1
|
Hou L, Wu Z, Zeng P, Yang X, Shi Y, Guo J, Zhou J, Song J, Liu J. RSAD2 suppresses viral replication by interacting with the Senecavirus A 2 C protein. Vet Res 2024; 55:115. [PMID: 39334325 PMCID: PMC11430333 DOI: 10.1186/s13567-024-01370-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 08/13/2024] [Indexed: 09/30/2024] Open
Abstract
Senecavirus A (SVA), an emerging virus that causes blisters on the nose and hooves, reduces the production performance of pigs. RSAD2 is a radical S-adenosylmethionine (SAM) enzyme, and its expression can suppress various viruses due to its broad antiviral activity. However, the regulatory relationship between SVA and RSAD2 and the mechanism of action remain unclear. Here, we demonstrated that SVA infection increased RSAD2 mRNA levels, whereas RSAD2 expression negatively regulated viral replication, as evidenced by decreased viral VP1 protein expression, viral titres, and infected cell numbers. Viral proteins that interact with RSAD2 were screened, and the interaction between the 2 C protein and RSAD2 was found to be stronger than that between other proteins. Additionally, amino acids (aa) 43-70 of RSAD2 were crucial for interacting with the 2 C protein and played an important role in its anti-SVA activity. RSAD2 was induced by type I interferon (IFN-I) via Janus kinase signal transducer and activator of transcription (JAK-STAT), and had antiviral activity. Ruxolitinib, a JAK-STAT pathway inhibitor, and the knockdown of JAK1 expression substantially reduced RSAD2 expression levels and antiviral activity. Taken together, these results revealed that RSAD2 blocked SVA infection by interacting with the viral 2 C protein and provide a strategy for preventing and controlling SVA infection.
Collapse
Affiliation(s)
- Lei Hou
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China.
| | - Zhi Wu
- Loudi Livestock, Aquaculture, and Agricultural Machinery Affairs Center, Loudi, China
| | - Penghui Zeng
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Xiaoyu Yang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Yongyan Shi
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Jinshuo Guo
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Jianwei Zhou
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Jiangwei Song
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Jue Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China.
| |
Collapse
|
2
|
Wang S, Pang Z, Fan H, Tong Y. Advances in anti-EV-A71 drug development research. J Adv Res 2024; 56:137-156. [PMID: 37001813 PMCID: PMC10834817 DOI: 10.1016/j.jare.2023.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/05/2023] [Accepted: 03/21/2023] [Indexed: 03/31/2023] Open
Abstract
BACKGROUND Enterovirus A71 (EV-A71) is capable of causing hand, foot and mouth disease (HFMD), which may lead to neurological sequelae and even death. As EV-A71 is resistant to environmental changes and mutates easily, there is still a lack of effective treatments or globally available vaccines. AIM OF REVIEW For more than 50 years since the HFMD epidemic, related drug research has been conducted. Progress in this area can promote the further application of existing potential drugs and develop more efficient and safe antiviral drugs, and provide useful reference for protecting the younger generation and maintaining public health security. KEY SCIENTIFIC CONCEPTS OF REVIEW At present, researchers have identified hundreds of EV-A71 inhibitors based on screening repurposed drugs, targeted structural design, and rational modification of previously effective drugs as the main development strategies. This review systematically introduces the current potential drugs to inhibit EV-A71 infection, including viral inhibitors targeting key sites such as the viral capsid, RNA-dependent RNA polymerase (RdRp), 2C protein, internal ribosome entry site (IRES), 3C proteinase (3Cpro), and 2A proteinase (2Apro), starting from each stage of the viral life cycle. Meanwhile, the progress of host-targeting antiviral drugs and their development are summarized in terms of regulating host immunity, inhibiting autophagy or apoptosis, and regulating the cellular redox environment. In addition, the current clinical methods for the prevention and treatment of HFMD are summarized and discussed with the aim of providing support and recommendations for the treatment of enterovirus infections including EV-A71.
Collapse
Affiliation(s)
- Shuqi Wang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Zehan Pang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Huahao Fan
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China.
| | - Yigang Tong
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China; Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, China.
| |
Collapse
|
3
|
Liu Y, Lv P, Wang W, Zhang J, Zhou X, Qiu Y, Cai K, Zhang H, Fang Y, Li Y. Structural insight into EV-A71 3A protein and its interaction with a peptide inhibitor. Virol Sin 2023; 38:975-979. [PMID: 37757951 PMCID: PMC10786657 DOI: 10.1016/j.virs.2023.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 09/22/2023] [Indexed: 09/29/2023] Open
Abstract
•Our results disclosed a dihelical structure of Enterovirus A71 3A1–57 protein in apo form. •We depicted rigid helices and a unique flexible C-terminus for apo-form 3A1–57. •This study revealed a competitive binding-based molecular mechanism underlying inhibition of dimeric 3A by ER-DRI.
Collapse
Affiliation(s)
- Yahui Liu
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Panjing Lv
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Wei Wang
- Medical Subcenter of HUST Analytical & Testing Center, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jiahai Zhang
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Xi Zhou
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Yang Qiu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Kun Cai
- Institute of Health Inspection and Testing, Hubei Provincial Center for Disease Control and Prevention (Hubei CDC), Wuhan, 430079, China.
| | - Haoran Zhang
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Yuan Fang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China.
| | - Yan Li
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, 430030, China; Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
4
|
Wang SH, Du J, Yu J, Zhao Y, Wang Y, Hua S, Zhao K. Coxsackievirus A6 2C protein antagonizes IFN-β production through MDA5 and RIG-I depletion. J Virol 2023; 97:e0107523. [PMID: 37847581 PMCID: PMC10688345 DOI: 10.1128/jvi.01075-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 09/09/2023] [Indexed: 10/19/2023] Open
Abstract
IMPORTANCE Coxsackievirus A6 (CV-A6) is a major emerging pathogen associated with atypical hand, foot, and mouth disease and can cause serious complications such as encephalitis, acute flaccid paralysis, and neurorespiratory syndrome. Therefore, revealing the associated pathogenic mechanisms could benefit the control of CV-A6 infections. In this study, we demonstrate that the nonstructural 2CCV-A6 suppresses IFN-β production, which supports CV-A6 infection. This is achieved by depleting RNA sensors such as melanoma differentiation-associated gene 5 and retinoic acid-inducible gene I (RIG-I) through the lysosomal pathway. Such a function is shared by 2CEV-A71 and 2CCV-B3 but not 2CCV-A16, suggesting the latter might have an alternative way to promote viral replication. This study broadens our understanding of enterovirus 2C protein regulation of the RIG-I-like receptor signaling pathway and reveals a novel mechanism by which CV-A6 and other enteroviruses evade the host innate immune response. These findings on 2C may provide new therapeutic targets for the development of effective inhibitors against CV-A6 and other enterovirus infections.
Collapse
Affiliation(s)
- Shao-Hua Wang
- Center of Infectious Diseases and Pathogen Biology, First Hospital of Jilin University, Changchun, China
- Institute of Virology and AIDS Research, First Hospital of Jilin University, Changchun, China
| | - Juan Du
- Center of Infectious Diseases and Pathogen Biology, First Hospital of Jilin University, Changchun, China
- Institute of Virology and AIDS Research, First Hospital of Jilin University, Changchun, China
| | - Jinghua Yu
- Center of Infectious Diseases and Pathogen Biology, First Hospital of Jilin University, Changchun, China
- Institute of Virology and AIDS Research, First Hospital of Jilin University, Changchun, China
| | - Yifei Zhao
- Center of Infectious Diseases and Pathogen Biology, First Hospital of Jilin University, Changchun, China
- Institute of Virology and AIDS Research, First Hospital of Jilin University, Changchun, China
| | - Yu Wang
- Center of Infectious Diseases and Pathogen Biology, First Hospital of Jilin University, Changchun, China
- Institute of Virology and AIDS Research, First Hospital of Jilin University, Changchun, China
| | - Shucheng Hua
- Department of Respiratory Medicine, First Hospital of Jilin University, Changchun, China
| | - Ke Zhao
- Center of Infectious Diseases and Pathogen Biology, First Hospital of Jilin University, Changchun, China
- Institute of Virology and AIDS Research, First Hospital of Jilin University, Changchun, China
| |
Collapse
|
5
|
Viktorova EG, Gabaglio S, Moghimi S, Zimina A, Wynn BG, Sztul E, Belov GA. The development of resistance to an inhibitor of a cellular protein reveals a critical interaction between the enterovirus protein 2C and a small GTPase Arf1. PLoS Pathog 2023; 19:e1011673. [PMID: 37721955 PMCID: PMC10538752 DOI: 10.1371/journal.ppat.1011673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 09/28/2023] [Accepted: 09/08/2023] [Indexed: 09/20/2023] Open
Abstract
The cellular protein GBF1, an activator of Arf GTPases (ArfGEF: Arf guanine nucleotide exchange factor), is recruited to the replication organelles of enteroviruses through interaction with the viral protein 3A, and its ArfGEF activity is required for viral replication, however how GBF1-dependent Arf activation supports the infection remains enigmatic. Here, we investigated the development of resistance of poliovirus, a prototype enterovirus, to increasing concentrations of brefeldin A (BFA), an inhibitor of GBF1. High level of resistance required a gradual accumulation of multiple mutations in the viral protein 2C. The 2C mutations conferred BFA resistance even in the context of a 3A mutant previously shown to be defective in the recruitment of GBF1 to replication organelles, and in cells depleted of GBF1, suggesting a GBF1-independent replication mechanism. Still, activated Arfs accumulated on the replication organelles of this mutant even in the presence of BFA, its replication was inhibited by a pan-ArfGEF inhibitor LM11, and the BFA-resistant phenotype was compromised in Arf1-knockout cells. Importantly, the mutations strongly increased the interaction of 2C with the activated form of Arf1. Analysis of other enteroviruses revealed a particularly strong interaction of 2C of human rhinovirus 1A with activated Arf1. Accordingly, the replication of this virus was significantly less sensitive to BFA than that of poliovirus. Thus, our data demonstrate that enterovirus 2Cs may behave like Arf1 effector proteins and that GBF1 but not Arf activation can be dispensable for enterovirus replication. These findings have important implications for the development of host-targeted anti-viral therapeutics.
Collapse
Affiliation(s)
- Ekaterina G. Viktorova
- Department of Veterinary Medicine and Virginia-Maryland College of Veterinary Medicine, University of Maryland, College Park, Maryland, United States of America
| | - Samuel Gabaglio
- Department of Veterinary Medicine and Virginia-Maryland College of Veterinary Medicine, University of Maryland, College Park, Maryland, United States of America
| | - Seyedehmahsa Moghimi
- Department of Veterinary Medicine and Virginia-Maryland College of Veterinary Medicine, University of Maryland, College Park, Maryland, United States of America
| | - Anna Zimina
- Department of Veterinary Medicine and Virginia-Maryland College of Veterinary Medicine, University of Maryland, College Park, Maryland, United States of America
| | - Bridge G. Wynn
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham; Birmingham, Alabama, United States of America
| | - Elizabeth Sztul
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham; Birmingham, Alabama, United States of America
| | - George A. Belov
- Department of Veterinary Medicine and Virginia-Maryland College of Veterinary Medicine, University of Maryland, College Park, Maryland, United States of America
| |
Collapse
|
6
|
Wang Q, Meng H, Ge D, Shan H, Geri L, Liu F. Structural and nonstructural proteins of Senecavirus A: Recent research advances, and lessons learned from those of other picornaviruses. Virology 2023; 585:155-163. [PMID: 37348144 DOI: 10.1016/j.virol.2023.06.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 06/04/2023] [Accepted: 06/06/2023] [Indexed: 06/24/2023]
Abstract
Senecavirus A (SVA) is an emerging virus, causing vesicular disease in swine. SVA is a single-stranded, positive-sense RNA virus, which is the only member of the genus Senecavirus in the family Picornaviridae. SVA genome encodes 12 proteins: L, VP4, VP2, VP3, VP1, 2A, 2B, 2C, 3A, 3B, 3C and 3D. The VP1 to VP4 are structural proteins, and the others are nonstructural proteins. The replication of SVA in host cells is a complex process coordinated by an elaborate interplay between the structural and nonstructural proteins. Structural proteins are primarily involved in the invasion and assembly of virions. Nonstructural proteins modulate viral RNA translation and replication, and also take part in antagonizing the antiviral host response and in disrupting some cellular processes to allow virus replication. Here, we systematically reviewed the molecular functions of SVA structural and nonstructural proteins by reference to literatures of SVA itself and other picornaviruses.
Collapse
Affiliation(s)
- Qianqian Wang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China; College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, 010011, China
| | - Hailan Meng
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China
| | - Dong Ge
- Qingdao Lijian Bio-tech Co., Ltd., Qingdao, 266114, China
| | - Hu Shan
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China
| | - Letu Geri
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, 010011, China.
| | - Fuxiao Liu
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
7
|
Yeager C, Carter G, Gohara DW, Yennawar NH, Enemark E, Arnold J, Cameron CE. Enteroviral 2C protein is an RNA-stimulated ATPase and uses a two-step mechanism for binding to RNA and ATP. Nucleic Acids Res 2022; 50:11775-11798. [PMID: 36399514 PMCID: PMC9723501 DOI: 10.1093/nar/gkac1054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 10/16/2022] [Accepted: 10/26/2022] [Indexed: 11/19/2022] Open
Abstract
The enteroviral 2C protein is a therapeutic target, but the absence of a mechanistic framework for this enzyme limits our understanding of inhibitor mechanisms. Here, we use poliovirus 2C and a derivative thereof to elucidate the first biochemical mechanism for this enzyme and confirm the applicability of this mechanism to other members of the enterovirus genus. Our biochemical data are consistent with a dimer forming in solution, binding to RNA, which stimulates ATPase activity by increasing the rate of hydrolysis without impacting affinity for ATP substantially. Both RNA and DNA bind to the same or overlapping site on 2C, driven by the phosphodiester backbone, but only RNA stimulates ATP hydrolysis. We propose that RNA binds to 2C driven by the backbone, with reorientation of the ribose hydroxyls occurring in a second step to form the catalytically competent state. 2C also uses a two-step mechanism for binding to ATP. Initial binding is driven by the α and β phosphates of ATP. In the second step, the adenine base and other substituents of ATP are used to organize the active site for catalysis. These studies provide the first biochemical description of determinants driving specificity and catalytic efficiency of a picornaviral 2C ATPase.
Collapse
Affiliation(s)
- Calvin Yeager
- Department of Microbiology & Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Griffin Carter
- Department of Microbiology & Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - David W Gohara
- Department of Biochemistry and Molecular Biology, St. Louis University, St. Louis, MO 63104, USA
| | - Neela H Yennawar
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Eric J Enemark
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Jamie J Arnold
- Department of Microbiology & Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Craig E Cameron
- To whom correspondence should be addressed. Tel: +1 919 966 9699; Fax: +1 919 962 8103;
| |
Collapse
|
8
|
From Repurposing to Redesign: Optimization of Boceprevir to Highly Potent Inhibitors of the SARS-CoV-2 Main Protease. Molecules 2022; 27:molecules27134292. [PMID: 35807537 PMCID: PMC9268446 DOI: 10.3390/molecules27134292] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/17/2022] [Accepted: 06/29/2022] [Indexed: 11/17/2022] Open
Abstract
The main protease (Mpro) of the betacoronavirus SARS-CoV-2 is an attractive target for the development of treatments for COVID-19. Structure-based design is a successful approach to discovering new inhibitors of the Mpro. Starting from crystal structures of the Mpro in complexes with the Hepatitis C virus NS3/4A protease inhibitors boceprevir and telaprevir, we optimized the potency of the alpha-ketoamide boceprevir against the Mpro by replacing its P1 cyclobutyl moiety by a γ-lactam as a glutamine surrogate. The resulting compound, MG-78, exhibited an IC50 of 13 nM versus the recombinant Mpro, and similar potency was observed for its P1′ N-methyl derivative MG-131. Crystal structures confirmed the validity of our design concept. In addition to SARS-CoV-2 Mpro inhibition, we also explored the activity of MG-78 against the Mpro of the alphacoronavirus HCoV NL63 and against enterovirus 3C proteases. The activities were good (0.33 µM, HCoV-NL63 Mpro), moderate (1.45 µM, Coxsackievirus 3Cpro), and relatively poor (6.7 µM, enterovirus A71 3Cpro), respectively. The structural basis for the differences in activities was revealed by X-ray crystallo-graphy. We conclude that the modified boceprevir scaffold is suitable for obtaining high-potency inhibitors of the coronavirus Mpros but further optimization would be needed to target enterovirus 3Cpros efficiently.
Collapse
|
9
|
Surgical Strikes on Host Defenses: Role of the Viral Protease Activity in Innate Immune Antagonism. Pathogens 2022; 11:pathogens11050522. [PMID: 35631043 PMCID: PMC9145062 DOI: 10.3390/pathogens11050522] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 04/22/2022] [Accepted: 04/26/2022] [Indexed: 02/05/2023] Open
Abstract
As a frontline defense mechanism against viral infections, the innate immune system is the primary target of viral antagonism. A number of virulence factors encoded by viruses play roles in circumventing host defenses and augmenting viral replication. Among these factors are viral proteases, which are primarily responsible for maturation of viral proteins, but in addition cause proteolytic cleavage of cellular proteins involved in innate immune signaling. The study of these viral protease-mediated host cleavages has illuminated the intricacies of innate immune networks and yielded valuable insights into viral pathogenesis. In this review, we will provide a brief summary of how proteases of positive-strand RNA viruses, mainly from the Picornaviridae, Flaviviridae and Coronaviridae families, proteolytically process innate immune components and blunt their functions.
Collapse
|
10
|
Li X, Tang X, Wang M, Cheng A, Ou X, Mao S, Sun D, Yang Q, Wu Y, Zhang S, Zhu D, Jia R, Chen S, Liu M, Zhao X, Huang J, Gao Q, Tian B, Liu Y, Yu Y, Zhang L, Pan L. The lysine at position 151 of the duck hepatitis A virus 1 2C protein is critical for its NTPase activities. Vet Microbiol 2021; 264:109300. [PMID: 34922149 DOI: 10.1016/j.vetmic.2021.109300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 11/27/2021] [Accepted: 12/05/2021] [Indexed: 11/26/2022]
Abstract
The duck hepatitis A virus 1 (DHAV-1) 2C protein was predicted to be a superfamily III helicase member and includes nucleotide binding (NTB) and putative RNA helicase activity motifs. To study whether DHAV-1 2C protein has NTB activity, we expressed DHAV-1 2C protein with maltose binding protein (MBP) to solve its poor solubility in a prokaryotic expression system. We showed that the DHAV-1 2C protein has nucleoside triphosphatase (NTPase) activity by measuring the released phosphate. The NTPase of the DHAV-1 2C protein is Mg2+ indispensable and affected by other biochemical characteristics such as Mn2+, Ca2+, Zn2+, Na+ and pH. Guanidine hydrochloride (GdnHCl), a potent inhibitor of viral RNA replication, inhibited ATPase activity of the DHAV-1 2C protein in a dose-dependent manner. Finally, we constructed three mutants to identify the key site for the ATPase activity of the DHAV-1 2C protein. These results indicate that lysine at position 151 of the DHAV-1 2C protein is very important for NTPase activity. Here, we demonstrated and partially characterized that the DHAV-1 2C protein has NTPase activity and showed that mutation of the lysine in the conserved Walker A impairs that activity. The results serve to confirm what is readily predicted from previous work on picornavirus 2C proteins. It also provides a basis for further study of the 2C protein and the function of NTPase activity on the viral life cycle.
Collapse
Affiliation(s)
- Xinhong Li
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, PR China; Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, PR China
| | - Xiaosi Tang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, PR China; Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, PR China
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, PR China; Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, PR China.
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, PR China; Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, PR China
| | - Xumin Ou
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, PR China; Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, PR China
| | - Sai Mao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, PR China; Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, PR China
| | - Di Sun
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, PR China; Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, PR China
| | - Qiao Yang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, PR China; Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, PR China
| | - Ying Wu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, PR China; Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, PR China
| | - Shaqiu Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, PR China; Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, PR China
| | - Dekang Zhu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, PR China; Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, PR China
| | - Renyong Jia
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, PR China; Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, PR China
| | - Shun Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, PR China; Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, PR China
| | - Mafeng Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, PR China; Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, PR China
| | - Xinxin Zhao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, PR China; Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, PR China
| | - Juan Huang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, PR China; Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, PR China
| | - Qun Gao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, PR China; Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, PR China
| | - Bin Tian
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, PR China; Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, PR China
| | - Yunya Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, PR China; Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, PR China
| | - Yanling Yu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, PR China; Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, PR China
| | - Ling Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, PR China; Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, PR China
| | - Leichang Pan
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, PR China; Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, PR China
| |
Collapse
|
11
|
Real-Hohn A, Blaas D. Rhinovirus Inhibitors: Including a New Target, the Viral RNA. Viruses 2021; 13:1784. [PMID: 34578365 PMCID: PMC8473194 DOI: 10.3390/v13091784] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/21/2021] [Accepted: 09/03/2021] [Indexed: 12/18/2022] Open
Abstract
Rhinoviruses (RVs) are the main cause of recurrent infections with rather mild symptoms characteristic of the common cold. Nevertheless, RVs give rise to enormous numbers of absences from work and school and may become life-threatening in particular settings. Vaccination is jeopardised by the large number of serotypes eliciting only poorly cross-neutralising antibodies. Conversely, antivirals developed over the years failed FDA approval because of a low efficacy and/or side effects. RV species A, B, and C are now included in the fifteen species of the genus Enteroviruses based upon the high similarity of their genome sequences. As a result of their comparably low pathogenicity, RVs have become a handy model for other, more dangerous members of this genus, e.g., poliovirus and enterovirus 71. We provide a short overview of viral proteins that are considered potential drug targets and their corresponding drug candidates. We briefly mention more recently identified cellular enzymes whose inhibition impacts on RVs and comment novel approaches to interfere with infection via aggregation, virus trapping, or preventing viral access to the cell receptor. Finally, we devote a large part of this article to adding the viral RNA genome to the list of potential drug targets by dwelling on its structure, folding, and the still debated way of its exit from the capsid. Finally, we discuss the recent finding that G-quadruplex stabilising compounds impact on RNA egress possibly via obfuscating the unravelling of stable secondary structural elements.
Collapse
Affiliation(s)
- Antonio Real-Hohn
- Center for Medical Biochemistry, Vienna Biocenter, Max Perutz Laboratories, Medical University of Vienna, Dr. Bohr Gasse 9/3, A-1030 Vienna, Austria
| | - Dieter Blaas
- Center for Medical Biochemistry, Vienna Biocenter, Max Perutz Laboratories, Medical University of Vienna, Dr. Bohr Gasse 9/3, A-1030 Vienna, Austria
| |
Collapse
|
12
|
Filipe IC, Guedes MS, Zdobnov EM, Tapparel C. Enterovirus D: A Small but Versatile Species. Microorganisms 2021; 9:1758. [PMID: 34442837 PMCID: PMC8400195 DOI: 10.3390/microorganisms9081758] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/09/2021] [Accepted: 08/10/2021] [Indexed: 12/13/2022] Open
Abstract
Enteroviruses (EVs) from the D species are the causative agents of a diverse range of infectious diseases in spite of comprising only five known members. This small clade has a diverse host range and tissue tropism. It contains types infecting non-human primates and/or humans, and for the latter, they preferentially infect the eye, respiratory tract, gastrointestinal tract, and nervous system. Although several Enterovirus D members, in particular EV-D68, have been associated with neurological complications, including acute myelitis, there is currently no effective treatment or vaccine against any of them. This review highlights the peculiarities of this viral species, focusing on genome organization, functional elements, receptor usage, and pathogenesis.
Collapse
Affiliation(s)
- Ines Cordeiro Filipe
- Department of Microbiology and Molecular Medicine, University of Geneva, 1206 Geneva, Switzerland;
| | - Mariana Soares Guedes
- Department of Microbiology and Molecular Medicine, University of Geneva, 1206 Geneva, Switzerland;
| | - Evgeny M. Zdobnov
- Department of Genetic Medicine and Development, Switzerland and Swiss Institute of Bioinformatics, University of Geneva, 1206 Geneva, Switzerland;
| | - Caroline Tapparel
- Department of Microbiology and Molecular Medicine, University of Geneva, 1206 Geneva, Switzerland;
| |
Collapse
|
13
|
Bhatia S, Narayanan N, Nagpal S, Nair DT. Antiviral therapeutics directed against RNA dependent RNA polymerases from positive-sense viruses. Mol Aspects Med 2021; 81:101005. [PMID: 34311994 DOI: 10.1016/j.mam.2021.101005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 07/14/2021] [Accepted: 07/16/2021] [Indexed: 01/18/2023]
Abstract
Viruses with positive-sense single stranded RNA (+ssRNA) genomes are responsible for different diseases and represent a global health problem. In addition to developing new vaccines that protect against severe illness on infection, it is imperative to identify new antiviral molecules to treat infected patients. The genome of these RNA viruses generally codes for an enzyme with RNA dependent RNA polymerase (RdRP) activity. This molecule is centrally involved in the duplication of the RNA genome. Inhibition of this enzyme by small molecules will prevent duplication of the RNA genome and thus reduce the viral titer. An overview of the different therapeutic strategies used to inhibit RdRPs from +ssRNA viruses is provided, along with an analysis of these enzymes to highlight new binding sites for inhibitors.
Collapse
Affiliation(s)
- Sonam Bhatia
- Regional Centre for Biotechnology, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, India
| | - Naveen Narayanan
- Regional Centre for Biotechnology, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, India
| | - Shilpi Nagpal
- Regional Centre for Biotechnology, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, India; National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bangalore, 560065, India
| | - Deepak T Nair
- Regional Centre for Biotechnology, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, India.
| |
Collapse
|
14
|
Mirzaie S, Abdi F, GhavamiNejad A, Lu B, Wu XY. Covalent Antiviral Agents. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1322:285-312. [PMID: 34258745 DOI: 10.1007/978-981-16-0267-2_11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Nowadays, many viral infections have emerged and are taking a huge toll on human lives globally. Meanwhile, viral resistance to current drugs has drastically increased. Hence, there is a pressing need to design potent broad-spectrum antiviral agents to treat a variety of viral infections and overcome viral resistance. Covalent inhibitors have the potential to achieve both goals owing to their biochemical efficiency, prolonged duration of action, and the capability to inhibit shallow, solvent-exposed substrate-binding domains. In this chapter, we review the structures, activities, and inhibition mechanisms of covalent inhibitors against severe acute respiratory syndrome coronavirus 2, dengue virus, enterovirus, hepatitis C virus, human immunodeficiency virus, and influenza viruses. We also discuss the application of in silico study in covalent inhibitor design.
Collapse
Affiliation(s)
- Sako Mirzaie
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie L. Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada.
| | - Fatemeh Abdi
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie L. Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
| | - Amin GhavamiNejad
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie L. Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
| | - Brian Lu
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie L. Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
| | - Xiao Yu Wu
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie L. Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
15
|
Tauber C, Wamser R, Arkona C, Tügend M, Abdul Aziz UB, Pach S, Schulz R, Jochmans D, Wolber G, Neyts J, Rademann J. Chemische Evolution antiviraler Wirkstoffe gegen Enterovirus D68 durch Proteintemplat‐gesteuerte Knoevenagelreaktionen. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202102074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Carolin Tauber
- Fachbereich Biologie, Chemie and Pharmazie Institut für Pharmazie Medizinische Chemie Freie Universität Berlin Königin-Luise-Str. 2+4 14195 Berlin Deutschland
| | - Rebekka Wamser
- Fachbereich Biologie, Chemie and Pharmazie Institut für Pharmazie Medizinische Chemie Freie Universität Berlin Königin-Luise-Str. 2+4 14195 Berlin Deutschland
| | - Christoph Arkona
- Fachbereich Biologie, Chemie and Pharmazie Institut für Pharmazie Medizinische Chemie Freie Universität Berlin Königin-Luise-Str. 2+4 14195 Berlin Deutschland
| | - Marisa Tügend
- Fachbereich Biologie, Chemie and Pharmazie Institut für Pharmazie Medizinische Chemie Freie Universität Berlin Königin-Luise-Str. 2+4 14195 Berlin Deutschland
| | - Umer Bin Abdul Aziz
- Fachbereich Biologie, Chemie and Pharmazie Institut für Pharmazie Medizinische Chemie Freie Universität Berlin Königin-Luise-Str. 2+4 14195 Berlin Deutschland
| | - Szymon Pach
- Fachbereich Biologie, Chemie and Pharmazie Institut für Pharmazie Medizinische Chemie Freie Universität Berlin Königin-Luise-Str. 2+4 14195 Berlin Deutschland
| | - Robert Schulz
- Fachbereich Biologie, Chemie and Pharmazie Institut für Pharmazie Medizinische Chemie Freie Universität Berlin Königin-Luise-Str. 2+4 14195 Berlin Deutschland
| | - Dirk Jochmans
- Department of Microbiology, Immunology and Transplantation Rega Institute KU Leuven Leuven Belgien
| | - Gerhard Wolber
- Fachbereich Biologie, Chemie and Pharmazie Institut für Pharmazie Medizinische Chemie Freie Universität Berlin Königin-Luise-Str. 2+4 14195 Berlin Deutschland
| | - Johan Neyts
- Department of Microbiology, Immunology and Transplantation Rega Institute KU Leuven Leuven Belgien
| | - Jörg Rademann
- Fachbereich Biologie, Chemie and Pharmazie Institut für Pharmazie Medizinische Chemie Freie Universität Berlin Königin-Luise-Str. 2+4 14195 Berlin Deutschland
| |
Collapse
|
16
|
Tauber C, Wamser R, Arkona C, Tügend M, Abdul Aziz UB, Pach S, Schulz R, Jochmans D, Wolber G, Neyts J, Rademann J. Chemical Evolution of Antivirals Against Enterovirus D68 through Protein-Templated Knoevenagel Reactions. Angew Chem Int Ed Engl 2021; 60:13294-13301. [PMID: 33749121 PMCID: PMC8252737 DOI: 10.1002/anie.202102074] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Indexed: 02/06/2023]
Abstract
The generation of bioactive molecules from inactive precursors is a crucial step in the chemical evolution of life, however, mechanistic insights into this aspect of abiogenesis are scarce. Here, we investigate the protein-catalyzed formation of antivirals by the 3C-protease of enterovirus D68. The enzyme induces aldol condensations yielding inhibitors with antiviral activity in cells. Kinetic and thermodynamic analyses reveal that the bioactivity emerges from a dynamic reaction system including inhibitor formation, alkylation of the protein target by the inhibitors, and competitive addition of non-protein nucleophiles to the inhibitors. The most active antivirals are slowly reversible inhibitors with elongated target residence times. The study reveals first examples for the chemical evolution of bio-actives through protein-catalyzed, non-enzymatic C-C couplings. The discovered mechanism works under physiological conditions and might constitute a native process of drug development.
Collapse
Affiliation(s)
- Carolin Tauber
- Department of Biology, Chemistry and PharmacyInstitute of PharmacyMedicinal ChemistryFreie Universität BerlinKönigin-Luise-Str. 2+414195BerlinGermany
| | - Rebekka Wamser
- Department of Biology, Chemistry and PharmacyInstitute of PharmacyMedicinal ChemistryFreie Universität BerlinKönigin-Luise-Str. 2+414195BerlinGermany
| | - Christoph Arkona
- Department of Biology, Chemistry and PharmacyInstitute of PharmacyMedicinal ChemistryFreie Universität BerlinKönigin-Luise-Str. 2+414195BerlinGermany
| | - Marisa Tügend
- Department of Biology, Chemistry and PharmacyInstitute of PharmacyMedicinal ChemistryFreie Universität BerlinKönigin-Luise-Str. 2+414195BerlinGermany
| | - Umer Bin Abdul Aziz
- Department of Biology, Chemistry and PharmacyInstitute of PharmacyMedicinal ChemistryFreie Universität BerlinKönigin-Luise-Str. 2+414195BerlinGermany
| | - Szymon Pach
- Department of Biology, Chemistry and PharmacyInstitute of PharmacyMedicinal ChemistryFreie Universität BerlinKönigin-Luise-Str. 2+414195BerlinGermany
| | - Robert Schulz
- Department of Biology, Chemistry and PharmacyInstitute of PharmacyMedicinal ChemistryFreie Universität BerlinKönigin-Luise-Str. 2+414195BerlinGermany
| | - Dirk Jochmans
- Department of Microbiology, Immunology and TransplantationRega InstituteKU LeuvenLeuvenBelgium
| | - Gerhard Wolber
- Department of Biology, Chemistry and PharmacyInstitute of PharmacyMedicinal ChemistryFreie Universität BerlinKönigin-Luise-Str. 2+414195BerlinGermany
| | - Johan Neyts
- Department of Microbiology, Immunology and TransplantationRega InstituteKU LeuvenLeuvenBelgium
| | - Jörg Rademann
- Department of Biology, Chemistry and PharmacyInstitute of PharmacyMedicinal ChemistryFreie Universität BerlinKönigin-Luise-Str. 2+414195BerlinGermany
| |
Collapse
|
17
|
Ruhel R, Mazumder M, Gnanasekaran P, Kumar M, Gourinath S, Chakraborty S. Functional implications of residues of the B' motif of geminivirus replication initiator protein in its helicase activity. FEBS J 2021; 288:6492-6509. [PMID: 34092039 DOI: 10.1111/febs.16053] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 04/15/2021] [Accepted: 06/04/2021] [Indexed: 01/03/2023]
Abstract
Geminivirus replication initiator protein (Rep) is a multifunctional viral protein required for replication. During the process of viral replication, Rep acts as a site- and strand-specific endonuclease, ligase, ATPase, and helicase. B' motif and β-hairpin loop of the geminivirus Rep are conserved and important for Rep-mediated helicase activity required for viral replication. To dissect the roles of various amino acid residues of the B' motif and β-hairpin loop of the geminivirus Rep helicase in its process of unwinding DNA, we investigated eight conserved residues near the ATP active site or the ssDNA contact channel. Our strategy was to mutate these residues to alanines and investigate the effects of these mutations on various biochemical activities associated with DNA unwinding. We looked into the ATP binding, ATP hydrolysis, DNA binding, and DNA unwinding activities of the wild-type and mutant Rep proteins. These investigations showed four residues (Arg279, Asp280, Tyr287, and Pro290) affecting the DNA unwinding activity. A structural model analysis confirmed the B' loop and ssDNA binding loop to be connected through a β-hairpin structure, suggesting that changes on one loop might affect the other and that these residues function by acting in concert. Viral genomes containing Rep proteins having these mutations in the B' motif did not replicate in planta. Taken together, these results indicated all four residues to be implicated in helicase activity mediated by Rep and demonstrated the significance, for viral replication, of the B' motif and β-hairpin loop of the C-terminal region of the Rep protein.
Collapse
Affiliation(s)
- Rajrani Ruhel
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Mohit Mazumder
- Structural Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Prabu Gnanasekaran
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Manish Kumar
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Samudrala Gourinath
- Structural Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Supriya Chakraborty
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
18
|
Wang SH, Wang K, Zhao K, Hua SC, Du J. The Structure, Function, and Mechanisms of Action of Enterovirus Non-structural Protein 2C. Front Microbiol 2020; 11:615965. [PMID: 33381104 PMCID: PMC7767853 DOI: 10.3389/fmicb.2020.615965] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 11/23/2020] [Indexed: 12/16/2022] Open
Abstract
Enteroviruses are a group of RNA viruses belonging to the family Picornaviridae. They include human enterovirus groups A, B, C, and D as well as non-human enteroviruses. Enterovirus infections can lead to hand, foot, and mouth disease and herpangina, whose clinical manifestations are often mild, although some strains can result in severe neurological complications such as encephalitis, myocarditis, meningitis, and poliomyelitis. To date, research on enterovirus non-structural proteins has mainly focused on the 2A and 3C proteases and 3D polymerase. However, another non-structural protein, 2C, is the most highly conserved protein, and plays a vital role in the enterovirus life cycle. There are relatively few studies on this protein. Previous studies have demonstrated that enterovirus 2C is involved in virus uncoating, host cell membrane rearrangements, RNA replication, encapsidation, morphogenesis, ATPase, helicase, and chaperoning activities. Despite ongoing research, little is known about the pathogenesis of enterovirus 2C proteins in viral replication or in the host innate immune system. In this review, we discuss and summarize the current understanding of the structure, function, and mechanism of the enterovirus 2C proteins, focusing on the key mutations and motifs involved in viral infection, replication, and immune regulation. We also focus on recent progress in research into the role of 2C proteins in regulating the pattern recognition receptors and type I interferon signaling pathway to facilitate viral replication. Given these functions and mechanisms, the potential application of the 2C proteins as a target for anti-viral drug development is also discussed. Future studies will focus on the determination of more crystal structures of enterovirus 2C proteins, which might provide more potential targets for anti-viral drug development against enterovirus infections.
Collapse
Affiliation(s)
- Shao-Hua Wang
- Institute of Virology and AIDS Research, The First Hospital of Jilin University, Changchun, China
| | - Kuan Wang
- Department of Neurotrauma, The First Hospital of Jilin University, Changchun, China
| | - Ke Zhao
- Institute of Virology and AIDS Research, The First Hospital of Jilin University, Changchun, China
| | - Shu-Cheng Hua
- Department of Internal Medicine, The First Hospital of Jilin University, Changchun, China
| | - Juan Du
- Institute of Virology and AIDS Research, The First Hospital of Jilin University, Changchun, China.,Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
19
|
Fernandes RS, Freire MCLC, Bueno RV, Godoy AS, Gil LHVG, Oliva G. Reporter Replicons for Antiviral Drug Discovery against Positive Single-Stranded RNA Viruses. Viruses 2020; 12:v12060598. [PMID: 32486283 PMCID: PMC7354593 DOI: 10.3390/v12060598] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 05/22/2020] [Accepted: 05/25/2020] [Indexed: 12/25/2022] Open
Abstract
Single-stranded positive RNA ((+) ssRNA) viruses include several important human pathogens. Some members are responsible for large outbreaks, such as Zika virus, West Nile virus, SARS-CoV, and SARS-CoV-2, while others are endemic, causing an enormous global health burden. Since vaccines or specific treatments are not available for most viral infections, the discovery of direct-acting antivirals (DAA) is an urgent need. Still, the low-throughput nature of and biosafety concerns related to traditional antiviral assays hinders the discovery of new inhibitors. With the advances of reverse genetics, reporter replicon systems have become an alternative tool for the screening of DAAs. Herein, we review decades of the use of (+) ssRNA viruses replicon systems for the discovery of antiviral agents. We summarize different strategies used to develop those systems, as well as highlight some of the most promising inhibitors identified by the method. Despite the genetic alterations introduced, reporter replicons have been shown to be reliable systems for screening and identification of viral replication inhibitors and, therefore, an important tool for the discovery of new DAAs.
Collapse
Affiliation(s)
- Rafaela S. Fernandes
- Physics Institute of São Carlos, University of São Paulo, São Carlos 13566-590, SP, Brazil; (R.S.F.); (M.C.L.C.F.); (R.V.B.); (A.S.G.)
| | - Marjorie C. L. C. Freire
- Physics Institute of São Carlos, University of São Paulo, São Carlos 13566-590, SP, Brazil; (R.S.F.); (M.C.L.C.F.); (R.V.B.); (A.S.G.)
| | - Renata V. Bueno
- Physics Institute of São Carlos, University of São Paulo, São Carlos 13566-590, SP, Brazil; (R.S.F.); (M.C.L.C.F.); (R.V.B.); (A.S.G.)
| | - Andre S. Godoy
- Physics Institute of São Carlos, University of São Paulo, São Carlos 13566-590, SP, Brazil; (R.S.F.); (M.C.L.C.F.); (R.V.B.); (A.S.G.)
| | | | - Glaucius Oliva
- Physics Institute of São Carlos, University of São Paulo, São Carlos 13566-590, SP, Brazil; (R.S.F.); (M.C.L.C.F.); (R.V.B.); (A.S.G.)
- Correspondence:
| |
Collapse
|
20
|
Liu T, Li X, Wu M, Qin L, Chen H, Qian P. Seneca Valley Virus 2C and 3C pro Induce Apoptosis via Mitochondrion-Mediated Intrinsic Pathway. Front Microbiol 2019; 10:1202. [PMID: 31191506 PMCID: PMC6549803 DOI: 10.3389/fmicb.2019.01202] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 05/13/2019] [Indexed: 12/26/2022] Open
Abstract
Seneca Valley virus (SVV) is the only member of the genus Senecavirus of the Picornaviridae family. SVV can selectively infect and lyse tumor cells with neuroendocrine features and is used as an oncolytic virus for treating small-cell lung cancers. However, the detailed mechanism underlying SVV-mediated destruction of tumor cells remains unclear. In this study, we found that SVV can increase the proportion of apoptotic 293T cells in a dose- and time-dependent manner. SVV-induced apoptosis was initiated via extrinsic and intrinsic pathways through activation of caspase-3, the activity of which could be attenuated by a pan-caspase inhibitor (Z-VAD-FMK). We confirmed that SVV 2C and 3Cpro play critical roles in SVV-induced apoptosis. The SVV 2C protein was located solely in the mitochondria and activated caspase-3 to induce apoptosis. SVV 3Cpro induced apoptosis through its protease activity, which was accompanied by release of cytochrome C into the cytoplasm, but did not directly cleave PARP1.
Collapse
Affiliation(s)
- Tingting Liu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xiangmin Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Mengge Wu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Liuxing Qin
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Ping Qian
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| |
Collapse
|
21
|
Guan H, Tian J, Zhang C, Qin B, Cui S. Crystal structure of a soluble fragment of poliovirus 2CATPase. PLoS Pathog 2018; 14:e1007304. [PMID: 30231078 PMCID: PMC6166989 DOI: 10.1371/journal.ppat.1007304] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Revised: 10/01/2018] [Accepted: 08/28/2018] [Indexed: 11/18/2022] Open
Abstract
Poliovirus (PV) 2CATPase is the most studied 2C protein in the Picornaviridae family. It is involved in RNA replication, encapsidation and uncoating and many inhibitors have been found that target PV 2CATPase. Despite numerous investigations to characterize its functions, a high-resolution structure of PV 2C has not yet been determined. We report here the crystal structure of a soluble fragment of PV 2CATPase to 2.55Å, containing an ATPase domain, a zinc finger and a C-terminal helical domain but missing the N-terminal domain. The ATPase domain shares the common structural features with EV71 2C and other Superfamily 3 helicases. The C-terminal cysteine-rich motif folds into a CCCC type zinc finger in which four cysteine ligands and several auxiliary residues assist in zinc binding. By comparing with the known zinc finger fold groups, we found the zinc finger of 2C proteins belong to a new fold group, which we denote the "Enterovirus 2C-like" group. The C-terminus of PV 2CATPase forms an amphipathic helix that occupies a hydrophobic pocket located on an adjacent PV 2CATPase in the crystal lattice. The C-terminus mediated PV 2C-2C interaction promotes self-oligomerization, most likely hexamerization, which is fundamental to the ATPase activity of 2C. The zinc finger is the most structurally diverse feature in 2C proteins. Available structural and virological data suggest that the zinc finger of 2C might confer the specificity of interaction with other proteins. We built a hexameric ring model of PV 2CATPase and visualized the previously identified functional motifs and drug-resistant sites, thus providing a structure framework for antiviral drug development.
Collapse
Affiliation(s)
- Hongxin Guan
- MOH key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Juan Tian
- MOH key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Chu Zhang
- MOH key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Bo Qin
- MOH key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Sheng Cui
- MOH key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- * E-mail:
| |
Collapse
|
22
|
Corbic Ramljak I, Stanger J, Real-Hohn A, Dreier D, Wimmer L, Redlberger-Fritz M, Fischl W, Klingel K, Mihovilovic MD, Blaas D, Kowalski H. Cellular N-myristoyltransferases play a crucial picornavirus genus-specific role in viral assembly, virion maturation, and infectivity. PLoS Pathog 2018; 14:e1007203. [PMID: 30080883 PMCID: PMC6089459 DOI: 10.1371/journal.ppat.1007203] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 08/13/2018] [Accepted: 07/05/2018] [Indexed: 01/06/2023] Open
Abstract
In nearly all picornaviruses the precursor of the smallest capsid protein VP4 undergoes co-translational N-terminal myristoylation by host cell N-myristoyltransferases (NMTs). Curtailing this modification by mutation of the myristoylation signal in poliovirus has been shown to result in severe assembly defects and very little, if any, progeny virus production. Avoiding possible pleiotropic effects of such mutations, we here used pharmacological abrogation of myristoylation with the NMT inhibitor DDD85646, a pyrazole sulfonamide originally developed against trypanosomal NMT. Infection of HeLa cells with coxsackievirus B3 in the presence of this drug decreased VP0 acylation at least 100-fold, resulting in a defect both early and late in virus morphogenesis, which diminishes the yield of viral progeny by about 90%. Virus particles still produced consisted mainly of provirions containing RNA and uncleaved VP0 and, to a substantially lesser extent, of mature virions with cleaved VP0. This indicates an important role of myristoylation in the viral maturation cleavage. By electron microscopy, these RNA-filled particles were indistinguishable from virus produced under control conditions. Nevertheless, their specific infectivity decreased by about five hundred fold. Since host cell-attachment was not markedly impaired, their defect must lie in the inability to transfer their genomic RNA into the cytosol, likely at the level of endosomal pore formation. Strikingly, neither parechoviruses nor kobuviruses are affected by DDD85646, which appears to correlate with their native capsid containing only unprocessed VP0. Individual knockout of the genes encoding the two human NMT isozymes in haploid HAP1 cells further demonstrated the pivotal role for HsNMT1, with little contribution by HsNMT2, in the virus replication cycle. Our results also indicate that inhibition of NMT can possibly be exploited for controlling the infection by a wide spectrum of picornaviruses. Picornaviruses are important human and animal pathogens. Protective vaccines are only available against very few representatives. Furthermore, antiviral drugs have not made it to the market because of serious side effects and viral mutational escape. We here show that pharmacological inhibition of cellular myristoyltransferases severely decreased myristoylation of enteroviral structural proteins as exemplified by coxsackievirus B3, a prominent pathogen causing virus-induced acute and chronic heart disease. The drug DDD85646 substantially diminished virus yield and almost abolished the infectivity of the residual progeny virus. It is highly effective against several other picornaviruses, except those two included in our study that naturally do not process VP0. Our work provides new insight into the role of myristoylation in the life cycle of picornaviruses and identifies the responsible cellular enzyme as a promising candidate for antiviral therapy.
Collapse
Affiliation(s)
- Irena Corbic Ramljak
- Center for Medical Biochemistry, Max F. Perutz Laboratories (MFPL), Medical University of Vienna, Vienna Biocenter (VBC), Vienna, Austria
| | - Julia Stanger
- Center for Medical Biochemistry, Max F. Perutz Laboratories (MFPL), Medical University of Vienna, Vienna Biocenter (VBC), Vienna, Austria
| | - Antonio Real-Hohn
- Center for Medical Biochemistry, Max F. Perutz Laboratories (MFPL), Medical University of Vienna, Vienna Biocenter (VBC), Vienna, Austria
| | - Dominik Dreier
- Institute of Applied Synthetic Chemistry, TU Wien, Vienna, Austria
| | - Laurin Wimmer
- Institute of Applied Synthetic Chemistry, TU Wien, Vienna, Austria
| | | | - Wolfgang Fischl
- Haplogen GmbH, Vienna, Campus Vienna Biocenter, Vienna, Austria
| | - Karin Klingel
- Cardiopathology, Institute for Pathology and Neuropathology, University Hospital Tübingen, Tübingen, Germany
| | | | - Dieter Blaas
- Center for Medical Biochemistry, Max F. Perutz Laboratories (MFPL), Medical University of Vienna, Vienna Biocenter (VBC), Vienna, Austria
| | - Heinrich Kowalski
- Center for Medical Biochemistry, Max F. Perutz Laboratories (MFPL), Medical University of Vienna, Vienna Biocenter (VBC), Vienna, Austria
- * E-mail:
| |
Collapse
|
23
|
Jung E, Lee JY, Kim HJ, Ryu CK, Lee KI, Kim M, Lee CK, Go YY. Identification of quinone analogues as potential inhibitors of picornavirus 3C protease in vitro. Bioorg Med Chem Lett 2018; 28:2533-2538. [PMID: 29866517 DOI: 10.1016/j.bmcl.2018.05.046] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 05/22/2018] [Accepted: 05/23/2018] [Indexed: 11/20/2022]
Abstract
Picornaviruses are non-enveloped viruses that represent a large family of positive-sense single-stranded RNA viruses including a number of causative agents of many human and animal diseases such as coxsackievirus B3 (CVB3) and rhinoviruses (HRV). In this study, we performed a high-throughput screening of a compound library composed of ∼6000 small molecules in search of potential picornavirus 3C protease (3Cpro) inhibitors. As results, we identified quinone analogues that effectively inhibited both CVB3 3Cpro and HRV 3Cpro with IC50 values in low micromolar range. Together with predicted binding modes of these compounds to the active site of the viral protease, it is implied that structural features of these non-peptidic inhibitors may act as useful scaffold for further anti-picornavirus drug design and development.
Collapse
Affiliation(s)
- Eunhye Jung
- Virus Research Group, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea.
| | - Joo-Youn Lee
- Drug Information Platform Center, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea.
| | - Ho Jeong Kim
- College of Pharmacy & Graduate School of Pharmaceutical Sciences, Ewha Womens University, Seoul 03760, Republic of Korea.
| | - Chung-Kyu Ryu
- College of Pharmacy & Graduate School of Pharmaceutical Sciences, Ewha Womens University, Seoul 03760, Republic of Korea.
| | - Kee-In Lee
- Green Carbon Catalysis Group, Carbon Resources Institute, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea.
| | - Meehyein Kim
- Virus Research Group, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea; Department of Medicinal Chemistry and Pharmacology, University of Science and Technology, Daejeon 34114, Republic of Korea.
| | - Chong-Kyo Lee
- Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea.
| | - Yun Young Go
- Virus Research Group, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea; Department of Medicinal Chemistry and Pharmacology, University of Science and Technology, Daejeon 34114, Republic of Korea.
| |
Collapse
|
24
|
Poller W, Haghikia A, Kasner M, Kaya Z, Bavendiek U, Wedemeier H, Epple HJ, Skurk C, Landmesser U. Cardiovascular Involvement in Chronic Hepatitis C Virus Infections - Insight from Novel Antiviral Therapies. J Clin Transl Hepatol 2018; 6:161-167. [PMID: 29951361 PMCID: PMC6018314 DOI: 10.14218/jcth.2017.00057] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 12/06/2017] [Accepted: 12/23/2017] [Indexed: 12/11/2022] Open
Abstract
Whereas statistical association of hepatitis C virus (HCV) infection with cardiomyopathy is long known, establishment of a causal relationship has not been achieved so far. Patients with advanced heart failure (HF) are mostly unable to tolerate interferon (IFN)-based treatment, resulting in limited experience regarding the possible pathogenic role of HCV in this patient group. HCV infection often triggers disease in a broad spectrum of extrahepatic organs, with innate immune and autoimmune pathogenic processes involved. The fact that worldwide more than 70 million patients are chronically infected with HCV illustrates the possible clinical impact arising if cardiomyopathies were induced or aggravated by HCV, resulting in progressive HF or severe arrhythmias. A novel path has been opened to finally resolve the long-standing question of cause-effect relationship between HCV infection and cardiac dysfunction, by the recent development of IFN-free, highly efficient, and well tolerable anti-HCV regimens. The new direct-acting antiviral (DAA) agents are highly virus-specific and lack unspecific side-effects upon cardiac function which have always confounded the interpretation of IFN treatment data. The actual frequency of unexplained HF in chronic HCV infection will be determined from a planned large-scale study. Whereas such patients probably constitute a rather small fraction of all those harboring HCV, they have major clinical relevance. It is not yet known which fraction of these patients will significantly benefit from HCV eradication, but this issue will be addressed now in a prospective study.
Collapse
Affiliation(s)
- Wolfgang Poller
- Department of Cardiology, CC11 Charité Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, Berlin, Germany
- German Center for Cardiovascular Research (DZHK) Site Berlin, Berlin, Germany
- *Correspondence to: Wolfgang Poller, Department of Cardiology, Campus Benjamin Franklin, Charite Centrum 11, Charité-Universitätsmedizin Berlin, Hindenburgdamm 30, Berlin 12200, Germany. Tel: +49-30-450-513765, Fax: +49-30-450-513984, E-mail:
| | - Arash Haghikia
- Department of Cardiology, CC11 Charité Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, Berlin, Germany
- German Center for Cardiovascular Research (DZHK) Site Berlin, Berlin, Germany
| | - Mario Kasner
- Department of Cardiology, CC11 Charité Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Ziya Kaya
- German Center for Cardiovascular Research (DZHK) Site Heidelberg, Heidelberg, Germany
- Department of Cardiology, University Hospital, Heidelberg, Germany
| | | | | | - Hans-Jörg Epple
- Department of Gastroenterology, Infectiology and Rheumatology, CC 13, Charité Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Carsten Skurk
- Department of Cardiology, CC11 Charité Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Ulf Landmesser
- Department of Cardiology, CC11 Charité Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, Berlin, Germany
- German Center for Cardiovascular Research (DZHK) Site Berlin, Berlin, Germany
| |
Collapse
|
25
|
Lei J, Hilgenfeld R. RNA-virus proteases counteracting host innate immunity. FEBS Lett 2017; 591:3190-3210. [PMID: 28850669 PMCID: PMC7163997 DOI: 10.1002/1873-3468.12827] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 08/21/2017] [Accepted: 08/22/2017] [Indexed: 01/20/2023]
Abstract
Virus invasion triggers host immune responses, in particular, innate immune responses. Pathogen‐associated molecular patterns of viruses (such as dsRNA, ssRNA, or viral proteins) released during virus replication are detected by the corresponding pattern‐recognition receptors of the host, and innate immune responses are induced. Through production of type‐I and type‐III interferons as well as various other cytokines, the host innate immune system forms the frontline to protect host cells and inhibit virus infection. Not surprisingly, viruses have evolved diverse strategies to counter this antiviral system. In this review, we discuss the multiple strategies used by proteases of positive‐sense single‐stranded RNA viruses of the families Picornaviridae, Coronaviridae, and Flaviviridae, when counteracting host innate immune responses.
Collapse
Affiliation(s)
- Jian Lei
- Institute of Biochemistry, Center for Structural and Cell Biology in Medicine, University of Lübeck, Germany
| | - Rolf Hilgenfeld
- Institute of Biochemistry, Center for Structural and Cell Biology in Medicine, University of Lübeck, Germany.,German Center for Infection Research (DZIF), Hamburg - Lübeck - Borstel - Riems Site, University of Lübeck, Germany
| |
Collapse
|
26
|
Guan H, Tian J, Qin B, Wojdyla JA, Wang B, Zhao Z, Wang M, Cui S. Crystal structure of 2C helicase from enterovirus 71. SCIENCE ADVANCES 2017; 3:e1602573. [PMID: 28508043 PMCID: PMC5409451 DOI: 10.1126/sciadv.1602573] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 02/24/2017] [Indexed: 06/07/2023]
Abstract
Enterovirus 71 (EV71) is the major pathogen responsible for outbreaks of hand, foot, and mouth disease. EV71 nonstructural protein 2C participates in many critical events throughout the virus life cycle; however, its precise role is not fully understood. Lack of a high-resolution structure made it difficult to elucidate 2C activity and prevented inhibitor development. We report the 2.5 Å-resolution crystal structure of the soluble part of EV71 2C, containing an adenosine triphosphatase (ATPase) domain, a cysteine-rich zinc finger with an unusual fold, and a carboxyl-terminal helical domain. Unlike other AAA+ ATPases, EV71 2C undergoes a carboxyl terminus-mediated self-oligomerization, which is dependent on a specific interaction between the carboxyl-terminal helix of one monomer and a deep pocket formed between the ATPase and the zinc finger domains of the neighboring monomer. The carboxyl terminus-mediated self-oligomerization is fundamental to 2C ATPase activity and EV71 replication. Our findings suggest a strategy for inhibition of enterovirus replication by disruption of the self-oligomerization interface of 2C.
Collapse
Affiliation(s)
- Hongxin Guan
- Ministry of Health Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 9 Dong Dan San Tiao, Beijing 100730, China
| | - Juan Tian
- Ministry of Health Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 9 Dong Dan San Tiao, Beijing 100730, China
| | - Bo Qin
- Ministry of Health Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 9 Dong Dan San Tiao, Beijing 100730, China
| | | | - Bei Wang
- Ministry of Health Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 9 Dong Dan San Tiao, Beijing 100730, China
| | - Zhendong Zhao
- Ministry of Health Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 9 Dong Dan San Tiao, Beijing 100730, China
| | - Meitian Wang
- Swiss Light Source at Paul Scherrer Institute, CH-5232 Villigen, Switzerland
| | - Sheng Cui
- Ministry of Health Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 9 Dong Dan San Tiao, Beijing 100730, China
| |
Collapse
|
27
|
Martin TD, Hill EH, Whitten DG, Chi EY, Evans DG. Oligomeric Conjugated Polyelectrolytes Display Site-Preferential Binding to an MS2 Viral Capsid. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:12542-12551. [PMID: 27464311 DOI: 10.1021/acs.langmuir.6b01667] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Opportunistic bacteria and viruses are a worldwide health threat prompting the need to develop new targeting modalities. A class of novel synthetic poly(phenylene ethynylene) (PPE)-based oligomeric conjugated polyelectrolytes (OPEs) have demonstrated potent wide-spectrum biocidal activity. A subset of cationic OPEs display high antiviral activity against the MS2 bacteriophage. The oligomers have been found to inactivate the bacteriophage and perturb the morphology of the MS2 viral capsid. However, details of the initial binding and interactions between the OPEs and the viruses are not well understood. In this study, we use a multiscale computational approach, including random sampling, molecular dynamics, and electronic structure calculations, to gain an understanding of the molecular-level interactions of a series of OPEs that vary in length, charge, and functional groups with the MS2 capsid. Our results show that OPEs strongly bind to the MS2 capsid protein assembly with binding energies of up to -30 kcal/mol. Free-energy analysis shows that the binding is dominated by strong van der Waals interactions between the hydrophobic OPE backbone and the capsid surface and strong electrostatic free energy contributions between the OPE charged moieties and charged residues on the capsid surface. This knowledge provides molecular-level insight into how to tailor the OPEs to optimize viral capsid disruption and increase OPE efficacy to target amphiphilic protein coats of icosahedral-based viruses.
Collapse
Affiliation(s)
- Tye D Martin
- Department of Chemical and Biological Engineering and the Center for Biomedical Engineering, ‡The Nanoscience and Microsystems Engineering Program, and §Department of Chemistry and Chemical Biology, University of New Mexico , Albuquerque, New Mexico 87131, United States
| | - Eric H Hill
- Department of Chemical and Biological Engineering and the Center for Biomedical Engineering, ‡The Nanoscience and Microsystems Engineering Program, and §Department of Chemistry and Chemical Biology, University of New Mexico , Albuquerque, New Mexico 87131, United States
| | - David G Whitten
- Department of Chemical and Biological Engineering and the Center for Biomedical Engineering, ‡The Nanoscience and Microsystems Engineering Program, and §Department of Chemistry and Chemical Biology, University of New Mexico , Albuquerque, New Mexico 87131, United States
| | - Eva Y Chi
- Department of Chemical and Biological Engineering and the Center for Biomedical Engineering, ‡The Nanoscience and Microsystems Engineering Program, and §Department of Chemistry and Chemical Biology, University of New Mexico , Albuquerque, New Mexico 87131, United States
| | - Deborah G Evans
- Department of Chemical and Biological Engineering and the Center for Biomedical Engineering, ‡The Nanoscience and Microsystems Engineering Program, and §Department of Chemistry and Chemical Biology, University of New Mexico , Albuquerque, New Mexico 87131, United States
| |
Collapse
|
28
|
Development of a fluorescence resonance energy transfer-based intracellular assay to identify novel enterovirus 71 antivirals. Arch Virol 2016; 162:713-720. [PMID: 27873071 DOI: 10.1007/s00705-016-3143-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 10/30/2016] [Indexed: 10/20/2022]
Abstract
Enterovirus 71 (EV71) is considered one of the most virulent pathogens in the family Picornaviridae. However, there have been no effective treatments for the severe complications caused by EV71. Development of new drugs against targets that are essential for viral replication often requires screening large collections of compounds, for which a high-throughput screening platform is needed. In this study, a drug-screening platform was developed based on a genetically engineered cell line that displays fluorescence resonance energy transfer (FRET) and shows a real-time and quantifiable impairment of FRET upon EV71 infection. A library of small molecules consisting of 1280 compounds with defined bioactivities was used for screening drugs with anti-EV71 activity; accurate, rapid, and robust results were obtained from this screening procedure. Ten drugs were identified in the primary screening, and their antiviral activities were indicated by dose-dependent elevation of FRET. Among these, AC-93253, mitoxantrone and N-bromoacetamide had not been reported as enterovirus inhibitors, and it was confirmed that they were able to suppress viral yields in a dose-dependent manner. Taken together, these studies demonstrate the feasibility of this FRET-based platform for efficient screening and identification of novel compounds with activity against EV71 infection.
Collapse
|
29
|
Wang Y, Chen Y, Du H, Yang J, Ming K, Song M, Liu J. Comparison of the anti-duck hepatitis A virus activities of phosphorylated and sulfated Astragalus polysaccharides. Exp Biol Med (Maywood) 2016; 242:344-353. [PMID: 27703041 DOI: 10.1177/1535370216672750] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Duck hepatitis A virus (DHAV) (Picornaviridae) causes an infectious disease in ducks which results in severe losses in duck industry. However, the proper antiviral supportive drugs for this disease have not been discovered. Polysaccharide is the main ingredient of Astragalus that has been demonstrated to directly and indirectly inhibit RNA of viruses replication. In this study, the antiviral activities of Astragalus polysaccharide (APS) and its derivatives against DHAV were evaluated and compared. APS was modified via the sodium trimetaphosphate and sodium tripolyphosphate (STMP-STPP) method and chlorosulfonic acid-pyridine method to obtain its phosphate (pAPS) and sulfate (sAPS), respectively. The infrared structures of APS, pAPS, and sAPS were analyzed with the potassium bromide disc method. Additionally, the antiviral activities were evaluated with the MTT ((4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide) method in vitro and the artificial inoculation method in vivo. The clinical therapy effects were evaluated by mortality rate, liver function-related biochemical indicators, and visual changes in pathological anatomy. The anti-DHAV proliferation effects of APS, pAPS, and sAPS on the viral multiplication process in cell and blood were observed with the reverse transcription-polymerase chain reaction method. The results revealed that pAPS inhibited DHAV proliferation more efficiently in the entire process of viral multiplication than APS and sAPS. Moreover, only pAPS significantly improved the survival rate to 33.5% and reduced the DHAV particle titer in the blood as well as liver lesions in clinical trials. The results indicated that pAPS exhibited greater anti-DHAV activity than APS and sAPS both in vitro and in vivo.
Collapse
Affiliation(s)
- Yixuan Wang
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P R China
| | - Yun Chen
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P R China
| | - Hongxu Du
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P R China
| | - Jingjing Yang
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P R China
| | - Ke Ming
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P R China
| | - Meiyun Song
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P R China
| | - Jiaguo Liu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P R China
| |
Collapse
|
30
|
Irreversible inhibitors of the 3C protease of Coxsackie virus through templated assembly of protein-binding fragments. Nat Commun 2016; 7:12761. [PMID: 27677239 PMCID: PMC5052702 DOI: 10.1038/ncomms12761] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 07/29/2016] [Indexed: 02/01/2023] Open
Abstract
Small-molecule fragments binding to biomacromolecules can be starting points for the development of drugs, but are often difficult to detect due to low affinities. Here we present a strategy that identifies protein-binding fragments through their potential to induce the target-guided formation of covalently bound, irreversible enzyme inhibitors. A protein-binding nucleophile reacts reversibly with a bis-electrophilic warhead, thereby positioning the second electrophile in close proximity of the active site of a viral protease, resulting in the covalent de-activation of the enzyme. The concept is implemented for Coxsackie virus B3 3C protease, a pharmacological target against enteroviral infections. Using an aldehyde-epoxide as bis-electrophile, active fragment combinations are validated through measuring the protein inactivation rate and by detecting covalent protein modification in mass spectrometry. The structure of one enzyme-inhibitor complex is determined by X-ray crystallography. The presented warhead activation assay provides potent non-peptidic, broad-spectrum inhibitors of enteroviral proteases.
Collapse
|
31
|
Abstract
The RNA-dependent RNA polymerases from positive-strand RNA viruses, such as picornaviruses and flaviviruses, close their active sites for catalysis via a unique NTP-induced conformational change in the palm domain. Combined with a fully prepositioned templating nucleotide, this mechanism is error-prone and results in a distribution of random mutations in the viral progeny often described as a quasi-species. Here we examine the extent to which noncognate NTPs competitively inhibit single-cycle elongation by coxsackievirus B3 3D(pol), a polymerase that generates three to four mutations per 10 kb of RNA synthesized during viral infection. Using an RNA with a templating guanosine combined with 2-aminopurine fluorescence as a reporter for elongation, we find that the cognate CTP has a Km of 24 μM and the three noncognate nucleotides competitively inhibit the reaction with Kic values of 500 μM for GTP, 1300 μM for ATP, and 3000 μM for UTP. Unexpectedly, ATP also acted as an uncompetitive inhibitor with a Kiu of 1800 μM, resulting in allosteric modulation of 3D(pol) that slowed the polymerase elongation rate ≈4-fold. ATP uncompetitive inhibition required the β- and γ-phosphates, and its extent was significantly diminished in two previously characterized low-fidelity polymerases. This led to further mutational analysis and the identification of a putative allosteric binding site below the NTP entry channel at the interface of conserved motifs A and D, although cocrystallization failed to reveal any density for bound ATP in this pocket. The potential role of an ATP allosteric effect during the virus life cycle is discussed.
Collapse
Affiliation(s)
- Jonathan P. Karr
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Olve B. Peersen
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
32
|
Hou HY, Lu WW, Wu KY, Lin CW, Kung SH. Idarubicin is a broad-spectrum enterovirus replication inhibitor that selectively targets the virus internal ribosomal entry site. J Gen Virol 2016; 97:1122-1133. [DOI: 10.1099/jgv.0.000431] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Hsin-Yu Hou
- Department of Biotechnology and Laboratory Science in Medicine, National Yang-Ming University, Taipei, Taiwan, ROC
| | - Wen-Wen Lu
- Department of Clinical Pathology, Cheng Hsin General Hospital, Taiwan, ROC
| | - Kuan-Yin Wu
- Department of Biotechnology and Laboratory Science in Medicine, National Yang-Ming University, Taipei, Taiwan, ROC
| | - Cheng-Wen Lin
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung, Taiwan, ROC
| | - Szu-Hao Kung
- Department of Biotechnology and Laboratory Science in Medicine, National Yang-Ming University, Taipei, Taiwan, ROC
| |
Collapse
|
33
|
Yao F, Chen Y, Shi J, Ming K, Liu J, Xiong W, Song M, Du H, Wang Y, Zhang S, Wu Y, Wang D, Hu Y. Replication cycle of duck hepatitis A virus type 1 in duck embryonic hepatocytes. Virology 2016; 491:73-8. [DOI: 10.1016/j.virol.2016.01.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 01/19/2016] [Accepted: 01/21/2016] [Indexed: 12/11/2022]
|
34
|
Kim Y, Kankanamalage ACG, Damalanka VC, Weerawarna PM, Groutas WC, Chang KO. Potent inhibition of enterovirus D68 and human rhinoviruses by dipeptidyl aldehydes and α-ketoamides. Antiviral Res 2015; 125:84-91. [PMID: 26658373 PMCID: PMC4698184 DOI: 10.1016/j.antiviral.2015.11.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 10/21/2015] [Accepted: 11/23/2015] [Indexed: 01/17/2023]
Abstract
Enterovirus D68 (EV-D68) is an emerging pathogen responsible for mild to severe respiratory infections that occur mostly in infants, children and teenagers. EV-D68, one of more than 100 non-polio enteroviruses, is acid-labile and biologically similar to human rhinoviruses (HRV) (originally classified as HRV87). However, there is no approved preventive or therapeutic measure against EV-D68, HRV, or other enteroviruses. In this study, we evaluated the antiviral activity of series of dipeptidyl compounds against EV-D68 and HRV strains, and demonstrated that several peptidyl aldehyde and α-ketoamide peptidyl compounds are potent inhibitors of EV-D68 and HRV strains with high in-vitro therapeutic indices (>1000). One of the α-ketoamide compounds is shown to have favorable pharmacokinetics profiles, including a favorable oral bioavailability in rats. Recent successful development of α-ketoamide protease inhibitors against hepatitis C virus suggests these compounds may have a high potential for further optimization and development against emerging EV-D68, as well as HRV. Series of dipeptidyl aldehyde or ketomide compounds were highly effective against enterovirus-D68 and human rhinoviruses. The highly effective ketoamide compound is shown to have favorable pharmacokinetics profiles. These may have a high potential for further antiviral development against emerging enterovirus-D68 and human rhinoviruses.
Collapse
Affiliation(s)
- Yunjeong Kim
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | | | | | | | - William C Groutas
- Department of Chemistry, Wichita State University, Wichita, KS, USA.
| | - Kyeong-Ok Chang
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA.
| |
Collapse
|
35
|
Song YJ, Park WJ, Park BJ, Kwak SW, Kim YH, Lee JB, Park SY, Song CS, Lee SW, Seo KH, Kang YS, Park CK, Song JY, Choi IS. Experimental evidence of hepatitis A virus infection in pigs. J Med Virol 2015; 88:631-8. [PMID: 26381440 DOI: 10.1002/jmv.24386] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/15/2015] [Indexed: 11/09/2022]
Abstract
Hepatitis A virus (HAV) is the leading cause of acute viral hepatitis worldwide, with HAV infection being restricted to humans and nonhuman primates. In this study, HAV infection status was serologically determined in domestic pigs and experimental infections of HAV were attempted to verify HAV infectivity in pigs. Antibodies specific to HAV or HAV-like agents were detected in 3.5% of serum samples collected from pigs in swine farms. When the pigs were infected intravenously with 2 × 10(5) 50% tissue culture infectious dose (TCID50 ) of HAV, shedding of the virus in feces, viremia, and seroconversion were detected. In pigs orally infected with the same quantity of HAV, viral shedding was detected only in feces. HAV genomic RNA was detected in the liver and bile of intravenously infected pigs, but only in the bile of orally infected pigs. In further experiments, pigs were intravenously infected with 6 × 10(5) TCID50 of HAV. Shedding of HAV in feces, along with viremia and seroconversion, were confirmed in infected pigs but not in sentinel pigs. HAV genomic RNA was detected in the liver, bile, spleen, lymph node, and kidney of the infected pigs. HAV antigenomic RNA was detected in the spleen of one HAV-infected pig, suggesting HAV replication in splenic cells. Infiltration of inflammatory cells was observed in the livers of infected pigs but not in controls. This is the first experimental evidence to demonstrate that human HAV strains can infect pigs.
Collapse
Affiliation(s)
- Young-Jo Song
- Department of Infectious Diseases, College of Veterinary Medicine, Konkuk University, Seoul, Korea
| | - Woo-Jung Park
- Department of Infectious Diseases, College of Veterinary Medicine, Konkuk University, Seoul, Korea
| | - Byung-Joo Park
- Department of Infectious Diseases, College of Veterinary Medicine, Konkuk University, Seoul, Korea
| | - Sang-Woo Kwak
- Department of Infectious Diseases, College of Veterinary Medicine, Konkuk University, Seoul, Korea
| | - Yong-Hyeon Kim
- Department of Infectious Diseases, College of Veterinary Medicine, Konkuk University, Seoul, Korea
| | - Joong-Bok Lee
- Department of Infectious Diseases, College of Veterinary Medicine, Konkuk University, Seoul, Korea
| | - Seung-Yong Park
- Department of Infectious Diseases, College of Veterinary Medicine, Konkuk University, Seoul, Korea
| | - Chang-Seon Song
- Department of Infectious Diseases, College of Veterinary Medicine, Konkuk University, Seoul, Korea
| | - Sang-Won Lee
- Department of Infectious Diseases, College of Veterinary Medicine, Konkuk University, Seoul, Korea
| | - Kun-Ho Seo
- Department of Public Health, College of Veterinary Medicine, Konkuk University, Seoul, Korea
| | - Young-Sun Kang
- Department of Pharmacology and Toxicology, College of Veterinary Medicine, Konkuk University, Seoul, Korea
| | - Choi-Kyu Park
- Department of Infectious Diseases, College of Veterinary Medicine, Kyungpook National University, Daegu, Korea
| | - Jae-Young Song
- Viral Disease Division, Animal and Plant Quarantine Agency, Anyang, Korea
| | - In-Soo Choi
- Department of Infectious Diseases, College of Veterinary Medicine, Konkuk University, Seoul, Korea
| |
Collapse
|
36
|
Ang MJY, Lau QY, Ng FM, Then SW, Poulsen A, Cheong YK, Ngoh ZX, Tan YW, Peng J, Keller TH, Hill J, Chu JJH, Chia CSB. Peptidomimetic ethyl propenoate covalent inhibitors of the enterovirus 71 3C protease: a P2-P4 study. J Enzyme Inhib Med Chem 2015; 31:332-9. [PMID: 25792507 DOI: 10.3109/14756366.2015.1018245] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2015] [Accepted: 02/02/2015] [Indexed: 12/15/2022] Open
Abstract
Enterovirus 71 (EV71) is a highly infectious pathogen primarily responsible for Hand, Foot, and Mouth Disease, particularly among children. Currently, no approved antiviral drug has been developed against this disease. The EV71 3C protease is deemed an attractive drug target due to its crucial role in viral polyprotein processing. Rupintrivir, a peptide-based inhibitor originally developed to target the human rhinovirus 3C protease, was found to inhibit the EV71 3C protease. In this communication, we report the inhibitory activities of 30 Rupintrivir analogs against the EV71 3C protease. The most potent inhibitor, containing a P2 ring-constrained phenylalanine analog (compound 9), was found to be two-fold more potent than Rupintrivir (IC50 value 3.4 ± 0.4 versus 7.3 ± 0.8 μM). Our findings suggest that employing geometrically constrained residues in peptide-based protease inhibitors can potentially enhance their inhibitory activities.
Collapse
Affiliation(s)
- Melgious J Y Ang
- a Experimental Therapeutics Centre, Agency for Science, Technology and Research (A*STAR) , Singapore
| | - Qiu Ying Lau
- a Experimental Therapeutics Centre, Agency for Science, Technology and Research (A*STAR) , Singapore
| | - Fui Mee Ng
- a Experimental Therapeutics Centre, Agency for Science, Technology and Research (A*STAR) , Singapore
| | - Siew Wen Then
- a Experimental Therapeutics Centre, Agency for Science, Technology and Research (A*STAR) , Singapore
| | - Anders Poulsen
- a Experimental Therapeutics Centre, Agency for Science, Technology and Research (A*STAR) , Singapore
| | - Yuen Kuen Cheong
- a Experimental Therapeutics Centre, Agency for Science, Technology and Research (A*STAR) , Singapore
| | - Zi Xian Ngoh
- a Experimental Therapeutics Centre, Agency for Science, Technology and Research (A*STAR) , Singapore
| | - Yong Wah Tan
- b Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR) , Singapore , and
| | - Jianhe Peng
- a Experimental Therapeutics Centre, Agency for Science, Technology and Research (A*STAR) , Singapore
| | - Thomas H Keller
- a Experimental Therapeutics Centre, Agency for Science, Technology and Research (A*STAR) , Singapore
| | - Jeffrey Hill
- a Experimental Therapeutics Centre, Agency for Science, Technology and Research (A*STAR) , Singapore
| | - Justin J H Chu
- b Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR) , Singapore , and
- c Laboratory of Molecular RNA Virology and Antiviral Strategies, Department of Microbiology , National University of Singapore , Singapore
| | - C S Brian Chia
- a Experimental Therapeutics Centre, Agency for Science, Technology and Research (A*STAR) , Singapore
| |
Collapse
|
37
|
Bhakat S. Effect of T68A/N126Y mutations on the conformational and ligand binding landscape of Coxsackievirus B3 3C protease. MOLECULAR BIOSYSTEMS 2015; 11:2303-11. [PMID: 26077945 DOI: 10.1039/c5mb00262a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
3C protease of Coxsackievirus B3 (CVB3) plays an essential role in the viral replication cycle, and therefore, emerged as an attractive therapeutic target for the treatment of human diseases caused by CVB3 infection. In this study, we report the first account of the molecular impact of the T68A/N126Y double mutant (Mutant(Bound)) using an integrated computational approach. Molecular dynamics simulation and post-dynamics binding free energy, principal component analysis (PCA), hydrogen bond occupancy, SASA, R(g) and RMSF confirm that T68A/N126Y instigated an increased conformational flexibility due to the loss of intra- and inter-molecular hydrogen bond interactions and other prominent binding forces, which led to a decreased protease grip on the ligand (3CPI). The double mutations triggered a distortion orientation of 3CPI in the active site and decreases the binding energy, ΔG(bind) (∼3 kcal mol(-1)), compared to the wild type (Wild(Bound)). The van der Waals and electrostatic energy contributions coming from residues 68 and 126 are lower for Mutant(Bound) when compared with Wild(Bound). In addition, variation in the overall enzyme motion as evident from the PCA, distorted hydrogen bonding network and loss of protein-ligand interactions resulted in a loss of inhibitor efficiency. The comprehensive molecular insight gained from this study should be of great importance in understanding the drug resistance against CVB3 3C protease; also, it will assist in the designing of novel Coxsackievirus B3 inhibitors with high ligand efficacy on resistant strains.
Collapse
Affiliation(s)
- Soumendranath Bhakat
- Division of Biophysical Chemistry, Lund University, P.O. Box 124, SE-22100 Lund, Sweden.
| |
Collapse
|
38
|
Yuan B, Fang H, Shen C, Zheng C. Expression of porcine Mx1 with FMDV IRES enhances the antiviral activity against foot-and-mouth disease virus in PK-15 cells. Arch Virol 2015; 160:1989-99. [DOI: 10.1007/s00705-015-2473-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 05/27/2015] [Indexed: 12/18/2022]
|
39
|
Baj A, Colombo M, Headley JL, McFarlane JR, Liethof MA, Toniolo A. Post-poliomyelitis syndrome as a possible viral disease. Int J Infect Dis 2015; 35:107-16. [PMID: 25939306 DOI: 10.1016/j.ijid.2015.04.018] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 04/22/2015] [Accepted: 04/23/2015] [Indexed: 12/27/2022] Open
Abstract
This review summarizes current concepts on post-polio syndrome (PPS), a condition that may arise in polio survivors after partial or complete functional recovery followed by a prolonged interval of stable neurological function. PPS affects 15-20 million people worldwide. Epidemiological data are reported, together with the pathogenic pathways that possibly lead to the progressive degeneration and loss of neuromuscular motor units. As a consequence of PPS, polio survivors experience new weakness, generalized fatigue, atrophy of previously unaffected muscles, and a physical decline that may culminate in the loss of independent life. Emphasis is given to the possible pathogenic role of persistent poliovirus infection and chronic inflammation. These factors could contribute to the neurological and physical decline in polio survivors. A perspective is then given on novel anti-poliovirus compounds and monoclonal antibodies that have been developed to contribute to the final phases of polio eradication. These agents could also be useful for the treatment or prevention of PPS. Some of these compounds/antibodies are in early clinical development. Finally, current clinical trials for PPS are reported. In this area, the intravenous infusion of normal human immunoglobulins appears both feasible and promising.
Collapse
Affiliation(s)
- Andreina Baj
- Laboratory of Clinical Microbiology, University of Insubria Medical School, Viale Borri 57, 21100 Varese, Italy
| | - Martina Colombo
- Laboratory of Clinical Microbiology, University of Insubria Medical School, Viale Borri 57, 21100 Varese, Italy
| | - Joan L Headley
- Post-Polio Health International, Saint Louis, Missouri, USA
| | | | - Mary-Ann Liethof
- Laboratory of Clinical Microbiology, University of Insubria Medical School, Viale Borri 57, 21100 Varese, Italy; Polio Australia Incorporated, Kew, Victoria, Australia
| | - Antonio Toniolo
- Laboratory of Clinical Microbiology, University of Insubria Medical School, Viale Borri 57, 21100 Varese, Italy.
| |
Collapse
|
40
|
Discovery of itraconazole with broad-spectrum in vitro antienterovirus activity that targets nonstructural protein 3A. Antimicrob Agents Chemother 2015; 59:2654-65. [PMID: 25691649 DOI: 10.1128/aac.05108-14] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 02/13/2015] [Indexed: 12/18/2022] Open
Abstract
There is currently no approved antiviral therapy for the prophylaxis or treatment of enterovirus infections, which remain a substantial threat to public health. To discover inhibitors that can be immediately repurposed for treatment of enterovirus infections, we developed a high-throughput screening assay that measures the cytopathic effect induced by enterovirus 71 (EV71) to screen an FDA-approved drug library. Itraconazole (ITZ), a triazole antifungal agent, was identified as an effective inhibitor of EV71 replication in the low-micromolar range (50% effective concentrations [EC50s], 1.15 μM). Besides EV71, the compound also inhibited other enteroviruses, including coxsackievirus A16, coxsackievirus B3, poliovirus 1, and enterovirus 68. Study of the mechanism of action by time-of-addition assay and transient-replicon assay revealed that ITZ targeted a step involved in RNA replication or polyprotein processing. We found that the mutations (G5213U and U5286C) conferring the resistance to the compound were in nonstructural protein 3A, and we confirmed the target amino acid substitutions (3A V51L and 3A V75A) using a reverse genetic approach. Interestingly, posaconazole, a new oral azole with a molecular structure similar to that of ITZ, also exhibited anti-EV71 activity. Moreover, ITZ-resistant viruses do not exhibit cross-resistance to posaconazole or the enviroxime-like compound GW5074, which also targets the 3A region, indicating that they may target a specific site(s) in viral genome. Although the protective activity of ITZ or posaconazole (alone or in combination with other antivirals) remains to be assessed in animal models, our findings may represent an opportunity to develop therapeutic interventions for enterovirus infection.
Collapse
|
41
|
Benschop KSM, van der Avoort HGAM, Duizer E, Koopmans MPG. Antivirals against enteroviruses: a critical review from a public-health perspective. Antivir Ther 2015; 20:121-30. [PMID: 25643052 DOI: 10.3851/imp2939] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/04/2014] [Indexed: 10/24/2022]
Abstract
The enteroviruses (EVs) of the Picornaviridae family are the most common viral pathogens known. Most EV infections are mild and self-limiting but manifestations can be severe in children and immunodeficient individuals. Antiviral development is actively pursued to benefit these high-risk patients and, given the alarming problem of antimicrobial drug resistance, antiviral drug resistance is a public-health concern. Picornavirus antivirals can be used off-label or as part of outbreak control measures. They may be used in the final stages of poliovirus eradication and to mitigate EV-A71 outbreaks. We review the potential emergence of drug-resistant strains and their impact on EV transmission and endemic circulation. We include non-picornavirus antivirals that inhibit EV replication, for example, ribavirin, a treatment for infection with HCV, and amantadine, a treatment for influenza A. They may have spurred resistance emergence in HCV or influenza A patients who are unknowingly coinfected with EV. The public-health challenge is always to find a balance between individual benefit and the long-term health of the larger population.
Collapse
Affiliation(s)
- Kimberley S M Benschop
- Centre for Infectious Diseases Research, Diagnostics and Screening, National Institute for Public Health and the Environment, Bilthoven, the Netherlands.
| | | | | | | |
Collapse
|
42
|
Han SC, Guo HC, Sun SQ. Three-dimensional structure of foot-and-mouth disease virus and its biological functions. Arch Virol 2014; 160:1-16. [PMID: 25377637 DOI: 10.1007/s00705-014-2278-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 10/31/2014] [Indexed: 11/26/2022]
Abstract
Foot-and-mouth disease (FMD), an acute, violent, infectious disease of cloven-hoofed animals, remains widespread in most parts of the world. It can lead to a major plague of livestock and an economical catastrophe. Structural studies of FMD virus (FMDV) have greatly contributed to our understanding of the virus life cycle and provided new horizons for the control and eradication of FMDV. To examine host-FMDV interactions and viral pathogenesis from a structural perspective, the structures of viral structural and non-structural proteins are reviewed in the context of their relevance for virus assembly and dissociation, formation of capsid-like particles and virus-receptor complexes, and viral penetration and uncoating. Moreover, possibilities for devising novel antiviral treatments are discussed.
Collapse
Affiliation(s)
- Shi-Chong Han
- State Key Laboratory of Veterinary Etiological Biology and OIE/National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou, 730046, Gansu, People's Republic of China
| | | | | |
Collapse
|
43
|
Rocha-Pereira J, Neyts J, Jochmans D. Norovirus: targets and tools in antiviral drug discovery. Biochem Pharmacol 2014; 91:1-11. [PMID: 24893351 PMCID: PMC7111065 DOI: 10.1016/j.bcp.2014.05.021] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2014] [Revised: 05/23/2014] [Accepted: 05/27/2014] [Indexed: 11/29/2022]
Abstract
The development of antiviral strategies to treat or prevent norovirus infections is a pressing matter. Noroviruses are the number 1 cause of acute gastroenteritis, of foodborne illness, of sporadic gastroenteritis in all age groups and of severe acute gastroenteritis in children less than 5 years old seeking medical assistance [USA/CDC]. In developing countries, noroviruses are linked to significant mortality (~200,000 children <5 years old). Noroviruses are a major culprit for the closure of hospital wards, and associated with increased hospitalization and mortality among the elderly. Transplant patients have significant risk of acquiring persistent norovirus gastroenteritis. Control and prevention strategies are limited to the use of disinfectants and hand sanitizers, whose efficacy is frequently insufficient. Hence, there is an ample need for antiviral treatment and prophylaxis of norovirus infections. The fact that only a handful of inhibitors of norovirus replication have been reported can largely be attributable to the hampering inability to cultivate human noroviruses in cell culture. The Norwalk replicon-bearing cells and the murine norovirus-infected cell lines are the available models to assess in vitro antiviral activity of compounds. Human noroviruses have been shown to replicate (to some extent) in mice, calves, gnotobiotic pigs, and chimpanzees. Infection of interferon-deficient mice with the murine norovirus results in virus-induced diarrhea. Here we review recent developments in understanding which norovirus proteins or host cell factors may serve as targets for inhibition of viral replication. Given the recent advances, significant progress in the search for antiviral strategies against norovirus infections is expected in the upcoming years.
Collapse
Affiliation(s)
- Joana Rocha-Pereira
- Rega Institute for Medical Research, KU Leuven - University of Leuven, Minderbroedersstraat 10, 3000 Leuven, Belgium
| | - Johan Neyts
- Rega Institute for Medical Research, KU Leuven - University of Leuven, Minderbroedersstraat 10, 3000 Leuven, Belgium.
| | - Dirk Jochmans
- Rega Institute for Medical Research, KU Leuven - University of Leuven, Minderbroedersstraat 10, 3000 Leuven, Belgium
| |
Collapse
|
44
|
Potential applications for antiviral therapy and prophylaxis in bovine medicine. Anim Health Res Rev 2014; 15:102-17. [PMID: 24810855 DOI: 10.1017/s1466252314000048] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Viral disease is one of the major causes of financial loss and animal suffering in today's cattle industry. Increases in global commerce and average herd size, urbanization, vertical integration within the industry and alterations in global climate patterns have allowed the spread of pathogenic viruses, or the introduction of new viral species, into regions previously free of such pathogens, creating the potential for widespread morbidity and mortality in naïve cattle populations. Despite this, no antiviral products are currently commercially licensed for use in bovine medicine, although significant progress has been made in the development of antivirals for use against bovine viral diarrhea virus (BVDV), foot and mouth disease virus (FMDV) and bovine herpesvirus (BHV). BVDV is extensively studied as a model virus for human antiviral studies. Consequently, many compounds with efficacy have been identified and a few have been successfully used to prevent infection in vivo although commercial development is still lacking. FMDV is also the subject of extensive antiviral testing due to the importance of outbreak containment for maintenance of export markets. Thirdly, BHV presents an attractive target for antiviral development due to its worldwide presence. Antiviral studies for other bovine viral pathogens are largely limited to preliminary studies. This review summarizes the current state of knowledge of antiviral compounds against several key bovine pathogens and the potential for commercial antiviral applications in the prevention and control of several selected bovine diseases.
Collapse
|
45
|
The crystal structure of a cardiovirus RNA-dependent RNA polymerase reveals an unusual conformation of the polymerase active site. J Virol 2014; 88:5595-607. [PMID: 24600002 DOI: 10.1128/jvi.03502-13] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
UNLABELLED Encephalomyocarditis virus (EMCV) is a member of the Cardiovirus genus within the large Picornaviridae family, which includes a number of important human and animal pathogens. The RNA-dependent RNA polymerase (RdRp) 3Dpol is a key enzyme for viral genome replication. In this study, we report the X-ray structures of two different crystal forms of the EMCV RdRp determined at 2.8- and 2.15-Å resolution. The in vitro elongation and VPg uridylylation activities of the purified enzyme have also been demonstrated. Although the overall structure of EMCV 3Dpol is shown to be similar to that of the known RdRps of other members of the Picornaviridae family, structural comparisons show a large reorganization of the active-site cavity in one of the crystal forms. The rearrangement affects mainly motif A, where the conserved residue Asp240, involved in ribonucleoside triphosphate (rNTP) selection, and its neighbor residue, Phe239, move about 10 Å from their expected positions within the ribose binding pocket toward the entrance of the rNTP tunnel. This altered conformation of motif A is stabilized by a cation-π interaction established between the aromatic ring of Phe239 and the side chain of Lys56 within the finger domain. Other contacts, involving Phe239 and different residues of motif F, are also observed. The movement of motif A is connected with important conformational changes in the finger region flanked by residues 54 to 63, harboring Lys56, and in the polymerase N terminus. The structures determined in this work provide essential information for studies on the cardiovirus RNA replication process and may have important implications for the development of new antivirals targeting the altered conformation of motif A. IMPORTANCE The Picornaviridae family is one of the largest virus families known, including many important human and animal pathogens. The RNA-dependent RNA polymerase (RdRp) 3Dpol is a key enzyme for picornavirus genome replication and a validated target for the development of antiviral therapies. Solving the X-ray structure of the first cardiovirus RdRp, EMCV 3Dpol, we captured an altered conformation of a conserved motif in the polymerase active site (motif A) containing the aspartic acid residue involved in rNTP selection and binding. This altered conformation of motif A, which interferes with the correct positioning of the rNTP substrate in the active site, is stabilized by a number of residues strictly conserved among picornaviruses. The rearrangements observed suggest that this motif A segment is a dynamic element that can be modulated by external effectors, either activating or inhibiting enzyme activity, and this type of modulation appears to be general to all picornaviruses.
Collapse
|
46
|
Verdijk P, Rots NY, Bakker WAM. Clinical development of a novel inactivated poliomyelitis vaccine based on attenuated Sabin poliovirus strains. Expert Rev Vaccines 2014; 10:635-44. [DOI: 10.1586/erv.11.51] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
47
|
Chang Y, Dou Y, Bao H, Luo X, Liu X, Mu K, Liu Z, Liu X, Cai X. Multiple microRNAs targeted to internal ribosome entry site against foot-and-mouth disease virus infection in vitro and in vivo. Virol J 2014; 11:1. [PMID: 24393133 PMCID: PMC3903555 DOI: 10.1186/1743-422x-11-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2013] [Accepted: 12/27/2013] [Indexed: 11/25/2022] Open
Abstract
Background Foot-and-mouth disease virus (FMDV) causes a severe vesicular disease in domestic and wild cloven-hoofed animals. Because of the limited early protection induced by current vaccines, emergency antiviral strategies to control the rapid spread of FMD outbreaks are needed. Here we constructed multiple microRNAs (miRNAs) targeting the internal ribosome entry site (IRES) element of FMDV and investigated the effect of IRES-specific miRNAs on FMDV replication in baby hamster kidney (BHK-21) cells and suckling mice. Results Four IRES-specific miRNAs significantly reduced enhanced green fluorescent protein (EGFP) expression from IRES-EGFP reporter plasmids, which were used with each miRNA expression plasmid in co-transfection of BHK-21 cells. Furthermore, treatment of BHK-21 cells with Bi-miRNA (a mixture of two miRNA expression plasmids) and Dual-miRNA (a co-cistronic expression plasmid containing two miRNA hairpin structures) induced more efficient and greater inhibition of EGFP expression than did plasmids carrying single miRNA sequences. Stably transformed BHK-21 cells and goat fibroblasts with an integrating IRES-specific Dual-miRNA were generated, and real-time quantitative RT-PCR showed that the Dual-miRNA was able to effectively inhibit the replication of FMDV (except for the Mya98 strain) in the stably transformed BHK-21 cells. The Dual-miRNA plasmid significantly delayed the deaths of suckling mice challenged with 50× and 100× the 50% lethal dose (LD50) of FMDV vaccine strains of three serotypes (O, A and Asia 1), and induced partial/complete protection against the prevalent PanAsia-1 and Mya98 strains of FMDV serotype O. Conclusion These data demonstrate that IRES-specific miRNAs can significantly inhibit FMDV infection in vitro and in vivo.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Xuepeng Cai
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, Gansu, P, R of China.
| |
Collapse
|
48
|
Arias A, Emmott E, Vashist S, Goodfellow I. Progress towards the prevention and treatment of norovirus infections. Future Microbiol 2013; 8:1475-87. [PMID: 24199805 PMCID: PMC3904215 DOI: 10.2217/fmb.13.109] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Noroviruses are now recognized as the major cause of acute gastroenteritis in the developed world, yet our ability to prevent and control infection is limited. Recent work has highlighted that, while typically an acute infection in the population, immunocompromised patients often experience long-term infections that may last many years. This cohort of patients and those regularly exposed to infectious material, for example, care workers and others, would benefit greatly from the development of a vaccine or antiviral therapy. While a licensed vaccine or antiviral has yet to be developed, work over the past 10 years in this area has intensified and trials with a vaccine candidate have proven promising. Numerous antiviral targets and small molecule inhibitors that have efficacy in cell culture have now been identified; however, further studies in this area are required in order to make these suitable for clinical use.
Collapse
Affiliation(s)
- Armando Arias
- Division of Virology, Department of Pathology, University of Cambridge, Addenbrooke’s Hospital, Hills Road, Cambridge, CB2 2QQ, UK
| | - Edward Emmott
- Division of Virology, Department of Pathology, University of Cambridge, Addenbrooke’s Hospital, Hills Road, Cambridge, CB2 2QQ, UK
| | - Surender Vashist
- Division of Virology, Department of Pathology, University of Cambridge, Addenbrooke’s Hospital, Hills Road, Cambridge, CB2 2QQ, UK
| | - Ian Goodfellow
- Division of Virology, Department of Pathology, University of Cambridge, Addenbrooke’s Hospital, Hills Road, Cambridge, CB2 2QQ, UK
| |
Collapse
|
49
|
Abstract
This review highlights ten "hot topics" in current antiviral research: (i) new nucleoside derivatives (i.e., PSI-352938) showing high potential as a direct antiviral against hepatitis C virus (HCV); (ii) cyclopropavir, which should be further pursued for treatment of human cytomegalovirus (HCMV) infections; (iii) North-methanocarbathymidine (N-MCT), with a N-locked conformation, showing promising activity against both α- and γ-herpesviruses; (iv) CMX001, an orally bioavailable prodrug of cidofovir with broad-spectrum activity against DNA viruses, including polyoma, adeno, herpes, and pox; (v) favipiravir, which is primarily pursued for the treatment of influenza virus infections, but also inhibits the replication of other RNA viruses, particularly (-)RNA viruses such as arena, bunya, and hanta; (vi) newly emerging antiarenaviral compounds which should be more effective (and less toxic) than the ubiquitously used ribavirin; (vii) antipicornavirus agents in clinical development (pleconaril, BTA-798, and V-073); (viii) natural products receiving increased attention as potential antiviral drugs; (ix) antivirals such as U0126 targeted at specific cellular kinase pathways [i.e., mitogen extracellular kinase (MEK)], showing activity against influenza and other viruses; and (x) two structurally unrelated compounds (i.e., LJ-001 and dUY11) with broad-spectrum activity against virtually all enveloped RNA and DNA viruses.
Collapse
Affiliation(s)
- Erik De Clercq
- Rega Institute for Medical Research, KU Leuven, Minderbroedersstraat 10, B-3000, Leuven, Belgium.
| |
Collapse
|
50
|
van der Schaar HM, Leyssen P, Thibaut HJ, de Palma A, van der Linden L, Lanke KHW, Lacroix C, Verbeken E, Conrath K, MacLeod AM, Mitchell DR, Palmer NJ, van de Poël H, Andrews M, Neyts J, van Kuppeveld FJM. A novel, broad-spectrum inhibitor of enterovirus replication that targets host cell factor phosphatidylinositol 4-kinase IIIβ. Antimicrob Agents Chemother 2013; 57:4971-81. [PMID: 23896472 PMCID: PMC3811463 DOI: 10.1128/aac.01175-13] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 07/19/2013] [Indexed: 12/22/2022] Open
Abstract
Despite their high clinical and socioeconomic impacts, there is currently no approved antiviral therapy for the prophylaxis or treatment of enterovirus infections. Here we report on a novel inhibitor of enterovirus replication, compound 1, 2-fluoro-4-(2-methyl-8-(3-(methylsulfonyl)benzylamino)imidazo[1,2-a]pyrazin-3-yl)phenol. This compound exhibited a broad spectrum of antiviral activity, as it inhibited all tested species of enteroviruses and rhinoviruses, with 50% effective concentrations ranging between 4 and 71 nM. After a lengthy resistance selection process, coxsackievirus mutants resistant to compound 1 were isolated that carried substitutions in their 3A protein. Remarkably, the same substitutions were recently shown to provide resistance to inhibitors of phosphatidylinositol 4-kinase IIIβ (PI4KIIIβ), a lipid kinase that is essential for enterovirus replication, suggesting that compound 1 may also target this host factor. Accordingly, compound 1 directly inhibited PI4KIIIβ in an in vitro kinase activity assay. Furthermore, the compound strongly reduced the PI 4-phosphate levels of the Golgi complex in cells. Rescue of coxsackievirus replication in the presence of compound 1 by a mutant PI4KIIIβ carrying a substitution in its ATP-binding pocket revealed that the compound directly binds the kinase at this site. Finally, we determined that an analogue of compound 1, 3-(3-fluoro-4-methoxyphenyl)-2-methyl-N-(pyridin-4-ylmethyl)imidazo[1,2-a]pyrazin-8-amine, is well tolerated in mice and has a dose-dependent protective activity in a coxsackievirus serotype B4-induced pancreatitis model.
Collapse
Affiliation(s)
- Hilde M. van der Schaar
- Department of Infectious Diseases and Immunology, Virology Division, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Pieter Leyssen
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, University of Leuven, Leuven, Belgium
| | - Hendrik J. Thibaut
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, University of Leuven, Leuven, Belgium
| | - Armando de Palma
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, University of Leuven, Leuven, Belgium
| | - Lonneke van der Linden
- Department of Medical Microbiology, Nijmegen Centre for Molecular Life Sciences, and Nijmegen Institute for Infection, Inflammation and Immunity, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, University of Leuven, Leuven, Belgium
| | - Kjerstin H. W. Lanke
- Department of Medical Microbiology, Nijmegen Centre for Molecular Life Sciences, and Nijmegen Institute for Infection, Inflammation and Immunity, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Céline Lacroix
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, University of Leuven, Leuven, Belgium
| | - Erik Verbeken
- Translational Cell & Tissue Research, Department of Imaging & Pathology, University of Leuven, Leuven, Belgium
| | | | | | | | | | | | | | - Johan Neyts
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, University of Leuven, Leuven, Belgium
| | - Frank J. M. van Kuppeveld
- Department of Infectious Diseases and Immunology, Virology Division, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
- Department of Medical Microbiology, Nijmegen Centre for Molecular Life Sciences, and Nijmegen Institute for Infection, Inflammation and Immunity, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| |
Collapse
|