb fatty acid methyl esters in biodiesel wastewater. After the adsorption, hollow fiber was sleeved on the needle core of a micro sample collector and introduced directly into a GC injector for thermal desorption of the analytes. The selectivity of polypropylene hollow fiber on fatty acid methyl esters was investigated by extracting common pollutants in wastewater. Under the optimal conditions, the enrichment factors of polypropylene hollow fiber for methyl palmitate, methyl linoleate, methyl oleate, and methyl stearate were tested as high as 471, 287, 527, and 801, respectively. The quantitative method was validated and the linearity was satisfactory over a concentration range of 10-2000 µg/L with the correlation coefficients more than 0.9990 for 4 fatty acid methyl esters. The limits of detection and quantification were 0.04-0.40 µg/L and 10.0 µg/L, respectively. The recoveries were in the range of 92.0-116.7% by analyzing actual spiked samples. The results showed that the established method was suitable for the analysis of trace fatty acid methyl esters in water samples, with simple operation, low cost and environmental friendliness.
Collapse
Affiliation(s)
- Huijun Liu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xinying He
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xueqian Hu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Baoquan Pan
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Zhongping Huang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China; Ningbo Academy of Product and Food Quality Inspection (Ningbo Fiber Inspection Institute), Ningbo 315048, China.
| | - Jian Shen
- Ningbo Academy of Product and Food Quality Inspection (Ningbo Fiber Inspection Institute), Ningbo 315048, China
| |
Collapse
|
12
|
Tan D, Liang Y, Guo T, Wang Y, Li Y, Sun X, Wang D. Dummy molecularly imprinted polymers-agarose gel mixed matrix membrane for extraction of amphetamine-type stimulants in wastewater and urine. J Chromatogr A 2023; 1708:464368. [PMID: 37708673 DOI: 10.1016/j.chroma.2023.464368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 08/17/2023] [Accepted: 09/06/2023] [Indexed: 09/16/2023]
Abstract
Dummy molecularly imprinted polymers (DMIPs) with high selectivity for amphetamine-type stimulants (ATSs) were synthesized using synephrine molecule as a dummy template. The polymers were irregularly massive with a specific surface area of 330 m2g-1. Adsorption experiments found that the imprinting factors for five ATSs (amphetamine, methamphetamine, 3,4-methylenedioxyamphetamine, 3,4-methylenedioxymethamphetamine, and 3,4-methylenedioxy-N-ethylamphetamine) were 2.3∼3.7. The DMIPs-agarose gel mixed matrix membranes (MMMs) were further prepared by incorporating DMIPs in the agarose matrix. MMMs were used to extract five ATSs from wastewater and urine samples. Extraction conditions such as membrane matrix, sample pH, dissolved organic matter content, extraction time, and elution reagent were optimized. Under optimal conditions, the developed MMMs-HPLC-MS/MS method exhibited low limits of detection (0.1∼3.0ng L-1), satisfactory recoveries (91.7∼100%), and good repeatability (RSD<7%, n=3). It was then successfully applied to ATSs analysis in wastewater and urine samples. Recoveries of ATSs in spiked wastewater and urine were 82.0∼98.4% and 82.3∼95.7%, respectively. Moreover, compared with other methods, the present method possessed the advantages of high quantitative ability, suitable for typical environmental conditions, and low application cost. The above results suggested that the developed MMMs-HPLC-MS/MS method could be used as a feasible strategy to extract and determine trace ATSs in wastewater and urine samples.
Collapse
Affiliation(s)
- Dongqin Tan
- College of Environmental Science and Engineering, Dalian Maritime University, No. 1 Linghai Road, Dalian 116026, China.
| | - Yi Liang
- College of Environmental Science and Engineering, Dalian Maritime University, No. 1 Linghai Road, Dalian 116026, China
| | - Ting Guo
- College of Environmental Science and Engineering, Dalian Maritime University, No. 1 Linghai Road, Dalian 116026, China
| | - Yue Wang
- College of Environmental Science and Engineering, Dalian Maritime University, No. 1 Linghai Road, Dalian 116026, China
| | - Yanying Li
- College of Environmental Science and Engineering, Dalian Maritime University, No. 1 Linghai Road, Dalian 116026, China
| | - Xiaoli Sun
- Department of Chemistry, Lishui University, Lishui 32300, China
| | - Degao Wang
- College of Environmental Science and Engineering, Dalian Maritime University, No. 1 Linghai Road, Dalian 116026, China.
| |
Collapse
|
13
|
Agatonovic-Kustrin S, Gegechkori V, Kobakhidze T, Morton D. Solid-Phase Microextraction Techniques and Application in Food and Horticultural Crops. Molecules 2023; 28:6880. [PMID: 37836723 PMCID: PMC10574797 DOI: 10.3390/molecules28196880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/08/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
Solid-phase microextraction (SPME) is a sample preparation technique which utilizes small amounts of an extraction phase for the extraction of target analytes from investigated sample matrices. Its simplicity of use, relatively short sample processing time, and fiber reusability have made SPME an attractive choice for many analytical applications. SPME has been widely applied to the sampling and analysis of environmental, food, aromatic, metallic, forensic, and pharmaceutical samples. Solid phase microextraction is used in horticultural crops, for example, to determine water and soil contaminants (pesticides, alcohols, phenols, amines, herbicides, etc.). SPME is also used in the food industry to separate biologically active substances in food products for various purposes, for example, disease prevention, determining the smell of food products, and analyzing tastes. SPME has been applied to forensic analysis to determine the alcohol concentration in blood and that of sugar in urine. This method has also been widely used in pharmaceutical analysis. It is a solvent-free sample preparation technique that integrates sampling, isolation, and concentration. This review focuses on recent work on the use of SPME techniques in the analysis of food and horticultural crops.
Collapse
Affiliation(s)
- Snezana Agatonovic-Kustrin
- Department of Pharmaceutical and Toxicological Chemistry Named after Arzamastsev of the Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (V.G.); (T.K.); (D.M.)
- School of Rural Clinical Sciences, La Trobe Institute for Molecular Sciences, La Trobe University, Edwards Rd, Bendigo 3550, Australia
| | - Vladimir Gegechkori
- Department of Pharmaceutical and Toxicological Chemistry Named after Arzamastsev of the Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (V.G.); (T.K.); (D.M.)
| | - Tamara Kobakhidze
- Department of Pharmaceutical and Toxicological Chemistry Named after Arzamastsev of the Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (V.G.); (T.K.); (D.M.)
| | - David Morton
- Department of Pharmaceutical and Toxicological Chemistry Named after Arzamastsev of the Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (V.G.); (T.K.); (D.M.)
- School of Rural Clinical Sciences, La Trobe Institute for Molecular Sciences, La Trobe University, Edwards Rd, Bendigo 3550, Australia
| |
Collapse
|
14
|
Lin J, Gao X, Gong L, Zhang X, Li T, Zhao F, Zeng B. An electrochemically fabricated ZIF-67/[HOEMIM]BF 4 coating for the solid-phase microextraction and detection of polycyclic aromatic hydrocarbons. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:4883-4891. [PMID: 37712204 DOI: 10.1039/d3ay01174g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
Coatings are considered to play a crucial role in solid-phase microextraction (SPME). In this work, a novel coating named ZIF-67/[HOEMIM]BF4 was fabricated through in situ potentiostatic electrodeposition in methanol solutions containing ZIF-67 precursors and 1-(2'-hydroxyethyl)-3-methylimidazolium tetrafluoroborate ([HOEMIM]BF4). Compared with the traditional solvothermal method, this method reduced the synthesis time and enabled ZIF-67 to grow directly on the surface of stainless-steel wire, effectively simplifying the preparation process and improving the coating reproducibility. Owing to the inherent characteristics such as high porosity and high thermal and mechanical stability, and the impressive morphological regulation and extraction function of [HOEMIM]BF4, the developed coating exhibited a prolonged service life and a better extraction capacity for trace polycyclic aromatic hydrocarbons (PAHs) compared to single ZIF-67 and commercial fibers. Under the optimal conditions, the linear range of the ZIF-67/[HOEMIM]BF4-based SPME-GC method was 0.01-500 μg L-1, and the detection limit was 0.27-5.2 ng L-1. When applied in the determination of PAHs in a real water sample, recoveries between 85.6-117.3% were obtained, indicating the potential of ZIF-67/[HOEMIM]BF4 in the high efficiency SPME and GC analysis of PAHs.
Collapse
Affiliation(s)
- Jingwen Lin
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China.
| | - Xuening Gao
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China.
| | - Linbo Gong
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China.
| | - Xiaoqing Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China.
| | - Tianning Li
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China.
| | - Faqiong Zhao
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China.
| | - Baizhao Zeng
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China.
| |
Collapse
|
15
|
Khalili M, Dadfarnia S, Haji Shabani AM. Green thin-film microextraction based on polyaniline emeraldine salt-coated cellulose filter paper as an efficient preparation plane for extraction of Cd from environmental samples. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2023. [DOI: 10.1007/s13738-023-02791-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
|
16
|
Suseela MNL, Viswanadh MK, Mehata AK, Priya V, Setia A, Malik AK, Gokul P, Selvin J, Muthu MS. Advances in solid-phase extraction techniques: Role of nanosorbents for the enrichment of antibiotics for analytical quantification. J Chromatogr A 2023; 1695:463937. [PMID: 37019063 DOI: 10.1016/j.chroma.2023.463937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/18/2023] [Accepted: 03/18/2023] [Indexed: 04/05/2023]
Abstract
Antibiotics are life-saving medications for treating bacterial infections; however it has been discovered that resistance developed by bacteria against these incredible agents is the primary contributing factor to rising global mortality rates. The fundamental cause of the emergence of antibiotic resistance in bacteria is the presence of antibiotic residues in various environmental matrices. Although antibiotics are present in diluted form in environmental matrices like water, consistent exposure of bacteria to these minute levels is enough for the resistance to develop. So, identifying these tiny concentrations of numerous antibiotics in various and complicated matrices will be a crucial step in controlling their disposal in those matrices. Solid phase extraction, a popular and customizable extraction technology, was developed according to the aspirations of the researchers. It is a unique alternative technique that could be implemented either alone or in combination with other approaches at different stages because of the multitude of sorbent varieties and techniques. Initially, sorbents are utilized for extraction in their natural state. The basic sorbent has been modified over time with nanoparticles and multilayer sorbents, which have indeed helped to accomplish the desired extraction efficiencies. Among the current traditional extraction techniques such as liquid-liquid extraction, protein precipitation, and salting out techniques, solid-phase extractions (SPE) with nanosorbents are most productive because, they can be automated, selective, and can be integrated with other extraction techniques. This review aims to provide a broad overview of advancements and developments in sorbents with a specific emphasis on the applications of SPE techniques used for antibiotic detection and quantification in various matrices in the last two decades.
Collapse
Affiliation(s)
| | - Matte Kasi Viswanadh
- KL College of Pharmacy, Koneru Lakshmaiah Education Foundation, Vaddeswaram, AP 522302, India
| | - Abhishesh Kumar Mehata
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Vishnu Priya
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Aseem Setia
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Ankit Kumar Malik
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Patharaj Gokul
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Joseph Selvin
- Department of Microbiology, Pondicherry University, Puducherry 605014, India
| | - Madaswamy S Muthu
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India.
| |
Collapse
|
17
|
Hu W, Zhou W, Wang C, Liu Z, Chen Z. Direct coupling in-tube solid-phase microextraction with mass spectrometry using polymer coated open-tubular column for rapid analysis of antiepileptic drugs in biofluids. Anal Chim Acta 2023; 1240:340775. [PMID: 36641145 DOI: 10.1016/j.aca.2022.340775] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 12/25/2022] [Accepted: 12/30/2022] [Indexed: 12/31/2022]
Abstract
Development of high-throughput and rapid screening analytical method is in high demand for anti-doping and clinical point-of-care (POC) analysis. Solid-phase microextraction and mass spectrometry direct coupling (SPME-MS) has been proved as a rapid and effective way for target analysis in complex sample matrixes. An online direct coupling of in-tube SPME (IT-SPME) with MS using polymer coated open-tubular column has been developed in this work. A sharp stainless-steel needle was attached at the end of the SPME column, which enables the direct ionization of the analytes after elution from the IT-SPME column. Itaconic acid-benzene co-polymer was in-situ grown on the inner surface of the fused silica capillary and used as extraction phase. This column has low backpressure and provides both hydrophobic and weak cationic exchange interaction with the target analytes due to the chemical properties. The developed online IT-SPME-MS method showed good extraction performance towards various target analytes and good reusability at least for 60 times. As a proof-of-concept application, the above method was applied for the analysis of antiepileptic drugs (AEDs) in both plasma and urine samples with linear range (1 ng/mL-200 ng/mL), good linearity (R2 ≥ 0.99), and good reproducibility (intra-day RSDs less than 4.36%, inter-day RSDs less than 6.55%). The method exhibited high enrichment factors between 187 and 204 for the two AEDs and high sensitivity for the analysis of human plasma samples and urine samples.
Collapse
Affiliation(s)
- Wei Hu
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430072, China; Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan, 430071, China
| | - Wei Zhou
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430072, China
| | - Chenlu Wang
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430072, China
| | - Zichun Liu
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430072, China
| | - Zilin Chen
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430072, China; Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan, 430071, China.
| |
Collapse
|
18
|
Li W, Gu Y, Liu Z, Hua R, Wu X, Xue J. Development of a polyurethane-coated thin film solid phase microextraction device for multi-residue monitoring of pesticides in fruit and tea beverages. J Sep Sci 2023; 46:e2200661. [PMID: 36373185 DOI: 10.1002/jssc.202200661] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/05/2022] [Accepted: 11/07/2022] [Indexed: 11/15/2022]
Abstract
A novel solid-phase microextraction device coated with an efficient and cheap thin film of polyurethane was developed for trace determination of 13 widely used pesticides in fruit and tea beverages. A round-shaped polyurethane film covering the bottom of a glass vial was fabricated as the sorbent to exhibit a superior capacity for preconcentrating target compounds and reducing matrix interferences. After optimization of the key parameters including the film type, extraction time, solution pH, ionic strength, desorption solvent, and conditions, this device allowed an efficient adsorption-desorption cycle for the pesticides accomplished in one vial. Coupled with gas chromatography-electron capture detection, the polyurethane-coated thin film microextraction method was successfully established and applied for the analysis of real fruit and tea drinks, showing low limits of detection (0.001-0.015 μg/L), wide linear ranges (1.0-500.0 μg/L, r2 > 0.9931), good relative recoveries (77.2%-106.3%) and negligible matrix effects (86.1%-107.5%) for the target pesticides. The proposed approach revealed strong potential of extending its application by flexibly modifying the type or size of the coating film. This study provides insights into the enrichment of contaminants from complex samples using inexpensive and reusable microextraction devices that can limit the environmental and health impact of the sample preparation protocol.
Collapse
Affiliation(s)
- Wenhui Li
- College of Resources and Environment, Key Laboratory of Agri-food Safety of Anhui Province, Anhui Agricultural University, Hefei, P. R. China
| | - Ying Gu
- College of Resources and Environment, Key Laboratory of Agri-food Safety of Anhui Province, Anhui Agricultural University, Hefei, P. R. China
| | - Zikun Liu
- College of Resources and Environment, Key Laboratory of Agri-food Safety of Anhui Province, Anhui Agricultural University, Hefei, P. R. China
| | - Rimao Hua
- College of Resources and Environment, Key Laboratory of Agri-food Safety of Anhui Province, Anhui Agricultural University, Hefei, P. R. China
| | - Xiangwei Wu
- College of Resources and Environment, Key Laboratory of Agri-food Safety of Anhui Province, Anhui Agricultural University, Hefei, P. R. China
| | - Jiaying Xue
- College of Resources and Environment, Key Laboratory of Agri-food Safety of Anhui Province, Anhui Agricultural University, Hefei, P. R. China
| |
Collapse
|
19
|
Totten V, Willis J, Eddins S, Brooks B. Qualitative identification of volatile compounds in foods and flowers using passive headspace extraction with activated charcoal fabric. Food Res Int 2023; 163:112130. [PMID: 36596091 DOI: 10.1016/j.foodres.2022.112130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/29/2022] [Accepted: 11/06/2022] [Indexed: 11/19/2022]
Abstract
This study investigates the application of passive headspace analysis to several different foods and flowers and compares these results to other published studies. The method demonstrates the applicability of passive headspace analysis for extraction and qualitative analysis of volatile flavor components of citrus fruits and flower blossoms. The method is simple, inexpensive, fast, and provides an alternative to analysis of volatile flavor and fragrance compounds using solid phase microextraction techniques and other extraction techniques.
Collapse
Affiliation(s)
- Venita Totten
- Department of Natural Sciences, Gardner-Webb University, 110 South Main Street, Boiling Springs, NC 28017, United States.
| | - Jacob Willis
- Department of Natural Sciences, Gardner-Webb University, 110 South Main Street, Boiling Springs, NC 28017, United States.
| | - Stefka Eddins
- Department of Natural Sciences, Gardner-Webb University, 110 South Main Street, Boiling Springs, NC 28017, United States.
| | - Benjamin Brooks
- Department of Natural Sciences, Gardner-Webb University, 110 South Main Street, Boiling Springs, NC 28017, United States.
| |
Collapse
|
20
|
Fu Y, Li Y, Ma Y, He X, Xun X, Cui Y, Fan L, Dong Z. Effects of voriconazole and fluconazole on the pharmacokinetics of almonertinib in rats by UPLC-MS/MS. Biomed Chromatogr 2023; 37:e5525. [PMID: 36241418 DOI: 10.1002/bmc.5525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/11/2022] [Accepted: 10/11/2022] [Indexed: 12/15/2022]
Abstract
Almonertinib was included in the first-line treatment of non-small cell lung cancer with EGFR T790M mutations by the Chinese Society of Clinical Oncology in 2021. Considering that immunocompromised lung cancer patients are prone to opportunistic fungal infections, and most triazole antifungal drugs are moderate or strong inhibitors of CYP3A4, this study was conducted to develop and validate an accurate and rapid ultra-performance liquid chromatography tandem mass spectrometry method for quantifying almonertinib in plasma and for investigating the pharmacokinetic changes of almonertinib caused by voriconazole and fluconazole in rats. After liquid-liquid extraction with tert-butyl methyl ether, an XSelect HSS T3 column (2.1 × 100 mm, 2.5 μm, Waters) was used for the chromatographic separation of almonertinib and sorafenib-D3 (internal standard). The analytes were detected using an AB Sciex Triple Quad 5,500 mass spectrometer in the positive ionization mode. The method exhibited great linearity (0.5-200 ng/ml, r > 0.997) and stability under the established experimental conditions. All validation experiments were in accordance with the guidelines, and the results were all within the acceptable limits. This method was successfully applied to the researches of pharmacokinetics and drug interactions for almonertinib in rats. Voriconazole and fluconazole significantly altered the pharmacokinetic profiles of almonertinib and increased the systemic exposure of almonertinib in rats to different degrees, but further human trials should be conducted to validate the results.
Collapse
Affiliation(s)
- Yuhao Fu
- Graduate School of Hebei Medical University, Shijiazhuang, China.,Department of Pharmacy, Hebei General Hospital, Shijiazhuang, China
| | - Ying Li
- Department of Pharmacy, Hebei General Hospital, Shijiazhuang, China
| | - Yinling Ma
- Department of Pharmacy, Hebei General Hospital, Shijiazhuang, China
| | - Xueru He
- Graduate School of Hebei Medical University, Shijiazhuang, China.,Department of Pharmacy, Hebei General Hospital, Shijiazhuang, China
| | - Xuejiao Xun
- Graduate School of Hebei Medical University, Shijiazhuang, China.,Department of Pharmacy, Hebei General Hospital, Shijiazhuang, China
| | - Yanjun Cui
- Graduate School of Hebei Medical University, Shijiazhuang, China.,Department of Pharmacy, Hebei General Hospital, Shijiazhuang, China
| | - Liju Fan
- Department of Pharmacy, Hebei General Hospital, Shijiazhuang, China
| | - Zhanjun Dong
- Department of Pharmacy, Hebei General Hospital, Shijiazhuang, China
| |
Collapse
|
21
|
Chen W, Zou Y, Mo W, Di D, Wang B, Wu M, Huang Z, Hu B. Onsite Identification and Spatial Distribution of Air Pollutants Using a Drone-Based Solid-Phase Microextraction Array Coupled with Portable Gas Chromatography-Mass Spectrometry via Continuous-Airflow Sampling. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:17100-17107. [PMID: 36395360 DOI: 10.1021/acs.est.2c05259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Hazardous air pollutants can be unintentionally and intentionally released in many cases, such as industrial emissions, accidental events, and pesticide application. Under such events, the onsite operation is highly dependent on the molecular composition and spatial distribution of air pollutants in ambient air. However, it is usually difficult for people to reach hazardous and upper sites rapidly. In this work, we designed a new drone-based microextraction sampler array in which a solid-phase microextraction (SPME) fiber was mounted on drones for remote-control sampling at different spaces and was then coupled with a portable gas chromatography-mass spectrometry (PGC-MS) approach for quickly identifying hazardous air pollutants and their spatial distribution in ambient air within minutes. Acceptable analytical performances, including good sensitivity (detection limit at nanogram per liter level), reproducibility (relative standard deviation < 20%, n = 6), analytical speed (single sample within minutes), and excellent linear dynamic response (3 orders of magnitude) were obtained for direct measurement of air samples. The drone-SPME sampling mechanism of air pollutants involving an airflow adsorptive microextraction process was proposed. Overall, this drone-SPME sampling array can access hard-to-reach and dangerous environmental sites and provide air pollution distribution in different spaces, showing versatile potential applications in environmental analysis.
Collapse
Affiliation(s)
- Weini Chen
- Institute of Mass Spectrometry and Atmospheric Environment, Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air Pollution, Jinan University, Guangzhou510632, China
| | - Yingtong Zou
- Guangzhou Hexin Instrument Co., Ltd., Guangzhou510530, China
| | - Wenzheng Mo
- Institute of Mass Spectrometry and Atmospheric Environment, Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air Pollution, Jinan University, Guangzhou510632, China
| | - Dandan Di
- Institute of Mass Spectrometry and Atmospheric Environment, Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air Pollution, Jinan University, Guangzhou510632, China
- Guangdong MS Institute of Scientific Instrument Innovation, Guangzhou510530, China
| | - Bin Wang
- Guangdong MS Institute of Scientific Instrument Innovation, Guangzhou510530, China
| | - Manman Wu
- Guangzhou Hexin Instrument Co., Ltd., Guangzhou510530, China
- School of Environment and Energy, South China University of Technology, Guangzhou510006, China
| | - Zhengxu Huang
- Institute of Mass Spectrometry and Atmospheric Environment, Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air Pollution, Jinan University, Guangzhou510632, China
| | - Bin Hu
- Institute of Mass Spectrometry and Atmospheric Environment, Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air Pollution, Jinan University, Guangzhou510632, China
| |
Collapse
|
22
|
Zhou S, Guo J, Zou Y, Wang L, Kaw HY, Quinto M, Meng LY, Dong M. Fast removal of phenolic compounds from water using hierarchical porous carbon nanofibers membrane. J Chromatogr A 2022; 1685:463624. [DOI: 10.1016/j.chroma.2022.463624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 10/23/2022] [Accepted: 10/29/2022] [Indexed: 11/06/2022]
|
23
|
López-Rodríguez M, López-Rosales L, Diletta G, Cerón-García MDC, Navarro-López E, Gallardo-Rodríguez JJ, Tristán AI, Abreu AC, García-Camacho F. The Isolation of Specialty Compounds from Amphidinium carterae Biomass by Two-Step Solid-Phase and Liquid-Liquid Extraction. Toxins (Basel) 2022; 14:toxins14090593. [PMID: 36136531 PMCID: PMC9504921 DOI: 10.3390/toxins14090593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/19/2022] [Accepted: 08/24/2022] [Indexed: 12/04/2022] Open
Abstract
The two main methods for partitioning crude methanolic extract from Amphidinium carterae biomass were compared. The objective was to obtain three enriched fractions containing amphidinols (APDs), carotenoids, and fatty acids. Since the most valuable bioproducts are APDs, their recovery was the principal goal. The first method consisted of a solid-phase extraction (SPE) in reverse phase that, for the first time, was optimized to fractionate organic methanolic extracts from Amphidinium carterae biomass using reverse-phase C18 as the adsorbent. The second method consisted of a two-step liquid-liquid extraction coupled with SPE and, alternatively, with solvent partitioning. The SPE method allowed the recovery of the biologically-active fraction (containing the APDs) by eluting with methanol (MeOH): water (H2O) (80:20 v/v). Alternatively, an APD purification strategy using solvent partitioning proved to be a better approach for providing APDs in a clear-cut way. When using n-butanol, APDs were obtained at a 70% concentration (w/w), whereas for the SPE method, the most concentrated fraction was only 18% (w/w). For the other fractions (carotenoids and fatty acids), a two-step liquid-liquid extraction (LLE) method coupled with the solvent partitioning method presented the best results.
Collapse
Affiliation(s)
| | - Lorenzo López-Rosales
- Department of Chemical Engineering, University of Almeria, 04120 Almeria, Spain
- Research Centre CIAIMBITAL, University of Almeria, 04120 Almeria, Spain
| | - Giullia Diletta
- Department of Chemical Engineering, University of Almeria, 04120 Almeria, Spain
| | - María del Carmen Cerón-García
- Department of Chemical Engineering, University of Almeria, 04120 Almeria, Spain
- Research Centre CIAIMBITAL, University of Almeria, 04120 Almeria, Spain
- Correspondence:
| | - Elvira Navarro-López
- Department of Chemical Engineering, University of Almeria, 04120 Almeria, Spain
- Research Centre CIAIMBITAL, University of Almeria, 04120 Almeria, Spain
| | - Juan José Gallardo-Rodríguez
- Department of Chemical Engineering, University of Almeria, 04120 Almeria, Spain
- Research Centre CIAIMBITAL, University of Almeria, 04120 Almeria, Spain
| | - Ana Isabel Tristán
- Research Centre CIAIMBITAL, University of Almeria, 04120 Almeria, Spain
- Department of Chemistry and Physics, University of Almeria, 04120 Almeria, Spain
| | - Ana Cristina Abreu
- Research Centre CIAIMBITAL, University of Almeria, 04120 Almeria, Spain
- Department of Chemistry and Physics, University of Almeria, 04120 Almeria, Spain
| | - Francisco García-Camacho
- Department of Chemical Engineering, University of Almeria, 04120 Almeria, Spain
- Research Centre CIAIMBITAL, University of Almeria, 04120 Almeria, Spain
| |
Collapse
|
24
|
Shao Y, Song C, Yue Z, Peng S, Zhao W, Zhang W, Zhang S, Ouyang G. Rapid sampling and determination of phthalate esters in indoor air using needle trap device. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
25
|
Świądro-Piętoń M, Chromiec A, Zawadzki M, Wietecha-Posłuszny R. The DI-SPME Method for Determination of Selected Narcotics and Their Metabolites, and Application to Bone Marrow and Whole Blood Analysis. Molecules 2022; 27:molecules27134116. [PMID: 35807361 PMCID: PMC9268437 DOI: 10.3390/molecules27134116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/15/2022] [Accepted: 06/18/2022] [Indexed: 11/16/2022] Open
Abstract
The present investigation utilised the quick and easy SPME/LC-MS method to determine selected narcotic substances and their metabolites in whole blood. The study included qualitative analysis and validation of the method. Analytes were determined in the linearity range of 25−300 ng/mL. The precision during and between days (in general CV < 13.41%), and the LOD which results in between 0.36 and 11.08 ng/mL, and the LOQ between 1.20 and 36.90 ng/mL were investigated. The validation results obtained, as well as the results of subsequent in-laboratory tests, confirmed the applicability of the method in the analysis of blood samples. An attempt to apply the method to the analysis of bone marrow samples has yielded promising results; however, more detailed studies are needed in this area.
Collapse
Affiliation(s)
- Magdalena Świądro-Piętoń
- Laboratory for Forensic Chemistry, Department of Analytical Chemistry, Faculty of Chemistry, Jagiellonian University, 2 Gronostajowa St., 30-387 Kraków, Poland; (M.Ś.-P.); (A.C.)
| | - Alicja Chromiec
- Laboratory for Forensic Chemistry, Department of Analytical Chemistry, Faculty of Chemistry, Jagiellonian University, 2 Gronostajowa St., 30-387 Kraków, Poland; (M.Ś.-P.); (A.C.)
| | - Marcin Zawadzki
- Department of Forensic Medicine, Medical University in Wroclaw, 4 Jana Mikulicza-Radeckiego St., 50-345 Wrocław, Poland;
| | - Renata Wietecha-Posłuszny
- Laboratory for Forensic Chemistry, Department of Analytical Chemistry, Faculty of Chemistry, Jagiellonian University, 2 Gronostajowa St., 30-387 Kraków, Poland; (M.Ś.-P.); (A.C.)
- Correspondence: or
| |
Collapse
|
26
|
Godage NH, Gionfriddo E. Biocompatible SPME coupled to GC/MS for analysis of xenobiotics in blood plasma. J Chromatogr B Analyt Technol Biomed Life Sci 2022; 1203:123308. [DOI: 10.1016/j.jchromb.2022.123308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 05/11/2022] [Accepted: 05/16/2022] [Indexed: 10/18/2022]
|
27
|
Liu Z, Yuan Z, Hu W, Chen Z. Electrochemically deposition of metal-organic framework onto carbon fibers for online in-tube solid-phase microextraction of non-steroidal anti-inflammatory drugs. J Chromatogr A 2022; 1673:463129. [DOI: 10.1016/j.chroma.2022.463129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 05/04/2022] [Accepted: 05/05/2022] [Indexed: 10/18/2022]
|
28
|
Du X, Yuan J, Cao H, Ye L, Ma A, Du J, Pan J. Ultrasound-assisted micellar cleanup coupled with large-volume-injection enrichment for the analysis of polar drugs in blood and zebrafish samples. ULTRASONICS SONOCHEMISTRY 2022; 85:105998. [PMID: 35378462 PMCID: PMC8980499 DOI: 10.1016/j.ultsonch.2022.105998] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 03/24/2022] [Accepted: 03/30/2022] [Indexed: 05/30/2023]
Abstract
A novel ultrasound-assisted micellar cleanup strategy (UAMC) coupled with large volume injection (LVI) high performance liquid chromatography (HPLC) method was proposed and successfully applied to the analysis of cefathiamidine in complex biological samples such as whole blood, plasma, serum and even zebrafish, a challenging positive real sample. Based on the micelle-biomacromolecule interaction, the phase-separation feature of surfactant micelles and ultrasound cavitation, UAMC possessed an impressive matrix cleanup capability and could rapidly reach distribution equilibrium (approximately 2 min), which enabled simultaneous sample cleanup and analyte extraction within 8 min. Due to the high cleanup efficiency of UAMC, large volume of pretreated samples could be injected for analysis without peak broadening, impurity interference and column degradation. Thus, online analyte enrichment could be automatically performed to significantly improve method sensitivity by the column-switching LVI-HPLC system, a commercial HPLC system with small modifications. The UAMC-LVI-HPLC method creatively integrated sample cleanup, analyte extraction and on-column enrichment into simple operation. In addition, the UAMC-LVI-HPLC method enabled non-matrix-matched analysis of cefathiamidine in complex biological samples. This feature was helpful to address the problems caused by conventional matrix-matched or internal standard calibration methods, such as matrix bias, increased workload, limited availability of suitable blank matrices and the use of expensive internal standards. The method had low limits of detections (e.g., 0.0051 mg/L and 0.038 μg/g), wide linear ranges (0.030-100 mg/L and 0.15-489 μg/g), good linear correlation (R2 = 0.9999), satisfactory accuracy (97.6-109.7%) and excellent intra- and interday precision (0.5-4.9%). Thus, UAMC-LVI-HPLC is expected to be a promising candidate for bioanalysis in therapeutic drug monitoring or pharmacokinetic and toxicology studies in the future.
Collapse
Affiliation(s)
- Xiaotong Du
- Hygiene Detection Center, School of Public Health, Southern Medical University (NMPA Key Laboratory for Safety Evaluation of Cosmetics), Guangzhou, Guangdong, China
| | - Jiahao Yuan
- Hygiene Detection Center, School of Public Health, Southern Medical University (NMPA Key Laboratory for Safety Evaluation of Cosmetics), Guangzhou, Guangdong, China
| | - Hongjie Cao
- Hygiene Detection Center, School of Public Health, Southern Medical University (NMPA Key Laboratory for Safety Evaluation of Cosmetics), Guangzhou, Guangdong, China
| | - Li Ye
- Hygiene Detection Center, School of Public Health, Southern Medical University (NMPA Key Laboratory for Safety Evaluation of Cosmetics), Guangzhou, Guangdong, China
| | - Ande Ma
- Hygiene Detection Center, School of Public Health, Southern Medical University (NMPA Key Laboratory for Safety Evaluation of Cosmetics), Guangzhou, Guangdong, China
| | - Juan Du
- Hygiene Detection Center, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research), Guangzhou, Guangdong, China.
| | - Jialiang Pan
- Hygiene Detection Center, School of Public Health, Southern Medical University (NMPA Key Laboratory for Safety Evaluation of Cosmetics), Guangzhou, Guangdong, China.
| |
Collapse
|
29
|
Ingle RG, Zeng S, Jiang H, Fang WJ. Current development of bioanalytical sample preparation techniques in pharmaceuticals. J Pharm Anal 2022; 12:517-529. [PMID: 36105159 PMCID: PMC9463481 DOI: 10.1016/j.jpha.2022.03.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 02/23/2022] [Accepted: 03/14/2022] [Indexed: 12/03/2022] Open
Abstract
Sample preparation is considered as the bottleneck step in bioanalysis because each biological matrix has its own unique challenges and complexity. Competent sample preparation to extract the desired analytes and remove redundant components is a crucial step in each bioanalytical approach. The matrix effect is a key hurdle in bioanalytical sample preparation, which has gained extensive consideration. Novel sample preparation techniques have advantages over classical techniques in terms of accuracy, automation, ease of sample preparation, storage, and shipment and have become increasingly popular over the past decade. Our objective is to provide a broad outline of current developments in various bioanalytical sample preparation techniques in chromatographic and spectroscopic examinations. In addition, how these techniques have gained considerable attention over the past decade in bioanalytical research is mentioned with preferred examples. Modern trends in bioanalytical sample preparation techniques, including sorbent-based microextraction techniques, are primarily emphasized. Bioanalytical sampling techniques are described with suitable applications in pharmaceuticals. The pros and cons of each bioanalytical sampling techniques are described. Relevant biological matrices are outlined.
Collapse
|
30
|
Nasrollahi SS, Yamini Y, Mani-Varnosfaderani A. A green approach for in-tube solid phase microextraction of acidic red dyes from juice samples using chitosan/poly vinyl alcohol electrospun nanofibers. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2021.104339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
31
|
Dugheri S, Mucci N, Cappelli G, Trevisani L, Bonari A, Bucaletti E, Squillaci D, Arcangeli G. Advanced Solid-Phase Microextraction Techniques and Related Automation: A Review of Commercially Available Technologies. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2022; 2022:8690569. [PMID: 35154846 PMCID: PMC8837452 DOI: 10.1155/2022/8690569] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 01/05/2022] [Accepted: 01/07/2022] [Indexed: 06/14/2023]
Abstract
The solid-phase microextraction (SPME), invented by Pawliszyn in 1989, today has a renewed and growing use and interest in the scientific community with fourteen techniques currently available on the market. The miniaturization of traditional sample preparation devices fulfills the new request of an environmental friendly analytical chemistry. The recent upswing of these solid-phase microextraction technologies has brought new availability and range of robotic automation. The microextraction solutions propose today on the market can cover a wide variety of analytical fields and applications. This review reports on the state-of-the-art innovative solid-phase microextraction techniques, especially those used for chromatographic separation and mass-spectrometric detection, given the recent improvements in availability and range of automation techniques. The progressively implemented solid-phase microextraction techniques and related automated commercially available devices are classified and described to offer a valuable tool to summarize their potential combinations to face all the laboratories requirements in terms of analytical applications, robustness, sensitivity, and throughput.
Collapse
Affiliation(s)
- Stefano Dugheri
- Industrial Hygiene and Toxicology Laboratory, University Hospital Careggi, Florence, Italy
| | - Nicola Mucci
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Giovanni Cappelli
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Lucia Trevisani
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | | | - Elisabetta Bucaletti
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Donato Squillaci
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Giulio Arcangeli
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| |
Collapse
|
32
|
Modeling the effect of temperature on solid-phase microextraction of volatile organic compounds from air by polydimethylsiloxane coating using finite element analysis. Anal Chim Acta 2022; 1195:339431. [DOI: 10.1016/j.aca.2022.339431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 12/25/2021] [Accepted: 01/01/2022] [Indexed: 11/20/2022]
|
33
|
Development of a fast, online three-phase electroextraction hyphenated to fast liquid chromatography–mass spectrometry for analysis of trace-level acid pharmaceuticals in plasma. Anal Chim Acta 2022; 1192:339364. [DOI: 10.1016/j.aca.2021.339364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/05/2021] [Accepted: 12/07/2021] [Indexed: 11/20/2022]
|
34
|
Prosenc F, Leban P, Šunta U, Bavcon Kralj M. Extraction and Identification of a Wide Range of Microplastic Polymers in Soil and Compost. Polymers (Basel) 2021; 13:polym13234069. [PMID: 34883573 PMCID: PMC8658807 DOI: 10.3390/polym13234069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/18/2021] [Accepted: 11/19/2021] [Indexed: 11/16/2022] Open
Abstract
Microplastic pollution is globally widespread; however, the presence of microplastics in soil systems is poorly understood, due to the complexity of soils and a lack of standardised extraction methods. Two commonly used extraction methods were optimised and compared for the extraction of low-density (polyethylene (PE)) and high-density microplastics (polyethylene (PET)), olive-oil-based extraction, and density separation with zinc chloride (ZnCl2). Comparable recoveries in a low-organic-matter matrix (soil; most >98%) were observed, but in a high-organic-matter matrix (compost), density separation yielded higher recoveries (98 ± 4% vs. 80 ± 11%). Density separation was further tested for the extraction of five microplastic polymers spiked at different concentrations. Recoveries were >93% for both soil and compost, with no differences between matrices and individual polymers. Reduction in levels of organic matter in compost was tested before and after extraction, as well as combined. Double oxidation (Fenton’s reagent and 1 M NaOH) exhibited the highest reduction in organic matter. Extracted microplastic polymers were further identified via headspace solid-phase microextraction–gas chromatography–mass spectrometry (HS-SPME–GC–MS). This method has shown the potential for descriptive quantification of microplastic polymers. A linear relationship between the number of particles and the signal response was demonstrated for PET, polystyrene (PS), polyvinyl chloride (PVC), and PE (R2 > 0.98 in alluvial soil, and R2 > 0.80 in compost). The extraction and identification methods were demonstrated on an environmental sample of municipal biowaste compost, with the recovery of 36 ± 9 microplastic particles per 10 g of compost, and the detection of PS and PP.
Collapse
Affiliation(s)
- Franja Prosenc
- Research Institute, Faculty of Health Sciences, University of Ljubljana, 1000 Ljubljana, Slovenia;
- Correspondence:
| | - Pia Leban
- Department for Sanitary Engineering, Faculty of Health Sciences, University of Ljubljana, 1000 Ljubljana, Slovenia; (P.L.); (M.B.K.)
| | - Urška Šunta
- Research Institute, Faculty of Health Sciences, University of Ljubljana, 1000 Ljubljana, Slovenia;
| | - Mojca Bavcon Kralj
- Department for Sanitary Engineering, Faculty of Health Sciences, University of Ljubljana, 1000 Ljubljana, Slovenia; (P.L.); (M.B.K.)
| |
Collapse
|
35
|
Peng S, Huang X, Huang Y, Huang Y, Zheng J, Zhu F, Xu J, Ouyang G. Novel solid-phase microextraction fiber coatings: A review. J Sep Sci 2021; 45:282-304. [PMID: 34799963 DOI: 10.1002/jssc.202100634] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 11/13/2021] [Accepted: 11/15/2021] [Indexed: 12/27/2022]
Abstract
The materials used for the fabrication of solid-phase microextraction fiber coatings in the past five years are summarized in the current review, including carbon, metal-organic frameworks, covalent organic frameworks, aerogel, polymer, ionic liquids/poly (ionic liquids), metal oxides, and natural materials. The preparation approaches of different coatings, such as sol-gel technique, in-situ growth, electrodeposition, and glue methods, are briefly reviewed together with the evolution of the supporting substrates. In addition, the limitations of the current coatings and the future development directions of solid-phase microextraction are presented.
Collapse
Affiliation(s)
- Sheng Peng
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, P. R. China
| | - Xiaoyu Huang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, P. R. China
| | - Yuyan Huang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, P. R. China
| | - Yiquan Huang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, P. R. China
| | - Juan Zheng
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, P. R. China
| | - Fang Zhu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, P. R. China
| | - Jianqiao Xu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, P. R. China
| | - Gangfeng Ouyang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, P. R. China
| |
Collapse
|
36
|
Zhou L, Yu D, Zheng S, Ouyang R, Wang Y, Xu G. Gut microbiota-related metabolome analysis based on chromatography-mass spectrometry. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
37
|
Cain CN, Sudol PE, Berrier KL, Synovec RE. Development of variance rank initiated-unsupervised sample indexing for gas chromatography-mass spectrometry analysis. Talanta 2021; 233:122495. [PMID: 34215113 DOI: 10.1016/j.talanta.2021.122495] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 04/29/2021] [Accepted: 04/30/2021] [Indexed: 02/08/2023]
Abstract
Traditional non-targeted chemometric workflows for gas chromatography-mass spectrometry (GC-MS) data rely on using supervised methods, which requires a priori knowledge of sample class membership. Herein, we propose a simple, unsupervised chemometric workflow known as variance rank initiated-unsupervised sample indexing (VRI-USI). VRI-USI discovers analyte peaks exhibiting high relative variance across all samples, followed by k-means clustering on the individual peaks. Based upon how the samples cluster for a given peak, a sample index assignment is provided. Using a probabilistic argument, if the same sample index assignment appears for several discovered peaks, then this outcome strongly suggests that the samples are properly classified by that particular sample index assignment. Thus, relevant chemical differences between the samples have been discovered in an unsupervised fashion. The VRI-USI workflow is demonstrated on three, increasingly difficult datasets: simulations, yeast metabolomics, and human cancer metabolomics. For simulated GC-MS datasets, VRI-USI discovered 85-90% of analytes modeled to vary between sample classes. Nineteen out of 53 peaks in the peak table developed for the yeast metabolome dataset had the same sample index assignments, indicating that those indices are most likely due to class-distinguishing chemical differences. A t-test revealed that 22 out of 53 peaks were statistically significant (p < 0.05) when using those sample index assignments. Likewise, for the human cancer metabolomics study, VRI-USI discovered 25 analytes that were statistically different (p < 0.05) using the sample index assignments determined to highlight meaningful sample-based differences. For all datasets, the sample index assignments that were deduced from VRI-USI were the correct class-based difference when using prior knowledge. VRI-USI holds promise as an exploratory data analysis workflow for studies in which analysts do not readily have a priori class information or want to uncover the underlying nature of their dataset.
Collapse
Affiliation(s)
- Caitlin N Cain
- Department of Chemistry, Box 351700, University of Washington, Seattle, WA, 98195, USA
| | - Paige E Sudol
- Department of Chemistry, Box 351700, University of Washington, Seattle, WA, 98195, USA
| | - Kelsey L Berrier
- Department of Chemistry, Box 351700, University of Washington, Seattle, WA, 98195, USA
| | - Robert E Synovec
- Department of Chemistry, Box 351700, University of Washington, Seattle, WA, 98195, USA.
| |
Collapse
|
38
|
|
39
|
Nguyen NVT, Nguyen KNH, Nguyen KT, Kim KH, Aboul-Enein HY. The impact of chirality on the analysis of alkaloids in plant. PHARMACIA 2021. [DOI: 10.3897/pharmacia.68.e71101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Most of the alkaloids are chiral compounds and are clinically administered as the racemic mixture, even though its enantiomers have been known to exert different pharmacological activity. The determination of the enantiomeric composition of alkaloid-containing plants is subject to severe attention from pharmacological and toxicological points of view. This review gives an overview of the chiral analysis of alkaloids that were used in theoretical studies and applications for plants in recent years.
Collapse
|
40
|
He Y, Miggiels P, Wouters B, Drouin N, Guled F, Hankemeier T, Lindenburg PW. A high-throughput, ultrafast, and online three-phase electro-extraction method for analysis of trace level pharmaceuticals. Anal Chim Acta 2021; 1149:338204. [DOI: 10.1016/j.aca.2021.338204] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/29/2020] [Accepted: 01/04/2021] [Indexed: 12/24/2022]
|
41
|
Wang Z, Jia S, Zhang Q, Wang Y, Huang B, Zheng L. LC-MS/MS assay for the determination of tat-K13, a novel interfering peptide for the treatment of ischemic stroke, in human plasma and its application to a pharmacokinetics study. Biomed Chromatogr 2021; 35:e5095. [PMID: 33607700 DOI: 10.1002/bmc.5095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 02/09/2021] [Accepted: 02/16/2021] [Indexed: 02/05/2023]
Abstract
A sensitive and robust method has been developed using an ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) assay to quantify Tat-K13, a novel interfering peptide for the treatment of ischemic stroke, in human plasma. Automated solid-phase extraction on a Waters Oasis WCX (30 μm, 10 mg) 96-well plate was used to extract Tat-K13 from human plasma and the extracts were separated on a Waters Acquity CSH column (2.1 × 50 mm i.d., 1.7 μm) with a gradient elution method by mobile phase A (nonafluoropentanoic acid-acetic acid-water, 1:2:1000, v/v/v) and B (nonafluoropentanoic acid-acetic acid-water-acetonitrile, 1:2:100:900, v/v/v/v). The method was fully validated following international bioanalytical guidelines and showed good linearity from 2.10 to 1,050 ng/ml. The method was successfully applied to investigate the clinical pharmacokinetics of Tat-K13 in health volunteers. Rapid elimination of Tat-K13 from the body was observed, with half-life ranging from 0.26 to 0.78 h across different dose levels. The exposure of Tat-K13 was approximately dose-dependent in terms of the area under the concentration-time curve and peak concentration.
Collapse
Affiliation(s)
- Zhenlei Wang
- GCP Center/Institute of Drug Clinical Trials, West China hospital of Sichuan University, Chengdu, China
| | - Shiling Jia
- Covance Pharmaceutical Research and Development Co. Ltd, Shanghai, China
| | - Quan Zhang
- Suzhou Yabao Pharmaceutical R&D Co. Ltd, Suzhou, China
| | - Yongsheng Wang
- GCP Center/Institute of Drug Clinical Trials, West China hospital of Sichuan University, Chengdu, China
| | - Biao Huang
- Covance Pharmaceutical Research and Development Co. Ltd, Shanghai, China
| | - Li Zheng
- GCP Center/Institute of Drug Clinical Trials, West China hospital of Sichuan University, Chengdu, China
| |
Collapse
|
42
|
Vasconcelos PHM, Camelo ALM, de Lima ACA, do Nascimento HO, Vidal CB, do Nascimento RF, Lopes GS, Longhinotti E. Chemometric tools applied to optimize a fast solid-phase microextraction method for analysis of polycyclic aromatic hydrocarbons in produced water. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:8012-8021. [PMID: 33044696 DOI: 10.1007/s11356-020-10881-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 09/15/2020] [Indexed: 06/11/2023]
Abstract
Chemometric tools are powerful strategies to efficiently optimize many processes. These tools were employed to optimize a fast-solid phase microextraction procedure, which was used for the analysis of polycyclic aromatic hydrocarbons (PAHs) in oil-based produced water using a Headspace-Solid Phase Microextraction technique (HS-SPME/GC-MS). This optimization was achieved with a 24 factorial design approach, where the final conditions for this extraction procedure were 10 μg L-1, 1 h, 92 °C (at headspace), and 0.62 mol L-1 for PAHs concentration, fiber exposition to headspace, temperature, and NaCl concentration, respectively. The limit of detection (LOD) in this protocol ranged from 0.2 to 41.4 ng L-1, while recovery values from 67.65 to 113.10%. Besides that, relative standard deviation (RSD) were lower than 8.39% considering high molecular weight compounds. Moreover, the proposed methodology in this work does not require any previous treatment of the sample and allows to quantify a higher number of PAHs. Notably, naphthalene was the major PAHs compound quantified in all samples of the produced water at 99.99 μg L-1. Altogether, these results supported this methodology as a suitable analytical strategy for fast determination of PAHs in produced water from oil-based industry.
Collapse
Affiliation(s)
| | - André Luiz M Camelo
- Federal Institute of Education, Science and Technology of Ceará, Limoeiro do Norte, CE, 62930-000, Brazil
| | - Ari Clecius A de Lima
- Industrial Technology Center of Ceará Foundation (Núcleo de Tecnologia e Qualidade Industrial do Ceará - NUTEC), Fortaleza, CE, 60440-552, Brazil
| | - Hélio O do Nascimento
- Department of Analytical Chemistry and Physical Chemistry, Federal University of Ceará, Campus do Pici, Fortaleza, CE, 60440-900, Brazil
| | - Carla B Vidal
- Centro Universitario UniFanor, Campus Dunas, R. Antonio Gomes Guimaraes, 150, Papicu, Fortaleza, CE, 60191-195, Brazil
- Centro Universitário UniFametro, Campus Carneiro da Cunha, R. Carneiro da Cunha, 180, Jacarecanga, Fortaleza, CE, 60010-470, Brazil
| | - Ronaldo F do Nascimento
- Department of Analytical Chemistry and Physical Chemistry, Federal University of Ceará, Campus do Pici, Fortaleza, CE, 60440-900, Brazil.
| | - Gisele S Lopes
- Department of Analytical Chemistry and Physical Chemistry, Federal University of Ceará, Campus do Pici, Fortaleza, CE, 60440-900, Brazil
| | - Elisane Longhinotti
- Department of Analytical Chemistry and Physical Chemistry, Federal University of Ceará, Campus do Pici, Fortaleza, CE, 60440-900, Brazil.
| |
Collapse
|
43
|
Heydari M, Jafari MT, Saraji M, Soltani R, Dinari M. Covalent triazine-based framework-grafted functionalized fibrous silica sphere as a solid-phase microextraction coating for simultaneous determination of fenthion and chlorpyrifos by ion mobility spectrometry. Mikrochim Acta 2021; 188:4. [PMID: 33389205 DOI: 10.1007/s00604-020-04685-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 12/07/2020] [Indexed: 11/27/2022]
Abstract
A novel covalent triazine-based framework (CTF)-grafted phenyl-functionalized fibrous silica nanosphere, KCC-1 (named as RS-2) was synthesized via a simple and effective Friedel-Crafts approach. The microporous CTF with fluorene backbone was coupled and grown uniformly on the surface of phenyl-functionalized KCC-1 to prepare a hybrid extended porous framework. The prepared materials were characterized, and FE-SEM and TEM images revealed a flower-like structure for RS-2. The synthesized RS-2 showed excellent thermal stability, so the weight loss was about 30% at 800 °C. RS-2 was applied as a new coating in the solid-phase microextraction procedure to extract chlorpyrifos and fenthion pesticides from water, wastewater, and fruit samples, before determining by corona discharge-ion mobility spectrometry. Some experimental factors affecting the extraction yield of the analytes, including ionic strength, stirring rate, sample pH, extraction temperature, and extraction time, were investigated. Under optimum conditions, the linear dynamic ranges were 0.1-10 μg L-1 and 1.0-70 μg L-1, and the limits of detection were 0.05 and 0.55 μg L-1 for chlorpyrifos and fenthion, respectively. The proposed method showed recovery values in the range 86-117% with a precision of 3.0-7.1% for real samples. Covalent triazine-based framework (CTF)-grafted phenyl-functionalized fibrous silica nanosphere (named as RS-2) was synthesized. RS-2 was applied as a sorbent for solid-phase microextraction (SPME) of chlorpyrifos and fenthion from fruit and water samples followed by corona discharge ionization ion mobility spectrometry (CD-IMS).
Collapse
Affiliation(s)
- Maryam Heydari
- Department of Chemistry, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| | - Mohammad T Jafari
- Department of Chemistry, Isfahan University of Technology, Isfahan, 84156-83111, Iran.
| | - Mohammad Saraji
- Department of Chemistry, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| | - Roozbeh Soltani
- Department of Chemistry, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| | - Mohammad Dinari
- Department of Chemistry, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| |
Collapse
|
44
|
Practical Considerations in Method Development for Gas Chromatography-Based Metabolomic Profiling. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1336:139-157. [PMID: 34628631 DOI: 10.1007/978-3-030-77252-9_8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This chapter discusses the fundamentals of gas chromatography (GC) to improve method development for metabolic profiling of complex biological samples. The selection of column geometry and phase ratio impacts analyte mass transfer, which must be carefully optimized for fast analysis. Stationary phase selection is critical to obtain baseline resolution of critical pairs, but such selection must consider important aspects of metabolomic protocols, such as derivatization and dependence of analyte identification on existing databases. Sample preparation methods are also addressed depending on the sample matrix, including liquid-liquid extraction and solid-phase microextraction.
Collapse
|
45
|
Trujillo-Rodríguez MJ, Pacheco-Fernández I, Taima-Mancera I, Díaz JHA, Pino V. Evolution and current advances in sorbent-based microextraction configurations. J Chromatogr A 2020; 1634:461670. [DOI: 10.1016/j.chroma.2020.461670] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/16/2020] [Accepted: 10/27/2020] [Indexed: 12/16/2022]
|
46
|
An assessment of quality assurance/quality control efforts in high resolution mass spectrometry non-target workflows for analysis of environmental samples. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.116063] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
47
|
Jalili V, Barkhordari A, Ghiasvand A. Solid-phase microextraction technique for sampling and preconcentration of polycyclic aromatic hydrocarbons: A review. Microchem J 2020. [DOI: 10.1016/j.microc.2020.104967] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
48
|
Silva M, Bjørnstad T. Determination of phase-partitioning tracer candidates in production waters from oilfields based on solid-phase microextraction followed by gas chromatography-tandem mass spectrometry. J Chromatogr A 2020; 1629:461508. [PMID: 32858453 DOI: 10.1016/j.chroma.2020.461508] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/20/2020] [Accepted: 08/21/2020] [Indexed: 10/23/2022]
Abstract
In the present document, we report the development of an analytical method consisting of a sequential direct-immersion/headspace solid-phase microextraction (DI-HS-SPME) followed by gas-phase chromatography and tandem mass spectrometry (GC-MS/MS) for simultaneous analysis of 4-chlorobenzyl alcohol, 2,6-dichlorobenzyl alcohol, 4-methoxybenzyl alcohol, 3,4-dimethoxybenzyl alcohol, pyridine, and 2,3-dimethylpyrazine in oilfield production waters. These compounds are under evaluation for use as phase-partitioning tracers in oil reservoirs. To the best of our knowledge, this is the first time SPME has been applied to the analysis of these compounds in production waters, or any other type of matrix where the compounds targeted are the base for a technical application. Relevant extraction parameters, such as the adsorbent phase of the fiber, direct immersion or headspace, addition of salt, temperature and time of extraction were investigated. The final optimal operation conditions consist on extracting 5 mL of sample at pH 9.0 with 1.8 g of NaCl with constant stirring during 5 minutes of DI-SPME followed by 15 minutes of HS-SPME at 70 °C using a DVB/CAR/PDMS (50/30 µm) fiber. The limits of quantification (LOQ), linearity, precision and accuracy of the method were evaluated. Analyses of the tracer compounds and recovery studies were also performed on production waters from 8 different oilfields of the Norwegian continental shelf. LOQs between 0.080 and 0.35 µg L-1 were obtained. The recovery yields of the method were consistently higher than 85% and RSDs less than 13%. None of the tracer compounds was found in the real samples processed, which is consistent with one of the requirements for an artificial tracer in an oilfield: absence or constant and low background in the traced fluid. The performance of the method developed, combined with its easiness to automate, introduce a new, accurate and cost-efficient technique to process the hundreds of samples required by an inter-well tracer test.
Collapse
Affiliation(s)
- Mario Silva
- The National IOR Centre of Norway, University of Stavanger, 4036 Stavanger, Norway; Department of Energy Resources, University of Stavanger, 4036 Stavanger, Norway; Institute for Energy Technology (IFE), Department of Tracer Technology, Instituttveien 18, 2007 Kjeller, Norway.
| | - Tor Bjørnstad
- The National IOR Centre of Norway, University of Stavanger, 4036 Stavanger, Norway; Institute for Energy Technology (IFE), Department of Tracer Technology, Instituttveien 18, 2007 Kjeller, Norway
| |
Collapse
|
49
|
Colombo R, Papetti A. Pre-Concentration and Analysis of Mycotoxins in Food Samples by Capillary Electrophoresis. Molecules 2020; 25:molecules25153441. [PMID: 32751123 PMCID: PMC7436008 DOI: 10.3390/molecules25153441] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/24/2020] [Accepted: 07/28/2020] [Indexed: 12/31/2022] Open
Abstract
Mycotoxins are considered one of the most dangerous agricultural and food contaminants. They are toxic and the development of rapid and sensitive analytical methods to detect and quantify them is a very important issue in the context of food safety and animal/human health. The need to detect mycotoxins at trace levels and to simultaneously analyze many different mycotoxin types became mandatory to protect public health. In fact, European Commission regulations specified both their limits in foodstuffs and official sample preparation protocols in addition to analytical methods to verify their presence. Capillary Electrophoresis (CE) includes different separation modes, allowing many versatile applications in food analysis and safety. In the context of mycotoxins, recent advances to improve CE sensitivity, particularly pre-concentration techniques or miniaturized systems, deserve remarkable attention, as they provide an interesting approach in the analysis of such contaminants in complex food matrices. This review summarizes the applications of CE combined with different pre-concentration approaches, which have been proposed in the literature (mainly) in the last ten years. A section is also dedicated to recent microchip–CE devices since they represent the most promising CE mode for this application.
Collapse
Affiliation(s)
| | - Adele Papetti
- Correspondence: ; Tel.: +39-0382987863; Fax: +39-0382422975
| |
Collapse
|
50
|
Nasrollahi SS, Yamini Y, Shamsayei M. Synthesis of an organic-inorganic hybrid absorbent for in-tube solid-phase microextraction of bisphenol A. J Sep Sci 2020; 44:1122-1129. [PMID: 32627394 DOI: 10.1002/jssc.202000526] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 06/06/2020] [Accepted: 06/08/2020] [Indexed: 01/22/2023]
Abstract
This research is an application of fiber-in-tube solid-phase microextraction followed by high-performance liquid chromatography with UV detection for the extraction and determination of trace amounts of bisphenol A. Nanomagnetic Fe3 O4 was formed on the surface of polypropylene porous hollow fibers to increase the surface area and then it was coated with polystyrene. The introduction of polystyrene improves the surface hydrophobicity and is an appropriate extractive phase because it is highly stable in aquatic media. The extraction was carried out in a short capillary packed longitudinally with the fine fibers as the extraction medium. Extraction conditions, including extraction and desorption flow rates, extraction time, pH, and ionic strength of the sample solution, were investigated and optimized. Under optimal conditions, the limit of detection was 0.01 µg/L. This method showed good linearity for bisphenol A in the range of 0.033-1000 µg/L, with the coefficient of determination of 0.9984. The inter- and intraday precisions (RSD%, n = 3) were 7.9 and 6.3%, respectively. Finally, the method was applied to analysis of the analyte in thermal papers, disposable plastic cups, and soft drink bottles.
Collapse
Affiliation(s)
| | - Yadollah Yamini
- Department of Chemistry, Faculty of Sciences, Tarbiat Modares University, Tehran, Iran
| | - Maryam Shamsayei
- Department of Chemistry, Faculty of Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|