1
|
Ismayilzade M, Ince B, Oltulu P, Baycar Z, Kendir MS, Dadaci M. Effect of vascularized jejunal conduit flap on peripheral nerve regeneration in rats. Turk J Med Sci 2024; 54:792-803. [PMID: 39295602 PMCID: PMC11407344 DOI: 10.55730/1300-0144.5851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 08/23/2024] [Accepted: 05/23/2024] [Indexed: 09/21/2024] Open
Abstract
Background/aim In the literature, almost all of the nerve conduits proposed for obtaining better nerve recovery were applied as graft materials. In this study, we aimed to propose a new nerve conduit model with a flap pattern and evaluate the effect of a pedicled vascularized jejunal flap on nerve regeneration after wrapping it around a sciatic nerve. Materials and methods A total of 90 Wistar albino rats were randomly divided into nine groups with 10 rats in each. The first three groups constituted the control groups, whereas Groups 4-6 were the jejunum conduit (JC)-applied groups. A mucosa-resected JC (MRJC) was applied in Groups 7 and 8. Epineurial neurorrhaphy was performed in Groups 1, 4, and 7; repair with a nerve graft was applied in Groups 2, 5, and 8; and a 1-cm-long nerve defect was created in Groups 3, 6, and 9. After 2 months of follow-up, nerve regeneration was assessed by statistical analyses of the Sciatic Functional Index (SFI) and histopathological evaluation. Results The MRJC groups had significantly better results in terms of SFI (p = 0.005). Statistical differences in axonal degeneration, axonal density, myelination, and disorganization were found between all control groups and MRJC groups (p = 0.022, p = 0.001, p = 0.001, and p = 0.039, respectively). Conclusion In this study, the feasibility of wrapping around the nerve repair zones of pedicled autologous flaps designed in a tubular fashion was observed in a small rat model. The findings must be further validated with larger animals before clinical testing.
Collapse
Affiliation(s)
- Majid Ismayilzade
- Department of Plastic, Reconstructive, and Aesthetic Surgery, Faculty of Medicine, İstinye University, İstanbul, Turkiye
| | - Bilsev Ince
- Department of Plastic, Reconstructive, and Aesthetic Surgery, Faculty of Medicine, Necmettin Erbakan University, Konya, Turkiye
| | - Pembe Oltulu
- Department of Pathology, Faculty of Medicine, Necmettin Erbakan University, Konya, Turkiye
| | - Zikrullah Baycar
- Department of Plastic, Reconstructive, and Aesthetic Surgery, Faculty of Medicine, Necmettin Erbakan University, Konya, Turkiye
| | - Münür Selçuk Kendir
- Department of Plastic, Reconstructive, and Aesthetic Surgery, Faculty of Medicine, Necmettin Erbakan University, Konya, Turkiye
| | - Mehmet Dadaci
- Department of Plastic, Reconstructive, and Aesthetic Surgery, Faculty of Medicine, Necmettin Erbakan University, Konya, Turkiye
| |
Collapse
|
2
|
Zheng B, Qiu Z, Xu J, Zeng X, Liu K, Chen L. 3D printing-mediated microporous starch hydrogels for wound hemostasis. J Mater Chem B 2023; 11:8411-8421. [PMID: 37463000 DOI: 10.1039/d3tb01189e] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
Starch hydrogels with biodegradability and cytocompatibility are good alternatives to traditional dressings. Herein, oxidized starch hydrogel loaded with coagulation factor Ca2+ ions (CaOMS) is successfully constructed by green hot-extrusion 3D printing technology (HE-3DP). In vitro study demonstrated the good water absorbing capacity (845.15-1194.20%) and blood cell and platelet adhesion of CaOMS to assist hemostasis owing to the boosted network structure density, gel strength, and the release of activated Ca2+ ions. More importantly, in vivo experiments further demonstrated CaOMS could maintain the weight loss caused by blood loss from wounds and has excellent hemostatic (65 s) and wound healing properties by promoting the secretion of epidermal growth factor (EGF) and vascular endothelial growth factor (VEGF) expression. The advantages of CaOMS, including rapid and effective hemostasis, effective wound healing, low cost, easy usage, and adaptability to fit various wound shapes, make it a promising biomaterial for achieving fast hemostasis and wound healing.
Collapse
Affiliation(s)
- Bo Zheng
- Ministry of Education Engineering Research Center of Starch & Protein Processing, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Zhipeng Qiu
- Ministry of Education Engineering Research Center of Starch & Protein Processing, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Jinchuan Xu
- Ministry of Education Engineering Research Center of Starch & Protein Processing, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Xixi Zeng
- Ministry of Education Engineering Research Center of Starch & Protein Processing, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Kun Liu
- School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Ling Chen
- Ministry of Education Engineering Research Center of Starch & Protein Processing, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
3
|
Skin Involved Nanotechnology. Nanomedicine (Lond) 2023. [DOI: 10.1007/978-981-16-8984-0_31] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
4
|
Elaborating Polyurethane Pillowy Soft Mat on Polypropylene Monofilament Surface with Stepwise Surface Treatments. CHINESE JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1007/s10118-022-2821-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
5
|
Bioactive Natural and Synthetic Polymers for Wound Repair. Macromol Res 2022. [DOI: 10.1007/s13233-022-0062-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
6
|
Patil P, Russo KA, McCune JT, Pollins AC, Cottam MA, Dollinger BR, DeJulius CR, Gupta MK, D'Arcy R, Colazo JM, Yu F, Bezold MG, Martin JR, Cardwell NL, Davidson JM, Thompson CM, Barbul A, Hasty AH, Guelcher SA, Duvall CL. Reactive oxygen species-degradable polythioketal urethane foam dressings to promote porcine skin wound repair. Sci Transl Med 2022; 14:eabm6586. [PMID: 35442705 PMCID: PMC10165619 DOI: 10.1126/scitranslmed.abm6586] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Porous, resorbable biomaterials can serve as temporary scaffolds that support cell infiltration, tissue formation, and remodeling of nonhealing skin wounds. Synthetic biomaterials are less expensive to manufacture than biologic dressings and can achieve a broader range of physiochemical properties, but opportunities remain to tailor these materials for ideal host immune and regenerative responses. Polyesters are a well-established class of synthetic biomaterials; however, acidic degradation products released by their hydrolysis can cause poorly controlled autocatalytic degradation. Here, we systemically explored reactive oxygen species (ROS)-degradable polythioketal (PTK) urethane (UR) foams with varied hydrophilicity for skin wound healing. The most hydrophilic PTK-UR variant, with seven ethylene glycol (EG7) repeats flanking each side of a thioketal bond, exhibited the highest ROS reactivity and promoted optimal tissue infiltration, extracellular matrix (ECM) deposition, and reepithelialization in porcine skin wounds. EG7 induced lower foreign body response, greater recruitment of regenerative immune cell populations, and resolution of type 1 inflammation compared to more hydrophobic PTK-UR scaffolds. Porcine wounds treated with EG7 PTK-UR foams had greater ECM production, vascularization, and resolution of proinflammatory immune cells compared to polyester UR foam-based NovoSorb Biodegradable Temporizing Matrix (BTM)-treated wounds and greater early vascular perfusion and similar wound resurfacing relative to clinical gold standard Integra Bilayer Wound Matrix (BWM). In a porcine ischemic flap excisional wound model, EG7 PTK-UR treatment led to higher wound healing scores driven by lower inflammation and higher reepithelialization compared to NovoSorb BTM. PTK-UR foams warrant further investigation as synthetic biomaterials for wound healing applications.
Collapse
Affiliation(s)
- Prarthana Patil
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Katherine A Russo
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Joshua T McCune
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Alonda C Pollins
- Department of Plastic Surgery, Vanderbilt University Medical Center, Nashville, TN 37212, USA
| | - Matthew A Cottam
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Bryan R Dollinger
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Carlisle R DeJulius
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Mukesh K Gupta
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Richard D'Arcy
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Juan M Colazo
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Fang Yu
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Mariah G Bezold
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - John R Martin
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Nancy L Cardwell
- Department of Plastic Surgery, Vanderbilt University Medical Center, Nashville, TN 37212, USA
| | - Jeffrey M Davidson
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Callie M Thompson
- Vanderbilt Burn Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Adrian Barbul
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN 37212, USA.,Department of Surgery, Veterans Administration Medical Center, Nashville, TN 37212, USA
| | - Alyssa H Hasty
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.,Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN 37212, USA
| | - Scott A Guelcher
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA.,Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Craig L Duvall
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| |
Collapse
|
7
|
Zhang Y, Han Y, Peng Y, Lei J, Chang F. Bionic Biphasic Composite Scaffold with Osteochondrogenic Factors for Regeneration of Full-Thickness Osteochondral Defect. Biomater Sci 2022; 10:1713-1723. [PMID: 35229096 DOI: 10.1039/d2bm00103a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Full-thickness osteochondral defects lack the capability to self-repair owing to their complicated hierarchical structure. At present, clinical treatments including microfracture etc. have shown some efficacy; however, the newborn tissue exhibits...
Collapse
Affiliation(s)
- Yanbo Zhang
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, P. R. China
| | - Yu Han
- Department of Orthopedics, Jilin Central General Hospital, Jilin, P. R. China
| | - Yachen Peng
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, P. R. China
| | - Jie Lei
- Department of MR, Changchun FAW General Hospital, Changchun, P. R. China
| | - Fei Chang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, P. R. China.
| |
Collapse
|
8
|
Skin Involved Nanotechnology. Nanomedicine (Lond) 2022. [DOI: 10.1007/978-981-13-9374-7_31-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
9
|
Skin Involved Nanotechnology. Nanomedicine (Lond) 2022. [DOI: 10.1007/978-981-13-9374-7_31-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
10
|
Hosseini M, Shafiee A. Engineering Bioactive Scaffolds for Skin Regeneration. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2101384. [PMID: 34313003 DOI: 10.1002/smll.202101384] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/24/2021] [Indexed: 06/13/2023]
Abstract
Large skin wounds pose a major clinical challenge. Scarcity of donor site and postsurgical scarring contribute to the incomplete or partial loss of function and aesthetic concerns in skin wound patients. Currently, a wide variety of skin grafts are being applied in clinical settings. Scaffolds are used to overcome the issues related to the misaligned architecture of the repaired skin tissues. The current review summarizes the contribution of biomaterials to wound healing and skin regeneration and addresses the existing limitations in skin grafting. Then, the clinically approved biologic and synthetic skin substitutes are extensively reviewed. Next, the techniques for modification of skin grafts aiming for enhanced tissue regeneration are outlined, and a summary of different growth factor delivery systems using biomaterials is presented. Considering the significant progress in biomaterial science and manufacturing technologies, the idea of biomaterial-based skin grafts with the ability for scarless wound healing and reconstructing full skin organ is more achievable than ever.
Collapse
Affiliation(s)
- Motaharesadat Hosseini
- Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), Kelvin Grove, Brisbane, QLD, 4059, Australia
| | - Abbas Shafiee
- Herston Biofabrication Institute, Metro North Hospital and Health Service, Brisbane, QLD, 4029, Australia
- Royal Brisbane and Women's Hospital, Metro North Hospital and Health Service, Brisbane, QLD, 4029, Australia
- UQ Diamantina Institute, Translational Research Institute, The University of Queensland, Brisbane, QLD, 4102, Australia
| |
Collapse
|
11
|
Linear and cyclic polyester called poly (oxyethylene glycol oxymaleoyl) via ring oppening and/or cyclization reactions: Controlled synthesis under effect of maghnite (Algerian MMT). JOURNAL OF POLYMER RESEARCH 2021. [DOI: 10.1007/s10965-021-02770-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
12
|
Affiliation(s)
- Wentao Zhai
- School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Junjie Jiang
- School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou, Guangdong Province, China
- Ningbo Key Lab of Polymer Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang Province, China
| | - Chul B. Park
- Microcellular Plastics Manufacturing Laboratory, Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
13
|
Agarwal Y, Rajinikanth PS, Ranjan S, Tiwari U, Balasubramnaiam J, Pandey P, Arya DK, Anand S, Deepak P. Curcumin loaded polycaprolactone-/polyvinyl alcohol-silk fibroin based electrospun nanofibrous mat for rapid healing of diabetic wound: An in-vitro and in-vivo studies. Int J Biol Macromol 2021; 176:376-386. [PMID: 33561460 DOI: 10.1016/j.ijbiomac.2021.02.025] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 02/03/2021] [Accepted: 02/03/2021] [Indexed: 10/25/2022]
Abstract
Electrospinning is emerging as a versatile technique nanofibers fabrication because due to their unique properties such as large surface area to volume ratio, porosity and maintaining moist wound environment, the nanofibers are able to deliver sustained drug release and oxygen to the wound for rapid healing of diabetic wound. The present work was aimed to prepare and evaluate silk fibroin-curcumin based nanofiber in combination with polycaprolactone (PCL) and polyvinyl alcohol (PVA) which helped to strengthen the wound healing properties of nanofiber. Silk fibroin is a naturally occurring polymer was selected one polymer for making nanofibrous mat due to its unique properties such as biodegradability, permeability, oxygen supply and maintain moisture content in the wound. SEM results showed diameters of fibers varied in the range between 200 and 350 nm and their tensile strength ranged from 12.41 to 16.80 MP. The nanofibers were causing sustained release of curcumin for many hours. The in-vivo wound healing studies in streptozotocin-induced diabetic mice showed rapid wound healing efficacy as compared to conventional formulations. Furthermore, the histopathological studies evidenced its ability to restore the normal skin structure and histological conditions of tissues. The silk fibroin-based nanofiber wound dressing, therefore appears to be an ideal preparation, in combination with curcumin, because it blends the anti-oxidant, anti-inflammatory properties of curcumin. Therefore, it was concluded that the silk fibroin-based nanofiber loaded with curcumin has great healing potential in diabetic wound.
Collapse
Affiliation(s)
- Yashi Agarwal
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| | - P S Rajinikanth
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, India.
| | - Shivendu Ranjan
- Faculty of Engineering and the Built Environment, University of Johannesburg, Johannesburg, South Africa.
| | | | - J Balasubramnaiam
- Research and Development Centre, Epion Labs Pvt Ltd., Hyderabad, India
| | - Prashant Pandey
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| | - Dilip Kumar Arya
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| | - Sneha Anand
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| | - Payal Deepak
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| |
Collapse
|
14
|
Microstructure and Mechanical Properties of PU/PLDL Sponges Intended for Grafting Injured Spinal Cord. Polymers (Basel) 2020; 12:polym12112693. [PMID: 33207553 PMCID: PMC7697813 DOI: 10.3390/polym12112693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/09/2020] [Accepted: 11/13/2020] [Indexed: 11/17/2022] Open
Abstract
Highly porous, elastic, and degradable polyurethane and polyurethane/polylactide (PU/PLDL) sponges, in various shapes and sizes, with open interconnected pores, and porosity up to 90% have been manufactured. They have been intended for gap filling in the injured spinal cord. The porosity of the sponges depended on the content of polylactide, i.e., it decreased with the increase of polylactide content. The rise of polylactide content caused an increase of Young modulus and rigidity as well as a more complex morphology of the polyurethane/polylactide blends. The mechanical properties, in vitro toxicity, and degradation in artificial cerebrospinal fluid were tested. Sponges underwent continuous degradation with varying degradation rates depending on the polymer composition. In vitro cell studies with fibroblast cultures proved the biocompatibility of the polymers. Based on the obtained results, the designed PU/PLDL sponges appeared to be promising candidates for bridging gaps within injured spinal cord in further in vitro and in vivo studies.
Collapse
|
15
|
Mehrabi T, Mesgar AS, Mohammadi Z. Bioactive Glasses: A Promising Therapeutic Ion Release Strategy for Enhancing Wound Healing. ACS Biomater Sci Eng 2020; 6:5399-5430. [PMID: 33320556 DOI: 10.1021/acsbiomaterials.0c00528] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The morbidity, mortality, and burden of burn victims and patients with severe diabetic wounds are still high, which leads to an extensively growing demand for novel treatments with high clinical efficacy. Biomaterial-based wound treatment approaches have progressed over time from simple cotton wool dressings to advanced skin substitutes containing cells and growth factors; however, no wound care approach is yet completely satisfying. Bioactive glasses are materials with potential in many areas that exhibit unique features in biomedical applications. Today, bioactive glasses are not only amorphous solid structures that can be used as a substitute in hard tissue but also are promising materials for soft tissue regeneration and wound healing applications. Biologically active elements such as Ag, B, Ca, Ce, Co, Cu, Ga, Mg, Se, Sr, and Zn can be incorporated in glass networks; hence, the superiority of these multifunctional materials over current materials results from their ability to release multiple therapeutic ions in the wound environment, which target different stages of the wound healing process. Bioactive glasses and their dissolution products have high potency for inducing angiogenesis and exerting several biological impacts on cell functions, which are involved in wound healing and some other features that are valuable in wound healing applications, namely hemostatic and antibacterial properties. In this review, we focus on skin structure, the dynamic process of wound healing in injured skin, and existing wound care approaches. The basic concepts of bioactive glasses are reviewed to better understand the relationship between glass structure and its properties. We illustrate the active role of bioactive glasses in wound repair and regeneration. Finally, research studies that have used bioactive glasses in wound healing applications are summarized and the future trends in this field are elaborated.
Collapse
Affiliation(s)
- Tina Mehrabi
- Biomaterials Laboratory, Division of Biomedical Engineering, Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran 1439957131, Iran
| | - Abdorreza S Mesgar
- Biomaterials Laboratory, Division of Biomedical Engineering, Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran 1439957131, Iran
| | - Zahra Mohammadi
- Biomaterials Laboratory, Division of Biomedical Engineering, Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran 1439957131, Iran
| |
Collapse
|
16
|
Spoonmore TJ, Ford CA, Curry JM, Guelcher SA, Cassat JE. Concurrent Local Delivery of Diflunisal Limits Bone Destruction but Fails To Improve Systemic Vancomycin Efficacy during Staphylococcus aureus Osteomyelitis. Antimicrob Agents Chemother 2020; 64:e00182-20. [PMID: 32340992 PMCID: PMC7318050 DOI: 10.1128/aac.00182-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 04/22/2020] [Indexed: 12/30/2022] Open
Abstract
Staphylococcus aureus osteomyelitis is a debilitating infection of bone. Treatment of osteomyelitis is impaired by the propensity of invading bacteria to induce pathological bone remodeling that may limit antibiotic penetration to the infectious focus. The nonsteroidal anti-inflammatory drug diflunisal was previously identified as an osteoprotective adjunctive therapy for osteomyelitis, based on the ability of this compound to inhibit S. aureus quorum sensing and subsequent quorum-dependent toxin production. When delivered locally during experimental osteomyelitis, diflunisal significantly limits bone destruction without affecting bacterial burdens. However, because diflunisal's "quorum-quenching" activity could theoretically increase antibiotic recalcitrance, it is critically important to evaluate this adjunctive therapy in the context of standard-of-care antibiotics. The objective of this study is to evaluate the efficacy of vancomycin to treat osteomyelitis during local diflunisal treatment. We first determined that systemic vancomycin effectively reduces bacterial burdens in a murine model of osteomyelitis and identified a dosing regimen that decreases bacterial burdens without eradicating infection. Using this dosing scheme, we found that vancomycin activity is unaffected by the presence of diflunisal in vitro and in vivo Similarly, locally delivered diflunisal still potently inhibits osteoblast cytotoxicity in vitro and bone destruction in vivo in the presence of subtherapeutic vancomycin. However, we also found that the resorbable polyester urethane (PUR) foams used to deliver diflunisal serve as a nidus for infection. Taken together, these data demonstrate that diflunisal does not significantly impact standard-of-care antibiotic therapy for S. aureus osteomyelitis, but they also highlight potential pitfalls encountered with local drug delivery.
Collapse
Affiliation(s)
- Thomas J Spoonmore
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee, USA
- Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Caleb A Ford
- Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation (VI4), Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Jacob M Curry
- Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Scott A Guelcher
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee, USA
- Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
| | - James E Cassat
- Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation (VI4), Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
17
|
Du B, Yin H, Chen Y, Lin W, Wang Y, Zhao D, Wang G, He X, Li J, Li Z, Luo F, Tan H, Fu Q. A waterborne polyurethane 3D scaffold containing PLGA with a controllable degradation rate and an anti-inflammatory effect for potential applications in neural tissue repair. J Mater Chem B 2020; 8:4434-4446. [PMID: 32367107 DOI: 10.1039/d0tb00656d] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
3D connected porous LGPU scaffolds with adjustable degradation and a strong anti-inflammatory effect were prepared for neural tissue repair.
Collapse
|
18
|
Amirsadeghi A, Jafari A, Eggermont LJ, Hashemi SS, Bencherif SA, Khorram M. Vascularization strategies for skin tissue engineering. Biomater Sci 2020; 8:4073-4094. [DOI: 10.1039/d0bm00266f] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Lack of proper vascularization after skin trauma causes delayed wound healing. This has sparked the development of various tissue engineering strategies to improve vascularization.
Collapse
Affiliation(s)
- Armin Amirsadeghi
- Department of Chemical Engineering
- School of Chemical and Petroleum Engineering
- Shiraz University
- Shiraz 71348-51154
- Iran
| | - Arman Jafari
- Department of Chemical Engineering
- School of Chemical and Petroleum Engineering
- Shiraz University
- Shiraz 71348-51154
- Iran
| | | | - Seyedeh-Sara Hashemi
- Burn & Wound Healing Research Center
- Shiraz University of Medical Science
- Shiraz 71345-1978
- Iran
| | - Sidi A. Bencherif
- Department of Chemical Engineering
- Northeastern University
- Boston
- USA
- Department of Bioengineering
| | - Mohammad Khorram
- Department of Chemical Engineering
- School of Chemical and Petroleum Engineering
- Shiraz University
- Shiraz 71348-51154
- Iran
| |
Collapse
|
19
|
Bone Tissue Regeneration in the Oral and Maxillofacial Region: A Review on the Application of Stem Cells and New Strategies to Improve Vascularization. Stem Cells Int 2019; 2019:6279721. [PMID: 32082383 PMCID: PMC7012224 DOI: 10.1155/2019/6279721] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 12/13/2019] [Indexed: 02/07/2023] Open
Abstract
Bone tissue engineering techniques are a promising alternative for the use of autologous bone grafts to reconstruct bone defects in the oral and maxillofacial region. However, for successful bone regeneration, adequate vascularization is a prerequisite. This review presents and discusses the application of stem cells and new strategies to improve vascularization, which may lead to feasible clinical applications. Multiple sources of stem cells have been investigated for bone tissue engineering. The stromal vascular fraction (SVF) of human adipose tissue is considered a promising single source for a heterogeneous population of essential cells with, amongst others, osteogenic and angiogenic potential. Enhanced vascularization of tissue-engineered grafts can be achieved by different mechanisms: vascular ingrowth directed from the surrounding host tissue to the implanted graft, vice versa, or concomitantly. Vascular ingrowth into the implanted graft can be enhanced by (i) optimizing the material properties of scaffolds and (ii) their bioactivation by incorporation of growth factors or cell seeding. Vascular ingrowth directed from the implanted graft towards the host tissue can be achieved by incorporating the graft with either (i) preformed microvascular networks or (ii) microvascular fragments (MF). The latter may have stimulating actions on both vascular ingrowth and outgrowth, since they contain angiogenic stem cells like SVF, as well as vascularized matrix fragments. Both adipose tissue-derived SVF and MF are cell sources with clinical feasibility due to their large quantities that can be harvested and applied in a one-step surgical procedure. During the past years, important advancements of stem cell application and vascularization in bone tissue regeneration have been made. The development of engineered in vitro 3D models mimicking the bone defect environment would facilitate new strategies in bone tissue engineering. Successful clinical application requires innovative future investigations enhancing vascularization.
Collapse
|
20
|
Fathi-Achachelouei M, Keskin D, Bat E, Vrana NE, Tezcaner A. Dual growth factor delivery using PLGA nanoparticles in silk fibroin/PEGDMA hydrogels for articular cartilage tissue engineering. J Biomed Mater Res B Appl Biomater 2019; 108:2041-2062. [PMID: 31872975 DOI: 10.1002/jbm.b.34544] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 11/28/2019] [Accepted: 12/08/2019] [Indexed: 12/13/2022]
Abstract
Degeneration of articular cartilage due to damages, diseases, or age-related factors can significantly decrease the mobility of the patients. Various tissue engineering approaches which take advantage of stem cells and growth factors in a three-dimensional constructs have been used for reconstructing articular tissue. Proliferative impact of basic fibroblast growth factor (bFGF) and chondrogenic differentiation effect of transforming growth factor-beta 1 (TGF-β1) over mesenchymal stem cells have previously been verified. In this study, silk fibroin (SF) and of poly(ethylene glycol) dimethacrylate (PEGDMA) were used to provide a versatile platform for preparing hydrogels with tunable mechanical, swelling and degradation properties through physical and chemical crosslinking as a microenvironment for chondrogenic differentiation in the presence of bFGF and TGF-β1 releasing nanoparticles (NPs) for the first time. Scaffolds with compressive moduli ranging from 95.70 ± 17.82 to 338.05 ± 38.24 kPa were obtained by changing both concentration PEGDMA and volume ratio of PEGDMA with 8% SF. Highest cell viability was observed in PEGDMA 10%-SF 8% (1:1) [PEG10-SF8(1:1)] hydrogel group. Release of bFGF and TGF-β1 within PEG10-SF8(1:1) hydrogels resulted in higher DNA and glycosaminoglycans amounts indicating synergistic effect of dual release over proliferation and chondrogenic differentiation of dental pulp stem cells in hydrogels, respectively. Our results suggested that simultaneous delivery of bFGF and TGF-β1 through utilization of PLGA NPs within PEG10-SF8(1:1) hydrogel provided a novel and versatile means for articular cartilage regeneration as they allow for dosage- and site-specific multiple growth factor delivery.
Collapse
Affiliation(s)
| | - Dilek Keskin
- Department of Biomedical Engineering, Middle East Technical University, Ankara, Turkey.,Center of Excellence in Biomaterials and Tissue Engineering (BIOMATEN), Middle East Technical University, Ankara, Turkey.,Department of Engineering Sciences, Middle East Technical University, Ankara, Turkey
| | - Erhan Bat
- Department of Biomedical Engineering, Middle East Technical University, Ankara, Turkey.,Department of Chemical Engineering, Middle East Technical University, Ankara, Turkey
| | - Nihal E Vrana
- Inserm UMR 1121, Strasbourg, France.,SPARTHA Medical, Strasbourg, France
| | - Aysen Tezcaner
- Department of Biomedical Engineering, Middle East Technical University, Ankara, Turkey.,Center of Excellence in Biomaterials and Tissue Engineering (BIOMATEN), Middle East Technical University, Ankara, Turkey.,Department of Engineering Sciences, Middle East Technical University, Ankara, Turkey
| |
Collapse
|
21
|
Cho H, Blatchley MR, Duh EJ, Gerecht S. Acellular and cellular approaches to improve diabetic wound healing. Adv Drug Deliv Rev 2019; 146:267-288. [PMID: 30075168 DOI: 10.1016/j.addr.2018.07.019] [Citation(s) in RCA: 133] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 07/23/2018] [Accepted: 07/30/2018] [Indexed: 02/06/2023]
Abstract
Chronic diabetic wounds represent a huge socioeconomic burden for both affected individuals and the entire healthcare system. Although the number of available treatment options as well as our understanding of wound healing mechanisms associated with diabetes has vastly improved over the past decades, there still remains a great need for additional therapeutic options. Tissue engineering and regenerative medicine approaches provide great advantages over conventional treatment options, which are mainly aimed at wound closure rather than addressing the underlying pathophysiology of diabetic wounds. Recent advances in biomaterials and stem cell research presented in this review provide novel ways to tackle different molecular and cellular culprits responsible for chronic and nonhealing wounds by delivering therapeutic agents in direct or indirect ways. Careful integration of different approaches presented in the current article could lead to the development of new therapeutic platforms that can address multiple pathophysiologic abnormalities and facilitate wound healing in patients with diabetes.
Collapse
Affiliation(s)
- Hongkwan Cho
- Wilmer Ophthalmologic Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Michael R Blatchley
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA; Department of Chemical and Biomolecular Engineering, Institute for NanoBioTechnology, Johns Hopkins University Baltimore, MD, USA
| | - Elia J Duh
- Wilmer Ophthalmologic Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sharon Gerecht
- Department of Chemical and Biomolecular Engineering, Institute for NanoBioTechnology, Johns Hopkins University Baltimore, MD, USA.
| |
Collapse
|
22
|
Aavani F, Khorshidi S, Karkhaneh A. A concise review on drug-loaded electrospun nanofibres as promising wound dressings. J Med Eng Technol 2019; 43:38-47. [DOI: 10.1080/03091902.2019.1606950] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Farzaneh Aavani
- Biomedical Engineering Faculty, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Sajedeh Khorshidi
- Biomedical Engineering Faculty, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Akbar Karkhaneh
- Biomedical Engineering Faculty, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| |
Collapse
|
23
|
Wan W, Cai F, Huang J, Chen S, Liao Q. A skin-inspired 3D bilayer scaffold enhances granulation tissue formation and anti-infection for diabetic wound healing. J Mater Chem B 2019. [DOI: 10.1039/c8tb03341b] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We design and fabricate a bilayer 3D scaffold inspired by the structure of skin. The top layer is made of silver loaded GelMA cryogel to prevent infection. The bottom layer is made of a PDGF-BB loaded 3D printed scaffold to promotes angiogenesis and collagen deposition to accelerate granulation tissue formation.
Collapse
Affiliation(s)
- Wenbing Wan
- Department of Orthopedics
- The Third Affiliated Hospital of Nanchang University
- Nanchang 330008
- China
| | - Feng Cai
- Department of Orthopedics
- The Third Affiliated Hospital of Nanchang University
- Nanchang 330008
- China
| | - Jiayu Huang
- Department of Orthopedics
- The Third Affiliated Hospital of Nanchang University
- Nanchang 330008
- China
| | - Shixuan Chen
- Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program
- University of Nebraska Medical Center
- Omaha
- USA
| | - Qi Liao
- Department of Orthopedics
- The Third Affiliated Hospital of Nanchang University
- Nanchang 330008
- China
| |
Collapse
|
24
|
Xu J, Min D, Guo G, Liao X, Fu Z. Experimental study of epidermal growth factor and acidic fibroblast growth factor in the treatment of diabetic foot wounds. Exp Ther Med 2018; 15:5365-5370. [PMID: 29904416 DOI: 10.3892/etm.2018.6131] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Accepted: 01/21/2018] [Indexed: 12/24/2022] Open
Abstract
The aim of the present study was to investigate the effect of epidermal growth factor (EGF) and acidic fibroblast growth factor (aFGF) on the healing of diabetic foot wounds. A total of 199 patients with diabetic foot ulcers were recruited and randomly divided into four groups: A recombinant human EGF group (n=50), an aFGF group (n=50), a combined EGF and aFGF group (n=50) and a normal saline control group (n=49). Patients in all groups received a daily dressing change and growth factor reagents were applied topically when dressing. To observe the time required for each stage of wound healing, the epidermal healing rate and granulation tissue growth were recorded. Following 3-4 days of treatment, the wound healing stage was similar in all groups. Later stages (following 4 days) of wound healing were achieved significantly faster in the combined group compared with the control group (P<0.05). The rate of wound healing in the EGF group was similar to that observed in the combination group. No significant difference was observed between the EGF and aFGF groups during the initial period of wound healing. However, in the later stage (following 4 days), the combined use of recombinant human EGF and aFGF had a marked positive effect on wound healing when compared with the control group. Growth factors have extensive biological activities with functions including promoting cell proliferation as well as rehabilitating and regenerating tissues, which serve important roles in wound healing.
Collapse
Affiliation(s)
- Jiasheng Xu
- Burn Center, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330001, P.R. China.,Graduate School of Nanchang University, Nanchang, Jiangxi 330001, P.R. China
| | - Dinghong Min
- Burn Center, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330001, P.R. China
| | - Guanghua Guo
- Burn Center, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330001, P.R. China
| | - Xincheng Liao
- Burn Center, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330001, P.R. China
| | - Zhonghua Fu
- Burn Center, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330001, P.R. China
| |
Collapse
|
25
|
Tatara AM, Kontoyiannis DP, Mikos AG. Drug delivery and tissue engineering to promote wound healing in the immunocompromised host: Current challenges and future directions. Adv Drug Deliv Rev 2018; 129:319-329. [PMID: 29221962 PMCID: PMC5988908 DOI: 10.1016/j.addr.2017.12.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Revised: 10/23/2017] [Accepted: 12/04/2017] [Indexed: 12/16/2022]
Abstract
As regenerative medicine matures as a field, more promising technologies are being translated from the benchtop to the clinic. However, many of these strategies are designed with otherwise healthy hosts in mind and validated in animal models without other co-morbidities. In reality, many of the patient populations benefiting from drug delivery and tissue engineering-based devices to enhance wound healing also have significant underlying immunodeficiency. Specifically, patients suffering from diabetes, malignancy, human immunodeficiency virus, post-organ transplantation, and other compromised states have significant pleotropic immune defects that affect wound healing. In this work, we review the role of different immune cells in the regenerative process, highlight the effect of several common immunocompromised states on wound healing, and discuss different drug delivery strategies for overcoming immunodeficiencies.
Collapse
Affiliation(s)
- Alexander M Tatara
- Medical Scientist Training Program, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, United States; Department of Bioengineering, Rice University, Houston, TX, United States.
| | - Dimitrios P Kontoyiannis
- Department of Infectious Diseases, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, United States.
| | - Antonios G Mikos
- Department of Bioengineering, Rice University, Houston, TX, United States.
| |
Collapse
|
26
|
Instructive microenvironments in skin wound healing: Biomaterials as signal releasing platforms. Adv Drug Deliv Rev 2018; 129:95-117. [PMID: 29627369 DOI: 10.1016/j.addr.2018.03.012] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 03/16/2018] [Accepted: 03/27/2018] [Indexed: 12/16/2022]
Abstract
Skin wound healing aims to repair and restore tissue through a multistage process that involves different cells and signalling molecules that regulate the cellular response and the dynamic remodelling of the extracellular matrix. Nowadays, several therapies that combine biomolecule signals (growth factors and cytokines) and cells are being proposed. However, a lack of reliable evidence of their efficacy, together with associated issues such as high costs, a lack of standardization, no scalable processes, and storage and regulatory issues, are hampering their application. In situ tissue regeneration appears to be a feasible strategy that uses the body's own capacity for regeneration by mobilizing host endogenous stem cells or tissue-specific progenitor cells to the wound site to promote repair and regeneration. The aim is to engineer instructive systems to regulate the spatio-temporal delivery of proper signalling based on the biological mechanisms of the different events that occur in the host microenvironment. This review describes the current state of the different signal cues used in wound healing and skin regeneration, and their combination with biomaterial supports to create instructive microenvironments for wound healing.
Collapse
|
27
|
Growth Factor Delivery Systems for Tissue Engineering and Regenerative Medicine. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1078:245-269. [PMID: 30357627 DOI: 10.1007/978-981-13-0950-2_13] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Growth factors (GFs) are often a key component in tissue engineering and regenerative medicine approaches. In order to fully exploit the therapeutic potential of GFs, GF delivery vehicles have to meet a number of key design criteria such as providing localized delivery and mimicking the dynamic native GF expression levels and patterns. The use of biomaterials as delivery systems is the most successful strategy for controlled delivery and has been translated into different commercially available systems. However, the risk of side effects remains an issue, which is mainly attributed to insufficient control over the release profile. This book chapter reviews the current strategies, chemistries, materials and delivery vehicles employed to overcome the current limitations associated with GF therapies.
Collapse
|
28
|
Ahadian S, Civitarese R, Bannerman D, Mohammadi MH, Lu R, Wang E, Davenport-Huyer L, Lai B, Zhang B, Zhao Y, Mandla S, Korolj A, Radisic M. Organ-On-A-Chip Platforms: A Convergence of Advanced Materials, Cells, and Microscale Technologies. Adv Healthc Mater 2018; 7. [PMID: 29034591 DOI: 10.1002/adhm.201700506] [Citation(s) in RCA: 165] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 06/15/2017] [Indexed: 12/11/2022]
Abstract
Significant advances in biomaterials, stem cell biology, and microscale technologies have enabled the fabrication of biologically relevant tissues and organs. Such tissues and organs, referred to as organ-on-a-chip (OOC) platforms, have emerged as a powerful tool in tissue analysis and disease modeling for biological and pharmacological applications. A variety of biomaterials are used in tissue fabrication providing multiple biological, structural, and mechanical cues in the regulation of cell behavior and tissue morphogenesis. Cells derived from humans enable the fabrication of personalized OOC platforms. Microscale technologies are specifically helpful in providing physiological microenvironments for tissues and organs. In this review, biomaterials, cells, and microscale technologies are described as essential components to construct OOC platforms. The latest developments in OOC platforms (e.g., liver, skeletal muscle, cardiac, cancer, lung, skin, bone, and brain) are then discussed as functional tools in simulating human physiology and metabolism. Future perspectives and major challenges in the development of OOC platforms toward accelerating clinical studies of drug discovery are finally highlighted.
Collapse
Affiliation(s)
- Samad Ahadian
- Institute of Biomaterials and Biomedical Engineering; University of Toronto; Toronto M5S 3G9 Ontario Canada
| | - Robert Civitarese
- Institute of Biomaterials and Biomedical Engineering; University of Toronto; Toronto M5S 3G9 Ontario Canada
| | - Dawn Bannerman
- Institute of Biomaterials and Biomedical Engineering; University of Toronto; Toronto M5S 3G9 Ontario Canada
- Department of Chemical Engineering and Applied Chemistry; University of Toronto; Toronto M5S 3G9 Ontario Canada
| | - Mohammad Hossein Mohammadi
- Institute of Biomaterials and Biomedical Engineering; University of Toronto; Toronto M5S 3G9 Ontario Canada
- Department of Chemical Engineering and Applied Chemistry; University of Toronto; Toronto M5S 3G9 Ontario Canada
| | - Rick Lu
- Institute of Biomaterials and Biomedical Engineering; University of Toronto; Toronto M5S 3G9 Ontario Canada
| | - Erika Wang
- Institute of Biomaterials and Biomedical Engineering; University of Toronto; Toronto M5S 3G9 Ontario Canada
| | - Locke Davenport-Huyer
- Institute of Biomaterials and Biomedical Engineering; University of Toronto; Toronto M5S 3G9 Ontario Canada
- Department of Chemical Engineering and Applied Chemistry; University of Toronto; Toronto M5S 3G9 Ontario Canada
| | - Ben Lai
- Institute of Biomaterials and Biomedical Engineering; University of Toronto; Toronto M5S 3G9 Ontario Canada
| | - Boyang Zhang
- Institute of Biomaterials and Biomedical Engineering; University of Toronto; Toronto M5S 3G9 Ontario Canada
- Department of Chemical Engineering and Applied Chemistry; University of Toronto; Toronto M5S 3G9 Ontario Canada
| | - Yimu Zhao
- Department of Chemical Engineering and Applied Chemistry; University of Toronto; Toronto M5S 3G9 Ontario Canada
| | - Serena Mandla
- Department of Chemical Engineering and Applied Chemistry; University of Toronto; Toronto M5S 3G9 Ontario Canada
| | - Anastasia Korolj
- Institute of Biomaterials and Biomedical Engineering; University of Toronto; Toronto M5S 3G9 Ontario Canada
- Department of Chemical Engineering and Applied Chemistry; University of Toronto; Toronto M5S 3G9 Ontario Canada
| | - Milica Radisic
- Institute of Biomaterials and Biomedical Engineering; University of Toronto; Toronto M5S 3G9 Ontario Canada
- Department of Chemical Engineering and Applied Chemistry; University of Toronto; Toronto M5S 3G9 Ontario Canada
| |
Collapse
|
29
|
Zhou S, Chang Q, Lu F, Xing M. Injectable Mussel-Inspired Immobilization of Platelet-Rich Plasma on Microspheres Bridging Adipose Micro-Tissues to Improve Autologous Fat Transplantation by Controlling Release of PDGF and VEGF, Angiogenesis, Stem Cell Migration. Adv Healthc Mater 2017; 6. [PMID: 28881440 DOI: 10.1002/adhm.201700131] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 05/11/2017] [Indexed: 12/12/2022]
Abstract
Platelets-rich plasma (PRP) can produce growth factors (GFs) to improve angiogenesis. However, direct injection of PRP does not lead to highly localized GFs. The current study employs a mussel-inspired polydopamine to immobilize PRP on gelatin microspheres (GMs) with the purpose of bridging adipose micro-tissues to help implanted fat survive (GM-pDA-PRP). Enhanced PRP adhesion leads to a prolonged and localized production of GFs, which is verified by platelet counting and by ELISA of vascular endothelial growth factors (VEGFs) and of platelet derived growth factors (PDGFs). The GM-pDA-PRP "hatches" a microenvironment for the proliferation of adipose-derived stem cells. After the adipose micro-tissue has bridged with GM-pDA-PRP after 16 weeks, triple-fluorescence staining reveals that the mature adipocytes, blood vessels, and capillaries are arranged like in normal adipose tissue. The survival fat increases significantly compared to that in control, PRP, and GM-PRP groups (84.8 ± 11.4% versus 47.8 ± 8.9%, 56.9 ± 9.7%, and 60.2 ± 10.5%, respectively). Both histological assessments and CD31 immunofluorescence indicate that the improvement of angiogenesis in GM-pDA-PRP is higher than in the fat graft group (6.4-fold in quantitative CD31 positive cells). The CD34 positive cells in the GM-pDA-PRP group are around 3.5-fold the amount in the fat graft group, which suggests that more stem cells migrate to the implant area. Cell proliferation staining shows that the number of Ki67 positive cells is around five times as high as that in the fat graft group.
Collapse
Affiliation(s)
- Shaolong Zhou
- Department of Plastic Surgery; Southern Medical University; Guangzhou 510515 P. R. China
| | - Qiang Chang
- Department of Plastic Surgery; Southern Medical University; Guangzhou 510515 P. R. China
- Department of Mechanical Engineering; University of Manitoba; Winnipeg R35 2N2 Canada
- Children's hospital Research Institute of Manitoba; Winnipeg R3E 3P3 Canada
| | - Feng Lu
- Department of Plastic Surgery; Southern Medical University; Guangzhou 510515 P. R. China
| | - Malcolm Xing
- Department of Mechanical Engineering; University of Manitoba; Winnipeg R35 2N2 Canada
- Children's hospital Research Institute of Manitoba; Winnipeg R3E 3P3 Canada
| |
Collapse
|
30
|
Nguyen BN, Meador MAB, Scheiman D, McCorkle L. Polyimide Aerogels Using Triisocyanate as Cross-linker. ACS APPLIED MATERIALS & INTERFACES 2017; 9:27313-27321. [PMID: 28737037 DOI: 10.1021/acsami.7b07821] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A family of polyimide (PI)-based aerogels is produced using Desmodur N3300A, an inexpensive triisocyanate, as the cross-linker. The aerogels are prepared by cross-linking amine end-capped polyimide oligomers with the triisocyanate. The polyimide oligomers are formulated using 2,2'-dimethylbenzidine, 4,4'-oxydianiline, or mixtures of both diamines, combined with 3,3',4,4'-biphenyltetracarboxylic dianhydride, and are chemically imidized at room temperature. Depending on the backbone chemistry, chain length, and polymer concentration, density of the aerogels ranged from 0.06 to 0.14 g/cm3 and Brunauer-Emmett-Teller surface areas ranged from 350 to 600 m2/g. Compressive moduli of these aerogels were as high as 225 MPa, which are comparable to, or higher than, those previously reported prepared with similar backbone structures but with other cross-linkers. Because of their lower cost and commercial availability as cross-linker, the aerogels may have further potential as insulation for building and construction, clothing, sporting goods, and automotive applications, although lower-temperature stability may limit their use in some aerospace applications.
Collapse
Affiliation(s)
- Baochau N Nguyen
- Ohio Aerospace Institute , 22800 Cedar Point Road, Brookpark, Ohio 44142, United States
| | - Mary Ann B Meador
- NASA Glenn Research Center , 21000 Brookpark Road, Cleveland, Ohio 44135, United States
| | - Daniel Scheiman
- Ohio Aerospace Institute , 22800 Cedar Point Road, Brookpark, Ohio 44142, United States
| | - Linda McCorkle
- Ohio Aerospace Institute , 22800 Cedar Point Road, Brookpark, Ohio 44142, United States
| |
Collapse
|
31
|
Marzec M, Kucińska-Lipka J, Kalaszczyńska I, Janik H. Development of polyurethanes for bone repair. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 80:736-747. [PMID: 28866223 DOI: 10.1016/j.msec.2017.07.047] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 01/23/2017] [Accepted: 07/29/2017] [Indexed: 12/12/2022]
Abstract
The purpose of this paper is to review recent developments on polyurethanes aimed at the design, synthesis, modifications, and biological properties in the field of bone tissue engineering. Different polyurethane systems are presented and discussed in terms of biodegradation, biocompatibility and bioactivity. A comprehensive discussion is provided of the influence of hard to soft segments ratio, catalysts, stiffness and hydrophilicity of polyurethanes. Interaction with various cells, behavior in vivo and current strategies in enhancing bioactivity of polyurethanes are described. The discussion on the incorporation of biomolecules and growth factors, surface modifications, and obtaining polyurethane-ceramics composites strategies is held. The main emphasis is placed on the progress of polyurethane applications in bone regeneration, including bone void fillers, shape memory scaffolds, and drug carrier.
Collapse
Affiliation(s)
- M Marzec
- Department of Polymer Technology, Faculty of Chemistry, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland
| | - J Kucińska-Lipka
- Department of Polymer Technology, Faculty of Chemistry, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland.
| | - I Kalaszczyńska
- Department of Histology and Embryology, Center for Biostructure Research, Medical University of Warsaw, Chalubinskiego 5, 02-004 Warsaw, Poland; Centre for Preclinical Research and Technology, Banacha 1b, 02-097 Warsaw, Poland
| | - H Janik
- Department of Polymer Technology, Faculty of Chemistry, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland
| |
Collapse
|
32
|
Effect of Starch Loading on the Thermo-Mechanical and Morphological Properties of Polyurethane Composites. MATERIALS 2017; 10:ma10070777. [PMID: 28773134 PMCID: PMC5551820 DOI: 10.3390/ma10070777] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 06/10/2017] [Accepted: 06/13/2017] [Indexed: 11/16/2022]
Abstract
The advancements in material science and technology have made polyurethane (PU) one of the most important renewable polymers. Enhancing the physio-chemical and mechanical properties of PU has become the theme of this and many other studies. One of these enhancements was carried out by adding starch to PU to form new renewable materials called polyurethane-starch composites (PUS). In this study, PUS composites are prepared by adding starch at 0.5, 1.0, 1.5, and 2.0 wt.% to a PU matrix. The mechanical, thermal, and morphological properties of PU and PUS composites were investigated. Scanning electron microscope (SEM) images of PU and PUS fractured surfaces show cracks and agglomeration in PUS at 1.5 wt.% starch. The thermo-mechanical properties of the PUS composites were improved as starch content increased to 1.5 wt.% and declined by more starch loading. Despite this reduction, the mechanical properties were still better than that of neat PU. The mechanical strength increased as starch content increased to 1.5 wt.%. The tensile, flexural, and impact strengths of the PUS composites were found to be 9.62 MPa, 126.04 MPa, and 12.87 × 10-3 J/mm², respectively, at 1.5 wt.% starch. Thermal studies showed that the thermal stability and crystallization temperature of the PUS composites increased compared to that of PU. The loss modulus curves showed that neat PU crystallizes at 124 °C and at 127 °C for PUS-0.5 wt.% and rises with increasing loading from 0.5 to 2 wt.%.
Collapse
|
33
|
Chen S, Liu B, Carlson MA, Gombart AF, Reilly DA, Xie J. Recent advances in electrospun nanofibers for wound healing. Nanomedicine (Lond) 2017; 12:1335-1352. [PMID: 28520509 PMCID: PMC6661929 DOI: 10.2217/nnm-2017-0017] [Citation(s) in RCA: 194] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 03/23/2017] [Indexed: 01/08/2023] Open
Abstract
Electrospun nanofibers represent a novel class of materials that show great potential in many biomedical applications including biosensing, regenerative medicine, tissue engineering, drug delivery and wound healing. In this work, we review recent advances in electrospun nanofibers for wound healing. This article begins with a brief introduction on the wound, and then discusses the unique features of electrospun nanofibers critical for wound healing. It further highlights recent studies that have used electrospun nanofibers for wound healing applications and devices, including sutures, multifunctional dressings, dermal substitutes, engineered epidermis and full-thickness skin regeneration. Finally, we finish with conclusions and future perspective in this field.
Collapse
Affiliation(s)
- Shixuan Chen
- Department of Surgery–Transplant & Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Bing Liu
- Department of Surgery–Transplant & Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Department of Anorectal Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Mark A Carlson
- Departments of Surgery & Genetics, Cell Biology & Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Department of Surgery, VA Nebraska–Western Iowa Health Care System, Omaha, NE 68105, USA
| | - Adrian F Gombart
- Department of Biochemistry & Biophysics & Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA
| | - Debra A Reilly
- Departments of Surgery–Plastic & Reconstructive Surgery, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Jingwei Xie
- Department of Surgery–Transplant & Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
34
|
Xu C, Huang Y, Tang L, Hong Y. Low-Initial-Modulus Biodegradable Polyurethane Elastomers for Soft Tissue Regeneration. ACS APPLIED MATERIALS & INTERFACES 2017; 9:2169-2180. [PMID: 28036169 PMCID: PMC7479969 DOI: 10.1021/acsami.6b15009] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The mechanical match between synthetic scaffold and host tissue remains challenging in tissue regeneration. The elastic soft tissues exhibit low initial moduli with a J-shaped tensile curve. Suitable synthetic polymer scaffolds require low initial modulus and elasticity. To achieve these requirements, random copolymers poly(δ-valerolactone-co-ε-caprolactone) (PVCL) and hydrophilic poly(ethylene glycol) (PEG) were combined into a triblock copolymer, PVCL-PEG-PVCL, which was used as a soft segment to synthesize a family of biodegradable elastomeric polyurethanes (PU) with low initial moduli. The triblock copolymers were varied in chemical components, molecular weights, and hydrophilicities. The mechanical properties of polyurethanes in dry and wet states can be tuned by altering the molecular weights and hydrophilicities of the soft segments. Increasing the length of either PVCL or PEG in the soft segments reduced initial moduli of the polyurethane films and scaffolds in dry and wet states. The polymer films are found to have good cell compatibility and to support fibroblast growth in vitro. Selected polyurethanes were processed into porous scaffolds by a thermally induced phase-separation technique. The scaffold from PU-PEG1K-PVCL6K had an initial modulus of 0.60 ± 0.14 MPa, which is comparable with the initial modulus of human myocardium (0.02-0.50 MPa). In vivo mouse subcutaneous implantation of the porous scaffolds showed minimal chronic inflammatory response and intensive cell infiltration, which indicated good tissue compatibility of the scaffolds. Biodegradable polyurethane elastomers with low initial modulus and good biocompatibility and processability would be an attractive alternative scaffold material for soft tissue regeneration, especially for heart muscle.
Collapse
Affiliation(s)
- Cancan Xu
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76019, USA
- Joint Biomedical Engineering Program, University of Texas Southwestern Medical Center, Dallas, TX 75093, USA
| | - Yihui Huang
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76019, USA
- Joint Biomedical Engineering Program, University of Texas Southwestern Medical Center, Dallas, TX 75093, USA
| | - Liping Tang
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76019, USA
- Joint Biomedical Engineering Program, University of Texas Southwestern Medical Center, Dallas, TX 75093, USA
| | - Yi Hong
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76019, USA
- Joint Biomedical Engineering Program, University of Texas Southwestern Medical Center, Dallas, TX 75093, USA
- Corresponding author: Yi Hong, , Tel: +1-817-272-0562; Fax: +1-817-272-2251
| |
Collapse
|
35
|
Martin JR, Nelson CE, Gupta MK, Yu F, Sarett SM, Hocking KM, Pollins AC, Nanney LB, Davidson JM, Guelcher SA, Duvall CL. Local Delivery of PHD2 siRNA from ROS-Degradable Scaffolds to Promote Diabetic Wound Healing. Adv Healthc Mater 2016; 5:2751-2757. [PMID: 27717176 PMCID: PMC5152672 DOI: 10.1002/adhm.201600820] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Indexed: 12/19/2022]
Abstract
Small interfering RNA (siRNA) delivered from reactive oxygen species-degradable tissue engineering scaffolds promotes diabetic wound healing in rats. Porous poly(thioketal-urethane) scaffolds implanted in diabetic wounds locally deliver siRNA that inhibits the expression of prolyl hydroxylase domain protein 2, thereby increasing the expression of progrowth genes and increasing vasculature, proliferating cells, and tissue development in diabetic wounds.
Collapse
Affiliation(s)
- John R. Martin
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Christopher E. Nelson
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Mukesh K. Gupta
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Fang Yu
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Samantha M. Sarett
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Kyle M. Hocking
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Alonda C. Pollins
- Department of Plastic Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Lillian B. Nanney
- Department of Plastic Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Jeffrey M. Davidson
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA. Medical Research Service, Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN 37212, USA
| | - Scott A. Guelcher
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Craig L. Duvall
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| |
Collapse
|
36
|
Zhang J, Woodruff TM, Clark RJ, Martin DJ, Minchin RF. Release of bioactive peptides from polyurethane films in vitro and in vivo: Effect of polymer composition. Acta Biomater 2016; 41:264-72. [PMID: 27245428 DOI: 10.1016/j.actbio.2016.05.034] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 04/26/2016] [Accepted: 05/03/2016] [Indexed: 12/11/2022]
Abstract
UNLABELLED Thermoplastic polyurethanes (TPUs) are widely used in biomedical applications due to their excellent biocompatibility. Their role as matrices for the delivery of small molecule therapeutics has been widely reported. However, very little is known about the release of bioactive peptides from this class of polymers. Here, we report the release of linear and cyclic peptides from TPUs with different hard and soft segments. Solvent casting of the TPU at room temperature mixed with the different peptides resulted in reproducible efflux profiles with no evidence of drug degradation. Peptide release was dependent on the size as well as the composition of the TPU. Tecoflex 80A (T80A) showed more extensive release than ElastEon 5-325, which correlated with a degree of hydration. It was also shown that the composition of the medium influenced the rate and extent of peptide efflux. Blending the different TPUs allowed for better control of peptide efflux, especially the initial burst effect. Peptide-loaded TPU prolonged the plasma levels of the anti-inflammatory cyclic peptide PMX53, which normally has a plasma half-life of less than 30min. Using a blend of T80A and E5-325, therapeutic plasma levels of PMX53 were observed up to 9days following a single intraperitoneal implantation of the drug-loaded film. PMX53 released from the blended TPUs significantly inhibited B16-F10 melanoma tumor growth in mice demonstrating its bioactivity in vivo. This study provides important findings for TPU-based therapeutic peptide delivery that could improve the pharmacological utility of peptides as therapeutics. STATEMENT OF SIGNIFICANCE Therapeutic peptides can be highly specific and potent pharmacological agents, but are poorly absorbed and rapidly degraded in the body. This can be overcome by using a matrix that protects the peptide in vivo and promotes its slow release so that a therapeutic effect can be achieved over days or weeks. Thermoplastic polyurethanes are a versatile family of polymers that are biocompatible and used for medical implants. Here, the release of several peptides from a range of polyurethanes was shown to depend on the type of polymer used in the polyurethane. This is the first study to examine polyurethane blends for peptide delivery and shows that the rate and extent of peptide release can be fine-tuned using different hard and soft segment mixtures in the polymer.
Collapse
Affiliation(s)
- Jing Zhang
- School of Biomedical Sciences, University of Queensland, St Lucia, Queensland 4072, Australia
| | - Trent M Woodruff
- School of Biomedical Sciences, University of Queensland, St Lucia, Queensland 4072, Australia
| | - Richard J Clark
- School of Biomedical Sciences, University of Queensland, St Lucia, Queensland 4072, Australia
| | - Darren J Martin
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, Queensland 4072, Australia
| | - Rodney F Minchin
- School of Biomedical Sciences, University of Queensland, St Lucia, Queensland 4072, Australia.
| |
Collapse
|
37
|
Jamadi ES, Ghasemi-Mobarakeh L, Morshed M, Sadeghi M, Prabhakaran MP, Ramakrishna S. Synthesis of polyester urethane urea and fabrication of elastomeric nanofibrous scaffolds for myocardial regeneration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 63:106-16. [PMID: 27040201 DOI: 10.1016/j.msec.2016.02.051] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2015] [Revised: 01/28/2016] [Accepted: 02/17/2016] [Indexed: 10/22/2022]
Abstract
Fabrication of bioactive scaffolds is one of the most promising strategies to reconstruct the infarcted myocardium. In this study, we synthesized polyester urethane urea (PEUU), further blended it with gelatin and fabricated PEUU/G nanofibrous scaffolds. Attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), differential scanning calorimetry (DSC) and X-ray diffraction were used for the characterization of the synthesized PEUU and properties of nanofibrous scaffolds were evaluated using scanning electron microscopy (SEM), ATR-FTIR, contact angle measurement, biodegradation test, tensile strength analysis and dynamic mechanical analysis (DMA). In vitro biocompatibility studies were performed using cardiomyocytes. DMA analysis showed that the scaffolds could be reshaped with cyclic deformations and might remain stable in the frequencies of the physiological activity of the heart. On the whole, our study suggests that aligned PEUU/G 70:30 nanofibrous scaffolds meet the required specifications for cardiac tissue engineering and could be used as a promising construct for myocardial regeneration.
Collapse
Affiliation(s)
- Elham Sadat Jamadi
- Department of Textile engineering, Isfahan university of technology, Isfahan 84156-83111, Iran
| | - Laleh Ghasemi-Mobarakeh
- Department of Textile engineering, Isfahan university of technology, Isfahan 84156-83111, Iran
| | - Mohammad Morshed
- Department of Textile engineering, Isfahan university of technology, Isfahan 84156-83111, Iran.
| | - Morteza Sadeghi
- Department of Chemical Engineering, Isfahan university of technology, Isfahan 84156-83111, Iran
| | - Molamma P Prabhakaran
- Department of Mechanical Engineering, Faculty of Engineering, 2 Engineering Drive 3, National University of Singapore, Singapore 117576, Singapore.
| | - Seeram Ramakrishna
- Department of Mechanical Engineering, Faculty of Engineering, 2 Engineering Drive 3, National University of Singapore, Singapore 117576, Singapore
| |
Collapse
|
38
|
Johnson NR, Wang Y. Drug delivery systems for wound healing. Curr Pharm Biotechnol 2016; 16:621-9. [PMID: 25658378 DOI: 10.2174/1389201016666150206113720] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 11/19/2014] [Accepted: 12/21/2014] [Indexed: 12/19/2022]
Abstract
Protein, gene, and small molecule therapies hold great potential for facilitating comprehensive tissue repair and regeneration. However, their clinical value will rely on effective delivery systems which maximize their therapeutic benefit. Significant advances have been made in recent years towards biomaterial delivery systems to satisfy this clinical need. Here we summarize the most outstanding advances in drug delivery technology for cutaneous wound healing.
Collapse
Affiliation(s)
| | - Yadong Wang
- 320 Benedum Hall, 3700 O'Hara St, Pittsburgh, PA 15261 USA.
| |
Collapse
|
39
|
Mittermayr R, Slezak P, Haffner N, Smolen D, Hartinger J, Hofmann A, Schense J, Spazierer D, Gampfer J, Goppelt A, Redl H. Controlled release of fibrin matrix-conjugated platelet derived growth factor improves ischemic tissue regeneration by functional angiogenesis. Acta Biomater 2016; 29:11-20. [PMID: 26497625 DOI: 10.1016/j.actbio.2015.10.028] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Revised: 10/12/2015] [Accepted: 10/16/2015] [Indexed: 12/09/2022]
Abstract
Sustained, local, low dose growth factor stimulus of target tissues/cells is believed to be of imminent importance in tissue regeneration and engineering. Recently, a technology was developed to bind growth factors to a fibrin matrix using the transglutaminase (TG) activity of factor XIIIa, thus allowing prolonged release through enzymatic cleavage. In this study we aimed to determine whether TG-PDGF.AB in fibrin could improve tissue regeneration in a standard ischemic flap model. In vitro determination of binding and release kinetics of TG-PDGF.AB allowed proof of concept of the developed binding technology. A single spray application of TG-PDGF.AB in fibrin matrix at a concentration of 10 and 100ng/ml significantly reduced ischemia-induced flap tissue necrosis in vivo on day 7 after ischemic impact compared to controls. TG-PDGF.AB at a concentration of 100ng/ml fibrin induced distinct angiogenesis as reflected by significantly improved tissue perfusion assessed by laser Doppler imaging as well as enhanced von Willebrand factor (vWF) protein expression determined by immunohistochemical means. In addition, significantly more mature microvessels were observed with 100ng/ml TG-PDGF.AB in fibrin compared to control and vehicle groups as evidenced by an improved smooth muscle actin (sma)/vWF protein ratio. In conclusion, PDGF.AB in a conjugated fibrin matrix effectively reduced ischemia-induced tissue necrosis, increased tissue perfusion and induced the growth of a mature and functional neovasculature. The sealing properties of the fibrin matrix in conjunction with the prolonged growth factor stimulus enabled by the TG-hook binding technology may present an innovative and suitable tool in tissue regeneration. STATEMENT OF SIGNIFICANCE In our experimental study we elucidated recombinant platelet derived growth factor (PDGF) as a potential candidate in inducing angiogenesis. To avoid preterm growth factor degradation in vivo PDGF.AB was covalently linked to a fibrin scaffold using a bi-domain functionalized peptide (FXIII substrate site and plasmin cleavage site). This allowed PDGF binding to fibrin during spray application to the donor site and subsequent prolonged release via endogenous plasmin. This resulted in a mature vascular network thus enhancing tissue perfusion and consequently improved clinical outcome. With our present work we could certainly provide researchers and clinicians with an innovative versatile and reproducible technology not only to induce functional vascularity but also to improve attempts in tissue engineering in general by e.g. using different growth factors. Hence, we believe that this approach studied in the present work may provide a valuable input in an effort to drive the aim forward bringing experimental work in tissue engineering to clinic by using a clinically well characterized and used fibrin scaffold in combination with a human recombinant growth factor (fibrin scaffold linked with the specific binding technology).
Collapse
|
40
|
Guo R, Merkel AR, Sterling JA, Davidson JM, Guelcher SA. Substrate modulus of 3D-printed scaffolds regulates the regenerative response in subcutaneous implants through the macrophage phenotype and Wnt signaling. Biomaterials 2015; 73:85-95. [PMID: 26406449 PMCID: PMC4846647 DOI: 10.1016/j.biomaterials.2015.09.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 08/31/2015] [Accepted: 09/09/2015] [Indexed: 01/15/2023]
Abstract
The growing need for therapies to treat large cutaneous defects has driven recent interest in the design of scaffolds that stimulate regenerative wound healing. While many studies have investigated local delivery of biologics as a restorative approach, an increasing body of evidence highlights the contribution of the mechanical properties of implanted scaffolds to wound healing. In the present study, we designed poly(ester urethane) scaffolds using a templated-Fused Deposition Modeling (t-FDM) process to test the hypothesis that scaffolds with substrate modulus comparable to that of collagen fibers enhance a regenerative versus a fibrotic response. We fabricated t-FDM scaffolds with substrate moduli varying from 5 to 266 MPa to investigate the effects of substrate modulus on healing in a rat subcutaneous implant model. Angiogenesis, cellular infiltration, collagen deposition, and directional variance of collagen fibers were maximized for wounds treated with scaffolds having a substrate modulus (Ks = 24 MPa) comparable to that of collagen fibers. The enhanced regenerative response in these scaffolds was correlated with down-regulation of Wnt/β-catenin signaling in fibroblasts, as well as increased polarization of macrophages toward the restorative M2 phenotype. These observations highlight the substrate modulus of the scaffold as a key parameter regulating the regenerative versus scarring phenotype in wound healing. Our findings further point to the potential use of scaffolds with substrate moduli tuned to that of the native matrix as a therapeutic approach to improve cutaneous healing.
Collapse
Affiliation(s)
- R Guo
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - A R Merkel
- Research Service, Department of Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN 37212, USA; Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - J A Sterling
- Research Service, Department of Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN 37212, USA; Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - J M Davidson
- Research Service, Department of Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN 37212, USA; Department of Pathology, Immunology, and Microbiology, Vanderbilt University, Nashville, TN 37232, USA
| | - S A Guelcher
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN 37235, USA; Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA.
| |
Collapse
|
41
|
Shaik MM, Kowshik M. Novel melt-down neutralization method for synthesis of chitosan–silver scaffolds for tissue engineering applications. Polym Bull (Berl) 2015. [DOI: 10.1007/s00289-015-1522-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
42
|
Adolph EJ, Guo R, Pollins AC, Zienkiewicz K, Cardwell N, Davidson JM, Guelcher SA, Nanney LB. Injected biodegradable polyurethane scaffolds support tissue infiltration and delay wound contraction in a porcine excisional model. J Biomed Mater Res B Appl Biomater 2015; 104:1679-1690. [PMID: 26343927 DOI: 10.1002/jbm.b.33515] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 08/03/2015] [Accepted: 08/23/2015] [Indexed: 11/10/2022]
Abstract
The filling of wound cavities with new tissue is a challenge. We previously reported on the physical properties and wound healing kinetics of prefabricated, gas-blown polyurethane (PUR) scaffolds in rat and porcine excisional wounds. To address the capability of this material to fill complex wound cavities, this study examined the in vitro and in vivo reparative characteristics of injected PUR scaffolds employing a sucrose porogen. Using the porcine excisional wound model, we compared reparative outcomes to both preformed and injected scaffolds as well as untreated wounds at 9, 13, and 30 days after scaffold placement. Both injected and preformed scaffolds delayed wound contraction by 19% at 9 days and 12% at 13 days compared to nontreated wounds. This stenting effect proved transient since both formulations degraded by day 30. Both types of scaffolds significantly inhibited the undesirable alignment of collagen and fibroblasts through day 13. Injected scaffolds were highly compatible with sentinel cellular events of normal wound repair cell proliferation, apoptosis, and blood vessel density. The present study provides further evidence that either injected or preformed PUR scaffolds facilitate wound healing, support tissue infiltration and matrix production, delay wound contraction, and reduce scarring in a clinically relevant animal model, which underscores their potential utility as a void-filling platform for large cutaneous defects. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 1679-1690, 2016.
Collapse
Affiliation(s)
- Elizabeth J Adolph
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee
| | - Ruijing Guo
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee
| | - Alonda C Pollins
- Department of Plastic Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Katarzyna Zienkiewicz
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee
| | - Nancy Cardwell
- Department of Plastic Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Jeffrey M Davidson
- Research Service, VA Tennessee Valley Healthcare System, Nashville, Tennessee.,Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Scott A Guelcher
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee.,Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee.,Center for Bone Biology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Lillian B Nanney
- Department of Plastic Surgery, Vanderbilt University Medical Center, Nashville, Tennessee. .,Department of Cell & Developmental Biology, Vanderbilt University Medical Center, Nashville, Tennessee.
| |
Collapse
|
43
|
Uchida N, Sivaraman S, Amoroso NJ, Wagner WR, Nishiguchi A, Matsusaki M, Akashi M, Nagatomi J. Nanometer-sized extracellular matrix coating on polymer-based scaffold for tissue engineering applications. J Biomed Mater Res A 2015; 104:94-103. [PMID: 26194176 DOI: 10.1002/jbm.a.35544] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 07/12/2015] [Accepted: 07/16/2015] [Indexed: 01/05/2023]
Abstract
Surface modification can play a crucial role in enhancing cell adhesion to synthetic polymer-based scaffolds in tissue engineering applications. Here, we report a novel approach for layer-by-layer (LbL) fabrication of nanometer-size fibronectin and gelatin (FN-G) layers on electrospun fibrous poly(carbonate urethane)urea (PCUU) scaffolds. Alternate immersions into the solutions of fibronectin and gelatin provided thickness-controlled FN-G nano-layers (PCUU(FN-G) ) which maintained the scaffold's 3D structure and width of fibrous bundle of PCUU as evidenced by scanning electron miscroscopy. The PCUU(FN-G) scaffold improved cell adhesion and proliferation of bladder smooth muscles (BSMCs) when compared to uncoated PCUU. The high affinity of PCUU(FN-G) for cells was further demonstrated by migration of adherent BSMCs from culture plates to the scaffold. Moreover, the culture of UROtsa cells, human urothelium-derived cell line, on PCUU(FN-G) resulted in an 11-15 μm thick multilayered cell structure with cell-to-cell contacts although many UROtsa cells died without forming cell connections on PCUU. Together these results indicate that this approach will aid in advancing the technology for engineering bladder tissues in vitro. Because FN-G nano-layers formation is based on nonspecific physical adsorption of fibronectin onto polymer and its subsequent interactions with gelatin, this technique may be applicable to other polymer-based scaffold systems for various tissue engineering/regenerative medicine applications.
Collapse
Affiliation(s)
- Noriyuki Uchida
- Department of Chemistry and Biotechnology, School of Engineering, the University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-8656, Japan.,RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Srikanth Sivaraman
- Department of Bioengineering, 301 Rhodes Engineering Research Center, Clemson University, Clemson, South Carolina, 29634-0905
| | - Nicholas J Amoroso
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, 15219
| | - William R Wagner
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, 15219
| | - Akihiro Nishiguchi
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University 2-1 Yamada-Oka Suita, Osaka, 565-0871, Japan
| | - Michiya Matsusaki
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University 2-1 Yamada-Oka Suita, Osaka, 565-0871, Japan
| | - Mitsuru Akashi
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University 2-1 Yamada-Oka Suita, Osaka, 565-0871, Japan
| | - Jiro Nagatomi
- Department of Bioengineering, 301 Rhodes Engineering Research Center, Clemson University, Clemson, South Carolina, 29634-0905
| |
Collapse
|
44
|
Tallawi M, Rosellini E, Barbani N, Cascone MG, Rai R, Saint-Pierre G, Boccaccini AR. Strategies for the chemical and biological functionalization of scaffolds for cardiac tissue engineering: a review. J R Soc Interface 2015; 12:20150254. [PMID: 26109634 PMCID: PMC4528590 DOI: 10.1098/rsif.2015.0254] [Citation(s) in RCA: 196] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 05/19/2015] [Indexed: 12/11/2022] Open
Abstract
The development of biomaterials for cardiac tissue engineering (CTE) is challenging, primarily owing to the requirement of achieving a surface with favourable characteristics that enhances cell attachment and maturation. The biomaterial surface plays a crucial role as it forms the interface between the scaffold (or cardiac patch) and the cells. In the field of CTE, synthetic polymers (polyglycerol sebacate, polyethylene glycol, polyglycolic acid, poly-l-lactide, polyvinyl alcohol, polycaprolactone, polyurethanes and poly(N-isopropylacrylamide)) have been proven to exhibit suitable biodegradable and mechanical properties. Despite the fact that they show the required biocompatible behaviour, most synthetic polymers exhibit poor cell attachment capability. These synthetic polymers are mostly hydrophobic and lack cell recognition sites, limiting their application. Therefore, biofunctionalization of these biomaterials to enhance cell attachment and cell material interaction is being widely investigated. There are numerous approaches for functionalizing a material, which can be classified as mechanical, physical, chemical and biological. In this review, recent studies reported in the literature to functionalize scaffolds in the context of CTE, are discussed. Surface, morphological, chemical and biological modifications are introduced and the results of novel promising strategies and techniques are discussed.
Collapse
Affiliation(s)
- Marwa Tallawi
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, 91058 Erlangen, Germany
| | - Elisabetta Rosellini
- Department of Civil and Industrial Engineering, University of Pisa, Largo Lucio Lazzarino, 56126 Pisa, Italy
| | - Niccoletta Barbani
- Department of Civil and Industrial Engineering, University of Pisa, Largo Lucio Lazzarino, 56126 Pisa, Italy
| | - Maria Grazia Cascone
- Department of Civil and Industrial Engineering, University of Pisa, Largo Lucio Lazzarino, 56126 Pisa, Italy
| | - Ranjana Rai
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, 91058 Erlangen, Germany
| | - Guillaume Saint-Pierre
- Inspiralia, Materials Laboratory, C/Faraday 7, Lab 3.02, Campus de Cantoblanco, Madrid 28049, Spain
| | - Aldo R. Boccaccini
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, 91058 Erlangen, Germany
| |
Collapse
|
45
|
Germershaus O, Nultsch K. Localized, non-viral delivery of nucleic acids: Opportunities, challenges and current strategies. Asian J Pharm Sci 2015. [DOI: 10.1016/j.ajps.2014.10.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
46
|
Solanki AR, Kamath BV, Thakore S. Carbohydrate crosslinked biocompatible polyurethanes: Synthesis, characterization, and drug delivery studies. J Appl Polym Sci 2015. [DOI: 10.1002/app.42223] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Archana Ritesh Solanki
- Department of Chemistry; Faculty of Science; The Maharaja Sayajirao University of Baroda; Vadodara 390002 India
| | - Bolavinayak V. Kamath
- Institute of Infrastructure Technology Research and Management; Ahmedabad 380026 India
| | - Sonal Thakore
- Department of Chemistry; Faculty of Science; The Maharaja Sayajirao University of Baroda; Vadodara 390002 India
| |
Collapse
|
47
|
Losi P, Briganti E, Sanguinetti E, Burchielli S, Al Kayal T, Soldani G. Healing effect of a fibrin-based scaffold loaded with platelet lysate in full-thickness skin wounds. J BIOACT COMPAT POL 2015. [DOI: 10.1177/0883911514568436] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Chronic skin lesions are difficult to heal due to reduced levels and activity of endogenous growth factors. The platelet lysate, obtained by repeated freeze–thawing of platelet-enriched blood samples, is an easily attainable source of a wide range of growth factors and bioactive mediators involved in tissue repair. In this study, a bio-synthetic scaffold composed of poly(ether)urethane–polydimethylsiloxane material and fibrin was developed for platelet lysate delivery to chronic skin wounds. The kinetics release and the bioactivity of growth factors released from platelet lysate–loaded poly(ether)urethane–polydimethylsiloxane–fibrin scaffold were investigated, respectively, by enzyme-linked immunosorbent assay and a cell proliferation test using human fibroblasts. The in vitro experiments demonstrated that the platelet lysate–loaded poly(ether)urethane–polydimethylsiloxane–fibrin scaffold provides a sustained release of platelet derived growth factors. The cell growth in the presence of scaffold was comparable to those observed for the platelet lysate added to culture medium in free form, showing that the scaffold preparation process did not affect biological activity of growth factors. The effect of platelet lysate–loaded poly(ether)urethane–polydimethylsiloxane–fibrin scaffold on wound healing in genetically diabetic mouse (db/db) was also investigated. The application of the scaffold on full-thickness skin wounds significantly accelerated wound closure at day 15 post-surgery compared with control poly(ether)urethane–polydimethylsiloxane–fibrin scaffold (without platelet lysate) or a commercially available polyurethane film dressing. Histological analysis demonstrated an increased re-epithelialization, granulation tissue formation, and collagen deposition. The ability of the platelet lysate–loaded poly(ether)urethane–polydimethylsiloxane–fibrin scaffold to promote wound healing in vivo through simultaneous delivery of multiple active substances suggests its potential use for the treatment of diabetic foot ulcers.
Collapse
Affiliation(s)
- Paola Losi
- Institute of Clinical Physiology, National Research Council, Massa, Italy
| | - Enrica Briganti
- Institute of Clinical Physiology, National Research Council, Massa, Italy
| | - Elena Sanguinetti
- Institute of Clinical Physiology, National Research Council, Massa, Italy
| | | | - Tamer Al Kayal
- Institute of Clinical Physiology, National Research Council, Massa, Italy
| | - Giorgio Soldani
- Institute of Clinical Physiology, National Research Council, Massa, Italy
| |
Collapse
|
48
|
Adolph EJ, Pollins AC, Cardwell NL, Davidson JM, Guelcher SA, Nanney LB. Biodegradable lysine-derived polyurethane scaffolds promote healing in a porcine full-thickness excisional wound model. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2014; 25:1973-85. [PMID: 25290884 DOI: 10.1080/09205063.2014.965997] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Lysine-derived polyurethane scaffolds (LTI-PUR) support cutaneous wound healing in loose-skinned small animal models. Due to the physiological and anatomical similarities of human and pig skin, we investigated the capacity of LTI-PUR scaffolds to support wound healing in a porcine excisional wound model. Modifications to scaffold design included the addition of carboxymethylcellulose (CMC) as a porogen to increase interconnectivity and an additional plasma treatment (Plasma) to decrease surface hydrophobicity. All LTI-PUR scaffold and formulations supported cellular infiltration and were biodegradable. At 15 days, CMC and plasma scaffolds simulated increased macrophages more so than LTI PUR or no treatment. This response was consistent with macrophage-mediated oxidative degradation of the lysine component of the scaffolds. Cell proliferation was similar in control and scaffold-treated wounds at 8 and 15 days. Neither apoptosis nor blood vessel area density showed significant differences in the presence of any of the scaffold variations compared with untreated wounds, providing further evidence that these synthetic biomaterials had no adverse effects on those pivotal wound healing processes. During the critical phase of granulation tissue formation in full thickness porcine excisional wounds, LTI-PUR scaffolds supported tissue infiltration, while undergoing biodegradation. Modifications to scaffold fabrication modify the reparative process. This study emphasizes the biocompatibility and favorable cellular responses of PUR scaffolding formulations in a clinically relevant animal model.
Collapse
Affiliation(s)
- Elizabeth J Adolph
- a Department of Chemical and Biomolecular Engineering , Vanderbilt University , Nashville , TN , USA
| | | | | | | | | | | |
Collapse
|
49
|
Sun X, Cheng L, Zhao J, Jin R, Sun B, Shi Y, Zhang L, Zhang Y, Cui W. bFGF-grafted electrospun fibrous scaffolds via poly(dopamine) for skin wound healing. J Mater Chem B 2014; 2:3636-3645. [PMID: 32263800 DOI: 10.1039/c3tb21814g] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Electrospun fibrous membranes coated with basic fibroblast growth factor (bFGF) are effective medical devices to promote wound healing. However, the current strategies of adding bFGF generally cause degradation of electrospun materials or damage to the bioactivity of the biomolecules. Here, we have developed a simple strategy for surface bFGF-functionalization of electrospun fibers in an aqueous solution, which maintained original fiber properties and growth factor bioactivity. Polydopamine (PDA) forming the mussel foot protein was chosen as an adhesive polymeric bridge-layer between substrate poly(lactide-co-glycolide) (PLGA) fibers and bFGF. The bFGF-grafted PDA was analyzed using scanning electron microscopy, water contact angle measurements, and X-ray photoelectron spectroscopy. Improved hydrophilicity together with a stable fibrous structure and biodegradable fibrous matrix suggested that the PLGA/PDA-bFGF electrospun fibrous scaffolds have great potential for promoting wound healing. In vitro experiments showed that the bFGF-grafted PLGA electrospun fibrous scaffolds have highly enhanced adhesion, viability, and proliferation of human dermal fibroblasts. In vivo results showed that such scaffolds shortened wound healing time, accelerated epithelialization and promoted skin remodeling. Therefore, this PDA modification method can be a useful tool to graft biomolecules onto polymeric electrospun fibrous scaffolds which are potential scaffold candidates for repairing skin tissue.
Collapse
Affiliation(s)
- Xiaoming Sun
- Department of Plastic and Reconstructive Surgery, Ninth People's Hospital affiliated to Medical School of Shanghai Jiao Tong University, 639 Zhi Zao Ju Road, Shanghai 200011, People's Republic of China.
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Mi HY, Palumbo S, Jing X, Turng LS, Li WJ, Peng XF. Thermoplastic polyurethane/hydroxyapatite electrospun scaffolds for bone tissue engineering: Effects of polymer properties and particle size. J Biomed Mater Res B Appl Biomater 2014; 102:1434-44. [DOI: 10.1002/jbm.b.33122] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 01/09/2014] [Accepted: 02/07/2014] [Indexed: 01/14/2023]
Affiliation(s)
- Hao-Yang Mi
- National Engineering Research Center of Novel Equipment for Polymer Processing; South China University of Technology; Guangzhou 510640 China
- Wisconsin Institute for Discovery; University of Wisconsin-Madison; Madison Wisconsin 53715
- Department of Mechanical Engineering; University of Wisconsin-Madison; Madison Wisconsin 53706
| | - SunMi Palumbo
- Departments of Orthopedics and Rehabilitation and Biomedical Engineering; University of Wisconsin-Madison; Madison Wisconsin 53705
| | - Xin Jing
- National Engineering Research Center of Novel Equipment for Polymer Processing; South China University of Technology; Guangzhou 510640 China
- Wisconsin Institute for Discovery; University of Wisconsin-Madison; Madison Wisconsin 53715
- Department of Mechanical Engineering; University of Wisconsin-Madison; Madison Wisconsin 53706
| | - Lih-Sheng Turng
- Wisconsin Institute for Discovery; University of Wisconsin-Madison; Madison Wisconsin 53715
- Department of Mechanical Engineering; University of Wisconsin-Madison; Madison Wisconsin 53706
| | - Wan-Ju Li
- Departments of Orthopedics and Rehabilitation and Biomedical Engineering; University of Wisconsin-Madison; Madison Wisconsin 53705
| | - Xiang-Fang Peng
- National Engineering Research Center of Novel Equipment for Polymer Processing; South China University of Technology; Guangzhou 510640 China
| |
Collapse
|