1
|
Jia S, Wen X, Zhu M, Fu X. The pluripotent-to-totipotent state transition in mESCs activates the intrinsic apoptotic pathway through DUX-induced DNA replication stress. Cell Mol Life Sci 2024; 81:440. [PMID: 39460804 PMCID: PMC11512989 DOI: 10.1007/s00018-024-05465-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/11/2024] [Accepted: 09/30/2024] [Indexed: 10/28/2024]
Abstract
The pluripotent mouse embryonic stem cell (mESCs) can transit into the totipotent-like state, and the transcription factor DUX is one of the master regulators of this transition. Intriguingly, this transition in mESCs is accompanied by massive cell death, which significantly impedes the establishment and maintenance of totipotent cells in vitro, yet the underlying mechanisms of this cell death remain largely elusive. In this study, we found that the totipotency transition in mESCs triggered cell death through the upregulation of DUX. Specifically, R-loops are accumulated upon DUX induction, which subsequently lead to DNA replication stress (RS) in mESCs. This RS further activates p53 and PMAIP1, ultimately leading to Caspase-9/7-dependent intrinsic apoptosis. Notably, inhibiting this intrinsic apoptosis not only mitigates cell death but also enhances the efficiency of the totipotency transition in mESCs. Our findings thus elucidate one of the mechanisms underlying cell apoptosis during the totipotency transition in mESCs and provide a strategy for optimizing the establishment and maintenance of totipotent cells in vitro.
Collapse
Affiliation(s)
- Shunze Jia
- First Affiliated Hospital, Zhejiang University School of Medicine, and Liangzhu Laboratory of Zhejiang University, Hangzhou, Zhejiang, China
- Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xinpeng Wen
- First Affiliated Hospital, Zhejiang University School of Medicine, and Liangzhu Laboratory of Zhejiang University, Hangzhou, Zhejiang, China
- Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Minwei Zhu
- First Affiliated Hospital, Zhejiang University School of Medicine, and Liangzhu Laboratory of Zhejiang University, Hangzhou, Zhejiang, China
- Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xudong Fu
- First Affiliated Hospital, Zhejiang University School of Medicine, and Liangzhu Laboratory of Zhejiang University, Hangzhou, Zhejiang, China.
- Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, China.
- Department of Geriatrics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
2
|
Wei K, Hill BL, Miller ZA, Mueller A, Thompson JC, Lee RJ, Carey RM. Bitter Taste Receptor Agonists Induce Apoptosis in Papillary Thyroid Cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.18.618693. [PMID: 39484580 PMCID: PMC11527002 DOI: 10.1101/2024.10.18.618693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Background Papillary thyroid carcinoma (PTC) is the most common thyroid malignancy, with a 20% recurrence rate. Bitter taste receptors (T2Rs) and their genes ( TAS2Rs ) may regulate survival in solid tumors. This study examined T2R expression and function in PTC cells. Methods Three PTC cell lines (MDA-T32, MDA-T68, MDA-T85) were analyzed for expression using RT-qPCR and immunofluorescence. Live cell imaging measured calcium responses to six bitter agonists. Viability and apoptosis effects were assessed using crystal violet and caspase 3/7 activation assays. Genome analysis of survival was conducted. Results TAS2R14 was consistently highly expressed in all cell lines. Five bitter agonists produced significant calcium responses across all cell lines. All bitter agonists significantly decreased viability and induced apoptosis. Higher TAS2R14 expression correlated with better progression-free survival in patients (p<0.05). Conclusions T2R activation by bitter agonists induces apoptosis and higher TAS2R expression is associated with survival, suggesting potential therapeutic relevance in thyroid cancer management.
Collapse
|
3
|
Yagublu V, Bayramov B, Reissfelder C, Hajibabazade J, Abdulrahimli S, Keese M. Microarray-based detection and expression analysis of drug resistance in an animal model of peritoneal metastasis from colon cancer. Clin Exp Metastasis 2024; 41:707-715. [PMID: 38609535 PMCID: PMC11499332 DOI: 10.1007/s10585-024-10283-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 03/05/2024] [Indexed: 04/14/2024]
Abstract
Chemotherapy drugs efficiently eradicate rapidly dividing differentiated cells by inducing cell death, but poorly target slowly dividing cells, including cancer stem cells and dormant cancer cells, in the later course of treatment. Prolonged exposure to chemotherapy results in a decrease in the proportion of apoptotic cells in the tumour mass. To investigate and characterize the molecular basis of this phenomenon, microarray-based expression analysis was performed to compare tHcred2-DEVD-EGFP-caspase 3-sensor transfected C-26 tumour cells that were harvested after engraftment into mice treated with or without 5-FU. Peritoneal metastasis was induced by intraperitoneal injection of C-26 cells, which were subsequently reisolated from omental metastatic tumours after the mice were sacrificed by the end of the 10th day after tumour injection. The purity of reisolated tHcred2-DEVD-EGFP-caspase 3-sensor-expressing C-26 cells was confirmed using FLIM, and total RNA was extracted for gene expression profiling. The validation of relative transcript levels was carried out via real-time semiquantitative RT‒PCR assays. Our results demonstrated that chemotherapy induced the differential expression of mediators of cancer cell dormancy and cell survival-related genes and downregulation of both intrinsic and extrinsic apoptotic signalling pathways. Despite the fact that some differentially expressed genes, such as BMP7 and Prss11, have not been thoroughly studied in the context of chemoresistance thus far, they might be potential candidates for future studies on overcoming drug resistance.
Collapse
Affiliation(s)
- Vugar Yagublu
- Department of Surgery, Medical Faculty Mannheim, Universitätsmedizin Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany.
| | - Bayram Bayramov
- Laboratory of Human Genetics, Genetic Resources Institute of Ministry of Science and Education, Baku, Azerbaijan
- Department of Natural Sciences, Western Caspian University, AZ1001, Baku, Azerbaijan
| | - Christoph Reissfelder
- Department of Surgery, Medical Faculty Mannheim, Universitätsmedizin Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
- Medical Faculty Mannheim, DKFZ-Hector Cancer Institute, Heidelberg University, Mannheim, Germany
| | - Javahir Hajibabazade
- Carver College of Medicine, University of Iowa, Bowen Science Building, 51 Newton Road, Iowa City, IA, 52242-1009, USA
| | - Shalala Abdulrahimli
- Department of Surgery, Medical Faculty Mannheim, Universitätsmedizin Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
- Laboratory of Human Genetics, Genetic Resources Institute of Ministry of Science and Education, Baku, Azerbaijan
| | - Michael Keese
- Department of Vascular Surgery, Theresienkrankenhaus and St. Hedwigsklinik, Mannheim, Germany
| |
Collapse
|
4
|
Banerjee S, Oguljahan B, Thompson WE, Chowdhury I. Neuregulin 1 Signaling Attenuates Tumor Necrosis Factor α-Induced Female Rat Luteal Cell Death. Endocrinology 2024; 165:bqae129. [PMID: 39312480 PMCID: PMC11456883 DOI: 10.1210/endocr/bqae129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/16/2024] [Accepted: 09/20/2024] [Indexed: 09/25/2024]
Abstract
The corpus luteum (CL) is a transient ovarian endocrine structure that maintains pregnancy in primates during the first trimester and in rodents during the entire pregnancy by producing steroid hormone progesterone (P4). CL lifespan, growth, and differentiation are tightly regulated by survival and cell death signals through luteotrophic and luteolytic factors, including the epidermal growth factor (EGF)-like factor family. Neuregulin 1 (NRG1), a member of the EGF family, mediates its effect through ErbB2/3 receptors. However, the functional role of NRG1 in luteal cells (LCs) is unknown. Thus, this study investigated the role of NRG1 and its molecular mechanism of action in rat LC. Our experimental results suggest a strong positive correlation between steroidogenic acute regulatory protein (StAR) and NRG1 expression in mid-CL and serum P4 and estrogen (E2) production. In contrast, there was a decrease in StAR and NRG1 expression and P4 and E2 production with an increase in tumor necrosis factor α (TNFα) expression in regressing CL. Further in vitro studies in LCs showed that the knockdown of endogenous Nrg1 promoted the expression of proinflammatory and proapoptotic factors and decreased prosurvival factor expression. Subsequently, treatment with exogenous TNFα under these experimental conditions profoundly elevated proinflammatory and proapoptotic factors. Further analysis demonstrated that the phosphorylation status of ErbB2/3, PI3K, Ak strain transforming or protein kinase B (Akt), and ErK1/2 was significantly inhibited under these experimental conditions, whereas the treatment of TNFα further inhibited the phosphorylation of ErbB2/3, PI3K, Akt, and ErK1/2. Collectively, these studies provide new insights into the NRG1-mediated immunomodulatory and prosurvival role in LCs, which may maintain the function of CL.
Collapse
Affiliation(s)
- Saswati Banerjee
- Department of Physiology, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Babayewa Oguljahan
- Center for Laboratory Animal Resources, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Winston E Thompson
- Department of Physiology, Morehouse School of Medicine, Atlanta, GA 30310, USA
- Department of Obstetrics and Gynecology, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Indrajit Chowdhury
- Department of Obstetrics and Gynecology, Morehouse School of Medicine, Atlanta, GA 30310, USA
| |
Collapse
|
5
|
Pagliuca C, Colicchio R, Resta SC, Talà A, Scaglione E, Mantova G, Continisio L, Pagliarulo C, Bucci C, Alifano P, Salvatore P. Neisseria meningitidis activates pyroptotic pathways in a mouse model of meningitis: role of a two-partner secretion system. Front Cell Infect Microbiol 2024; 14:1384072. [PMID: 39376663 PMCID: PMC11456522 DOI: 10.3389/fcimb.2024.1384072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 08/27/2024] [Indexed: 10/09/2024] Open
Abstract
There is evidence that in infected cells in vitro the meningococcal HrpA/HrpB two-partner secretion system (TPS) mediates the exit of bacteria from the internalization vacuole and the docking of bacteria to the dynein motor resulting in the induction of pyroptosis. In this study we set out to study the role of the HrpA/HrpB TPS in establishing meningitis and activating pyroptotic pathways in an animal model of meningitis using a reference serogroup C meningococcal strain, 93/4286, and an isogenic hrpB knockout mutant, 93/4286ΩhrpB. Survival experiments confirmed the role of HrpA/HrpB TPS in the invasive meningococcal disease. In fact, the ability of the hrpB mutant to replicate in brain and spread systemically was impaired in mice infected with hrpB mutant. Furthermore, western blot analysis of brain samples during the infection demonstrated that: i. N. meningitidis activated canonical and non-canonical inflammasome pyroptosis pathways in the mouse brain; ii. the activation of caspase-11, caspase-1, and gasdermin-D was markedly reduced in the hrpB mutant; iii. the increase in the amount of IL-1β and IL-18, which are an important end point of pyroptosis, occurs in the brains of mice infected with the wild-type strain 93/4286 and is strongly reduced in those infected with 93/4286ΩhrpB. In particular, the activation of caspase 11, which is triggered by cytosolic lipopolysaccharide, indicates that during meningococcal infection pyroptosis is induced by intracellular infection after the exit of the bacteria from the internalizing vacuole, a process that is hindered in the hrpB mutant. Overall, these results confirm, in an animal model, that the HrpA/HrpB TPS plays a role in the induction of pyroptosis and suggest a pivotal involvement of pyroptosis in invasive meningococcal disease, paving the way for the use of pyroptosis inhibitors in the adjuvant therapy of the disease.
Collapse
Affiliation(s)
- Chiara Pagliuca
- Department of Molecular Medicine and Medical Biotecnologies, University of Naples "Federico II", Naples, Italy
| | - Roberta Colicchio
- Department of Molecular Medicine and Medical Biotecnologies, University of Naples "Federico II", Naples, Italy
| | - Silvia Caterina Resta
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - Adelfia Talà
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - Elena Scaglione
- Department of Molecular Medicine and Medical Biotecnologies, University of Naples "Federico II", Naples, Italy
| | - Giuseppe Mantova
- Department of Molecular Medicine and Medical Biotecnologies, University of Naples "Federico II", Naples, Italy
| | - Leonardo Continisio
- Department of Molecular Medicine and Medical Biotecnologies, University of Naples "Federico II", Naples, Italy
- Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy
| | - Caterina Pagliarulo
- Department of Science and Technology, University of Sannio, Benevento, Italy
| | - Cecilia Bucci
- Department of Experimental Medicine, University of Salento, Lecce, Italy
| | - Pietro Alifano
- Department of Experimental Medicine, University of Salento, Lecce, Italy
| | - Paola Salvatore
- Department of Molecular Medicine and Medical Biotecnologies, University of Naples "Federico II", Naples, Italy
- The Institute CEINGE-Biotecnologie Avanzate Franco Salvatore s.c.ar.l., Naples, Italy
- Task Force on Microbiome Studies, University of Naples "Federico II", Naples, Italy
| |
Collapse
|
6
|
Napiórkowska M, Otto-Ślusarczyk D, Kurpios-Piec D, Stukan I, Gryzik M, Wojda U. BM7, a derivative of benzofuran, effectively fights cancer by promoting cancer cell apoptosis and impacting IL-6 levels. Eur J Pharmacol 2024; 978:176751. [PMID: 38897442 DOI: 10.1016/j.ejphar.2024.176751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 06/10/2024] [Accepted: 06/16/2024] [Indexed: 06/21/2024]
Abstract
The BM7 compound, a bromo derivative of methyl 6-acetyl-5-hydroxy-2-methyl-1-benzofuran-3-carboxylate, was previously identified as cytotoxic to human leukaemia cells (K562 and HL60) and human cervical cancer (HeLa), while showing no toxicity to non-cancerous primary endothelial cells (HUVEC). In this study, we present the first demonstration of BM7's anticancer efficacy in vivo using a mouse chronic myeloid leukaemia xenograft model. Administered intraperitoneally in a mixture of 10% Solutol HS 15/10% ethanol, BM7 exhibited no visible toxicity and significantly reduced tumor weight, comparable to standard drugs imatinib and hydroxyurea. Further supporting its anticancer potential, a multi-model in vitro study involving seven human cancer cell lines revealed the most promising responses in colon cancer (SW480, SW620, HCT116), liver cancer (HEPG2), and breast adenocarcinoma (MDA-MB-231) cells. BM7 demonstrated multifaceted anticancer mechanisms, inducing apoptosis while elevating reactive oxygen species (ROS) levels and suppressing interleukin-6 (IL-6) release in these cell lines. These findings position BM7 as a candidate of significant interest for cancer therapy. Its ability to not only induce apoptosis but also modulate cellular processes such as ROS levels and immune responses, specifically IL-6 suppression, makes BM7 a versatile and promising agent for further exploration in the realm of cancer treatment.
Collapse
Affiliation(s)
| | | | | | - Iga Stukan
- Laboratory of Preclinical Testing of Higher Standard, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warsaw, Poland; Department of General Pathology, Faculty of Medicine and Dentistry, Pomeranian Medical University in Szczecin, 1 Rybacka Street, 70-204, Szczecin, Poland
| | - Marek Gryzik
- Laboratory of Preclinical Testing of Higher Standard, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warsaw, Poland
| | - Urszula Wojda
- Laboratory of Preclinical Testing of Higher Standard, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warsaw, Poland
| |
Collapse
|
7
|
Yang B, Sun L, Peng Z, Zhang Q, Lin M, Peng Z, Zheng L. Developmental Toxicity and Apoptosis in Zebrafish: The Impact of Lithium Hexafluorophosphate (LiPF 6) from Lithium-Ion Battery Electrolytes. Int J Mol Sci 2024; 25:9307. [PMID: 39273255 PMCID: PMC11395654 DOI: 10.3390/ijms25179307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/18/2024] [Accepted: 08/23/2024] [Indexed: 09/15/2024] Open
Abstract
With the growing dependence on lithium-ion batteries, there is an urgent need to understand the potential developmental toxicity of LiPF6, a key component of these batteries. Although lithium's toxicity is well-established, the biological toxicity of LiPF6 has been minimally explored. This study leverages the zebrafish model to investigate the developmental impact of LiPF6 exposure. We observed morphological abnormalities, reduced spontaneous movement, and decreased hatching and swim bladder inflation rates in zebrafish embryos, effects that intensified with higher LiPF6 concentrations. Whole-mount in situ hybridization demonstrated that the specific expression of the swim bladder outer mesothelium marker anxa5b was suppressed in the swim bladder region under LiPF6 exposure. Transcriptomic analysis disclosed an upregulation of apoptosis-related gene sets. Acridine orange staining further supported significant induction of apoptosis. These findings underscore the environmental and health risks of LiPF6 exposure and highlight the necessity for improved waste management strategies for lithium-ion batteries.
Collapse
Affiliation(s)
- Boyu Yang
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, Hunan Normal University, Changsha 410012, China
| | - Luning Sun
- College of Fisheries, Hunan Agricultural University, Changsha 410128, China
| | - Zheng Peng
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, Hunan Normal University, Changsha 410012, China
| | - Qing Zhang
- The Center for Heart Development, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Mei Lin
- The Center for Heart Development, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Zhilin Peng
- The Center for Heart Development, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Lan Zheng
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, Hunan Normal University, Changsha 410012, China
| |
Collapse
|
8
|
Paranjape N, Strack S, Lehmler HJ, Doorn JA. Astrocyte Mitochondria Are a Sensitive Target of PCB52 and its Human-Relevant Metabolites. ACS Chem Neurosci 2024; 15:2729-2740. [PMID: 38953493 PMCID: PMC11311133 DOI: 10.1021/acschemneuro.4c00116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 06/10/2024] [Accepted: 06/18/2024] [Indexed: 07/04/2024] Open
Abstract
Polychlorinated biphenyls (PCBs) are industrial chemicals that are ubiquitously found in the environment. Exposure to these compounds has been associated with neurotoxic outcomes; however, the underlying mechanisms for such outcomes remain to be fully understood. Recent studies have shown that astrocytes, the most abundant glial cell type in the brain, are susceptible to PCB exposure as well as exposure to human-relevant metabolites of PCBs. Astrocytes are critical for maintaining healthy brain function due to their unique functional attributes and positioning within the neuronal networks in the brain. In this study, we assessed the toxicity of PCB52, one of the most abundantly found PCB congeners in outdoor and indoor air, and two of its human-relevant metabolites, on astrocyte mitochondria. We exposed C6 cells, an astrocyte cell line, to PCB52 or its human-relevant metabolites and found that all the compounds showed increased toxicity in galactose-containing media compared to that in the glucose-containing media, indicating the involvement of mitochondria in observed toxicity. Additionally, we also found increased oxidative stress upon exposure to PCB52 metabolites. All three compounds caused a loss of mitochondrial membrane potential, distinct changes in the mitochondrial structure, and impaired mitochondrial function. The hydroxylated metabolite 4-OH-PCB52 likely functions as an uncoupler of mitochondria. This is the first study to report the adverse effects of exposure to PCB52 and its human-relevant metabolites on the mitochondrial structure and function in astrocytes.
Collapse
Affiliation(s)
- Neha Paranjape
- Department
of Pharmaceutical Sciences & Experimental Therapeutics, College
of Pharmacy, University of Iowa, Iowa City, Iowa 52242, United States
- Department
of Occupational and Environmental Health, College of Public Health, University of Iowa, Iowa City, Iowa 52242, United States
| | - Stefan Strack
- Department
of Neuroscience and Pharmacology, University
of Iowa Carver College of Medicine, Iowa City, Iowa 52242, United States
| | - Hans-Joachim Lehmler
- Department
of Occupational and Environmental Health, College of Public Health, University of Iowa, Iowa City, Iowa 52242, United States
| | - Jonathan A. Doorn
- Department
of Pharmaceutical Sciences & Experimental Therapeutics, College
of Pharmacy, University of Iowa, Iowa City, Iowa 52242, United States
| |
Collapse
|
9
|
Wang K, Wang X, Wang G, Berihun Afera T, Hou S, Yao K, Zhang J, Wang S, Sun Y. Ssc-miR-7139-3p suppresses foot-and-mouth disease virus replication by promoting degradation of 3C pro through targeting apoptosis-negative regulatory gene Bcl-2. Virology 2024; 595:110070. [PMID: 38657363 DOI: 10.1016/j.virol.2024.110070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 03/22/2024] [Accepted: 03/26/2024] [Indexed: 04/26/2024]
Abstract
Foot-and-mouth disease is a highly contagious and infectious disease affecting cloven-hoofed animals. Disease control is complicated by its highly contagious nature and antigenic diversity. Host microRNAs (miRNAs) are post-transcriptional regulators that either promote or repress viral replications in virus infection. In the present study, we found that ssc-miR-7139-3p (Sus scrofa miR-7139-3p) was significantly up-regulated in host cells during foot-and-mouth disease virus (FMDV) infection. Overexpression of miR-7139-3p attenuated FMDV replication, whereas inhibition promoted FMDV replication. In addition, the survival rate of FMDV infected suckling mice was increased through injection of miR-7139-3p agomiR. Further studies revealed that miR-7139-3p targets Bcl-2 to initiate the apoptotic pathway and caspase-3 cleaved 3Cpro behind the 174th aspartic acid (D174), which eventually promotes the degradation of 3Cpro. Overall, our findings demonstrate that miR-7139-3p suppresses FMDV replication by promoting degradation of 3Cpro through targeting the apoptosis-negative regulatory gene Bcl-2.
Collapse
Affiliation(s)
- Kailing Wang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| | - Xiangwei Wang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| | - Guangxiang Wang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| | - Tadele Berihun Afera
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China; Mekelle University, College of Veterinary Sciences, P.O.Box 2084, Mekelle, Tigray, Ethiopia
| | - Shitong Hou
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| | - Kaishen Yao
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| | - Jie Zhang
- Hebei key Laboratory of Preventive Veterinary Medicine, College of Animal Science and Technology, Hebei Normal University of Science &Technology, Qinhuangdao, 066004, China.
| | - Shasha Wang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China.
| | - Yuefeng Sun
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China.
| |
Collapse
|
10
|
Abdulkareem SJ, Jafari-Gharabaghlou D, Farhoudi-Sefidan-Jadid M, Salmani-Javan E, Toroghi F, Zarghami N. Co-delivery of artemisinin and metformin via PEGylated niosomal nanoparticles: potential anti-cancer effect in treatment of lung cancer cells. Daru 2024; 32:133-144. [PMID: 38168007 PMCID: PMC11087397 DOI: 10.1007/s40199-023-00495-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 12/05/2023] [Indexed: 01/05/2024] Open
Abstract
PURPOSE Despite the advances in treatment, lung cancer is a global concern and necessitates the development of new treatments. Biguanides like metformin (MET) and artemisinin (ART) have recently been discovered to have anti-cancer properties. As a consequence, in the current study, the anti-cancer effect of MET and ART co-encapsulated in niosomal nanoparticles on lung cancer cells was examined to establish an innovative therapy technique. METHODS Niosomal nanoparticles (Nio-NPs) were synthesized by thin-film hydration method, and their physicochemical properties were assessed by FTIR. The morphology of Nio-NPs was evaluated with FE-SEM and AFM. The MTT assay was applied to evaluate the cytotoxic effects of free MET, free ART, their encapsulated form with Nio-NPs, as well as their combination, on A549 cells. Apoptosis assay was utilized to detect the biological processes involved with programmed cell death. The arrest of cell cycle in response to drugs was assessed using a cell cycle assay. Following a 48-h drug treatment, the expression level of hTERT, Cyclin D1, BAX, BCL-2, Caspase 3, and 7 genes were assessed using the qRT-PCR method. RESULTS Both MET and ART reduced the survival rate of lung cancer cells in the dose-dependent manner. The IC50 values of pure ART and MET were 195.2 μM and 14.6 mM, respectively while in nano formulated form their IC50 values decreased to 56.7 μM and 78.3 μM, respectively. The combination of MET and ART synergistically decreased the proliferation of lung cancer cells, compared to the single treatments. Importantly, the combination of MET and ART had a higher anti-proliferative impact against A549 lung cancer cells, with lower IC50 values. According to the result of Real-time PCR, hTERT, Cyclin D1, BAX, BCL-2, Caspase 3, and Caspase 7 genes expression were considerably altered in treated with combination of nano formulated MET and ART compared to single therapies. CONCLUSION The results of this study showed that the combination of MET and ART encapsulated in Nio-NPs could be useful for the treatment of lung cancer and can increase the efficiency of lung cancer treatment.
Collapse
Affiliation(s)
- Salah Jaafar Abdulkareem
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Davoud Jafari-Gharabaghlou
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdi Farhoudi-Sefidan-Jadid
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elnaz Salmani-Javan
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Toroghi
- Research Center for Molecular Medicine, Hamedan University of Medical Science, Hamedan, Iran
| | - Nosratollah Zarghami
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Medical Biochemistry, Faculty of Medicine, Istanbul Aydin University, Istanbul, Turkey.
| |
Collapse
|
11
|
Yin S, Peng Y, Lin Y, Wu H, Wang B, Wang X, Chen W, Liu T, Peng H, Li X, Xu J, Wang M. Bacterial heat shock protein: A new crosstalk between T lymphocyte and macrophage via JAK2/STAT1 pathway in bloodstream infection. Microbiol Res 2024; 282:127626. [PMID: 38330817 DOI: 10.1016/j.micres.2024.127626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 01/14/2024] [Accepted: 01/15/2024] [Indexed: 02/10/2024]
Abstract
Bloodstream infection (BSI) refers to the infection of blood by pathogens. Severe immune response to BSI can lead to sepsis, a systemic infection leading to multiple organ dysfunction, coupled with drug resistance, mortality, and limited clinical treatment options. This work aims to further investigate the new interplay between bacterial exocrine regulatory protein and host immune cells in the context of highly drug-resistant malignant BSI. Whether interfering with related regulatory signaling pathways can reverse the inflammatory disorder of immune cells. In-depth analysis of single-cell sequencing results in Septic patients for potential immunodeficiency factors. Analysis of key proteins enriched by host cells and key pathways using proteomics. Cell models and animal models validate the pathological effects of DnaK on T cells, MAITs, macrophages, and osteoclasts. The blood of patients was analyzed for the immunosuppression of T cells and MAITs. We identified that S. maltophilia-DnaK was enriched in immunodeficient T cells. The activation of the JAK2/STAT1 axis initiated the exhaustion of T cells. Septic patients with Gram-negative bacterial infections exhibited deficiencies in MAITs, which correspond to IFN-γ. Cellular and animal experiments confirmed that DnaK could facilitate MAIT depletion and M1 polarization of macrophages. Additionally, Fludarabine mitigated M1 polarization of blood, liver, and spleen in mice. Interestingly, DnaK also repressed osteoclastogenesis of macrophages stimulated by RANKL. S.maltophilia-DnaK prompts the activation of the JAK2/STAT1 axis in T cells and the M1 polarization of macrophages. Targeting the DnaK's crosstalk can be a potentially effective approach for treating the inflammatory disorder in the broad-spectrum drug-resistant BSI.
Collapse
Affiliation(s)
- Sheng Yin
- Department of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; School of Biomedical Sciences, University of Western Australia, Perth, WA 6009, Australia
| | - Yizhi Peng
- Department of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Department of Laboratory Medicine, Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Hunan 410031, China
| | - YingRui Lin
- Department of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Hongzheng Wu
- Department of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Bingqi Wang
- Department of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Xiaofan Wang
- Department of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Wanxin Chen
- Department of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Tianyao Liu
- Department of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Huanqie Peng
- Department of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Xianping Li
- Department of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Jiake Xu
- School of Biomedical Sciences, University of Western Australia, Perth, WA 6009, Australia
| | - Min Wang
- Department of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China.
| |
Collapse
|
12
|
Mendoza RM, Song JH, Jung YT, Paik HD, Park YS, Kang DK. Recombinant Arginine Deiminase from Levilactobacillus brevis Inhibits the Growth of Stomach Cancer Cells, Possibly by Activating the Intrinsic Apoptosis Pathway. Int J Mol Sci 2024; 25:4163. [PMID: 38673749 PMCID: PMC11050082 DOI: 10.3390/ijms25084163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/25/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
The anticancer potential of Levilactobacillus brevis KU15176 against the stomach cancer cell line AGS has been reported previously. In this study, we aimed to analyze the genome of L. brevis KU15176 and identify key genes that may have potential anticancer properties. Among potential anticancer molecules, the role of arginine deiminase (ADI) in conferring an antiproliferative functionality was confirmed. In vitro assay against AGS cell line confirmed that recombinant ADI from L. brevis KU15176 (ADI_br, 5 µg/mL), overexpressed in E. coli BL21 (DE3), exerted an inhibitory effect on AGS cell growth, resulting in a 65.32% reduction in cell viability. Moreover, the expression of apoptosis-related genes, such as bax, bad, caspase-7, and caspase-3, as well as the activity of caspase-9 in ADI_br-treated AGS cells, was higher than those in untreated (culture medium-only) cells. The cell-scattering behavior of ADI_br-treated cells showed characteristics of apoptosis. Flow cytometry analyses of AGS cells treated with ADI_br for 24 and 28 h revealed apoptotic rates of 11.87 and 24.09, respectively, indicating the progression of apoptosis in AGS cells after ADI_br treatment. This study highlights the potential of ADI_br as an effective enzyme for anticancer applications.
Collapse
Affiliation(s)
- Remilyn M. Mendoza
- Department of Animal Biotechnology, Dankook University, Cheonan 31116, Republic of Korea; (R.M.M.); (J.H.S.)
| | - Ji Hoon Song
- Department of Animal Biotechnology, Dankook University, Cheonan 31116, Republic of Korea; (R.M.M.); (J.H.S.)
| | - Yong Tae Jung
- Department of Microbiology, Dankook University, Cheonan 31116, Republic of Korea;
| | - Hyun-Dong Paik
- Department of Food Science and Biotechnology of Animal Resource, Konkuk University, Seoul 05029, Republic of Korea;
| | - Young-Seo Park
- Department of Food Science and Biotechnology, Gachon University, Seongnam 13120, Republic of Korea;
| | - Dae-Kyung Kang
- Department of Animal Biotechnology, Dankook University, Cheonan 31116, Republic of Korea; (R.M.M.); (J.H.S.)
| |
Collapse
|
13
|
Lin MC, Chen GY, Yu HH, Hsu PL, Lee CW, Cheng CC, Wu SY, Pan BS, Su BC. Repurposing the diuretic benzamil as an anti-osteosarcoma agent that acts by suppressing integrin/FAK/STAT3 signalling and compromising mitochondrial function. Bone Joint Res 2024; 13:157-168. [PMID: 38569602 PMCID: PMC10990635 DOI: 10.1302/2046-3758.134.bjr-2023-0289.r1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/05/2024] Open
Abstract
Aims Osteosarcoma is the most common primary bone malignancy among children and adolescents. We investigated whether benzamil, an amiloride analogue and sodium-calcium exchange blocker, may exhibit therapeutic potential for osteosarcoma in vitro. Methods MG63 and U2OS cells were treated with benzamil for 24 hours. Cell viability was evaluated with the MTS/PMS assay, colony formation assay, and flow cytometry (forward/side scatter). Chromosome condensation, the terminal deoxynucleotidyl transferase dUTP nick end labelling (TUNEL) assay, cleavage of poly-ADP ribose polymerase (PARP) and caspase-7, and FITC annexin V/PI double staining were monitored as indicators of apoptosis. Intracellular calcium was detected by flow cytometry with Fluo-4 AM. The phosphorylation and activation of focal adhesion kinase (FAK) and signal transducer and activator of transcription 3 (STAT3) were measured by western blot. The expression levels of X-linked inhibitor of apoptosis protein (XIAP), B-cell lymphoma 2 (Bcl-2), B-cell lymphoma-extra large (Bcl-xL), SOD1, and SOD2 were also assessed by western blot. Mitochondrial status was assessed with tetramethylrhodamine, ethyl ester (TMRE), and intracellular adenosine triphosphate (ATP) was measured with BioTracker ATP-Red Live Cell Dye. Total cellular integrin levels were evaluated by western blot, and the expression of cell surface integrins was assessed using fluorescent-labelled antibodies and flow cytometry. Results Benzamil suppressed growth of osteosarcoma cells by inducing apoptosis. Benzamil reduced the expression of cell surface integrins α5, αV, and β1 in MG63 cells, while it only reduced the expression of αV in U2OS cells. Benzamil suppressed the phosphorylation and activation of FAK and STAT3. In addition, mitochondrial function and ATP production were compromised by benzamil. The levels of anti-apoptotic proteins XIAP, Bcl-2, and Bcl-xL were reduced by benzamil. Correspondingly, benzamil potentiated cisplatin- and methotrexate-induced apoptosis in osteosarcoma cells. Conclusion Benzamil exerts anti-osteosarcoma activity by inducing apoptosis. In terms of mechanism, benzamil appears to inhibit integrin/FAK/STAT3 signalling, which triggers mitochondrial dysfunction and ATP depletion.
Collapse
Affiliation(s)
- Meng-Chieh Lin
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Guan-Yu Chen
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Hsin-Hsien Yu
- Division of General Surgery, Department of Surgery, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- Division of General Surgery, Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Pei-Ling Hsu
- Department of Anatomy, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Chu-Wan Lee
- Department of Nursing, National Tainan Junior College of Nursing, Tainan, Taiwan
| | - Chih-Cheng Cheng
- Division of General Surgery, Department of Surgery, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Shih-Ying Wu
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Wake Forest University, Winston-Salem, North Carolina, USA
| | - Bo-Syong Pan
- Department of Pathology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Bor-Chyuan Su
- Department of Anatomy and Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
14
|
Yu H, Yan X, Wang N, Liu X, Xue T, Li C, Zhang X. Characterization of caspase gene family in Sebastes schlegelii and their expression profiles under Aeromonas salmonicida and Vibrio anguillarum infection. Comp Biochem Physiol B Biochem Mol Biol 2024; 270:110913. [PMID: 37913865 DOI: 10.1016/j.cbpb.2023.110913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 10/27/2023] [Accepted: 10/27/2023] [Indexed: 11/03/2023]
Abstract
The caspase, functioning as a proteinase, plays a crucial role in eukaryotic cell apoptosis, regulation of apoptosis, cellular growth, differentiation, and immunity. The identification of caspase gene family in Sebastes schlegelii is of great help to understand its antimicrobial research. In S. schlegelii, we totally identified nine caspase genes, including four apoptosis initiator caspases (caspase 2, caspase 8, caspase 9 and caspase 10), four apoptosis executioners (caspase 3a, caspase 3b, caspase 6, and caspase 7) and one inflammatory executioner (caspase 1). The duplication of caspase 3 genes on chr3 and chr8 may have been facilitated by whole genome duplication (WGD) events or other complex evolutionary processes. In general, the number of caspase genes relatively conserved in high vertebrates, while exhibiting variation in teleosts. Furthermore, syntenic analysis and phylogenetic relationships analysis supported the correct classification of these caspase gene family in S. schlegelii, especially for genes with duplicated copies. Additionally, the expression patterns of these caspase genes in different tissues of S. schlegelii under healthy conditions were assessed. The results revealed that the expression levels of most caspase genes were significantly elevated in the intestine, spleen, and liver. To further investigate the potential immune functions of these caspase genes in S. schlegelii, we challenged individuals with A. salmonicida and V. anguillarum, respectively. After infection with A. salmonicida, the expression levels of caspase 1 in the liver and spleen of S. schlegelii remained consistently elevated throughout the infection time points. The expression levels of most caspase family members in the intestine exhibited significant divergence following V. anguillarum infection. This study provides a comprehensive understanding of the caspase gene families in S. schlegelii, thereby establishing a solid foundation for further investigations into the functional roles of these caspase genes.
Collapse
Affiliation(s)
- Haohui Yu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Xu Yan
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China, Qingdao 266011, China; College of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Ningning Wang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Xiantong Liu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Ting Xue
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Chao Li
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China.
| | - Xiaoyan Zhang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
15
|
Purnamasari Y, Hermawati E, Mujahidin D, Happyana N, Syah YM. Xanthorrhizol derivatives and their biological properties as caspase-7 inhibitors. Nat Prod Res 2024:1-9. [PMID: 38230507 DOI: 10.1080/14786419.2024.2302919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/02/2024] [Indexed: 01/18/2024]
Abstract
Xanthorrhizol (1) is known as the major terpenoid component of the rhizome of Curcuma xanthorrhiza and having some interesting biological activities. In this report, we synthesised five derivatives of 1 containing nitrogen-functional groups. Four of them are new synthesised compounds, including (R)-4-(3-(2-methyl-5-(6-methylhept-5-en-2-yl)phenoxy)propyl)morpholine (2), (R)-N-benzyl-3-(2-methyl-5-(6-methylhept-5-en-2-yl)phenoxy)propan-1-amine (3), (R)-6,7-dimethoxy-3-(3-(2-methyl-5-(6-methylhept-5-en-2-yl)phenoxy)propyl)quinazolin-4(3H)-one (4), and (R)-6-methyl-3-(6-methylhept-5-en-2-yl)-2-nitrophenol (5) groups. Meanwhile the other is the known compound, that is (R)-2-methyl-5-(6-methylhept-5-en-2-yl)-4-nitrophenol (6). The caspase-7 inhibitory activity of compounds 1-6 was evaluated as well. In comparison to other derivatives, compounds 5 and 6 exhibited higher activity. Consequently, compounds 5 and 6 may be a promising lead compound for further development as a caspase-7 inhibitor.
Collapse
Affiliation(s)
- Yunita Purnamasari
- Organic Chemistry Division, Faculty of Mathematics and Natural Sciences, Bandung Institute of Technology, Bandung, Indonesia
| | - Elvira Hermawati
- Organic Chemistry Division, Faculty of Mathematics and Natural Sciences, Bandung Institute of Technology, Bandung, Indonesia
| | - Didin Mujahidin
- Organic Chemistry Division, Faculty of Mathematics and Natural Sciences, Bandung Institute of Technology, Bandung, Indonesia
| | - Nizar Happyana
- Organic Chemistry Division, Faculty of Mathematics and Natural Sciences, Bandung Institute of Technology, Bandung, Indonesia
| | - Yana M Syah
- Organic Chemistry Division, Faculty of Mathematics and Natural Sciences, Bandung Institute of Technology, Bandung, Indonesia
| |
Collapse
|
16
|
He L, Lu Z, Zhang Y, Yan L, Ma L, Dong X, Wu Z, Dai Z, Tan B, Sun R, Sun S, Li C. The effect of polystyrene nanoplastics on arsenic-induced apoptosis in HepG2 cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 269:115814. [PMID: 38100851 DOI: 10.1016/j.ecoenv.2023.115814] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 12/05/2023] [Accepted: 12/09/2023] [Indexed: 12/17/2023]
Abstract
Microplastics are detrimental to the environment. However, the combined effects of microplastics and arsenic (As) remain unclear. In this study, we investigated the combined effects of polystyrene (PS) microplastics and As on HepG2 cells. The results showed that PS microplastics 20, 50, 200, and 500 nm in size were taken up by HepG2 cells, causing a decrease in cellular mitochondrial membrane potential. The results of lactate dehydrogenase release and flow cytometry showed that PS microplastics, especially those of 50 nm, enhanced As-induced apoptosis. In addition, transcriptome analysis revealed that TP53, AKT1, CASP3, ACTB, BCL2L1, CASP8, XIAP, MCL1, NFKBIA, and CASP7 were the top 10 hub genes for PS that enhanced the role of As in HepG2 cell apoptosis. Our results suggest that nano-PS enhances As-induced apoptosis. Furthermore, this study is important for a better understanding of the role of microplastics in As-induced hepatotoxicity.
Collapse
Affiliation(s)
- Lei He
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Zifan Lu
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, PR China.
| | - Yuanyuan Zhang
- Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, PR China
| | - Linhong Yan
- Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, PR China
| | - Lihua Ma
- Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, PR China
| | - Xiaoling Dong
- Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, PR China
| | - Zijie Wu
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Zhenqing Dai
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, PR China; Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, PR China; Guangdong Provincial Key Laboratory of Intelligent Equipment for South China Sea Marine Ranching, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Baoyi Tan
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Ruikun Sun
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Shengli Sun
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Chengyong Li
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, PR China; Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, PR China; Guangdong Provincial Key Laboratory of Intelligent Equipment for South China Sea Marine Ranching, Guangdong Ocean University, Zhanjiang 524088, PR China.
| |
Collapse
|
17
|
Miller ZA, Mueller A, Kim T, Jolivert JF, Ma RZ, Muthuswami S, Park A, McMahon DB, Nead KT, Carey RM, Lee RJ. Lidocaine induces apoptosis in head and neck squamous cell carcinoma through activation of bitter taste receptor T2R14. Cell Rep 2023; 42:113437. [PMID: 37995679 PMCID: PMC10842818 DOI: 10.1016/j.celrep.2023.113437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 09/22/2023] [Accepted: 10/29/2023] [Indexed: 11/25/2023] Open
Abstract
Head and neck squamous cell carcinomas (HNSCCs) have high mortality and significant treatment-related morbidity. It is vital to discover effective, minimally invasive therapies that improve survival and quality of life. Bitter taste receptors (T2Rs) are expressed in HNSCCs, and T2R activation can induce apoptosis. Lidocaine is a local anesthetic that also activates bitter taste receptor 14 (T2R14). Lidocaine has some anti-cancer effects, but the mechanisms are unclear. Here, we find that lidocaine causes intracellular Ca2+ mobilization through activation of T2R14 in HNSCC cells. T2R14 activation with lidocaine depolarizes mitochondria, inhibits proliferation, and induces apoptosis. Concomitant with mitochondrial Ca2+ influx, ROS production causes T2R14-dependent accumulation of poly-ubiquitinated proteins, suggesting that proteasome inhibition contributes to T2R14-induced apoptosis. Lidocaine may have therapeutic potential in HNSCCs as a topical gel or intratumor injection. In addition, we find that HPV-associated (HPV+) HNSCCs are associated with increased TAS2R14 expression. Lidocaine treatment may benefit these patients, warranting future clinical studies.
Collapse
Affiliation(s)
- Zoey A Miller
- Department of Otorhinolaryngology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Pharmacology Graduate Group, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Arielle Mueller
- Department of Otorhinolaryngology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - TaeBeom Kim
- Department of Epidemiology, Division of Cancer Prevention and Population Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jennifer F Jolivert
- Department of Otorhinolaryngology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Ray Z Ma
- Department of Otorhinolaryngology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Sahil Muthuswami
- Department of Otorhinolaryngology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - April Park
- Department of Otorhinolaryngology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Derek B McMahon
- Department of Otorhinolaryngology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Kevin T Nead
- Department of Epidemiology, Division of Cancer Prevention and Population Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ryan M Carey
- Department of Otorhinolaryngology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
| | - Robert J Lee
- Department of Otorhinolaryngology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|
18
|
Jiménez-Meléndez A, Shakya R, Markussen T, Robertson LJ, Myrmel M, Makvandi-Nejad S. Gene expression profile of HCT-8 cells following single or co-infections with Cryptosporidium parvum and bovine coronavirus. Sci Rep 2023; 13:22106. [PMID: 38092824 PMCID: PMC10719361 DOI: 10.1038/s41598-023-49488-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 12/08/2023] [Indexed: 12/17/2023] Open
Abstract
Among the causative agents of neonatal diarrhoea in calves, two of the most prevalent are bovine coronavirus (BCoV) and the intracellular parasite Cryptosporidium parvum. Although several studies indicate that co-infections are associated with greater symptom severity, the host-pathogen interplay remains unresolved. Here, our main objective was to investigate the modulation of the transcriptome of HCT-8 cells during single and co-infections with BCoV and C. parvum. For this, HCT-8 cells were inoculated with (1) BCoV alone, (2) C. parvum alone, (3) BCoV and C. parvum simultaneously. After 24 and 72 h, cells were harvested and analyzed using high-throughput RNA sequencing. Following differential expression analysis, over 6000 differentially expressed genes (DEGs) were identified in virus-infected and co-exposed cells at 72 hpi, whereas only 52 DEGs were found in C. parvum-infected cells at the same time point. Pathway (KEGG) and gene ontology (GO) analysis showed that DEGs in the virus-infected and co-exposed cells were mostly associated with immune pathways (such as NF-κB, TNF-α or, IL-17), apoptosis and regulation of transcription, with a more limited effect exerted by C. parvum. Although the modulation observed in the co-infection was apparently dominated by the virus, over 800 DEGs were uniquely expressed in co-exposed cells at 72 hpi. Our findings provide insights on possible biomarkers associated with co-infection, which could be further explored using in vivo models.
Collapse
Affiliation(s)
- Alejandro Jiménez-Meléndez
- Department of Paraclinical Sciences (PARAFAG), Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), Ås, Norway.
| | - Ruchika Shakya
- Department of Paraclinical Sciences (PARAFAG), Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Turhan Markussen
- Department of Paraclinical Sciences (PARAFAG), Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Lucy J Robertson
- Department of Paraclinical Sciences (PARAFAG), Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Mette Myrmel
- Department of Paraclinical Sciences (PARAFAG), Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Shokouh Makvandi-Nejad
- Research Group Animal Health, Vaccinology, Norwegian Veterinary Institute, Ås, Norway
- Nykode Therapeutics ASA, Oslo Science Park, Oslo, Norway
| |
Collapse
|
19
|
Leong RZL, Lim LH, Chew YL, Teo SS. de novo transcriptome assembly for discovering gene expressed in Holothuria leucospilota with exposed to copper. Anim Biotechnol 2023; 34:4474-4487. [PMID: 36576030 DOI: 10.1080/10495398.2022.2158094] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Sea cucumber is a bioremediator as it can composite organic matter and excrete inorganic matter. Sea cucumber has the potential to serve as a bioindicator in marine habitat as they provide an integrated insight into the status of their environment over long periods. Sea cucumbers are sensitive to the organic concentration in the marine environment and can effectively provide an early warning system for any organic contamination that can negatively impact the ecosystem. The availability of a reference transcriptome for sea cucumber would constitute an essential tool for identifying genes involved in crucial steps of the defence pathway. De novo assembly of RNA-seq data enables researchers to study the transcriptomes without needing a genome sequence. In this study, sea cucumbers fed with Kappaphycus alvarezii powder were treated with 0.20 mg/L copper concentration comprehensive transcriptome data containing 75,149 Unigenes, with a total length of 20,460,032 bp. A total of 8820 genes were predicted from the unigenes, annotated, and functionally categorized into 25 functional groups with approximately 20% cluster in signal transduction mechanism. The reference transcriptome presented and validated in this study is meaningful for identifying a wide range of gene(s) related to the bioindication of sea cucumber in a high copper environment.
Collapse
Affiliation(s)
| | - Lai Huat Lim
- Faculty of Applied Sciences, UCSI University, W. P. Kuala Lumpur, Malaysia
| | - Yik Ling Chew
- Faculty of Pharmaceutical Sciences, UCSI University, W. P. Kuala Lumpur, Malaysia
| | - Swee Sen Teo
- Faculty of Applied Sciences, UCSI University, W. P. Kuala Lumpur, Malaysia
- Centre of Research for Advanced Aquaculture (CORAA), UCSI University, Kuala Lumpur, Malaysia
| |
Collapse
|
20
|
Geng Y, Liu P, Xie Y, Liu Y, Zhang X, Hou X, Zhang L. Xanthatin suppresses pancreatic cancer cell growth via the ROS/RBL1 signaling pathway: In vitro and in vivo insights. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 119:155004. [PMID: 37562091 DOI: 10.1016/j.phymed.2023.155004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 07/06/2023] [Accepted: 07/28/2023] [Indexed: 08/12/2023]
Abstract
BACKGROUND As a malignant digestive system tumor, pancreatic cancer has a high mortality rate. Xanthatin is a sesquiterpene lactone monomer compound purified from the traditional Chinese herb Xanthium strumarium L. It has been reported that Xanthatin exhibits inhibitory effects on various cancer cells in retinoblastoma, glioma, hepatoma, colon cancer, lung cancer, as well as breast cancer. However, in pancreatic cancer cells, only one report exists on the suppression of Prostaglandin E2 synthesis and the induction of caspase 3/7 activation in Xanthatin-treated MIA PaCa-2 cells, while systematic in vitro and in vivo investigations and related mechanisms have yet to be explored. PURPOSE This research aims to explore the in vitro and in vivo effects of Xanthatin on pancreatic cancer and its molecular mechanisms. METHODS The anticancer effects and mechanisms of Xanthatin on pancreatic cancer cells were assessed through employing cell counting kit-8 (CCK-8) assay, lactate dehydrogenase (LDH) assay, carboxyfluorescein diacetate succinimidyl ester (CFDA SE) cell proliferation assay, colony formation assay, wound healing assay, transwell assay, Annexin V-FITC/propidium iodide (PI) dual staining, Hoechst nuclear staining, Western blot analysis, phosphoproteomics, and reactive oxygen species (ROS) measurement. The in vivo anticancer effects of Xanthatin on pancreatic cancer cells were studied using a nude mouse model. RESULTS The present study showed that Xanthatin can prevent the proliferation and metastasis of pancreatic cancer cells and trigger the exposure of phosphatidylserine (PS), chromatin condensation, and caspase activation, thereby inducing apoptosis. Phosphoproteomic analysis indicated that Xanthatin inhibits the phosphorylation of the proliferation-associated protein RBL1, and oxidative stress can lead to RBL1 dephosphorylation. Further investigation revealed that Xanthatin significantly upregulates ROS levels in pancreatic cancer cells, and the antioxidant N-acetylcysteine (NAC) can reverse Xanthatin-induced cell proliferation inhibition and apoptosis. In addition, Xanthatin can suppress pancreatic cancer cell growth in a xenograft nude mouse model with low toxicity to the mice. CONCLUSION Xanthatin may inhibit the proliferation of pancreatic cancer cells and trigger apoptosis through the ROS/RBL1 signaling pathway.
Collapse
Affiliation(s)
- Yadi Geng
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China; Department of Pharmacy, Anhui Provincial Hospital, Anhui Medical University, Hefei, Anhui, 230001, China
| | - Ping Liu
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Yanbo Xie
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Yunxiao Liu
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Xinge Zhang
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Xingcun Hou
- School of Pharmacy, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Lei Zhang
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China; Department of Pharmacy, Anhui Provincial Hospital, Anhui Medical University, Hefei, Anhui, 230001, China; Institute of Clinical Pharmacology, Anhui Medical University, Hefei, Anhui, 230032, China.
| |
Collapse
|
21
|
Olesen MA, Quintanilla RA. Pathological Impact of Tau Proteolytical Process on Neuronal and Mitochondrial Function: a Crucial Role in Alzheimer's Disease. Mol Neurobiol 2023; 60:5691-5707. [PMID: 37332018 DOI: 10.1007/s12035-023-03434-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 06/06/2023] [Indexed: 06/20/2023]
Abstract
Tau protein plays a pivotal role in the central nervous system (CNS), participating in microtubule stability, axonal transport, and synaptic communication. Research interest has focused on studying the role of post-translational tau modifications in mitochondrial failure, oxidative damage, and synaptic impairment in Alzheimer's disease (AD). Soluble tau forms produced by its pathological cleaved induced by caspases could lead to neuronal injury contributing to oxidative damage and cognitive decline in AD. For example, the presence of tau cleaved by caspase-3 has been suggested as a relevant factor in AD and is considered a previous event before neurofibrillary tangles (NFTs) formation.Interestingly, we and others have shown that caspase-cleaved tau in N- or C- terminal sites induce mitochondrial bioenergetics defects, axonal transport impairment, neuronal injury, and cognitive decline in neuronal cells and murine models. All these abnormalities are considered relevant in the early neurodegenerative manifestations such as memory and cognitive failure reported in AD. Therefore, in this review, we will discuss for the first time the importance of truncated tau by caspases activation in the pathogenesis of AD and how its negative actions could impact neuronal function.
Collapse
Affiliation(s)
- Margrethe A Olesen
- Laboratory of Neurodegenerative Diseases, Facultad de Ciencias de La Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, El Llano Subercaseaux 2801, 5to Piso, San Miguel, 8910060, Santiago, Chile
| | - Rodrigo A Quintanilla
- Laboratory of Neurodegenerative Diseases, Facultad de Ciencias de La Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, El Llano Subercaseaux 2801, 5to Piso, San Miguel, 8910060, Santiago, Chile.
| |
Collapse
|
22
|
Frolova AS, Chepikova OE, Deviataikina AS, Solonkina AD, Zamyatnin AA. New Perspectives on the Role of Nuclear Proteases in Cell Death Pathways. BIOLOGY 2023; 12:797. [PMID: 37372081 DOI: 10.3390/biology12060797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/26/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023]
Abstract
Multiple factors can trigger cell death via various pathways, and nuclear proteases have emerged as essential regulators of these processes. While certain nuclear proteases have been extensively studied and their mechanisms of action are well understood, others remain poorly characterized. Regulation of nuclear protease activity is a promising therapeutic strategy that could selectively induce favorable cell death pathways in specific tissues or organs. Thus, by understanding the roles of newly discovered or predicted nuclear proteases in cell death processes, we can identify new pharmacological targets for improving therapeutic outcomes. In this article, we delved into the role of nuclear proteases in several types of cell death and explore potential avenues for future research and therapeutic development.
Collapse
Affiliation(s)
- Anastasia S Frolova
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
- Scientific Center for Genetics and Life Sciences, Division of Biotechnology, Sirius University of Science and Technology, 354340 Sochi, Russia
| | - Olga E Chepikova
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
- Scientific Center for Genetics and Life Sciences, Division of Biotechnology, Sirius University of Science and Technology, 354340 Sochi, Russia
| | - Anna S Deviataikina
- Institute of Biodesign and Complex Systems Modeling, Sechenov First Moscow State Medical University, 119435 Moscow, Russia
| | - Alena D Solonkina
- Institute of Biodesign and Complex Systems Modeling, Sechenov First Moscow State Medical University, 119435 Moscow, Russia
| | - Andrey A Zamyatnin
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
- Scientific Center for Genetics and Life Sciences, Division of Biotechnology, Sirius University of Science and Technology, 354340 Sochi, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119992 Moscow, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
| |
Collapse
|
23
|
Di Nisio V, Antonouli S, Colafarina S, Zarivi O, Rossi G, Cecconi S, Poma AMG. Repeated Rounds of Gonadotropin Stimulation Induce Imbalance in the Antioxidant Machinery and Activation of Pro-Survival Proteins in Mouse Oviducts. Int J Mol Sci 2023; 24:ijms24119294. [PMID: 37298244 DOI: 10.3390/ijms24119294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/14/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
Controlled ovarian stimulation (COS) through gonadotropin administration has become a common procedure in assisted reproductive technologies. COS's drawback is the formation of an unbalanced hormonal and molecular environment that could alter several cellular mechanisms. On this basis, we detected the presence of mitochondrial DNA (mtDNA) fragmentation, antioxidant enzymes (catalase; superoxide dismutases 1 and 2, SOD-1 and -2; glutathione peroxidase 1, GPx1) and apoptotic (Bcl-2-associated X protein, Bax; cleaved caspases 3 and 7; phosphorylated (p)-heat shock protein 27, p-HSP27) and cell-cycle-related proteins (p-p38 mitogen-activated protein kinase, p-p38 MAPK; p-MAPK activated protein kinase 2, p-MAPKAPK2; p-stress-activated protein kinase/Jun amino-terminal kinase, p-SAPK/JNK; p-c-Jun) in the oviducts of unstimulated (Ctr) and repeatedly hyperstimulated (eight rounds, 8R) mice. While all the antioxidant enzymes were overexpressed after 8R of stimulation, mtDNA fragmentation decreased in the 8R group, denoting a present yet controlled imbalance in the antioxidant machinery. Apoptotic proteins were not overexpressed, except for a sharp increase in the inflammatory-related cleaved caspase 7, accompanied by a significant decrease in p-HSP27 content. On the other hand, the number of proteins involved in pro-survival mechanisms, such as p-p38 MAPK, p-SAPK/JNK and p-c-Jun, increased almost 50% in the 8R group. Altogether, the present results demonstrate that repeated stimulations cause the activation of the antioxidant machinery in mouse oviducts; however, this is not sufficient to induce apoptosis, and is efficiently counterbalanced by activation of pro-survival proteins.
Collapse
Affiliation(s)
- Valentina Di Nisio
- Department of Gynecology and Reproductive Medicine, Karolinska University Hospital, SE-14186 Stockholm, Sweden
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, SE-14186 Stockholm, Sweden
| | - Sevastiani Antonouli
- Department of Clinical Chemistry, Faculty of Medicine, University of Ioannina, PC-45110 Ioannina, Greece
| | - Sabrina Colafarina
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Osvaldo Zarivi
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Gianna Rossi
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Sandra Cecconi
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | | |
Collapse
|
24
|
Li S, Qu X, Qin Z, Gao J, Li J, Liu J. lncfos/miR-212-5p/CASP7 Axis-Regulated miR-212-5p Protects the Brain Against Ischemic Damage. Mol Neurobiol 2023; 60:2767-2785. [PMID: 36715920 DOI: 10.1007/s12035-023-03216-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 01/04/2023] [Indexed: 01/31/2023]
Abstract
miR-212-5p has been reported to be involved in many biological processes. However, the role of miR-212-5p in ischemic stroke remains unclear. This study explored the biological role and potential mechanism of miR-212-5p in ischemic stroke by investigating the lncfos/miR-212-5p/CASP7 axis. A total of 32 patients with ischemic stroke and 32 age- and sex-matched healthy controls (HCs) were enrolled in this study. In addition, 336 rats were used in this study. The rats were subjected to middle cerebral artery occlusion (MCAO) and intracerebroventricular injection of a microRNA (miRNA) agomir, a miRNA antagomir, a short hairpin RNA (shRNA) lentiviral vector, or a negative control. The neurological deficit score was calculated; the infarct volume was measured; histopathological assays were performed; the neuronal apoptosis rate was determined; and the lncfos, miR-212-5p, and CASP7 expression levels in the peri-infarct area were assessed. In this study, we found that the expression level of miR-212-5p was significantly downregulated in the peri-infarct area and blood of the MCAO model rats and the blood of patients with ischemic stroke. A double-luciferase experiment showed that CASP7 was a direct target gene of miR-212-5p and that miR-212-5p was a target miRNA of lncfos. Lateral ventricular injection of the miR-212-5p agomir effectively inhibited the apoptosis induced by ischemic brain damage, reduced the infarct volume, attenuated the neurological deficit symptoms, and downregulated the expression of CASP7 in the peri-infarct area of the MCAO model rats. Suppressing lncfos with sh-fos led to the upregulated expression of miR-212-5p and played a neuroprotective role in the rat MCAO models. We concluded that miR-212-5p plays a neuroprotective role in ischemic stroke and that its function is regulated by the lncfos/miR-212-5p/CASP7 axis. Moreover, miR-212-5p may be a potential biomarker and therapeutic target for ischemic stroke.
Collapse
Affiliation(s)
- Shenghua Li
- Department of Neurology, Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China
| | - Xiang Qu
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zhenxiu Qin
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jinggui Gao
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jinpin Li
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jingli Liu
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.
| |
Collapse
|
25
|
Ramos-Guzmán CA, Ruiz-Pernía JJ, Zinovjev K, Tuñón I. Unveiling the Mechanistic Singularities of Caspases: A Computational Analysis of the Reaction Mechanism in Human Caspase-1. ACS Catal 2023; 13:4348-4361. [PMID: 37066044 PMCID: PMC10088814 DOI: 10.1021/acscatal.3c00037] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/27/2023] [Indexed: 03/17/2023]
Abstract
Caspases are cysteine proteases in charge of breaking a peptide bond next to an aspartate residue. Caspases constitute an important family of enzymes involved in cell death and inflammatory processes. A plethora of diseases, including neurological and metabolic diseases and cancer, are associated with the poor regulation of caspase-mediated cell death and inflammation. Human caspase-1 in particular carries out the transformation of the pro-inflammatory cytokine pro-interleukin-1β into its active form, a key process in the inflammatory response and then in many diseases, such as Alzheimer's disease. Despite its importance, the reaction mechanism of caspases has remained elusive. The standard mechanistic proposal valid for other cysteine proteases and that involves the formation of an ion pair in the catalytic dyad is not supported by experimental evidence. Using a combination of classical and hybrid DFT/MM simulations, we propose a reaction mechanism for the human caspase-1 that explains experimental observations, including mutagenesis, kinetic, and structural data. In our mechanistic proposal, the catalytic cysteine, Cys285, is activated after a proton transfer to the amide group of the scissile peptide bond, a process facilitated by hydrogen-bond interactions with Ser339 and His237. The catalytic histidine does not directly participate in any proton transfer during the reaction. After formation of the acylenzyme intermediate, the deacylation step takes place through the activation of a water molecule by the terminal amino group of the peptide fragment formed during the acylation step. The overall activation free energy obtained from our DFT/MM simulations is in excellent agreement with the value derived from the experimental rate constant, 18.7 vs 17.9 kcal·mol-1, respectively. Simulations of the H237A mutant support our conclusions and agree with the reported reduced activity observed for this caspase-1 variant. We propose that this mechanism can explain the reactivity of all cysteine proteases belonging to the CD clan and that differences with respect to other clans could be related to the larger preference showed by enzymes of the CD clan for charged residues at position P1. This mechanism would avoid the free energy penalty associated with the formation of an ion pair. Finally, our structural description of the reaction process can be useful to assist in the design of inhibitors of caspase-1, a target in the treatment of several human diseases.
Collapse
Affiliation(s)
- Carlos A. Ramos-Guzmán
- Departamento de Química Física, Universitat de Valencia, 46100 Burjassot, Spain
- Instituto de Materiales Avanzados, Universitat Jaume I, 12071 Castelló, Spain
| | | | - Kirill Zinovjev
- Departamento de Química Física, Universitat de Valencia, 46100 Burjassot, Spain
| | - Iñaki Tuñón
- Departamento de Química Física, Universitat de Valencia, 46100 Burjassot, Spain
| |
Collapse
|
26
|
Huang H, Zhao G, Cardenas H, Valdivia AF, Wang Y, Matei D. N6-Methyladenosine RNA Modifications Regulate the Response to Platinum Through Nicotinamide N-methyltransferase. Mol Cancer Ther 2023; 22:393-405. [PMID: 36622754 DOI: 10.1158/1535-7163.mct-22-0278] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 10/06/2022] [Accepted: 01/03/2023] [Indexed: 01/10/2023]
Abstract
Development of resistance to platinum (Pt) in ovarian cancer remains a major clinical challenge. Here we focused on identifying epitranscriptomic modifications linked to Pt resistance. Fat mass and obesity-associated protein (FTO) is a N6-methyladenosine (m6A) RNA demethylase that we recently described as a tumor suppressor in ovarian cancer. We hypothesized that FTO-induced removal of m6A marks regulates the cellular response of ovarian cancer cells to Pt and is linked to the development of resistance. To study the involvement of FTO in the cellular response to Pt, we used ovarian cancer cells in which FTO was knocked down via short hairpin RNA or overexpressed and Pt-resistant (Pt-R) models derived through repeated cycles of exposure to Pt. We found that FTO was significantly downregulated in Pt-R versus sensitive ovarian cancer cells. Forced expression of FTO, but not of mutant FTO, increased sensitivity to Pt in vitro and in vivo (P < 0.05). Increased numbers of γ-H2AX foci, measuring DNA double-strand breaks, and increased apoptosis were observed after exposure to Pt in FTO-overexpressing versus control cells. Through integrated RNA sequencing and MeRIP sequencing, we identified and validated the enzyme nicotinamide N-methyltransferase (NNMT), as a new FTO target linked to Pt response. NNMT was upregulated and demethylated in FTO-overexpressing cells. Treatment with an NNMT inhibitor or NNMT knockdown restored sensitivity to Pt in FTO-overexpressing cells. Our results support a new function for FTO-dependent m6A RNA modifications in regulating the response to Pt through NNMT, a newly identified RNA methylated gene target.
Collapse
Affiliation(s)
- Hao Huang
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Guangyuan Zhao
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
- Driskill Graduate Training Program in Life Sciences, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Horacio Cardenas
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Andres Felipe Valdivia
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Yinu Wang
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Daniela Matei
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
- Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
- Jesse Brown VA Medical Center, Chicago, Illinois
| |
Collapse
|
27
|
Ye K, Chen Z, Xu Y. The double-edged functions of necroptosis. Cell Death Dis 2023; 14:163. [PMID: 36849530 PMCID: PMC9969390 DOI: 10.1038/s41419-023-05691-6] [Citation(s) in RCA: 49] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 02/11/2023] [Accepted: 02/15/2023] [Indexed: 03/01/2023]
Abstract
Necroptosis refers to a regulated form of cell death induced by a variety of stimuli. Although it has been implicated in the pathogenesis of many diseases, there is evidence to support that necroptosis is not purely a detrimental process. We propose that necroptosis is a "double-edged sword" in terms of physiology and pathology. On the one hand, necroptosis can trigger an uncontrolled inflammatory cascade response, resulting in severe tissue injury, disease chronicity, and even tumor progression. On the other hand, necroptosis functions as a host defense mechanism, exerting antipathogenic and antitumor effects through its powerful pro-inflammatory properties. Moreover, necroptosis plays an important role during both development and regeneration. Misestimation of the multifaceted features of necroptosis may influence the development of therapeutic approaches targeting necroptosis. In this review, we summarize current knowledge of the pathways involved in necroptosis as well as five important steps that determine its occurrence. The dual role of necroptosis in a variety of physiological and pathological conditions is also highlighted. Future studies and the development of therapeutic strategies targeting necroptosis should fully consider the complicated properties of this type of regulated cell death.
Collapse
Affiliation(s)
- Keng Ye
- grid.256112.30000 0004 1797 9307Department of Nephrology, Blood Purification Research Center, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005 China ,grid.412683.a0000 0004 1758 0400Research Center for Metabolic Chronic Kidney Disease, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005 China ,grid.412683.a0000 0004 1758 0400Central Laboratory, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005 China
| | - Zhimin Chen
- grid.256112.30000 0004 1797 9307Department of Nephrology, Blood Purification Research Center, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005 China ,grid.412683.a0000 0004 1758 0400Research Center for Metabolic Chronic Kidney Disease, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005 China ,grid.412683.a0000 0004 1758 0400Central Laboratory, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005 China
| | - Yanfang Xu
- Department of Nephrology, Blood Purification Research Center, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China. .,Research Center for Metabolic Chronic Kidney Disease, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China. .,Central Laboratory, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China.
| |
Collapse
|
28
|
Zhu Y, Wu F, Hu J, Xu Y, Zhang J, Li Y, Lin Y, Liu X. LDHA deficiency inhibits trophoblast proliferation via the PI3K/AKT/FOXO1/CyclinD1 signaling pathway in unexplained recurrent spontaneous abortion. FASEB J 2023; 37:e22744. [PMID: 36583693 DOI: 10.1096/fj.202201219rr] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 12/05/2022] [Accepted: 12/16/2022] [Indexed: 12/31/2022]
Abstract
Dysregulated trophoblast proliferation, invasion, and apoptosis may cause several pregnancy-associated complications, such as unexplained recurrent spontaneous abortion (URSA). Recent studies have shown that metabolic abnormalities, including glycolysis inhibition, may dysregulate trophoblast function, leading to URSA. However, the underlying mechanisms remain unclear. Herein, we found that lactate dehydrogenase A (LDHA), a key enzyme in glycolysis, was significantly reduced in the placental villus of URSA patients. The human trophoblast cell line HTR-8/SVneo was used to investigate the possible LDHA-mediated regulation of trophoblast function. LDHA knockdown in HTR-8/SVneo cells induced G0/G1 phase arrest and increased apoptosis, whereas LDHA overexpression reversed these effects. Next, RNA sequencing combined with Kyoto Encyclopedia of Genes and Genomes analysis demonstrated that the PI3K/AKT signaling pathway is potentially affected by downstream genes of LDHA. Especially, we found that LDHA knockdown decreased the phosphorylation levels of PI3K, AKT, and FOXO1, resulting in a significant downregulation of CyclinD1. In addition, treatment with an AKT inhibitor or FOXO1 inhibitor also verified that the PI3K/AKT/FOXO1 signaling pathway influenced the gene expression of CyclinD1 in trophoblast. Moreover, p-AKT expression correlated positively with LDHA expression in syncytiotrophoblasts and extravillous trophoblasts in first-trimester villus. Collectively, this study revealed a new regulatory pathway for LDHA/PI3K/AKT/FOXO1/CyclinD1 in the trophoblast cell cycle and proliferation.
Collapse
Affiliation(s)
- Yueyue Zhu
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China.,Institute of Birth Defects and Rare Diseases, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Fan Wu
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jianing Hu
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China.,Institute of Birth Defects and Rare Diseases, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yichi Xu
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China.,Institute of Birth Defects and Rare Diseases, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jinwen Zhang
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China.,Institute of Birth Defects and Rare Diseases, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yan Li
- Center for Reproductive Medicine, Shandong University, Jinan, China
| | - Yi Lin
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Xiaorui Liu
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China.,Institute of Birth Defects and Rare Diseases, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
29
|
Svandova E, Lesot H, Sharpe P, Matalova E. Making the head: Caspases in life and death. Front Cell Dev Biol 2023; 10:1075751. [PMID: 36712975 PMCID: PMC9880857 DOI: 10.3389/fcell.2022.1075751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 12/29/2022] [Indexed: 01/14/2023] Open
Abstract
The term apoptosis, as a way of programmed cell death, was coined a half century ago and since its discovery the process has been extensively investigated. The anatomy and physiology of the head are complex and thus apoptosis has mostly been followed in separate structures, tissues or cell types. This review aims to provide a comprehensive overview of recent knowledge concerning apoptosis-related molecules involved in the development of structures of head with a particular focus on caspases, cysteine proteases having a key position in apoptotic pathways. Since many classical apoptosis-related molecules, including caspases, are emerging in several non-apoptotic processes, these were also considered. The largest organ of the head region is the brain and its development has been extensively investigated, including the roles of apoptosis and related molecules. Neurogenesis research also includes sensory organs such as the eye and ear, efferent nervous system and associated muscles and glands. Caspases have been also associated with normal function of the skin and hair follicles. Regarding mineralised tissues within craniofacial morphogenesis, apoptosis in bones has been of interest along with palate fusion and tooth development. Finally, the role of apoptosis and caspases in angiogenesis, necessary for any tissue/organ development and maintenance/homeostasis, are discussed. Additionally, this review points to abnormalities of development resulting from improper expression/activation of apoptosis-related molecules.
Collapse
Affiliation(s)
- Eva Svandova
- Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Herve Lesot
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czechia
| | - Paul Sharpe
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czechia
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral, and Craniofacial Sciences, King’s College London, London, United Kingdom
| | - Eva Matalova
- Department of Physiology, University of Veterinary Sciences, Brno, Czechia
| |
Collapse
|
30
|
The E3 Ligase TRIM25 Impairs Apoptotic Cell Death in Colon Carcinoma Cells via Destabilization of Caspase-7 mRNA: A Possible Role of hnRNPH1. Cells 2023; 12:cells12010201. [PMID: 36611995 PMCID: PMC9818768 DOI: 10.3390/cells12010201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/22/2022] [Accepted: 12/30/2022] [Indexed: 01/06/2023] Open
Abstract
Therapy resistance is still a major reason for treatment failure in colorectal cancer (CRC). Previously, we identified the E3 ubiquitin ligase TRIM25 as a novel suppressor of caspase-2 translation which contributes to the apoptosis resistance of CRC cells towards chemotherapeutic drugs. Here, we report the executioner caspase-7 as being a further target of TRIM25. The results from the gain- and loss-of-function approaches and the actinomycin D experiments indicate that TRIM25 attenuates caspase-7 expression mainly through a decrease in mRNA stability. The data from the RNA pulldown assays with immunoprecipitated TRIM25 truncations indicate a direct TRIM25 binding to caspase-7 mRNA, which is mediated by the PRY/SPRY domain, which is also known to be highly relevant for protein-protein interactions. By employing TRIM25 immunoprecipitation, we identified the heterogeneous nuclear ribonucleoprotein H1 (hnRNPH1) as a novel TRIM25 binding protein with a functional impact on caspase-7 mRNA stability. Notably, the interaction of both proteins was highly sensitive to RNase A treatment and again depended on the PRY/SPRY domain, thus indicating an indirect interaction of both proteins which is achieved through a common RNA binding. Ubiquitin affinity chromatography showed that both proteins are targets of ubiquitin modification. Functionally, the ectopic expression of caspase-7 in CRC cells caused an increase in poly ADP-ribose polymerase (PARP) cleavage concomitant with a significant increase in apoptosis. Collectively, the negative regulation of caspase-7 by TRIM25, which is possibly executed by hnRNPH1, implies a novel survival mechanism underlying the chemotherapeutic drug resistance of CRC cells. The targeting of TRIM25 could therefore offer a promising strategy for the reduction in therapy resistance in CRC patients.
Collapse
|
31
|
Unnisa A, Greig NH, Kamal MA. Inhibition of Caspase 3 and Caspase 9 Mediated Apoptosis: A Multimodal Therapeutic Target in Traumatic Brain Injury. Curr Neuropharmacol 2023; 21:1001-1012. [PMID: 35339178 PMCID: PMC10227914 DOI: 10.2174/1570159x20666220327222921] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 02/17/2022] [Accepted: 03/23/2022] [Indexed: 02/08/2023] Open
Abstract
Traumatic brain injury (TBI) is one of the significant causes of death and morbidity, and it is hence a focus of translational research. Apoptosis plays an essential part in the pathophysiology of TBI, and its inhibition may help overcome TBI's negative consequences and improve functional recovery. Although physiological neuronal death is necessary for appropriate embryologic development and adult cell turnover, it can also drive neurodegeneration. Caspases are principal mediators of cell death due to apoptosis and are critical for the required cleavage of intracellular proteins of cells committed to die. Caspase-3 is the major executioner Caspase of apoptosis and is regulated by a range of cellular components during physiological and pathological conditions. Activation of Caspase-3 causes proteolyzation of DNA repair proteins, cytoskeletal proteins, and the inhibitor of Caspase-activated DNase (ICAD) during programmed cell death, resulting in morphological alterations and DNA damage that define apoptosis. Caspase-9 is an additional crucial part of the intrinsic pathway, activated in response to several stimuli. Caspases can be altered post-translationally or by modulatory elements interacting with the zymogenic or active form of a Caspase, preventing their activation. The necessity of Caspase-9 and -3 in diverse apoptotic situations suggests that mammalian cells have at least four distinct apoptotic pathways. Continued investigation of these processes is anticipated to disclose new Caspase regulatory mechanisms with consequences far beyond apoptotic cell death control. The present review discusses various Caspase-dependent apoptotic pathways and the treatment strategies to inhibit the Caspases potentially.
Collapse
Affiliation(s)
- Aziz Unnisa
- Department of Pharmacology, College of Pharmacy, University of Hail, Hail, KSA;
| | - Nigel H. Greig
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Mohammad Amjad Kamal
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
- Enzymoics, 7 Peterlee Place, Hebersham, NSW 2770; Novel Global Community Educational Foundation, NSW, Australia
| |
Collapse
|
32
|
Santos RA, Cerqueira DM, Zamboni DS, Oliveira SC. Caspase-8 but not caspase-7 influences inflammasome activation to act in control of Brucella abortus infection. Front Microbiol 2022; 13:1086925. [PMID: 36532444 PMCID: PMC9751037 DOI: 10.3389/fmicb.2022.1086925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 11/15/2022] [Indexed: 12/03/2022] Open
Abstract
Programmed cell death (PCD) is an important mechanism of innate immunity against bacterial pathogens. The innate immune PCD pathway involves the molecules caspase-7 and caspase-8, among others. Brucella abortus is a gram-negative bacterium that causes a zoonotic disease termed brucellosis. The innate immune response against this pathogen involves activation of inflammasome components and induction of pyroptosis. However, no studies so far have revealed the role of caspase-7 or caspase-8 during this bacterial infection. Herein, we demonstrate that caspase-7 is dispensable for caspase-1 processing, IL-1β secretion and cell death in macrophages. Additionally, caspase-7 deficient animals control B. abortus infection as well as the wild type mice. Furthermore, we addressed the role of caspase-8 in inflammasome activation and pyroptosis during this bacterial infection. Macrophages deficient in caspase-8 secreted reduced amounts of IL-1β that parallels with diminished caspase-1 activity when compared to wild type cells. Additionally, caspase-8 KO macrophages showed reduced LDH release when compared to wild type, suggesting that caspase-8 may play an important role in pyroptosis in response to B. abortus. Finally, caspase-8 KO animals were more susceptible to Brucella infection when compared to wild type mice. Overall, this study contributes to a better understanding of the involvement of caspase-7 and caspase-8 in innate immunity against B. abortus infection.
Collapse
Affiliation(s)
- Raiany A. Santos
- Departamento de Genética, Ecologia e Evolução, Programa de Pós-Graduação em Genética, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Daiane M. Cerqueira
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Dario S. Zamboni
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Sergio C. Oliveira
- Departamento de Genética, Ecologia e Evolução, Programa de Pós-Graduação em Genética, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil,Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil,Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil,*Correspondence: Sergio C. Oliveira,
| |
Collapse
|
33
|
Shen Q, He Y, Qian J, Wang X. Identifying tumor immunity-associated molecular features in liver hepatocellular carcinoma by multi-omics analysis. Front Mol Biosci 2022; 9:960457. [PMID: 36339710 PMCID: PMC9632276 DOI: 10.3389/fmolb.2022.960457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 10/10/2022] [Indexed: 12/01/2022] Open
Abstract
Background: Although current immunotherapies have achieved some successes for hepatocellular carcinoma (HCC) patients, their benefits are limited for most HCC patients. Therefore, the identification of biomarkers for promoting immunotherapeutic responses in HCC is urgently needed. Methods: Using the TCGA HCC cohort, we investigated correlations of various molecular features with antitumor immune signatures (CD8+ T cell infiltration and cytolytic activity) and an immunosuppressive signature (PD-L1 expression) in HCC. These molecular features included mRNAs, microRNAs (miRNAs), long non-coding RNAs (lncRNAs), proteins, and pathways. Results: We found that the mutations of several oncogenes and tumor suppressor genes significantly correlated with reduced antitumor immune signatures, including TTN, CTNNB1, RB1, ZFHX4, and TP53. It indicates that these genes’ mutations may inhibit antitumor immune responses in HCC. Four proteins (Syk, Lck, STAT5, and Caspase-7) had significant positive expression correlations with CD8+ T cell enrichment, cytolytic activity, and PD-L1 expression in HCC. It suggests that these proteins’ expression could be useful biomarkers for the response to immune checkpoint inhibitors Similiarly, we identified other types of biomarkers potentially useful for predicting the response to ICIs, including miRNAs (hsa-miR-511-5p, 150-3p, 342-3p, 181a-3p, 625-5p, 4772-3p, 155-3p, 142-5p, 142-3p, 155-5p, 625-3p, 1976, 7702), many lncRNAs, and pathways (apoptosis, cytokine-cytokine receptor interaction, Jak-STAT signaling, MAPK signaling, PI3K-AKT signaling, HIF-1 signaling, ECM receptor interaction, focal adhesion, and estrogen signaling). Further, tumor mutation burden showed no significant correlation with antitumor immunity, while tumor aneuploidy levels showed a significant negative correlation with antitumor immunity. Conclusion: The molecular features significantly associated with HCC immunity could be predictive biomarkers for immunotherapeutic responses in HCC patients. They could also be potential intervention targets for boosting antitumor immunity and immunotherapeutic responses in HCC.
Collapse
Affiliation(s)
- Qianyun Shen
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yin He
- Biomedical Informatics Research Lab, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
- Cancer Genomics Research Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
- Big Data Research Institute, China Pharmaceutical University, Nanjing, China
| | - Jiajie Qian
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaosheng Wang
- Biomedical Informatics Research Lab, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
- Cancer Genomics Research Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
- Big Data Research Institute, China Pharmaceutical University, Nanjing, China
- *Correspondence: Xiaosheng Wang,
| |
Collapse
|
34
|
Kim SH, Baek KH. Ovarian tumor deubiquitinase 6A regulates cell proliferation via deubiquitination of nucleolin and caspase‑7. Int J Oncol 2022; 61:127. [PMID: 36082810 DOI: 10.3892/ijo.2022.5417] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 08/16/2022] [Indexed: 11/06/2022] Open
Abstract
Most proteins maintain protein homeostasis via post‑translational modifications, including the ubiquitin‑proteasome system. Deubiquitinating enzymes (DUBs) have essential intercellular roles, such as responses to DNA damage, proteolysis and apoptosis. Therefore, it is important to understand DUB‑related diseases to identify DUBs that target abnormally regulated proteins in cells. Ovarian tumor deubiquitinase 6A (OTUD6A) was previously reported as a downregulated DUB in HCT116 cells with p53 knockdown. Therefore, it was expected that the relationship between OTUD6A and p53 would affect cell proliferation. In the present study, putative substrates of OTUD6A related to the p53 signaling pathway were identified. Application of liquid chromatography‑tandem mass spectrometry and proteomic analysis led to the identification of nucleolin (known to bind p53) as a binding protein. In addition, immunoprecipitation studies determined that caspase‑7, an apoptotic protein, is associated with p53 signaling and is regulated by OTUD6A. It was further identified that OTUD6A regulates the protein stability of nucleolin, but not caspase‑7. It was also demonstrated that OTUD6A acts as a respective DUB through the deubiquitination of K48‑linked polyubiquitin chain of nucleolin and the K63‑linked polyubiquitin chain of caspase‑7. Furthermore, overexpression of OTUD6A induced cell proliferation via enhancing cell cycle progression of MCF7 cells. Taken together, OTUD6A may be proposed as a target for anticancer therapy.
Collapse
Affiliation(s)
- So-Hee Kim
- Department of Biomedical Science, CHA University, Seongnam‑Si, Gyeonggi‑Do 13488, Republic of Korea
| | - Kwang-Hyun Baek
- Department of Biomedical Science, CHA University, Seongnam‑Si, Gyeonggi‑Do 13488, Republic of Korea
| |
Collapse
|
35
|
Song G, Luo J, Zou S, Lou F, Zhang T, Zhu X, Yang J, Wang X. Molecular classification of human papillomavirus-positive cervical cancers based on immune signature enrichment. Front Public Health 2022; 10:979933. [PMID: 36203656 PMCID: PMC9531689 DOI: 10.3389/fpubh.2022.979933] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/29/2022] [Indexed: 01/25/2023] Open
Abstract
Background Human papillomavirus-positive (HPV+) cervical cancers are highly heterogeneous in clinical and molecular characteristics. Thus, an investigation into their heterogeneous immunological profiles is meaningful in providing both biological and clinical insights into this disease. Methods Based on the enrichment of 29 immune signatures, we discovered immune subtypes of HPV+ cervical cancers by hierarchical clustering. To explore whether this subtyping method is reproducible, we analyzed three bulk and one single cell transcriptomic datasets. We also compared clinical and molecular characteristics between the immune subtypes. Results Clustering analysis identified two immune subtypes of HPV+ cervical cancers: Immunity-H and Immunity-L, consistent in the four datasets. In comparisons with Immunity-L, Immunity-H displayed stronger immunity, more stromal contents, lower tumor purity, proliferation potential, intratumor heterogeneity and stemness, higher tumor mutation burden, more neoantigens, lower levels of copy number alterations, lower DNA repair activity, as well as better overall survival prognosis. Certain genes, such as MUC17, PCLO, and GOLGB1, showed significantly higher mutation rates in Immunity-L than in Immunity-H. 16 proteins were significantly upregulated in Immunity-H vs. Immunity-L, including Caspase-7, PREX1, Lck, C-Raf, PI3K-p85, Syk, 14-3-3_epsilon, STAT5-α, GATA3, Src_pY416, NDRG1_pT346, Notch1, PDK1_pS241, Bim, NF-kB-p65_pS536, and p53. Pathway analysis identified numerous immune-related pathways more highly enriched in Immunity-H vs. Immunity-L, including cytokine-cytokine receptor interaction, natural killer cell-mediated cytotoxicity, antigen processing and presentation, T/B cell receptor signaling, chemokine signaling, supporting the stronger antitumor immunity in Immunity-H vs. Immunity-L. Conclusion HPV+ cervical cancers are divided into two subgroups based on their immune signatures' enrichment. Both subgroups have markedly different tumor immunity, progression phenotypes, genomic features, and clinical outcomes. Our data offer novel perception in the tumor biology as well as clinical implications for HPV+ cervical cancer.
Collapse
Affiliation(s)
- Guanghui Song
- Department of Gynecology and Obstetrics, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China
| | - Jiangti Luo
- Biomedical Informatics Research Lab, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China,Cancer Genomics Research Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China,Big Data Research Institute, China Pharmaceutical University, Nanjing, China
| | - Shaohan Zou
- Department of Gynecology and Obstetrics, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China
| | - Fang Lou
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China
| | - Tianfang Zhang
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaojun Zhu
- Department of Gynecology and Obstetrics, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jianhua Yang
- Department of Gynecology and Obstetrics, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China,*Correspondence: Jianhua Yang
| | - Xiaosheng Wang
- Biomedical Informatics Research Lab, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China,Cancer Genomics Research Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China,Big Data Research Institute, China Pharmaceutical University, Nanjing, China,Xiaosheng Wang
| |
Collapse
|
36
|
Abdelhaleem EF, Kassab AE, El-Nassan HB, Khalil OM. Design, synthesis, and biological evaluation of new celecoxib analogs as apoptosis inducers and cyclooxygenase-2 inhibitors. Arch Pharm (Weinheim) 2022; 355:e2200190. [PMID: 35976138 DOI: 10.1002/ardp.202200190] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 07/13/2022] [Accepted: 07/20/2022] [Indexed: 11/06/2022]
Abstract
Series of new celecoxib analogs were synthesized to assess their anticancer activity against the MCF-7 cell line. Four compounds, 3a, 3c, 5b, and 5c, showed 1.4-9.2-fold more potent anticancer activity than celecoxib. The antiproliferative activity of the most potent compounds, 3c, 5b, and 5c, seems to be associated well with their ability to induce apoptosis in MCF-7 cells (18-24-fold). This evidence was supported by an increase in the expression of the tumor suppressor gene p53 (4-6-fold), the elevation in the Bax/BCL-2 ratio, and a significant increase in the level of active caspase-7 (4-7-fold). Moreover, compounds 3c and 5c showed significant cyclooxygenase-2 (COX-2) inhibitory activity. They were also docked into the crystal structure of the COX-2 enzyme (PDB ID: 3LN1) to understand their mode of binding.
Collapse
Affiliation(s)
- Eman F Abdelhaleem
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Asmaa E Kassab
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Hala B El-Nassan
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Omneya M Khalil
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
37
|
Banerjee S, Mishra S, Xu W, Thompson WE, Chowdhury I. Neuregulin-1 signaling regulates cytokines and chemokines expression and secretion in granulosa cell. J Ovarian Res 2022; 15:86. [PMID: 35883098 PMCID: PMC9316729 DOI: 10.1186/s13048-022-01021-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 07/18/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Granulosa cells (GCs) are multilayered somatic cells within the follicle that provide physical support and microenvironment for the developing oocyte. In recent years, the role of Neuregulin-1 (NRG1), a member of the EGF-like factor family, has received considerable attention due to its neurodevelopmental and cardiac function. However, the exact physiological role of NRG1 in GC is mainly unknown. In order to confirm that NRG1 plays a regulatory role in rat GC functions, endogenous NRG1-knockdown studies were carried out in GCs using RNA interference methodology. RESULTS Knockdown of NRG1 in GCs resulted in the enhanced expression and secretion of the cytokines and chemokines. In addition, the phosphorylation of PI3K/Akt/ERK1/2 was significantly low in GCs under these experimental conditions. Moreover, in vitro experimental studies suggest that tumor necrosis factor-α (TNFα) treatment causes the physical destruction of GCs by activating caspase-3/7 activity. In contrast, exogenous NRG1 co-treatment of GCs delayed the onset of TNFα-induced apoptosis and inhibited the activation of caspase-3/7 activity. Furthermore, current experimental studies suggest that gonadotropins promote differential expression of NRG1 and ErbB3 receptors in GCs of the antral follicle. Interestingly, NRG1 and ErbB3 were intensely co-localized in the mural and cumulus GCs and cumulus-oocyte complex of pre-ovulatory follicles in the estrus stage. CONCLUSIONS The present studies suggest that gonadotropins-dependent NRG1-signaling in GCs may require the balance of the cytokines and chemokines expression and secretion, ultimately which may be supporting the follicular maturation and oocyte competence for ovulation and preventing follicular atresia.
Collapse
Affiliation(s)
- Saswati Banerjee
- Department of Physiology, Morehouse School of Medicine, Atlanta, GA, USA
| | - Sameer Mishra
- Department of Obstetrics and Gynecology, Morehouse School of Medicine, 720 Westview Drive Southwest, Atlanta, GA, 30310, USA
| | - Wei Xu
- Department of Physiology, Morehouse School of Medicine, Atlanta, GA, USA
| | - Winston E Thompson
- Department of Physiology, Morehouse School of Medicine, Atlanta, GA, USA
| | - Indrajit Chowdhury
- Department of Obstetrics and Gynecology, Morehouse School of Medicine, 720 Westview Drive Southwest, Atlanta, GA, 30310, USA.
| |
Collapse
|
38
|
Rehman R, Azhar A, Naseem Z, Haider G, Farooqui N, Farhat S. PCOS model: Apoptotic changes and role of vitamin D. ELECTRONIC JOURNAL OF GENERAL MEDICINE 2022. [DOI: 10.29333/ejgm/12275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
39
|
Li X, Liu Y, Liu X, Du J, Bhawal UK, Xu J, Guo L, Liu Y. Advances in the Therapeutic Effects of Apoptotic Bodies on Systemic Diseases. Int J Mol Sci 2022; 23:ijms23158202. [PMID: 35897778 PMCID: PMC9331698 DOI: 10.3390/ijms23158202] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 07/17/2022] [Accepted: 07/22/2022] [Indexed: 02/01/2023] Open
Abstract
Apoptosis plays an important role in development and in the maintenance of homeostasis. Apoptotic bodies (ApoBDs) are specifically generated from apoptotic cells and can contain a large variety of biological molecules, which are of great significance in intercellular communications and the regulation of phagocytes. Emerging evidence in recent years has shown that ApoBDs are essential for maintaining homeostasis, including systemic bone density and immune regulation as well as tissue regeneration. Moreover, studies have revealed the therapeutic effects of ApoBDs on systemic diseases, including cancer, atherosclerosis, diabetes, hepatic fibrosis, and wound healing, which can be used to treat potential targets. This review summarizes current research on the generation, application, and reconstruction of ApoBDs regarding their functions in cellular regulation and on systemic diseases, providing strong evidence and therapeutic strategies for further insights into related diseases.
Collapse
Affiliation(s)
- Xiaoyan Li
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing 100050, China; (X.L.); (Y.L.); (X.L.); (J.D.); (J.X.)
| | - Yitong Liu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing 100050, China; (X.L.); (Y.L.); (X.L.); (J.D.); (J.X.)
| | - Xu Liu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing 100050, China; (X.L.); (Y.L.); (X.L.); (J.D.); (J.X.)
| | - Juan Du
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing 100050, China; (X.L.); (Y.L.); (X.L.); (J.D.); (J.X.)
| | - Ujjal Kumar Bhawal
- Department of Biochemistry and Molecular Biology, Nihon University School of Dentistry at Matsudo, Chiba 271-8587, Japan;
- Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Chennai 600077, India
| | - Junji Xu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing 100050, China; (X.L.); (Y.L.); (X.L.); (J.D.); (J.X.)
| | - Lijia Guo
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing 100006, China
- Correspondence: (L.G.); (Y.L.)
| | - Yi Liu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing 100050, China; (X.L.); (Y.L.); (X.L.); (J.D.); (J.X.)
- Immunology Research Center for Oral and Systematic Health, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
- Correspondence: (L.G.); (Y.L.)
| |
Collapse
|
40
|
Ruellia tuberosa Ethyl Acetate Leaf Extract Induces Apoptosis and Cell Cycle Arrest in Human Breast Cancer Cell Line, MCF-7. Sci Pharm 2022. [DOI: 10.3390/scipharm90030044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Ruellia tuberosa L. has been previously shown to possess antioxidant and antiproliferative activities on cancer cells but its underlying mechanisms are largely unknown. This study aimed to elucidate the mode of action underlying this inhibitory effect on MCF-7 using ethyl acetate extract obtained after liquid-liquid partition of methanol crude extract. Antiproliferative effect of R. tuberosa ethyl acetate leaf extract (RTEAL) was evaluated using MTT assay. Its ability to induce apoptosis was assessed by DNA ladder formation, JC-1, Annexin V, and methylene blue staining assays. Perturbation of cell cycle progression was determined using flow cytometry. RTEAL was found to selectively inhibit the proliferation of MCF-7 cells with the IC50 value of 28 µg/mL. Morphological changes such as nuclear fragmentation and chromatin condensation were observed although DNA laddering was undetected in agarose gel. RTEAL-induced apoptotic pathways by inhibiting the expression of anti-apoptotic BCL-2 while upregulating pro-apoptotic BAX, caspase 7 and caspase 8. RTEAL also caused cell cycle arrests at the S and G2/M phase and dysregulation of cell cycle regulators. These findings collectively demonstrate that RTEAL extract inhibited cell growth by inducing apoptosis and cell cycle arrest, suggesting its therapeutic potential against breast cancer.
Collapse
|
41
|
Apoptosis Induction Associated with Enhanced ER Stress Response and Up-Regulation of c-Jun/p38 MAPK Proteins in Human Cervical Cancer Cells by Colocasia esculenta var. aquatilis Hassk Extract. Sci Pharm 2022. [DOI: 10.3390/scipharm90030045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Colocasia esculenta var. Aquatilis Hassk, elephant ear (CF-EE) has been widely used as traditional food and medicine. It also shows other therapeutic properties, such as antimicrobial and anti-cancer activity. In this study, we aim to investigate the effect of CF-EE extract on apoptosis induction associated with ER stress in cervical cancer HeLa cells. Cell viability was determined by MTT assay. Assessments of nuclear morphological changes, mitochondrial membrane potential, and intracellular reactive oxygen species (ROS) production were conducted by hoeshst33342, JC-1, and DCFH-DA fluorescence staining, respectively. Sub-G1 DNA content was analyzed by flow cytometry, and protein expression was determined by Western blotting. The results demonstrate that CF-EE extract suppressed HeLa cell growth and induced nuclear condensation and apoptotic bodies. There was also a loss of mitochondrial membrane potential and increased apoptosis marker protein expression, including Bax, cleaved-caspase-7, and cleaved-PARP. In addition, the results show that CF-EE extract induced ROS, increased ER stress proteins (GRP78 and CHOP), enhanced p38 and c-Jun phosphorylation, and inhibited Akt expression in HeLa cells. In summary, CF-EE extract induced apoptotic cell death-associated ROS-induced ER stress and the MAPK/AKT signaling pathway. Therefore, CF-EE extract has anticancer therapeutic potential for cervical cancer treatment in the future.
Collapse
|
42
|
Hlača N, Žagar T, Kaštelan M, Brajac I, Prpić-Massari L. Current Concepts of Vitiligo Immunopathogenesis. Biomedicines 2022; 10:biomedicines10071639. [PMID: 35884944 PMCID: PMC9313271 DOI: 10.3390/biomedicines10071639] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/20/2022] [Accepted: 07/04/2022] [Indexed: 12/11/2022] Open
Abstract
Vitiligo is an acquired immune-mediated disorder of pigmentation clinically characterized by well-defined depigmented or chalk-white macules and patches on the skin. The prevalence of vitiligo varies by geographical area, affecting 0.5% to 2% of the population. The disease imposes a significant psychological burden due to its major impact on patients’ social and emotional aspects of life. Given its autoimmune background, vitiligo is frequently associated with other autoimmune diseases or immune-mediated diseases. Vitiligo is a multifaceted disorder that involves both genetic predisposition and environmental triggers. In recent years, major predisposing genetic loci for the development of vitiligo have been discovered. The current findings emphasize the critical role of immune cells and their mediators in the immunopathogenesis of vitiligo. Oxidative-stress-mediated activation of innate immunity cells such as dendritic cells, natural killer, and ILC-1 cells is thought to be a key event in the early onset of vitiligo. Innate immunity cells serve as a bridge to adaptive immunity cells including T helper 1 cells, cytotoxic T cells and resident memory T cells. IFN-γ is the primary cytokine mediator that activates the JAK/STAT pathway, causing keratinocytes to produce the key chemokines CXCL9 and CXCL10. Complex interactions between immune and non-immune cells finally result in apoptosis of melanocytes. This paper summarizes current knowledge on the etiological and genetic factors that contribute to vitiligo, with a focus on immunopathogenesis and the key cellular and cytokine players in the disease’s inflammatory pathways.
Collapse
|
43
|
Zhu H, Wang Z, Wang W, Lu Y, He YW, Tian J. Bacterial Quorum-Sensing Signal DSF Inhibits LPS-Induced Inflammations by Suppressing Toll-like Receptor Signaling and Preventing Lysosome-Mediated Apoptosis in Zebrafish. Int J Mol Sci 2022; 23:ijms23137110. [PMID: 35806111 PMCID: PMC9266882 DOI: 10.3390/ijms23137110] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/17/2022] [Accepted: 06/23/2022] [Indexed: 12/15/2022] Open
Abstract
Bacteria and their eukaryotic hosts have co-evolved for millions of years, and the former can intercept eukaryotic signaling systems for the successful colonization of the host. The diffusible signal factor (DSF) family represents a type of quorum-sensing signals found in diverse Gram-negative bacterial pathogens. Recent evidence shows that the DSF is involved in interkingdom communications between the bacterial pathogen and the host plant. In this study, we explored the anti-inflammatory effect of the DSF and its underlying molecular mechanism in a zebrafish model. We found that the DSF treatment exhibited a strong protective effect on the inflammatory response of zebrafish induced by lipopolysaccharide (LPS). In the LPS-induced inflammation zebrafish model, the DSF could significantly ameliorate the intestinal pathological injury, reduce abnormal migration and the aggregation of inflammatory cells, inhibit the excessive production of inflammatory mediator reactive oxygen species (ROS) content, and prevent apoptosis. Through an RNA-Seq analysis, a total of 938 differentially expressed genes (DEGs) was screened between LPS and LPS + DSF treatment zebrafish embryos. A further bioinformatics analysis and validation revealed that the DSF might inhibit the LPS-induced zebrafish inflammatory response by preventing the activation of signaling in the Toll-like receptor pathway, attenuating the expression of pro-inflammatory cytokines and chemokines, and regulating the activation of the caspase cascade through restoring the expression of lysosomal cathepsins and apoptosis signaling. This study, for the first time, demonstrates the anti-inflammatory role and a potential pharmaceutical application of the bacterial signal DSF. These findings also suggest that the interkingdom communication between DSF-producing bacteria and zebrafish might occur in nature.
Collapse
Affiliation(s)
- Hongjie Zhu
- Zebrafish Model Research Center for Human Diseases and Drug Screening in Western China, School of Medicine, The College of Life Sciences, Northwest University, Xi’an 710069, China; (H.Z.); (Z.W.); (W.W.); (Y.L.)
| | - Zhihao Wang
- Zebrafish Model Research Center for Human Diseases and Drug Screening in Western China, School of Medicine, The College of Life Sciences, Northwest University, Xi’an 710069, China; (H.Z.); (Z.W.); (W.W.); (Y.L.)
| | - Wenxin Wang
- Zebrafish Model Research Center for Human Diseases and Drug Screening in Western China, School of Medicine, The College of Life Sciences, Northwest University, Xi’an 710069, China; (H.Z.); (Z.W.); (W.W.); (Y.L.)
| | - Yongbo Lu
- Zebrafish Model Research Center for Human Diseases and Drug Screening in Western China, School of Medicine, The College of Life Sciences, Northwest University, Xi’an 710069, China; (H.Z.); (Z.W.); (W.W.); (Y.L.)
| | - Ya-Wen He
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Development Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- Correspondence: (Y.-W.H.); (J.T.); Tel.: +86-135-6438-5795 (Y.-W.H.); +86-29-88302339 (J.T.)
| | - Jing Tian
- Zebrafish Model Research Center for Human Diseases and Drug Screening in Western China, School of Medicine, The College of Life Sciences, Northwest University, Xi’an 710069, China; (H.Z.); (Z.W.); (W.W.); (Y.L.)
- Correspondence: (Y.-W.H.); (J.T.); Tel.: +86-135-6438-5795 (Y.-W.H.); +86-29-88302339 (J.T.)
| |
Collapse
|
44
|
Ichsan AM, Bukhari A, Lallo S, Miskad UA, Dzuhry AA, Islam IC, Muhiddin HS. Effect of retinol and α-tocopherol supplementation on photoreceptor and retinal ganglion cell apoptosis in diabetic rats model. Int J Retina Vitreous 2022; 8:40. [PMID: 35715832 PMCID: PMC9205037 DOI: 10.1186/s40942-022-00392-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 06/01/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Diabetic retinopathy (DR) is the most common microvascular complication of diabetes. Retinol and α-tocopherol of diabetic models prevent the damage of photoreceptor and retinal ganglion cells (RGC) caused by hyperglycemia. OBJECTIVE This study aims to examine the effect of retinol and α-tocopherol on photoreceptor and RGC densities and the expression of caspase-3 and -7 on the retinal layers of the diabetic rat model. METHODS Alloxan 150 mg/kg body weight single dose was used to develop animal models, which were separated into eight groups. These consist of one group without intervention (group 1), one positive control with only induced alloxan (group 2), and others receiving retinol (group 3 and 6), α-tocopherol (group 4 and 7), or their combination (group 5 and 8). Furthermore, histopathological examination was performed using Hematoxylin-Eosin staining to evaluate the photoreceptor and RGC densities, while immunohistochemistry staining evaluated the caspase-3 and -7 expressions. RESULTS In the treatment group, the highest and lowest densities were identified in diabetic rats given α-tocopherol (group 7) and retinol (group 3) respectively. The caspase-3 and -7 expression showed that the group given α-tocopherol (group 7) had the lowest value. CONCLUSION In diabetic rats, retinol and α-tocopherol compounds maintained densities and prevented photoreceptor and RGC death. However, α-tocopherol was more promising than retinol or combinations in the prevention of retinal cells apoptosis.
Collapse
Affiliation(s)
- Andi Muhammad Ichsan
- Department of Ophthalmology, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia.
| | - Agussalim Bukhari
- Department of Clinical Nutrition, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | - Subehan Lallo
- Department of Pharmaceutical Science, Faculty of Pharmacy, Hasanuddin University, Makassar, Indonesia
| | - Upik Anderiani Miskad
- Department of Pathology, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | - Andi Afdal Dzuhry
- Department of Ophthalmology, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | - Itzar Chaidir Islam
- Department of Ophthalmology, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | | |
Collapse
|
45
|
EGR1 Upregulation during Encephalitic Viral Infections Contributes to Inflammation and Cell Death. Viruses 2022; 14:v14061210. [PMID: 35746681 PMCID: PMC9227295 DOI: 10.3390/v14061210] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/24/2022] [Accepted: 05/30/2022] [Indexed: 02/07/2023] Open
Abstract
Early growth response 1 (EGR1) is an immediate early gene and transcription factor previously found to be significantly upregulated in human astrocytoma cells infected with Venezuelan equine encephalitis virus (VEEV). The loss of EGR1 resulted in decreased cell death but had no significant impact on viral replication. Here, we extend these studies to determine the impacts of EGR1 on gene expression following viral infection. Inflammatory genes CXCL3, CXCL8, CXCL10, TNF, and PTGS2 were upregulated in VEEV-infected cells, which was partially dependent on EGR1. Additionally, transcription factors, including EGR1 itself, as well as ATF3, FOS, JUN, KLF4, EGR2, and EGR4 were found to be partially transcriptionally dependent on EGR1. We also examined the role of EGR1 and the changes in gene expression in response to infection with other alphaviruses, including eastern equine encephalitis virus (EEEV), Sindbis virus (SINV), and chikungunya virus (CHIKV), as well as Zika virus (ZIKV) and Rift Valley fever virus (RVFV), members of the Flaviviridae and Phenuiviridae families, respectively. EGR1 was significantly upregulated to varying degrees in EEEV-, CHIKV-, RVFV-, SINV-, and ZIKV-infected astrocytoma cells. Genes that were identified as being partially transcriptionally dependent on EGR1 in infected cells included ATF3 (EEEV, CHIKV, ZIKV), JUN (EEEV), KLF4 (SINV, ZIKV, RVFV), CXCL3 (EEEV, CHIKV, ZIKV), CXCL8 (EEEV, CHIKV, ZIKV, RVFV), CXCL10 (EEEV, RVFV), TNF-α (EEEV, ZIKV, RVFV), and PTGS2 (EEEV, CHIKV, ZIKV). Additionally, inhibition of the inflammatory gene PTGS2 with Celecoxib, a small molecule inhibitor, rescued astrocytoma cells from VEEV-induced cell death but had no impact on viral titers. Collectively, these results suggest that EGR1 induction following viral infection stimulates multiple inflammatory mediators. Managing inflammation and cell death in response to viral infection is of utmost importance, especially during VEEV infection where survivors are at-risk for neurological sequalae.
Collapse
|
46
|
Alsawalha L, Ahram M, Abdullah MS, Dalmizrak O. Enzalutamide Overcomes Dihydrotestosterone Induced Chemo-Resistance In Triple-Negative Breast Cancer Cells via Apoptosis. Anticancer Agents Med Chem 2022; 22:3038-3048. [DOI: 10.2174/1871520622666220509123505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/15/2022] [Accepted: 03/15/2022] [Indexed: 11/22/2022]
Abstract
Background:
Triple-negative breast cancer is challenging to treat due to its heterogeneity and lack of therapeutic targets. Hence, systemic chemotherapy is still the mainstay in TNBC treatment. Unfortunately, patients commonly develop chemo-resistance. Androgen signalling through its receptor is an essential player in breast cancer where it has been shown to confer chemo-resistance to TNBC cells
Objective:
To elucidate the mechanistic effects of enzalutamide in the chemoresponse of TNBC cells to doxorubicin through the apoptosis pathway.
Results:
Enzalutamide decreased the viability of MDA-MB-231 and MDA-MB- 453 cells and reduced DHT-induced chemo-resistance of both cell lines. It also increased the chemo-sensitivity towards doxorubicin in MDA-MB-231 cells. Increasing DNA degradation and caspase 3/7 activity were concomitant with these outcomes. Moreover, enzalutamide downregulated the expression of the anti-apoptosis genes, mcl1 and bcl2, in MDA-MB-231 cells. Moreover, increase the pro-apoptotic gene bid. On the other hand, DHT upregulated the expression of the anti-apoptosis genes, mcl1 and bcl2, in both cell lines.
Conclusion:
DHT increases the expression of the anti-apoptosis mcl1 and bcl2 in the TNBC cells, presumably leading to cell survival via the prevention of doxorubicin-induced apoptosis. On the other hand, enzalutamide may sensitize the cells to doxorubicin through downregulation of the bid/bcl2/mcl1 axis that normally activates the executive caspases, caspase 3/7. The activities of the latter enzymes were apparent in DNA degradation at the late stages of
Collapse
Affiliation(s)
| | - Mamoun Ahram
- School of Medicine, The University of Jordan, Amman
| | | | | |
Collapse
|
47
|
Jaskiewicz M, Moszynska A, Serocki M, Króliczewski J, Bartoszewska S, Collawn JF, Bartoszewski R. Hypoxia-inducible factor (HIF)-3a2 serves as an endothelial cell fate executor during chronic hypoxia. EXCLI JOURNAL 2022; 21:454-469. [PMID: 35391921 PMCID: PMC8983852 DOI: 10.17179/excli2021-4622] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 02/08/2022] [Indexed: 12/20/2022]
Abstract
The adaptive response to hypoxia involves the transcriptional induction of three transcription factors called hypoxia inducible factor alpha 1, 2 and 3 (HIF-1α, HIF-2α, and HIF-3α) which dimerize with constitutively expressed beta chains that together form the HIF-1, -2 and -3 transcription factors. During normoxic conditions, the alpha chain is expressed at low levels since its stability is regulated by prolyl-hydroxylation that promotes subsequent ubiquitination and degradation. During hypoxic conditions, however, the prolyl hydroxylases are less active, and the alpha chain accumulates through elevated protein stability and the elevated induction of expression. Two of the three HIFs isoforms present in mammals, HIF-1 and HIF-2, are well characterized and have overlapping functions that promote cell survival, whereas HIF-3's role remains less clear. The HIF-3 response is complicated because the HIF3A gene can utilize different promotors and alternate splicing sites that result in a number of different HIF-3α isoforms. Here, using human umbilical vein endothelial cells (HUVECs), we demonstrate that one of the isoforms of HIF-3α, isoform 2 (HIF-3α2) accumulates at a late stage of hypoxia and induces the expression of DNA damage inducible transcript 3 (DDIT4), a gene known to promote apoptosis. We also demonstrate that caspase 3/7 activity is elevated, supporting that the role of the HIF-3α2 isoform is to promote apoptosis. Furthermore, we provide evidence that HIF-3α2 is also expressed in seven other primary endothelial cell types, suggesting that this may be a common feature of HIF-3α2 in endothelial cells.
Collapse
Affiliation(s)
- Maciej Jaskiewicz
- Department of Biology and Pharmaceutical Botany, Medical University of Gdansk, Gdansk, Poland
| | - Adrianna Moszynska
- Department of Biology and Pharmaceutical Botany, Medical University of Gdansk, Gdansk, Poland
| | - Marcin Serocki
- Department of Biology and Pharmaceutical Botany, Medical University of Gdansk, Gdansk, Poland
| | - Jaroslaw Króliczewski
- Department of Biology and Pharmaceutical Botany, Medical University of Gdansk, Gdansk, Poland
| | - Sylwia Bartoszewska
- Department of Inorganic Chemistry, Medical University of Gdansk, Gdansk, Poland
| | - James F Collawn
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, USA, Birmingham, AL 35233
| | - Rafal Bartoszewski
- Department of Biology and Pharmaceutical Botany, Medical University of Gdansk, Gdansk, Poland
| |
Collapse
|
48
|
Abdelhaleem EF, Kassab AE, El-Nassan HB, Khalil OM. Design and Synthesis of Novel Celecoxib Analogues with Potential Cytotoxic and Pro-apoptotic Activity Against Breast Cancer Cell Line MCF-7. Med Chem 2022; 18:903-914. [PMID: 35264093 DOI: 10.2174/1573406418666220309123648] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/11/2022] [Accepted: 01/27/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Breast cancer is currently the leading cause of worldwide cancer incidence exceeding lung cancer. In addition, breast cancer accounts for 1 in 4 cancer cases and 1 in 6 cancer deaths among women. Cytotoxic chemotherapy is still the main therapeutic approach for patients with metastatic breast cancer. OBJECTIVE To synthesize a series of novel celecoxib analogues to evaluate their anticancer activity against MCF-7 cell line. METHOD Our design of target compounds was based on preserving the pyrazole moiety of celecoxib attached to two phenyl rings, one of them having polar hydrogen bonding group (sulfonamide or methoxy group). The methyl group of the second phenyl ring was replaced with chlorine or bromine atom. Finally, the trifluoromethyl group was replaced with arylidene hydrazine-1-carbonyl moiety, which is substituted either with fluoro or methoxy group, offering various electronic and lipophilic environments. These modifications were carried out to investigate their effects on the anti-proliferative activity of the newly synthesized celecoxib analogues and to provide a valuable structure activity relationship. RESULTS Four compounds namely (4e-h) exhibited significant antitumor activity. Compounds 4e, 4f and 4h showed 1.2-2 folds more potent anticancer activity than celecoxib. Celecoxib analogue 4f showed the most potent anti-proliferative activity. Its anti-proliferative activity seems to associate well with its ability to inhibit BCL-2. Moreover, activation of damage response pathway of the DNA leads to cell cycle arrest at G2/M phase, accumulation of cells in pre-G1 phase, indicating that cell death proceeds through an apoptotic mechanism. Compound 4f exhibited potent pro-apoptotic effect via induction of the intrinsic mitochondrial pathway of apoptosis. This mechanistic pathway was proved by a significant increase in the expression of the tumor suppressor gene p53, elevation in Bax/BCL-2 ratio and a significant increase in the level of active caspase-7. Furthermore, compound 4f showed moderate COX-2 inhibitory activity. CONCLUSION Celecoxib analogue 4f is a promising multi-targeted lead for the design and synthesis of potent anticancer agents.
Collapse
Affiliation(s)
- Eman F Abdelhaleem
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, P.O. Box 11562, Egypt
| | - Asmaa E Kassab
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, P.O. Box 11562, Egypt
| | - Hala B El-Nassan
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, P.O. Box 11562, Egypt
| | - Omneya M Khalil
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, P.O. Box 11562, Egypt
| |
Collapse
|
49
|
Jayathilake AG, Kadife E, Kuol N, Luwor RB, Nurgali K, Su XQ. Krill oil supplementation reduces the growth of CT-26 orthotopic tumours in Balb/c mice. BMC Complement Med Ther 2022; 22:34. [PMID: 35120511 PMCID: PMC8817584 DOI: 10.1186/s12906-022-03521-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 01/25/2022] [Indexed: 12/09/2022] Open
Abstract
Background We have previously reported that the free fatty acid extract (FFAE) of krill oil (KO) significantly inhibits the proliferation and migration, and induces apoptosis of colorectal cancer (CRC) cells. This study aimed to investigate the in vivo efficacy of various doses of KO supplementation on the inhibition of CRC tumour growth, molecular markers of proliferation, angiogenesis, apoptosis, the epidermal growth factor receptor (EGFR) and its downstream molecular signalling. Methods Male Balb/c mice were randomly divided into four groups with five in each group. The control (untreated) group received standard chow diet; and other three groups received KO supplementation at 5%, 10%, and 15% of their daily dietary intake respectively for three weeks before and after the orthotopic implantation of CT-26 CRC cells in their caecum. The expression of cell proliferation marker Ki-67 and angiogenesis marker CD-31 were assessed by immunohistochemistry. The expression of EGFR, phosphorylated EGFR (pEGFR), protein kinase B (AKT), pAKT, extracellular signal-regulated kinase (ERK1/2), pERK1/2, cleaved caspase-7, cleaved poly (ADP-ribose) polymerase (PARP), and DNA/RNA damage were determined by western blot. Results KO supplementation reduced the CRC tumour growth in a dose-dependent manner; with 15% of KO being the most effective in reduction of tumour weight and volume (68.5% and 68.3% respectively, P < 0.001), inhibition of cell proliferation by 69.9% (P < 0.001) and microvessel density by 72.7% (P < 0.001). The suppressive effects of KO on EGFR and its downstream signalling, ERK1/2 and AKT, were consistent with our previous in vitro observations. Furthermore, KO exhibited pro-apoptotic effects on tumour cells as indicated by an increase in the expression of cleaved PARP by 3.9-fold and caspase-7 by 8.9-fold. Conclusions This study has demonstrated that KO supplementation reduces CRC tumour growth by inhibiting cancer cell proliferation and blood vessel formation and inducing apoptosis of tumour cells. These anti-cancer effects are associated with the downregulation of the EGFR signalling pathway and activation of caspase-7, PARP cleavage, and DNA/RNA damage. Supplementary Information The online version contains supplementary material available at 10.1186/s12906-022-03521-4.
Collapse
Affiliation(s)
| | - Elif Kadife
- Institute for Health and Sport, Victoria University, Melbourne, 8001, Australia
| | - Nyanbol Kuol
- Institute for Health and Sport, Victoria University, Melbourne, 8001, Australia
| | - Rodney Brain Luwor
- Department of Surgery, The Royal Melbourne Hospital, The University of Melbourne, Parkville, Australia
| | - Kulmira Nurgali
- Institute for Health and Sport, Victoria University, Melbourne, 8001, Australia.,Department of Medicine, Western Health, The University of Melbourne, Melbourne, Australia.,Regenerative Medicine and Stem Cells Program, Australian Institute for Musculoskeletal Sciences (AIMSS), Melbourne, Australia
| | - Xiao Qun Su
- Institute for Health and Sport, Victoria University, Melbourne, 8001, Australia.
| |
Collapse
|
50
|
The Antiproliferative and Apoptotic Effects of a Novel Quinazoline Carrying Substituted-Sulfonamides: In Vitro and Molecular Docking Study. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27030981. [PMID: 35164248 PMCID: PMC8838787 DOI: 10.3390/molecules27030981] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 01/26/2023]
Abstract
In order to investigate for a new effective and safe anticancer drug, we synthesized a novel series of quinazoline containing biologically active substituted-sulfonamide moiety at 3- position 4a-n. The structure of the newly prepared compounds was proved by microanalysis, IR, 1H-NMR, 13C-NMR and mass spectral data. All the synthesized compounds were evaluated for their in vitro cytotoxic activity in numerous cancer cell lines including A549, HepG-2, LoVo and MCF-7 and normal HUVEC cell line. The two most active compounds 4d and 4f were then tested for their apoptosis induction using DNA content and Annexin V-FITC/PI staining. Moreover, apoptosis initiation was also confirmed using RT-PCR and Western blot. To further understand the binding preferences of quinazoline sulfonamides, docking simulations were used. Among the fourteen new synthesized compounds, we found that compounds 4d and 4f exerted the strongest cytotoxicity against MCF-7 cells with an IC50 value of 2.5 and 5 μM, respectively. Flow cytometry data revealed the ability of compounds 4d and 4f to mediate apoptosis and arrest cell cycle growth at G1 phase. Furthermore, RT-PCR and Western blot results suggested that both 4d and 4f activates apoptotic cell death pathway in MCF-7 cells. Molecular docking assessments indicated that compounds 4d and 4f fit perfectly into Bcl2's active site. Based on the biological properties, we conclude that both compounds 4d and 4f could be used as a new type of anticancer agent, which provides a scientific basis for further research into the treatment of cancer.
Collapse
|