1
|
Poudel K, Vithiananthan T, Kim JO, Tsao H. Recent progress in cancer vaccines and nanovaccines. Biomaterials 2025; 314:122856. [PMID: 39366184 DOI: 10.1016/j.biomaterials.2024.122856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 09/03/2024] [Accepted: 09/26/2024] [Indexed: 10/06/2024]
Abstract
Vaccine science, nanotechnology, and immunotherapy are at the forefront of cancer treatment strategies, each offering significant potential for enhancing tumor-specific immunity and establishing long-lasting immune memory to prevent tumor recurrence. Despite the promise of these personalized and precision-based anti-cancer approaches, challenges such as immunosuppression, suboptimal immune activation, and T-cell exhaustion continue to hinder their effectiveness. The limited clinical success of cancer vaccines often stems from difficulties in identifying effective antigens, efficiently targeting immune cells, lymphoid organs, and the tumor microenvironment, overcoming immune evasion, enhancing immunogenicity, and avoiding lysosomal degradation. However, numerous studies have demonstrated that integrating nanotechnology with immunotherapeutic strategies in vaccine development can overcome these challenges, leading to potent antitumor immune responses and significant progress in the field. This review highlights the critical components of cancer vaccine and nanovaccine strategies for immunomodulatory antitumor therapy. It covers general vaccine strategies, types of vaccines, antigen forms, nanovaccine platforms, challenges faced, potential solutions, and key findings from preclinical and clinical studies, along with future perspectives. To fully unlock the potential of cancer vaccines and nanovaccines, precise immunological monitoring during early-phase trials is essential. This approach will help identify and address obstacles, ultimately expanding the available options for patients who are resistant to conventional cancer immunotherapies.
Collapse
Affiliation(s)
- Kishwor Poudel
- Wellman Center for Photomedicine and Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Tulasi Vithiananthan
- Wellman Center for Photomedicine and Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Jong Oh Kim
- College of Pharmacy, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Hensin Tsao
- Wellman Center for Photomedicine and Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
2
|
Li X, Sun X, Wang Y, Chen H, Gao Y. A nanotheranostics with hypoxia-switchable fluorescence and photothermal effect for hypoxia imaging-guided immunosuppressive tumor microenvironment modulation. J Colloid Interface Sci 2025; 678:897-912. [PMID: 39321645 DOI: 10.1016/j.jcis.2024.09.133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 09/04/2024] [Accepted: 09/14/2024] [Indexed: 09/27/2024]
Abstract
Modulating the immunosuppressive tumor immune microenvironment (TIME) is considered a promising strategy for cancer treatment. However, effectively modulating the immunosuppressive TIME within hypoxic zones remains a significant challenge. In this work, we developed a hypoxia-responsive amphiphilic drug carrier using boron-dipyrromethene (BODIPY) dye-modified chitosan (CsB), and then fabricated a hypoxia-targeted nanotheranostic system, named CsBPNs, through self-assembly of CsB and pexidartinib (5-((5-Chloro-1H-pyrrolo[2,3-b]pyridin-3-yl)methyl)-N-((6-(trifluoromethyl)pyridin-3-yl)methyl), PLX3397), an immunotherapeutic drug targeting tumor-associated macrophages (TAMs), for synergistic photothermal/immunotherapy and hypoxia imaging. CsBPNs demonstrated uniform size, good stability, and hypoxia-switchable fluorescence and photothermal effects, enabling deep penetration and hypoxia imaging capacities in three-dimensional tumor cell spheres and tumor tissues. In vitro and in vivo experiments showed that CsBPNs under laser irradiation promoted TAMs repolarization, reversed the immunosuppressive TIME, and enhanced the therapeutic outcome of PLX3397 in solid tumors by facilitating deep delivery into hypoxic regions and synergistic photothermal therapy. This work provides a new strategy for detecting and modulating the immunosuppressive TIME in hypoxic zones, potentially enabling more precise and effective photo-immunotherapy in the future.
Collapse
Affiliation(s)
- Xudong Li
- Cancer Metastasis Alert and Prevention Center, College of Chemistry, and Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou 350108, China
| | - Xianbin Sun
- Cancer Metastasis Alert and Prevention Center, College of Chemistry, and Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou 350108, China
| | - Ya Wang
- Cancer Metastasis Alert and Prevention Center, College of Chemistry, and Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou 350108, China
| | - Haijun Chen
- College of Chemistry, Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), Fuzhou University, Fuzhou, Fujian 350116, China.
| | - Yu Gao
- Cancer Metastasis Alert and Prevention Center, College of Chemistry, and Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou 350108, China.
| |
Collapse
|
3
|
Talik Sisin NN, Ab Rashid R, Abdullah R, Abdullah AN, Dollah N, Algethami M, Assran AS, Mohamed F, Rahman WN. A new insight on the effects of Schiff Base Iron (III) complexes in breast cancer cells for clinical radiotherapy. Appl Radiat Isot 2024; 214:111546. [PMID: 39406052 DOI: 10.1016/j.apradiso.2024.111546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 10/07/2024] [Accepted: 10/07/2024] [Indexed: 11/03/2024]
Abstract
PURPOSE Breast cancer is a significant global health concern, and researchers strive to enhance radiotherapy outcomes while minimizing the side effects. Schiff Base Iron (III) Complexes are one of the prospective elements that can be used as radiosensitizer or radioprotective agents in cancer radiotherapy. This study investigates the potential effects of Schiff base (ligand 2; L2) with Fe(III) in MCF-7 breast cancer cells under clinical radiotherapy treatment. METHODS The effects of the Schiff Base Iron (III) Complexes were measured using clonogenic assay with MCF-7 breast cancer cells. The cells were irradiated with megavoltage 6 MV photon, 6 MeV electron and high dose rate (HDR) brachytherapy with 192Ir source at different doses. Intercellular localization of Fe(III)-L2 complexes and antioxidant activities were also investigated. RESULTS The Fe(III)-L2 complexes were observed to be internalized by cellular nuclei without any effects on the cells. Interestingly, the Fe(III)-L2 complexes indicate radioprotective effects which provide intriguing insight towards application of metal ions complexes as radioprotector in cancer radiotherapy. The Fe(III)-L2 complexes also exhibit scavenging activities of free radical which further proved the antioxidative properties and radioprotective effects. CONCLUSION The Fe(III)-L2 complexes show the radioprotective effects and antioxidant properties in MCF-7 cells, particularly for HDR brachytherapy. The findings suggest potential applications of the Fe(III)-L2 complexes as radioprotector agents in clinical radiotherapy.
Collapse
Affiliation(s)
- Noor Nabilah Talik Sisin
- Department of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia; Nuclear Technology Research Centre, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, UKM, Bangi, Selangor, Malaysia
| | - Raizulnasuha Ab Rashid
- Department of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia; Nuclear Technology Research Centre, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, UKM, Bangi, Selangor, Malaysia; Centre for Diagnostic Nuclear Imaging, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Reduan Abdullah
- Department of Nuclear Medicine, Radiotherapy and Oncology, Hospital Universiti Sains Malaysia, 16150, Kubang Kerian, Kelantan, Malaysia
| | - Arifah Nazirah Abdullah
- School of Health Sciences, Universiti Sains Malaysia, 16150, Kubang Kerian, Kelantan, Malaysia
| | - Norhayati Dollah
- Department of Nuclear Medicine, Radiotherapy and Oncology, Hospital Universiti Sains Malaysia, 16150, Kubang Kerian, Kelantan, Malaysia
| | - Merfat Algethami
- Physics Department, Faculty of Science, Taif University, Taif, 26513, Saudi Arabia
| | - Awatef S Assran
- Chemistry Department, Faculty of Science at Qena, South Valley University, Qena, 83523, Egypt; Chemistry Department, Faculty of Science, Taif University, Taif, 26513, Saudi Arabia
| | - Faizal Mohamed
- Department of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia; Nuclear Technology Research Centre, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, UKM, Bangi, Selangor, Malaysia
| | - Wan Nordiana Rahman
- Department of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia; Nuclear Technology Research Centre, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, UKM, Bangi, Selangor, Malaysia.
| |
Collapse
|
4
|
Bilgi E, Winkler DA, Oksel Karakus C. Identifying factors controlling cellular uptake of gold nanoparticles by machine learning. J Drug Target 2024; 32:66-73. [PMID: 38009690 DOI: 10.1080/1061186x.2023.2288995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 11/18/2023] [Indexed: 11/29/2023]
Abstract
There is strong interest to improve the therapeutic potential of gold nanoparticles (GNPs) while ensuring their safe development. The utility of GNPs in medicine requires a molecular-level understanding of how GNPs interact with biological systems. Despite considerable research efforts devoted to monitoring the internalisation of GNPs, there is still insufficient understanding of the factors responsible for the variability in GNP uptake in different cell types. Data-driven models are useful for identifying the sources of this variability. Here, we trained multiple machine learning models on 2077 data points for 193 individual nanoparticles from 59 independent studies to predict cellular uptake level of GNPs and compared different algorithms for their efficacies of prediction. The five ensemble learners (Xgboost, random forest, bootstrap aggregation, gradient boosting, light gradient boosting machine) made the best predictions of GNP uptake, accounting for 80-90% of the variance in the test data. The models identified particle size, zeta potential, GNP concentration and exposure duration as the most important drivers of cellular uptake. We expect this proof-of-concept study will foster the more effective use of accumulated cellular uptake data for GNPs and minimise any methodological bias in individual studies that may lead to under- or over-estimation of cellular internalisation rates.
Collapse
Affiliation(s)
- Eyup Bilgi
- Department of Bioengineering, Izmir Institute of Technology, Izmir, Turkey
- Department, of Material Science and Engineering, Izmir Institute of Technology, Izmir, Turkey
| | - David A Winkler
- School of Biochemistry & Chemistry, La Trobe University, Bundoora, VIC, Australia
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
- School of Pharmacy, University of Nottingham, Nottingham, UK
| | | |
Collapse
|
5
|
Hulugalla K, Shofolawe-Bakare O, Toragall VB, Mohammad SA, Mayatt R, Hand K, Anderson J, Chism C, Misra SK, Shaikh T, Tanner EEL, Smith AE, Sharp JS, Fitzkee NC, Werfel T. Glycopolymeric Nanoparticles Enrich Less Immunogenic Protein Coronas, Reduce Mononuclear Phagocyte Clearance, and Improve Tumor Delivery Compared to PEGylated Nanoparticles. ACS NANO 2024; 18:30540-30560. [PMID: 39436672 DOI: 10.1021/acsnano.4c08922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Nanoparticles (NPs) offer significant promise as drug delivery vehicles; however, their in vivo efficacy is often hindered by the formation of a protein corona (PC), which influences key physiological responses such as blood circulation time, biodistribution, cellular uptake, and intracellular localization. Understanding NP-PC interactions is crucial for optimizing NP design for biomedical applications. Traditional approaches have utilized hydrophilic polymer coatings like polyethylene glycol (PEG) to resist protein adsorption, but glycopolymer-coated nanoparticles have emerged as potential alternatives due to their biocompatibility and ability to reduce the adsorption of highly immunogenic proteins. In this study, we synthesized and characterized glycopolymer-based poly[2-(diisopropylamino)ethyl methacrylate-b-poly(methacrylamidoglucopyranose) (PDPA-b-PMAG) NPs as an alternative to PEGylated NPs. We characterized the polymers using a range of techniques to establish their molecular weight and chemical composition. PMAG and PEG-based NPs showed equivalent physicochemical properties with sizes of ∼100 nm, spherical morphology, and neutral surface charges. We next assessed the magnitude of protein adsorption on both NPs and catalogued the identity of the adsorbed proteins using mass spectrometry-based techniques. The PMAG NPs were found to adsorb fewer proteins in vitro as well as fewer immunogenic proteins such as Immunoglobulins and Complement proteins. Flow cytometry and confocal microscopy were employed to examine cellular uptake in RAW 264.7 macrophages and MDA-MB-231 tumor cells, where PMAG NPs showed higher uptake into tumor cells over macrophages. In vivo studies in BALB/c mice with orthotopic 4T1 breast cancer xenografts showed that PMAG NPs exhibited prolonged circulation times and enhanced tumor accumulation compared to PEGylated NPs. The biodistribution analysis also revealed greater selectivity for tumor tissue over the liver for PMAG NPs. These findings highlight the potential of glycopolymeric NPs to improve tumor targeting and reduce macrophage uptake compared to PEGylated NPs, offering significant advancements in cancer nanomedicine and immunotherapy.
Collapse
Affiliation(s)
- Kenneth Hulugalla
- Department of BioMolecular Sciences, University of Mississippi, University, Mississippi 38677, United States
| | - Oluwaseyi Shofolawe-Bakare
- Department of Chemical Engineering, University of Mississippi, University, Mississippi 38677, United States
| | - Veeresh B Toragall
- Department of Biomedical Engineering, University of Mississippi, University, Mississippi 38677, United States
| | - Sk Arif Mohammad
- Department of Biomedical Engineering, University of Mississippi, University, Mississippi 38677, United States
| | - Railey Mayatt
- Department of Chemistry, Mississippi State University, Starkville, Mississippi 39762, United States
| | - Kelsie Hand
- Department of Biomedical Engineering, University of Mississippi, University, Mississippi 38677, United States
| | - Joshua Anderson
- Department of Biomedical Engineering, University of Mississippi, University, Mississippi 38677, United States
| | - Claylee Chism
- Department of Chemistry and Biochemistry, University of Mississippi, University, Mississippi 38677, United States
| | - Sandeep K Misra
- Department of BioMolecular Sciences, University of Mississippi, University, Mississippi 38677, United States
| | - Tanveer Shaikh
- Department of Chemistry, Mississippi State University, Starkville, Mississippi 39762, United States
| | - Eden E L Tanner
- Department of Chemistry and Biochemistry, University of Mississippi, University, Mississippi 38677, United States
| | - Adam E Smith
- Department of Biomedical Engineering, University of Mississippi, University, Mississippi 38677, United States
- Department of Chemical Engineering, University of Mississippi, University, Mississippi 38677, United States
| | - Joshua S Sharp
- Department of BioMolecular Sciences, University of Mississippi, University, Mississippi 38677, United States
| | - Nicholas C Fitzkee
- Department of Chemistry, Mississippi State University, Starkville, Mississippi 39762, United States
| | - Thomas Werfel
- Department of BioMolecular Sciences, University of Mississippi, University, Mississippi 38677, United States
- Department of Biomedical Engineering, University of Mississippi, University, Mississippi 38677, United States
- Department of Chemical Engineering, University of Mississippi, University, Mississippi 38677, United States
- Cancer Center and Research Institute, University of Mississippi Medical Center, Jackson, Mississippi 39216, United States
| |
Collapse
|
6
|
Xu M, Liu J, Yu J, Wang J, Li H, Zhong T, Hao Y, Li Z, Wang J, Huang X, Wang H, Tian Y, Zhao H, Wei Q, Zhang X. Methyl-β-cyclodextrin Enhances Tumor Cellular Uptake and Accumulation of α-Linolenic Acid-Paclitaxel Conjugate Nanoparticles. Mol Pharm 2024. [PMID: 39495317 DOI: 10.1021/acs.molpharmaceut.4c00190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
Improving nanomedicine uptake by tumor cells is key to achieving intracellular drug delivery. In this study, we found that methyl-β-cyclodextrin (MβCD) can significantly promote the intracellular accumulation of nanoparticulated α-linolenic acid-paclitaxel conjugates (ALA-PTX NPs) via enhanced clathrin-mediated endocytosis and limited degradation in lysosomes. Our in vitro results indicated that MβCD not only reduced the plasma membrane cholesterol content and increased plasma membrane fluidity, leading to ALA-PTX NPs being more easily incorporated into the plasma membrane, further enhancing membrane fluidity and making the plasma membrane more susceptible to tensile deformation, forming intracellular vesicles to enhance ALA-PTX NP cellular uptake, but also destroyed lysosomes and then limited ALA-PTX NPs' degradation in lysosomes. In HepG2 tumor-bearing mice, MβCD was also able to enhance the antitumor activity of ALA-PTX NPs in vivo. Moreover, we found that MβCD specifically promoted PUFA-paclitaxel conjugate NP cellular uptake. The cellular uptake of PTX liposome which shares an endocytosis pathway with ALA-PTX NPs could be enhanced by MβCD combined with ALA or ALA-PTX NPs. Therefore, we suggested that MβCD combined with polyunsaturated fatty acid-conjugation would be an effective strategy for improving intracellular delivery of nanoparticulated chemotherapeutic drugs used for combination administration to enhance antitumor efficiency.
Collapse
Affiliation(s)
- Meiqi Xu
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou 310015, China
| | - Junwei Liu
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Jianming Yu
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Jingwen Wang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Hui Li
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Ting Zhong
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yanli Hao
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Zhuoyue Li
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Jingru Wang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xu Huang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Hui Wang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yubo Tian
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Heng Zhao
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Qingchao Wei
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xuan Zhang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| |
Collapse
|
7
|
Singh G, Thakur N, Kumar R. Nanoparticles in drinking water: Assessing health risks and regulatory challenges. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:174940. [PMID: 39047836 DOI: 10.1016/j.scitotenv.2024.174940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 07/18/2024] [Accepted: 07/19/2024] [Indexed: 07/27/2024]
Abstract
Nanoparticles (NPs) pose a significant concern in drinking water due to their potential health risks and environmental impact. This review provides a comprehensive analysis of the current understanding of NP sources and contamination in drinking water, focusing on health concerns, mitigation strategies, regulatory frameworks, and future perspectives. This review highlights the importance of nano-specific pathways, fate processes, health risks & toxicity, and the need for realistic toxicity assessments. Different NPs like titanium dioxide, silver, nanoplastics, nanoscale liquid crystal monomers, copper oxide, and others pose potential health risks through ingestion, inhalation, or dermal exposure, impacting organs and potentially leading to oxidative stress, inflammatory responses, DNA damage, cytotoxicity, disrupt intracellular energetic mechanisms, reactive oxygen species generation, respiratory and immune toxicity, and genotoxicity in humans. Utilizing case studies and literature reviews, we investigate the health risks associated with NPs in freshwater environments, emphasizing their relevance to drinking water quality. Various mitigation and treatment strategies, including filtration systems (e.g., reverse osmosis, and ultra/nano-filtration), adsorption processes, coagulation/flocculation, electrocoagulation, advanced oxidation processes, membrane distillation, and ultraviolet treatment, all of which demonstrate high removal efficiencies for NPs from drinking water. Regulatory frameworks and challenges for the production, applications, and disposal of NPs at both national and international levels are discussed, emphasizing the need for tailored regulations to address NP contamination and standardize safety testing and risk assessment practices. Looking ahead, this review underscores the necessity of advancing detection methods and nanomaterial-based treatment technologies while stressing the pivotal role of public awareness and tailored regulatory guidelines in upholding drinking water quality standards. This review emphasizes the urgency of addressing NP contamination in drinking water and provides insights into potential solutions and future research directions. Lastly, this review worth concluded with future recommendations on advanced analytical techniques and sensitive sensors for NP detection for safeguarding public health and policy implementations.
Collapse
Affiliation(s)
- Gagandeep Singh
- Department of Biosciences (UIBT), Chandigarh University, Ludhiana, Punjab 140413, India
| | - Neelam Thakur
- Department of Zoology, Sardar Patel University, Vallabh Government College, Campus, Mandi, Himachal Pradesh 175001, India.
| | - Rakesh Kumar
- Department of Biosystems Engineering, Auburn University, Auburn, AL 36849, USA.
| |
Collapse
|
8
|
Cheng R, Wang S. Cell-mediated nanoparticle delivery systems: towards precision nanomedicine. Drug Deliv Transl Res 2024; 14:3032-3054. [PMID: 38615157 PMCID: PMC11445310 DOI: 10.1007/s13346-024-01591-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/24/2024] [Indexed: 04/15/2024]
Abstract
Cell-mediated nanoparticle delivery systems (CMNDDs) utilize cells as carriers to deliver the drug-loaded nanoparticles. Unlike the traditional nanoparticle drug delivery approaches, CMNDDs take the advantages of cell characteristics, such as the homing capabilities of stem cells, inflammatory chemotaxis of neutrophils, prolonged blood circulation of red blood cells, and internalization of macrophages. Subsequently, CMNDDs can easily prolong the blood circulation, cross biological barriers, such as the blood-brain barrier and the bone marrow-blood barrier, and rapidly arrive at the diseased areas. Such advantageous properties make CMNDDs promising delivery candidates for precision targeting. In this review, we summarize the recent advances in CMNDDs fabrication and biomedical applications. Specifically, ligand-receptor interactions, non-covalent interactions, covalent interactions, and internalization are commonly applied in constructing CMNDDs in vitro. By hitchhiking cells, such as macrophages, red blood cells, monocytes, neutrophils, and platelets, nanoparticles can be internalized or attached to cells to construct CMNDDs in vivo. Then we highlight the recent application of CMNDDs in treating different diseases, such as cancer, central nervous system disorders, lung diseases, and cardiovascular diseases, with a brief discussion about challenges and future perspectives in the end.
Collapse
Affiliation(s)
- Ruoyu Cheng
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland
| | - Shiqi Wang
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland.
| |
Collapse
|
9
|
Wang Y, Mo Y, Sun Y, Li J, An Y, Feng N, Liu Y. Intestinal nanoparticle delivery and cellular response: a review of the bidirectional nanoparticle-cell interplay in mucosa based on physiochemical properties. J Nanobiotechnology 2024; 22:669. [PMID: 39487532 PMCID: PMC11531169 DOI: 10.1186/s12951-024-02930-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 10/11/2024] [Indexed: 11/04/2024] Open
Abstract
Orally administered nanocarriers play an important role in improving druggability, promoting intestinal absorption, and enhancing therapeutic applications for the treatment of local and systemic diseases. However, the delivering efficiency and cell response in mucosa to orally administered nanocarriers is affected by the physiological environment and barriers in the gastrointestinal tract, the physicochemical properties of the nanocarriers, and their bidirectional interactions. Goblet cells secrete and form extracellular mucus, which hinders the movement of nanoparticles. Meanwhile, intestinal epithelial cells may absorb the NPs, allowing for their transcytosis or degradation. Conversely, nanoparticle-induced toxicity may occur as a biological response to the nanoparticle exposure. Additionally, immune response and cell functions in secretions such as mucin, peptide, and cytokines may also be altered. In this review, we discuss the bidirectional interactions between nanoparticles and cells focusing on enterocytes and goblet cells, M cells, and immune cells in the mucosa according to the essential role of intestinal epithelial cells and their crosstalk with immune cells. Furthermore, we discuss the recent advances of how the physiochemical properties of nanoparticles influence their interplay, delivery, and fate in intestinal mucosa. Understanding the fate of nanoparticles with different physiochemical properties from the perspective of their interaction with cells in mucosa provides essential support for the development, rational design, potency maximation, and application of advanced oral nanocarrier delivery systems.
Collapse
Affiliation(s)
- Yu Wang
- Department of Pharmaceutical Sciences, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Zhangjiang Hi-Tech Park, Pudong New District, Shanghai, 201203, P R China
| | - Yilei Mo
- Department of Pharmaceutical Sciences, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Zhangjiang Hi-Tech Park, Pudong New District, Shanghai, 201203, P R China
| | - Yingwei Sun
- Department of Pharmaceutical Sciences, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Zhangjiang Hi-Tech Park, Pudong New District, Shanghai, 201203, P R China
| | - Jing Li
- Department of Pharmaceutical Sciences, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Zhangjiang Hi-Tech Park, Pudong New District, Shanghai, 201203, P R China
| | - Yu An
- Department of Pharmaceutical Sciences, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Zhangjiang Hi-Tech Park, Pudong New District, Shanghai, 201203, P R China
| | - Nianping Feng
- Department of Pharmaceutical Sciences, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Zhangjiang Hi-Tech Park, Pudong New District, Shanghai, 201203, P R China.
| | - Ying Liu
- Department of Pharmaceutical Sciences, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Zhangjiang Hi-Tech Park, Pudong New District, Shanghai, 201203, P R China.
| |
Collapse
|
10
|
Liu Y, Liu R, Dong J, Xia X, Yang H, Wei S, Fan L, Fang M, Zou Y, Zheng M, Leong KW, Shi B. Targeted protein degradation via cellular trafficking of nanoparticles. NATURE NANOTECHNOLOGY 2024:10.1038/s41565-024-01801-3. [PMID: 39468359 DOI: 10.1038/s41565-024-01801-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/04/2024] [Indexed: 10/30/2024]
Abstract
Strategies that selectively bind proteins of interest and target them to the intracellular protein recycling machinery for targeted protein degradation have recently emerged as powerful tools for undruggable targets in biomedical research and the pharmaceutical industry. However, targeting any new protein of interest with current degradation tools requires a laborious case-by-case design for different diseases and cell types, especially for extracellular targets. Here we observe that nanoparticles can mediate specific receptor-independent internalization of a bound protein and further develop a general strategy for degradation of extracellular proteins of interest by making full use of clinically approved components. This extremely flexible strategy aids in targeted protein degradation tool development and provides knowledge for targeted drug therapies and nanomedicine design.
Collapse
Affiliation(s)
- Yang Liu
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, China
- Henan Key Laboratory of Brain Targeted Bio-Nanomedicine, School of Life Sciences, Henan University, Kaifeng, China
- Huaihe Hospital of Henan University, Henan University, Kaifeng, China
| | - Runhan Liu
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, China
- Henan Key Laboratory of Brain Targeted Bio-Nanomedicine, School of Life Sciences, Henan University, Kaifeng, China
| | - Jiawei Dong
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, China
- Henan Key Laboratory of Brain Targeted Bio-Nanomedicine, School of Life Sciences, Henan University, Kaifeng, China
| | - Xue Xia
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, China
- Henan Key Laboratory of Brain Targeted Bio-Nanomedicine, School of Life Sciences, Henan University, Kaifeng, China
| | - Haoying Yang
- Henan Key Laboratory of Brain Targeted Bio-Nanomedicine, School of Life Sciences, Henan University, Kaifeng, China
| | - Sijun Wei
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, China
- Henan Key Laboratory of Brain Targeted Bio-Nanomedicine, School of Life Sciences, Henan University, Kaifeng, China
| | - Linlin Fan
- Henan Key Laboratory of Brain Targeted Bio-Nanomedicine, School of Life Sciences, Henan University, Kaifeng, China
| | - Mengke Fang
- Henan Key Laboratory of Brain Targeted Bio-Nanomedicine, School of Life Sciences, Henan University, Kaifeng, China
| | - Yan Zou
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, China
- Henan Key Laboratory of Brain Targeted Bio-Nanomedicine, School of Life Sciences, Henan University, Kaifeng, China
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Meng Zheng
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, China.
- Henan Key Laboratory of Brain Targeted Bio-Nanomedicine, School of Life Sciences, Henan University, Kaifeng, China.
- Huaihe Hospital of Henan University, Henan University, Kaifeng, China.
| | - Kam W Leong
- Department of Biomedical Engineering, Columbia University, New York, NY, USA.
| | - Bingyang Shi
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, China.
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales, Australia.
- Department of Biomedical Engineering, Columbia University, New York, NY, USA.
- School of Biomedical Engineering, University of Technology Sydney, Sydney, New South Wales, Australia.
| |
Collapse
|
11
|
Hamdy NM, Basalious EB, El-Sisi MG, Nasr M, Kabel AM, Nossier ES, Abadi AH. Advancements in current one-size-fits-all therapies compared to future treatment innovations for better improved chemotherapeutic outcomes: a step-toward personalized medicine. Curr Med Res Opin 2024:1-19. [PMID: 39412377 DOI: 10.1080/03007995.2024.2416985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 10/07/2024] [Accepted: 10/10/2024] [Indexed: 10/22/2024]
Abstract
The development of therapies followed a generalized approach for a long time, assuming that a single treatment could effectively address various patient populations. However, recent breakthroughs have revealed the limitations of this one-size-fits-all paradigm. More recently, the field of therapeutics has witnessed a shift toward other modules, including cell therapies, high molecular weight remedies, personalized medicines, and gene therapies. Such advancements in therapeutic modules have the potential to revolutionize healthcare and pave the way for medicines that are more efficient and with minimal side effects. Cell therapies have gained considerable attention in regenerative medicine. Stem cell-based therapies, for instance, hold promise for tissue repair and regeneration, with ongoing research focusing on enhancing their efficacy and safety. High molecular weight drugs like peptides and proteins emerged as promising therapeutics because of their high specificity and diverse biological functions. Engineered peptides and proteins are developed for targeted drug delivery, immunotherapy, and disease-modulation. In personalized medicine, tailored treatments to individuals based on specific genetic profiling, lifestyle, biomarkers, and disease characteristics are all implemented. Clinicians have tailored treatments to optimize outcomes and minimize adverse effects, using targeted therapies based on specific mutations, yielding remarkable results. Gene therapies have revolutionized the treatment of genetic disorders by directly targeting the underlying genetic abnormalities. Innovative techniques, such as CRISPR-Cas9 have allowed precise gene editing, opening up possibilities for curing previously incurable conditions. In conclusion, advancements in therapeutic modules have the potential to revolutionize healthcare and pave the way for medicines that are more efficient and with minimal side effects.
Collapse
Affiliation(s)
- Nadia M Hamdy
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Abassia, Cairo, Egypt
- The National Committee of Drugs & Medicines by Academy of Scientific Research and Technology (ASRT), Ministry of Higher Education, Cairo, Egypt
| | - Emad B Basalious
- The National Committee of Drugs & Medicines by Academy of Scientific Research and Technology (ASRT), Ministry of Higher Education, Cairo, Egypt
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Mona G El-Sisi
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Abassia, Cairo, Egypt
| | - Maha Nasr
- The National Committee of Drugs & Medicines by Academy of Scientific Research and Technology (ASRT), Ministry of Higher Education, Cairo, Egypt
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Ahmed M Kabel
- The National Committee of Drugs & Medicines by Academy of Scientific Research and Technology (ASRT), Ministry of Higher Education, Cairo, Egypt
- Department of Pharmacology, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Eman S Nossier
- The National Committee of Drugs & Medicines by Academy of Scientific Research and Technology (ASRT), Ministry of Higher Education, Cairo, Egypt
- Department of Pharmaceutical Medicinal Chemistry and Drug Design, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| | - Ashraf H Abadi
- The National Committee of Drugs & Medicines by Academy of Scientific Research and Technology (ASRT), Ministry of Higher Education, Cairo, Egypt
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo (GUC), New Cairo, Egypt
| |
Collapse
|
12
|
Kan X, Ma J, Ma J, Li D, Li F, Cao Y, Huang C, Li Y, Liu P. Dual-targeted TfRA4-DNA1-Ag@AuNPs: An innovative radiosensitizer for enhancing radiotherapy in glioblastoma multiforme. Colloids Surf B Biointerfaces 2024; 245:114328. [PMID: 39442410 DOI: 10.1016/j.colsurfb.2024.114328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/16/2024] [Accepted: 10/17/2024] [Indexed: 10/25/2024]
Abstract
Radiation therapy (RT) is one of the most effective and widely used treatment methods for glioblastoma multiforme (GBM). However, its efficacy is often compromised by the inherent radioresistance of tumor cells, while the restrictive nature of the blood-brain barrier (BBB) specifically impedes the delivery of radiosensitizer. Thus, we constructed and characterized polyethylene glycol (PEG)-functionalized silver-gold core-shell nanoparticles (PSGNPs) targeting both BBB (TfRA4) and GBM (DNA1) (TDSGNPs). Afterwards, studies conducted both in vitro and in vivo were employed to assess the BBB penetration capabilities, abilities of GBM targeting and radiosensitization effect. Transmission electron microscope images of PSGNPs showed a core-shell structure, and the results of ultraviolet-visible absorption spectroscopy and dynamic light scattering displayed that TDSGNPs were successfully constructed with excellent dispersion properties. TDSGNPs could be specifically taken up by U87MG cells and the uptake peaked at 24 h. TDSGNPs combined with RT obviously increased the apoptosis proportion of the cells. It was shown by the in vitro and in vivo investigations that TDSGNPs could target U87MG cells after crossing the BBB, and further study revealed that TDSGNPs showed an uptake peak in the tumor sites after 3 h intravenous injection. The radiosensitization of TDSGNPs was better than that of the nanoparticles modified with single aptamers and the median survival of tumor-bearing mice was greatly extended. This study demonstrated that TDSGNPs could penetrate BBB to target GBM, functioning as a promising radiosensitizer for the targeted therapy of GBM.
Collapse
Affiliation(s)
- Xuechun Kan
- School of Medicine, Southeast University, Nanjing, Jiangsu 210009, PR China
| | - Jing Ma
- School of Medicine, Southeast University, Nanjing, Jiangsu 210009, PR China
| | - Jun Ma
- Radiotherapy Department, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, PR China
| | - Dongdong Li
- School of Medicine, Southeast University, Nanjing, Jiangsu 210009, PR China
| | - Fan Li
- School of Medicine, Southeast University, Nanjing, Jiangsu 210009, PR China
| | - Yuyu Cao
- School of Medicine, Southeast University, Nanjing, Jiangsu 210009, PR China
| | - Cheng Huang
- School of Medicine, Southeast University, Nanjing, Jiangsu 210009, PR China
| | - Yan Li
- School of Medicine, Southeast University, Nanjing, Jiangsu 210009, PR China
| | - Peidang Liu
- School of Medicine, Southeast University, Nanjing, Jiangsu 210009, PR China; Jiangsu Key Laboratory for Biomaterials & Devices, Southeast University, Nanjing, Jiangsu 210009, PR China.
| |
Collapse
|
13
|
Nashaat Alnagar A, Motawea A, Elamin KM, Abu Hashim II. Hyaluronic acid/lactoferrin-coated polydatin/PLGA nanoparticles for active targeting of CD44 receptors in lung cancer. Pharm Dev Technol 2024:1-17. [PMID: 39392049 DOI: 10.1080/10837450.2024.2414937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 10/06/2024] [Accepted: 10/07/2024] [Indexed: 10/12/2024]
Abstract
Traditional chemotherapeutic drugs lack optimal efficacy and invoke severe adverse effects in cancer patients. Polydatin (PD), a phytomedicine, has gradually gained attention due to its antitumor activity. However, its low solubility and poor bioavailability are still cornerstone issues. The present study aimed to fabricate and develop hyaluronic acid/lactoferrin-double coated PD/PLGA nanoparticles via a layer-by-layer self-assembly technique for active targeting of CD44 receptors in lung cancer. Different molecular weights (M.wt.) of HA (32 and 110 kDa) were exploited to study the relationship between the HA M.wt. and the NPs targeting efficacy. The optimized formulations were fully characterized. Their cytotoxicity and cellular uptake were investigated against A549 cell line by CCK-8 kit and fluorescence imaging, respectively. Finally, HA110/Lf-coated PD/PLGA NPs (F9) were subjected to a competitive inhibition study to prove internalization through CD44 overexpressed receptors. The results verified the fabrication of F9 with a particle size of 174.87 ± 3.97 nm and a zeta potential of -24.37 ± 1.19 mV as well as spherical NPs architecture. Importantly, it provoked enhanced cytotoxicity (IC50 = 0.57 ± 0.02 µg/mL) and superior cellular uptake efficacy. To conclude, the current investigation lays the foundation for the prospective therapeutic avenue of F9 for active targeting of CD44 receptors in lung cancer.
Collapse
Affiliation(s)
- Ahmed Nashaat Alnagar
- Department of Pharmaceutics, Faculty of Pharmacy, Mansoura University, Mansoura, Dakahlia, Egypt
| | - Amira Motawea
- Department of Pharmaceutics, Faculty of Pharmacy, Mansoura University, Mansoura, Dakahlia, Egypt
| | - Khaled M Elamin
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Irhan Ibrahim Abu Hashim
- Department of Pharmaceutics, Faculty of Pharmacy, Mansoura University, Mansoura, Dakahlia, Egypt
| |
Collapse
|
14
|
Zhu Y, Wang X, Feng L, Zhao R, Yu C, Liu Y, Xie Y, Liu B, Zhou Y, Yang P. Intermetallics triggering pyroptosis and disulfidptosis in cancer cells promote anti-tumor immunity. Nat Commun 2024; 15:8696. [PMID: 39379392 PMCID: PMC11461493 DOI: 10.1038/s41467-024-53135-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 10/03/2024] [Indexed: 10/10/2024] Open
Abstract
Pyroptosis, an immunogenic programmed cell death, could efficiently activate tumor immunogenicity and reprogram immunosuppressive microenvironment for boosting cancer immunotherapy. However, the overexpression of SLC7A11 promotes glutathione biosynthesis for maintaining redox balance and countering pyroptosis. Herein, we develop intermetallics modified with glucose oxidase (GOx) and soybean phospholipid (SP) as pyroptosis promoters (Pd2Sn@GOx-SP), that not only induce pyroptosis by cascade biocatalysis for remodeling tumor microenvironment and facilitating tumor cell immunogenicity, but also trigger disulfidptosis mediated by cystine accumulation to further promote tumor pyroptosis in female mice. Experiments and density functional theory calculations show that Pd2Sn nanorods with an intermediate size exhibit stronger photothermal and enzyme catalytic activity compared with the other three morphologies investigated. The peroxidase-mimic and oxidase-mimic activities of Pd2Sn cause potent reactive oxygen species (ROS) storms for triggering pyroptosis, which could be self-reinforced by photothermal effect, hydrogen peroxide supply accompanied by glycometabolism, and oxygen production from catalase-mimic activity of Pd2Sn. Moreover, the increase of NADP+/NADPH ratio induced by glucose starvation could pose excessive cystine accumulation and inhibit glutathione synthesis, which could cause disulfidptosis and further augment ROS-mediated pyroptosis, respectively. This two-pronged treatment strategy could represent an alternative therapeutic approach to expand anti-tumor immunotherapy.
Collapse
Affiliation(s)
- Yanlin Zhu
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, PR China
| | - Xinxin Wang
- Department of Radiology, Harbin Medical University Cancer Hospital, Harbin, PR China
| | - Lili Feng
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, PR China.
| | - Ruoxi Zhao
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, PR China
| | - Can Yu
- Department of Radiology, Harbin Medical University Cancer Hospital, Harbin, PR China
| | - Yuanli Liu
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, PR China
| | - Ying Xie
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, Harbin, PR China
| | - Bin Liu
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, PR China
| | - Yang Zhou
- Department of Radiology, Harbin Medical University Cancer Hospital, Harbin, PR China.
| | - Piaoping Yang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, PR China.
| |
Collapse
|
15
|
Havelikar U, Ghorpade KB, Kumar A, Patel A, Singh M, Banjare N, Gupta PN. Comprehensive insights into mechanism of nanotoxicity, assessment methods and regulatory challenges of nanomedicines. DISCOVER NANO 2024; 19:165. [PMID: 39365367 PMCID: PMC11452581 DOI: 10.1186/s11671-024-04118-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 09/26/2024] [Indexed: 10/05/2024]
Abstract
Nanomedicine has the potential to transform healthcare by offering targeted therapies, precise diagnostics, and enhanced drug delivery systems. The National Institutes of Health has coined the term "nanomedicine" to describe the use of nanotechnology in biological system monitoring, control, diagnosis, and treatment. Nanomedicine continues to receive increasing interest for the rationalized delivery of therapeutics and pharmaceutical agents to achieve the required response while reducing its side effects. However, as nanotechnology continues to advance, concerns about its potential toxicological effects have also grown. This review explores the current state of nanomedicine, focusing on the types of nanoparticles used and their associated properties that contribute to nanotoxicity. It examines the mechanisms through which nanoparticles exert toxicity, encompassing various cellular and molecular interactions. Furthermore, it discusses the assessment methods employed to evaluate nanotoxicity, encompassing in-vitro and in-vivo models, as well as emerging techniques. The review also addresses the regulatory issues surrounding nanotoxicology, highlighting the challenges in developing standardized guidelines and ensuring the secure translation of nanomedicine into clinical settings. It also explores into the challenges and ethical issues associated with nanotoxicology, as understanding the safety profile of nanoparticles is essential for their effective translation into therapeutic applications.
Collapse
Affiliation(s)
- Ujwal Havelikar
- Department of Pharmaceutics, NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, 303121, India
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
| | - Kabirdas B Ghorpade
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER) - Raebareli, Lucknow, Uttar Pradesh, 226002, India
| | - Amit Kumar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER) - Raebareli, Lucknow, Uttar Pradesh, 226002, India
| | - Akhilesh Patel
- Department of Pharmaceutics, NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, 303121, India
| | - Manisha Singh
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
| | - Nagma Banjare
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
| | - Prem N Gupta
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India.
| |
Collapse
|
16
|
Zagal-Salinas AA, Ispanixtlahuatl-Meráz O, Olguín-Hernández JE, Rodríguez-Sosa M, García Cuéllar CM, Sánchez-Pérez Y, Chirino YI. Food grade titanium dioxide (E171) interferes with monocyte-macrophage cell differentiation and their phagocytic capacity. Food Chem Toxicol 2024; 192:114912. [PMID: 39121895 DOI: 10.1016/j.fct.2024.114912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/25/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
Food grade titanium dioxide E171 has been used in products such as confectionery, doughs and flours to enhance organoleptic properties. The European Union has warned about adverse effects on humans due to oral consumption. After oral exposure, E171 reaches the bloodstream which raises the concern about effects on blood cells such as monocytes. One of the main functions of these cells is the differentiation of macrophages leading to the phagocytosis of foreign particles. The aim of this study was to evaluate the effect of E171 exposure on the phagocytic capacity and differentiation process of monocytes (THP-1) into macrophages. Physicochemical E171 properties were evaluated, and THP-1 monocytes were exposed to 4, 40 and 200 μg/ml. Cell viability, uptake capacity, cytokine release, the differentiation process, cytoskeletal arrangement and E171 internalization were assayed. Results showed that E171 particles had an amorphous shape with a mean of hydrodynamic size of ∼46 nm in cell culture media. Cell viability decreased until the 9th day of exposure, while the uptake capacity decreased up to 62% in a concentration dependent manner in monocytes. Additionally, the E171 exposure increased the proinflammatory cytokines release and decreased the cell differentiation by a 61% in macrophages. E171 induced changes in cytoskeletal arrangement and some of the E171 particles were located inside the nuclei. We conclude that E171 exposure in THP-1 monocytes induced an inflammatory response, impaired the phagocytic capacity, and interfered with cell differentiation from monocytes to macrophages.
Collapse
Affiliation(s)
- Alejandro A Zagal-Salinas
- Laboratorio de Carcinogénesis y Toxicología, Unidad de Investigación en Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Av. de los Barrios No. 1, Los Reyes Iztacala, Tlalnepantla de Baz, CP 54090, Estado de México, Mexico
| | - Octavio Ispanixtlahuatl-Meráz
- Laboratorio de Carcinogénesis y Toxicología, Unidad de Investigación en Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Av. de los Barrios No. 1, Los Reyes Iztacala, Tlalnepantla de Baz, CP 54090, Estado de México, Mexico
| | - Jonadab E Olguín-Hernández
- Laboratorio Nacional en Salud Diagnóstico Molecular y Efecto Ambiental en Enfermedades Crónico-Degenerativas, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Av. de los Barrios No. 1, Los Reyes Iztacala, Tlalnepantla de Baz, CP 54090, Estado de México, Mexico
| | - Miriam Rodríguez-Sosa
- Laboratorio de Inmunidad Innata, Unidad de Investigación en Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Av. de los Barrios No. 1, Los Reyes Iztacala, Tlalnepantla de Baz, CP 54090, Estado de México, Mexico
| | - Claudia M García Cuéllar
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología (INCan), Tlalpan, Ciudad de México, CP 14080, Mexico
| | - Yesennia Sánchez-Pérez
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología (INCan), Tlalpan, Ciudad de México, CP 14080, Mexico
| | - Yolanda I Chirino
- Laboratorio de Carcinogénesis y Toxicología, Unidad de Investigación en Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Av. de los Barrios No. 1, Los Reyes Iztacala, Tlalnepantla de Baz, CP 54090, Estado de México, Mexico.
| |
Collapse
|
17
|
Iqbal H, Razzaq A, Zhou D, Lou J, Xiao R, Lin F, Liang Y. Nanomedicine in glaucoma treatment; Current challenges and future perspectives. Mater Today Bio 2024; 28:101229. [PMID: 39296355 PMCID: PMC11409099 DOI: 10.1016/j.mtbio.2024.101229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/19/2024] [Accepted: 09/03/2024] [Indexed: 09/21/2024] Open
Abstract
Glaucoma presents a significant global health concern and affects millions of individuals worldwide and predicted a high increase in prevalence of about 111 million by 2040. The current standard treatment involves hypotensive eye drops; however, challenges such as patient adherence and limited drug bioavailability hinder the treatment effectiveness. Nanopharmaceuticals or nanomedicines offer promising solutions to overcome these obstacles. In this manuscript, we summarized the current limitations of conventional antiglaucoma treatment, role of nanomedicine in glaucoma treatment, rational design, factors effecting the performance of nanomedicine and different types of nanocarriers in designing of nanomedicine along with their applications in glaucoma treatment from recent literature. Current clinical challenges that hinder real-time application of antiglaucoma nanomedicine are highlighted. Lastly, future directions are identified for improving the therapeutic potential and translation of antiglaucoma nanomedicine into clinic.
Collapse
Affiliation(s)
- Haroon Iqbal
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| | - Anam Razzaq
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Science, Soochow University, Suzhou, 215123, China
| | - Dengming Zhou
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Jiangtao Lou
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Run Xiao
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| | - Fu Lin
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Yuanbo Liang
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| |
Collapse
|
18
|
Yuan D, Niu Z, Zheng W, Zhao Q, Zhou F, Zhao M. Mind the Particle Rigidity: Blooms the Bioavailability via Rapidly Crossing the Mucus Layer and Alters the Intracellular Fate of Curcumin. ACS NANO 2024; 18:27026-27041. [PMID: 39297569 DOI: 10.1021/acsnano.4c09838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/02/2024]
Abstract
Overcoming intestinal epithelial barriers to enhance bioavailability is a major challenge for oral delivery systems. Desirable nanocarriers should simultaneously exhibit rapid mucus penetration and efficient epithelial uptake; however, they two generally require contradictory structural properties. Herein, we proposed a strategy to construct multiperformance nanoparticles by modifying the rigidity of amphiphilic nanostructures originating from soy polypeptides (SPNPs), where its ability to overcome multibarriers was examined from both in vitro and in vivo, using curcumin (CUR) as a model cargo. Low-rigidity SPNPs showed higher affinity to mucin and were prone to getting stuck in the mucus layer. When they reached epithelial cells, they tended to be endocytosed through the clathrin and macropinocytosis pathways and further transferred to lysosomes, showing severe degradation and lower transport of CUR. Increased particle rigidity generally improved the absorption of CUR, with medium-rigidity SPNPs bloomed maximum plasma concentration of CUR by 80.62-fold and showed the highest oral bioavailability. Results from monocultured and cocultured cell models demonstrated that medium-rigidity SPNPs were least influenced by the mucus layer and changes in rigidity significantly influenced the endocytosis and intracellular fate of SPNPs. Those with higher rigidity preferred to be endocytosed via a caveolae-mediated pathway and trafficked to the ER and Golgi, facilitating their whole transcytosis, and avoiding intracellular metabolism. Moreover, rigidity modulation efficiently induces the reversible opening of intercellular tight junctions, which synergistically improves the transport of CUR into blood circulation. This study suggested that rigidity regulation on food originated amphiphilic peptides could overcome multiple physiological barriers, showing great potential as natural building block toward oral delivery.
Collapse
Affiliation(s)
- Dan Yuan
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
- Guangdong Food Green Processing and Nutrition Regulation Technology Research Center, Guangzhou 510640, China
| | - Zhicheng Niu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
- Guangdong Food Green Processing and Nutrition Regulation Technology Research Center, Guangzhou 510640, China
| | - Wenyu Zheng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
- Guangdong Food Green Processing and Nutrition Regulation Technology Research Center, Guangzhou 510640, China
| | - Qiangzhong Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
- Guangdong Food Green Processing and Nutrition Regulation Technology Research Center, Guangzhou 510640, China
| | - Feibai Zhou
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
- Guangdong Food Green Processing and Nutrition Regulation Technology Research Center, Guangzhou 510640, China
| | - Mouming Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
- Guangdong Food Green Processing and Nutrition Regulation Technology Research Center, Guangzhou 510640, China
- Chaozhou Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Chaozhou 521000, China
| |
Collapse
|
19
|
Chen X, Yong Z, Xiong Y, Yang H, Xu C, Wang X, Deng Q, Li J, Yang X, Li Z. Hydroxyethyl starch conjugates co-assembled nanoparticles promote photodynamic therapy and antitumor immunity by inhibiting antioxidant systems. Asian J Pharm Sci 2024; 19:100950. [PMID: 39497748 PMCID: PMC11532429 DOI: 10.1016/j.ajps.2024.100950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/06/2024] [Accepted: 06/17/2024] [Indexed: 11/07/2024] Open
Abstract
Photodynamic therapy (PDT) can produce high levels of reactive oxygen species (ROS) to kill tumor cells and induce antitumor immunity. However, intracellular antioxidant systems, including glutathione (GSH) system and thioredoxin (Trx) system, limit the accumulation of ROS, resulting in compromised PDT and insufficient immune stimulation. Herein, we designed a nanomedicine PtHPs co-loading photosensitizer pyropheophorbide a (PPa) and cisplatin prodrug Pt-COOH(IV) (Pt (IV)) based on hydroxyethyl starch (HES) to inhibit both GSH and Trx antioxidant systems and achieve potent PDT as well as antitumor immune responses. Specifically, HES-PPa and HES-Pt were obtained by coupling HES with PPa and Pt (IV), and assembled into nanoparticle PtHPs by emulsification method to achieve the purpose of co-delivery of PPa and Pt (IV). PtHPs improved PPa photostability while retaining PPa photodynamic properties. In vitro experiments showed that PtHPs reduced GSH, inhibited Trx system and had better cell-killing effect and ROS generation ability. Subcutaneous tumor models showed that PtHPs had good safety and tumor inhibition effect. Bilateral tumor models suggested that PtHPs promoted the release of damage-associated molecular patterns and the maturation of dendritic cells, induced T cell-mediated immune responses, and thus suppressed the growth of both primary and distal tumors. This study reports a novel platinum-based nanomedicine and provides a new strategy for boosting PDT therapy-mediated antitumor immunity by overcoming intrinsic antioxidant systems.
Collapse
Affiliation(s)
- Xiang Chen
- Department of Nanomedicine and Biopharmaceuticals, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zhengtao Yong
- Department of Nanomedicine and Biopharmaceuticals, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yuxuan Xiong
- Department of Nanomedicine and Biopharmaceuticals, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Hai Yang
- Key Laboratory of Molecular Biophysics of Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074, China
- Department of Nanomedicine and Biopharmaceuticals, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan 430074, China
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medical, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Chen Xu
- Department of Nanomedicine and Biopharmaceuticals, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xing Wang
- Department of Nanomedicine and Biopharmaceuticals, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Qingyuan Deng
- Department of Nanomedicine and Biopharmaceuticals, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jiayuan Li
- Department of Nanomedicine and Biopharmaceuticals, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xiangliang Yang
- Key Laboratory of Molecular Biophysics of Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074, China
- Department of Nanomedicine and Biopharmaceuticals, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan 430074, China
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medical, Huazhong University of Science and Technology, Wuhan 430074, China
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Huazhong University of Science and Technology, Wuhan 430074, China
- Hubei Bioinformatics and Molecular Imaging Key Laboratory, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zifu Li
- Key Laboratory of Molecular Biophysics of Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074, China
- Department of Nanomedicine and Biopharmaceuticals, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan 430074, China
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medical, Huazhong University of Science and Technology, Wuhan 430074, China
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Huazhong University of Science and Technology, Wuhan 430074, China
- Hubei Bioinformatics and Molecular Imaging Key Laboratory, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
20
|
Shrestha P, Duwa R, Lee S, Kwon TK, Jeong JH, Yook S. ROS-responsive thioketal nanoparticles delivering system for targeted ulcerative colitis therapy with potent HDAC6 inhibitor, tubastatin A. Eur J Pharm Sci 2024; 201:106856. [PMID: 39032536 DOI: 10.1016/j.ejps.2024.106856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 07/16/2024] [Accepted: 07/16/2024] [Indexed: 07/23/2024]
Abstract
Ulcerative colitis (UC) is a common gastrointestinal problem characterized by the mucosal injury primarily affecting the large intestine. Currently available therapies are not satisfactory as evidenced by high relapse rate and adverse effects. In this study we aimed to develop an effective drug delivery system using reactive oxygen species (ROS)-responsive thioketal nanoparticles (TKNP), to deliver tubastatin A, a potent HDAC6 inhibitor, to the inflamed colon in mice with ulcerative colitis (UC). TKNPs were synthesized by step-growth polymerization from an acetal exchange reaction while TUBA-TKNP was prepared using the single emulsion solvent evaporation technique. Our developed nanoparticle showed release of tubastatin A only in presence of ROS which is found to be highly present at the site of inflamed colon. Oral administration of TUBA-TKNP resulted in the higher accumulation of tubastatin A at the inflamed colon site and decreased the inflammation as evidenced by reduced infiltration of immune cells and decreased level of pro-inflammatory cytokines in TUBA-TKNP treated mice. In summary, our results show the successful localization of tubastatin A at the site of colon inflammation through TUBA-TKNP delivery, as well as resolution of clinical features of UC in mice.
Collapse
Affiliation(s)
- Prabhat Shrestha
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Ramesh Duwa
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea; Department of Radiology, Molecular Imaging Program at Standford (MIPS), School of Medicine, Standford University, Standford, California 94305, USA
| | - Sooyeun Lee
- College of Pharmacy, Keimyung University, Daegu 42601, Republic of Korea
| | - Taeg Kyu Kwon
- Department of Immunology, School of Medicine, Keimyung University, Daegu, 42601, Republic of Korea
| | - Jee-Heon Jeong
- Department of Precision Medicine, School of Medicine, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| | - Simmyung Yook
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea; School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| |
Collapse
|
21
|
Li J, Foged C. Evaluating the breadth of nucleic acid-based payloads delivered in lipid nanoparticles to establish fundamental differences in development. Expert Opin Drug Deliv 2024; 21:1441-1461. [PMID: 39387233 DOI: 10.1080/17425247.2024.2409142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 08/29/2024] [Accepted: 09/23/2024] [Indexed: 10/15/2024]
Abstract
INTRODUCTION Nucleic acid (NA)-based therapeutics have shown great potential for downregulating or augmenting gene expression, and for promising applications, e.g., protein-replacement therapy and vaccination, a comprehensive understanding of the requirements for their targeted delivery to specific tissues or cells is needed. AREAS COVERED In this review, we discuss clinical applications of four representative types of NA-based therapeutics, i.e. antisense oligonucleotides, small interfering RNA, messenger RNA, and circular RNA, with a focus on the lipid nanoparticle (LNP) technology used for intracellular delivery. The in vivo fate of LNPs is discussed to improve the understanding of trafficking of nanomedicines at the systemic and cellular levels. In addition, NA-based vaccines are discussed, focusing on targeting antigen-presenting cells and immune activation. EXPERT OPINION Optimization of delivery systems for NA-based therapeutics is mainly focused on the standard requirements of prolonged systemic circulation and enhancing endosomal escape. Depending on the final destination in specific target tissues or cells, strategies should be adjusted to achieve the desired biodistribution of NA-based payloads. More studies relating to the pharmacokinetics of both cargo and carrier are encouraged, because their in vivo fates may differ, considering the possibility of premature cargo release before reaching the target.
Collapse
Affiliation(s)
- Jinjin Li
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen Ø, Denmark
| | - Camilla Foged
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen Ø, Denmark
| |
Collapse
|
22
|
Tang XR, Lei SY, Zhang Q, Liu YY, Wu H, Cao A, Wang H. How big nanoparticles carry small ones into cells: Actions captured by transmission electron microscopy. Colloids Surf B Biointerfaces 2024; 245:114272. [PMID: 39366110 DOI: 10.1016/j.colsurfb.2024.114272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 09/15/2024] [Accepted: 09/25/2024] [Indexed: 10/06/2024]
Abstract
The mechanism of cellular uptake of nanoparticles (NPs) is critical for both bio-application and risk evaluation of NPs, but is still not fully understood due to many influencing factors, among which particle size is a major one. Recent studies show that there is an unusual interplay among differently-sized NPs when they simultaneously interact with cells, e.g., 100 nm silica NPs (SNP100) can promote the cellular uptake of 50 nm silica NPs (SNP50). However, the underlying mechanism is still unclear. Herein, we manage to capture individual endocytosis events in HeLa and A549 cells after co-exposure to SNP50 and SNP100 for 2 hours, using transmission electron microscopy (TEM). TEM images clearly show that there is a size threshold for SNPs to trigger clathrin-mediated endocytosis: One single SNP100 can efficiently trigger it, while it needs about 6 SNP50 to do so. Remarkably, TEM also captures how SNP100 triggers the endocytosis and carries nearby SNP50 into cells, and statistical data show that the average number of SNP50 carried by one SNP100 could be up to about 6. In addition, the mechanism was further verified by using mixed 60 nm SNPs (SNP60) and SNP100. This mechanism has an immediate implication for the design of drug-deliver nanocarriers, and as a proof-of-concept, more catalase functionalized SNP50 (CAT@SNP50) was delivered into HeLa cells by adding some SNP100, resulting in a more severe cell damage compared to CAT@SNP50 alone under same conditions. The findings have general impact on the nanotoxicity study of NP products that commonly have certain distributions in size, and provide new insights on designing efficient drug delivery systems by deliberately control the combinations of NPs of different sizes.
Collapse
Affiliation(s)
- Xue-Rui Tang
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China
| | - Shou-Yang Lei
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China
| | - Qiangqiang Zhang
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China
| | - Yuan-Yuan Liu
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China
| | - Hao Wu
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China
| | - Aoneng Cao
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China.
| | - Haifang Wang
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
23
|
Li X, Hu Y, Zhang X, Shi X, Parak WJ, Pich A. Transvascular transport of nanocarriers for tumor delivery. Nat Commun 2024; 15:8172. [PMID: 39289401 PMCID: PMC11408679 DOI: 10.1038/s41467-024-52416-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 09/05/2024] [Indexed: 09/19/2024] Open
Abstract
Nanocarriers (NCs) play a crucial role in delivering theranostic agents to tumors, making them a pivotal focus of research. However, the persistently low delivery efficiency of engineered NCs has been a significant challenge in the advancement of nanomedicine, stirring considerable debate. Transvascular transport is a critical pathway for NC delivery from vessels to tumors, yet a comprehensive understanding of the interactions between NCs and vascular systems remains elusive. In recent years, considerable efforts have been invested in elucidating the transvascular transport mechanisms of NCs, leading to promising advancements in tumor delivery and theranostics. In this context, we highlight various delivery mechanisms, including the enhanced permeability and retention effect, cooperative immune-driven effect, active transcytosis, and cell/bacteria-mediated delivery. Furthermore, we explore corresponding strategies aimed at enhancing transvascular transport of NCs for efficient tumor delivery. These approaches offer intriguing solutions spanning physicochemical, biological, and pharmacological domains to improve delivery and therapeutic outcomes. Additionally, we propose a forward-looking delivery framework that relies on advanced tumor/vessel models, high-throughput NC libraries, nano-bio interaction datasets, and artificial intelligence, which aims to guide the design of next-generation carriers and implementation strategies for optimized delivery.
Collapse
Affiliation(s)
- Xin Li
- DWI-Leibniz-Institute for Interactive Materials, Aachen, 52056, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Aachen, 52074, Germany
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai, 201804, China
| | - Yong Hu
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai, 201804, China
| | - Xingcai Zhang
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA.
| | - Xiangyang Shi
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, China
| | - Wolfgang J Parak
- Center for Hybrid Nanostructures (CHyN), University of Hamburg, Hamburg, 20607, Germany.
| | - Andrij Pich
- DWI-Leibniz-Institute for Interactive Materials, Aachen, 52056, Germany.
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Aachen, 52074, Germany.
- Aachen Maastricht Institute for Biobased Materials, Maastricht University, RD Geleen, 6167, The Netherlands.
| |
Collapse
|
24
|
Geng T, Tian L, Paek SY, Leung E, Chamley LW, Wu Z. Characterizing Extracellular Vesicles Generated from the Integra CELLine Culture System and Their Endocytic Pathways for Intracellular Drug Delivery. Pharmaceutics 2024; 16:1206. [PMID: 39339242 PMCID: PMC11434853 DOI: 10.3390/pharmaceutics16091206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 09/04/2024] [Accepted: 09/06/2024] [Indexed: 09/30/2024] Open
Abstract
Extracellular vesicles (EVs) have attracted great attention as promising intracellular drug delivery carriers. While the endocytic pathways of small EVs (sEVs, <200 nm) have been reported, there is limited understanding of large EVs (lEVs, >200 nm), despite their potential applications for drug delivery. Additionally, the low yield of EVs during isolation remains a major challenge in their application. Herein, we aimed to compare the endocytic pathways of sEVs and lEVs using MIA PaCa-2 pancreatic cancer cell-derived EVs as models and to explore the efficiency of their production. The cellular uptake of EVs by MIA PaCa-2 cells was assessed and the pathways were investigated with the aid of endocytic inhibitors. The yield and protein content of sEVs and lEVs from the Integra CELLine culture system and the conventional flasks were compared. Our findings revealed that both sEVs and lEVs produced by the Integra CELLine system entered their parental cells via multiple routes, including caveolin-mediated endocytosis, clathrin-mediated endocytosis, and actin-dependent phagocytosis or macropinocytosis. Notably, caveolin- and clathrin-mediated endocytosis were more prominent in the uptake of sEVs, while actin-dependent phagocytosis and macropinocytosis were significant for both sEVs and lEVs. Compared with conventional flasks, the Integra CELLine system demonstrated a 9-fold increase in sEVs yield and a 6.5-fold increase in lEVs yield, along with 3- to 4-fold higher protein content per 1010 EVs. Given that different endocytic pathways led to distinct intracellular trafficking routes, this study highlights the unique potentials of sEVs and lEVs for intracellular cargo delivery. The Integra CELLine proves to be a highly productive and cost-effective system for generating EVs with favourable properties for drug delivery.
Collapse
Affiliation(s)
- Tianjiao Geng
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1010, New Zealand; (T.G.); (L.T.)
- Department of Pharmacy, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Lei Tian
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1010, New Zealand; (T.G.); (L.T.)
| | - Song Yee Paek
- Department of Obstetrics and Gynaecology, Hub for Extracellular Vesicles Investigations, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1010, New Zealand; (S.Y.P.); (L.W.C.)
| | - Euphemia Leung
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1010, New Zealand;
| | - Lawrence W. Chamley
- Department of Obstetrics and Gynaecology, Hub for Extracellular Vesicles Investigations, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1010, New Zealand; (S.Y.P.); (L.W.C.)
| | - Zimei Wu
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1010, New Zealand; (T.G.); (L.T.)
| |
Collapse
|
25
|
Miller HA, Priester A, Curtis ET, Hilmas K, Abbott A, Kievit FM, Convertine AJ. Optimized gadolinium-DO3A loading in RAFT-polymerized copolymers for superior MR imaging of aging blood-brain barrier. SENSORS & DIAGNOSTICS 2024; 3:1513-1521. [PMID: 39149521 PMCID: PMC11320174 DOI: 10.1039/d4sd00063c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 07/14/2024] [Indexed: 08/17/2024]
Abstract
The development of gadolinium-based contrast agents (GBCAs) has been pivotal in advancing magnetic resonance imaging (MRI), offering enhanced soft tissue contrast without ionizing radiation exposure. Despite their widespread clinical use, the need for improved GBCAs has led to innovations in ligand chemistry and polymer science. We report a novel approach using methacrylate-functionalized DO3A ligands to synthesize a series of copolymers through direct reversible addition-fragmentation chain transfer (RAFT) polymerization. This technique enables precise control over the gadolinium content within the polymers, circumventing the need for subsequent conjugation and purification steps, and facilitates the addition of other components such as targeting ligands. The resulting copolymers were analysed for their relaxivity properties, indicating that specific gadolinium-DO3A loading contents between 12-30 mole percent yield optimal MRI contrast enhancement. Inductively coupled plasma (ICP) measurements corroborated these findings, revealing a non-linear relationship between gadolinium content and relaxivity. Optimized copolymers were synthesized with the claudin-1 targeting peptide, C1C2, to image BBB targeting in aged mice to show imaging utility. This study presents a promising pathway for the development of more efficient GBCA addition to copolymers for targeted drug delivery and bioimaging application.
Collapse
Affiliation(s)
- Hunter A Miller
- Department of Biological Systems Engineering, University of Nebraska-Lincoln 262 Morrison Center Lincoln NE 68583 USA
| | - Aaron Priester
- Department of Materials Science and Engineering, Missouri University of Science and Technology 1400 North Bishop Avenue Rolla MO 65409 USA
| | - Evan T Curtis
- Department of Biological Systems Engineering, University of Nebraska-Lincoln 262 Morrison Center Lincoln NE 68583 USA
| | - Krista Hilmas
- Joint Department of Biomedical Engineering, North Carolina State University and The University of North Carolina at Chapel Hill Raleigh NC 27695 USA
| | - Ashleigh Abbott
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida- Gainesville 1275 Center Drive Gainesville FL 32611 USA
| | - Forrest M Kievit
- Department of Biological Systems Engineering, University of Nebraska-Lincoln 262 Morrison Center Lincoln NE 68583 USA
| | - Anthony J Convertine
- Department of Materials Science and Engineering, Missouri University of Science and Technology 1400 North Bishop Avenue Rolla MO 65409 USA
| |
Collapse
|
26
|
Dowaidar M. Cell-penetrating peptides with nanoparticles hybrid delivery vectors and their uptake pathways. Mitochondrion 2024; 78:101906. [PMID: 38797356 DOI: 10.1016/j.mito.2024.101906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/23/2024] [Accepted: 05/15/2024] [Indexed: 05/29/2024]
Abstract
Cell-penetrating peptides (CPPs) are molecules that improve the cellular uptake of various molecular payloads that do not easily traverse the cellular membrane. CPPs can be found in pharmaceutical and medical products. The vast majority of cell-penetrating chemicals that are discussed in published research are peptide based. The paper also delves into the various applications of hybrid vectors. Because CPPs are able to carry cargo across the cellular membrane, they are a viable candidate for use as a suitable carrier for a wide variety of cargoes, such as siRNA, nanoparticles, and others. In which we discuss the CPPs, their classification, uptake mechanisms, hybrid vector systems, nanoparticles and their uptake mechanisms, etc. Further in this paper, we discuss CPPs conjugated to Nanoparticles, Combining CPPs with lipids and polymeric Nanoparticles in A Conjugated System, CPPs conjugated to nanoparticles for therapeutic purposes, and potential therapeutic uses of CPPs as delivery molecules. Also discussed the preclinical and clinical use of CPPS, intracellular trafficking of nanoparticles, and activatable and bioconjugated CPPs.
Collapse
Affiliation(s)
- Moataz Dowaidar
- Bioengineering Department, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran 31261, Saudi Arabia; Interdisciplinary Research Center for Hydrogen Technologies and Carbon Management, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran 31261, Saudi Arabia; Biosystems and Machines Research Center, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran 31261, Saudi Arabia.
| |
Collapse
|
27
|
Zhao Y, Qin J, Yu D, Liu Y, Song D, Tian K, Chen H, Ye Q, Wang X, Xu T, Xuan H, Sun N, Ma W, Zhong J, Sun P, Song Y, Hu J, Zhao Y, Hou X, Meng X, Jiang C, Cai J. Polymer-locking fusogenic liposomes for glioblastoma-targeted siRNA delivery and CRISPR-Cas gene editing. NATURE NANOTECHNOLOGY 2024:10.1038/s41565-024-01769-0. [PMID: 39209994 DOI: 10.1038/s41565-024-01769-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 07/19/2024] [Indexed: 09/04/2024]
Abstract
In patients with glioblastoma (GBM), upregulated midkine (MDK) limits the survival benefits conferred by temozolomide (TMZ). RNA interference (RNAi) and CRISPR-Cas9 gene editing technology are attractive approaches for regulating MDK expression. However, delivering these biologics to GBM tissue is challenging. Here we demonstrate a polymer-locking fusogenic liposome (Plofsome) that can be transported across the blood-brain barrier (BBB) and deliver short interfering RNA or CRISPR-Cas9 ribonucleoprotein complexes into the cytoplasm of GBM cells. Plofsome is designed by integrating a 'lock' into the fusogenic liposome using a traceless reactive oxygen species (ROS)-cleavable linker so that fusion occurs only after crossing the BBB and entering the GBM tissue with high ROS levels. Our results showed that MDK suppression by Plofsomes significantly reduced TMZ resistance and inhibited GBM growth in orthotopic brain tumour models. Importantly, Plofsomes are effective only at tumour sites and not in normal tissues, which improves the safety of combined RNAi and CRISPR-Cas9 therapeutics.
Collapse
Affiliation(s)
- Yu Zhao
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA.
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, College of Chemistry, Nankai University, Tianjin, China.
| | - Jie Qin
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Daohan Yu
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yuxiang Liu
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Dan Song
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Kaifu Tian
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hao Chen
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Qile Ye
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xinyu Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Tianye Xu
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hanwen Xuan
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Nan Sun
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wenbin Ma
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Junzhe Zhong
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Penggang Sun
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yu Song
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jingze Hu
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yunlei Zhao
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xintong Hou
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiangqi Meng
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.
| | - Chuanlu Jiang
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.
- The Sixth Affiliated Hospital of Harbin Medical University, Harbin, China.
| | - Jinquan Cai
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.
| |
Collapse
|
28
|
Liu H, Chen H, Yang Z, Wen Z, Gao Z, Liu Z, Liu L, Chen Y. Precision Nanovaccines for Potent Vaccination. JACS AU 2024; 4:2792-2810. [PMID: 39211600 PMCID: PMC11350730 DOI: 10.1021/jacsau.4c00568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 09/04/2024]
Abstract
Compared with traditional vaccines, nanoparticulate vaccines are especially suitable for delivering antigens of proteins, peptides, and nucleic acids and facilitating lymph node targeting. Moreover, apart from improving pharmacokinetics and safety, nanoparticulate vaccines assist antigens and molecular adjuvants in crossing biological barriers, targeting immune organs and antigen-presenting cells (APC), controlled release, and cross-presentation. However, the process that stimulates and orchestrates the immune response is complicated, involving spatiotemporal interactions of multiple cell types, including APCs, B cells, T cells, and macrophages. The performance of nanoparticulate vaccines also depends on the microenvironments of the target organs or tissues in different populations. Therefore, it is necessary to develop precise nanoparticulate vaccines that accurately regulate vaccine immune response beyond simply improving pharmacokinetics. This Perspective summarizes and highlights the role of nanoparticulate vaccines with precise size, shape, surface charge, and spatial management of antigen or adjuvant for a precision vaccination in regulating the distribution, targeting, and immune response. It also discusses the importance of the rational design of nanoparticulate vaccines based on the anatomical and immunological microstructure of the target tissues. Moreover, the target delivery and controlled release of nanovaccines should be taken into consideration in designing vaccines for achieving precise immune responses. Additionally, it shows that the nanovaccines remodel the suppressed tumor environment and modulate various immune cell responses which are also essential.
Collapse
Affiliation(s)
- Hong Liu
- College
of Chemistry and Molecular Science, Henan
University, Zhengzhou 450046, China
- Translational
Medical Center of Huaihe Hospital, Henan
University, Kaifeng 475004, China
| | - Haolin Chen
- School
of Materials Science and Engineering, Key Laboratory for Polymeric
Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou 510275, China
| | - Zeyu Yang
- School
of Materials Science and Engineering, Key Laboratory for Polymeric
Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou 510275, China
| | - Zhenfu Wen
- School
of Materials Science and Engineering, Key Laboratory for Polymeric
Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou 510275, China
| | - Zhan Gao
- School
of Materials Science and Engineering, Key Laboratory for Polymeric
Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou 510275, China
| | - Zhijia Liu
- School
of Materials Science and Engineering, Key Laboratory for Polymeric
Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou 510275, China
| | - Lixin Liu
- School
of Materials Science and Engineering, Key Laboratory for Polymeric
Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou 510275, China
| | - Yongming Chen
- College
of Chemistry and Molecular Science, Henan
University, Zhengzhou 450046, China
- State
Key Laboratory of Antiviral Drugs, Henan
University, Zhengzhou 450046, China
- School
of Materials Science and Engineering, Key Laboratory for Polymeric
Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
29
|
Yao S, Wang Y, Tang Q, Yin Y, Geng Y, Xu L, Liang S, Xiang J, Fan J, Tang J, Liu J, Shao S, Shen Y. A plug-and-play monofunctional platform for targeted degradation of extracellular proteins and vesicles. Nat Commun 2024; 15:7237. [PMID: 39174543 PMCID: PMC11341853 DOI: 10.1038/s41467-024-51720-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 08/16/2024] [Indexed: 08/24/2024] Open
Abstract
Existing strategies use bifunctional chimaeras to mediate extracellular protein degradation. However, these strategies rely on specific lysosome-trafficking receptors to facilitate lysosomal delivery, which may raise resistance concerns due to intrinsic cell-to-cell variation in receptor expression and mutations or downregulation of the receptors. Another challenge is establishing a universal platform applicable in multiple scenarios. Here, we develop MONOTAB (MOdified NanOparticle with TArgeting Binders), a plug-and-play monofunctional degradation platform that can drag extracellular targets into lysosomes for degradation. MONOTAB harnesses the inherent lysosome-targeting ability of certain nanoparticles to obviate specific receptor dependency and the hook effect. To achieve high modularity and programmable target specificity, we utilize the streptavidin-biotin interaction to immobilize antibodies or other targeting molecules on nanoparticles, through an antibody mounting approach or by direct binding. Our study reveals that MONOTAB can induce efficient degradation of diverse therapeutic targets, including membrane proteins, secreted proteins, and even extracellular vesicles.
Collapse
Affiliation(s)
- Shasha Yao
- Zhejiang Key Laboratory of Smart Biomaterials and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, 310058, Hangzhou, Zhejiang, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, 311215, Hangzhou, Zhejiang, China
| | - Yi Wang
- Zhejiang Key Laboratory of Smart Biomaterials and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, 310058, Hangzhou, Zhejiang, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, 311215, Hangzhou, Zhejiang, China
| | - Qian Tang
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), and Department of Respiratory and Critical Care Medicine of the Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, 310029, Hangzhou, Zhejiang, China
- Edinburgh Medical School: Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, UK
| | - Yujie Yin
- Zhejiang Key Laboratory of Smart Biomaterials and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, 310058, Hangzhou, Zhejiang, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, 311215, Hangzhou, Zhejiang, China
| | - Yu Geng
- The Fourth Affiliated Hospital Zhejiang University School of Medicine, 322000, Yiwu, Zhejiang, China
| | - Lei Xu
- The Fourth Affiliated Hospital Zhejiang University School of Medicine, 322000, Yiwu, Zhejiang, China
| | - Shifu Liang
- Zhejiang Key Laboratory of Smart Biomaterials and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, 310058, Hangzhou, Zhejiang, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, 311215, Hangzhou, Zhejiang, China
| | - Jiajia Xiang
- Zhejiang Key Laboratory of Smart Biomaterials and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, 310058, Hangzhou, Zhejiang, China.
| | - Jiaqi Fan
- Zhejiang Key Laboratory of Smart Biomaterials and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, 310058, Hangzhou, Zhejiang, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, 311215, Hangzhou, Zhejiang, China
| | - Jianbin Tang
- Zhejiang Key Laboratory of Smart Biomaterials and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, 310058, Hangzhou, Zhejiang, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, 311215, Hangzhou, Zhejiang, China
| | - Jian Liu
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), and Department of Respiratory and Critical Care Medicine of the Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, 310029, Hangzhou, Zhejiang, China.
- Edinburgh Medical School: Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, UK.
- Biomedical and Heath Translational Research Center of Zhejiang Province, 314400, Haining, Zhejiang, China.
| | - Shiqun Shao
- Zhejiang Key Laboratory of Smart Biomaterials and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, 310058, Hangzhou, Zhejiang, China.
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, 311215, Hangzhou, Zhejiang, China.
| | - Youqing Shen
- Zhejiang Key Laboratory of Smart Biomaterials and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| |
Collapse
|
30
|
Liang J, Xiao K, Wang X, Hou T, Zeng C, Gao X, Wang B, Zhong C. Revisiting Solar Energy Flow in Nanomaterial-Microorganism Hybrid Systems. Chem Rev 2024; 124:9081-9112. [PMID: 38900019 DOI: 10.1021/acs.chemrev.3c00831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Nanomaterial-microorganism hybrid systems (NMHSs), integrating semiconductor nanomaterials with microorganisms, present a promising platform for broadband solar energy harvesting, high-efficiency carbon reduction, and sustainable chemical production. While studies underscore its potential in diverse solar-to-chemical energy conversions, prevailing NMHSs grapple with suboptimal energy conversion efficiency. Such limitations stem predominantly from an insufficient systematic exploration of the mechanisms dictating solar energy flow. This review provides a systematic overview of the notable advancements in this nascent field, with a particular focus on the discussion of three pivotal steps of energy flow: solar energy capture, cross-membrane energy transport, and energy conversion into chemicals. While key challenges faced in each stage are independently identified and discussed, viable solutions are correspondingly postulated. In view of the interplay of the three steps in affecting the overall efficiency of solar-to-chemical energy conversion, subsequent discussions thus take an integrative and systematic viewpoint to comprehend, analyze and improve the solar energy flow in the current NMHSs of different configurations, and highlighting the contemporary techniques that can be employed to investigate various aspects of energy flow within NMHSs. Finally, a concluding section summarizes opportunities for future research, providing a roadmap for the continued development and optimization of NMHSs.
Collapse
Affiliation(s)
- Jun Liang
- Key Laboratory of Quantitative Synthetic Biology, Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Kemeng Xiao
- Key Laboratory of Quantitative Synthetic Biology, Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xinyu Wang
- Key Laboratory of Quantitative Synthetic Biology, Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Tianfeng Hou
- Key Laboratory of Quantitative Synthetic Biology, Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Cuiping Zeng
- Key Laboratory of Quantitative Synthetic Biology, Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xiang Gao
- Key Laboratory of Quantitative Synthetic Biology, Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Bo Wang
- Key Laboratory of Quantitative Synthetic Biology, Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Chao Zhong
- Key Laboratory of Quantitative Synthetic Biology, Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
31
|
Mohanty P, Singh PK, Lenka B, Adhya TK, Verma SK, Ayreen Z, Patro S, Sarkar B, Mohapatra RK, Mishra S. Biofabricated nanomaterials in sustainable agriculture: insights, challenges and prospects. Biofabrication 2024; 16:042003. [PMID: 38981495 DOI: 10.1088/1758-5090/ad60f7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 07/09/2024] [Indexed: 07/11/2024]
Abstract
One ever-evolving and ever-demanding critical human endeavour is the provision of food security for the growing world population. This can be done by adopting sustainable agriculture through horizontal (expanding the arable land area) and vertical (intensifying agriculture through sound technological approaches) interventions. Customized formulated nanomaterials have numerous advantages. With their specialized physico-chemical properties, some nanoparticulated materials improve the plant's natural development and stress tolerance and some others are good nanocarriers. Nanocarriers in agriculture often coat chemicals to form composites having utilities with crop productivity enhancement abilities, environmental management (such as ecotoxicity reduction ability) and biomedicines (such as the ability to control and target the release of useful nanoscale drugs). Ag, Fe, Zn, TiO2, ZnO, SiO2and MgO nanoparticles (NPs), often employed in advanced agriculture, are covered here. Some NPs used for various extended purposes in modern farming practices, including disease diagnostics and seed treatment are also covered. Thus, nanotechnology has revolutionized agrotechnology, which holds promise to transform agricultural (ecosystems as a whole to ensure food security in the future. Considering the available literature, this article further probes the emergent regulatory issues governing the synthesis and use of nanomaterials in the agriculture sector. If applied responsibly, nanomaterials could help improve soil health. This article provides an overview of the nanomaterials used in the distribution of biomolecules, to aid in devising a safer and eco-friendly sustainable agriculture strategy. Through this, agri-systems that depend on advanced farming practices might function more effectively and enhance agri-productivity to meet the food demand of the rising world population.
Collapse
Affiliation(s)
- Pratikhya Mohanty
- Bioenergy Lab, School of Biotechnology, KIIT Deemed to be University, Campus 11, Bhubaneswar, Odisha 751 024, India
| | - Puneet Kumar Singh
- Bioenergy Lab, School of Biotechnology, KIIT Deemed to be University, Campus 11, Bhubaneswar, Odisha 751 024, India
| | - Basundhara Lenka
- Bioenergy Lab, School of Biotechnology, KIIT Deemed to be University, Campus 11, Bhubaneswar, Odisha 751 024, India
| | - Tapan K Adhya
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar, Odisha 751 024, India
| | - Suresh K Verma
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar, Odisha 751 024, India
| | - Zobia Ayreen
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar, Odisha 751 024, India
| | - Shilpita Patro
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar, Odisha 751 024, India
| | - Biplab Sarkar
- Indian Institute of Agricultural Biotechnology, ICAR-IIAB, Garhkhantanga, Ranchi, Jharkhand 834 003, India
| | - Ranjan K Mohapatra
- Department of Chemistry, Government College of Engineering, Keonjhar 758 002, Odisha, India
| | - Snehasish Mishra
- Bioenergy Lab, School of Biotechnology, KIIT Deemed to be University, Campus 11, Bhubaneswar, Odisha 751 024, India
| |
Collapse
|
32
|
Su J, Wu C, Zou J, Wang X, Yang K, Liu J, Wu Z, Zhang W. Fine-tuning of liposome integrity for differentiated transcytosis and enhanced antitumor efficacy. J Control Release 2024; 372:69-84. [PMID: 38866244 DOI: 10.1016/j.jconrel.2024.06.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 06/06/2024] [Accepted: 06/09/2024] [Indexed: 06/14/2024]
Abstract
Transcytosis-inducing nanomedicines have been developed to improve tumor extravasation. However, the fate during transcytosis across multicell layers and the structural integrity of the nanomedicines before reaching tumor cells could impact antitumor therapy. Here, a BAY 87-2243 (a hypoxia-inducible factor-1 inhibitor)-loaded liposomal system (HA-P-LBAY) modified by low molecular weight protamine (LMWP) and crosslinked by hyaluronic acid (HA) was constructed. This system could accomplish differentiate cellular transport in endothelial and tumor cells by fine-tuning its structural integrity, i.e. transcytosis across the endothelial cells while preserving structural integrity, facilitating subsequent retention and drug release within tumor cells via degradation-induced aggregation. In vitro cellular uptake and transwell studies demonstrated that HA-P-LBAY were internalized by endothelial cells (bEnd.3) via an active, caveolin and heparin sulfate proteoglycan (HSPG)-mediated endocytosis, and subsequently achieved transcytosis mainly through the ER/Golgi pathway. Moreover, the fluorescence resonance energy transfer (FRET) study showed that HA-crosslinking maintained higher integrity of HA-P-LBAY after transcytosis, more efficiently than electrostatic coating of HA (HA/P-LBAY). In addition, more HA-P-LBAY was retained in tumor cells (4T1) compared to HA/P-LBAY corresponding to its enhanced in vitro cytotoxicity. This may be attributed to better integrity of HA-P-LBAY post endothelial transcytosis and more degradation of HA in tumor cells, leading to more liposome aggregation and inhibition of their transcytosis, which was inferred by both TEM images and the HAase responsiveness assay proved by FRET. In vivo, HA-P-LBAY exhibited more potency in tumor suppression than the other formulations in both low and high permeability tumor models. This highlighted that fine-tuning of structural integrity of nanocarriers played a key role no matter whether the transcytosis of nanocarriers contributed to cellular transport. Collectively, this study provides a promising strategy for antitumor therapies by fine-tuning liposome integrity to achieve active trans-endothelial transport with structural integrity and selective aggregation for prolonged tumor retention.
Collapse
Affiliation(s)
- Jiajia Su
- Department of Pharmaceutics, China Pharmaceutical University, Jiangsu 210009, PR China
| | - Chenchen Wu
- Department of Pharmaceutics, China Pharmaceutical University, Jiangsu 210009, PR China
| | - Jiahui Zou
- Department of Pharmaceutics, China Pharmaceutical University, Jiangsu 210009, PR China
| | - Xinqiuyue Wang
- Department of Pharmaceutics, China Pharmaceutical University, Jiangsu 210009, PR China
| | - Kaiyun Yang
- School of Pharmacy, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Jianping Liu
- Department of Pharmaceutics, China Pharmaceutical University, Jiangsu 210009, PR China
| | - Zimei Wu
- School of Pharmacy, University of Auckland, Private Bag 92019, Auckland, New Zealand.
| | - Wenli Zhang
- Department of Pharmaceutics, China Pharmaceutical University, Jiangsu 210009, PR China.
| |
Collapse
|
33
|
Desai VM, Kumbhar P, Kadam AY, Swarup J, Priya S, Jain A, Singhvi G. Exploring the therapeutic modalities of targeted treatment approach for skin carcinoma: cutting-edge strategies and key insights. Expert Opin Drug Deliv 2024; 21:1213-1233. [PMID: 39136542 DOI: 10.1080/17425247.2024.2392799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 08/12/2024] [Indexed: 08/20/2024]
Abstract
INTRODUCTION Skin carcinoma, including malignant melanoma, basal, squamous, and Merkel cell carcinoma, present significant healthcare challenges. Conventional treatments like surgery and chemotherapy suffer from limitations like non-specificity, toxicity, and adverse effects. The upcoming treatments are dominated by nano-sized delivery systems, which improve treatment outcomes while minimizing side effects. Moving ahead, targeted nanoparticles allow localized delivery of drugs at tumor site, ensuring minimal damage to surrounding tissues. AREAS COVERED This review explores various targeting strategies for specific types of skin cancers. The strategies discussed include nanocarrier-mediated targeted delivery with multiple types of ligands like aptamers, antibodies, peptides, and vitamins and their advantages in skin cancer. Upcoming cutting-edge technologies such as smart delivery systems, microneedle-assisted delivery and three-dimensional printed scaffolds have also been discussed in detail. The findings in this review are summarized from databases like PubMed, Scopus, Web of Science, ClinicalTrials.gov, NIH, and articles published between 2005 and 2024 that discuss targeted therapy for skin cancer. EXPERT OPINION Specific cancer-targeting strategies promise personalized treatments, improving response rates and reducing need for intensive therapies. The review highlights various challenges, their solution, and economic aspects in this dynamic field. It further emphasizes the potential for specialized strategies to revolutionize skin cancer treatment.
Collapse
Affiliation(s)
- Vaibhavi Meghraj Desai
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Pilani Campus, Pilani, India
| | - Pragati Kumbhar
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Pilani Campus, Pilani, India
| | - Akanksha Yogesh Kadam
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Pilani Campus, Pilani, India
| | - Jayanti Swarup
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Pilani Campus, Pilani, India
| | - Sakshi Priya
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Pilani Campus, Pilani, India
| | - Ankit Jain
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Pilani Campus, Pilani, India
| | - Gautam Singhvi
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Pilani Campus, Pilani, India
| |
Collapse
|
34
|
Zhang T, Ping W, Suo M, Pan Y, Huang R, Chen J, Lyu M, Zhang N, Ning S, Tang BZ. Stimuli-Responsive Hydrogels Potentiating Photothermal Therapy against Cancer Stem Cell-Induced Breast Cancer Metastasis. ACS NANO 2024. [PMID: 39046933 DOI: 10.1021/acsnano.4c04067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
The self-renewal and differentiation properties of cancer stem cells (CSCs) result in chemoresistance in breast cancer. Even though numerous drugs have been developed to target CSCs, they have suffered from inefficient delivery and accumulation at the focal site. Here, a thermoresponsive hydrogel is developed by coencapsulating aggregation-induced emission (AIE)-active photothermal agent and thioridazine (THZ), demonstrating a controllable delivery system triggered by the AIE agent to augment THZ-mediated CSC ablation. Upon near-infrared laser stimuli, the photothermal effect from the AIE agent induces hydrogel deformation for burst drug release. The precise in situ tumor administration of the hydrogel accelerates drug diffusion and accumulation in deep breast cancer lesions. Thus, THZ can invade tumors and provoke massive CSC apoptosis via dopamine receptor blockage and oxidative stress induction. Consequently, effective CSC inhibition and significant suppression of tumor recurrence and metastasis are demonstrated in mice with breast cancer. We believe that this intelligent hydrogel-based delivery system represents a promising treatment strategy for metastatic breast cancer with clinical potential.
Collapse
Affiliation(s)
- Tianfu Zhang
- Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, School of Biomedical Engineering, Guangzhou Medical University, Guangdong 511436, China
| | - Wei Ping
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong, University of Science and Technology, Wuhan, Hubei 430030, China
| | - Meng Suo
- Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, School of Biomedical Engineering, Guangzhou Medical University, Guangdong 511436, China
| | - You Pan
- Department of Breast Surgery, The Second Affiliated Hospital of Guangxi Medical University, Nanning 530000, China
| | - Rong Huang
- Department of Breast Surgery, The Second Affiliated Hospital of Guangxi Medical University, Nanning 530000, China
| | - Jingqi Chen
- Department of Breast Surgery, The Second Affiliated Hospital of Guangxi Medical University, Nanning 530000, China
| | - Meng Lyu
- Department of Gastrointestinal Surgery and Department of Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China
| | - Ni Zhang
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong, University of Science and Technology, Wuhan, Hubei 430030, China
| | - Shipeng Ning
- Department of Breast Surgery, The Second Affiliated Hospital of Guangxi Medical University, Nanning 530000, China
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, China
| |
Collapse
|
35
|
Li X, Sun X, Chen H, Wang Y, Chen H, Gao Y. Boron Dipyrromethene-Based Nanotheranostic System for Sonophotoassisted Therapy and Simultaneous Monitoring of Tumor Immune Microenvironment Reprogramming. ACS NANO 2024; 18:18230-18245. [PMID: 38950337 DOI: 10.1021/acsnano.4c00650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
Therapy-induced modulation of the tumor microenvironment (TME) to overcome the immunosuppressive TME is considered to be an opportunity for cancer treatment. However, monitoring of TME modulation during the therapeutic process to accurately determine immune responses and adjust treatment plans in a timely manner remains to be challenging. Herein, we report a carrier-free nanotheranostic system (CANPs) assembled by two boron dipyrromethene (BODIPY) dyes, a sonophotosensitizer C-BDP, and a nitric oxide (NO) probe amino-BODIPY (A-BDP). CANPs can exert combined sonophototherapeutic effects of C-BDP under ultrasound and light irradiation and simultaneously induce inflammatory TME, as well as emit bright fluorescence via A-BDP by monitoring tumor-associated macrophages (TAMs) repolarization through the released NO in vitro and in vivo. Of note, transforming growth factor-β (TGF-β) could be the key cytokine involved in the sonophototherapy-induced TME reprogramming. By virtue of high physiological stability, good biocompatibility, and effective tumor targetability, CANPs could be a potential nanotheranostic system for the simultaneous induction and detection of TME reprogramming triggered by sonophototherapy.
Collapse
Affiliation(s)
- Xudong Li
- Cancer Metastasis Alert and Prevention Center, College of Chemistry, and Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou 350108, China
| | - Xianbin Sun
- Cancer Metastasis Alert and Prevention Center, College of Chemistry, and Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou 350108, China
| | - Hui Chen
- College of Chemistry, Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), Fuzhou University, Fuzhou, Fujian 350116, China
| | - Ya Wang
- Cancer Metastasis Alert and Prevention Center, College of Chemistry, and Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou 350108, China
| | - Haijun Chen
- College of Chemistry, Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), Fuzhou University, Fuzhou, Fujian 350116, China
| | - Yu Gao
- Cancer Metastasis Alert and Prevention Center, College of Chemistry, and Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou 350108, China
| |
Collapse
|
36
|
Nankivell V, Vidanapathirana AK, Hoogendoorn A, Tan JTM, Verjans J, Psaltis PJ, Hutchinson MR, Gibson BC, Lu Y, Goldys E, Zheng G, Bursill CA. Targeting macrophages with multifunctional nanoparticles to detect and prevent atherosclerotic cardiovascular disease. Cardiovasc Res 2024; 120:819-838. [PMID: 38696700 PMCID: PMC11218693 DOI: 10.1093/cvr/cvae099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 02/29/2024] [Accepted: 04/02/2024] [Indexed: 05/04/2024] Open
Abstract
Despite the emergence of novel diagnostic, pharmacological, interventional, and prevention strategies, atherosclerotic cardiovascular disease remains a significant cause of morbidity and mortality. Nanoparticle (NP)-based platforms encompass diverse imaging, delivery, and pharmacological properties that provide novel opportunities for refining diagnostic and therapeutic interventions for atherosclerosis at the cellular and molecular levels. Macrophages play a critical role in atherosclerosis and therefore represent an important disease-related diagnostic and therapeutic target, especially given their inherent ability for passive and active NP uptake. In this review, we discuss an array of inorganic, carbon-based, and lipid-based NPs that provide magnetic, radiographic, and fluorescent imaging capabilities for a range of highly promising research and clinical applications in atherosclerosis. We discuss the design of NPs that target a range of macrophage-related functions such as lipoprotein oxidation, cholesterol efflux, vascular inflammation, and defective efferocytosis. We also provide examples of NP systems that were developed for other pathologies such as cancer and highlight their potential for repurposing in cardiovascular disease. Finally, we discuss the current state of play and the future of theranostic NPs. Whilst this is not without its challenges, the array of multifunctional capabilities that are possible in NP design ensures they will be part of the next frontier of exciting new therapies that simultaneously improve the accuracy of plaque diagnosis and more effectively reduce atherosclerosis with limited side effects.
Collapse
Affiliation(s)
- Victoria Nankivell
- Australian Research Council (ARC) Centre of Excellence for Nanoscale BioPhotonics (CNBP)
- Vascular Research Centre, Lifelong Health, South Australian Health and Medical Research Institute (SAHMRI), North Terrace, Adelaide, 5000, Australia
- Faculty of Health and Medical Science, The University of Adelaide, North Terrace, Adelaide, 5000, Australia
| | - Achini K Vidanapathirana
- Australian Research Council (ARC) Centre of Excellence for Nanoscale BioPhotonics (CNBP)
- Vascular Research Centre, Lifelong Health, South Australian Health and Medical Research Institute (SAHMRI), North Terrace, Adelaide, 5000, Australia
- Faculty of Health and Medical Science, The University of Adelaide, North Terrace, Adelaide, 5000, Australia
| | - Ayla Hoogendoorn
- Australian Research Council (ARC) Centre of Excellence for Nanoscale BioPhotonics (CNBP)
- Vascular Research Centre, Lifelong Health, South Australian Health and Medical Research Institute (SAHMRI), North Terrace, Adelaide, 5000, Australia
| | - Joanne T M Tan
- Vascular Research Centre, Lifelong Health, South Australian Health and Medical Research Institute (SAHMRI), North Terrace, Adelaide, 5000, Australia
- Faculty of Health and Medical Science, The University of Adelaide, North Terrace, Adelaide, 5000, Australia
| | - Johan Verjans
- Australian Research Council (ARC) Centre of Excellence for Nanoscale BioPhotonics (CNBP)
- Vascular Research Centre, Lifelong Health, South Australian Health and Medical Research Institute (SAHMRI), North Terrace, Adelaide, 5000, Australia
- Faculty of Health and Medical Science, The University of Adelaide, North Terrace, Adelaide, 5000, Australia
| | - Peter J Psaltis
- Australian Research Council (ARC) Centre of Excellence for Nanoscale BioPhotonics (CNBP)
- Vascular Research Centre, Lifelong Health, South Australian Health and Medical Research Institute (SAHMRI), North Terrace, Adelaide, 5000, Australia
- Faculty of Health and Medical Science, The University of Adelaide, North Terrace, Adelaide, 5000, Australia
| | - Mark R Hutchinson
- Australian Research Council (ARC) Centre of Excellence for Nanoscale BioPhotonics (CNBP)
- Faculty of Health and Medical Science, The University of Adelaide, North Terrace, Adelaide, 5000, Australia
| | - Brant C Gibson
- Australian Research Council (ARC) Centre of Excellence for Nanoscale BioPhotonics (CNBP)
- School of Science, RMIT University, Melbourne, Victoria, Australia
| | - Yiqing Lu
- Australian Research Council (ARC) Centre of Excellence for Nanoscale BioPhotonics (CNBP)
- School of Engineering, Macquarie University, Sydney, NSW, Australia
| | - Ewa Goldys
- Australian Research Council (ARC) Centre of Excellence for Nanoscale BioPhotonics (CNBP)
- Graduate School of Biomedical Engineering, University of New South Wales, High Street, NSW, 2052, Australia
| | - Gang Zheng
- Australian Research Council (ARC) Centre of Excellence for Nanoscale BioPhotonics (CNBP)
- Department of Medical Biophysics, University of Toronto, 101 College Street, Toronto, M5G 1L7, Canada
| | - Christina A Bursill
- Australian Research Council (ARC) Centre of Excellence for Nanoscale BioPhotonics (CNBP)
- Vascular Research Centre, Lifelong Health, South Australian Health and Medical Research Institute (SAHMRI), North Terrace, Adelaide, 5000, Australia
- Faculty of Health and Medical Science, The University of Adelaide, North Terrace, Adelaide, 5000, Australia
| |
Collapse
|
37
|
Wang L, Sheth V, Liu K, Panja P, Frickenstein AN, He Y, Yang W, Thomas AG, Jamei MH, Park J, Lyu S, Donahue ND, Chen WR, Bhattacharya R, Mukherjee P, Wilhelm S. Primary Human Breast Cancer-Associated Endothelial Cells Favor Interactions with Nanomedicines. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403986. [PMID: 38663008 PMCID: PMC11239290 DOI: 10.1002/adma.202403986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/19/2024] [Indexed: 05/04/2024]
Abstract
Cancer nanomedicines predominately rely on transport processes controlled by tumor-associated endothelial cells to deliver therapeutic and diagnostic payloads into solid tumors. While the dominant role of this class of endothelial cells for nanoparticle transport and tumor delivery is established in animal models, the translational potential in human cells needs exploration. Using primary human breast cancer as a model, the differential interactions of normal and tumor-associated endothelial cells with clinically relevant nanomedicine formulations are explored and quantified. Primary human breast cancer-associated endothelial cells exhibit up to ≈2 times higher nanoparticle uptake than normal human mammary microvascular endothelial cells. Super-resolution imaging studies reveal a significantly higher intracellular vesicle number for tumor-associated endothelial cells, indicating a substantial increase in cellular transport activities. RNA sequencing and gene expression analysis indicate the upregulation of transport-related genes, especially motor protein genes, in tumor-associated endothelial cells. Collectively, the results demonstrate that primary human breast cancer-associated endothelial cells exhibit enhanced interactions with nanomedicines, suggesting a potentially significant role for these cells in nanoparticle tumor delivery in human patients. Engineering nanoparticles that leverage the translational potential of tumor-associated endothelial cell-mediated transport into human solid tumors may lead to the development of safer and more effective clinical cancer nanomedicines.
Collapse
Affiliation(s)
- Lin Wang
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK, 73019, USA
| | - Vinit Sheth
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK, 73019, USA
| | - Kaili Liu
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK, 73019, USA
| | - Prasanta Panja
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Alex N Frickenstein
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK, 73019, USA
| | - Yuxin He
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK, 73019, USA
| | - Wen Yang
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK, 73019, USA
| | - Abigail G Thomas
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK, 73019, USA
| | - Mohammad Hasan Jamei
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK, 73019, USA
| | - Jeesoo Park
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK, 73019, USA
| | - Shanxin Lyu
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK, 73019, USA
| | - Nathan D Donahue
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK, 73019, USA
| | - Wei R Chen
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK, 73019, USA
| | - Resham Bhattacharya
- Department of Obstetrics and Gynecology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Priyabrata Mukherjee
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Stefan Wilhelm
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK, 73019, USA
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
- Institute for Biomedical Engineering, Science and Technology (IBEST), Norman, OK, 73019, USA
| |
Collapse
|
38
|
Jeitler R, Glader C, König G, Kaplan J, Tetyczka C, Remmelgas J, Mußbacher M, Fröhlich E, Roblegg E. On the Structure, Stability, and Cell Uptake of Nanostructured Lipid Carriers for Drug Delivery. Mol Pharm 2024; 21:3674-3683. [PMID: 38838194 PMCID: PMC11220792 DOI: 10.1021/acs.molpharmaceut.4c00392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/23/2024] [Accepted: 05/24/2024] [Indexed: 06/07/2024]
Abstract
The efficacy of nanostructured lipid carriers (NLC) for drug delivery strongly depends on their stability and cell uptake. Both properties are governed by their compositions and internal structure. To test the effect of the lipid composition of NLC on cell uptake and stability, three kinds of liquid lipids with different degrees of unsaturation are employed. After ensuring homogeneous size distributions, the thermodynamic characteristics, stability, and mixing properties of NLC are characterized. Then the rates and predominant pathways of cell uptake are determined. Although the same surfactant is used in all cases, different uptake rates are observed. This finding contradicts the view that the surface properties of NLC are dominated by the surfactant. Instead, the uptake rates are explained by the structure of the nanocarrier. Depending on the mixing properties, some liquid lipids remain inside the nanocarrier, while other liquid lipids are present on the surface. Nanocarriers with liquid lipids on the surface are taken up more readily by the cells. This shows that the engineering of efficient lipid nanocarriers requires a delicate balance of interactions between all components of the nanocarrier on the molecular level.
Collapse
Affiliation(s)
- Ramona Jeitler
- Institute
of Pharmaceutical Sciences, Pharmaceutical Technology and Biopharmacy, University of Graz, 8010 Graz, Austria
- Research
Center Pharmaceutical Engineering GmbH, 8010 Graz, Austria
| | - Christina Glader
- Institute
of Pharmaceutical Sciences, Pharmaceutical Technology and Biopharmacy, University of Graz, 8010 Graz, Austria
- Research
Center Pharmaceutical Engineering GmbH, 8010 Graz, Austria
| | - Gerhard König
- Research
Center Pharmaceutical Engineering GmbH, 8010 Graz, Austria
- Centre
for Enzyme Innovation, School of Biological Sciences, University of Portsmouth, Portsmouth PO1 2DY, United
Kingdom
| | - Jay Kaplan
- Research
Center Pharmaceutical Engineering GmbH, 8010 Graz, Austria
- Pritzker
School of Molecular Engineering, University
of Chicago, Chicago, Illinois 60637, United States
| | - Carolin Tetyczka
- Research
Center Pharmaceutical Engineering GmbH, 8010 Graz, Austria
| | - Johan Remmelgas
- Research
Center Pharmaceutical Engineering GmbH, 8010 Graz, Austria
| | - Marion Mußbacher
- Institute
of Pharmaceutical Sciences, Pharmacology and Toxicology, University of Graz, 8010 Graz, Austria
| | - Eleonore Fröhlich
- Center
for
Medical Research, Medical University of Graz, 8010 Graz, Austria
| | - Eva Roblegg
- Institute
of Pharmaceutical Sciences, Pharmaceutical Technology and Biopharmacy, University of Graz, 8010 Graz, Austria
- Research
Center Pharmaceutical Engineering GmbH, 8010 Graz, Austria
| |
Collapse
|
39
|
Geisler HC, Ghalsasi AA, Safford HC, Swingle KL, Thatte AS, Mukalel AJ, Gong N, Hamilton AG, Han EL, Nachod BE, Padilla MS, Mitchell MJ. EGFR-targeted ionizable lipid nanoparticles enhance in vivo mRNA delivery to the placenta. J Control Release 2024; 371:455-469. [PMID: 38789090 PMCID: PMC11259947 DOI: 10.1016/j.jconrel.2024.05.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 05/15/2024] [Accepted: 05/19/2024] [Indexed: 05/26/2024]
Abstract
The full potential of ionizable lipid nanoparticles (LNPs) as an in vivo nucleic acid delivery platform has not yet been realized given that LNPs primarily accumulate in the liver following systemic administration, limiting their success to liver-centric conditions. The engineering of LNPs with antibody targeting moieties can enable extrahepatic tropism by facilitating site-specific LNP tethering and driving preferential LNP uptake into receptor-expressing cell types via receptor-mediated endocytosis. Obstetric conditions stemming from placental dysfunction, such as preeclampsia, are characterized by overexpression of cellular receptors, including the epidermal growth factor receptor (EGFR), making targeted LNP platforms an exciting potential treatment strategy for placental dysfunction during pregnancy. Herein, an EGFR antibody-conjugated LNP (aEGFR-LNP) platform was developed by engineering LNPs with increasing densities of antibody functionalization. aEGFR-LNPs were screened in vitro in immortalized placental trophoblasts and in vivo in non-pregnant and pregnant mice and compared to non-targeted formulations for extrahepatic, antibody-targeted mRNA LNP delivery to the placenta. Our top performing LNP with an intermediate density of antibody functionalization (1:5 aEGFR-LNP) mediated a ∼twofold increase in mRNA delivery in murine placentas and a ∼twofold increase in LNP uptake in EGFR-expressing trophoblasts compared to non-targeted counterparts. These results demonstrate the potential of antibody-conjugated LNPs for achieving extrahepatic tropism, and the ability of aEGFR-LNPs in promoting mRNA delivery to EGFR-expressing cell types in the placenta.
Collapse
Affiliation(s)
- Hannah C Geisler
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, United States
| | - Aditi A Ghalsasi
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, United States
| | - Hannah C Safford
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, United States
| | - Kelsey L Swingle
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, United States
| | - Ajay S Thatte
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, United States
| | - Alvin J Mukalel
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, United States
| | - Ningqiang Gong
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, United States
| | - Alex G Hamilton
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, United States
| | - Emily L Han
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, United States
| | - Benjamin E Nachod
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, United States
| | - Marshall S Padilla
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, United States
| | - Michael J Mitchell
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, United States; Penn Institute for RNA Innovation, Perelman School of Medicine, Philadelphia, PA, United States; Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States; Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States; Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States.
| |
Collapse
|
40
|
Lin Y, Chen X, Wang K, Liang L, Zhang H. An Overview of Nanoparticle-Based Delivery Platforms for mRNA Vaccines for Treating Cancer. Vaccines (Basel) 2024; 12:727. [PMID: 39066365 PMCID: PMC11281455 DOI: 10.3390/vaccines12070727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/16/2024] [Accepted: 06/21/2024] [Indexed: 07/28/2024] Open
Abstract
With its unique properties and potential applications, nanoparticle-based delivery platforms for messenger RNA (mRNA) vaccines have gained significant attention in recent years. Nanoparticles have the advantages of enhancing immunogenicity, targeting delivery, and improving stability, providing a new solution for drug and vaccine delivery. In some clinical studies, a variety of nanoparticle delivery platforms have been gradually applied to a wide range of vaccine applications. Current research priorities are exploring various types of nanoparticles as vaccine delivery systems to enhance vaccine stability and immunogenicity. Lipid nanoparticles (LNPs) have shown promising potential in preclinical and clinical studies on the efficient delivery of antigens to immune cells. Moreover, lipid nanoparticles and other nanoparticles for nucleic acids, especially for mRNA delivery systems, have shown vast potential for vaccine development. In this review, we present various vaccine platforms with an emphasis on nanoparticles as mRNA vaccine delivery vehicles. We describe several novel nanoparticle delivery platforms for mRNA vaccines, such as lipid-, polymer-, and protein-based nanoparticles. In addition, we provide an overview of the anti-tumor immunity of nanovaccines against different tumors in cancer immunotherapy. Finally, we outline future perspectives and remaining challenges for this promising technology of nanoparticle-based delivery platforms for vaccines.
Collapse
Affiliation(s)
- Yang Lin
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China; (Y.L.); (X.C.); (K.W.)
- Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou 510515, China
| | - Xuehua Chen
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China; (Y.L.); (X.C.); (K.W.)
- Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou 510515, China
| | - Ke Wang
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China; (Y.L.); (X.C.); (K.W.)
| | - Li Liang
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China; (Y.L.); (X.C.); (K.W.)
- Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou 510515, China
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Jinfeng Laboratory, Chongqing Science and Technology Innovation Center, Chongqing 401329, China
| | - Hongxia Zhang
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China; (Y.L.); (X.C.); (K.W.)
- Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou 510515, China
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
41
|
Lubinski B, Whittaker GR. Host Cell Proteases Involved in Human Respiratory Viral Infections and Their Inhibitors: A Review. Viruses 2024; 16:984. [PMID: 38932275 PMCID: PMC11209347 DOI: 10.3390/v16060984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/06/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Viral tropism is most commonly linked to receptor use, but host cell protease use can be a notable factor in susceptibility to infection. Here we review the use of host cell proteases by human viruses, focusing on those with primarily respiratory tropism, particularly SARS-CoV-2. We first describe the various classes of proteases present in the respiratory tract, as well as elsewhere in the body, and incorporate the targeting of these proteases as therapeutic drugs for use in humans. Host cell proteases are also linked to the systemic spread of viruses and play important roles outside of the respiratory tract; therefore, we address how proteases affect viruses across the spectrum of infections that can occur in humans, intending to understand the extrapulmonary spread of SARS-CoV-2.
Collapse
Affiliation(s)
- Bailey Lubinski
- Department of Microbiology & Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14850, USA;
| | - Gary R. Whittaker
- Department of Microbiology & Immunology and Public & Ecosystem Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14850, USA
| |
Collapse
|
42
|
Levin N, Hendler-Neumark A, Kamber D, Bisker G. Enhanced cellular internalization of near-infrared fluorescent single-walled carbon nanotubes facilitated by a transfection reagent. J Colloid Interface Sci 2024; 664:650-666. [PMID: 38490040 DOI: 10.1016/j.jcis.2024.03.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 03/04/2024] [Accepted: 03/05/2024] [Indexed: 03/17/2024]
Abstract
Functionalized single-walled carbon nanotubes (SWCNTs) hold immense potential for diverse biomedical applications due to their biocompatibility and optical properties, including near-infrared fluorescence. Specifically, SWCNTs have been utilized to target cells as a vehicle for drug delivery and gene therapy, and as sensors for various intracellular biomarkers. While the main internalization route of SWCNTs into cells is endocytosis, methods for enhancing the cellular uptake of SWCNTs are of great importance. In this research, we demonstrate the use of a transfecting reagent for promoting cell internalization of functionalized SWCNTs. We explore different types of SWCNT functionalization, namely single-stranded DNA (ssDNA) or polyethylene glycol (PEG)-lipids, and two different cell types, embryonic kidney cells and adenocarcinoma cells. We show that internalizing PEGylated functionalized SWCNTs is enhanced in the presence of the transfecting reagent, where the effect is more pronounced for negatively charged PEG-lipid. However, ssDNA-SWCNTs tend to form aggregates in the presence of the transfecting reagent, rendering it unsuitable for promoting internalization. For all cases, cellular uptake is visualized by near-infrared fluorescence microscopy, showing that the SWCNTs are typically localized within the lysosome. Generally, cellular internalization was higher in the adenocarcinoma cells, thereby paving new avenues for drug delivery and sensing in malignant cells.
Collapse
Affiliation(s)
- Naamah Levin
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Adi Hendler-Neumark
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Dotan Kamber
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Gili Bisker
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 6997801, Israel; Center for Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv 6997801, Israel; Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv 6997801, Israel; Center for Light-Matter Interaction, Tel Aviv University, Tel Aviv 6997801, Israel.
| |
Collapse
|
43
|
Iqbal S, Schneider TJK, Truong TT, Ulrich-Müller R, Nguyen PH, Ilyas S, Mathur S. Carriers for hydrophobic drug molecules: lipid-coated hollow mesoporous silica particles, and the influence of shape and size on encapsulation efficiency. NANOSCALE 2024; 16:11274-11289. [PMID: 38787696 DOI: 10.1039/d4nr01420k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
Hydrophobic drugs, while designed to interact with specific receptors or enzymes located in lipid-rich cell membranes, often face challenges of limited bioavailability and insufficient circulation time due to their insolubility in aqueous environments. One plausible pathway to increase their blood circulation time is to load these drugs into biocompatible and hydrophilic carriers to enhance their uptake. In this study, mesoporous silica (mSiO2) nanocarriers of various morphologies (including cubes, capsules, and spheres) were synthesized. These nanocarriers were then surface-functionalized with alkyl chain hydrocarbons, specifically octadecyl-trimethoxysilane, (OCH3)3Si(CH2)17CH3, to render them hydrophobic. The resulting nanocarriers (((OCH3)3Si(CH2)17CH3)@mSiO2) showed up to 80% uptake for hydrophobic drugs. However, a significant drawback was observed as most of the drugs were prone to uncontrollable release within 6 h. This challenge of premature drug release was successfully mitigated by effectively sealing the drug-loaded nanocarriers with a pH-sensitive lipid overlayer. The lipid-coated nanocarriers prolonged drug containment and sustained release up to 72 h, compared to 6 h for uncoated nanocarriers, thereby facilitating longer blood circulation times. Moreover, the shape and size of nanocarriers were found to influence both drug entrapment capacity and release behavior with cubic forms exhibiting superior loading capacity due to higher surface area and porosity. Additionally, it was observed that the molecular weight and chemical structure of the drug molecules played a crucial role in determining their uptake and release profiles. Furthermore, the influence of different morphologies of nanocarriers on cell uptake and cytotoxicity in immune cells was elucidated. These findings underscore the importance of nanocarrier morphology and drug properties to enhance loading capacities and controlled release profiles, for designing drug delivery systems tailored for hydrophobic drugs.
Collapse
Affiliation(s)
- Sumiya Iqbal
- Institute of Inorganic and Materials Chemistry, University of Cologne, Greinstr. 6, 50939 Cologne, Germany.
| | - Tom-Jonas Klaus Schneider
- Institute of Inorganic and Materials Chemistry, University of Cologne, Greinstr. 6, 50939 Cologne, Germany.
| | - Thanh Tung Truong
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine; Center for Molecular Medicine Cologne, Kerpener Str. 62, 50937 Cologne, Germany
| | - Roman Ulrich-Müller
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Cluster of Excellence Cellular Stress Responses in Aging-associated Diseases (CECAD), Joseph-Stelzmann-Straße 26, 50931, Cologne Germany
| | - Phuong-Hien Nguyen
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine; Center for Molecular Medicine Cologne, Kerpener Str. 62, 50937 Cologne, Germany
| | - Shaista Ilyas
- Institute of Inorganic and Materials Chemistry, University of Cologne, Greinstr. 6, 50939 Cologne, Germany.
| | - Sanjay Mathur
- Institute of Inorganic and Materials Chemistry, University of Cologne, Greinstr. 6, 50939 Cologne, Germany.
| |
Collapse
|
44
|
Xu K, Du Y, Xu B, Huang Y, Feng W, Yu D, Chen Y, Wang X. Gelatin-Encapsulated Tetrahedral DNA Nanostructure Enhances Cellular Internalization for Treating Noise-Induced Hearing Loss. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310604. [PMID: 38329190 DOI: 10.1002/smll.202310604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/23/2023] [Indexed: 02/09/2024]
Abstract
Nanoparticle-based drug delivery strategies have emerged as a crucial avenue for comprehensive sensorineural hearing loss treatment. Nevertheless, developing therapy vectors crossing both biological and cellular barriers has encountered significant challenges deriving from various external factors. Herein, the rational integration of gelatin nanoparticles (GNPs) with tetrahedral DNA nanostructures (TDNs) to engineer a distinct drug-delivery nanosystem (designed as TDN@GNP) efficiently enhances the biological permeability and cellular internalization, further resolving the dilemma of noise-induced hearing loss via loading epigallocatechin gallate (EGCG) with anti-lipid peroxidation property. Rationally engineering of TDN@GNP demonstrates dramatic alterations in the physicochemical key parameters of TDNs that are pivotal in cell-particle interactions and promote cellular uptake through multiple endocytic pathways. Furthermore, the EGCG-loaded nanosystem (TDN-EGCG@GNP) facilitates efficient inner ear drug delivery by superior permeability through the biological barrier (round window membrane), maintaining high drug concentration within the inner ear. The TDN-EGCG@GNP actively overcomes the cell membrane, exhibiting hearing protection from noise insults via reduced lipid peroxidation in outer hair cells and spiral ganglion neurons. This work exemplifies how integrating diverse vector functionalities can overcome biological and cellular barriers in the inner ear, offering promising applications for inner ear disorders.
Collapse
Affiliation(s)
- Ke Xu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200100, P. R. China
| | - Yiwei Du
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200100, P. R. China
| | - Baoying Xu
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Yuqi Huang
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Wei Feng
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Dehong Yu
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Xueling Wang
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200100, P. R. China
| |
Collapse
|
45
|
Ostruszka R, Halili A, Pluháček T, Rárová L, Jirák D, Šišková K. Advanced protein-embedded bimetallic nanocomposite optimized for in vivo fluorescence and magnetic resonance bimodal imaging. J Colloid Interface Sci 2024; 663:467-477. [PMID: 38422973 DOI: 10.1016/j.jcis.2024.02.116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/01/2024] [Accepted: 02/13/2024] [Indexed: 03/02/2024]
Abstract
HYPOTHESIS The development of bimodal imaging probes represents a hot topic of current research. Herein, we deal with developing an innovative bimodal contrast agent enabling fluorescence imaging (FI)/magnetic resonance imaging (MRI) and, simultaneously, consisting of biocompatible nanostructures. Optimized synthesis of advanced protein-embedded bimetallic (APEBM) nanocomposite containing luminescent gold nanoclusters (AuNC) and superparamagnetic iron oxide nanoparticles (SPION), suitable for in vivo dual-modal FI/MR imaging is reported. EXPERIMENTS The APEBM nanocomposite was prepared by a specific sequential one-pot green synthetic approach that is optimized to increase metals (Au, Fe) content and, consequently, the imaging ability of the resulting nanostructures. The protein matrix, represented by serum albumin, was intentionally chosen, and used since it creates an efficient protein corona for both types of optically/magnetically-susceptible nanostructures (AuNC, SPION) and ensures biocompatibility of the resulting APEBM nanocomposite although it contains elevated metal concentrations (approx. 1 mg·mL-1 of Au, around 0.3 mg·mL-1 of Fe). In vitro and in vivo imaging was performed. FINDINGS Successful in vivo FI and MRI recorded in healthy mice corroborated the applicability of the APEBM nanocomposite and, simultaneously, served as a proof of concept concerning the potential future exploitation of this new FI/MRI bimodal contrast agent in preclinical and clinical practice.
Collapse
Affiliation(s)
- Radek Ostruszka
- Department of Experimental Physics, Faculty of Science, Palacký University Olomouc, tř. 17. listopadu 12, 77900 Olomouc, Czech Republic
| | - Aminadav Halili
- Institute for Clinical and Experimental Medicine, Vídeňská 9, 140 21 Prague, Czech Republic
| | - Tomáš Pluháček
- Department of Analytical Chemistry, Faculty of Science, Palacký University Olomouc, tř. 17. listopadu 12, 77900 Olomouc, Czech Republic
| | - Lucie Rárová
- Department of Experimental Biology, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, 77900 Olomouc, Czech Republic
| | - Daniel Jirák
- Institute for Clinical and Experimental Medicine, Vídeňská 9, 140 21 Prague, Czech Republic; Faculty of Health Studies, Technical University of Liberec, Studentská 1402/2, 46117 Liberec, Czech Republic
| | - Karolína Šišková
- Department of Experimental Physics, Faculty of Science, Palacký University Olomouc, tř. 17. listopadu 12, 77900 Olomouc, Czech Republic.
| |
Collapse
|
46
|
Sharma N, Kurmi BD, Singh D, Mehan S, Khanna K, Karwasra R, Kumar S, Chaudhary A, Jakhmola V, Sharma A, Singh SK, Dua K, Kakkar D. Nanoparticles toxicity: an overview of its mechanism and plausible mitigation strategies. J Drug Target 2024; 32:457-469. [PMID: 38328920 DOI: 10.1080/1061186x.2024.2316785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 01/30/2024] [Indexed: 02/09/2024]
Abstract
Over the last decade, nanoparticles have found great interest among scientists and researchers working in various fields within the realm of biomedicine including drug delivery, gene delivery, diagnostics, targeted therapy and biomarker mapping. While their physical and chemical properties are impressive, there is growing concern about the toxicological potential of nanoparticles and possible adverse health effects as enhanced exposure of biological systems to nanoparticles may result in toxic effects leading to serious contraindications. Toxicity associated with nanoparticles (nanotoxicity) may include the undesired response of several physiological mechanisms including the distressing of cells by external and internal interaction with nanoparticles. However, comprehensive knowledge of nanotoxicity mechanisms and mitigation strategies may be useful to overcome the hazardous situation while treating diseases with therapeutic nanoparticles. With the same objectives, this review discusses various mechanisms of nanotoxicity and provides an overview of the current state of knowledge on the impact of nanotoxicity on biological control systems and organs including liver, brain, kidneys and lungs. An attempt also been made to present various approaches of scientific research and strategies that could be useful to overcome the effect of nanotoxicity during the development of nanoparticle-based systems including coating, doping, grafting, ligation and addition of antioxidants.
Collapse
Affiliation(s)
- Nitin Sharma
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Noida, Uttar Pradesh, India
| | - Balak Das Kurmi
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Noida, Uttar Pradesh, India
| | - Dilpreet Singh
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Noida, Uttar Pradesh, India
| | - Sidharth Mehan
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab, India
| | - Kushagra Khanna
- Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur, Malaysia
| | - Ritu Karwasra
- Central Council for Research in Unani Medicine, Ministry of AYUSH, Janakpuri, New Delhi, India
| | - Shobhit Kumar
- Department of Pharmaceutical Technology, Meerut Institute of Engineering and Technology (MIET), Meerut, Uttar Pradesh, India
| | - Amit Chaudhary
- Chitkara University School of Pharmacy, Chitkara University, Himachal Pradesh, India
| | - Vikash Jakhmola
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, Uttrakhand, India
| | | | - Sachin Kumar Singh
- School of Pharmacy and Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
- Faculty of Health, Australian Research Centre in Complementary & Integrative Medicine, University of Technology Sydney, Ultimo, Australia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary & Integrative Medicine, University of Technology Sydney, Ultimo, Australia
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, Australia
| | - Dipti Kakkar
- Institute of Nuclear Medicine and Allied Sciences, Defence Research and Development Organization, Brig SK Mazumdar Marg, Delhi, India
| |
Collapse
|
47
|
He Y, Wang Y, Wang L, Jiang W, Wilhelm S. Understanding nanoparticle-liver interactions in nanomedicine. Expert Opin Drug Deliv 2024; 21:829-843. [PMID: 38946471 PMCID: PMC11281865 DOI: 10.1080/17425247.2024.2375400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 06/28/2024] [Indexed: 07/02/2024]
Abstract
INTRODUCTION Understanding the interactions between administered nanoparticles and the liver is crucial for developing safe and effective nanomedicines. As the liver can sequester up to 99% of these particles due to its major phagocytic role, understanding these interactions is vital for clinical translation. AREAS COVERED This review highlights recent studies on nanoparticle-liver interactions, including the influence of nanoparticle physicochemical properties on delivery, strategies to enhance delivery efficiency by modulating liver Kupffer cells, and their potential for treating certain hepatic diseases. Additionally, we discuss how aging impacts the liver's phagocytic functions. EXPERT OPINION While liver accumulation can hinder nanomedicine safety and effectiveness, it also presents opportunities for treating certain liver diseases. A thorough understanding of nanoparticle-liver interactions is essential for advancing the clinical application of nanomedicines.
Collapse
Affiliation(s)
- Yuxin He
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK, USA
| | - Yifan Wang
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Lin Wang
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK, USA
| | - Wen Jiang
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Stefan Wilhelm
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK, USA
- Institute for Biomedical Engineering, Science, and Technology (IBEST), Norman, OK, USA
- Stephenson Cancer Center, Oklahoma City, OK, USA
| |
Collapse
|
48
|
Liu Y, Zhang J, Wu C, Lai Y, Fan H, Wang Q, Lin Z, Chen J, Zhao X, Jiang X. Nanoplatform based on carbon nanoparticles loaded with doxorubicin enhances apoptosis by generating reactive oxygen species for effective cancer therapy. Oncol Lett 2024; 27:288. [PMID: 38736745 PMCID: PMC11083999 DOI: 10.3892/ol.2024.14421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 04/09/2024] [Indexed: 05/14/2024] Open
Abstract
At present, due to its wide application and relatively low cost, chemotherapy remains a clinically important cancer treatment option; however, a number of chemotherapeutic drugs have important limitations, such as lack of specificity, high toxicity and side effects, and multi-drug resistance. The emergence of nanocarriers has removed numerous clinical application limitations of certain antitumor chemotherapy drugs and has been widely used in the treatment of tumors with nanodrugs. The present study used carbon nanoparticles (CNPs) as a nanocarrier for doxorubicin (DOX) to form the novel nanomedicine delivery system (CNPs@DOX)was demonstrated by UV-vis and fluorescence spectrophotometry, ζ potential and TEM characterization experiments. The results confirmed the successful preparation of CNPs@DOX nanoparticles with a particle size of 96±17 nm, a wide range of absorption and a negatively charged surface. Furthermore, CNPs@DOX produced more reactive oxygen species and induced apoptosis, and thus exhibited higher cytotoxicity than DOX, which is a small molecule anticancer drug without a nanocarrier delivery system.. The present study provides a strategy for the treatment of tumors with nanomedicine.
Collapse
Affiliation(s)
- Yusheng Liu
- Department of Traditional Chinese Medicine, Yangjiang People's Hospital, Yangjiang, Guangdong 529500, P.R. China
- College of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Junfeng Zhang
- Department of Traditional Chinese Medicine, Yangjiang People's Hospital, Yangjiang, Guangdong 529500, P.R. China
| | - Chunying Wu
- Department of Traditional Chinese Medicine, Yangjiang People's Hospital, Yangjiang, Guangdong 529500, P.R. China
| | - Yigui Lai
- Department of Traditional Chinese Medicine, Yangjiang People's Hospital, Yangjiang, Guangdong 529500, P.R. China
| | - Huijie Fan
- Department of Traditional Chinese Medicine, Yangjiang People's Hospital, Yangjiang, Guangdong 529500, P.R. China
- College of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Qiang Wang
- Department of Traditional Chinese Medicine, Yangjiang People's Hospital, Yangjiang, Guangdong 529500, P.R. China
| | - Zhaolin Lin
- Department of Traditional Chinese Medicine, Yangjiang People's Hospital, Yangjiang, Guangdong 529500, P.R. China
| | - Jishang Chen
- Department of Traditional Chinese Medicine, Yangjiang People's Hospital, Yangjiang, Guangdong 529500, P.R. China
| | - Xiaoshan Zhao
- Department of Traditional Chinese Medicine, Yangjiang People's Hospital, Yangjiang, Guangdong 529500, P.R. China
- College of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Xuefeng Jiang
- Department of Traditional Chinese Medicine, Yangjiang People's Hospital, Yangjiang, Guangdong 529500, P.R. China
- College of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| |
Collapse
|
49
|
Ma X, Liu Y, Wang J, Liu H, Wei G, Lu W, Liu Y. Combination of PEGylation and Cationization on Phospholipid-Coated Cyclosporine Nanosuspensions for Enhanced Ocular Drug Delivery. ACS APPLIED MATERIALS & INTERFACES 2024; 16:27040-27054. [PMID: 38743443 DOI: 10.1021/acsami.4c01732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Strong precorneal clearance mechanisms including reflex blink, constant tear drainage, and rapid mucus turnover constitute great challenges for eye drops for effective drug delivery to the ocular epithelium. In this study, cyclosporine A (CsA) for the treatment of dry eye disease (DED) was selected as the model drug. Two strategies, PEGylation for mucus penetration and cationization for potent cellular uptake, were combined to construct a novel CsA nanosuspension (NS@lipid-PEG/CKC) by coating nanoscale drug particles with a mixture of lipids, DSPE-PEG2000, and a cationic surfactant, cetalkonium chloride (CKC). NS@lipid-PEG/CKC with the mean size ∼173 nm and positive zeta potential ∼+40 mV showed promoted mucus penetration, good cytocompatibility, more cellular uptake, and prolonged precorneal retention without obvious ocular irritation. More importantly, NS@lipid-PEG/CKC recovered tear production and goblet cell density more efficiently than the commercial cationic nanoemulsion on a dry eye disease rat model. All results indicated that a combination of PEGylation and cationization might provide a promising strategy to coordinate mucus penetration and cellular uptake for enhanced drug delivery to the ocular epithelium for nanomedicine-based eye drops.
Collapse
Affiliation(s)
- Xiaopei Ma
- Department of Pharmaceutics. School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai 201203, China
| | - Yaodong Liu
- Department of Pharmaceutics. School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai 201203, China
| | - Jun Wang
- Department of Pharmaceutics. School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai 201203, China
| | - Hui Liu
- Department of Breast Surgery, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Gang Wei
- Department of Pharmaceutics. School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai 201203, China
| | - Weiyue Lu
- Department of Pharmaceutics. School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai 201203, China
| | - Yu Liu
- Department of Pharmaceutics. School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai 201203, China
| |
Collapse
|
50
|
Zhang Y, Béland LC, Roussel S, Bertrand N, Hébert SS, Vallières L. Optimization of a lipid nanoparticle-based protocol for RNA transfection into primary mononuclear phagocytes. J Leukoc Biol 2024; 115:1165-1176. [PMID: 38466819 DOI: 10.1093/jleuko/qiae059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 02/07/2024] [Accepted: 02/01/2024] [Indexed: 03/13/2024] Open
Abstract
The effective delivery of synthetic RNA into mononuclear phagocytes is a prerequisite for experimental research and therapeutic development. However, traditional methods are highly ineffective and toxic for these cells. Here, we aimed to optimize a transfection protocol for primary bone marrow-derived phagocytes, specifically dendritic cells and macrophages, using lipid nanoparticles generated by microfluidics. Our results show that a lipid mixture similar to that used in Moderna's COVID-19 messenger RNA vaccine outperforms the others tested. Improved messenger RNA transfection can be achieved by replacing uridine with methylpseudouridine but not methoxyuridine, which interferes with transfection. The addition of diphenyleneiodonium or apocynin can enhance transfection in a cell type-dependent manner without adverse effects, while apolipoprotein E provides no added value. These optimized transfection conditions can also be used for microRNA agonists and antagonists. In sum, this study offers a straightforward, highly efficient, reproducible, and nontoxic protocol to deliver RNA into different primary mononuclear phagocytes in culture.
Collapse
Affiliation(s)
- Yu Zhang
- Neuroscience Unit, University Hospital Center of Quebec-Laval University, 2705 Laurier Boulevard, Quebec City, Quebec G1V 4G2, Canada
| | - Louis-Charles Béland
- Neuroscience Unit, University Hospital Center of Quebec-Laval University, 2705 Laurier Boulevard, Quebec City, Quebec G1V 4G2, Canada
| | - Sabrina Roussel
- Endocrinology and Nephrology Unit, University Hospital Center of Quebec-Laval University, 2705 Laurier Boulevard, Quebec City, Quebec G1V 4G2, Canada
| | - Nicolas Bertrand
- Endocrinology and Nephrology Unit, University Hospital Center of Quebec-Laval University, 2705 Laurier Boulevard, Quebec City, Quebec G1V 4G2, Canada
| | - Sébastien S Hébert
- Neuroscience Unit, University Hospital Center of Quebec-Laval University, 2705 Laurier Boulevard, Quebec City, Quebec G1V 4G2, Canada
| | - Luc Vallières
- Neuroscience Unit, University Hospital Center of Quebec-Laval University, 2705 Laurier Boulevard, Quebec City, Quebec G1V 4G2, Canada
| |
Collapse
|