1
|
Sharma A, Bhatia D. Programmable bionanomaterials for revolutionizing cancer immunotherapy. Biomater Sci 2024; 12:5415-5432. [PMID: 39291418 DOI: 10.1039/d4bm00815d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Cancer immunotherapy involves a cutting-edge method that utilizes the immune system to detect and eliminate cancer cells. It has shown substantial effectiveness in treating different types of cancer. As a result, its growing importance is due to its distinct benefits and potential for sustained recovery. However, the general deployment of this treatment is hindered by ongoing issues in maintaining minimal toxicity, high specificity, and prolonged effectiveness. Nanotechnology offers promising solutions to these challenges due to its notable attributes, including expansive precise surface areas, accurate ability to deliver drugs and controlled surface chemistry. This review explores the current advancements in the application of nanomaterials in cancer immunotherapy, focusing on three primary areas: monoclonal antibodies, therapeutic cancer vaccines, and adoptive cell treatment. In adoptive cell therapy, nanomaterials enhance the expansion and targeting capabilities of immune cells, such as T cells, thereby improving their ability to locate and destroy cancer cells. For therapeutic cancer vaccines, nanoparticles serve as delivery vehicles that protect antigens from degradation and enhance their uptake by antigen-presenting cells, boosting the immune response against cancer. Monoclonal antibodies benefit from nanotechnology through improved delivery mechanisms and reduced off-target effects, which increase their specificity and effectiveness. By highlighting the intersection of nanotechnology and immunotherapy, we aim to underscore the transformative potential of nanomaterials in enhancing the effectiveness and safety of cancer immunotherapies. Nanoparticles' ability to deliver drugs and biomolecules precisely to tumor sites reduces systemic toxicity and enhances therapeutic outcomes.
Collapse
Affiliation(s)
- Ayushi Sharma
- Department of Biotechnology, Institute of Applied Sciences and Humanities, GLA University, Mathura, Uttar Pradesh-281406, India.
| | - Dhiraj Bhatia
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Palaj 382355, Gandhinagar, India
| |
Collapse
|
2
|
Gharatape A, Sadeghi-Abandansari H, Seifalian A, Faridi-Majidi R, Basiri M. Nanocarrier-based gene delivery for immune cell engineering. J Mater Chem B 2024; 12:3356-3375. [PMID: 38505950 DOI: 10.1039/d3tb02279j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Clinical advances in genetically modified immune cell therapies, such as chimeric antigen receptor T cell therapies, have raised hope for cancer treatment. The majority of these biotechnologies are based on viral methods for ex vivo genetic modification of the immune cells, while the non-viral methods are still in the developmental phase. Nanocarriers have been emerging as materials of choice for gene delivery to immune cells. This is due to their versatile physicochemical properties such as large surface area and size that can be optimized to overcome several practical barriers to successful gene delivery. The in vivo nanocarrier-based gene delivery can revolutionize cell-based cancer immunotherapies by replacing the current expensive autologous cell manufacturing with an off-the-shelf biomaterial-based platform. The aim of this research is to review current advances and strategies to overcome the challenges in nanoparticle-based gene delivery and their impact on the efficiency, safety, and specificity of the process. The main focus is on polymeric and lipid-based nanocarriers, and their recent preclinical applications for cancer immunotherapy.
Collapse
Affiliation(s)
- Alireza Gharatape
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Hamid Sadeghi-Abandansari
- Department of Cell Engineering, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Tehran, Iran
| | - Alexander Seifalian
- Nanotechnology & Regenerative Medicine Commercialisation Centre (NanoRegMed Ltd, Nanoloom Ltd, & Liberum Health Ltd), London BioScience Innovation Centre, London, UK
| | - Reza Faridi-Majidi
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mohsen Basiri
- Department of Stem Cells and Developmental Biology and Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Tehran, Iran
- T Cell Therapeutics Research Labs, Cellular Immunotherapy Center, Department of Hematology & Hematopoietic Cell Transplantation, City of Hope, Duarte, CA 91010, USA.
| |
Collapse
|
3
|
Peng Y, Yang Z, Sun H, Li J, Lan X, Liu S. Nanomaterials in Medicine: Understanding Cellular Uptake, Localization, and Retention for Enhanced Disease Diagnosis and Therapy. Aging Dis 2024:AD.2024.0206-1. [PMID: 38421835 DOI: 10.14336/ad.2024.0206-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 02/06/2024] [Indexed: 03/02/2024] Open
Abstract
Nanomaterials (NMs) have emerged as promising tools for disease diagnosis and therapy due to their unique physicochemical properties. To maximize the effectiveness and design of NMs-based medical applications, it is essential to comprehend the complex mechanisms of cellular uptake, subcellular localization, and cellular retention. This review illuminates the various pathways that NMs take to get from the extracellular environment to certain intracellular compartments by investigating the various mechanisms that underlie their interaction with cells. The cellular uptake of NMs involves complex interactions with cell membranes, encompassing endocytosis, phagocytosis, and other active transport mechanisms. Unique uptake patterns across cell types highlight the necessity for customized NMs designs. After internalization, NMs move through a variety of intracellular routes that affect where they are located subcellularly. Understanding these pathways is pivotal for enhancing the targeted delivery of therapeutic agents and imaging probes. Furthermore, the cellular retention of NMs plays a critical role in sustained therapeutic efficacy and long-term imaging capabilities. Factors influencing cellular retention include nanoparticle size, surface chemistry, and the cellular microenvironment. Strategies for prolonging cellular retention are discussed, including surface modifications and encapsulation techniques. In conclusion, a comprehensive understanding of the mechanisms governing cellular uptake, subcellular localization, and cellular retention of NMs is essential for advancing their application in disease diagnosis and therapy. This review provides insights into the intricate interplay between NMs and biological systems, offering a foundation for the rational design of next-generation nanomedicines.
Collapse
Affiliation(s)
- Yue Peng
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine & Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Colleges and Universities Key Laboratory of Biological Molecular Medicine Research & Guangxi Key Laboratory of Brain Science, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, China
| | - Zhengshuang Yang
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine & Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Colleges and Universities Key Laboratory of Biological Molecular Medicine Research & Guangxi Key Laboratory of Brain Science, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, China
| | - Hui Sun
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine & Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Colleges and Universities Key Laboratory of Biological Molecular Medicine Research & Guangxi Key Laboratory of Brain Science, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, China
| | - Jinling Li
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine & Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Colleges and Universities Key Laboratory of Biological Molecular Medicine Research & Guangxi Key Laboratory of Brain Science, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, China
| | - Xiuwan Lan
- Guangxi Colleges and Universities Key Laboratory of Biological Molecular Medicine Research & Guangxi Key Laboratory of Brain Science, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, China
| | - Sijia Liu
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine & Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Colleges and Universities Key Laboratory of Biological Molecular Medicine Research & Guangxi Key Laboratory of Brain Science, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
4
|
Watanabe S, Takagi A, Yuba E, Kojima C, Dei N, Matsumoto A, Tanikawa J, Kawamura T, De Silva NH, Izawa T, Akazawa T, Kanegi R, Hatoya S, Inaba T, Sugiura K. In vivo transfection of cytokine genes into tumor cells using a synthetic vehicle promotes antitumor immune responses in a visceral tumor model. FASEB J 2023; 37:e23228. [PMID: 37815518 DOI: 10.1096/fj.202202036r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 08/09/2023] [Accepted: 09/18/2023] [Indexed: 10/11/2023]
Abstract
The tumor microenvironment (TME) strongly affects the clinical outcomes of immunotherapy. This study aimed to activate the antitumor immune response by manipulating the TME by transfecting genes encoding relevant cytokines into tumor cells using a synthetic vehicle, which is designed to target tumor cells and promote the expression of transfected genes. Lung tumors were formed by injecting CT26.WT intravenously into BALB/c mice. Upon intravenous injection of the green fluorescent protein-coding plasmid encapsulated in the vehicle, 14.2% tumor-specific expression was observed. Transfection of the granulocyte-macrophage colony-stimulating factor (GM-CSF) and CD40 ligand (L)-plasmid combination and interferon gamma (IFNγ) and CD40L-plasmid combination showed 45.5% and 54.5% complete remission (CR), respectively, on day 60; alternate treatments with both the plasmid combinations elicited 66.7% CR, while the control animals died within 48 days. Immune status analysis revealed that the density of dendritic cells significantly increased in tumors, particularly after GM-CSF- and CD40L-gene transfection, while that of regulatory T cells significantly decreased. The proportion of activated killer cells and antitumoral macrophages significantly increased, specifically after IFNγ and CD40L transfection. Furthermore, the level of the immune escape molecule programmed death ligand-1 decreased in tumors after transfecting these cytokine genes. As a result, tumor cell-specific transfection of these cytokine genes by the synthetic vehicle significantly promotes antitumor immune responses in the TME, a key aim for visceral tumor therapy.
Collapse
Affiliation(s)
- Shunichi Watanabe
- Department of Advanced Pathobiology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Izumisano, Japan
| | - Ayaka Takagi
- Department of Advanced Pathobiology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Izumisano, Japan
| | - Eiji Yuba
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, Sakai, Japan
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Metropolitan University, Sakai, Japan
| | - Chie Kojima
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, Sakai, Japan
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Metropolitan University, Sakai, Japan
| | - Nanako Dei
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, Sakai, Japan
| | - Akikazu Matsumoto
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, Sakai, Japan
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Metropolitan University, Sakai, Japan
| | - Jun Tanikawa
- Bioscience Research Laboratory, Sumitomo Chemical Company, Ltd., Osaka, Japan
| | - Tetsuya Kawamura
- Bioscience Research Laboratory, Sumitomo Chemical Company, Ltd., Osaka, Japan
| | - Nadeeka H De Silva
- Department of Advanced Pathobiology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Izumisano, Japan
| | - Takeshi Izawa
- Department of Integrated Structural Biosciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Izumisano, Japan
- Department of Integrated Structural Biosciences, Graduate School of Veterinary Science, Osaka Metropolitan University, Izumisano, Japan
| | - Takashi Akazawa
- Department of Cancer Drug Discovery and Development, Research Center, Osaka International Cancer Institute, Osaka, Japan
| | - Ryoji Kanegi
- Department of Advanced Pathobiology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Izumisano, Japan
- Department of Advanced Pathobiology, Graduate School of Veterinary Science, Osaka Metropolitan University, Izumisano, Japan
| | - Shingo Hatoya
- Department of Advanced Pathobiology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Izumisano, Japan
- Department of Advanced Pathobiology, Graduate School of Veterinary Science, Osaka Metropolitan University, Izumisano, Japan
| | - Toshio Inaba
- Department of Advanced Pathobiology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Izumisano, Japan
- Department of Advanced Pathobiology, Graduate School of Veterinary Science, Osaka Metropolitan University, Izumisano, Japan
| | - Kikuya Sugiura
- Department of Advanced Pathobiology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Izumisano, Japan
- Department of Advanced Pathobiology, Graduate School of Veterinary Science, Osaka Metropolitan University, Izumisano, Japan
| |
Collapse
|
5
|
Dong S, Liu X, Bi Y, Wang Y, Antony A, Lee D, Huntoon K, Jeong S, Ma Y, Li X, Deng W, Schrank BR, Grippin AJ, Ha J, Kang M, Chang M, Zhao Y, Sun R, Sun X, Yang J, Chen J, Tang SK, Lee LJ, Lee AS, Teng L, Wang S, Teng L, Kim BYS, Yang Z, Jiang W. Adaptive design of mRNA-loaded extracellular vesicles for targeted immunotherapy of cancer. Nat Commun 2023; 14:6610. [PMID: 37857647 PMCID: PMC10587228 DOI: 10.1038/s41467-023-42365-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 10/09/2023] [Indexed: 10/21/2023] Open
Abstract
The recent success of mRNA therapeutics against pathogenic infections has increased interest in their use for other human diseases including cancer. However, the precise delivery of the genetic cargo to cells and tissues of interest remains challenging. Here, we show an adaptive strategy that enables the docking of different targeting ligands onto the surface of mRNA-loaded small extracellular vesicles (sEVs). This is achieved by using a microfluidic electroporation approach in which a combination of nano- and milli-second pulses produces large amounts of IFN-γ mRNA-loaded sEVs with CD64 overexpressed on their surface. The CD64 molecule serves as an adaptor to dock targeting ligands, such as anti-CD71 and anti-programmed cell death-ligand 1 (PD-L1) antibodies. The resulting immunogenic sEVs (imsEV) preferentially target glioblastoma cells and generate potent antitumour activities in vivo, including against tumours intrinsically resistant to immunotherapy. Together, these results provide an adaptive approach to engineering mRNA-loaded sEVs with targeting functionality and pave the way for their adoption in cancer immunotherapy applications.
Collapse
Affiliation(s)
- Shiyan Dong
- School of Life Science, Jilin University, Changchun, 130012, China
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Xuan Liu
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- Chemical Engineering, Institute for Micromanufacturing, Louisiana Tech University, Ruston, LA, 71272, USA
| | - Ye Bi
- Practice Training Center, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Yifan Wang
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Abin Antony
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - DaeYong Lee
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Kristin Huntoon
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Seongdong Jeong
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Yifan Ma
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | - Xuefeng Li
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Weiye Deng
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Benjamin R Schrank
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Adam J Grippin
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - JongHoon Ha
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Minjeong Kang
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Mengyu Chang
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Yarong Zhao
- School of Life Science, Jilin University, Changchun, 130012, China
| | - Rongze Sun
- School of Life Science, Jilin University, Changchun, 130012, China
| | - Xiangshi Sun
- School of Life Science, Jilin University, Changchun, 130012, China
| | - Jie Yang
- School of Life Science, Jilin University, Changchun, 130012, China
| | - Jiayi Chen
- School of Life Science, Jilin University, Changchun, 130012, China
| | - Sarah K Tang
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - L James Lee
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, 43210, USA
- Spot Biosystems Ltd., Palo Alto, CA, 94305, USA
| | - Andrew S Lee
- Institute for Cancer Research, Shenzhen Bay Laboratory, Shenzhen, 518055, China
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Lirong Teng
- School of Life Science, Jilin University, Changchun, 130012, China
| | - Shengnian Wang
- Chemical Engineering, Institute for Micromanufacturing, Louisiana Tech University, Ruston, LA, 71272, USA.
| | - Lesheng Teng
- School of Life Science, Jilin University, Changchun, 130012, China.
| | - Betty Y S Kim
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
- Brain Tumor Center, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| | - Zhaogang Yang
- School of Life Science, Jilin University, Changchun, 130012, China.
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| | - Wen Jiang
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
- Brain Tumor Center, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| |
Collapse
|
6
|
Feng S, Xie X, Liu J, Li A, Wang Q, Guo D, Li S, Li Y, Wang Z, Guo T, Zhou J, Tang DYY, Show PL. A potential paradigm in CRISPR/Cas systems delivery: at the crossroad of microalgal gene editing and algal-mediated nanoparticles. J Nanobiotechnology 2023; 21:370. [PMID: 37817254 PMCID: PMC10563294 DOI: 10.1186/s12951-023-02139-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 10/03/2023] [Indexed: 10/12/2023] Open
Abstract
Microalgae as the photosynthetic organisms offer enormous promise in a variety of industries, such as the generation of high-value byproducts, biofuels, pharmaceuticals, environmental remediation, and others. With the rapid advancement of gene editing technology, CRISPR/Cas system has evolved into an effective tool that revolutionised the genetic engineering of microalgae due to its robustness, high target specificity, and programmability. However, due to the lack of robust delivery system, the efficacy of gene editing is significantly impaired, limiting its application in microalgae. Nanomaterials have become a potential delivery platform for CRISPR/Cas systems due to their advantages of precise targeting, high stability, safety, and improved immune system. Notably, algal-mediated nanoparticles (AMNPs), especially the microalgae-derived nanoparticles, are appealing as a sustainable delivery platform because of their biocompatibility and low toxicity in a homologous relationship. In addition, living microalgae demonstrated effective and regulated distribution into specified areas as the biohybrid microrobots. This review extensively summarised the uses of CRISPR/Cas systems in microalgae and the recent developments of nanoparticle-based CRISPR/Cas delivery systems. A systematic description of the properties and uses of AMNPs, microalgae-derived nanoparticles, and microalgae microrobots has also been discussed. Finally, this review highlights the challenges and future research directions for the development of gene-edited microalgae.
Collapse
Affiliation(s)
- Shuying Feng
- Medical College, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan, China.
| | - Xin Xie
- Medical College, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan, China
| | - Junjie Liu
- Medical College, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan, China
| | - Aifang Li
- Medical College, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan, China
| | - Qianqian Wang
- Medical College, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan, China
| | - Dandan Guo
- Medical College, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan, China
| | - Shuxuan Li
- Medical College, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan, China
| | - Yalan Li
- Medical College, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan, China
| | - Zilong Wang
- Medical College, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan, China
| | - Tao Guo
- Department of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan, China.
| | - Jin Zhou
- Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, Guangdong, China.
| | - Doris Ying Ying Tang
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, 43500, Semenyih, Malaysia
| | - Pau Loke Show
- Department of Chemical Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
7
|
Zuo Q, Li T, Huang L, Liu Z, Xue W. Macro-microporous ZIF-8 MOF complexed with lysosomal pH-adjusting hexadecylsulfonylfluoride as tumor vaccine delivery systems for improving anti-tumor cellular immunity. Biomater Sci 2023. [PMID: 37335287 DOI: 10.1039/d3bm00306j] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
Tumor vaccine therapy, which can induce tumor antigen-specific cellular immune responses to directly kill tumor cells, is considered to be one of the most promising tumor immunotherapies. How to elicit effective tumor antigen-specific cellular immunity is the key for the development of tumor vaccines. However, current tumor vaccines with conventional antigen delivery systems mainly induce humoral immunity but not effective cellular immunity. In this study, based on pH-sensitive, ordered macro-microporous zeolitic imidazolate framework-8 (SOM-ZIF-8) and hexadecylsulfonylfluoride (HDSF), an intelligent tumor vaccine delivery system SOM-ZIF-8/HDSF was developed to elicit potent cellular immunity. Results demonstrated that the SOM-ZIF-8 particles could efficiently encapsulate antigen into the macropores, promote antigen uptake by antigen-presenting cells, facilitate lysosomal escape, and enhance antigen cross-presentation and cellular immunity. In addition, the introduction of HDSF could up-regulate the lysosomal pH to protect antigens from acid degradation, which further promoted antigen cross-presentation and cellular immunity. The immunization tests showed that the tumor vaccines based on the delivery system improved antigen-specific cellular immune response. Moreover, the tumor vaccines significantly inhibited tumor growth in B16 melanoma-bearing C57BL/6 mice. These results indicate that SOM-ZIF-8/HDSF as an intelligent vaccine delivery system could be used for the development of novel tumor vaccines.
Collapse
Affiliation(s)
- Qinhua Zuo
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Guangdong Provincial Engineering and Technological Research Center for Drug Carrier Development, Department of Biomedical Engineering, Jinan University, Guangzhou, China, 510632.
| | - Tiantian Li
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Guangdong Provincial Engineering and Technological Research Center for Drug Carrier Development, Department of Biomedical Engineering, Jinan University, Guangzhou, China, 510632.
| | - Linghong Huang
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Guangdong Provincial Engineering and Technological Research Center for Drug Carrier Development, Department of Biomedical Engineering, Jinan University, Guangzhou, China, 510632.
| | - Zonghua Liu
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Guangdong Provincial Engineering and Technological Research Center for Drug Carrier Development, Department of Biomedical Engineering, Jinan University, Guangzhou, China, 510632.
| | - Wei Xue
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Guangdong Provincial Engineering and Technological Research Center for Drug Carrier Development, Department of Biomedical Engineering, Jinan University, Guangzhou, China, 510632.
| |
Collapse
|
8
|
Uzhytchak M, Smolková B, Lunova M, Frtús A, Jirsa M, Dejneka A, Lunov O. Lysosomal nanotoxicity: Impact of nanomedicines on lysosomal function. Adv Drug Deliv Rev 2023; 197:114828. [PMID: 37075952 DOI: 10.1016/j.addr.2023.114828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 03/28/2023] [Accepted: 04/12/2023] [Indexed: 04/21/2023]
Abstract
Although several nanomedicines got clinical approval over the past two decades, the clinical translation rate is relatively small so far. There are many post-surveillance withdrawals of nanomedicines caused by various safety issues. For successful clinical advancement of nanotechnology, it is of unmet need to realize cellular and molecular foundation of nanotoxicity. Current data suggest that lysosomal dysfunction caused by nanoparticles is emerging as the most common intracellular trigger of nanotoxicity. This review analyzes prospect mechanisms of lysosomal dysfunction-mediated toxicity induced by nanoparticles. We summarized and critically assessed adverse drug reactions of current clinically approved nanomedicines. Importantly, we show that physicochemical properties have great impact on nanoparticles interaction with cells, excretion route and kinetics, and subsequently on toxicity. We analyzed literature on adverse reactions of current nanomedicines and hypothesized that adverse reactions might be linked with lysosomal dysfunction caused by nanomedicines. Finally, from our analysis it becomes clear that it is unjustifiable to generalize safety and toxicity of nanoparticles, since different particles possess distinct toxicological properties. We propose that the biological mechanism of the disease progression and treatment should be central in the optimization of nanoparticle design.
Collapse
Affiliation(s)
- Mariia Uzhytchak
- Institute of Physics of the Czech Academy of Sciences, 18221 Prague, Czech Republic
| | - Barbora Smolková
- Institute of Physics of the Czech Academy of Sciences, 18221 Prague, Czech Republic
| | - Mariia Lunova
- Institute of Physics of the Czech Academy of Sciences, 18221 Prague, Czech Republic; Institute for Clinical & Experimental Medicine (IKEM), 14021 Prague, Czech Republic
| | - Adam Frtús
- Institute of Physics of the Czech Academy of Sciences, 18221 Prague, Czech Republic
| | - Milan Jirsa
- Institute for Clinical & Experimental Medicine (IKEM), 14021 Prague, Czech Republic
| | - Alexandr Dejneka
- Institute of Physics of the Czech Academy of Sciences, 18221 Prague, Czech Republic
| | - Oleg Lunov
- Institute of Physics of the Czech Academy of Sciences, 18221 Prague, Czech Republic.
| |
Collapse
|
9
|
Li J, Lu W, Yang Y, Xiang R, Ling Y, Yu C, Zhou Y. Hybrid Nanomaterials for Cancer Immunotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2204932. [PMID: 36567305 PMCID: PMC9951325 DOI: 10.1002/advs.202204932] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 10/30/2022] [Indexed: 06/17/2023]
Abstract
Nano-immunotherapy has been recognized as a highly promising strategy for cancer treatment in recent decades, which combines nanotechnology and immunotherapy to combat against tumors. Hybrid nanomaterials consisting of at least two constituents with distinct compositions and properties, usually organic and inorganic, have been engineered with integrated functions and enormous potential in boosting cancer immunotherapy. This review provides a summary of hybrid nanomaterials reported for cancer immunotherapy, including nanoscale metal-organic frameworks, metal-phenolic networks, mesoporous organosilica nanoparticles, metallofullerene nanomaterials, polymer-lipid, and biomacromolecule-based hybrid nanomaterials. The combination of immunotherapy with chemotherapy, chemodynamic therapy, radiotherapy, radiodynamic therapy, photothermal therapy, photodynamic therapy, and sonodynamic therapy based on hybrid nanomaterials is also discussed. Finally, the current challenges and the prospects for designing hybrid nanomaterials and their application in cancer immunotherapy are outlined.
Collapse
Affiliation(s)
- Jianing Li
- Shanghai Key Laboratory of Molecular Catalysis and Innovative MaterialsDepartment of ChemistryFudan UniversityShanghai200433China
| | - Wanyue Lu
- Shanghai Key Laboratory of Molecular Catalysis and Innovative MaterialsDepartment of ChemistryFudan UniversityShanghai200433China
| | - Yannan Yang
- Institute of OptoelectronicsFudan UniversityShanghai200433China
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandSt LuciaBrisbane4072Australia
| | - Ruiqing Xiang
- Shanghai Key Laboratory of Molecular Catalysis and Innovative MaterialsDepartment of ChemistryFudan UniversityShanghai200433China
| | - Yun Ling
- Shanghai Key Laboratory of Molecular Catalysis and Innovative MaterialsDepartment of ChemistryFudan UniversityShanghai200433China
| | - Chengzhong Yu
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandSt LuciaBrisbane4072Australia
| | - Yaming Zhou
- Shanghai Key Laboratory of Molecular Catalysis and Innovative MaterialsDepartment of ChemistryFudan UniversityShanghai200433China
| |
Collapse
|
10
|
Improved Targeting of Therapeutics by Nanocarrier-Based Delivery in Cancer Immunotherapy and Their Future Perspectives. BIONANOSCIENCE 2023. [DOI: 10.1007/s12668-023-01065-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
11
|
Pandey A, Mishra AK. Immunomodulation, Toxicity, and Therapeutic Potential of Nanoparticles. BIOTECH 2022; 11:42. [PMID: 36134916 PMCID: PMC9497228 DOI: 10.3390/biotech11030042] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/24/2022] [Accepted: 09/06/2022] [Indexed: 11/24/2022] Open
Abstract
Altered immune responses associated with human disease conditions, such as inflammatory and infectious diseases, cancers, and autoimmune diseases, are among the primary causes of morbidity across the world. A wealth of studies has demonstrated the efficiency of nanoparticles (NPs)-based immunotherapy strategies in different laboratory model systems. Nanoscale dimensions (<100 nm) enable NPs to have increased surface area to volume ratio, surface charge, and reactivity. Physicochemical properties along with the shapes, sizes, and elasticity influence the immunomodulatory response induced by NPs. In recent years, NPs-based immunotherapy strategies have attained significant focus in the context of cancers and autoimmune diseases. This rapidly growing field of nanomedicine has already introduced ~50 nanotherapeutics in clinical practices. Parallel to wide industrial applications of NPs, studies have raised concerns about their potential threat to the environment and human health. In past decades, a wealth of in vivo and in vitro studies has demonstrated the immunotoxicity potential of various NPs. Given that the number of engineered/designed NPs in biomedical applications is continuing to increase, it is pertinent to establish the toxicity profile for their safe and intelligent use in biomedical applications. The review is intended to summarize the NPs-induced immunomodulation pertaining to toxicity and therapeutic development in human health.
Collapse
Affiliation(s)
- Ashutosh Pandey
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Abhinava K. Mishra
- Molecular, Cellular and Developmental Biology Department, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| |
Collapse
|
12
|
Ashrafizadeh M, Delfi M, Zarrabi A, Bigham A, Sharifi E, Rabiee N, Paiva-Santos AC, Kumar AP, Tan SC, Hushmandi K, Ren J, Zare EN, Makvandi P. Stimuli-responsive liposomal nanoformulations in cancer therapy: Pre-clinical & clinical approaches. J Control Release 2022; 351:50-80. [PMID: 35934254 DOI: 10.1016/j.jconrel.2022.08.001] [Citation(s) in RCA: 68] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 07/31/2022] [Accepted: 08/01/2022] [Indexed: 11/30/2022]
Abstract
The site-specific delivery of antitumor agents is of importance for providing effective cancer suppression. Poor bioavailability of anticancer compounds and the presence of biological barriers prevent their accumulation in tumor sites. These obstacles can be overcome using liposomal nanostructures. The challenges in cancer chemotherapy and stimuli-responsive nanocarriers are first described in the current review. Then, stimuli-responsive liposomes including pH-, redox-, enzyme-, light-, thermo- and magneto-sensitive nanoparticles are discussed and their potential for delivery of anticancer drugs is emphasized. The pH- or redox-sensitive liposomes are based on internal stimulus and release drug in response to a mildly acidic pH and GSH, respectively. The pH-sensitive liposomes can mediate endosomal escape via proton sponge. The multifunctional liposomes responsive to both redox and pH have more capacity in drug release at tumor site compared to pH- or redox-sensitive alone. The magnetic field and NIR irradiation can be exploited for external stimulation of liposomes. The light-responsive liposomes release drugs when they are exposed to irradiation; thermosensitive-liposomes release drugs at a temperature of >40 °C when there is hyperthermia; magneto-responsive liposomes release drugs in presence of magnetic field. These smart nanoliposomes also mediate co-delivery of drugs and genes in synergistic cancer therapy. Due to lack of long-term toxicity of liposomes, they can be utilized in near future for treatment of cancer patients.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, 34956 Istanbul, Turkey.
| | - Masoud Delfi
- Department of Chemical Sciences, University of Naples "Federico II", Complesso Universitario Monte S. Angelo, Via Cintia, Naples 80126, Italy
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul 34396, Turkey
| | - Ashkan Bigham
- Institute of Polymers, Composites and Biomaterials-National Research Council (IPCB-CNR), Viale J.F. Kennedy 54-Mostra d'Oltremare pad. 20, 80125 Naples, Italy
| | - Esmaeel Sharifi
- Department of Tissue Engineering and Biomaterials, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, 6517838736 Hamadan, Iran
| | - Navid Rabiee
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, South Korea; School of Engineering, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Ana Cláudia Paiva-Santos
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Azinhaga Sta. Comba, 3000-548 Coimbra, Portugal; LAQV, REQUIMTE, Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Azinhaga Sta. Comba, 3000-548 Coimbra, Portugal
| | - Alan Prem Kumar
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore; Cancer Science Institute of Singapore and Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
| | - Shing Cheng Tan
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology and zoonosis, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Jun Ren
- Department of Cardiology, Zhongshan Hospital Fudan University, Shanghai 200032, China
| | | | - Pooyan Makvandi
- School of Chemistry, Damghan University, Damghan 36716-41167, Iran; Istituto Italiano di Tecnologia, Center for Materials Interfaces, viale Rinaldo Piaggio 34, 56025, Pontedera, Pisa, Italy.
| |
Collapse
|
13
|
Nadukkandy AS, Ganjoo E, Singh A, Dinesh Kumar L. Tracing New Landscapes in the Arena of Nanoparticle-Based Cancer Immunotherapy. FRONTIERS IN NANOTECHNOLOGY 2022. [DOI: 10.3389/fnano.2022.911063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Over the past two decades, unique and comprehensive cancer treatment has ushered new hope in the holistic management of the disease. Cancer immunotherapy, which harnesses the immune system of the patient to attack the cancer cells in a targeted manner, scores over others by being less debilitating compared to the existing treatment strategies. Significant advancements in the knowledge of immune surveillance in the last few decades have led to the development of several types of immune therapy like monoclonal antibodies, cancer vaccines, immune checkpoint inhibitors, T-cell transfer therapy or adoptive cell therapy (ACT) and immune system modulators. Intensive research has established cancer immunotherapy to be a safe and effective method for improving survival and the quality of a patient’s life. However, numerous issues with respect to site-specific delivery, resistance to immunotherapy, and escape of cancer cells from immune responses, need to be addressed for expanding and utilizing this therapy as a regular mode in the clinical treatment. Development in the field of nanotechnology has augmented the therapeutic efficiency of treatment modalities of immunotherapy. Nanocarriers could be used as vehicles because of their advantages such as increased surface areas, targeted delivery, controlled surface and release chemistry, enhanced permeation and retention effect, etc. They could enhance the function of immune cells by incorporating immunomodulatory agents that influence the tumor microenvironment, thus enabling antitumor immunity. Robust validation of the combined effect of nanotechnology and immunotherapy techniques in the clinics has paved the way for a better treatment option for cancer than the already existing procedures such as chemotherapy and radiotherapy. In this review, we discuss the current applications of nanoparticles in the development of ‘smart’ cancer immunotherapeutic agents like ACT, cancer vaccines, monoclonal antibodies, their site-specific delivery, and modulation of other endogenous immune cells. We also highlight the immense possibilities of using nanotechnology to accomplish leveraging the coordinated and adaptive immune system of a patient to tackle the complexity of treating unique disease conditions and provide future prospects in the field of cancer immunotherapy.
Collapse
|
14
|
Liu K, Liao Y, Zhou Z, Zhang L, Jiang Y, Lu H, Xu T, Yang D, Gao Q, Li Z, Tan S, Cao W, Chen F, Li G. Photothermal-triggered immunogenic nanotherapeutics for optimizing osteosarcoma therapy by synergizing innate and adaptive immunity. Biomaterials 2022; 282:121383. [DOI: 10.1016/j.biomaterials.2022.121383] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 01/10/2022] [Accepted: 01/19/2022] [Indexed: 12/20/2022]
|
15
|
Volovat SR, Ursulescu CL, Moisii LG, Volovat C, Boboc D, Scripcariu D, Amurariti F, Stefanescu C, Stolniceanu CR, Agop M, Lungulescu C, Volovat CC. The Landscape of Nanovectors for Modulation in Cancer Immunotherapy. Pharmaceutics 2022; 14:397. [PMID: 35214129 PMCID: PMC8875018 DOI: 10.3390/pharmaceutics14020397] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/01/2022] [Accepted: 02/08/2022] [Indexed: 12/12/2022] Open
Abstract
Immunotherapy represents a promising strategy for the treatment of cancer, which functions via the reprogramming and activation of antitumor immunity. However, adverse events resulting from immunotherapy that are related to the low specificity of tumor cell-targeting represent a limitation of immunotherapy's efficacy. The potential of nanotechnologies is represented by the possibilities of immunotherapeutical agents being carried by nanoparticles with various material types, shapes, sizes, coated ligands, associated loading methods, hydrophilicities, elasticities, and biocompatibilities. In this review, the principal types of nanovectors (nanopharmaceutics and bioinspired nanoparticles) are summarized along with the shortcomings in nanoparticle delivery and the main factors that modulate efficacy (the EPR effect, protein coronas, and microbiota). The mechanisms by which nanovectors can target cancer cells, the tumor immune microenvironment (TIME), and the peripheral immune system are also presented. A possible mathematical model for the cellular communication mechanisms related to exosomes as nanocarriers is proposed.
Collapse
Affiliation(s)
- Simona-Ruxandra Volovat
- Department of Medical Oncology-Radiotherapy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Str., 700115 Iaşi, Romania; (S.-R.V.); (D.B.); (F.A.)
| | - Corina Lupascu Ursulescu
- Department of Radiology, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Str., 700115 Iaşi, Romania; (C.L.U.); (L.G.M.); (C.C.V.)
| | - Liliana Gheorghe Moisii
- Department of Radiology, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Str., 700115 Iaşi, Romania; (C.L.U.); (L.G.M.); (C.C.V.)
| | - Constantin Volovat
- Department of Medical Oncology-Radiotherapy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Str., 700115 Iaşi, Romania; (S.-R.V.); (D.B.); (F.A.)
- Department of Medical Oncology, “Euroclinic” Center of Oncology, 2 Vasile Conta Str., 700106 Iaşi, Romania
| | - Diana Boboc
- Department of Medical Oncology-Radiotherapy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Str., 700115 Iaşi, Romania; (S.-R.V.); (D.B.); (F.A.)
| | - Dragos Scripcariu
- Department of Surgery, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Str., 700115 Iaşi, Romania;
| | - Florin Amurariti
- Department of Medical Oncology-Radiotherapy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Str., 700115 Iaşi, Romania; (S.-R.V.); (D.B.); (F.A.)
| | - Cipriana Stefanescu
- Department of Biophysics and Medical Physics-Nuclear Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Str., 700115 Iaşi, Romania; (C.S.); (C.R.S.)
| | - Cati Raluca Stolniceanu
- Department of Biophysics and Medical Physics-Nuclear Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Str., 700115 Iaşi, Romania; (C.S.); (C.R.S.)
| | - Maricel Agop
- Physics Department, “Gheorghe Asachi” Technical University, Prof. Dr. Docent Dimitrie Mangeron Rd., No. 59A, 700050 Iaşi, Romania;
| | - Cristian Lungulescu
- Department of Medical Oncology, University of Medicine and Pharmacy, 200349 Craiova, Romania;
| | - Cristian Constantin Volovat
- Department of Radiology, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Str., 700115 Iaşi, Romania; (C.L.U.); (L.G.M.); (C.C.V.)
| |
Collapse
|
16
|
Nakhaei P, Margiana R, Bokov DO, Abdelbasset WK, Jadidi Kouhbanani MA, Varma RS, Marofi F, Jarahian M, Beheshtkhoo N. Liposomes: Structure, Biomedical Applications, and Stability Parameters With Emphasis on Cholesterol. Front Bioeng Biotechnol 2021; 9:705886. [PMID: 34568298 PMCID: PMC8459376 DOI: 10.3389/fbioe.2021.705886] [Citation(s) in RCA: 225] [Impact Index Per Article: 75.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 08/09/2021] [Indexed: 12/12/2022] Open
Abstract
Liposomes are essentially a subtype of nanoparticles comprising a hydrophobic tail and a hydrophilic head constituting a phospholipid membrane. The spherical or multilayered spherical structures of liposomes are highly rich in lipid contents with numerous criteria for their classification, including structural features, structural parameters, and size, synthesis methods, preparation, and drug loading. Despite various liposomal applications, such as drug, vaccine/gene delivery, biosensors fabrication, diagnosis, and food products applications, their use encounters many limitations due to physico-chemical instability as their stability is vigorously affected by the constituting ingredients wherein cholesterol performs a vital role in the stability of the liposomal membrane. It has well established that cholesterol exerts its impact by controlling fluidity, permeability, membrane strength, elasticity and stiffness, transition temperature (Tm), drug retention, phospholipid packing, and plasma stability. Although the undetermined optimum amount of cholesterol for preparing a stable and controlled release vehicle has been the downside, but researchers are still focused on cholesterol as a promising material for the stability of liposomes necessitating explanation for the stability promotion of liposomes. Herein, the prior art pertaining to the liposomal appliances, especially for drug delivery in cancer therapy, and their stability emphasizing the roles of cholesterol.
Collapse
Affiliation(s)
- Pooria Nakhaei
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ria Margiana
- Department of Anatomy, Faculty of Medicine, Universitas Indonesia, Depok, Indonesia
- Cipto Mangunkusumo Hospital, The National Referral Hospital, Central Jakarta, Indonesia
- Master’s Programme Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, Depok, Indonesia
| | - Dmitry O. Bokov
- Institute of Pharmacy, Sechenov First Moscow State Medical University, Moscow, Russia
- Laboratory of Food Chemistry, Federal Research Center of Nutrition, Biotechnology, and Food Safety, Moscow, Russia
| | - Walid Kamal Abdelbasset
- Department of Health and Rehabilitation Sciences, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Al Kharj, Saudi Arabia
- Department of Physical Therapy, Kasr Al-Aini Hospital, Cairo University, Giza, Egypt
| | - Mohammad Amin Jadidi Kouhbanani
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Czechia
| | - Rajender S. Varma
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University in Olomouc, Olomouc, Czechia
| | - Faroogh Marofi
- Department of Hematology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mostafa Jarahian
- Toxicology and Chemotherapy Unit (G401), German Cancer Research Center, Heidelberg, Germany
| | - Nasrin Beheshtkhoo
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Czechia
| |
Collapse
|
17
|
Recent advances in immunotherapy, immunoadjuvant, and nanomaterial-based combination immunotherapy. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
18
|
Zhang Y, Wang T, Tian Y, Zhang C, Ge K, Zhang J, Chang J, Wang H. Gold nanorods-mediated efficient synergistic immunotherapy for detection and inhibition of postoperative tumor recurrence. Acta Pharm Sin B 2021; 11:1978-1992. [PMID: 34386332 PMCID: PMC8343192 DOI: 10.1016/j.apsb.2021.03.035] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/31/2021] [Accepted: 02/04/2021] [Indexed: 02/06/2023] Open
Abstract
Tumor recurrence after surgery is the main cause of treatment failure. However, the initial stage of recurrence is not easy to detect, and it is difficult to cure in the late stage. In order to improve the life quality of postoperative patients, an efficient synergistic immunotherapy was developed to achieve early diagnosis and treatment of post-surgical tumor recurrence, simultaneously. In this paper, two kinds of theranostic agents based on gold nanorods (AuNRs) platform were prepared. AuNRs and quantum dots (QDs) in one agent was used for the detection of carcinoembryonic antigen (CEA), using fluorescence resonance energy transfer (FRET) technology to indicate the occurrence of in situ recurrence, while AuNRs in the other agent was used for photothermal therapy (PTT), together with anti-PDL1 mediated immunotherapy to alleviate the process of tumor metastasis. A series of assays indicated that this synergistic immunotherapy could induce tumor cell death and the increased generation of CD3+/CD4+ T-lymphocytes and CD3+/CD8+ T-lymphocytes. Besides, more immune factors (IL-2, IL-6, and IFN-γ) produced by synergistic immunotherapy were secreted than mono-immunotherapy. This cooperative immunotherapy strategy could be utilized for diagnosis and treatment of postoperative tumor recurrence at the same time, providing a new perspective for basic and clinical research.
Collapse
Key Words
- AFP, alpha fetoprotein
- AP1-QDs, CEA aptamer-modified CdTe QDs
- AP2-AuNRs, CEA aptamer-modified AuNRs
- AP2-AuNRs, and interferon-γ
- AgNO3, silver nitrate
- AuNRs, gold nanorods
- CA, cancer antigen
- CEA, carcinoembryonic antigen
- CTAB, cetrimonium bromide
- CTCs, circulating tumor cells
- Carcinoembryonic antigen
- CdCl2, cadmium chloride
- CdTe QDs, CdTe quantum dots
- DC, dendritic cells
- DLS, dynamic light scattering
- EDC, 1-ethyl-3-(3′-dimethylaminopropyl) carbodiimide
- FBS, fetal bovine serum
- FRET, fluorescence resonance energy transfer
- Fluorescence resonance energy transfer
- GSH, glutathione
- Gold nanorods
- HAuCl4, gold chloride
- Helf, human embryonic lung fibroblasts lines
- Hydrogel+IFN-γ+QA, thermal responsive hydrogels co-loaded with AP1-QDs
- Hydrogel+IFN-γ, thermal responsive hydrogels loaded with interferon-γ
- ICG, indocyanine green
- IFN-γ, interferon-γ
- IR, infrared
- LA+NIR, liposomes encapsulated AuNRs with near-infrared irradiation
- LA, liposomes encapsulated AuNRs
- LAI, liposomes loaded with ICG and encapsulated AuNRs
- LLC, murine lung cancer cells
- Lung metastasis
- MTT, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide
- NHS, N-hydroxysuccinimide
- NIR, near-infrared irradiation
- NaBH4, sodium borohydride
- NaHTe, sodium hydrogen telluride
- PD1, programmed cell death protein 1
- PDL1, programmed cell death-ligand 1
- PI, propidium iodide
- PLGA-PEG-PLGA, thermal responsive hydrogel
- PTT, photothermal therapy
- Phototherapy
- Post-surgical tumor recurrence
- QDs, quantum dots
- Synergistic immunotherapy
- TEM, transmission electron microscope
- Theranostics
- aPDL1-LA+NIR, anti-PDL1-modified liposomes encapsulated AuNRs with near-infrared irradiation
- aPDL1-LA, anti-PDL1-modified liposomes encapsulated AuNRs
- aPDL1-LAI, anti-PDL1-modified liposomes loaded with ICG and encapsulated AuNRs
- anti-PDL1, anti-programmed cell death-ligand 1
Collapse
Affiliation(s)
- Yingying Zhang
- School of Life Sciences, Tianjin University, Tianjin 300072, China
- Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology, Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, Tianjin 300072, China
| | - Tiange Wang
- School of Life Sciences, Tianjin University, Tianjin 300072, China
- Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology, Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, Tianjin 300072, China
| | - Yu Tian
- School of Life Sciences, Tianjin University, Tianjin 300072, China
- Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology, Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, Tianjin 300072, China
| | - Chaonan Zhang
- School of Life Sciences, Tianjin University, Tianjin 300072, China
- Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology, Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, Tianjin 300072, China
| | - Kun Ge
- College of Chemistry & Environmental Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding 071002, China
| | - Jinchao Zhang
- College of Chemistry & Environmental Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding 071002, China
| | - Jin Chang
- School of Life Sciences, Tianjin University, Tianjin 300072, China
- Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology, Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, Tianjin 300072, China
- Corresponding authors.
| | - Hanjie Wang
- School of Life Sciences, Tianjin University, Tianjin 300072, China
- Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology, Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, Tianjin 300072, China
- Corresponding authors.
| |
Collapse
|
19
|
Gocher AM, Workman CJ, Vignali DAA. Interferon-γ: teammate or opponent in the tumour microenvironment? Nat Rev Immunol 2021; 22:158-172. [PMID: 34155388 DOI: 10.1038/s41577-021-00566-3] [Citation(s) in RCA: 267] [Impact Index Per Article: 89.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/11/2021] [Indexed: 02/06/2023]
Abstract
Cancer immunotherapy offers substantive benefit to patients with various tumour types, in some cases leading to complete tumour clearance. However, many patients do not respond to immunotherapy, galvanizing the field to define the mechanisms of pre-existing and acquired resistance. Interferon-γ (IFNγ) is a cytokine that has both protumour and antitumour activities, suggesting that it may serve as a nexus for responsiveness to immunotherapy. Many cancer immunotherapies and chemotherapies induce IFNγ production by various cell types, including activated T cells and natural killer cells. Patients resistant to these therapies commonly have molecular aberrations in the IFNγ signalling pathway or express resistance molecules driven by IFNγ. Given that all nucleated cells can respond to IFNγ, the functional consequences of IFNγ production need to be carefully dissected on a cell-by-cell basis. Here, we review the cells that produce IFNγ and the different effects of IFNγ in the tumour microenvironment, highlighting the pleiotropic nature of this multifunctional and abundant cytokine.
Collapse
Affiliation(s)
- Angela M Gocher
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Creg J Workman
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Dario A A Vignali
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA. .,Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA. .,Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA.
| |
Collapse
|
20
|
Abstract
Owing to the unique physical and chemical properties of carbon nanotubes, they have been widely explored as delivery vectors for proteins, and nucleic acid etc. after functionalization. Particularly, the modification of carbon nanotubes suited for the delivery of siRNA has been intensely studied over the past decade. The assay described in this chapter allows for realizable quantification of siRNA binding on carbon nanotube-based materials using gel electrophoresis and silencing by flow cytometry when the siRNA complexes are delivered in vitro.
Collapse
Affiliation(s)
- Danyang Li
- School of Cancer and Pharmaceutical Sciences, King's College London, London, UK
| | - Khuloud T Al-Jamal
- School of Cancer and Pharmaceutical Sciences, King's College London, London, UK.
| |
Collapse
|
21
|
Engineering anti-cancer nanovaccine based on antigen cross-presentation. Biosci Rep 2020; 39:220729. [PMID: 31652460 PMCID: PMC6822533 DOI: 10.1042/bsr20193220] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 09/27/2019] [Accepted: 10/01/2019] [Indexed: 01/16/2023] Open
Abstract
Dendritic cells (DCs) present exogenous antigens on major histocompatibility complex (MHC) class I molecules, thereby activating CD8+ T cells, contributing to tumor elimination through a mechanism known as antigen cross-presentation. A variety of factors such as maturation state of DCs, co-stimulatory signals, T-cell microenvironment, antigen internalization routes and adjuvants regulate the process of DC-mediated antigen cross-presentation. Recently, the development of successful cancer immunotherapies may be attributed to the ability of DCs to cross-present tumor antigens. In this review article, we focus on the underlying mechanism of antigen cross-presentation and ways to improve antigen cross-presentation in different DC subsets. We have critically summarized the recent developments in the generation of novel nanovaccines for robust CD8+ T-cell response in cancer. In this context, we have reviewed nanocarriers that have been used for cancer immunotherapeutics based on antigen cross-presentation mechanism. Additionally, we have also expressed our views on the future applications of this mechanism in curing cancer.
Collapse
|
22
|
Abstract
Personalized cancer vaccines (PCVs) are reinvigorating vaccine strategies in cancer immunotherapy. In contrast to adoptive T-cell therapy and checkpoint blockade, the PCV strategy modulates the innate and adaptive immune systems with broader activation to redeploy antitumor immunity with individualized tumor-specific antigens (neoantigens). Following a sequential scheme of tumor biopsy, mutation analysis, and epitope prediction, the administration of neoantigens with synthetic long peptide (SLP) or mRNA formulations dramatically improves the population and activity of antigen-specific CD4+ and CD8+ T cells. Despite the promising prospect of PCVs, there is still great potential for optimizing prevaccination procedures and vaccine potency. In particular, the arduous development of tumor-associated antigen (TAA)-based vaccines provides valuable experience and rational principles for augmenting vaccine potency which is expected to advance PCV through the design of adjuvants, delivery systems, and immunosuppressive tumor microenvironment (TME) reversion since current personalized vaccination simply admixes antigens with adjuvants. Considering the broader application of TAA-based vaccine design, these two strategies complement each other and can lead to both personalized and universal therapeutic methods. Chemical strategies provide vast opportunities for (1) exploring novel adjuvants, including synthetic molecules and materials with optimizable activity, (2) constructing efficient and precise delivery systems to avoid systemic diffusion, improve biosafety, target secondary lymphoid organs, and enhance antigen presentation, and (3) combining bioengineering methods to innovate improvements in conventional vaccination, "smartly" re-educate the TME, and modulate antitumor immunity. As chemical strategies have proven versatility, reliability, and universality in the design of T cell- and B cell-based antitumor vaccines, the union of such numerous chemical methods in vaccine construction is expected to provide new vigor and vitality in cancer treatment.
Collapse
Affiliation(s)
- Wen-Hao Li
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, 100084 Beijing, China
| | - Yan-Mei Li
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, 100084 Beijing, China.,Beijing Institute for Brain Disorders, 100069 Beijing, China.,Center for Synthetic and Systems Biology, Tsinghua University, 100084 Beijing, China
| |
Collapse
|
23
|
Yang F, Shi K, Jia YP, Hao Y, Peng JR, Qian ZY. Advanced biomaterials for cancer immunotherapy. Acta Pharmacol Sin 2020; 41:911-927. [PMID: 32123302 PMCID: PMC7468530 DOI: 10.1038/s41401-020-0372-z] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 01/27/2020] [Indexed: 02/05/2023] Open
Abstract
Immunotherapy, as a powerful strategy for cancer treatment, has achieved tremendous efficacy in clinical trials. Despite these advancements, there is much to do in terms of enhancing therapeutic benefits and decreasing the side effects of cancer immunotherapy. Advanced nanobiomaterials, including liposomes, polymers, and silica, play a vital role in the codelivery of drugs and immunomodulators. These nanobiomaterial-based delivery systems could effectively promote antitumor immune responses and simultaneously reduce toxic adverse effects. Furthermore, nanobiomaterials may also combine with each other or with traditional drugs via different mechanisms, thus giving rise to more accurate and efficient tumor treatment. Here, an overview of the latest advancement in these nanobiomaterials used for cancer immunotherapy is given, describing outstanding systems, including lipid-based nanoparticles, polymer-based scaffolds or micelles, inorganic nanosystems, and others.
Collapse
Affiliation(s)
- Fan Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, China
| | - Kun Shi
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, China
| | - Yan-Peng Jia
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, China
| | - Ying Hao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, China
| | - Jin-Rong Peng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, China
| | - Zhi-Yong Qian
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
24
|
Shields CW, Wang LLW, Evans MA, Mitragotri S. Materials for Immunotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1901633. [PMID: 31250498 DOI: 10.1002/adma.201901633] [Citation(s) in RCA: 117] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 04/17/2019] [Indexed: 05/20/2023]
Abstract
Breakthroughs in materials engineering have accelerated the progress of immunotherapy in preclinical studies. The interplay of chemistry and materials has resulted in improved loading, targeting, and release of immunomodulatory agents. An overview of the materials that are used to enable or improve the success of immunotherapies in preclinical studies is presented, from immunosuppressive to proinflammatory strategies, with particular emphasis on technologies poised for clinical translation. The materials are organized based on their characteristic length scale, whereby the enabling feature of each technology is organized by the structure of that material. For example, the mechanisms by which i) nanoscale materials can improve targeting and infiltration of immunomodulatory payloads into tissues and cells, ii) microscale materials can facilitate cell-mediated transport and serve as artificial antigen-presenting cells, and iii) macroscale materials can form the basis of artificial microenvironments to promote cell infiltration and reprogramming are discussed. As a step toward establishing a set of design rules for future immunotherapies, materials that intrinsically activate or suppress the immune system are reviewed. Finally, a brief outlook on the trajectory of these systems and how they may be improved to address unsolved challenges in cancer, infectious diseases, and autoimmunity is presented.
Collapse
Affiliation(s)
- C Wyatt Shields
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, 02138, USA
| | - Lily Li-Wen Wang
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, 02138, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Michael A Evans
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, 02138, USA
| | - Samir Mitragotri
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, 02138, USA
| |
Collapse
|
25
|
Plant lectins and their usage in preparing targeted nanovaccines for cancer immunotherapy. Semin Cancer Biol 2020; 80:87-106. [PMID: 32068087 DOI: 10.1016/j.semcancer.2020.02.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/30/2020] [Accepted: 02/06/2020] [Indexed: 01/06/2023]
Abstract
Plant lectins, a natural source of glycans with a therapeutic potential may lead to the discovery of new targeted therapies. Glycans extracted from plant lectins are known to act as ligands for C-type lectin receptors (CLRs) that are primarily present on immune cells. Plant-derived glycosylated lectins offer diversity in their N-linked oligosaccharide structures that can serve as a unique source of homogenous and heterogenous glycans. Among the plant lectins-derived glycan motifs, Man9GlcNAc2Asn exhibits high-affinity interactions with CLRs that may resemble glycan motifs of pathogens. Thus, such glycan domains when presented along with antigens complexed with a nanocarrier of choice may bewilder the immune cells and direct antigen cross-presentation - a cytotoxic T lymphocyte immune response mediated by CD8+ T cells. Glycan structure analysis has attracted considerable interest as glycans are looked upon as better therapeutic alternatives than monoclonal antibodies due to their cost-effectiveness, reduced toxicity and side effects, and high specificity. Furthermore, this approach will be useful to understand whether the multivalent glycan presentation on the surface of nanocarriers can overcome the low-affinity lectin-ligand interaction and thereby modulation of CLR-dependent immune response. Besides this, understanding how the heterogeneity of glycan structure impacts the antigen cross-presentation is pivotal to develop alternative targeted therapies. In the present review, we discuss the findings on structural analysis of glycans from natural lectins performed using GlycanBuilder2 - a software tool based on a thorough literature review of natural lectins. Additionally, we discuss how multiple parameters like the orientation of glycan ligands, ligand density, simultaneous targeting of multiple CLRs and design of antigen delivery nanocarriers may influence the CLR targeting efficacy. Integrating this information will eventually set the ground for new generation immunotherapeutic vaccine design for the treatment of various human malignancies.
Collapse
|
26
|
Liu Y, Tronser T, Peravali R, Reischl M, Levkin PA. High‐Throughput Screening of Cell Transfection Enhancers Using Miniaturized Droplet Microarrays. ACTA ACUST UNITED AC 2020; 4:e1900257. [DOI: 10.1002/adbi.201900257] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/04/2019] [Indexed: 11/07/2022]
Affiliation(s)
- Yanxi Liu
- Institute of Toxicology and Genetics (ITG)Karlsruhe Institute of Technology (KIT) Hermann‐von Helmholtz‐Platz 1 Eggenstein‐Leopoldshafen 76344 Germany
| | - Tina Tronser
- Institute of Toxicology and Genetics (ITG)Karlsruhe Institute of Technology (KIT) Hermann‐von Helmholtz‐Platz 1 Eggenstein‐Leopoldshafen 76344 Germany
| | - Ravindra Peravali
- Institute of Toxicology and Genetics (ITG)Karlsruhe Institute of Technology (KIT) Hermann‐von Helmholtz‐Platz 1 Eggenstein‐Leopoldshafen 76344 Germany
| | - Markus Reischl
- Institute for Automation and Applied Informatics (IAI)Karlsruhe Institute of Technology (KIT) Hermann‐von Helmholtz‐Platz 1 Eggenstein‐Leopoldshafen 76344 Germany
| | - Pavel A. Levkin
- Institute of Toxicology and Genetics (ITG)Karlsruhe Institute of Technology (KIT) Hermann‐von Helmholtz‐Platz 1 Eggenstein‐Leopoldshafen 76344 Germany
- Institute of Organic ChemistryKarlsruhe Institute of Technology (KIT) Fritz‐Haber‐Weg 6 Karlsruhe 76131 Germany
| |
Collapse
|
27
|
Yuba E. Development of functional liposomes by modification of stimuli-responsive materials and their biomedical applications. J Mater Chem B 2020; 8:1093-1107. [PMID: 31960007 DOI: 10.1039/c9tb02470k] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Liposomes are a promising nanocarrier for drug delivery because of their biocompatibility and the encapsulation capacity of drugs. Liposomes can be functionalized easily by introduction of functional materials such as stimulus-responsive materials. Temperature-responsive liposomes and pH-responsive liposomes are representative stimulus-responsive liposomes that can deliver drugs to locally heated target tissues and intracellular organelles. Here, temperature-responsive liposomes for the selective release of cargo and pH-responsive liposomes for the induction of antigen-specific immunity are overviewed. Temperature-responsive polymer-modified liposomes immediately released drugs in response to heating, which achieved selective drug release at a tumour after topical heating of tumour-bearing mice. Introduction of MR-detectable molecules enabled the tracing of liposome accumulation into target sites to optimize the heating timing. These liposomes can also be combined with magnetic nanoparticles or carbon nanomaterials to attain magnetic field-responsive, electric field-responsive and light-responsive properties to support on-demand drug release or control of biological reactions using these external stimuli. pH-Responsive liposomes were produced by modification of poly(carboxylic acid) derivatives or by pH-responsive amphiphiles. These liposomes delivered antigenic proteins into the cytosol of antigen presenting cells, which induced cross-presentation and antigen-specific cellular immunity. Adjuvant molecules or bioactive polysaccharide-based pH-responsive polymers improved their immunity-inducing effect further, leading to tumour regression in tumour-bearing mice. Precise design and control of the structures of stimulus-responsive materials and combination with functional materials are expected to create novel methodologies to control biological functions and to produce highly potent liposomal drugs that can achieve selective release of bioactive molecules.
Collapse
Affiliation(s)
- Eiji Yuba
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan.
| |
Collapse
|
28
|
Nanotechnology in the arena of cancer immunotherapy. Arch Pharm Res 2020; 43:58-79. [DOI: 10.1007/s12272-020-01207-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 01/09/2020] [Indexed: 12/14/2022]
|
29
|
Wijesekera DPH, Yuba E, De Silva NH, Watanabe SI, Tsukamoto M, Ichida C, Izawa T, Itoh K, Kanegi R, Hatoya S, Yamate J, Inaba T, Sugiura K. Manipulation of the tumor microenvironment by cytokine gene transfection enhances dendritic cell-based immunotherapy. FASEB Bioadv 2020; 2:5-17. [PMID: 32123853 PMCID: PMC6996313 DOI: 10.1096/fba.2019-00052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 06/21/2019] [Accepted: 11/06/2019] [Indexed: 01/21/2023] Open
Abstract
The tumor microenvironment strongly influences clinical outcomes of immunotherapy. By transfecting genes of relevant cytokines into tumor cells, we sought to manipulate the microenvironment so as to elicit activation of T helper type 1 (Th1) responses and the maturation of dendritic cells (DCs). Using a synthetic vehicle, the efficiency of in vivo transfection of GFP-cDNA into tumor cells was about 7.5% by intratumoral injection and about 11.5% by intravenous injection. Survival was significantly improved by both intratumoral and intravenous injection of the plasmid containing cDNA of interferon-gamma, followed by intratumoral injection of DCs presenting the tumor antigens. Also, tumor growth was inhibited by these treatments. A more significant effect on survival and tumor growth inhibition was observed following injection of the plasmid containing cDNA of CD40 ligand, which is a potent inducer of DC-maturation. Furthermore, the co-injection of both IFNγ- and CD40 ligand-encoding cDNA-plasmids, followed by DC treatment, gave rise to further marked and enhancement, including 100% survival and more than 50% complete remission. This treatment regimen elicited significant increases in mature DCs and types of cells contributing to Th1 responses, and significant decreases in immune suppressor cells in the tumor. In the spleen, the treatment significantly increased activities of tumor-specific killer and natural killer cells, but no alteration was observed in mature DCs or suppressor cells. These results indicate that transfection of these cytokine genes into tumor cells significantly alter the tumor microenvironment and improve the therapeutic results of DC-based immunotherapy.
Collapse
Affiliation(s)
- Daluthgamage Patsy Himali Wijesekera
- Department of Advanced Pathobiology Graduate School of Life and Environmental Sciences Osaka Prefecture University Izumisano Japan
- Present address: Department of Pathobiology Faculty of Veterinary Medicine and Animal Science University of Peradeniya Peradeniya Sri Lanka
| | - Eiji Yuba
- Department of Applied Chemistry Graduate School of Engineering Osaka Prefecture University Sakai Japan
| | - Nadeeka Harshini De Silva
- Department of Advanced Pathobiology Graduate School of Life and Environmental Sciences Osaka Prefecture University Izumisano Japan
| | - Shun-Ichi Watanabe
- Department of Advanced Pathobiology Graduate School of Life and Environmental Sciences Osaka Prefecture University Izumisano Japan
| | - Masaya Tsukamoto
- Department of Advanced Pathobiology Graduate School of Life and Environmental Sciences Osaka Prefecture University Izumisano Japan
| | - Chihiro Ichida
- Department of Advanced Pathobiology Graduate School of Life and Environmental Sciences Osaka Prefecture University Izumisano Japan
| | - Takeshi Izawa
- Department of Integrated Structural Biosciences Graduate School of Life and Environmental Sciences Osaka Prefecture University Izumisano Osaka Japan
| | - Kazuyuki Itoh
- Research Institute Nozaki Tokushukai Daitou City Japan
| | - Ryoji Kanegi
- Department of Advanced Pathobiology Graduate School of Life and Environmental Sciences Osaka Prefecture University Izumisano Japan
| | - Shingo Hatoya
- Department of Advanced Pathobiology Graduate School of Life and Environmental Sciences Osaka Prefecture University Izumisano Japan
| | - Jyoji Yamate
- Department of Integrated Structural Biosciences Graduate School of Life and Environmental Sciences Osaka Prefecture University Izumisano Osaka Japan
| | - Toshio Inaba
- Department of Advanced Pathobiology Graduate School of Life and Environmental Sciences Osaka Prefecture University Izumisano Japan
| | - Kikuya Sugiura
- Department of Advanced Pathobiology Graduate School of Life and Environmental Sciences Osaka Prefecture University Izumisano Japan
| |
Collapse
|
30
|
Abri Aghdam M, Bagheri R, Mosafer J, Baradaran B, Hashemzaei M, Baghbanzadeh A, de la Guardia M, Mokhtarzadeh A. Recent advances on thermosensitive and pH-sensitive liposomes employed in controlled release. J Control Release 2019; 315:1-22. [DOI: 10.1016/j.jconrel.2019.09.018] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 09/26/2019] [Accepted: 09/27/2019] [Indexed: 12/12/2022]
|
31
|
Liu MX, Ma LL, Liu XY, Liu JY, Lu ZL, Liu R, He L. Combination of [12]aneN 3 and Triphenylamine-Benzylideneimidazolone as Nonviral Gene Vectors with Two-Photon and AIE Properties. ACS APPLIED MATERIALS & INTERFACES 2019; 11:42975-42987. [PMID: 31657894 DOI: 10.1021/acsami.9b15169] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Three nonviral gene vectors, TPA-BI-A/B/C, have been designed and synthesized by the combination of one or two hydrophilic [12]aneN3 moieties and two-photon fluorescent triphenylamine-benzylideneimidazolone (TPA-BI) units through different ester linkage. Spectroscopic characterization demonstrated that TPA-BI-A/B/C had strong aggregation-induced emissions (AIE), large Stokes shifts (230, 284, and 263 nm), and large two-photon absorption cross sections (δ2PA) (67, 592, and 80 GM). Gel electrophoresis indicated that the three compounds completely condensed DNA at 15 μM in the presence of DOPE, and showed the lipase- and pH-triggered reversible release of DNA and the fluorescent recognition of the different lengths of ssDNA and dsDNA. The optimal TPA-BI-C/DOPE-mediated luciferase and GFP activity was 146% and 290% higher than those of Lipo2000. The transfection process of DNA could be traced clearly through one- and two-photon fluorescence spectra, and displayed in a 3D-video. TPA-BI-C/DOPE successfully transfected the GFP gene into zebrafish, which was superior to Lipo2000 (192%). In conclusion, TPA-BI-C/DOPE is the first nonviral gene vector with the abilities of pH/lipase enzyme responsiveness, one/two-photon fluorescent tracking of intracellular delivery of DNA, and successful transfection in vivo and in vitro, even better than Lipo2000.
Collapse
Affiliation(s)
- Ming-Xuan Liu
- Key Laboratory of Radiopharmaceuticals, Ministry of Education; College of Chemistry , Beijing Normal University , Beijing 100875 , People's Republic of China
| | - Le-Le Ma
- Key Laboratory of Radiopharmaceuticals, Ministry of Education; College of Chemistry , Beijing Normal University , Beijing 100875 , People's Republic of China
| | - Xu-Ying Liu
- Key Laboratory of Radiopharmaceuticals, Ministry of Education; College of Chemistry , Beijing Normal University , Beijing 100875 , People's Republic of China
| | - Jin-Yu Liu
- Key Laboratory of Radiopharmaceuticals, Ministry of Education; College of Chemistry , Beijing Normal University , Beijing 100875 , People's Republic of China
| | - Zhong-Lin Lu
- Key Laboratory of Radiopharmaceuticals, Ministry of Education; College of Chemistry , Beijing Normal University , Beijing 100875 , People's Republic of China
| | - Rui Liu
- Key Laboratory of Radiopharmaceuticals, Ministry of Education; College of Chemistry , Beijing Normal University , Beijing 100875 , People's Republic of China
| | - Lan He
- National Institute for Food and Drug Control , Institute of Chemical Drug Control , TianTanXiLi 2 , Beijing 100050 , China
| |
Collapse
|
32
|
Gu Y, Ma J, Fu Z, Xu Y, Gao B, Yao J, Xu W, Chu K, Chen J. Development Of Novel Liposome-Encapsulated Combretastatin A4 Acylated Derivatives: Prodrug Approach For Improving Antitumor Efficacy. Int J Nanomedicine 2019; 14:8805-8818. [PMID: 31806973 PMCID: PMC6844228 DOI: 10.2147/ijn.s210938] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 10/21/2019] [Indexed: 12/26/2022] Open
Abstract
Purpose The objective of the present study was to develop a liposomal drug delivery system based on combretastatin A4 (CA4) prodrugs modified with varying alkyl chains and investigate the in vitro drug conversion from prodrug and in vivo antitumor effect. Methods The prodrug of CA4 was synthesized with stearyl chloride (18-carbon chain), palmitoyl chloride (16-carbon chain), myristoyl chloride (14-carbon chain), decanoyl chloride (10-carbon chain), and hexanoyl chloride (6-carbon chain) at the 3′-position of the CA4. Subsequently, it was encapsulated with liposomes through the thin-film evaporation method. Furthermore, the characteristics of prodrug-liposome were evaluated using in vitro drug release, conversion, and cytotoxicity assays, as well as in vivo pharmacokinetic, antitumor, and biodistribution studies. Results The liposome system with loaded CA4 derivatives was successfully developed with nano-size and electronegative particles. The rate of in vitro drug release and conversion was reduced as the fatty acid carbon chain lengthened. On the contrary, in vivo antitumor effects were improved with the enlargement of the fatty acid carbon chain. The results of the in vivo pharmacokinetic and tissue distribution studies indicated that the reduced rate of CA4 release with a long carbon chain could prolong the circulation time and increase the drug concentration in the tumor tissue. Conclusion These results suggested that the release or hydrolysis of the parent drug from the prodrug was closely related with the in vitro and in vivo properties. The slow drug release of CA4 modified with longer acyl chain could prolong the circulation time and increase the concentration of the drug in the tumor tissue. These effects play a critical role in increasing the antitumor efficacy.
Collapse
Affiliation(s)
- Yongwei Gu
- Department of Pharmacy, Fujian University of Traditional Chinese Medicine, Fujian 350108, People's Republic of China.,Shanghai Wei Er Biopharmaceutical Technology Co., Ltd., Shanghai 201707, People's Republic of China
| | - Juanjuan Ma
- Shanghai Wei Er Biopharmaceutical Technology Co., Ltd., Shanghai 201707, People's Republic of China
| | - Zhiqin Fu
- Department of Pharmacy, Fujian University of Traditional Chinese Medicine, Fujian 350108, People's Republic of China.,Shanghai Wei Er Biopharmaceutical Technology Co., Ltd., Shanghai 201707, People's Republic of China
| | - Youfa Xu
- Department of Pharmacy, Fujian University of Traditional Chinese Medicine, Fujian 350108, People's Republic of China.,Shanghai Wei Er Biopharmaceutical Technology Co., Ltd., Shanghai 201707, People's Republic of China
| | - Baoan Gao
- Department of Pharmacy, Fujian University of Traditional Chinese Medicine, Fujian 350108, People's Republic of China.,Shanghai Wei Er Biopharmaceutical Technology Co., Ltd., Shanghai 201707, People's Republic of China
| | - Jianzhong Yao
- School of Pharmacy, Second Military Medical University, Shanghai 200433, People's Republic of China
| | - Wei Xu
- Department of Pharmacy, Fujian University of Traditional Chinese Medicine, Fujian 350108, People's Republic of China
| | - Kedan Chu
- Department of Pharmacy, Fujian University of Traditional Chinese Medicine, Fujian 350108, People's Republic of China
| | - Jianming Chen
- Department of Pharmacy, Fujian University of Traditional Chinese Medicine, Fujian 350108, People's Republic of China.,Shanghai Wei Er Biopharmaceutical Technology Co., Ltd., Shanghai 201707, People's Republic of China
| |
Collapse
|
33
|
Abstract
Liposomes are one of the most widely investigated carriers for CRISPR/Cas9 delivery. The surface properties of liposomal carriers, including the surface charge, PEGylation, and ligand modification can significantly affect the gene silencing efficiency. Three barriers of systemic CRISPR/Cas9 delivery (long blood circulation, efficient tumor penetration, and efficient cellular uptake/endosomal escape) are analyzed on liposomal carriers with different surface charges, PEGylations, and ligand modifications. Cationic formulations dominate CRISPR/Cas9 delivery and neutral formulations also have good performance while anionic formulations are generally not proper for CRISPR/Cas9 delivery. The PEG dilemma (prolonged blood circulation vs. reduced cellular uptake/endosomal escape) and the side effect of repeated PEGylated formulation (accelerated blood clearance) were discussed. Effects of ligand modification on cationic and neutral formulations were analyzed. Finally, we summarized the achievements in liposomal CRISPR/Cas9 delivery, outlined existing problems, and provided some future perspectives. Liposomes are one of the most widely investigated carriers for CRISPR/Cas9 delivery. The surface properties of liposomal carriers, including the surface charge, PEGylation, and ligand modification can significantly affect the gene silencing efficiency. Three barriers of systemic siRNA delivery (long blood circulation, efficient tumor penetration, and efficient cellular uptake/endosomal escape) are analyzed on liposomal carriers with different surface charges, PEGylations, and ligand modifications. Cationic formulations dominate CRISPR/Cas9 delivery and neutral formulations also have good performance while anionic formulations are generally not proper for CRISPR/Cas9 delivery. The PEG dilemma (prolonged blood circulation vs. reduced cellular uptake/endosomal escape) and the side effect of repeated PEGylated formulation (accelerated blood clearance) were discussed. Effects of ligand modification on cationic and neutral formulations were analyzed. Finally, we summarized the achievements in liposomal CRISPR/Cas9 delivery, outlined existing problems, and provided some future perspectives.
Collapse
|
34
|
Okubo M, Miyazaki M, Yuba E, Harada A. Chondroitin Sulfate-Based pH-Sensitive Polymer-Modified Liposomes for Intracellular Antigen Delivery and Induction of Cancer Immunity. Bioconjug Chem 2019; 30:1518-1529. [DOI: 10.1021/acs.bioconjchem.9b00221] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Minori Okubo
- Department of Applied Chemistry Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Maiko Miyazaki
- Department of Applied Chemistry Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Eiji Yuba
- Department of Applied Chemistry Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Atsushi Harada
- Department of Applied Chemistry Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| |
Collapse
|
35
|
Donahue ND, Acar H, Wilhelm S. Concepts of nanoparticle cellular uptake, intracellular trafficking, and kinetics in nanomedicine. Adv Drug Deliv Rev 2019; 143:68-96. [PMID: 31022434 DOI: 10.1016/j.addr.2019.04.008] [Citation(s) in RCA: 524] [Impact Index Per Article: 104.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 04/14/2019] [Accepted: 04/19/2019] [Indexed: 12/12/2022]
Abstract
Nanoparticle-based therapeutics and diagnostics are commonly referred to as nanomedicine and may significantly impact the future of healthcare. However, the clinical translation of these technologies is challenging. One of these challenges is the efficient delivery of nanoparticles to specific cell populations and subcellular targets in the body to elicit desired biological and therapeutic responses. It is critical for researchers to understand the fundamental concepts of how nanoparticles interact with biological systems to predict and control in vivo nanoparticle transport for improved clinical benefit. In this overview article, we review and discuss cellular internalization pathways, summarize the field`s understanding of how nanoparticle physicochemical properties affect cellular interactions, and explore and discuss intracellular nanoparticle trafficking and kinetics. Our overview may provide a valuable resource for researchers and may inspire new studies to expand our current understanding of nanotechnology-biology interactions at cellular and subcellular levels with the goal to improve clinical translation of nanomedicines.
Collapse
Affiliation(s)
- Nathan D Donahue
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Handan Acar
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma 73019, United States; Stephenson Cancer Center, Oklahoma City, Oklahoma 73104, United States.
| | - Stefan Wilhelm
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma 73019, United States; Stephenson Cancer Center, Oklahoma City, Oklahoma 73104, United States.
| |
Collapse
|
36
|
Liu Y, Yao L, Cao W, Liu Y, Zhai W, Wu Y, Wang B, Gou S, Qin Y, Qi Y, Chen Z, Gao Y. Dendritic Cell Targeting Peptide-Based Nanovaccines for Enhanced Cancer Immunotherapy. ACS APPLIED BIO MATERIALS 2019; 2:1241-1254. [DOI: 10.1021/acsabm.8b00811] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Yating Liu
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Lintong Yao
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Wenpeng Cao
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Yajing Liu
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Wenjie Zhai
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Yahong Wu
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Binglin Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Shanshan Gou
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Yaping Qin
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Yuanming Qi
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
- Collaborative
Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou, Henan 450001, China
| | - Zhenzhen Chen
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
- Collaborative
Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou, Henan 450001, China
| | - Yanfeng Gao
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
- Collaborative
Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou, Henan 450001, China
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sen University, Shenzhen 518107, China
| |
Collapse
|
37
|
Lee ES, Shin JM, Son S, Ko H, Um W, Song SH, Lee JA, Park JH. Recent Advances in Polymeric Nanomedicines for Cancer Immunotherapy. Adv Healthc Mater 2019; 8:e1801320. [PMID: 30666822 DOI: 10.1002/adhm.201801320] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 12/08/2018] [Indexed: 12/20/2022]
Abstract
Immunotherapy has emerged as a promising approach to treat cancer, since it facilitates eradication of cancer by enhancing innate and/or adaptive immunity without using cytotoxic drugs. Of the immunotherapeutic approaches, significant clinical potentials are shown in cancer vaccination, immune checkpoint therapy, and adoptive cell transfer. Nevertheless, conventional immunotherapies often involve immune-related adverse effects, such as liver dysfunction, hypophysitis, type I diabetes, and neuropathy. In an attempt to address these issues, polymeric nanomedicines are extensively investigated in recent years. In this review, recent advances in polymeric nanomedicines for cancer immunotherapy are highlighted and thoroughly discussed in terms of 1) antigen presentation, 2) activation of antigen-presenting cells and T cells, and 3) promotion of effector cells. Also, the future perspectives to develop ideal nanomedicines for cancer immunotherapy are provided.
Collapse
Affiliation(s)
- Eun Sook Lee
- Department of Health Sciences and Technology; SAIHST; Sungkyunkwan University; Suwon 16419 Republic of Korea
| | - Jung Min Shin
- School of Chemical Engineering; College of Engineering; Sungkyunkwan University; Suwon 16419 Republic of Korea
| | - Soyoung Son
- Department of Health Sciences and Technology; SAIHST; Sungkyunkwan University; Suwon 16419 Republic of Korea
| | - Hyewon Ko
- Department of Health Sciences and Technology; SAIHST; Sungkyunkwan University; Suwon 16419 Republic of Korea
| | - Wooram Um
- Department of Health Sciences and Technology; SAIHST; Sungkyunkwan University; Suwon 16419 Republic of Korea
| | - Seok Ho Song
- School of Chemical Engineering; College of Engineering; Sungkyunkwan University; Suwon 16419 Republic of Korea
| | - Jae Ah Lee
- School of Chemical Engineering; College of Engineering; Sungkyunkwan University; Suwon 16419 Republic of Korea
| | - Jae Hyung Park
- Department of Health Sciences and Technology; SAIHST; Sungkyunkwan University; Suwon 16419 Republic of Korea
- School of Chemical Engineering; College of Engineering; Sungkyunkwan University; Suwon 16419 Republic of Korea
| |
Collapse
|
38
|
Sang W, Zhang Z, Dai Y, Chen X. Recent advances in nanomaterial-based synergistic combination cancer immunotherapy. Chem Soc Rev 2019; 48:3771-3810. [DOI: 10.1039/c8cs00896e] [Citation(s) in RCA: 208] [Impact Index Per Article: 41.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
This review aims to summarize various synergistic combination cancer immunotherapy strategies based on nanomaterials.
Collapse
Affiliation(s)
- Wei Sang
- Cancer Centre
- Faculty of Health Sciences
- University of Macau
- Macau SAR 999078
- China
| | - Zhan Zhang
- Cancer Centre
- Faculty of Health Sciences
- University of Macau
- Macau SAR 999078
- China
| | - Yunlu Dai
- Cancer Centre
- Faculty of Health Sciences
- University of Macau
- Macau SAR 999078
- China
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine
- National Institute of Biomedical Imaging and Bioengineering
- National Institutes of Health
- Bethesda
- USA
| |
Collapse
|
39
|
Surendran SP, Moon MJ, Park R, Jeong YY. Bioactive Nanoparticles for Cancer Immunotherapy. Int J Mol Sci 2018; 19:E3877. [PMID: 30518139 PMCID: PMC6321368 DOI: 10.3390/ijms19123877] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 11/30/2018] [Accepted: 12/02/2018] [Indexed: 12/18/2022] Open
Abstract
Currently, immunotherapy is considered to be one of the effective treatment modalities for cancer. All the developments and discoveries in this field up to the recent Nobel Prize add to the interest for research into this vast area of study. Targeting tumor environment as well as the immune system is a suitable strategy to be applied for cancer treatment. Usage of nanoparticle systems for delivery of immunotherapeutic agents to the body being widely studied and found to be a promising area of research to be considered and investigated further. Nanoparticles for immunotherapy would be one of the effective treatment options for cancer therapy in the future due to their high specificity, efficacy, ability to diagnose, imaging, and therapeutic effect. Among the many nanoparticle systems, polylactic-co-glycolic acid (PLGA) nanoparticles, liposomes, micelles, gold nanoparticles, iron oxide, dendrimers, and artificial exosomes are widely used for immunotherapy of cancer. Moreover, the combination therapy found to be the more effective way of treating the tumor. Here, we review the current trends in nanoparticle therapy and efficiency of these nanosystems in delivering antigens, adjuvants, therapeutic drugs, and other immunotherapeutic agents. This review summarizes the currently available bioactive nanoparticle systems for cancer immunotherapy.
Collapse
Affiliation(s)
- Suchithra Poilil Surendran
- Department of Biomedical Sciences, Biomolecular Theranostics (BiT) Lab, Chonnam National University Medical School, Hwasun 58128, South Korea.
| | - Myeong Ju Moon
- Department of Radiology, Biomolecular Theranostics (BiT) Lab, Chonnam National University Medical School, Hwasun 58128, South Korea.
| | - Rayoung Park
- Department of Radiology, Biomolecular Theranostics (BiT) Lab, Chonnam National University Medical School, Hwasun 58128, South Korea.
| | - Yong Yeon Jeong
- Department of Radiology, Biomolecular Theranostics (BiT) Lab, Chonnam National University Medical School, Hwasun 58128, South Korea.
| |
Collapse
|
40
|
Li L, Wang J, Kong H, Zeng Y, Liu G. Functional biomimetic nanoparticles for drug delivery and theranostic applications in cancer treatment. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2018; 19:771-790. [PMID: 30815042 PMCID: PMC6383616 DOI: 10.1080/14686996.2018.1528850] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 09/24/2018] [Accepted: 09/24/2018] [Indexed: 05/17/2023]
Abstract
Nanotechnology has been extensively utilized in the design and development of powerful strategies for drug delivery and cancer theranostic. Nanoplatforms as a drug delivery system have many advantages such as in vivo imaging, combined drug delivery, extended circulation time, and systemic controlled release. The functional biomimetic drug delivery could be realized by incorporating stimuli-responsive (pH, temperature, redox potential, etc.) properties into the nanocarrier system, allowing them to bypass biological barriers and arrive at the targeted area. In this review, we discuss the role of internal stimuli-responsive nanocarrier system for imaging and drug delivery in cancer therapy. The development of internal stimuli-responsive nanoparticles is highlighted for precision drug delivery applications, with a particular focus on in vivo imaging, drug release performance, and therapeutic benefits.
Collapse
Affiliation(s)
- Lei Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, China
| | - Junqing Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, China
| | - Hangru Kong
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, China
| | - Yun Zeng
- Department of Pharmacology, Xiamen Medical College, Xiamen, China
| | - Gang Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, China
| |
Collapse
|
41
|
Recent advances in applying nanotechnologies for cancer immunotherapy. J Control Release 2018; 288:239-263. [PMID: 30223043 DOI: 10.1016/j.jconrel.2018.09.010] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 09/11/2018] [Accepted: 09/12/2018] [Indexed: 12/13/2022]
Abstract
Cancer immunotherapy aimed at boosting cancer-specific immunoresponses to eradicate tumor cells has evolved as a new treatment modality. Nanoparticles incorporating antigens and immunomodulatory agents can activate immune cells and modulate the tumor microenvironment to enhance anti-tumor immunity. The nanotechnology approach has been demonstrated to be superior to standard formulations in in-vivo settings. In this article, we focus on recent advances made within the last 5 years in nanoparticle-based cancer immunotherapy, including peptide- and nucleic acid-based nanovaccines, nanomedicines containing an immunoadjuvant to activate anti-tumor immunity, nanoparticle delivery of immune checkpoint inhibitors and the combination of the above approaches. Encouraging results and new emerging nanotechnologies in drug delivery promise the continuous growth of this field and ultimately clinical translation of enhanced immunotherapy of cancer.
Collapse
|
42
|
Yang Y, Chen Q, Wu JP, Kirk TB, Xu J, Liu Z, Xue W. Reduction-Responsive Codelivery System Based on a Metal-Organic Framework for Eliciting Potent Cellular Immune Response. ACS APPLIED MATERIALS & INTERFACES 2018; 10:12463-12473. [PMID: 29595246 DOI: 10.1021/acsami.8b01680] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Utilizing nanoparticles to deliver subunit vaccines can be viewed as a promising strategy for enhancing the immune response, especially with regard to cellular immunity to fight against infectious viruses and malignant cancer. Nevertheless, its applications are still far from practicality because of some limitations such as high cost, non-biocompatibility, non-biodegradability, and the inefficient stimulation of cytotoxic T lymphocyte (CTL) response. In this study, we use metal-organic framework (MOF) MIL-101-Fe-NH2 nanoparticles as carriers to fabricate an innovative reduction-responsive antigen delivery system for cotransporting the antigen model ovalbumin (OVA) and an immune adjuvant, unmethylated cytosine-phosphate-guanine (CpG) oligonucleotide. In vitro cellular tests show that the MOF nanoparticles can not only greatly improve the uptake of OVA by the antigen-presenting cells but also smartly deliver both OVA and CpG into the same cell. By feat of the reductively controllable release of OVA and the promoting function of CpG, the delivery system can elicit strong cellular immunity and CTL response in mice. Moreover, the increased frequencies of effector memory T cells inspired by the delivery system indicate that it can induce a potent immune memory response. These results demonstrate that MOF nanoparticles are excellent vehicles for codelivering antigen and immune adjuvant and may find wider applications in biomedical fields.
Collapse
Affiliation(s)
| | | | - Jian-Ping Wu
- 3D Imaging and Bioengineering Laboratory, Department of Mechanical Engineering , Curtin University , Perth 6845 , Australia
| | - Thomas Brett Kirk
- 3D Imaging and Bioengineering Laboratory, Department of Mechanical Engineering , Curtin University , Perth 6845 , Australia
| | - Jiake Xu
- The School of Pathology and Laboratory Medicine , University of Western Australia , Perth 6009 , Australia
| | | | - Wei Xue
- The First Affiliated Hospital of Jinan University , Guangzhou 510632 , Guangdong , China
| |
Collapse
|
43
|
Wang K, Yang Y, Xue W, Liu Z. Cell Penetrating Peptide-Based Redox-Sensitive Vaccine Delivery System for Subcutaneous Vaccination. Mol Pharm 2018; 15:975-984. [PMID: 29359945 DOI: 10.1021/acs.molpharmaceut.7b00905] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In immunotherapy, induction of potent cellular immunity by vaccination is essential to treat intracellular infectious diseases and tumors. In this work, we designed a new synthetic peptide carrier, Cys-Trp-Trp-Arg8-Cys-Arg8-Cys-Arg8-Cys, for vaccine delivery by integrating a redox-responsive disulfide bond cross-linking and cell-penetrating peptide arginine octamer. The carrier peptide bound to the antigen protein ovalbumin (OVA) via electrostatic self-assembly to form peptide/OVA nanocomposites. Then, the spontaneous oxidization of the thiols of the cysteine residues induced interpeptide disulfide bond cross-linking to construct denser peptide/OVA condensates. The cell-penetrating peptides incorporated in the carrier peptide could increase antigen uptake by antigen presenting cells. After being internalized by antigen presenting cells, the antigen could be rapidly released in cytoplasm along with degradation of the disulfide bonds by intracellular glutathione, which could promote potent CD8+ T cell immunity. The cross-linked peptide/OVA condensates were used for subcutaneous vaccination. The results showed that the peptide carrier mediated potent antigen-specific immune response by significantly increasing IgG titer; splenocyte proliferation; the secretion level of cytokines INF-γ, IL-12, IL-4, and IL-10; immune memory function, and the activation and maturation of dendritic cells. From the results, the low-molecular weight vaccine-condensing peptide with definite chemical composition could be developed as a novel class of vaccine delivery systems.
Collapse
Affiliation(s)
- Kewei Wang
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering , Jinan University , Guangzhou 510632 , China
| | - Yong Yang
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering , Jinan University , Guangzhou 510632 , China
| | - Wei Xue
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering , Jinan University , Guangzhou 510632 , China
| | - Zonghua Liu
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering , Jinan University , Guangzhou 510632 , China
| |
Collapse
|
44
|
Zhou Z, Hu F, Hu S, Kong M, Feng C, Liu Y, Cheng X, Ji Q, Chen X. pH-Activated nanoparticles with targeting for the treatment of oral plaque biofilm. J Mater Chem B 2018; 6:586-592. [PMID: 32254487 DOI: 10.1039/c7tb02682j] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Oral plaque biofilms are highly resilient microbial assemblies that are challenging to eradicate. We described the pH-positive, doxycycline (DOX)-loaded nanocarriers to combat multidrug-resistant pathogenic biofilms.
Collapse
Affiliation(s)
- Zhongzheng Zhou
- College of Marine Life Science
- Ocean University of China
- 266003 Qingdao
- China
| | - Fang Hu
- Department of Periodontology
- The Affiliated Hospital of Qingdao University
- Qingdao
- China
| | - Shihao Hu
- College of Marine Life Science
- Ocean University of China
- 266003 Qingdao
- China
| | - Ming Kong
- College of Marine Life Science
- Ocean University of China
- 266003 Qingdao
- China
| | - Chao Feng
- College of Marine Life Science
- Ocean University of China
- 266003 Qingdao
- China
| | - Ya Liu
- College of Marine Life Science
- Ocean University of China
- 266003 Qingdao
- China
| | - Xiaojie Cheng
- College of Marine Life Science
- Ocean University of China
- 266003 Qingdao
- China
| | - Qiuxia Ji
- Department of Periodontology
- The Affiliated Hospital of Qingdao University
- Qingdao
- China
| | - Xiguang Chen
- College of Marine Life Science
- Ocean University of China
- 266003 Qingdao
- China
- Qingdao National Laboratory for Marine Science and Technology
| |
Collapse
|
45
|
Zheng Y, Liu X, Samoshina NM, Samoshin VV, Franz AH, Guo X. Fliposomes: trans-2-aminocyclohexanol-based amphiphiles as pH-sensitive conformational switches of liposome membrane - a structure-activity relationship study. Chem Phys Lipids 2017; 210:129-141. [PMID: 29111431 DOI: 10.1016/j.chemphyslip.2017.10.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 10/10/2017] [Accepted: 10/11/2017] [Indexed: 01/20/2023]
Abstract
Recently developed lipids with the trans-2-aminocyclohexanol (TACH) moiety represent unique pH-sensitive conformational switches ("flipids") that can trigger the membrane of liposome-based drug delivery systems at lowered pH as seen in many pathological scenarios. A library of flipids with various TACH-based headgroups and hydrocarbon tails were designed, prepared, and characterized to systematically elucidate the relationship between their chemical structures and their ability to form and to trigger liposomes. Liposomes (fliposomes) consisting of a flipid, POPC and PEG-ceramide were stable at 4°C, pH 7.4 for up to several months and yet released the encapsulated fluorophore in seconds upon acidification. The colloidal properties and encapsulation efficiencies of the fliposomes depended on the structure features of the flipids such as the polarity of the headgroups and the shape and fluidity of the lipid tails. The pH-triggered release also depended on the flipid structure, where shorter linear tails yielded more efficient release. The release of fliposomes was enhanced at different narrow pH ranges, depending on the basicity of the flipid headgroup, which can be estimated either by calculated pKa or by acid/base titration of the flipids while its conformation is monitored by 1H NMR. The structure-activity relationship of the flipids supports "lipid tail conformational shortening" as the mechanism to disrupt lipid membranes and would provide great flexibility in the design of pH-sensitive drug delivery systems.
Collapse
Affiliation(s)
- Yu Zheng
- Department of Chemistry, College of the Pacific, University of the Pacific, 3601 Pacific Avenue, Stockton, CA 95211, USA; Department of Pharmaceutics and Medicinal Chemistry, Thomas J Long School of Pharmacy and Health Sciences, University of the Pacific, 751 Brookside Road, Stockton, CA 95211, USA
| | - Xin Liu
- Department of Chemistry, College of the Pacific, University of the Pacific, 3601 Pacific Avenue, Stockton, CA 95211, USA
| | - Nataliya M Samoshina
- Department of Chemistry, College of the Pacific, University of the Pacific, 3601 Pacific Avenue, Stockton, CA 95211, USA; Department of Pharmaceutics and Medicinal Chemistry, Thomas J Long School of Pharmacy and Health Sciences, University of the Pacific, 751 Brookside Road, Stockton, CA 95211, USA
| | - Vyacheslav V Samoshin
- Department of Chemistry, College of the Pacific, University of the Pacific, 3601 Pacific Avenue, Stockton, CA 95211, USA.
| | - Andreas H Franz
- Department of Chemistry, College of the Pacific, University of the Pacific, 3601 Pacific Avenue, Stockton, CA 95211, USA
| | - Xin Guo
- Department of Pharmaceutics and Medicinal Chemistry, Thomas J Long School of Pharmacy and Health Sciences, University of the Pacific, 751 Brookside Road, Stockton, CA 95211, USA.
| |
Collapse
|
46
|
Lee Y, Thompson DH. Stimuli-responsive liposomes for drug delivery. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2017; 9:10.1002/wnan.1450. [PMID: 28198148 PMCID: PMC5557698 DOI: 10.1002/wnan.1450] [Citation(s) in RCA: 240] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 11/23/2016] [Accepted: 11/27/2016] [Indexed: 12/25/2022]
Abstract
The ultimate goal of drug delivery is to increase the bioavailability and reduce the toxic side effects of the active pharmaceutical ingredient (API) by releasing them at a specific site of action. In the case of antitumor therapy, association of the therapeutic agent with a carrier system can minimize damage to healthy, nontarget tissues, while limit systemic release and promoting long circulation to enhance uptake at the cancerous site due to the enhanced permeation and retention effect (EPR). Stimuli-responsive systems have become a promising way to deliver and release payloads in a site-selective manner. Potential carrier systems have been derived from a wide variety of materials, including inorganic nanoparticles, lipids, and polymers that have been imbued with stimuli-sensitive properties to accomplish triggered release based on an environmental cue. The unique features in the tumor microenvironment can serve as an endogenous stimulus (pH, redox potential, or unique enzymatic activity) or the locus of an applied external stimulus (heat or light) to trigger the controlled release of API. In liposomal carrier systems triggered release is generally based on the principle of membrane destabilization from local defects within bilayer membranes to effect release of liposome-entrapped drugs. This review focuses on the literature appearing between November 2008-February 2016 that reports new developments in stimuli-sensitive liposomal drug delivery strategies using pH change, enzyme transformation, redox reactions, and photochemical mechanisms of activation. WIREs Nanomed Nanobiotechnol 2017, 9:e1450. doi: 10.1002/wnan.1450 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Y Lee
- Department of Chemistry, Purdue University, West Lafayette, IN, USA
| | - D H Thompson
- Department of Chemistry, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
47
|
Hatakeyama H. Recent Advances in Endogenous and Exogenous Stimuli-Responsive Nanocarriers for Drug Delivery and Therapeutics. Chem Pharm Bull (Tokyo) 2017; 65:612-617. [PMID: 28674332 DOI: 10.1248/cpb.c17-00068] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Significant progress has been achieved in the development of stimuli-responsive nanocarriers for drug delivery, diagnosis, and therapy. Various types of triggers are utilized in the development of nanocarrier delivery. Endogenous factors such as changes in pH, redox, gradient, and enzyme concentration which are linked to disease progression have been utilized for controlling biodistribution and releasing drugs from nanocarriers, as well as increasing subsequent pharmacological activity at the disease site. Nanocarriers which respond to artificially-induced exogenous factors (such as temperature, light, magnetic field, and ultrasound) have also been developed. This review aims to discuss recent advances in the design of stimuli-responsive nanocarriers which appear to have a promising future in medicine.
Collapse
Affiliation(s)
- Hiroto Hatakeyama
- Laboratory of Clinical Pharmacology and Pharmacometrics, Graduate School of Pharmaceutical Sciences, Chiba University
| |
Collapse
|
48
|
Yoshizaki Y, Yuba E, Sakaguchi N, Koiwai K, Harada A, Kono K. pH-sensitive polymer-modified liposome-based immunity-inducing system: Effects of inclusion of cationic lipid and CpG-DNA. Biomaterials 2017; 141:272-283. [PMID: 28704679 DOI: 10.1016/j.biomaterials.2017.07.001] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Revised: 06/14/2017] [Accepted: 07/02/2017] [Indexed: 12/15/2022]
Abstract
Efficient vaccine carriers for cancer immunotherapy require two functions: antigen delivery to dendritic cells (DCs) and the activation of DCs, a so-called adjuvant effect. We previously reported antigen delivery system using liposomes modified with pH-sensitive polymers, such as 3-methylglutarylated hyperbranched poly(glycidol) (MGlu-HPG), for the induction of antigen-specific immune responses. We reported that inclusion of cationic lipids to MGlu-HPG-modified liposomes activates DCs and enhances antitumor effects. In this study, CpG-DNA, a ligand to Toll-like receptor 9 (TLR9) expressing in endosomes of DCs, was introduced to MGlu-HPG-modified liposomes containing cationic lipids using two complexation methods (Pre-mix and Post-mix) for additional activation of antigen-specific immunity. For Pre-mix, thin membrane of lipids and polymers were dispersed by a mixture of antigen/CpG-DNA. For Post-mix, CpG-DNA was added to pre-formed liposomes. Both Pre-mix and Post-mix delivered CpG-DNA to DC endosomes, where TLR9 is expressing, more efficiently than free CpG-DNA solution did. These liposomes promoted cytokine production from DCs and the expression of co-stimulatory molecules in vitro and induced antigen-specific immune responses in vivo. Both Pre-mix and Post-mix exhibited strong antitumor effects compared with conventional pH-sensitive polymer-modified liposomes. Results show that inclusion of multiple adjuvant molecules into pH-sensitive polymer-modified liposomes and suitable CpG-DNA complexation methods are important to design potent vaccine carriers.
Collapse
Affiliation(s)
- Yuta Yoshizaki
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Eiji Yuba
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan.
| | | | | | - Atsushi Harada
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Kenji Kono
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| |
Collapse
|
49
|
Nanoparticles for tumor immunotherapy. Eur J Pharm Biopharm 2017; 115:243-256. [DOI: 10.1016/j.ejpb.2017.03.013] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Revised: 03/01/2017] [Accepted: 03/17/2017] [Indexed: 12/21/2022]
|
50
|
Yuba E, Yamaguchi A, Yoshizaki Y, Harada A, Kono K. Bioactive polysaccharide-based pH-sensitive polymers for cytoplasmic delivery of antigen and activation of antigen-specific immunity. Biomaterials 2017; 120:32-45. [DOI: 10.1016/j.biomaterials.2016.12.021] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 12/03/2016] [Accepted: 12/16/2016] [Indexed: 11/17/2022]
|