1
|
Shou Z, Bai Z, Huo K, Zheng S, Shen Y, Zhou H, Huang X, Meng H, Xu C, Wu S, Li N, Chen C. Immobilizing c(RGDfc) on the surface of metal-phenolic networks by thiol-click reaction for accelerating osteointegration of implant. Mater Today Bio 2024; 25:101017. [PMID: 38495914 PMCID: PMC10940948 DOI: 10.1016/j.mtbio.2024.101017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/14/2024] [Accepted: 03/02/2024] [Indexed: 03/19/2024] Open
Abstract
The limited osteointegration often leads to the failure of implant, which can be improved by fixing bioactive molecules onto the surface, such as arginyl-glycyl-aspartic acid (RGD): a cell adhesion motif. Metal-Phenolic Networks (MPNs) have garnered increasing attention from different disciplines in recent years due to their simple and rapid process for depositing on various substrates or particles with different shapes. However, the lack of cellular binding sites on MPNs greatly blocks its application in tissue engineering. In this study, we present a facile and efficient approach for producing PC/Fe@c(RGDfc) composite coatings through the conjugation of c(RGDfc) peptides onto the surface of PC/Fe-MPNs utilizing thiol-click reaction. By combined various techniques (ellipsometry, X-ray photoelectron spectroscopy, Liquid Chromatography-Mass Spectrometry, water contact angle, scanning electronic microscopy, atomic force microscopy) the physicochemical properties (composition, coating mechanism and process, modulus and hydrophilicity) of PC/Fe@c(RGDfc) surface were characterized in detail. In addition, the PC/Fe@c(RGDfc) coating exhibits the remarkable ability to positively modulate cellular attachment, proliferation, migration and promoted bone-implant integration in vivo, maintaining the inherent features of MPNs: anti-inflammatory, anti-oxidative properties, as well as multiple substrate deposition. This work contributes to engineering MPNs-based coatings with bioactive molecules by a facile and efficient thiol-click reaction, as an innovative perspective for future development of surface modification of implant materials.
Collapse
Affiliation(s)
- Zeyu Shou
- Department of Orthopedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, People's Republic of China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, People's Republic of China
| | - Zhibiao Bai
- Department of Orthopedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, People's Republic of China
| | - Kaiyuan Huo
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325000, People's Republic of China
| | - Shengwu Zheng
- Wenzhou Celecare Medical Instruments Co., Ltd, Wenzhou, 325000, People's Republic of China
| | - Yizhe Shen
- Department of Orthopedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, People's Republic of China
| | - Han Zhou
- Department of Orthopedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, People's Republic of China
| | - Xiaojing Huang
- Department of Orthopedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, People's Republic of China
| | - Hongming Meng
- Department of Orthopedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, People's Republic of China
| | - Chenwei Xu
- Department of Orthopedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, People's Republic of China
| | - Shaohao Wu
- Department of Orthopedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, People's Republic of China
| | - Na Li
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, People's Republic of China
| | - Chun Chen
- Department of Orthopedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, People's Republic of China
- Key Laboratory of Intelligent Treatment and Life Support for Critical Diseases of Zhejiang Province, Wenzhou, 325000, Zhejiang, People's Republic of China
- Zhejiang Engineering Research Center for Hospital Emergency and Process Digitization, Wenzhou, Zhejiang, 325000, People's Republic of China
| |
Collapse
|
2
|
Fumasi FM, MacCulloch T, Bernal-Chanchavac J, Stephanopoulos N, Holloway JL. Using dynamic biomaterials to study the temporal role of bioactive peptides during osteogenesis. BIOMATERIALS ADVANCES 2024; 157:213726. [PMID: 38096646 PMCID: PMC10842892 DOI: 10.1016/j.bioadv.2023.213726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 11/23/2023] [Accepted: 12/05/2023] [Indexed: 12/26/2023]
Abstract
The extracellular matrix is a highly dynamic environment, and the precise temporal presentation of biochemical signals is critical for regulating cell behavior during development, healing, and disease progression. To mimic this behavior, we developed a modular DNA-based hydrogel platform to enable independent and reversible control over the immobilization of multiple biomolecules during in vitro cell culture. We combined reversible DNA handles with a norbornene-modified hyaluronic acid hydrogel to orthogonally add and remove multiple biomolecule-DNA conjugates at user-defined timepoints. We demonstrated that the persistent presentation of the cell adhesion peptide RGD was required to maintain cell spreading on hyaluronic acid hydrogels. Further, we discovered the delayed presentation of osteogenic growth peptide (OGP) increased alkaline phosphatase activity compared to other temporal variations. This finding is critically important when considering the design of OGP delivery approaches for bone repair. More broadly, this platform provides a unique approach to tease apart the temporal role of multiple biomolecules during development, regeneration, and disease progression.
Collapse
Affiliation(s)
- Fallon M Fumasi
- Chemical Engineering, School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, United States of America
| | - Tara MacCulloch
- Biodesign Center for Molecular Design and Biomimetics, Arizona State University, Tempe, AZ, United States of America; School of Molecular Sciences, Arizona State University, Tempe, AZ, United States of America
| | - Julio Bernal-Chanchavac
- Biodesign Center for Molecular Design and Biomimetics, Arizona State University, Tempe, AZ, United States of America; School of Molecular Sciences, Arizona State University, Tempe, AZ, United States of America.
| | - Nicholas Stephanopoulos
- Biodesign Center for Molecular Design and Biomimetics, Arizona State University, Tempe, AZ, United States of America; School of Molecular Sciences, Arizona State University, Tempe, AZ, United States of America.
| | - Julianne L Holloway
- Chemical Engineering, School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, United States of America; Biodesign Center for Molecular Design and Biomimetics, Arizona State University, Tempe, AZ, United States of America.
| |
Collapse
|
3
|
Kapat K, Kumbhakarn S, Sable R, Gondane P, Takle S, Maity P. Peptide-Based Biomaterials for Bone and Cartilage Regeneration. Biomedicines 2024; 12:313. [PMID: 38397915 PMCID: PMC10887361 DOI: 10.3390/biomedicines12020313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/21/2024] [Accepted: 01/23/2024] [Indexed: 02/25/2024] Open
Abstract
The healing of osteochondral defects (OCDs) that result from injury, osteochondritis, or osteoarthritis and bear lesions in the cartilage and bone, pain, and loss of joint function in middle- and old-age individuals presents challenges to clinical practitioners because of non-regenerative cartilage and the limitations of current therapies. Bioactive peptide-based osteochondral (OC) tissue regeneration is becoming more popular because it does not have the immunogenicity, misfolding, or denaturation problems associated with original proteins. Periodically, reviews are published on the regeneration of bone and cartilage separately; however, none of them addressed the simultaneous healing of these tissues in the complicated heterogeneous environment of the osteochondral (OC) interface. As regulators of cell adhesion, proliferation, differentiation, angiogenesis, immunomodulation, and antibacterial activity, potential therapeutic strategies for OCDs utilizing bone and cartilage-specific peptides should be examined and investigated. The main goal of this review was to study how they contribute to the healing of OCDs, either alone or in conjunction with other peptides and biomaterials.
Collapse
Affiliation(s)
- Kausik Kapat
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research Kolkata, 168, Maniktala Main Road, Kankurgachi, Kolkata 700054, West Bengal, India
| | - Sakshi Kumbhakarn
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research Kolkata, 168, Maniktala Main Road, Kankurgachi, Kolkata 700054, West Bengal, India
| | - Rahul Sable
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research Kolkata, 168, Maniktala Main Road, Kankurgachi, Kolkata 700054, West Bengal, India
| | - Prashil Gondane
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research Kolkata, 168, Maniktala Main Road, Kankurgachi, Kolkata 700054, West Bengal, India
| | - Shruti Takle
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research Kolkata, 168, Maniktala Main Road, Kankurgachi, Kolkata 700054, West Bengal, India
| | - Pritiprasanna Maity
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
4
|
Hakim LK, Yari A, Nikparto N, Mehraban SH, Cheperli S, Asadi A, Darehdor AA, Nezaminia S, Dortaj D, Nazari Y, Dehghan M, Hojjat P, Mohajeri M, Hasani Jebelli MS. The current applications of nano and biomaterials in drug delivery of dental implant. BMC Oral Health 2024; 24:126. [PMID: 38267933 PMCID: PMC10809618 DOI: 10.1186/s12903-024-03911-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 01/18/2024] [Indexed: 01/26/2024] Open
Abstract
BACKGROUND AND AIM Dental implantology has revolutionized oral rehabilitation, offering a sophisticated solution for restoring missing teeth. Despite advancements, issues like infection, inflammation, and osseointegration persist. Nano and biomaterials, with their unique properties, present promising opportunities for enhancing dental implant therapies by improving drug delivery systems. This review discussed the current applications of nano and biomaterials in drug delivery for dental implants. METHOD A literature review examined recent studies and advancements in nano and biomaterials for drug delivery in dental implantology. Various materials, including nanoparticles, biocompatible polymers, and bioactive coatings, were reviewed for their efficacy in controlled drug release, antimicrobial properties, and promotion of osseointegration. RESULTS Nano and biomaterials exhibit considerable potential in improving drug delivery for dental implants. Nanostructured drug carriers demonstrate enhanced therapeutic efficacy, sustained release profiles, and improved biocompatibility. Furthermore, bioactive coatings contribute to better osseointegration and reduced risks of infections. CONCLUSION Integrating current nano and biomaterials in drug delivery for dental implants holds promise for advancing clinical outcomes. Enhanced drug delivery systems can mitigate complications associated with dental implant procedures, offering improved infection control, reduced inflammation, and optimized osseointegration.
Collapse
Affiliation(s)
| | - Amir Yari
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Kashan University of Medical Sciences, Kashan, Iran
| | - Nariman Nikparto
- Oral and Maxillofacial Surgeon (OMFS), Department of Oral and Maxillofacial Surgery, Masters in Public Health (MPH), Zanjan University of Medical Sciences, Zanjan, Iran
| | - Saeed Hasani Mehraban
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Amirali Asadi
- Oral and Maxillofacial Surgeon, Department of Oral and Maxillofacial Surgery, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Sayna Nezaminia
- Oral and Maxillofacial Surgery Resident, Department of Oral and Maxillofacial Surgery, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| | - Dorara Dortaj
- Operative Department, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| | - Yasin Nazari
- General Dentist, Masters in Engineering, Tehran, Iran
| | - Mohamad Dehghan
- Specialist in Prosthodontics, Independent Researcher, Tehran, Iran
| | - Pardis Hojjat
- Department of Periodontics, Faculty of Dentistry, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Mahsa Mohajeri
- Department of Prosthodontics, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
5
|
Costa CM, Cardoso VF, Martins P, Correia DM, Gonçalves R, Costa P, Correia V, Ribeiro C, Fernandes MM, Martins PM, Lanceros-Méndez S. Smart and Multifunctional Materials Based on Electroactive Poly(vinylidene fluoride): Recent Advances and Opportunities in Sensors, Actuators, Energy, Environmental, and Biomedical Applications. Chem Rev 2023; 123:11392-11487. [PMID: 37729110 PMCID: PMC10571047 DOI: 10.1021/acs.chemrev.3c00196] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Indexed: 09/22/2023]
Abstract
From scientific and technological points of view, poly(vinylidene fluoride), PVDF, is one of the most exciting polymers due to its overall physicochemical characteristics. This polymer can crystalize into five crystalline phases and can be processed in the form of films, fibers, membranes, and specific microstructures, being the physical properties controllable over a wide range through appropriate chemical modifications. Moreover, PVDF-based materials are characterized by excellent chemical, mechanical, thermal, and radiation resistance, and for their outstanding electroactive properties, including high dielectric, piezoelectric, pyroelectric, and ferroelectric response, being the best among polymer systems and thus noteworthy for an increasing number of technologies. This review summarizes and critically discusses the latest advances in PVDF and its copolymers, composites, and blends, including their main characteristics and processability, together with their tailorability and implementation in areas including sensors, actuators, energy harvesting and storage devices, environmental membranes, microfluidic, tissue engineering, and antimicrobial applications. The main conclusions, challenges and future trends concerning materials and application areas are also presented.
Collapse
Affiliation(s)
- Carlos M. Costa
- Physics
Centre of Minho and Porto Universities (CF-UM-UP), University of Minho, 4710-057 Braga, Portugal
- Laboratory
of Physics for Materials and Emergent Technologies, LapMET, University of Minho, 4710-057 Braga, Portugal
- Institute
of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, 4710-057 Braga, Portugal
| | - Vanessa F. Cardoso
- CMEMS-UMinho, University of
Minho, DEI, Campus de
Azurém, 4800-058 Guimarães, Portugal
- LABBELS-Associate
Laboratory, Campus de
Gualtar, 4800-058 Braga, Guimarães, Portugal
| | - Pedro Martins
- Physics
Centre of Minho and Porto Universities (CF-UM-UP), University of Minho, 4710-057 Braga, Portugal
- Laboratory
of Physics for Materials and Emergent Technologies, LapMET, University of Minho, 4710-057 Braga, Portugal
- Institute
of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, 4710-057 Braga, Portugal
| | | | - Renato Gonçalves
- Center of
Chemistry, University of Minho, 4710-057 Braga, Portugal
| | - Pedro Costa
- Physics
Centre of Minho and Porto Universities (CF-UM-UP), University of Minho, 4710-057 Braga, Portugal
- Laboratory
of Physics for Materials and Emergent Technologies, LapMET, University of Minho, 4710-057 Braga, Portugal
- Institute
for Polymers and Composites IPC, University
of Minho, 4804-533 Guimarães, Portugal
| | - Vitor Correia
- CMEMS-UMinho, University of
Minho, DEI, Campus de
Azurém, 4800-058 Guimarães, Portugal
- LABBELS-Associate
Laboratory, Campus de
Gualtar, 4800-058 Braga, Guimarães, Portugal
| | - Clarisse Ribeiro
- Physics
Centre of Minho and Porto Universities (CF-UM-UP), University of Minho, 4710-057 Braga, Portugal
- Laboratory
of Physics for Materials and Emergent Technologies, LapMET, University of Minho, 4710-057 Braga, Portugal
| | - Margarida M. Fernandes
- CMEMS-UMinho, University of
Minho, DEI, Campus de
Azurém, 4800-058 Guimarães, Portugal
- LABBELS-Associate
Laboratory, Campus de
Gualtar, 4800-058 Braga, Guimarães, Portugal
| | - Pedro M. Martins
- Institute
of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, 4710-057 Braga, Portugal
- Centre
of Molecular and Environmental Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Senentxu Lanceros-Méndez
- Physics
Centre of Minho and Porto Universities (CF-UM-UP), University of Minho, 4710-057 Braga, Portugal
- Laboratory
of Physics for Materials and Emergent Technologies, LapMET, University of Minho, 4710-057 Braga, Portugal
- BCMaterials,
Basque Center for Materials, Applications
and Nanostructures, UPV/EHU
Science Park, 48940 Leioa, Spain
- Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain
| |
Collapse
|
6
|
Fumasi FM, MacCulloch T, Bernal-Chanchavac J, Stephanopoulos N, Holloway JL. Using dynamic biomaterials to study the temporal role of osteogenic growth peptide during osteogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.19.549767. [PMID: 37502890 PMCID: PMC10370201 DOI: 10.1101/2023.07.19.549767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
The extracellular matrix is a highly dynamic environment, and the precise temporal presentation of biochemical signals is critical for regulating cell behavior during development, healing, and disease progression. To mimic this behavior, we developed a modular DNA-based hydrogel platform to enable independent and reversible control over the immobilization of multiple biomolecules during in vitro cell culture. We combined reversible DNA handles with a norbornene-modified hyaluronic acid hydrogel to orthogonally add and remove multiple biomolecule-DNA conjugates at user-defined timepoints. We demonstrated that the persistent presentation of the cell adhesion peptide RGD was required to maintain cell spreading on hyaluronic acid hydrogels. Further, we discovered the delayed presentation of osteogenic growth peptide (OGP) increased alkaline phosphatase activity compared to other temporal variations. This finding is critically important when considering the design of OGP delivery approaches for bone repair. More broadly, this platform provides a unique approach to tease apart the temporal role of multiple biomolecules during development, regeneration, and disease progression.
Collapse
|
7
|
Yan S, Wang D, Zhang L, Gan T, Yao H, Zhu H, He Y, Yang K. LIPUS-S/B@NPs regulates the release of SDF-1 and BMP-2 to promote stem cell recruitment-osteogenesis for periodontal bone regeneration. Front Bioeng Biotechnol 2023; 11:1226426. [PMID: 37469445 PMCID: PMC10353878 DOI: 10.3389/fbioe.2023.1226426] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 06/26/2023] [Indexed: 07/21/2023] Open
Abstract
Purpose: Poly (lactic-co-glycolic acid)-based nanoparticles (PLGA NPs) have been widely used as the carrier for sustainable drug delivery. However, the drug release from the NPs was usually incomplete and uncontrollable. Herein, a low intensity pulsed ultrasound (LIPUS) assisted SDF-1/BMP-2@nanoparticles (S/B@NPs) system was fabricated to facilitate stem cell recruitment-osteogenesis for periodontal bone regeneration. Methods: In this work, S/B@NPs were prepared with double-emulsion synthesis method. Then the S/B release profile from NPs was evaluated with or without low intensity pulsed ultrasound treatment. Afterwards, the stem cell recruiting and osteoinductive capacities of LIPUS-S/B@NPs were detected with human periodontal ligament cells (hPDLCs) in vitro and in a rat periodontal bone defect model. Results: The results indicated that S/B@NPs were successfully prepared and LIPUS could effectively regulate the release of S/B and increase their final releasing amount. Moreover, LIPUS-S/B@NPs system significantly promoted hPDLCs migrating and osteogenesis in vitro and recruiting rBMSCs to the rat periodontal defect and facilitated bone regeneration in vivo. Conclusion: Our LIPUS assisted S/B@NPs system can effectively facilitate stem cell recruitment and periodontal bone regeneration. Considering its reliable safety and therapeutic effect on bone fracture, LIPUS, as an adjuvant therapy, holds great potential in the regulation of drug delivery systems for bone healing.
Collapse
Affiliation(s)
- Shujin Yan
- Ministry of Education Key Laboratory of Child Development and Disorders, Pediatric Research Institute, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Engineering Research Center of Stem Cell Therapy, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Department of Ultrasound, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Dong Wang
- Department of Ultrasound, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Liang Zhang
- Department of Ultrasound, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Tian Gan
- Department of Ultrasound, Women and Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Huan Yao
- Department of Ultrasound, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hui Zhu
- Department of Ultrasound, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yiman He
- Department of Ultrasound, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ke Yang
- Ministry of Education Key Laboratory of Child Development and Disorders, Pediatric Research Institute, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Engineering Research Center of Stem Cell Therapy, Children’s Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
8
|
Wang H, Chang X, Ma Q, Sun B, Li H, Zhou J, Hu Y, Yang X, Li J, Chen X, Song J. Bioinspired drug-delivery system emulating the natural bone healing cascade for diabetic periodontal bone regeneration. Bioact Mater 2023; 21:324-339. [PMID: 36185747 PMCID: PMC9483739 DOI: 10.1016/j.bioactmat.2022.08.029] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 08/23/2022] [Accepted: 08/29/2022] [Indexed: 12/01/2022] Open
Abstract
Diabetes mellitus (DM) aggravates periodontitis, resulting in accelerated periodontal bone resorption. Disordered glucose metabolism in DM causes reactive oxygen species (ROS) overproduction resulting in compromised bone healing, which makes diabetic periodontal bone regeneration a major challenge. Inspired by the natural bone healing cascade, a mesoporous silica nanoparticle (MSN)-incorporated PDLLA (poly(dl-lactide))-PEG-PDLLA (PPP) thermosensitive hydrogel with stepwise cargo release is designed to emulate the mesenchymal stem cell "recruitment-osteogenesis" cascade for diabetic periodontal bone regeneration. During therapy, SDF-1 quickly escapes from the hydrogel due to diffusion for early rat bone marrow stem cell (rBMSC) recruitment. Simultaneously, slow degradation of the hydrogel starts to gradually expose the MSNs for sustained release of metformin, which can scavenge the overproduced ROS under high glucose conditions to reverse the inhibited osteogenesis of rBMSCs by reactivating the AMPK/β-catenin pathway, resulting in regulation of the diabetic microenvironment and facilitation of osteogenesis. In vitro experiments indicate that the hydrogel markedly restores the inhibited migration and osteogenic capacities of rBMSCs under high glucose conditions. In vivo results suggest that it can effectively recruit rBMSCs to the periodontal defect and significantly promote periodontal bone regeneration under type 2 DM. In conclusion, our work provides a novel therapeutic strategy of a bioinspired drug-delivery system emulating the natural bone healing cascade for diabetic periodontal bone regeneration.
Collapse
Affiliation(s)
- He Wang
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, College of Stomatology of Chongqing Medical University, Chongqing, 401147, China
| | - Xiaowei Chang
- Department of Chemical Engineering, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering, School of Chemical Engineering and Technology, Xi′an Jiaotong University, Xi′an, 710049, China
| | - Qian Ma
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, College of Stomatology of Chongqing Medical University, Chongqing, 401147, China
| | - Boyang Sun
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, College of Stomatology of Chongqing Medical University, Chongqing, 401147, China
| | - Han Li
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, College of Stomatology of Chongqing Medical University, Chongqing, 401147, China
| | - Jinmin Zhou
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, College of Stomatology of Chongqing Medical University, Chongqing, 401147, China
| | - Yiyao Hu
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, College of Stomatology of Chongqing Medical University, Chongqing, 401147, China
| | - Xiaoyu Yang
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, College of Stomatology of Chongqing Medical University, Chongqing, 401147, China
| | - Jie Li
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, College of Stomatology of Chongqing Medical University, Chongqing, 401147, China
| | - Xin Chen
- Department of Chemical Engineering, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering, School of Chemical Engineering and Technology, Xi′an Jiaotong University, Xi′an, 710049, China
| | - Jinlin Song
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, College of Stomatology of Chongqing Medical University, Chongqing, 401147, China
| |
Collapse
|
9
|
Wang T, Liu K, Wang J, Xiang G, Hu X, Bai H, Lei W, Tao TH, Feng Y. Spatiotemporal Regulation of Injectable Heterogeneous Silk Gel Scaffolds for Accelerating Guided Vertebral Repair. Adv Healthc Mater 2023; 12:e2202210. [PMID: 36465008 DOI: 10.1002/adhm.202202210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/27/2022] [Indexed: 12/12/2022]
Abstract
Osteoporotic vertebral fracture is jeopardizing the health of the aged population around the world, while the hypoxia microenvironment and oxidative damage of bone defect make it difficult to perform effective tissue regeneration. The balance of oxidative stress and the coupling of vessel and bone ingrowth are critical for bone regeneration. In this study, an injectable heterogeneous silk gel scaffold which can spatiotemporally and sustainedly release bone mesenchymal stem cell-derived small extracellular vesicles, HIF-1α pathway activator, and inhibitor is developed for bone repair and vertebral reinforcement. The initial enhancement of HIF-1α upregulates the expression of VEGF to promote angiogenesis, and the balance of reactive oxygen species level is regulated to effectively eliminate oxidative damage and abnormal microenvironment. The subsequent inhibition of HIF-1α avoids the overexpression of VEGF and vascular overgrowth. Meanwhile, complex macroporous structures and suitable mechanical support can be obtained within the silk gel scaffolds, which will promote in situ bone regeneration. These findings provide a new clinical translation strategy for osteoporotic vertebral augmentation on basis of hypoxia microenvironment improvement.
Collapse
Affiliation(s)
- Tianji Wang
- Department of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, China
| | - Keyin Liu
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Jing Wang
- Department of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, China
| | - Geng Xiang
- Department of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, China
| | - Xiaofan Hu
- Department of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, China
| | - Hao Bai
- Department of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, China
| | - Wei Lei
- Department of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, China
| | - Tiger H Tao
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China.,School of Physical Science and Technology, ShanghaiTech University, Shanghai, 200031, China.,Institute of Brain-Intelligence Technology, Zhangjiang Laboratory, Shanghai, 200031, China.,Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Shanghai, 200031, China
| | - Yafei Feng
- Department of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, China
| |
Collapse
|
10
|
Liu Z, Xu Z, Wang X, Zhang Y, Wu Y, Jiang D, Jia R. Preparation and Biocompatibility of Core-Shell Microspheres for Sequential, Sustained Release of BMP-2 and VEGF. BIOMED RESEARCH INTERNATIONAL 2022; 2022:4072975. [PMID: 36467885 PMCID: PMC9718627 DOI: 10.1155/2022/4072975] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 10/20/2022] [Accepted: 11/14/2022] [Indexed: 08/26/2023]
Abstract
Bone defect repair remains a challenge in orthopedics. This study describes the development and potential effectiveness of vascular endothelial growth factor (VEGF)/bone morphogenetic protein-2 (BMP-2) shell-core microspheres for promoting bone regeneration. Poly(L-lactic acid)/polylactic-co-glycolic acid (PLLA/PLGA) core-shell microspheres loaded with VEGF and BMP-2 were prepared by a coaxial electrospray technique, and their surface morphology, core-shell distribution, and particle size were examined. Different groups of microspheres were prepared with different placement of the growth factors, and the encapsulation efficiency and in vitro release curves were measured. Additionally, the effects of the different groups of microspheres on the proliferation and differentiation of osteoblasts and vascular endothelial cells were investigated. The prepared microspheres had a core-shell structure with good homogeneity and dispersion, a clear boundary, and a smooth surface. On scanning electron microscopy, the mean diameter of the microspheres was similar for all six preparations (P > 0.05). During in vitro release, growth factor was initially released via a brief burst release from the outer shell of the microsphere followed by a slower sustained release. The release of growth factors from the inner core remained relatively slow and sustained. Sequential release of different growth factors was achieved through the inconsistent release rates from the microsphere shell and inner core. All groups of microspheres showed no cytotoxicity, good biocompatibility, and the ability to promote osteoblast proliferation. The microspheres loaded with BMP-2 also promoted osteoblast differentiation, and VEGF-loaded microspheres promoted the proliferation and differentiation of vascular endothelial cells. The BMP-2 (core)/VEGF (shell) microsphere group best promoted osteoblast differentiation. The microspheres prepared in this study exhibited slow sequential release of BMP-2 and VEGF and showed good biocompatibility along with the ability to promote osteoblast differentiation and vascular endothelial cell proliferation.
Collapse
Affiliation(s)
- Zheng Liu
- Department of Orthopedics, Hunan Children's Hospital, 86# Ziyuan Road, Changsha, Hunan 410007, China
| | - Zhenchao Xu
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital of Central South University, 87# Xiangya Road, Changsha, Hunan 410008, China
- Hunan Engineering Laboratory of Advanced Artificial Osteo-Materials, 87# Xiangya Road, Changsha, Hunan 410008, China
| | - Xiyang Wang
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital of Central South University, 87# Xiangya Road, Changsha, Hunan 410008, China
- Hunan Engineering Laboratory of Advanced Artificial Osteo-Materials, 87# Xiangya Road, Changsha, Hunan 410008, China
| | - Yilu Zhang
- Hunan Engineering Laboratory of Advanced Artificial Osteo-Materials, 87# Xiangya Road, Changsha, Hunan 410008, China
| | - Yunqi Wu
- Hunan Engineering Laboratory of Advanced Artificial Osteo-Materials, 87# Xiangya Road, Changsha, Hunan 410008, China
| | - Dingyu Jiang
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital of Central South University, 87# Xiangya Road, Changsha, Hunan 410008, China
- Hunan Engineering Laboratory of Advanced Artificial Osteo-Materials, 87# Xiangya Road, Changsha, Hunan 410008, China
| | - Runze Jia
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital of Central South University, 87# Xiangya Road, Changsha, Hunan 410008, China
- Hunan Engineering Laboratory of Advanced Artificial Osteo-Materials, 87# Xiangya Road, Changsha, Hunan 410008, China
| |
Collapse
|
11
|
Hoque J, Zeng Y, Newman H, Gonzales G, Lee C, Varghese S. Microgel-Assisted Delivery of Adenosine to Accelerate Fracture Healing. ACS Biomater Sci Eng 2022; 8:4863-4872. [PMID: 36266245 PMCID: PMC11188841 DOI: 10.1021/acsbiomaterials.2c00977] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Extracellular adenosine plays a key role in promoting bone tissue formation. Local delivery of adenosine could be an effective therapeutic strategy to harness the beneficial effect of extracellular adenosine on bone tissue formation following injury. Herein, we describe the development of an injectable in situ curing scaffold containing microgel-based adenosine delivery units. The two-component scaffold includes adenosine-loaded microgels and functionalized hyaluronic acid (HA) molecules. The microgels were generated upon copolymerization of 3-acrylamidophenylboronic acid (3-APBA)- and 2-aminoethylmethacrylamide (2-AEMA)-conjugated HA (HA-AEMA) in an emulsion suspension. The PBA functional groups were used to load the adenosine molecules. Mixing of the microgels with the HA polymers containing clickable groups, dibenzocyclooctyne (DBCO) and azide (HA-DBCO and HA-Azide), resulted in a 3D scaffold embedded with adenosine delivery units. Application of the in situ curing scaffolds containing adenosine-loaded microgels following tibial fracture injury showed improved bone tissue healing in a mouse model as demonstrated by the reduced callus size, higher bone volume, and increased tissue mineral density compared to those treated with the scaffold without adenosine. Overall, our results suggest that local delivery of adenosine could potentially be an effective strategy to promote bone tissue repair.
Collapse
Affiliation(s)
- Jiaul Hoque
- Department of Orthopaedic Surgery School of Medicine, Duke University, Durham, North Carolina 27710, United States
| | - Yuze Zeng
- Department of Orthopaedic Surgery School of Medicine, Duke University, Durham, North Carolina 27710, United States
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27710, United States
| | - Hunter Newman
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27710, United States
| | - Gavin Gonzales
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27710, United States
| | - Cheryl Lee
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27710, United States
| | - Shyni Varghese
- Department of Orthopaedic Surgery School of Medicine, Duke University, Durham, North Carolina 27710, United States
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27710, United States
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27710, United States
| |
Collapse
|
12
|
Ma L, Ke W, Liao Z, Feng X, Lei J, Wang K, Wang B, Li G, Luo R, Shi Y, Zhang W, Song Y, Sheng W, Yang C. Small extracellular vesicles with nanomorphology memory promote osteogenesis. Bioact Mater 2022; 17:425-438. [PMID: 35386457 PMCID: PMC8964989 DOI: 10.1016/j.bioactmat.2022.01.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 12/02/2021] [Accepted: 01/04/2022] [Indexed: 12/18/2022] Open
Abstract
Nanotopographical cues endow biomaterials the ability to guide cell adhesion, proliferation, and differentiation. Cellular mechanical memory can maintain the cell status by retaining cellular information obtained from past mechanical microenvironments. Here, we propose a new concept “morphology memory of small extracellular vesicles (sEV)” for bone regeneration. We performed nanotopography on titanium plates through alkali and heat (Ti8) treatment to promote human mesenchymal stem cell (hMSC) differentiation. Next, we extracted the sEVs from the hMSC, which were cultured on the nanotopographical Ti plates for 21 days (Ti8-21-sEV). We demonstrated that Ti8-21-sEV had superior pro-osteogenesis ability in vitro and in vivo. RNA sequencing further confirmed that Ti8-21-sEV promote bone regeneration through osteogenic-related pathways, including the PI3K-AKT signaling pathway, MAPK signaling pathway, focal adhesion, and extracellular matrix-receptor interaction. Finally, we decorated the Ti8-21-sEV on a 3D printed porous polyetheretherketone scaffold. The femoral condyle defect model of rabbits was used to demonstrate that Ti8-21-sEV had the best bone ingrowth. In summary, our study demonstrated that the Ti8-21-sEV have memory function by copying the pro-osteogenesis information from the nanotopography. We expect that our study will encourage the discovery of other sEV with morphology memory for tissue regeneration. Nanotopography fabricated on titanium plates has superior promoted hMSCs differentiation ability. sEV extracted from hMSCs which were cultured on Ti8 plates for 21 days had the superior pro-osteogenesis ability. Ti8-21-sEV have memory function through copy the pro-osteogenesis information from nanotopography. RNA sequencing confirmed that Ti8-21-sEV promote bone regeneration through osteogenic-related pathways.
Collapse
|
13
|
Gultian KA, Gandhi R, DeCesari K, Romiyo V, Kleinbart EP, Martin K, Gentile PM, Kim TWB, Vega SL. Injectable hydrogel with immobilized BMP-2 mimetic peptide for local bone regeneration. FRONTIERS IN BIOMATERIALS SCIENCE 2022; 1. [PMID: 37090104 PMCID: PMC10120851 DOI: 10.3389/fbiom.2022.948493] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Osteoporosis is a disease characterized by a decrease in bone mineral density, thereby increasing the risk of sustaining a fragility fracture. Most medical therapies are systemic and do not restore bone in areas of need, leading to undesirable side effects. Injectable hydrogels can locally deliver therapeutics with spatial precision, and this study reports the development of an injectable hydrogel containing a peptide mimic of bone morphogenetic protein-2 (BMP-2). To create injectable hydrogels, hyaluronic acid was modified with norbornene (HANor) or tetrazine (HATet) which upon mixing click into covalently crosslinked Nor-Tet hydrogels. By modifying HANor macromers with methacrylates (Me), thiolated BMP-2 mimetic peptides were immobilized to HANor via a Michael addition reaction, and coupling was confirmed with 1H NMR spectroscopy. BMP-2 peptides presented in soluble and immobilized form increased alkaline phosphatase (ALP) expression in MSCs cultured on 2D and encapsulated in 3D Nor-Tet hydrogels. Injection of bioactive Nor-Tet hydrogels into hollow intramedullary canals of Lewis rat femurs showed a local increase in trabecular bone density as determined by micro-CT imaging. The presented work shows that injectable hydrogels with immobilized BMP-2 peptides are a promising biomaterial for the local regeneration of bone tissue and for the potential local treatment of osteoporosis.
Collapse
Affiliation(s)
- Kirstene A. Gultian
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ, United States
| | - Roshni Gandhi
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ, United States
| | - Kayla DeCesari
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ, United States
| | - Vineeth Romiyo
- Department of Orthopaedic Surgery, Cooper University Health Care, Camden, NJ, United States
| | - Emily P. Kleinbart
- Department of Orthopaedic Surgery, Cooper University Health Care, Camden, NJ, United States
| | - Kelsey Martin
- Department of Orthopaedic Surgery, Cooper University Health Care, Camden, NJ, United States
| | - Pietro M. Gentile
- Department of Orthopaedic Surgery, Cooper University Health Care, Camden, NJ, United States
| | - Tae Won B. Kim
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ, United States
- Department of Orthopaedic Surgery, Cooper University Health Care, Camden, NJ, United States
| | - Sebastián L. Vega
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ, United States
- CORRESPONDENCE Sebastián L. Vega,
| |
Collapse
|
14
|
Zhang RZ, Shi Q, Zhao H, Pan GQ, Shao LH, Wang JF, Liu HW. In vivo study of dual functionalized mussel-derived bioactive peptides promoting 3D-printed porous Ti6Al4V scaffolds for repair of rabbit femoral defects. J Biomater Appl 2022; 37:942-958. [PMID: 35856165 DOI: 10.1177/08853282221117209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The 3D printed porous titanium alloy scaffolds are beneficial to enhance angiogenesis, osteoblast adhesion, and promote osseointegration. However, titanium alloys are biologically inert, which makes the bond between the implant and bone tissue weak and prone to loosening. Inspired by the natural biological marine mussels, we designed four-claw-shaped mussel-derived bioactive peptides for the decoration of porous titanium alloy scaffolds: adhesion peptide-DOPA, anchoring peptide-RGD and osteogenic-inducing peptide-BMP-2. And the bifunctionalization of 3D-printed porous titanium alloy scaffolds was evaluated in vivo in a rabbit model of bone defect with excellent promotion of osseointegration and mechanical stability. Our results show that the in vivo osseointegration ability of the modified 3D printed porous titanium alloy test piece is significantly improved, and the bifunctional polypeptide coating group E has the strongest osseointegration ability. In conclusion, our experimental design partially solves the problems of stress shielding effect and biological inertness, and provides a convenient and feasible method for the clinical application of titanium alloy implants in biomedical implant materials.
Collapse
Affiliation(s)
| | - Qin Shi
- 12582Suzhou University, Suzhou, China
| | - Huan Zhao
- 12582Suzhou University, Suzhou, China
| | | | | | | | - Hong Wei Liu
- 599923Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, China
| |
Collapse
|
15
|
Granel H, Bossard C, Collignon AM, Wauquier F, Lesieur J, Rochefort GY, Jallot E, Lao J, Wittrant Y. Osteogenic Effect of Fisetin Doping in Bioactive Glass/Poly(caprolactone) Hybrid Scaffolds. ACS OMEGA 2022; 7:22279-22290. [PMID: 35811886 PMCID: PMC9260777 DOI: 10.1021/acsomega.2c01109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
Treating large bone defects or fragile patients may require enhancing the bone regeneration rate to overcome a weak contribution from the body. This work investigates the osteogenic potential of nutrient fisetin, a flavonoid found in fruits and vegetables, as a doping agent inside the structure of a SiO2-CaO bioactive glass-poly(caprolactone) (BG-PCL) hybrid scaffold. Embedded in the full mass of the BG-PCL hybrid during one-pot synthesis, we demonstrate fisetin to be delivered sustainably; the release follows a first-order kinetics with active fisetin concentration being delivered for more than 1 month (36 days). The biological effect of BG-PCL-fisetin-doped scaffolds (BG-PCL-Fis) has been highlighted by in vitro and in vivo studies. A positive impact is demonstrated on the adhesion and the differentiation of rat primary osteoblasts, without an adverse cytotoxic effect. Implantation in critical-size mouse calvaria defects shows bone remodeling characteristics and remarkable enhancement of bone regeneration for fisetin-doped scaffolds, with the regenerated bone volume being twofold that of nondoped scaffolds and fourfold that of a commercial trabecular bovine bone substitute. Such highly bioactive materials could stand as competitive alternative strategies involving biomaterials loaded with growth factors, the use of the latter being the subject of growing concerns.
Collapse
Affiliation(s)
- Henri Granel
- INRAE,
Human Nutrition Unit (UNH), ECREIN Team, TSA 50400, 28 Place Henri Dunant, Clermont-Ferrand, Auvergne-Rhone-Alpes 63001, France
| | - Cédric Bossard
- Université
Clermont Auvergne, Laboratoire De Physique De Clermont Ferrand, 4 Avenue Blaise Pascal, Clermont-Ferrand, Auvergne-Rhône-Alpes 63001, France
| | - Anne-Margaux Collignon
- Descartes
University of Paris Faculty of Dental Surgery, Laboratoires Pathologies,
Imagerie et Biothérapies Orofaciales,1 Rue Maurice Arnoux, Montrouge, Île-De-France 92120, France
| | - Fabien Wauquier
- INRAE,
Human Nutrition Unit (UNH), ECREIN Team, TSA 50400, 28 Place Henri Dunant, Clermont-Ferrand, Auvergne-Rhone-Alpes 63001, France
| | - Julie Lesieur
- Descartes
University of Paris Faculty of Dental Surgery, Laboratoires Pathologies,
Imagerie et Biothérapies Orofaciales,1 Rue Maurice Arnoux, Montrouge, Île-De-France 92120, France
| | - Gael Y. Rochefort
- Descartes
University of Paris Faculty of Dental Surgery, Laboratoires Pathologies,
Imagerie et Biothérapies Orofaciales,1 Rue Maurice Arnoux, Montrouge, Île-De-France 92120, France
| | - Edouard Jallot
- Université
Clermont Auvergne, Laboratoire De Physique De Clermont Ferrand, 4 Avenue Blaise Pascal, Clermont-Ferrand, Auvergne-Rhône-Alpes 63001, France
| | - Jonathan Lao
- Université
Clermont Auvergne, Laboratoire De Physique De Clermont Ferrand, 4 Avenue Blaise Pascal, Clermont-Ferrand, Auvergne-Rhône-Alpes 63001, France
| | - Yohann Wittrant
- INRAE,
Human Nutrition Unit (UNH), ECREIN Team, TSA 50400, 28 Place Henri Dunant, Clermont-Ferrand, Auvergne-Rhone-Alpes 63001, France
| |
Collapse
|
16
|
Comparison of rhBMP-2 in Combination with Different Biomaterials for Regeneration in Rat Calvaria Critical-Size Defects. BIOMED RESEARCH INTERNATIONAL 2022; 2022:6281641. [PMID: 35509708 PMCID: PMC9061001 DOI: 10.1155/2022/6281641] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 03/25/2022] [Indexed: 12/31/2022]
Abstract
Regeneration of critical bone defects requires the use of biomaterials. The incorporation of osteoinductive agents, such as bone morphogenetic proteins (BMPs), improves bone formation. This study aimed to compare the efficacy of rhBMP-2 in combination with different materials for bone regeneration in critical-sized rat calvarial defects. This was an experimental animal study using 30 rats. In each rat, two 5-mm critical-size defects were made in the calvaria (60 bone defects in total) using a trephine. All rats were randomized to one of the six groups: control (C), autograft + rhBMP-2 (A), absorbable collagen sponge + rhBMP-2 (ACS), β-tricalcium phosphate + rhBMP-2 (B-TCP), bovine xenograft + rhBMP-2 (B), and hydroxyapatite + rhBMP-2 (HA). The outcome was assessed after 4 and 8 weeks using histological description and the histological bone healing scale. Statistical analysis was performed using the Kruskal-Wallis and Mann–Whitney U tests, with a p-value set at 0.05. The average bone healing scores per group were as follows: C group, 12.5; A group, 26.5; ACS group, 18.8; B-TCP group, 26.2; HA group, 20.9; and B group, 20.9. The C group showed a significant difference between weeks 4 and 8 (p = 0.032). Among the 4-week groups, the C group showed a significant difference compared to A (p = 0.001), ACS (p = 0.017), and B-TCP (p = 0.005) groups. The 8-week experimental group did not show any significant differences between the groups. The 5-mm critical size defect in rat calvaria requires the use of bone biomaterials to heal at 4 and 8 weeks. rhBMP-2, as applied in this study, showed no difference in new bone formation when combined with bovine, B-TCP, or HA biomaterials.
Collapse
|
17
|
Tian H, Guo A, Li K, Tao B, Lei D, Deng Z. Effects of a novel self-assembling peptide scaffold on bone regeneration and controlled release of two growth factors. J Biomed Mater Res A 2021; 110:943-953. [PMID: 34873824 DOI: 10.1002/jbm.a.37342] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/12/2021] [Accepted: 11/28/2021] [Indexed: 12/16/2022]
Abstract
RADA16 is a self-assembling peptide material with good bioactivity. To improve the bioactivity of a material, some specific functional motifs can be added to its peptide sequence. Here, we report a self-assembling peptide nanogel, RADA16-RGD, that has better bioactivity than RADA16 and can simultaneously carry and control the release of two growth factors, VEGF and BMP-2, which have synergistic effects on bone formation. The peptide materials were characterized by transmission electron microscopy and scanning electron microscopy. The mechanical properties of the peptides were evaluated by the rheology test. The biocompatibility of the materials was evaluated via the use of the CCK-8 test, live/dead staining and confocal laser scanning microscopy. Osteogenesis capability in vitro was evaluated by means of ALP staining, extracellular matrix mineralization and detection of osteogenic markers. The controlled release of growth factors was examined by ELISA. The results showed that RADA16-RGD exhibited a better ability than RADA16 to promote cell proliferation, adhesion and bone formation. In addition, RADA16-RGD had good biocompatibility and exhibited effective controlled release of VEGF and BMP-2. More importantly, compared with RADA16-RGD loaded with single growth factor or without growth factors, RADA16-RGD loaded with two growth factors exhibited a stronger ability to promote cell proliferation and osteogenesis. This study provides a promising strategy for the application of self-assembling peptides to promote osteogenesis and controlled release of proteins.
Collapse
Affiliation(s)
- Hongchuan Tian
- Department of Orthopedics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ai Guo
- Department of Orthopaedics, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Kai Li
- Department of Orthopaedics, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Bailong Tao
- Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Dengliang Lei
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhongliang Deng
- Department of Orthopedics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
18
|
Zhao X, Li Q, Guo Z, Li Z. Constructing a cell microenvironment with biomaterial scaffolds for stem cell therapy. Stem Cell Res Ther 2021; 12:583. [PMID: 34809719 PMCID: PMC8607654 DOI: 10.1186/s13287-021-02650-w] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 11/03/2021] [Indexed: 01/08/2023] Open
Abstract
Stem cell therapy is widely recognized as a promising strategy for exerting therapeutic effects after injury in degenerative diseases. However, limitations such as low cell retention and survival rates after transplantation exist in clinical applications. In recent years, emerging biomaterials that provide a supportable cellular microenvironment for transplanted cells have optimized the therapeutic efficacy of stem cells in injured tissues or organs. Advances in the engineered microenvironment are revolutionizing our understanding of stem cell-based therapies by co-transplanting with synthetic and tissue-derived biomaterials, which offer a scaffold for stem cells and propose an unprecedented opportunity to further employ significant influences in tissue repair and regeneration.
Collapse
Affiliation(s)
- Xiaotong Zhao
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, 601 Jinsui Road, Xinxiang, 453003, Henan, China.,Department of Cardiology, Zhengzhou Seventh People's Hospital, Zhengzhou, China
| | - Qiong Li
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, 601 Jinsui Road, Xinxiang, 453003, Henan, China
| | - Zhikun Guo
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, 601 Jinsui Road, Xinxiang, 453003, Henan, China. .,Department of Cardiology, Zhengzhou Seventh People's Hospital, Zhengzhou, China.
| | - Zongjin Li
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, 601 Jinsui Road, Xinxiang, 453003, Henan, China. .,Nankai University School of Medicine, 94 Weijin Road, Tianjin, 300071, China.
| |
Collapse
|
19
|
Gan M, Zhou Q, Ge J, Zhao J, Wang Y, Yan Q, Wu C, Yu H, Xiao Q, Wang W, Yang H, Zou J. Precise in-situ release of microRNA from an injectable hydrogel induces bone regeneration. Acta Biomater 2021; 135:289-303. [PMID: 34474179 DOI: 10.1016/j.actbio.2021.08.041] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 08/21/2021] [Accepted: 08/25/2021] [Indexed: 02/08/2023]
Abstract
Critical bone defects are a common yet challenging orthopedic problem. Tissue engineering is an emerging and promising strategy for bone regeneration in large-scale bone defects. The precise on-demand release of osteogenic factors is critical for controlling the osteogenic differentiation of seed cells with the support of appropriate three dimensional scaffolds. However, most of the effective osteogenic factors are biomacromolecules with release behaviors that are difficult to control. Here, the cholesterol-modified non-coding microRNA Chol-miR-26a was used to promote the osteogenic differentiation of human mesenchymal stem cells (hMSCs). Chol-miR-26a was conjugated to an injectable poly(ethylene glycol) (PEG) hydrogel through an ultraviolet (UV)-cleavable ester bond. The injectable PEG hydrogel was formed by a copper-free click reaction between the terminal azide groups of 8-armed PEG and dibenzocyclooctyne-biofunctionalized PEG, into which UV-cleavable Chol-miR-26a was simultaneously conjugated via a Michael addition reaction. Upon UV irradiation, Gel-c-miR-26a (MLCaged) released Chol-c-miR-26a selectively and exhibited significantly improved efficacy in bone regeneration compared to the hydrogel without UV irradiation and UV-uncleavable MLControl. MLCaged significantly enhanced alkaline phosphatase activity and promoted calcium nodule deposition in vitro and repaired critical skull defects in a rat animal model, demonstrating that injectable implantation with the precise release of osteogenic factors has the potential to repair large-scale bone defects in clinical practice. STATEMENT OF SIGNIFICANCE: Provide a novel and practical strategy via hydrogel for efficient delivery and precisely controlled release of miRNAs into bone defect sites. The hydrogel is formed by polyethylene glycol (PEG), which is crosslinked by 'click' reaction. Cholesterol-modified miR-26a loading on the hydrogel is covalently patterned onto the fibers of hydrogel through a UV light-cleavable linker, which prevents undesired release of miRNA. This hydrogel could realize the controlled release of miRNA under light regulation both in vitro and in vivo, thus realize bone regeneration.
Collapse
|
20
|
Abstract
Bone injuries and fractures are often associated with post-surgical failures, extended healing times, infection, a lack of return to a normal active lifestyle, and corrosion associated allergies. In this regard, this review presents a comprehensive report on advances in nanotechnology driven solutions for bone tissue engineering. The fabrication of metals such as copper, gold, platinum, palladium, silver, strontium, titanium, zinc oxide, and magnetic nanoparticles with tunable physico-chemical and opto-electronic properties for osteogenic scaffolds is discussed here in detail. Furthermore, the rational selection of a polymeric base such as chitosan, collagen, poly (L-lactide), hydroxyl-propyl-methyl cellulose, poly-lactic-co-glycolic acid, polyglucose-sorbitol-carboxymethy ether, polycaprolactone, natural rubber latex, and silk fibroin for scaffold preparation is also discussed. These advanced materials and fabrication strategies not only provide for appropriate mechanical strength but also render integrity, making them appealing for orthopedic applications. Further, such scaffolds can be functionalized with ligands or biomolecules such as hydroxyapatite, polypyrrole (PPy), magnesium, zinc dopants, and growth factors to stimulate osteogenic differentiation, mineralization, and neovascularization to aid in rapid healing. Future directions to co-incorporate bioceramics, biogenic nanoparticles, and fourth generation biomaterials to enhance biocompatibility, mechanical properties, and rapid recovery are also included in this review. Hence, the further development of such biomimetic metal-based nano-scaffolds at a lower cost with reduced risks and greater efficacy at regrowing bone can revolutionize the future of orthopedics.
Collapse
|
21
|
Xie L, Wang G, Wu Y, Liao Q, Mo S, Ren X, Tong L, Zhang W, Guan M, Pan H, Chu PK, Wang H. Programmed surface on poly(aryl-ether-ether-ketone) initiating immune mediation and fulfilling bone regeneration sequentially. Innovation (N Y) 2021; 2:100148. [PMID: 34557785 PMCID: PMC8454576 DOI: 10.1016/j.xinn.2021.100148] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 07/26/2021] [Indexed: 12/22/2022] Open
Abstract
The immune responses are involved in every stage after implantation but the reported immune-regulated materials only work at the beginning without fully considering the different phases of bone healing. Here, poly(aryl-ether-ether-ketone) (PEEK) is coated with a programmed surface, which rapidly releases interleukin-10 (IL-10) in the first week and slowly delivers dexamethasone (DEX) up to 4 weeks. Owing to the synergistic effects of IL-10 and DEX, an aptly weak inflammation is triggered within the first week, followed by significant M2 polarization of macrophages and upregulation of the autophagy-related factors. The suitable immunomodulatory activities pave the way for osteogenesis and the steady release of DEX facilitates bone regeneration thereafter. The sequential immune-mediated process is also validated by an 8-week implementation on a rat model. This is the first attempt to construct implants by taking advantage of both immune-mediated modulation and sequential regulation spanning all bone regeneration phases, which provides insights into the fabrication of advanced biomaterials for tissue engineering and immunological therapeutics. A programed surface is designed and fabricated for immune-mediated osteogenesis The degradation of PTMC coating enables a sequential release of IL-10 and DEX Initially, osteoimmunomodulation is achieved by IL-10 and a small amount of DEX Afterwards, sustained release of DEX fosters the peri-implant bone regeneration
Collapse
Affiliation(s)
- Lingxia Xie
- Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Guomin Wang
- Department of Physics, Department of Materials Science and Engineering, and Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Yuzheng Wu
- Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.,Department of Physics, Department of Materials Science and Engineering, and Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Qing Liao
- Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Shi Mo
- Department of Physics, Department of Materials Science and Engineering, and Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Xiaoxue Ren
- Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Liping Tong
- Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Wei Zhang
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Min Guan
- Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Haobo Pan
- Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Paul K Chu
- Department of Physics, Department of Materials Science and Engineering, and Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Huaiyu Wang
- Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
22
|
He X, Ao H, Qiao Y, Li Z. 3D-printed porous scaffold promotes osteogenic differentiation of hADMSCs. Open Med (Wars) 2021. [PMID: 33521318 PMCID: PMC7811365 DOI: 10.1515/med-2021-0233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
Objective
To explore the role of a three-dimensional (3D)-printed porous titanium alloy scaffold (3D scaffold) in the osteogenic differentiation of human adipose-derived mesenchymal stem cells (hADMSCs) and the underlying mechanism.
Methods
hADMSCs were divided into control and 3D scaffold groups. The osteogenic differentiation of hADMSCs and expression of osteogenic makers were estimated. Based on the information from published articles, five candidate circular RNAs were selected, and among them, hsa_circ_0019142 showed the most promising results. Finally, control group cells were overexpressed or silenced with the hsa_circ_0019142. Then, Alizarin red S (ARS) staining, calcium content analysis and estimation of alkaline phosphatase (ALP), osteocalcin (OCN), runt-related transcription factor 2 (RUNX2), and collagen-1 (COL1) were performed to evaluate the role of hsa_circ_0019142 on osteogenic differentiation.
Results
Osteogenic differentiation of the hADMSCs was significantly higher in the 3D scaffold group than in the control group, as evidenced by ARS staining, increased calcium concentration, and elevated expression of above four osteogenic factors. qPCR revealed that the expression of hsa_circ_0019142 was significantly higher in the 3D scaffold group. Overexpression of hsa_circ_0019142 promoted the osteogenic differentiation of hADMSCs, while knockdown of hsa_circ_0019142 caused the opposite results.
Conclusion
The 3D-printed scaffold promoted osteogenic differentiation of hADMSCs by upregulating hsa_circ_0019142.
Collapse
Affiliation(s)
- Xuebin He
- Ear-Nose-Throat Department, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, China
| | - Huafei Ao
- Ear-Nose-Throat Department, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, China
| | - Ying Qiao
- Ear-Nose-Throat Department, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, China
| | - Zhengwen Li
- Ear-Nose-Throat Department, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, China
| |
Collapse
|
23
|
Laird NZ, Acri TM, Tingle K, Salem AK. Gene- and RNAi-activated scaffolds for bone tissue engineering: Current progress and future directions. Adv Drug Deliv Rev 2021; 174:613-627. [PMID: 34015421 PMCID: PMC8217358 DOI: 10.1016/j.addr.2021.05.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 04/30/2021] [Accepted: 05/11/2021] [Indexed: 01/02/2023]
Abstract
Large bone defects are usually managed by replacing lost bone with non-biological prostheses or with bone grafts that come from the patient or a donor. Bone tissue engineering, as a field, offers the potential to regenerate bone within these large defects without the need for grafts or prosthetics. Such therapies could provide improved long- and short-term outcomes in patients with critical-sized bone defects. Bone tissue engineering has long relied on the administration of growth factors in protein form to stimulate bone regeneration, though clinical applications have shown that using such proteins as therapeutics can lead to concerning off-target effects due to the large amounts required for prolonged therapeutic action. Gene-based therapies offer an alternative to protein-based therapeutics where the genetic material encoding the desired protein is used and thus loading large doses of protein into the scaffolds is avoided. Gene- and RNAi-activated scaffolds are tissue engineering devices loaded with nucleic acids aimed at promoting local tissue repair. A variety of different approaches to formulating gene- and RNAi-activated scaffolds for bone tissue engineering have been explored, and include the activation of scaffolds with plasmid DNA, viruses, RNA transcripts, or interfering RNAs. This review will discuss recent progress in the field of bone tissue engineering, with specific focus on the different approaches employed by researchers to implement gene-activated scaffolds as a means of facilitating bone tissue repair.
Collapse
Affiliation(s)
- Noah Z Laird
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA, USA
| | - Timothy M Acri
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA, USA
| | - Kelsie Tingle
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA, USA
| | - Aliasger K Salem
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
24
|
Jiao D, Zheng A, Liu Y, Zhang X, Wang X, Wu J, She W, Lv K, Cao L, Jiang X. Bidirectional differentiation of BMSCs induced by a biomimetic procallus based on a gelatin-reduced graphene oxide reinforced hydrogel for rapid bone regeneration. Bioact Mater 2021; 6:2011-2028. [PMID: 33426373 PMCID: PMC7782557 DOI: 10.1016/j.bioactmat.2020.12.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 11/17/2020] [Accepted: 12/06/2020] [Indexed: 01/07/2023] Open
Abstract
Developmental engineering strategy needs the biomimetic composites that can integrate the progenitor cells, biomaterial matrices and bioactive signals to mimic the natural bone healing process for faster healing and reconstruction of segmental bone defects. We prepared the gelatin-reduced graphene oxide (GOG) and constructed the composites that mimicked the procallus by combining the GOG with the photo-crosslinked gelatin hydrogel. The biological effects of the GOG-reinforced composites could induce the bi-differentiation of bone marrow stromal cells (BMSCs) for rapid bone repair. The proper ratio of GOG in the composites regulated the composites' mechanical properties to a suitable range for the adhesion and proliferation of BMSCs. Besides, the GOG-mediated bidirectional differentiation of BMSCs, including osteogenesis and angiogenesis, could be activated through Erk1/2 and AKT pathway. The methyl vanillate (MV) delivered by GOG also contributed to the bioactive signals of the biomimetic procallus through priming the osteogenesis of BMSCs. During the repair of the calvarial defect in vivo, the initial hypoxic condition due to GOG in the composites gradually transformed into a well-vasculature robust situation with the bi-differentiation of BMSCs, which mimicked the process of bone healing resulting in the rapid bone regeneration. As an inorganic constituent, GOG reinforced the organic photo-crosslinked gelatin hydrogel to form a double-phase biomimetic procallus, which provided the porous extracellular matrix microenvironment and bioactive signals for the bi-directional differentiation of BMSCs. These show a promised application of the bio-reduced graphene oxide in biomedicine with a developmental engineering strategy.
Collapse
Affiliation(s)
- Delong Jiao
- Department of Prosthodontics, Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, China
| | - Ao Zheng
- Department of Prosthodontics, Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, China
| | - Yang Liu
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Xiangkai Zhang
- Department of Prosthodontics, Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, China
| | - Xiao Wang
- Department of Prosthodontics, Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, China
| | - Jiannan Wu
- Department of Prosthodontics, Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, China
| | - Wenjun She
- Department of Prosthodontics, Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, China
| | - Kaige Lv
- Department of Prosthodontics, Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, China
| | - Lingyan Cao
- Department of Prosthodontics, Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, China
| | - Xinquan Jiang
- Department of Prosthodontics, Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, China
| |
Collapse
|
25
|
Ahmad T, McGrath S, Sirafim C, do Amaral RJFC, Soong SL, Sitram R, Turkistani S, Santarella F, Kearney CJ. Development of wound healing scaffolds with precisely-triggered sequential release of therapeutic nanoparticles. Biomater Sci 2021; 9:4278-4288. [PMID: 33165491 DOI: 10.1039/d0bm01277g] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Natural bioactive cue profiles are generally transient with cues switching on/off to coordinate successful outcomes. Dysregulation of these sequences typically leads to disease. Successful wound healing, for example, should progress sequentially through hemostasis, inflammation, granulation tissue formation, and maturation. Chronic wounds, such as diabetic foot ulcers, suffer from uncoordinated signaling, and arrest and cycle between the inflammation and granulation stages. Traditionally, therapeutic delivery in tissue engineering has focused on sustaining delivery of key signaling factors; however, temporal and sequential delivery have increasingly come into focus. To fully take advantage of these signaling systems, a scaffold or matrix material that can house the delivery system is desirable. In this work, we functionalized a collagen-based scaffold - which has proven regenerative potential in wounds - with on-demand delivery of nanoparticles. Building on our previous work with ultrasound-responsive alginate that shows near-zero baseline release and a rapid release in response to an ultrasound trigger, we developed two novel scaffolds. In the first version, homogeneously-distributed microparticles of alginate were incorporated within the collagen-glycosaminoglycan (GAG) scaffold; ultrasound-triggered release of platelet derived growth factor (PDGF) loaded gold nanoparticles was demonstrated; and their maintained bioactivity confirmed. In the second version, pockets of alginate that can be individually loaded and triggered with ultrasound, were incorporated. The ability to sequentially release multiple therapeutics within these scaffolds using ultrasound was successfully confirmed. These platforms offer a precise and versatile way to deliver therapeutic nanoparticles within a proven regenerative template, and can be used to deliver and probe timed therapeutic delivery in wound healing and other tissue engineering applications.
Collapse
Affiliation(s)
- Tauseef Ahmad
- Tissue Engineering Research Group, Dept. of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland
| | - Sean McGrath
- Tissue Engineering Research Group, Dept. of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland
| | - Catherine Sirafim
- Tissue Engineering Research Group, Dept. of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland
| | - Ronaldo J F C do Amaral
- Tissue Engineering Research Group, Dept. of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland
| | - Shin-Loong Soong
- Tissue Engineering Research Group, Dept. of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland
| | - Renuka Sitram
- Tissue Engineering Research Group, Dept. of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland
| | - Shifa'a Turkistani
- Tissue Engineering Research Group, Dept. of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland
| | - Francesco Santarella
- Tissue Engineering Research Group, Dept. of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland
| | - Cathal J Kearney
- Tissue Engineering Research Group, Dept. of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland and Advanced Materials and Bioengineering Research Centre (AMBER), RCSI and Trinity College Dublin, Dublin, Ireland and Trinity Centre for Bioengineering, Trinity College Dublin, Dublin, Ireland and Department of Biomedical Engineering, University of Massachusetts, Amherst, USA.
| |
Collapse
|
26
|
Dorogin J, Townsend JM, Hettiaratchi MH. Biomaterials for protein delivery for complex tissue healing responses. Biomater Sci 2021; 9:2339-2361. [PMID: 33432960 DOI: 10.1039/d0bm01804j] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Tissue repair requires a complex cascade of events mediated by a variety of cells, proteins, and matrix molecules; however, the healing cascade can be easily disrupted by numerous factors, resulting in impaired tissue regeneration. Recent advances in biomaterials for tissue regeneration have increased the ability to tailor the delivery of proteins and other biomolecules to injury sites to restore normal healing cascades and stimulate robust tissue repair. In this review, we discuss the evolution of the field toward creating biomaterials that precisely control protein delivery to stimulate tissue regeneration, with a focus on addressing complex and dynamic injury environments. We highlight biomaterials that leverage different mechanisms to deliver and present proteins involved in healing cascades, tissue targeting and mimicking strategies, materials that can be triggered by environmental cues, and integrated strategies that combine multiple biomaterial properties to improve protein delivery. Improvements in biomaterial design to address complex injury environments will expand our understanding of both normal and aberrant tissue repair processes and ultimately provide a better standard of patient care.
Collapse
Affiliation(s)
- Jonathan Dorogin
- Knight Campus for Accelerating Scientific Impact, University of Oregon, 6321 University of Oregon, Eugene, OR 97401, USA.
| | | | | |
Collapse
|
27
|
|
28
|
Gherasim O, Grumezescu AM, Grumezescu V, Negut I, Dumitrescu MF, Stan MS, Nica IC, Holban AM, Socol G, Andronescu E. Bioactive Coatings Based on Hydroxyapatite, Kanamycin, and Growth Factor for Biofilm Modulation. Antibiotics (Basel) 2021; 10:160. [PMID: 33562515 PMCID: PMC7914914 DOI: 10.3390/antibiotics10020160] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/22/2021] [Accepted: 02/02/2021] [Indexed: 02/07/2023] Open
Abstract
The occurrence of opportunistic local infections and improper integration of metallic implants results in severe health conditions. Protective and tunable coatings represent an attractive and challenging selection for improving the metallic devices' biofunctional performances to restore or replace bone tissue. Composite materials based on hydroxyapatite (HAp), Kanamycin (KAN), and fibroblast growth factor 2 (FGF2) are herein proposed as multifunctional coatings for hard tissue implants. The superior cytocompatibility of the obtained composite coatings was evidenced by performing proliferation and morphological assays on osteoblast cell cultures. The addition of FGF2 proved beneficial concerning the metabolic activity, adhesion, and spreading of cells. The KAN-embedded coatings exhibited significant inhibitory effects against bacterial biofilm development for at least two days, the results being superior in the case of Gram-positive pathogens. HAp-based coatings embedded with KAN and FGF2 protein are proposed as multifunctional materials with superior osseointegration potential and the ability to reduce device-associated infections.
Collapse
Affiliation(s)
- Oana Gherasim
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 011061 Bucharest, Romania; (O.G.); (A.M.G.); (M.F.D.); (M.S.S.); (E.A.)
- Lasers Department, National Institute for Lasers, Plasma and Radiation Physics, 077125 Magurele, Romania; (I.N.); (G.S.)
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 011061 Bucharest, Romania; (O.G.); (A.M.G.); (M.F.D.); (M.S.S.); (E.A.)
- Research Institute of the University of Bucharest–ICUB, University of Bucharest, 050657 Bucharest, Romania; (I.C.N.); (A.M.H.)
| | - Valentina Grumezescu
- Lasers Department, National Institute for Lasers, Plasma and Radiation Physics, 077125 Magurele, Romania; (I.N.); (G.S.)
| | - Irina Negut
- Lasers Department, National Institute for Lasers, Plasma and Radiation Physics, 077125 Magurele, Romania; (I.N.); (G.S.)
| | - Marius Florin Dumitrescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 011061 Bucharest, Romania; (O.G.); (A.M.G.); (M.F.D.); (M.S.S.); (E.A.)
| | - Miruna Silvia Stan
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 011061 Bucharest, Romania; (O.G.); (A.M.G.); (M.F.D.); (M.S.S.); (E.A.)
- Research Institute of the University of Bucharest–ICUB, University of Bucharest, 050657 Bucharest, Romania; (I.C.N.); (A.M.H.)
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania
| | - Ionela Cristina Nica
- Research Institute of the University of Bucharest–ICUB, University of Bucharest, 050657 Bucharest, Romania; (I.C.N.); (A.M.H.)
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania
| | - Alina Maria Holban
- Research Institute of the University of Bucharest–ICUB, University of Bucharest, 050657 Bucharest, Romania; (I.C.N.); (A.M.H.)
- Department of Microbiology and Immunology, Faculty of Biology, University of Bucharest, 077206 Bucharest, Romania
| | - Gabriel Socol
- Lasers Department, National Institute for Lasers, Plasma and Radiation Physics, 077125 Magurele, Romania; (I.N.); (G.S.)
| | - Ecaterina Andronescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 011061 Bucharest, Romania; (O.G.); (A.M.G.); (M.F.D.); (M.S.S.); (E.A.)
| |
Collapse
|
29
|
Gelmi A, Schutt CE. Stimuli-Responsive Biomaterials: Scaffolds for Stem Cell Control. Adv Healthc Mater 2021; 10:e2001125. [PMID: 32996270 PMCID: PMC11468740 DOI: 10.1002/adhm.202001125] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/18/2020] [Indexed: 12/28/2022]
Abstract
Stem cell fate is closely intertwined with microenvironmental and endogenous cues within the body. Recapitulating this dynamic environment ex vivo can be achieved through engineered biomaterials which can respond to exogenous stimulation (including light, electrical stimulation, ultrasound, and magnetic fields) to deliver temporal and spatial cues to stem cells. These stimuli-responsive biomaterials can be integrated into scaffolds to investigate stem cell response in vitro and in vivo, and offer many pathways of cellular manipulation: biochemical cues, scaffold property changes, drug release, mechanical stress, and electrical signaling. The aim of this review is to assess and discuss the current state of exogenous stimuli-responsive biomaterials, and their application in multipotent stem cell control. Future perspectives in utilizing these biomaterials for personalized tissue engineering and directing organoid models are also discussed.
Collapse
Affiliation(s)
- Amy Gelmi
- School of ScienceCollege of Science, Engineering and HealthRMIT UniversityMelbourneVIC3001Australia
| | - Carolyn E. Schutt
- Department of Biomedical EngineeringKnight Cancer Institute Cancer Early Detection Advanced Research Center (CEDAR)Oregon Health and Science UniversityPortlandOR97201USA
| |
Collapse
|
30
|
Simpson CR, Kelly HM, Murphy CM. Synergistic use of biomaterials and licensed therapeutics to manipulate bone remodelling and promote non-union fracture repair. Adv Drug Deliv Rev 2020; 160:212-233. [PMID: 33122088 DOI: 10.1016/j.addr.2020.10.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 10/16/2020] [Accepted: 10/20/2020] [Indexed: 12/16/2022]
Abstract
Disrupted bone metabolism can lead to delayed fracture healing or non-union, often requiring intervention to correct. Although the current clinical gold standard bone graft implants and commercial bone graft substitutes are effective, they possess inherent drawbacks and are limited in their therapeutic capacity for delayed union and non-union repair. Research into advanced biomaterials and therapeutic biomolecules has shown great potential for driving bone regeneration, although few have achieved commercial success or clinical translation. There are a number of therapeutics, which influence bone remodelling, currently licensed for clinical use. Providing an alternative local delivery context for these therapies, can enhance their efficacy and is an emerging trend in bone regenerative therapeutic strategies. This review aims to provide an overview of how biomaterial design has advanced from currently available commercial bone graft substitutes to accommodate previously licensed therapeutics that target local bone restoration and healing in a synergistic manner, and the challenges faced in progressing this research towards clinical reality.
Collapse
Affiliation(s)
- Christopher R Simpson
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland
| | - Helena M Kelly
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland; School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland
| | - Ciara M Murphy
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland; Trinity Centre for Biomedical Engineering, Trinity College Dublin (TCD), Dublin, Ireland; Advanced Materials and Bioengineering Research Centre (AMBER), RCSI and TCD, Dublin, Ireland.
| |
Collapse
|
31
|
Li H, Yang Z, Fu L, Yuan Z, Gao C, Sui X, Liu S, Peng J, Dai Y, Guo Q. Advanced Polymer-Based Drug Delivery Strategies for Meniscal Regeneration. TISSUE ENGINEERING PART B-REVIEWS 2020; 27:266-293. [PMID: 32988289 DOI: 10.1089/ten.teb.2020.0156] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The meniscus plays a critical role in maintaining knee joint homeostasis. Injuries to the meniscus, especially considering the limited self-healing capacity of the avascular region, continue to be a challenge and are often treated by (partial) meniscectomy, which has been identified to cause osteoarthritis. Currently, meniscus tissue engineering focuses on providing extracellular matrix (ECM)-mimicking scaffolds to direct the inherent meniscal regeneration process, and it has been found that various stimuli are essential. Numerous bioactive factors present benefits in regulating cell fate, tissue development, and healing, but lack an optimal delivery system. More recently, bioengineers have developed various polymer-based drug delivery systems (PDDSs), which are beneficial in terms of the favorable properties of polymers as well as novel delivery strategies. Engineered PDDSs aim to provide not only an ECM-mimicking microenvironment but also the controlled release of bioactive factors with release profiles tailored according to the biological concerns and properties of the factors. In this review, both different polymers and bioactive factors involved in meniscal regeneration are discussed, as well as potential candidate systems, with examples of recent progress. This article aims to summarize drug delivery strategies in meniscal regeneration, with a focus on novel delivery strategies rather than on specific delivery carriers. The current challenges and future prospects for the structural and functional regeneration of the meniscus are also discussed. Impact statement Meniscal injury remains a clinical Gordian knot owing to the limited healing potential of the region, restricted surgical approaches, and risk of inducing osteoarthritis. Existing tissue engineering scaffolds that provide mechanical support and a favorable microenvironment also lack biological cues. Advanced polymer-based delivery strategies consisting of polymers incorporating bioactive factors have emerged as a promising direction. This article primarily reviews the types and applications of biopolymers and bioactive factors in meniscal regeneration. Importantly, various carrier systems and drug delivery strategies are discussed with the hope of inspiring further advancements in this field.
Collapse
Affiliation(s)
- Hao Li
- School of Medicine, Nankai University, Tianjin, China.,Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics; Key Laboratory of Musculoskeletal Trauma & War Injuries PLA; Beijing, China
| | - Zhen Yang
- School of Medicine, Nankai University, Tianjin, China.,Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics; Key Laboratory of Musculoskeletal Trauma & War Injuries PLA; Beijing, China
| | - Liwei Fu
- School of Medicine, Nankai University, Tianjin, China.,Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics; Key Laboratory of Musculoskeletal Trauma & War Injuries PLA; Beijing, China
| | - Zhiguo Yuan
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics; Key Laboratory of Musculoskeletal Trauma & War Injuries PLA; Beijing, China.,Department of Bone and Joint Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Cangjian Gao
- School of Medicine, Nankai University, Tianjin, China.,Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics; Key Laboratory of Musculoskeletal Trauma & War Injuries PLA; Beijing, China
| | - Xiang Sui
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics; Key Laboratory of Musculoskeletal Trauma & War Injuries PLA; Beijing, China
| | - Shuyun Liu
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics; Key Laboratory of Musculoskeletal Trauma & War Injuries PLA; Beijing, China
| | - Jiang Peng
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics; Key Laboratory of Musculoskeletal Trauma & War Injuries PLA; Beijing, China
| | - Yongjing Dai
- Department of Orthopedic, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Quanyi Guo
- School of Medicine, Nankai University, Tianjin, China.,Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics; Key Laboratory of Musculoskeletal Trauma & War Injuries PLA; Beijing, China
| |
Collapse
|
32
|
Aprile P, Letourneur D, Simon‐Yarza T. Membranes for Guided Bone Regeneration: A Road from Bench to Bedside. Adv Healthc Mater 2020; 9:e2000707. [PMID: 32864879 DOI: 10.1002/adhm.202000707] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/28/2020] [Indexed: 12/14/2022]
Abstract
Bone resorption can negatively influence the osseointegration of dental implants. Barrier membranes for guided bone regeneration (GBR) are used to exclude nonosteogenic tissues from influencing the bone healing process. In addition to the existing barrier membranes available on the market, a growing variety of membranes for GBR with tailorable physicochemical properties are under preclinical evaluation. Hence, the aim of this review is to provide a comprehensive description of materials used for GBR and to report the main industrial and regulatory aspects allowing the commercialization of these medical devices (MDs). In particular, a summary of the main attributes defining a GBR membrane is reported along with a description of commercially available and under development membranes. Finally, strategies for the scaling-up of the manufacturing process and the regulatory framework of the main MD producers (USA, EU, Japan, China, and India) are presented. The description of the regulatory approval process of GBR membranes is representative of the typical path that medium- to high-risk MDs have to follow for an effective medical translation, which is of fundamental importance to increase the impact of biomedical research on public health.
Collapse
Affiliation(s)
- Paola Aprile
- LVTS INSERM U1148 X. Bichat Hospital Université de Paris Université Sorbonne Paris Nord Paris F‐75018 France
| | - Didier Letourneur
- LVTS INSERM U1148 X. Bichat Hospital Université de Paris Université Sorbonne Paris Nord Paris F‐75018 France
| | - Teresa Simon‐Yarza
- LVTS INSERM U1148 X. Bichat Hospital Université de Paris Université Sorbonne Paris Nord Paris F‐75018 France
| |
Collapse
|
33
|
Liu J, Zeng H, Xiao P, Yang A, Situ X, Wang Y, Zhang X, Li W, Pan W, Wang Y. Sustained Release of Magnesium Ions Mediated by a Dynamic Mechanical Hydrogel to Enhance BMSC Proliferation and Differentiation. ACS OMEGA 2020; 5:24477-24486. [PMID: 33015464 PMCID: PMC7528328 DOI: 10.1021/acsomega.0c02946] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 09/04/2020] [Indexed: 05/15/2023]
Abstract
Hydrogel scaffolds are promising and widely applicable platforms for various therapeutic agents to facilitate bone tissue regeneration due to their biocompatibility and low immunogenicity. Nevertheless, the improvement of local administration efficiency and on-demand release of drugs from a hydrogel system is still an obstacle. In this work, we reported that a novel injectable hydrogel system was fabricated based on coordination of multiarm thiolated polyethylene glycol (PEG-SH) and magnesium ions for bone marrow-derived mesenchymal stem cell (BMSC) proliferation and differentiation. The dynamic nature coordination bond of Mg-S and the dynamic disulfide bond of S-S provide hydrogels with good mechanical performance and typical rheological behavior and thus endow the hydrogels with a satisfactory swelling rate and degradation property. Mg2+ was incorporated in the system not only to act as an effective cross-linker to enhance the hydrogel network structure but also to mediate the sustained release of Mg2+. Due to the controlled release of Mg2+, the PEG-SH/Mg2+ hydrogel can effectively improve BMSC proliferation and osteoblastic activity via the PI3K/Akt/GSK3β/β-catenin signal pathway in vitro. These findings indicated that the novel hydrogel controlled release of a Mg2+ ion is viewed as a promising and flexible platform for bone regeneration clinically.
Collapse
Affiliation(s)
- Jiayu Liu
- Department
of Rehabilitation Medicine, Dapeng New District
Nan’ao People’s Hospital, Shenzhen 518121, China
| | - Hongli Zeng
- Department
of Pediatric Rehabilitation, The Women and
Children’s Hospital of Dapeng New District, Shenzhen 518000, China
| | - Peng Xiao
- Department
of Rehabilitation Medicine, Dapeng New District
Nan’ao People’s Hospital, Shenzhen 518121, China
| | - Anqun Yang
- Department
of Rehabilitation Medicine, Dapeng New District
Nan’ao People’s Hospital, Shenzhen 518121, China
| | - Xingxian Situ
- Department
of Rehabilitation Medicine, Dapeng New District
Nan’ao People’s Hospital, Shenzhen 518121, China
| | - Yao Wang
- Department
of Rehabilitation Medicine, Dapeng New District
Nan’ao People’s Hospital, Shenzhen 518121, China
| | - Xiang Zhang
- Department
of Rehabilitation Medicine, Dapeng New District
Nan’ao People’s Hospital, Shenzhen 518121, China
| | - Wenqiang Li
- Department
of Rehabilitation Medicine, Dapeng New District
Nan’ao People’s Hospital, Shenzhen 518121, China
- Engineering
Technology Research Center for Sports Assistive Devices of Guangdong, Guangzhou Sport University, Guangzhou 510000, China
| | - Weiyi Pan
- Department
of Rehabilitation Medicine, Dapeng New District
Nan’ao People’s Hospital, Shenzhen 518121, China
| | - Yulong Wang
- Department
of Rehabilitation Medicine, Dapeng New District
Nan’ao People’s Hospital, Shenzhen 518121, China
- Department
of Rehabilitation, The Second People’s Hospital of Shenzhen, The First Affiliated Hospital of Shenzhen University, Shenzhen 518035, China
| |
Collapse
|
34
|
Lyons JG, Plantz MA, Hsu WK, Hsu EL, Minardi S. Nanostructured Biomaterials for Bone Regeneration. Front Bioeng Biotechnol 2020; 8:922. [PMID: 32974298 PMCID: PMC7471872 DOI: 10.3389/fbioe.2020.00922] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/17/2020] [Indexed: 12/13/2022] Open
Abstract
This review article addresses the various aspects of nano-biomaterials used in or being pursued for the purpose of promoting bone regeneration. In the last decade, significant growth in the fields of polymer sciences, nanotechnology, and biotechnology has resulted in the development of new nano-biomaterials. These are extensively explored as drug delivery carriers and as implantable devices. At the interface of nanomaterials and biological systems, the organic and synthetic worlds have merged over the past two decades, forming a new scientific field incorporating nano-material design for biological applications. For this field to evolve, there is a need to understand the dynamic forces and molecular components that shape these interactions and influence function, while also considering safety. While there is still much to learn about the bio-physicochemical interactions at the interface, we are at a point where pockets of accumulated knowledge can provide a conceptual framework to guide further exploration and inform future product development. This review is intended as a resource for academics, scientists, and physicians working in the field of orthopedics and bone repair.
Collapse
Affiliation(s)
- Joseph G. Lyons
- Department of Orthopaedic Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Simpson Querrey Institute, Northwestern University, Chicago, IL, United States
| | - Mark A. Plantz
- Department of Orthopaedic Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Simpson Querrey Institute, Northwestern University, Chicago, IL, United States
| | - Wellington K. Hsu
- Department of Orthopaedic Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Simpson Querrey Institute, Northwestern University, Chicago, IL, United States
| | - Erin L. Hsu
- Department of Orthopaedic Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Simpson Querrey Institute, Northwestern University, Chicago, IL, United States
| | - Silvia Minardi
- Department of Orthopaedic Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Simpson Querrey Institute, Northwestern University, Chicago, IL, United States
| |
Collapse
|
35
|
Palomino-Durand C, Lopez M, Marchandise P, Martel B, Blanchemain N, Chai F. Chitosan/Polycyclodextrin (CHT/PCD)-Based Sponges Delivering VEGF to Enhance Angiogenesis for Bone Regeneration. Pharmaceutics 2020; 12:pharmaceutics12090784. [PMID: 32825081 PMCID: PMC7557476 DOI: 10.3390/pharmaceutics12090784] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 08/11/2020] [Accepted: 08/15/2020] [Indexed: 02/07/2023] Open
Abstract
Vascularization is one of the main challenges in bone tissue engineering (BTE). In this study, vascular endothelial growth factor (VEGF), known for its angiogenic effect, was delivered by our developed sponge, derived from a polyelectrolyte complexes hydrogel between chitosan (CHT) and anionic cyclodextrin polymer (PCD). This sponge, as a scaffold for growth factor delivery, was formed by freeze-drying a homogeneous CHT/PCD hydrogel, and thereafter stabilized by a thermal treatment. Microstructure, water-uptake, biodegradation, mechanical properties, and cytocompatibility of sponges were assessed. VEGF-delivery following incubation in medium was then evaluated by monitoring the VEGF-release profile and its bioactivity. CHT/PCD sponge showed a porous (open porosity of 87.5%) interconnected microstructure with pores of different sizes (an average pore size of 153 μm), a slow biodegradation (12% till 21 days), a high water-uptake capacity (~600% in 2 h), an elastic property under compression (elastic modulus of compression 256 ± 4 kPa), and a good cytocompatibility in contact with osteoblast and endothelial cells. The kinetic release of VEGF was found to exert a pro-proliferation and a pro-migration effect on endothelial cells, which are two important processes during scaffold vascularization. Hence, CHT/PCD sponges were promising vehicles for the delivery of growth factors in BTE.
Collapse
Affiliation(s)
- Carla Palomino-Durand
- U1008 Controlled Drug Delivery Systems and Biomaterials, Institut National de la Santé et de la Recherche Médicale (INSERM), Centre Hospitalier Régional Universitaire de Lille (CHU Lille), University of Lille, 59000 Lille, France; (C.P.-D.); (M.L.); (N.B.)
| | - Marco Lopez
- U1008 Controlled Drug Delivery Systems and Biomaterials, Institut National de la Santé et de la Recherche Médicale (INSERM), Centre Hospitalier Régional Universitaire de Lille (CHU Lille), University of Lille, 59000 Lille, France; (C.P.-D.); (M.L.); (N.B.)
| | - Pierre Marchandise
- ULR 4490–MABLab–Adiposité Médullaire et Os, Institut National de la Santé et de la Recherche Médicale (INSERM), Centre Hospitalier Régional Universitaire de Lille (CHU Lille), University of Lille, 59000 Lille, France;
- ULR 4490–MABLab–Adiposité Médullaire et Os, Univ. Littoral Côte d’Opale, 62200 Boulogne-sur-Mer, France
| | - Bernard Martel
- UMR 8207, UMET—Unité Matériaux et Transformations, Centre National de la Recherche Scientifique (CNRS), Institut National de la Recherche Agronomique (INRA), Ecole Nationale Supérieure de Chimie de Lille (ENSCL), University of Lille, 59655 Lille, France;
| | - Nicolas Blanchemain
- U1008 Controlled Drug Delivery Systems and Biomaterials, Institut National de la Santé et de la Recherche Médicale (INSERM), Centre Hospitalier Régional Universitaire de Lille (CHU Lille), University of Lille, 59000 Lille, France; (C.P.-D.); (M.L.); (N.B.)
| | - Feng Chai
- U1008 Controlled Drug Delivery Systems and Biomaterials, Institut National de la Santé et de la Recherche Médicale (INSERM), Centre Hospitalier Régional Universitaire de Lille (CHU Lille), University of Lille, 59000 Lille, France; (C.P.-D.); (M.L.); (N.B.)
- Correspondence: ; Tel.: +33-320-626-997
| |
Collapse
|
36
|
Wei Q, Young J, Holle A, Li J, Bieback K, Inman G, Spatz JP, Cavalcanti-Adam EA. Soft Hydrogels for Balancing Cell Proliferation and Differentiation. ACS Biomater Sci Eng 2020; 6:4687-4701. [PMID: 33455192 DOI: 10.1021/acsbiomaterials.0c00854] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Hydrogels have been widely explored for the delivery of cells in a variety of regenerative medicine applications due to their ability to mimic both the biochemical and physical cues of cell microniches. For bone regeneration, in particular, stiff hydrogels mimicking osteoid stiffness have been utilized due to the fact that stiff substrates favor stem cell osteogenic differentiation. Unlike cell adhesion in two dimensions, three-dimensional hydrogels offer mechanical stimulation but limit the cell spreading and growth due to the dense matrix network. Therefore, we designed degradable, soft hydrogels (∼0.5 kPa) mimicking the soft bone marrow stiffness, with incorporated matrix metalloproteinase (MMP)-cleavable sites and RGD-based adhesive sites, to enhance the spreading and proliferation of the encapsulated cells, which are commonly inhibited in nondegradable and/or stiff implants. When the hydrogels were cultured on rigid surfaces to mirror the microenvironment of bone defects in vivo, the cells were shown to migrate toward the interface and differentiate down the osteogenic lineage, enhanced by the codelivery of bone morphogenetic protein-2 (BMP-2). Furthermore, this soft hydrogel might find applications in therapeutic interventions since it is easily injectable and cost-efficient. Taken together, we have designed a new system to balance cell growth and differentiation for improving hydrogel-based bone regenerative medicine strategies.
Collapse
Affiliation(s)
- Qiang Wei
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials and Engineering, Sichuan University, 610065 Chengdu, China
- Department of Cellular Biophysics, Max Planck Institute for Medical Research, Jahnstraße 29, 69120 Heidelberg, Germany
- Department of Biophysical Chemistry, Heidelberg University, INF 253, 69120 Heidelberg, Germany
| | - Jennifer Young
- Department of Cellular Biophysics, Max Planck Institute for Medical Research, Jahnstraße 29, 69120 Heidelberg, Germany
- Department of Biophysical Chemistry, Heidelberg University, INF 253, 69120 Heidelberg, Germany
| | - Andrew Holle
- Department of Cellular Biophysics, Max Planck Institute for Medical Research, Jahnstraße 29, 69120 Heidelberg, Germany
- Department of Biophysical Chemistry, Heidelberg University, INF 253, 69120 Heidelberg, Germany
| | - Jie Li
- Department of Cellular Biophysics, Max Planck Institute for Medical Research, Jahnstraße 29, 69120 Heidelberg, Germany
- Department of Biophysical Chemistry, Heidelberg University, INF 253, 69120 Heidelberg, Germany
| | - Karen Bieback
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University and German Red Cross Blood Service Baden-Württemberg-Hessen, 68167 Mannheim, Germany
| | - Gareth Inman
- Cancer Research UK, Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, U.K
- Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, U.K
| | - Joachim P Spatz
- Department of Cellular Biophysics, Max Planck Institute for Medical Research, Jahnstraße 29, 69120 Heidelberg, Germany
- Department of Biophysical Chemistry, Heidelberg University, INF 253, 69120 Heidelberg, Germany
| | - Elisabetta A Cavalcanti-Adam
- Department of Cellular Biophysics, Max Planck Institute for Medical Research, Jahnstraße 29, 69120 Heidelberg, Germany
- Department of Biophysical Chemistry, Heidelberg University, INF 253, 69120 Heidelberg, Germany
- Central Scientific Facility "Cellular Biotechnology", MPI for Medical Research, Jahnstr. 29, 69120 Heidelberg, Germany
| |
Collapse
|
37
|
Yue S, He H, Li B, Hou T. Hydrogel as a Biomaterial for Bone Tissue Engineering: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1511. [PMID: 32752105 PMCID: PMC7466535 DOI: 10.3390/nano10081511] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/22/2020] [Accepted: 07/29/2020] [Indexed: 02/07/2023]
Abstract
Severe bone damage from diseases, including extensive trauma, fractures, and bone tumors, cannot self-heal, while traditional surgical treatment may bring side effects such as infection, inflammation, and pain. As a new biomaterial with controllable mechanical properties and biocompatibility, hydrogel is widely used in bone tissue engineering (BTE) as a scaffold for growth factor transport and cell adhesion. In order to make hydrogel more suitable for the local treatment of bone diseases, hydrogel preparation methods should be combined with synthetic materials with excellent properties and advanced technologies in different fields to better control drug release in time and orientation. It is necessary to establish a complete method to evaluate the hydrogel's properties and biocompatibility with the human body. Moreover, establishment of standard animal models of bone defects helps in studying the therapeutic effect of hydrogels on bone repair, as well as to evaluate the safety and suitability of hydrogels. Thus, this review aims to systematically summarize current studies of hydrogels in BTE, including the mechanisms for promoting bone synthesis, design, and preparation; characterization and evaluation methods; as well as to explore future applications of hydrogels in BTE.
Collapse
Affiliation(s)
- Shuai Yue
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, Wuhan 43000, China
| | - Hui He
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, Wuhan 43000, China
| | - Bin Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, Wuhan 43000, China
| | - Tao Hou
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, Wuhan 43000, China
| |
Collapse
|
38
|
Ma Z, Song W, He Y, Li H. Multilayer Injectable Hydrogel System Sequentially Delivers Bioactive Substances for Each Wound Healing Stage. ACS APPLIED MATERIALS & INTERFACES 2020; 12:29787-29806. [PMID: 32515577 DOI: 10.1021/acsami.0c06360] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Wound healing is a dynamic and complex process that contains several sequential phases. However, most of the current drug delivery systems were designed to treat only one certain phase of wound repair, ignoring the fact that every stage plays critical roles in the wound healing process and those critical stages coordinately work to ensure optimal tissue regeneration. Therefore, a delivery system that can precisely meet the requirements of each wound healing stage is desired to enhance tissue regeneration. In this study, an injectable sodium alginate/bioglass (SA/BG) composite hydrogel was used to carry SA microparticles containing a conditioned medium (CM) of cells (SACM). Inside the SACM microparticles, poly(lactic-co-glycolic acid) (PLGA) microspheres containing pirfenidone (PFD) were encapsulated (PLGAPFD). This multilayer injectable hydrogel system (SA/BG-SACM-PLGAPFD) was designed to sequentially deliver bioactive molecules for meeting the bioactivity requirement and timeline of each wound healing stage. First, SA/BG hydrogels could rapidly release BG ionic products in the first 1-3 days to regulate the inflammatory response of the host and initiate the subsequent tissue regeneration. Then, SACM hydrogel microparticles could release CM of RAW 264.7 cells stimulated with BG ionic products in 2-7 days to facilitate the formation of the vascularized granulation tissue. Finally, PLGAPFD microspheres released PFD in 8-20 days to prevent the fibrosis and scar formation in the regenerated skin. Thus, this SA/BG-SACM-PLGAPFD delivery system could restrain host inflammation, accelerate wound healing, and inhibit the fibrosis formation in a diabetic mouse skin damage model, enhancing skin regeneration. As the bioactive components in each layer of the system can be adjusted according to the requirements of different tissue regeneration, this three-layered injectable biomaterial system has a wide application potential in the regenerative medicine field.
Collapse
Affiliation(s)
- Zhijie Ma
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China
| | - Wei Song
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China
- Department of Orthopedics, Shanghai Sixth People's Hospital, Jinshan Branch, 147 Jiankang Road, Shanghai 201599, China
| | - Yaohua He
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China
- Department of Orthopedics, Shanghai Sixth People's Hospital, Jinshan Branch, 147 Jiankang Road, Shanghai 201599, China
| | - Haiyan Li
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China
| |
Collapse
|
39
|
Lienemann PS, Vallmajo‐Martin Q, Papageorgiou P, Blache U, Metzger S, Kiveliö A, Milleret V, Sala A, Hoehnel S, Roch A, Reuten R, Koch M, Naveiras O, Weber FE, Weber W, Lutolf MP, Ehrbar M. Smart Hydrogels for the Augmentation of Bone Regeneration by Endogenous Mesenchymal Progenitor Cell Recruitment. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1903395. [PMID: 32274319 PMCID: PMC7141038 DOI: 10.1002/advs.201903395] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 12/27/2019] [Indexed: 04/14/2023]
Abstract
The treatment of bone defects with recombinant bone morphogenetic protein-2 (BMP-2) requires high doses precluding broad clinical application. Here, a bioengineering approach is presented that strongly improves low-dose BMP-2-based bone regeneration by mobilizing healing-associated mesenchymal progenitor cells (MPCs). Smart synthetic hydrogels are used to trap and study endogenous MPCs trafficking to bone defects. Hydrogel-trapped and prospectively isolated MPCs differentiate into multiple lineages in vitro and form bone in vivo. In vitro screenings reveal that platelet-derived growth factor BB (PDGF-BB) strongly recruits prospective MPCs making it a promising candidate for the engineering of hydrogels that enrich endogenous MPCs in vivo. However, PDGF-BB inhibits BMP-2-mediated osteogenesis both in vitro and in vivo. In contrast, smart two-way dynamic release hydrogels with fast-release of PDGF-BB and sustained delivery of BMP-2 beneficially promote the healing of bone defects. Collectively, it is shown that modulating the dynamics of endogenous progenitor cells in vivo by smart synthetic hydrogels significantly improves bone healing and holds great potential for other advanced applications in regenerative medicine.
Collapse
Affiliation(s)
- Philipp S. Lienemann
- Department of ObstetricsUniversity Hospital ZurichUniversity of ZurichSchmelzbergstr. 12Zurich8091Switzerland
- Institute of BioengineeringSchool of Life Sciences and School of EngineeringEcole Polytechnique Fédérale de Lausanne (EPFL)Station 15Lausanne1015Switzerland
| | - Queralt Vallmajo‐Martin
- Department of ObstetricsUniversity Hospital ZurichUniversity of ZurichSchmelzbergstr. 12Zurich8091Switzerland
- Institute of BioengineeringSchool of Life Sciences and School of EngineeringEcole Polytechnique Fédérale de Lausanne (EPFL)Station 15Lausanne1015Switzerland
| | - Panagiota Papageorgiou
- Department of ObstetricsUniversity Hospital ZurichUniversity of ZurichSchmelzbergstr. 12Zurich8091Switzerland
| | - Ulrich Blache
- Department of ObstetricsUniversity Hospital ZurichUniversity of ZurichSchmelzbergstr. 12Zurich8091Switzerland
| | - Stéphanie Metzger
- Department of ObstetricsUniversity Hospital ZurichUniversity of ZurichSchmelzbergstr. 12Zurich8091Switzerland
- Institute of BioengineeringSchool of Life Sciences and School of EngineeringEcole Polytechnique Fédérale de Lausanne (EPFL)Station 15Lausanne1015Switzerland
| | - Anna‐Sofia Kiveliö
- Department of ObstetricsUniversity Hospital ZurichUniversity of ZurichSchmelzbergstr. 12Zurich8091Switzerland
- Institute of BioengineeringSchool of Life Sciences and School of EngineeringEcole Polytechnique Fédérale de Lausanne (EPFL)Station 15Lausanne1015Switzerland
| | - Vincent Milleret
- Department of ObstetricsUniversity Hospital ZurichUniversity of ZurichSchmelzbergstr. 12Zurich8091Switzerland
| | - Ana Sala
- Department of ObstetricsUniversity Hospital ZurichUniversity of ZurichSchmelzbergstr. 12Zurich8091Switzerland
| | - Sylke Hoehnel
- Institute of BioengineeringSchool of Life Sciences and School of EngineeringEcole Polytechnique Fédérale de Lausanne (EPFL)Station 15Lausanne1015Switzerland
| | - Aline Roch
- Institute of BioengineeringSchool of Life Sciences and School of EngineeringEcole Polytechnique Fédérale de Lausanne (EPFL)Station 15Lausanne1015Switzerland
| | - Raphael Reuten
- Institute for Dental Research and Oral Musculoskeletal BiologyCenter for BiochemistryUniversity of CologneCologne50931Germany
| | - Manuel Koch
- Institute for Dental Research and Oral Musculoskeletal BiologyCenter for BiochemistryUniversity of CologneCologne50931Germany
| | - Olaia Naveiras
- Institute of BioengineeringSchool of Life Sciences and School of EngineeringEcole Polytechnique Fédérale de Lausanne (EPFL)Station 15Lausanne1015Switzerland
| | - Franz E. Weber
- Department of Cranio‐Maxillofacial SurgeryOral Biotechnology and BioengineeringUniversity Hospital ZurichFrauenklinikstrasse 24Zurich8091Switzerland
| | - Wilfried Weber
- Faculty of Biology and BIOSS Centre for Biological Signalling StudiesUniversity of FreiburgSchänzlestr. 18Freiburg79104Germany
| | - Matthias P. Lutolf
- Institute of BioengineeringSchool of Life Sciences and School of EngineeringEcole Polytechnique Fédérale de Lausanne (EPFL)Station 15Lausanne1015Switzerland
| | - Martin Ehrbar
- Department of ObstetricsUniversity Hospital ZurichUniversity of ZurichSchmelzbergstr. 12Zurich8091Switzerland
| |
Collapse
|
40
|
Madani SZM, Reisch A, Roxbury D, Kennedy SM. A Magnetically Responsive Hydrogel System for Controlling the Timing of Bone Progenitor Recruitment and Differentiation Factor Deliveries. ACS Biomater Sci Eng 2020; 6:1522-1534. [DOI: 10.1021/acsbiomaterials.9b01746] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- S. Zahra M. Madani
- Department of Chemical Engineering, University of Rhode Island, 2 East Alumni Avenue, Kingston, Rhode Island 02881, United States
| | - Anne Reisch
- Department of Chemical Engineering, University of Rhode Island, 2 East Alumni Avenue, Kingston, Rhode Island 02881, United States
| | - Daniel Roxbury
- Department of Chemical Engineering, University of Rhode Island, 2 East Alumni Avenue, Kingston, Rhode Island 02881, United States
| | - Stephen M. Kennedy
- Department of Chemical Engineering, University of Rhode Island, 2 East Alumni Avenue, Kingston, Rhode Island 02881, United States
- Department of Electrical, Computer, and Biomedical Engineering, University of Rhode Island, 2 East Alumni Avenue, Kingston, Rhode Island 02881, United States
| |
Collapse
|
41
|
Xu Y, Chen C, Hellwarth PB, Bao X. Biomaterials for stem cell engineering and biomanufacturing. Bioact Mater 2019; 4:366-379. [PMID: 31872161 PMCID: PMC6909203 DOI: 10.1016/j.bioactmat.2019.11.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 11/09/2019] [Accepted: 11/20/2019] [Indexed: 12/15/2022] Open
Abstract
Recent years have witnessed the expansion of tissue failures and diseases. The uprising of regenerative medicine converges the sight onto stem cell-biomaterial based therapy. Tissue engineering and regenerative medicine proposes the strategy of constructing spatially, mechanically, chemically and biologically designed biomaterials for stem cells to grow and differentiate. Therefore, this paper summarized the basic properties of embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs) and adult stem cells. The properties of frequently used biomaterials were also described in terms of natural and synthetic origins. Particularly, the combination of stem cells and biomaterials for tissue repair applications was reviewed in terms of nervous, cardiovascular, pancreatic, hematopoietic and musculoskeletal system. Finally, stem-cell-related biomanufacturing was envisioned and the novel biofabrication technologies were discussed, enlightening a promising route for the future advancement of large-scale stem cell-biomaterial based therapeutic manufacturing.
Collapse
Affiliation(s)
| | | | | | - Xiaoping Bao
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, West Lafayette, IN, 47907, USA
| |
Collapse
|
42
|
Influence of HIP Treatment on Mechanical Properties of Ti6Al4V Scaffolds Prepared by L-PBF Process. METALS 2019. [DOI: 10.3390/met9121267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
To improve biocompatibility and mechanical compatibility, post-treatment is necessary for porous scaffolds of bone tissue engineering. Hot isostatic pressing (HIP) is introduced into post-treatment of metal implants to enhance their mechanical properties by eliminating residual stress and pores. Additionally, oxide film formed on the material surface can be contributed to improve its biocompatibility. Ti6Al4V porous scaffolds fabricated by laser-powder bed fusion (L-PBF) process is studied in this paper, their mechanical properties are measured by pressure test, and the macroscopic surface morphology and microstructure are observed by optical microscope (OM), scanning electron microscope (SEM) and transmission electron microscope (TEM). After HIP treatment, an oxide layer of 0.8 μm thickness forms on the surface of Ti6Al4V porous scaffolds and the microstructure of Ti6Al4V transforms from α’ phase to α + β dual-phase, as expected. However, the pressure test results of Ti6Al4V porous scaffolds show a definitely different variation trend of mechanical properties from solid parts, unexpectedly. Concerning Ti6Al4V porous scaffolds, the compression stiffness and critical stress improves clearly using HIP treatment, and the fracture morphology shows obvious brittle fracture. Both the strengthening and brittleness transition of Ti6Al4V porous scaffolds result from the formation of an oxide layer and an oxygen atom diffusion layer. The critical stress of Ti6Al4V porous scaffolds can be calculated by fully considering these two strengthening layers. To obtain a porous scaffold with specific mechanical properties, the effect of post-treatment should be considered during structural design.
Collapse
|
43
|
Kalinichenko SG, Matveeva NY, Kostiv RY, Edranov SS. The topography and proliferative activity of cells immunoreactive to various growth factors in rat femoral bone tissues after experimental fracture and implantation of titanium implants with bioactive biodegradable coatings. Biomed Mater Eng 2019; 30:85-95. [PMID: 30562891 DOI: 10.3233/bme-181035] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND Biodegradable implant coatings promote proliferation and expression of BMP-2, VEGF, and TGF-β2 genes and enhance BMP-2, VEGF, and TGF-β2 regulatory effects at different stages of reparative osteogenesis. OBJECTIVE To study the topography and ratio of PCNA-, VEGF-, BMP-2-, and TGF-β2-immunoreactive cells in rat femoral bone after closed fracture and implantation of titanium implants with biodegradable calcium phosphate and hydroxyapatite coatings. METHODS Standard titanium implant screws and similar implants with bioactive coatings were used. A total of 18 rats were randomly divided into three groups, two experimental and a control one. The rats in the first experimental group were implanted with implants without specific coating, while those in the second group, with implants with specific coatings. The control rats were subjected to the same fracture as the experimental ones without subsequent implantation. On days 7, 14, and 30 of experiment, the rats were sampled for histological examination. Histological sections were prepared and processed for PCNA, BMP-2, VEGF, and TGF-β2 immunoreactivity. RESULTS In the regeneration zone, PCNA-immunoreactive cells substantially outnumbered other immunoreactive cell types. During the first two weeks after fracture, in the immediate vicinity of implant surface, the rate of VEGF production increased in osteoblast subpopulations and level of TGF-32 immunoreactivity decreased in chondroblasts. The level of TGF-32 was maximum on day 30 of experiment. BMP-2-immunoreactive osteocytes were found in the zone of external general plates. They accumulated at implants with calcium phosphate coating. Their number gradually increased by day 30 of experiment. CONCLUSIONS The present data suggest that biodegradable implant coatings promote proliferation and expression of BMP-2, VEGF, and TGF-β2 genes and enhance BMP-2, VEGF, and TGF-β2 regulatory effects at different stages of reparative osteogenesis.
Collapse
Affiliation(s)
- Sergei G Kalinichenko
- Department of Histology, Cytology and Embryology, Pacific State Medical University, Vladivostok, Russia
| | - Natalya Yu Matveeva
- Department of Histology, Cytology and Embryology, Pacific State Medical University, Vladivostok, Russia
| | - Roman Ye Kostiv
- Department of Histology, Cytology and Embryology, Pacific State Medical University, Vladivostok, Russia
| | - Sergey S Edranov
- Department of Histology, Cytology and Embryology, Pacific State Medical University, Vladivostok, Russia
| |
Collapse
|
44
|
Frapin L, Clouet J, Delplace V, Fusellier M, Guicheux J, Le Visage C. Lessons learned from intervertebral disc pathophysiology to guide rational design of sequential delivery systems for therapeutic biological factors. Adv Drug Deliv Rev 2019; 149-150:49-71. [PMID: 31445063 DOI: 10.1016/j.addr.2019.08.007] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 08/05/2019] [Accepted: 08/18/2019] [Indexed: 12/20/2022]
Abstract
Intervertebral disc (IVD) degeneration has been associated with low back pain, which is a major musculoskeletal disorder and socio-economic problem that affects as many as 600 million patients worldwide. Here, we first review the current knowledge of IVD physiology and physiopathological processes in terms of homeostasis regulation and consecutive events that lead to tissue degeneration. Recent progress with IVD restoration by anti-catabolic or pro-anabolic approaches are then analyzed, as are the design of macro-, micro-, and nano-platforms to control the delivery of such therapeutic agents. Finally, we hypothesize that a sequential delivery strategy that i) firstly targets the inflammatory, pro-catabolic microenvironment with release of anti-inflammatory or anti-catabolic cytokines; ii) secondly increases cell density in the less hostile microenvironment by endogenous cell recruitment or exogenous cell injection, and finally iii) enhances cellular synthesis of extracellular matrix with release of pro-anabolic factors, would constitute an innovative yet challenging approach to IVD regeneration.
Collapse
|
45
|
Shaheen MY, Basudan AM, de Vries RB, van den Beucken JJJP, Jansen JA, Alghamdi HS. Bone Regeneration Using Antiosteoporotic Drugs in Adjunction with Bone Grafting: A Meta-Analysis. TISSUE ENGINEERING PART B-REVIEWS 2019; 25:500-509. [PMID: 31411119 DOI: 10.1089/ten.teb.2019.0132] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The aim of this review was to systematically assess bone regeneration by using antiosteoporotic drugs in adjunction with bone grafting compared with controls (bone grafting without the administration of antiosteoporotic drugs). The review also evaluated statistical differences in the effect between systemic and local routes of drugs. Also, the effect of type of drugs (anticatabolic vs. anabolic) was subevaluated. PubMed and EMBASE (via OvidSP) resulted in inclusion of 60 animal studies. The studies were assessed for reporting quality and risk of bias. Outcome data from selected studies were categorized as either experimental (bone grafting with the administration of antiosteoporotic drugs) or control. Meta-analysis of selected studies was done for these outcomes: histomorphometrical bone area (BA%) and micro-CT bone volume (BV%). In this review, several animal models (52 healthy, 6 osteoporotic, and 2 both conditions) were subjected to examine the effect of antiosteoporotic drugs on bone grafting, with a predominant use of rodent species. Assessment indicates poor reporting quality and unclear risk of bias in the majority of studies. Random-effects meta-analysis revealed a significant increase in overall BA% (mean difference [MD]: 2.6, confidence interval [CI]: 2.25 to 2.92) and BV% (MD: 0.12, CI: 0.05 to 0.19) due to osteoporotic drug treatment compared with controls. For subgroups, both routes of antiosteoporotic drug administration showed similar effects on BA%. In contrast, systemic antiosteoporotic drug administration led to significantly higher BV% (MD: 6.75, CI: 5.30 to 8.19) compared with local administration (MD: 0.02, CI: -0.03 to 0.08). Further, administration of anabolic drugs significantly increased BA% (MD: 5.75, CI: 4.62 to 6.87) compared with anticatabolic drugs (MD: 1.86, CI: 1.47 to 2.26). In conclusion, both histomorphometrical and micro-CT scan analysis indicated an overall effect of using the antiosteoporotic drugs toward bone regeneration in adjunction with grafting. However, not all studies showed a positive effect and the present results need to be applied with care, as the included papers showed experimental heterogeneity for animal models. Further (pre)clinical research is warranted to explore whether drug-based strategies can be an effective adjunctive with bone grafting. Impact Statement The aim of this meta-analysis was to assess whether antiosteoporotic drugs can promote bone regeneration in adjunction with bone grafting by using preclinical animal models. Although the majority of included studies indicated poor reporting quality and unclear risk of bias, an overall positive effect of the antiosteoporotic drugs toward bone regeneration related to bone grafts can be highlighted.
Collapse
Affiliation(s)
- Marwa Y Shaheen
- Department of Periodontics and Community Dentistry, College of Dentistry, King Saud University, Riyadh, Saudi Arabia
| | - Amani M Basudan
- Department of Periodontics and Community Dentistry, College of Dentistry, King Saud University, Riyadh, Saudi Arabia
| | - Rob B de Vries
- Regenerative Biomaterials, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jeroen J J P van den Beucken
- Systematic Review Centre for Laboratory Animal Experimentation (SYRCLE), Department for Health Evidence (Section HTA), Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - John A Jansen
- Systematic Review Centre for Laboratory Animal Experimentation (SYRCLE), Department for Health Evidence (Section HTA), Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Hamdan S Alghamdi
- Department of Periodontics and Community Dentistry, College of Dentistry, King Saud University, Riyadh, Saudi Arabia.,Systematic Review Centre for Laboratory Animal Experimentation (SYRCLE), Department for Health Evidence (Section HTA), Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
46
|
Kelly DC, Raftery RM, Curtin CM, O'Driscoll CM, O'Brien FJ. Scaffold-Based Delivery of Nucleic Acid Therapeutics for Enhanced Bone and Cartilage Repair. J Orthop Res 2019; 37:1671-1680. [PMID: 31042304 DOI: 10.1002/jor.24321] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 04/09/2019] [Indexed: 02/04/2023]
Abstract
Recent advances in tissue engineering have made progress toward the development of biomaterials capable of the delivery of growth factors, such as bone morphogenetic proteins, in order to promote enhanced tissue repair. However, controlling the release of these growth factors on demand and within the desired localized area is a significant challenge and the associated high costs and side effects of uncontrolled delivery have proven increasingly problematic in clinical orthopedics. Gene therapy may be a valuable tool to avoid the limitations of local delivery of growth factors. Following a series of setbacks in the 1990s, the field of gene therapy is now seeing improvements in safety and efficacy resulting in substantial clinical progress and a resurgence in confidence. Biomaterial scaffold-mediated gene therapy provides a template for cell infiltration and tissue formation while promoting transfection of cells to engineer therapeutic proteins in a sustained but ultimately transient fashion. Additionally, scaffold-mediated delivery of RNA-based therapeutics can silence specific genes associated with orthopedic pathological states. This review will provide an overview of the current state-of-the-art in the field of gene-activated scaffolds and their use within orthopedic tissue engineering applications. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 37:1671-1680, 2019.
Collapse
Affiliation(s)
- Domhnall C Kelly
- Tissue Engineering Research Group (TERG), Department of Anatomy, Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland.,Trinity Centre of Bioengineering (TCBE), Trinity College Dublin (TCD), Dublin, Ireland.,Advanced Materials and Bioengineering Research Centre (AMBER), RCSI and TCD, Dublin, Ireland.,Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI, Galway), Galway, Ireland
| | - Rosanne M Raftery
- Tissue Engineering Research Group (TERG), Department of Anatomy, Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland.,Trinity Centre of Bioengineering (TCBE), Trinity College Dublin (TCD), Dublin, Ireland.,Advanced Materials and Bioengineering Research Centre (AMBER), RCSI and TCD, Dublin, Ireland
| | - Caroline M Curtin
- Tissue Engineering Research Group (TERG), Department of Anatomy, Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland.,Trinity Centre of Bioengineering (TCBE), Trinity College Dublin (TCD), Dublin, Ireland.,Advanced Materials and Bioengineering Research Centre (AMBER), RCSI and TCD, Dublin, Ireland
| | - Caitriona M O'Driscoll
- Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI, Galway), Galway, Ireland.,Pharmacodelivery Group, School of Pharmacy, University College Cork, Cork, Ireland
| | - Fergal J O'Brien
- Tissue Engineering Research Group (TERG), Department of Anatomy, Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland.,Trinity Centre of Bioengineering (TCBE), Trinity College Dublin (TCD), Dublin, Ireland.,Advanced Materials and Bioengineering Research Centre (AMBER), RCSI and TCD, Dublin, Ireland.,Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI, Galway), Galway, Ireland
| |
Collapse
|
47
|
Zeng Y, Hoque J, Varghese S. Biomaterial-assisted local and systemic delivery of bioactive agents for bone repair. Acta Biomater 2019; 93:152-168. [PMID: 30711659 PMCID: PMC6615988 DOI: 10.1016/j.actbio.2019.01.060] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 01/25/2019] [Accepted: 01/29/2019] [Indexed: 01/05/2023]
Abstract
Although bone tissues possess an intrinsic capacity for repair, there are cases where bone healing is either impaired or insufficient, such as fracture non-union, osteoporosis, osteomyelitis, and cancers. In these cases, treatments like surgical interventions are used, either alone or in combination with bioactive agents, to promote tissue repair and manage associated clinical complications. Improving the efficacy of bioactive agents often requires carriers, with biomaterials being a pivotal player. In this review, we discuss the role of biomaterials in realizing the local and systemic delivery of biomolecules to the bone tissue. The versatility of biomaterials enables design of carriers with the desired loading efficiency, release profile, and on-demand delivery. Besides local administration, systemic administration of drugs is necessary to combat diseases like osteoporosis, warranting bone-targeting drug delivery systems. Thus, chemical moieties with the affinity towards bone extracellular matrix components like apatite minerals have been widely utilized to create bone-targeting carriers with better biodistribution, which cannot be achieved by the drugs alone. Bone-targeting carriers combined with the desired drugs or bioactive agents have been extensively investigated to enhance bone healing while minimizing off-target effects. Herein, these advancements in the field have been systematically reviewed. STATEMENT OF SIGNIFICANCE: Drug delivery is imperative when surgical interventions are not sufficient to address various bone diseases/defects. Biomaterial-assisted delivery systems have been designed to provide drugs with the desired loading efficiency, sustained release, and on-demand delivery to enhance bone healing. By surveying recent advances in the field, this review outlines the design of biomaterials as carriers for the local and systemic delivery of bioactive agents to the bone tissue. Particularly, biomaterials that bear chemical moieties with affinity to bone are attractive, as they can present the desired bioactive agents to the bone tissue efficiently and thus enhance the drug efficacy for bone repair.
Collapse
Affiliation(s)
- Yuze Zeng
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC 27710, USA; Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27710, USA
| | - Jiaul Hoque
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC 27710, USA
| | - Shyni Varghese
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC 27710, USA; Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27710, USA; Department of Biomedical Engineering, Duke University, Durham, NC 27710, USA.
| |
Collapse
|
48
|
Min Q, Liu J, Yu X, Zhang Y, Wu J, Wan Y. Sequential Delivery of Dual Growth Factors from Injectable Chitosan-Based Composite Hydrogels. Mar Drugs 2019; 17:md17060365. [PMID: 31226756 PMCID: PMC6627327 DOI: 10.3390/md17060365] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 06/05/2019] [Accepted: 06/05/2019] [Indexed: 01/08/2023] Open
Abstract
Local administration of platelet-derived growth factor-BB (PGDF-BB) and bone morphogenetic protein-2 (BMP-2) in a sequential release manner could substantially promote bone healing. To achieve this goal, a delivery system that could sustain the release of PGDF-BB and BMP-2 by way of temporal separation was developed. One type of PGDF-BB-encapsulated alginate microsphere and another type of BMP-2-encapsulated microsphere with a core-shell structure were respectively produced using emulsification methods. These two types of microspheres were then embedded into chitosan/glycerophosphate hydrogel for constructing composite gels. Some of them were found to be injectable at ambient temperature and had thermo-sensitive features near physiological temperature and pH. The optimally formulated composite gels showed the ability to control the release of PGDF-BB and BMP-2 in a sequential fashion in which PDGF-BB was released earlier than BMP-2. In vitro release patterns indicated that the release rates could be significantly regulated by varying the embedded amount of the factor-encapsulated microspheres, which can in turn mediate the temporal separation release interval between PGDF-BB and BMP-2. The released PDGF-BB and BMP-2 were detected to be bioactive based on their respective effects on Balb/c 3T3 and C2C12 cells. These results suggest that the presently developed composite gels have the potential for bone repair by synergistically utilizing the early chemotactic effect of PDGF-BB and the subsequent osteogenic and angiogenic functions of PDGF-BB and BMP-2.
Collapse
Affiliation(s)
- Qing Min
- School of Pharmacy, Hubei University of Science and Technology, Xianning 437100, China.
| | - Jiaoyan Liu
- College of Life Science and Technology, Huazhong Universityf of Science and Technology, Wuhan 430074, China.
| | - Xiaofeng Yu
- College of Life Science and Technology, Huazhong Universityf of Science and Technology, Wuhan 430074, China.
| | - Yuchen Zhang
- School of Pharmacy, Hubei University of Science and Technology, Xianning 437100, China.
| | - Jiliang Wu
- School of Pharmacy, Hubei University of Science and Technology, Xianning 437100, China.
| | - Ying Wan
- College of Life Science and Technology, Huazhong Universityf of Science and Technology, Wuhan 430074, China.
| |
Collapse
|
49
|
Emi T, Michaud K, Orton E, Santilli G, Linh C, O'Connell M, Issa F, Kennedy S. Ultrasonic Generation of Pulsatile and Sequential Therapeutic Delivery Profiles from Calcium-Crosslinked Alginate Hydrogels. Molecules 2019; 24:molecules24061048. [PMID: 30884862 PMCID: PMC6470886 DOI: 10.3390/molecules24061048] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 03/12/2019] [Accepted: 03/13/2019] [Indexed: 12/27/2022] Open
Abstract
Control over of biological processes can potentially be therapeutically regulated through localized biomolecular deliveries. While implantable hydrogels can provide localized therapeutic deliveries, they do not traditionally provide the temporally complex therapeutic delivery profiles required to regulate complex biological processes. Ionically crosslinked alginate hydrogels have been shown to release encapsulated payloads in response to a remotely applied ultrasonic stimulus, thus potentially enabling more temporally complex therapeutic delivery profiles. However, thorough characterizations of how different types of therapeutic payloads are retained and ultrasonically released need to be performed. Additionally, the impact of potentially disruptive ultrasonic stimulations on hydrogel structure and temperature need to be characterized to better understand what range of ultrasonic signals can be used to trigger release. To perform these characterizations, calcium-crosslinked alginate hydrogels were loaded with various model macromolecules (dextrans), chemotherapeutics, and protein signaling factors and exposed to a variety of single-pulse and multi-pulse ultrasonic signals at various amplitudes and durations. In response to single-pulsed ultrasonic exposures, quantifications of molecular release, degree of gel erosion, and increase in hydrogel temperature revealed that the ultrasonic stimulations required for statistically significant therapeutic deliveries often eroded and heated the gels to unacceptable levels. However, multi-pulse ultrasonic exposures were shown to achieve significant amounts of therapeutic release while keeping gel erosion and temperature increase at modest levels. Finally, experiments were performed demonstrating that ultrasonic stimulation could be used to generate drug release profiles shown to have potential therapeutic benefits (e.g., pulsatile and sequential anticancer delivery profiles). This work underscores the potential of using ultrasonically responsive polymeric hydrogels for providing on-demand control over more complex therapeutic deliver profiles and enhancing drug delivery strategies in cancer therapies and beyond.
Collapse
Affiliation(s)
- Tania Emi
- Department of Chemical Engineering, University of Rhode Island, Kingston, RI 02881, USA.
| | - Kendra Michaud
- Department of Electrical, Computer, and Biomedical Engineering, University of Rhode Island, Kingston, RI 028881, USA.
| | - Emma Orton
- Department of Electrical, Computer, and Biomedical Engineering, University of Rhode Island, Kingston, RI 028881, USA.
| | - Grace Santilli
- Department of Chemical Engineering, University of Rhode Island, Kingston, RI 02881, USA.
| | - Catherine Linh
- Department of Electrical, Computer, and Biomedical Engineering, University of Rhode Island, Kingston, RI 028881, USA.
| | - Meaghan O'Connell
- Department of Electrical, Computer, and Biomedical Engineering, University of Rhode Island, Kingston, RI 028881, USA.
| | - Fatima Issa
- Department of Electrical, Computer, and Biomedical Engineering, University of Rhode Island, Kingston, RI 028881, USA.
| | - Stephen Kennedy
- Department of Chemical Engineering, University of Rhode Island, Kingston, RI 02881, USA.
- Department of Electrical, Computer, and Biomedical Engineering, University of Rhode Island, Kingston, RI 028881, USA.
| |
Collapse
|
50
|
Lee SJ, Won JE, Han C, Yin XY, Kim HK, Nah H, Kwon IK, Min BH, Kim CH, Shin YS, Park SA. Development of a three-dimensionally printed scaffold grafted with bone forming peptide-1 for enhanced bone regeneration with in vitro and in vivo evaluations. J Colloid Interface Sci 2019; 539:468-480. [DOI: 10.1016/j.jcis.2018.12.097] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 12/21/2018] [Accepted: 12/27/2018] [Indexed: 12/28/2022]
|