1
|
Chen B, Zhang Y, Xiao H, Wang L, Li J, Xu Y, Wang JH. Associative memory cells of encoding fear signals and anxiety are recruited by neuroligin-3-mediated synapse formation. Commun Biol 2024; 7:1464. [PMID: 39511365 DOI: 10.1038/s42003-024-07170-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 10/29/2024] [Indexed: 11/15/2024] Open
Abstract
Acute severe stress may induce fear memory and anxiety. Their mechanisms are expectedly revealed to explore therapeutic strategies. We have investigated the recruitment of associative memory cells that encode stress signals to cause fear memory and anxiety by multidisciplinary approaches. In addition to fear memory and anxiety, the social stress by the resident/intruder paradigm leads to synapse interconnections between somatosensory S1-Tr and auditory cortical neurons in intruder mice. These S1-Tr cortical neurons become to receive convergent synapse innervations newly from the auditory cortex and innately from the thalamus as well as encode the stress signals including battle sound and somatic pain, i.e., associative memory neurons. Neuroligin-3 mRNA knockdown in the S1-Tr cortex precludes the recruitment of associative memory neurons and the onset of fear memory and anxiety. The stress-induced recruitment of associative memory cells in sensory cortices for stress-relevant fear memory and anxiety is based on neuroligin-3-mediated new synapse formation.
Collapse
Affiliation(s)
- Bingchen Chen
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Yun Zhang
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Huajuan Xiao
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Lei Wang
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Jiayi Li
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Yang Xu
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Jin-Hui Wang
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
2
|
Purece A, Thomsen ST, Plass D, Spyropoulou A, Machera K, Palmont P, Crépet A, Benchrih R, Devleesschauwer B, Wieland N, Scheepers P, Deepika D, Kumar V, Sanchez G, Bessems J, Piselli D, Buekers J. A preliminary estimate of the environmental burden of disease associated with exposure to pyrethroid insecticides and ADHD in Europe based on human biomonitoring. Environ Health 2024; 23:91. [PMID: 39443952 PMCID: PMC11515492 DOI: 10.1186/s12940-024-01131-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 10/08/2024] [Indexed: 10/25/2024]
Abstract
Human biomonitoring (HBM) data indicate that exposure to pyrethroids is widespread in Europe, with significantly higher exposure observed in children compared to adults. Epidemiological, toxicological, and mechanistic studies raise concerns for potential human health effects, particularly, behavioral effects such as attention deficit hyperactivity disorder (ADHD) in children at low levels of exposure. Based on an exposure-response function from a single European study and on available quality-assured and harmonized HBM data collected in France, Germany, Iceland, Switzerland, and Israel, a preliminary estimate of the environmental burden of disease for ADHD associated with pyrethroid exposure was made for individuals aged 0-19 years. The estimated annual number of prevalence-based disability-adjusted life years (DALYs) per million inhabitants were 27 DALYs for Israel, 21 DALYs for France, 12 DALYs for both Switzerland and Iceland, and 3 DALYs for Germany; while the annual ADHD cases per million inhabitants attributable to pyrethroids were 2189 for Israel, 1710 for France, 969 for Iceland, 944 for Switzerland, and 209 for Germany. Direct health costs related to ADHD ranged between 0.3 and 2.5 million EUR yearly per million inhabitants for the five countries. Additionally, a substantial number of ADHD cases, on average 18%, were associated with pyrethroid exposure. Yet, these figures should be interpreted with caution given the uncertainty of the estimation. A sensitivity analysis showed that by applying a different exposure-response function from outside the EU, the population attributable fraction decreased from an average of 18 to 7%. To ensure more robust disease burden estimates and adequate follow-up of policy measures, more HBM studies are needed, along with increased efforts to harmonize the design of epidemiological studies upfront to guarantee meta-analysis of exposure-response functions. This is particularly important for pyrethroids as evidence of potential adverse health effects is continuously emerging.
Collapse
Affiliation(s)
- Anthony Purece
- Flemish Institute for Technological Research (VITO), Boeretang 200, Mol, 2400, Belgium.
| | - Sofie Theresa Thomsen
- Technical University of Denmark, DTU, Henrik Dams Allé, 201, Kgs. Lyngby, 2800, Denmark
| | - Dietrich Plass
- German Environment Agency, Corrensplatz 1, 14195, Berlin, Germany
| | - Anastasia Spyropoulou
- Laboratory of Toxicological Control of Pesticides, Scientific Directorate of Pesticides' Control and Phytopharmacy, Benaki Phytopathological Institute, Attica, 145 61, Greece
| | - Kyriaki Machera
- Laboratory of Toxicological Control of Pesticides, Scientific Directorate of Pesticides' Control and Phytopharmacy, Benaki Phytopathological Institute, Attica, 145 61, Greece
| | - Philippe Palmont
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), 14 rue Pierre et Marie Curie, Maisons-Alfort, 94701, France
| | - Amélie Crépet
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), 14 rue Pierre et Marie Curie, Maisons-Alfort, 94701, France
| | - Rafiqa Benchrih
- Department of Epidemiology and Public Health, Sciensano, Juliette Wytsmanstraat 14, Brussels, 1050, Belgium
| | - Brecht Devleesschauwer
- Department of Epidemiology and Public Health, Sciensano, Juliette Wytsmanstraat 14, Brussels, 1050, Belgium
- Department of Translational Physiology, Infectiology and Public Health, Ghent University, Salisburylaan 133, Merelbeke, 9820, Belgium
| | - Nina Wieland
- Radboud Institute for Biological and Environmental Science, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen Heyendaalseweg 135, Nijmegen, 6525 AJ, The Netherlands
| | - Paul Scheepers
- Radboud Institute for Biological and Environmental Science, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen Heyendaalseweg 135, Nijmegen, 6525 AJ, The Netherlands
| | - Deepika Deepika
- IISPV, Hospital Universitari Sant Joan de Reus, Universitat Rovira i Virgili, Reus, Spain
| | - Vikas Kumar
- IISPV, Hospital Universitari Sant Joan de Reus, Universitat Rovira i Virgili, Reus, Spain
| | - Gerardo Sanchez
- European Environmental Agency (EEA), Kongens Nytorv 6, København K, 1050, Denmark
| | - Jos Bessems
- Flemish Institute for Technological Research (VITO), Boeretang 200, Mol, 2400, Belgium
| | - Dario Piselli
- European Environmental Agency (EEA), Kongens Nytorv 6, København K, 1050, Denmark
| | - Jurgen Buekers
- Flemish Institute for Technological Research (VITO), Boeretang 200, Mol, 2400, Belgium
| |
Collapse
|
3
|
Patel A, Aljaabary A, Yuan Y, Asgari P, Bailey CDC, McCormick CM. Lasting effects of adolescent social instability stress on dendritic morphology in the nucleus accumbens in female and male Long Evans rats. Neurotoxicol Teratol 2024; 106:107401. [PMID: 39437938 DOI: 10.1016/j.ntt.2024.107401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 10/16/2024] [Accepted: 10/18/2024] [Indexed: 10/25/2024]
Abstract
Social instability stress (SS) in adolescence in rats leads to long-lasting changes in social behaviour and reward-related behaviour relative to control rats. Given the role of the nucleus accumbens (NAc) in such behaviours, we investigated the morphology of medium spiny neurons (MSNs), which are most neurons in the NAc, in adult female and male rats exposed to SS in adolescence. Irrespective of sex, SS rats had increased number of dendritic spines in both the core and shell regions of the NAc (2.3 % and 18.1 % increase, respectively). In the core, SS rats had a 16 % reduction in the total dendritic lengths of MSNs, whereas in the shell, SS rats had a greater dendritic length closer to the soma, and particularly in SS female rats, whereas the opposite was found farther from the soma (SS 10.6 % > CTL overall). Although the extent to which such structural changes may underlie the enduring effects of SS in adolescence requires investigation, the results add to evidence that changes to the social environment in adolescence can determine adult neuronal structural.
Collapse
Affiliation(s)
- Ashutosh Patel
- Department of Psychology, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4, Canada; Department of Biomedical Sciences, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada.
| | - Abdulhai Aljaabary
- Department of Psychology and Centre for Neuroscience, Brock University, 1812 Sir Isaac Brock Way, St Catharines, ON L2S 3A1, Canada.
| | - YiJie Yuan
- Department of Psychology and Centre for Neuroscience, Brock University, 1812 Sir Isaac Brock Way, St Catharines, ON L2S 3A1, Canada.
| | - Pardis Asgari
- Department of Psychology and Centre for Neuroscience, Brock University, 1812 Sir Isaac Brock Way, St Catharines, ON L2S 3A1, Canada.
| | - Craig D C Bailey
- Department of Biomedical Sciences, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada.
| | - Cheryl M McCormick
- Department of Psychology and Centre for Neuroscience, Brock University, 1812 Sir Isaac Brock Way, St Catharines, ON L2S 3A1, Canada.
| |
Collapse
|
4
|
Holt LM, Gyles TM, Parise EM, Minier-Toribio A, Rivera M, Markovic T, Yeh SY, Nestler EJ. Astrocytic CREB in nucleus accumbens promotes susceptibility to chronic stress. Biol Psychiatry 2024:S0006-3223(24)01626-3. [PMID: 39369762 DOI: 10.1016/j.biopsych.2024.09.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 09/18/2024] [Accepted: 09/25/2024] [Indexed: 10/08/2024]
Abstract
BACKGROUND Increasing evidence implicates astrocytes in stress and depression in both rodent models and human Major Depressive Disorder (MDD). Despite this, little is known about the transcriptional responses to stress of astrocytes within the nucleus accumbens (NAc), a key brain reward region, and their influence on behavioral outcomes. METHODS We used whole cell sorting, RNA-sequencing, and bioinformatic analyses to investigate the NAc astrocyte transcriptome in male mice in response to chronic social defeat stress (CSDS). Immunohistochemistry was used to determine stress-induced changes in astrocytic CREB within the NAc. Finally, astrocytic regulation of depression-like behavior was investigated using viral-mediated manipulation of CREB in combination with CSDS. RESULTS We found a robust transcriptional response in NAc astrocytes to CSDS in stressed mice, with changes seen in both stress-susceptible and stress-resilient animals. Bioinformatic analysis revealed CREB, a transcription factor widely studied in neurons, as one of the top-predicted upstream regulators of the NAc astrocyte transcriptome, with opposite activation states implicated in resilient vs. susceptible mice. This bioinformatic deduction was confirmed at the protein level with immunohistochemistry. Moreover, NAc astrocyte morphological complexity correlated with CREB activation and was reduced selectively in astrocytes of resilient mice. Viral overexpression of CREB selectively in NAc astrocytes promoted susceptibility to chronic stress. CONCLUSIONS Together, our data demonstrate that the astrocyte transcriptome responds robustly to CSDS and that transcriptional regulation in astrocytes contributes to depressive-like behaviors. A better understanding of transcriptional regulation in astrocytes may reveal unknown molecular mechanisms underlying neuropsychiatric disorders.
Collapse
Affiliation(s)
- Leanne M Holt
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Trevonn M Gyles
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Eric M Parise
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Angelica Minier-Toribio
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Matthew Rivera
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Tamara Markovic
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Szu-Ying Yeh
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Eric J Nestler
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, USA.
| |
Collapse
|
5
|
AlSharari SD, Alameen AA, Aldafiri FS, Ali YS, Alshammari MA, Sari Y, Damaj MI. Activation of α7 nicotinic receptors attenuated hyperalgesia and anxiety induced by palatable obesogenic diet withdrawal. J Pharmacol Sci 2024; 156:86-101. [PMID: 39179339 DOI: 10.1016/j.jphs.2024.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/17/2024] [Accepted: 07/21/2024] [Indexed: 08/26/2024] Open
Abstract
Consumption of palatable food (PF) can alleviate anxiety, and pain in humans. Contrary, spontaneous withdrawal of long-term PF intake produces anxiogenic-like behavior and abnormal pain sensation, causing challenges to weight-loss diet and anti-obesity agents. Thus, we examined α7-nicotinic acetylcholine receptors (α7nAChR) involvement since it plays essential role in nociception and psychological behaviors. METHODS Adult male C57BL/6 mice were placed on a Standard Chow (SC) alone or with PF on intermittent or continuous regimen for 6 weeks. Then, mice were replaced with normal SC (spontaneous withdrawal). Body weight, food intake, and calories intake with and without the obesogenic diet were measured throughout the study. During PF withdrawal, anxiety-like behaviors and pain sensitivity were measured with PNU-282987 (α7nAChR agonist) administration. RESULTS Six weeks of SC + PF-intermittent and continuous paradigms produced a significant weight gain. PF withdrawal displayed hyperalgesia and anxiety-like behaviors. During withdrawal, PNU-282987 significantly attenuated hyperalgesia and anxiety-like behaviors. CONCLUSION The present study shows that a PF can increase food intake and body weight. Also, enhanced pain sensitivity and anxiety-like behavior were observed during PF withdrawal. α7nAChR activation attenuated anxiolytic-like behavior and hyperalgesia in PF abstinent mice. These data suggest potential therapeutic effects of targeting α7 nAChRs for obesity-withdrawal symptoms in obese subjects.
Collapse
Affiliation(s)
- Shakir D AlSharari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.
| | - Alaa A Alameen
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.
| | - Fawzeyah S Aldafiri
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Yousif S Ali
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Musaad A Alshammari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Youssef Sari
- Department of Pharmacology and Experimental Therapeutics, University of Toledo, Toledo, OH, USA
| | - M I Damaj
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
6
|
Torres-Berrío A. Epigenetic Regulation of Neural Activity in the Depressed Brain: The Two Faces of the Histone Deacetylase SIRT1. Biol Psychiatry 2024; 96:e7-e9. [PMID: 39168543 DOI: 10.1016/j.biopsych.2024.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 07/11/2024] [Accepted: 07/12/2024] [Indexed: 08/23/2024]
Affiliation(s)
- Angélica Torres-Berrío
- Lurie Center for Autism, Massachusetts General Hospital for Children, Boston, Massachusetts; Department of Pediatrics, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
7
|
Kim HD, Wei J, Call T, Ma X, Quintus NT, Summers AJ, Carotenuto S, Johnson R, Nguyen A, Cui Y, Park JG, Qiu S, Ferguson D. SIRT1 Coordinates Transcriptional Regulation of Neural Activity and Modulates Depression-Like Behaviors in the Nucleus Accumbens. Biol Psychiatry 2024; 96:495-505. [PMID: 38575105 PMCID: PMC11338727 DOI: 10.1016/j.biopsych.2024.03.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/16/2024] [Accepted: 03/25/2024] [Indexed: 04/06/2024]
Abstract
BACKGROUND Major depression and anxiety disorders are significant causes of disability and socioeconomic burden. Despite the prevalence and considerable impact of these affective disorders, their pathophysiology remains elusive. Thus, there is an urgent need to develop novel therapeutics for these conditions. We evaluated the role of SIRT1 in regulating dysfunctional processes of reward by using chronic social defeat stress to induce depression- and anxiety-like behaviors. Chronic social defeat stress induces physiological and behavioral changes that recapitulate depression-like symptomatology and alters gene expression programs in the nucleus accumbens, but cell type-specific changes in this critical structure remain largely unknown. METHODS We examined transcriptional profiles of D1-expressing medium spiny neurons (MSNs) lacking deacetylase activity of SIRT1 by RNA sequencing in a cell type-specific manner using the RiboTag line of mice. We analyzed differentially expressed genes using gene ontology tools including SynGO and EnrichR and further demonstrated functional changes in D1-MSN-specific SIRT1 knockout (KO) mice using electrophysiological and behavioral measurements. RESULTS RNA sequencing revealed altered transcriptional profiles of D1-MSNs lacking functional SIRT1 and showed specific changes in synaptic genes including glutamatergic and GABAergic (gamma-aminobutyric acidergic) receptors in D1-MSNs. These molecular changes may be associated with decreased excitatory and increased inhibitory neural activity in Sirt1 KO D1-MSNs, accompanied by morphological changes. Moreover, the D1-MSN-specific Sirt1 KO mice exhibited proresilient changes in anxiety- and depression-like behaviors. CONCLUSIONS SIRT1 coordinates excitatory and inhibitory synaptic genes to regulate the GABAergic output tone of D1-MSNs. These findings reveal a novel signaling pathway that has potential for the development of innovative treatments for affective disorders.
Collapse
Affiliation(s)
- Hee-Dae Kim
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, Arizona
| | - Jing Wei
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, Arizona
| | - Tanessa Call
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, Arizona
| | - Xiaokuang Ma
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, Arizona
| | - Nicole Teru Quintus
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, Arizona
| | - Alexander J Summers
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, Arizona
| | - Samantha Carotenuto
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, Arizona
| | - Ross Johnson
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, Arizona
| | - Angel Nguyen
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, Arizona
| | - Yuehua Cui
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, Arizona
| | - Jin G Park
- Virginia G. Piper Biodesign Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, Arizona
| | - Shenfeng Qiu
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, Arizona
| | - Deveroux Ferguson
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, Arizona.
| |
Collapse
|
8
|
Shaikh M, Doshi G. Epigenetic aging in major depressive disorder: Clocks, mechanisms and therapeutic perspectives. Eur J Pharmacol 2024; 978:176757. [PMID: 38897440 DOI: 10.1016/j.ejphar.2024.176757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/09/2024] [Accepted: 06/16/2024] [Indexed: 06/21/2024]
Abstract
Depression, a chronic mental disorder characterized by persistent sadness, loss of interest, and difficulty in daily tasks, impacts millions globally with varying treatment options. Antidepressants, despite their long half-life and minimal effectiveness, leave half of patients undertreated, highlighting the need for new therapies to enhance well-being. Epigenetics, which studies genetic changes in gene expression or cellular phenotype without altering the underlying Deoxyribonucleic Acid (DNA) sequence, is explored in this article. This article delves into the intricate relationship between epigenetic mechanisms and depression, shedding light on how environmental stressors, early-life adversity, and genetic predispositions shape gene expression patterns associated with depression. We have also discussed Histone Deacetylase (HDAC) inhibitors, which enhance cognitive function and mood regulation in depression. Non-coding RNAs, (ncRNAs) such as Long Non-Coding RNAs (lncRNAs) and micro RNA (miRNAs), are highlighted as potential biomarkers for detecting and monitoring major depressive disorder (MDD). This article also emphasizes the reversible nature of epigenetic modifications and their influence on neuronal growth processes, underscoring the dynamic interplay between genetics, environment, and epigenetics in depression development. It explores the therapeutic potential of targeting epigenetic pathways in treating clinical depression. Additionally, it examines clinical findings related to epigenetic clocks and their role in studying depression and biological aging.
Collapse
Affiliation(s)
- Muqtada Shaikh
- SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, 400 056, India
| | - Gaurav Doshi
- SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, 400 056, India.
| |
Collapse
|
9
|
Torres-Berrío A, Estill M, Patel V, Ramakrishnan A, Kronman H, Minier-Toribio A, Issler O, Browne CJ, Parise EM, van der Zee YY, Walker DM, Martínez-Rivera FJ, Lardner CK, Durand-de Cuttoli R, Russo SJ, Shen L, Sidoli S, Nestler EJ. Mono-methylation of lysine 27 at histone 3 confers lifelong susceptibility to stress. Neuron 2024; 112:2973-2989.e10. [PMID: 38959894 PMCID: PMC11377169 DOI: 10.1016/j.neuron.2024.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 02/05/2024] [Accepted: 06/07/2024] [Indexed: 07/05/2024]
Abstract
Histone post-translational modifications are critical for mediating persistent alterations in gene expression. By combining unbiased proteomics profiling and genome-wide approaches, we uncovered a role for mono-methylation of lysine 27 at histone H3 (H3K27me1) in the enduring effects of stress. Specifically, mice susceptible to early life stress (ELS) or chronic social defeat stress (CSDS) displayed increased H3K27me1 enrichment in the nucleus accumbens (NAc), a key brain-reward region. Stress-induced H3K27me1 accumulation occurred at genes that control neuronal excitability and was mediated by the VEFS domain of SUZ12, a core subunit of the polycomb repressive complex-2, which controls H3K27 methylation patterns. Viral VEFS expression changed the transcriptional profile of the NAc, led to social, emotional, and cognitive abnormalities, and altered excitability and synaptic transmission of NAc D1-medium spiny neurons. Together, we describe a novel function of H3K27me1 in the brain and demonstrate its role as a "chromatin scar" that mediates lifelong stress susceptibility.
Collapse
Affiliation(s)
- Angélica Torres-Berrío
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Lurie Center for Autism, Massachusetts General Hospital, Boston, MA, USA; Department of Pediatrics, Harvard Medical School, Boston, MA, USA.
| | - Molly Estill
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Vishwendra Patel
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Aarthi Ramakrishnan
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Hope Kronman
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Angélica Minier-Toribio
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Orna Issler
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Caleb J Browne
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Eric M Parise
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yentl Y van der Zee
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Deena M Walker
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR, USA
| | - Freddyson J Martínez-Rivera
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Casey K Lardner
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Romain Durand-de Cuttoli
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Scott J Russo
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Li Shen
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Simone Sidoli
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, NY, USA
| | - Eric J Nestler
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
10
|
Alcalá-Vida R, Barco A. Keep calm and carry H3K27me1 off. Neuron 2024; 112:2829-2832. [PMID: 39236677 DOI: 10.1016/j.neuron.2024.07.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 07/19/2024] [Accepted: 07/19/2024] [Indexed: 09/07/2024]
Abstract
In this issue of Neuron, Torres-Berrío et al.1 show that stress-susceptible mice exhibit elevated H3K27me1 levels in nucleus accumbens neurons due to the action of the SUZ12 VEFS domain, strengthening the link between specific epigenetic changes and long-lasting stress-induced social, emotional, and cognitive alterations.
Collapse
Affiliation(s)
- Rafael Alcalá-Vida
- Instituto de Neurociencias, Universidad Miguel Hernández - Consejo Superior de Investigaciones Científicas, Av. Santiago Ramón y Cajal s/n. Sant Joan d'Alacant, 03550 Alicante, Spain
| | - Angel Barco
- Instituto de Neurociencias, Universidad Miguel Hernández - Consejo Superior de Investigaciones Científicas, Av. Santiago Ramón y Cajal s/n. Sant Joan d'Alacant, 03550 Alicante, Spain.
| |
Collapse
|
11
|
Borland JM. The effects of different types of social interactions on the electrophysiology of neurons in the nucleus accumbens in rodents. Neurosci Biobehav Rev 2024; 164:105809. [PMID: 39004323 DOI: 10.1016/j.neubiorev.2024.105809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/05/2024] [Accepted: 07/08/2024] [Indexed: 07/16/2024]
Abstract
BORLAND, J.M., The effects of different types of social interactions on the electrophysiology of neurons in the nucleus accumbens in rodents, NEUROSCI BIOBEH REV 21(1) XXX-XXX, 2024.-Sociality shapes an organisms' life. The nucleus accumbens is a critical brain region for mental health. In the following review, the effects of different types of social interactions on the physiology of neurons in the nucleus accumbens is synthesized. More specifically, the effects of sex behavior, aggression, social defeat, pair-bonding, play behavior, affiliative interactions, parental behaviors, the isolation from social interactions and maternal separation on measures of excitatory synaptic transmission, intracellular signaling and factors of transcription and translation in neurons in the nucleus accumbens in rodent models are reviewed. Similarities and differences in effects depending on the type of social interaction is then discussed. This review improves the understanding of the molecular and synaptic mechanisms of sociality.
Collapse
|
12
|
Copenhaver AE, LeGates TA. Sex-Specific Mechanisms Underlie Long-Term Potentiation at Hippocampus→Medium Spiny Neuron Synapses in the Medial Shell of the Nucleus Accumbens. J Neurosci 2024; 44:e0100242024. [PMID: 38806250 PMCID: PMC11223474 DOI: 10.1523/jneurosci.0100-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 05/16/2024] [Accepted: 05/21/2024] [Indexed: 05/30/2024] Open
Abstract
Sex differences have complicated our understanding of the neurobiological basis of many behaviors that are key for survival. As such, continued elucidation of the similarities and differences between sexes is necessary to gain insight into brain function and vulnerability. The connection between the hippocampus (Hipp) and nucleus accumbens (NAc) is a crucial site where modulation of neuronal activity mediates reward-related behavior. Our previous work demonstrated that long-term potentiation (LTP) of Hipp→NAc synapses is rewarding, and mice can establish learned associations between LTP of these synapses and the contextual environment in which LTP occurred. Here, we investigated sex differences in the mechanisms underlying Hipp→NAc LTP using whole-cell electrophysiology and pharmacology. We observed similarities in basal synaptic strength between males and females and found that LTP occurs postsynaptically with similar magnitudes in both sexes. However, key sex differences emerged as LTP in males required NMDA receptors (NMDAR), whereas LTP in females utilized an NMDAR-independent mechanism involving L-type voltage-gated Ca2+ channels (VGCCs) and estrogen receptor α (ERα). We also uncovered sex-similar features as LTP in both sexes depended on CaMKII activity and occurred independently of dopamine-1 receptor (D1R) activation. Our results have elucidated sex-specific molecular mechanisms for LTP in an integral pathway that mediates reward-related behaviors, emphasizing the importance of considering sex as a variable in mechanistic studies. Continued characterization of sex-specific mechanisms underlying plasticity will offer novel insight into the neurophysiological basis of behavior, with significant implications for understanding how diverse processes mediate behavior and contribute to vulnerability to developing psychiatric disorders.
Collapse
Affiliation(s)
- Ashley E Copenhaver
- Department of Biological Sciences, University of Maryland, Baltimore County (UMBC), Baltimore, Maryland 21250
| | - Tara A LeGates
- Department of Biological Sciences, University of Maryland, Baltimore County (UMBC), Baltimore, Maryland 21250
- Department of Physiology, School of Medicine, University of Maryland, Baltimore, Maryland 21201
| |
Collapse
|
13
|
Deng Q, Parker E, Wu C, Zhu L, Liu TCY, Duan R, Yang L. Repurposing Ketamine in the Therapy of Depression and Depression-Related Disorders: Recent Advances and Future Potential. Aging Dis 2024:AD.2024.0239. [PMID: 38916735 DOI: 10.14336/ad.2024.0239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 04/29/2024] [Indexed: 06/26/2024] Open
Abstract
Depression represents a prevalent and enduring mental disorder of significant concern within the clinical domain. Extensive research indicates that depression is very complex, with many interconnected pathways involved. Most research related to depression focuses on monoamines, neurotrophic factors, the hypothalamic-pituitary-adrenal axis, tryptophan metabolism, energy metabolism, mitochondrial function, the gut-brain axis, glial cell-mediated inflammation, myelination, homeostasis, and brain neural networks. However, recently, Ketamine, an ionotropic N-methyl-D-aspartate (NMDA) receptor antagonist, has been discovered to have rapid antidepressant effects in patients, leading to novel and successful treatment approaches for mood disorders. This review aims to summarize the latest findings and insights into various signaling pathways and systems observed in depression patients and animal models, providing a more comprehensive view of the neurobiology of anxious-depressive-like behavior. Specifically, it highlights the key mechanisms of ketamine as a rapid-acting antidepressant, aiming to enhance the treatment of neuropsychiatric disorders. Moreover, we discuss the potential of ketamine as a prophylactic or therapeutic intervention for stress-related psychiatric disorders.
Collapse
Affiliation(s)
- Qianting Deng
- College of Physical Education and Sport Science, South China Normal University, Guangzhou, China
| | - Emily Parker
- Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
| | - Chongyun Wu
- College of Physical Education and Sport Science, South China Normal University, Guangzhou, China
| | - Ling Zhu
- College of Physical Education and Sport Science, South China Normal University, Guangzhou, China
| | - Timon Cheng-Yi Liu
- College of Physical Education and Sport Science, South China Normal University, Guangzhou, China
| | - Rui Duan
- College of Physical Education and Sport Science, South China Normal University, Guangzhou, China
| | - Luodan Yang
- College of Physical Education and Sport Science, South China Normal University, Guangzhou, China
| |
Collapse
|
14
|
Jiang T, Liang S, Zhang X, Dong S, Zhu H, Wang Y, Sun Y. Parvalbumin neurons in the nucleus accumbens shell modulate seizure in temporal lobe epilepsy. Neurobiol Dis 2024; 194:106482. [PMID: 38522590 DOI: 10.1016/j.nbd.2024.106482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 03/02/2024] [Accepted: 03/22/2024] [Indexed: 03/26/2024] Open
Abstract
A growing number of clinical and animal studies suggest that the nucleus accumbens (NAc), especially the shell, is involved in the pathogenesis of temporal lobe epilepsy (TLE). However, the role of parvalbumin (PV) GABAergic neurons in the NAc shell involved in TLE is still unclear. In this study, we induced a spontaneous TLE model by intrahippocampal administration of kainic acid (KA), which generally induce acute seizures in first 2 h (acute phase) and then lead to spontaneous recurrent seizures after two months (chronic phase). We found that chemogenetic activation of NAc shell PV neurons could alleviate TLE seizures by reducing the number and period of focal seizures (FSs) and secondary generalized seizures (sGSs), while selective inhibition of PV exacerbated seizure activity. Ruby-virus mapping results identified that the hippocampus (ventral and dorsal) is one of the projection targets of NAc shell PV neurons. Chemogenetic activation of the NAc-Hip PV projection fibers can mitigate seizures while inhibition has no effect on seizure ictogenesis. In summary, our findings reveal that PV neurons in the NAc shell could modulate the seizures in TLE via a long-range NAc-Hip circuit. All of these results enriched the investigation between NAc and epilepsy, offering new targets for future epileptogenesis research and precision therapy.
Collapse
Affiliation(s)
- Tong Jiang
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao 266000, China.
| | - Shuyu Liang
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao 266000, China.
| | - Xiaohan Zhang
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao 266000, China.
| | - Shasha Dong
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao 266000, China.
| | - HaiFang Zhu
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao 266000, China.
| | - Ying Wang
- Institute of Neuropsychiatric Diseases, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266000, China.
| | - Yanping Sun
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao 266000, China.
| |
Collapse
|
15
|
Airapetov M, Eresko S, Ignatova P, Lebedev A, Bychkov E, Shabanov P. Effect of rifampicin on TLR4-signaling pathways in the nucleus accumbens of the rat brain during abstinence of long-term alcohol treatment. Alcohol Alcohol 2024; 59:agae016. [PMID: 38520481 DOI: 10.1093/alcalc/agae016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/03/2024] [Accepted: 02/19/2024] [Indexed: 03/25/2024] Open
Abstract
AIMS The treatment with the antibiotic rifampicin (Rif) led to a decrease in the frequency of neurodegenerative pathologies. There are suggestions that the mechanism of action of Rif may be mediated by its effect on toll-like receptor (TLR)4-dependent pathways. We evaluated the expression status of TLR4-dependent genes during abstinence from long-term alcohol treatments in the nucleus accumbens (NAc) of the rat brain, and also studied the effects of Rif to correct these changes. METHODS The long-term alcohol treatment was performed by intragastric delivery of ethanol solution. At the end of alcohol treatment intraperitoneal injections of Rif (100 mg/kg) or saline were made. Extraction of the brain structures was performed on the 10th day of abstinence from alcohol. We used the SYBR Green qPCR method to quantitatively analyze the relative expression levels of the studied genes. RESULTS The long-term alcohol treatment promotes an increase in the level of TLR4 mRNA and mRNA of its endogenous ligand high-mobility group protein B1 during abstinence drop alcohol in NAc of rats. The use of Rif in our study led to a decrease in the increased expression of high-mobility group protein B1, Tlr4, and proinflammatory cytokine genes (Il1β, Il6) in the NAc of the rat brain during abstinence of long-term alcohol treatment. In addition, Rif administration increased the decreased mRNA levels of anti-inflammatory cytokines (Il10, Il11). CONCLUSION The data obtained indicate the ability of Rif to correct the mechanisms of the TLR4 system genes in the NAc of the rat brain during alcohol abstinence.
Collapse
Affiliation(s)
- Marat Airapetov
- Department of Neuropharmacology, Institute of Experimental Medicine, P.O. Box 197376, 12 Academician Pavlova str., St. Petersburg, Russian Federation
- Department of Pathological Physiology, Military Medical Academy of S.M. Kirov, P.O. Box 194044, 6G Akademika Lebedeva str., St. Petersburg, Russian Federation
| | - Sergei Eresko
- Department of Neuropharmacology, Institute of Experimental Medicine, P.O. Box 197376, 12 Academician Pavlova str., St. Petersburg, Russian Federation
- Center for Chemical Engineering, Saint-Petersburg National Research University of Information Technologies, Mechanics and Optics, P.O. Box 197101, 49 Kronverksky pr., St. Petersburg, Russian Federation
| | - Polina Ignatova
- Department of Neuropharmacology, Institute of Experimental Medicine, P.O. Box 197376, 12 Academician Pavlova str., St. Petersburg, Russian Federation
| | - Andrei Lebedev
- Department of Neuropharmacology, Institute of Experimental Medicine, P.O. Box 197376, 12 Academician Pavlova str., St. Petersburg, Russian Federation
| | - Evgenii Bychkov
- Department of Neuropharmacology, Institute of Experimental Medicine, P.O. Box 197376, 12 Academician Pavlova str., St. Petersburg, Russian Federation
| | - Petr Shabanov
- Department of Neuropharmacology, Institute of Experimental Medicine, P.O. Box 197376, 12 Academician Pavlova str., St. Petersburg, Russian Federation
- Department of Pathological Physiology, Military Medical Academy of S.M. Kirov, P.O. Box 194044, 6G Akademika Lebedeva str., St. Petersburg, Russian Federation
| |
Collapse
|
16
|
Yamagishi A, Ikekubo Y, Mishina M, Ikeda K, Ide S. Loss of the sustained antidepressant-like effect of (2R,6R)-hydroxynorketamine in NMDA receptor GluN2D subunit knockout mice. J Pharmacol Sci 2024; 154:203-208. [PMID: 38395521 DOI: 10.1016/j.jphs.2024.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/17/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024] Open
Abstract
Ketamine, an N-methyl-d-aspartate (NMDA) receptor antagonist, has attracted attention for its acute and sustained antidepressant effects in patients with depression. Hydroxynorketamine (HNK), a metabolite of ketamine, exerts antidepressant effects without exerting ketamine's side effects and has attracted much attention in recent years. However, the detailed pharmacological mechanism of action of HNK remains unclear. We previously showed that the GluN2D NMDA receptor subunit is important for sustained antidepressant-like effects of (R)-ketamine. Therefore, we investigated whether the GluN2D subunit is involved in antidepressant-like effects of (2R,6R)-HNK and (2S,6S)-HNK. Treatment with (2R,6R)-HNK but not (2S,6S)-HNK exerted acute and sustained antidepressant-like effects in the tail-suspension test in wildtype mice. Interestingly, sustained antidepressant-like effects of (2R,6R)-HNK were abolished in GluN2D-knockout mice, whereas acute antidepressant-like effects were maintained in GluN2D-knockout mice. When expression levels of GluN2A and GluN2B subunits were evaluated, a decrease in GluN2B protein expression in the nucleus accumbens was found in stressed wildtype mice but not in stressed GluN2D-knockout mice. These results suggest that the GluN2D subunit and possibly the GluN2B subunit are involved in the sustained antidepressant-like effect of (2R,6R)-HNK.
Collapse
Affiliation(s)
- Aimi Yamagishi
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-Ku, Tokyo, Japan; Molecular and Cellular Medicine, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Yuiko Ikekubo
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-Ku, Tokyo, Japan
| | - Masayoshi Mishina
- Brain Science Laboratory, The Research Organization of Science and Technology, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga, Japan
| | - Kazutaka Ikeda
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-Ku, Tokyo, Japan; Molecular and Cellular Medicine, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Soichiro Ide
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-Ku, Tokyo, Japan.
| |
Collapse
|
17
|
Yao H, Wang X, Chi J, Chen H, Liu Y, Yang J, Yu J, Ruan Y, Xiang X, Pi J, Xu JF. Exploring Novel Antidepressants Targeting G Protein-Coupled Receptors and Key Membrane Receptors Based on Molecular Structures. Molecules 2024; 29:964. [PMID: 38474476 DOI: 10.3390/molecules29050964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/29/2024] [Accepted: 02/09/2024] [Indexed: 03/14/2024] Open
Abstract
Major Depressive Disorder (MDD) is a complex mental disorder that involves alterations in signal transmission across multiple scales and structural abnormalities. The development of effective antidepressants (ADs) has been hindered by the dominance of monoamine hypothesis, resulting in slow progress. Traditional ADs have undesirable traits like delayed onset of action, limited efficacy, and severe side effects. Recently, two categories of fast-acting antidepressant compounds have surfaced, dissociative anesthetics S-ketamine and its metabolites, as well as psychedelics such as lysergic acid diethylamide (LSD). This has led to structural research and drug development of the receptors that they target. This review provides breakthroughs and achievements in the structure of depression-related receptors and novel ADs based on these. Cryo-electron microscopy (cryo-EM) has enabled researchers to identify the structures of membrane receptors, including the N-methyl-D-aspartate receptor (NMDAR) and the 5-hydroxytryptamine 2A (5-HT2A) receptor. These high-resolution structures can be used for the development of novel ADs using virtual drug screening (VDS). Moreover, the unique antidepressant effects of 5-HT1A receptors in various brain regions, and the pivotal roles of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) and tyrosine kinase receptor 2 (TrkB) in regulating synaptic plasticity, emphasize their potential as therapeutic targets. Using structural information, a series of highly selective ADs were designed based on the different role of receptors in MDD. These molecules have the favorable characteristics of rapid onset and low adverse drug reactions. This review offers researchers guidance and a methodological framework for the structure-based design of ADs.
Collapse
Affiliation(s)
- Hanbo Yao
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Xiaodong Wang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Jiaxin Chi
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Haorong Chen
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Yilin Liu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Jiayi Yang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Jiaqi Yu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Yongdui Ruan
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
| | - Xufu Xiang
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics and Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jiang Pi
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Jun-Fa Xu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| |
Collapse
|
18
|
Medina-Saldivar C, Pardo GVE, Pacheco-Otalora LF. Effect of MCH1, a fatty-acid amide hydrolase inhibitor, on the depressive-like behavior and gene expression of endocannabinoid and dopaminergic-signaling system in the mouse nucleus accumbens. Braz J Med Biol Res 2024; 57:e12857. [PMID: 38381881 PMCID: PMC10880885 DOI: 10.1590/1414-431x2024e12857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 01/12/2024] [Indexed: 02/23/2024] Open
Abstract
MCH1 is a synthetic macamide that has shown in vitro inhibitory activity on fatty acid amide hydrolase (FAAH), an enzyme responsible for endocannabinoid metabolism. This inhibition can modulate endocannabinoid and dopamine signaling in the nucleus accumbens (NAc), potentially having an antidepressant-like effect. The present study aimed to evaluate the effect of the in vivo administration of MCH1 (3, 10, and 30 mg/kg, ip) in 2-month-old BALB/c male mice (n=97) on forced swimming test (FST), light-dark box (LDB), and open field test (OFT) and on early gene expression changes 2 h after drug injection related to the endocannabinoid system (Cnr1 and Faah) and dopaminergic signaling (Drd1 and Drd2) in the NAc core. We found that the 10 mg/kg MCH1 dose reduced the immobility time compared to the vehicle group in the FST with no effect on anxiety-like behaviors measured in the LDB or OFT. However, a 10 mg/kg MCH1 dose increased locomotor activity in the OFT compared to the vehicle. Moreover, RT-qPCR results showed that the 30 mg/kg MCH1 dose increased Faah gene expression by 2.8-fold, and 10 mg/kg MCH1 increased the Cnr1 gene expression by 4.3-fold compared to the vehicle. No changes were observed in the expression of the Drd1 and Drd2 genes in the NAc at either MCH1 dose. These results indicated that MCH1 might have an antidepressant-like effect without an anxiogenic effect and induces significant changes in endocannabinoid-related genes but not in genes of the dopaminergic signaling system in the NAc of mice.
Collapse
Affiliation(s)
- C Medina-Saldivar
- Laboratorio de Investigación en Neurociencia, Instituto Científico, Universidad Andina del Cusco, Cuzco, Perú
| | - G V E Pardo
- Laboratorio de Investigación en Neurociencia, Instituto Científico, Universidad Andina del Cusco, Cuzco, Perú
| | - L F Pacheco-Otalora
- Laboratorio de Investigación en Neurociencia, Instituto Científico, Universidad Andina del Cusco, Cuzco, Perú
| |
Collapse
|
19
|
Copenhaver AE, LeGates TA. Sex-specific mechanisms underlie long-term potentiation at hippocampus-nucleus accumbens synapses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.15.575709. [PMID: 38293132 PMCID: PMC10827060 DOI: 10.1101/2024.01.15.575709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Sex differences have complicated our understanding of the neurobiological basis of many behaviors that are key for survival. As such, continued elucidation of the similarities and differences between sexes is necessary in order to gain insight into brain function and vulnerability. The connection between the hippocampus (Hipp) and nucleus accumbens (NAc) is a crucial site where modulation of neuronal activity mediates reward-related behavior. Our previous work demonstrated that long-term potentiation (LTP) of Hipp-NAc synapses is rewarding, and that mice can make learned associations between LTP of these synapses and the contextual environment in which LTP occurred. Here, we investigate sex differences in the mechanisms underlying Hipp-NAc LTP using whole-cell electrophysiology and pharmacology. We found that males and females display similar magnitudes of Hipp-NAc LTP which occurs postsynaptically. However, LTP in females requires L-type voltage-gated Ca 2+ channels (VGCC) for postsynaptic Ca 2+ influx, while males rely on NMDA receptors (NMDAR). Additionally, females require estrogen receptor α (ERα) activity for LTP while males do not. These differential mechanisms converge as LTP in both sexes depends on CAMKII activity and occurs independently of dopamine-1 receptor (D1R) activation. Our results have elucidated sex-specific molecular mechanisms for LTP in an integral excitatory pathway that mediates reward-related behaviors, emphasizing the importance of considering sex as a variable in mechanistic studies. Continued characterization of sex-specific mechanisms underlying plasticity will offer novel insight into the neurophysiological basis of behavior, with significant implications for understanding how diverse processes mediate behavior and contribute to vulnerability to developing psychiatric disorders. SIGNIFICANCE STATEMENT Strengthening of Hipp-NAc synapses drives reward-related behaviors. Male and female mice have similar magnitudes of long-term potentiation (LTP) and both sexes have a predicted postsynaptic locus of plasticity. Despite these similarities, we illustrate here that sex-specific molecular mechanisms are used to elicit LTP. Given the bidirectional relationship between Hipp-NAc synaptic strength in mediating reward-related behaviors, the use of distinct molecular mechanisms may explain sex differences observed in stress susceptibility or response to rewarding stimuli. Discovery and characterization of convergent sex differences provides mechanistic insight into the sex-specific function of Hipp-NAc circuitry and has widespread implications for circuits mediating learning and reward-related behavior.
Collapse
|
20
|
Le Merrer J, Detraux B, Gandía J, De Groote A, Fonteneau M, de Kerchove d'Exaerde A, Becker JAJ. Balance Between Projecting Neuronal Populations of the Nucleus Accumbens Controls Social Behavior in Mice. Biol Psychiatry 2024; 95:123-135. [PMID: 37207936 DOI: 10.1016/j.biopsych.2023.05.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 04/06/2023] [Accepted: 05/02/2023] [Indexed: 05/21/2023]
Abstract
BACKGROUND Deficient social interactions are a hallmark of major neuropsychiatric disorders, and accumulating evidence points to altered social reward and motivation as key underlying mechanisms of these pathologies. In the present study, we further explored the role of the balance of activity between D1 and D2 receptor-expressing striatal projection neurons (D1R- and D2R-SPNs) in the control of social behavior, challenging the hypothesis that excessive D2R-SPN activity, rather than deficient D1R-SPN activity, compromises social behavior. METHODS We selectively ablated D1R- and D2R-SPNs using an inducible diphtheria toxin receptor-mediated cell targeting strategy and assessed social behavior as well as repetitive/perseverative behavior, motor function, and anxiety levels. We tested the effects of optogenetic stimulation of D2R-SPNs in the nucleus accumbens (NAc) and pharmacological compounds repressing D2R-SPN. RESULTS Targeted deletion of D1R-SPNs in the NAc blunted social behavior in mice, facilitated motor skill learning, and increased anxiety levels. These behaviors were normalized by pharmacological inhibition of D2R-SPN, which also repressed transcription in the efferent nucleus, the ventral pallidum. Ablation of D1R-SPNs in the dorsal striatum had no impact on social behavior but impaired motor skill learning and decreased anxiety levels. Deletion of D2R-SPNs in the NAc produced motor stereotypies but facilitated social behavior and impaired motor skill learning. We mimicked excessive D2R-SPN activity by optically stimulating D2R-SPNs in the NAc and observed a severe deficit in social interaction that was prevented by D2R-SPN pharmacological inhibition. CONCLUSIONS Repressing D2R-SPN activity may represent a promising therapeutic strategy to relieve social deficits in neuropsychiatric disorders.
Collapse
Affiliation(s)
- Julie Le Merrer
- Physiologie de la Reproduction et des Comportements, Unité Mixte de Recherche Centre National de la Recherche Scientifique 7247, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement 0085, Institut National de la Santé et de la Recherche Médicale, Université de Tours, Nouzilly, France; iBrain, Unité Mixte de Recherche 1253 Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Faculté des Sciences et Techniques, Université de Tours, Tours, France.
| | - Bérangère Detraux
- Neurophy Lab, ULB Neuroscience Institute, Université Libre de Bruxelles, Brussels, Belgium
| | - Jorge Gandía
- Physiologie de la Reproduction et des Comportements, Unité Mixte de Recherche Centre National de la Recherche Scientifique 7247, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement 0085, Institut National de la Santé et de la Recherche Médicale, Université de Tours, Nouzilly, France
| | - Aurélie De Groote
- Neurophy Lab, ULB Neuroscience Institute, Université Libre de Bruxelles, Brussels, Belgium
| | - Mathieu Fonteneau
- iBrain, Unité Mixte de Recherche 1253 Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Faculté des Sciences et Techniques, Université de Tours, Tours, France
| | - Alban de Kerchove d'Exaerde
- Neurophy Lab, ULB Neuroscience Institute, Université Libre de Bruxelles, Brussels, Belgium; WELBIO, Wavre, Belgium.
| | - Jérôme A J Becker
- Physiologie de la Reproduction et des Comportements, Unité Mixte de Recherche Centre National de la Recherche Scientifique 7247, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement 0085, Institut National de la Santé et de la Recherche Médicale, Université de Tours, Nouzilly, France; iBrain, Unité Mixte de Recherche 1253 Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Faculté des Sciences et Techniques, Université de Tours, Tours, France
| |
Collapse
|
21
|
Belilos A, Gray C, Sanders C, Black D, Mays E, Richie C, Sengupta A, Hake H, Francis TC. Nucleus accumbens local circuit for cue-dependent aversive learning. Cell Rep 2023; 42:113488. [PMID: 37995189 PMCID: PMC10795009 DOI: 10.1016/j.celrep.2023.113488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 10/06/2023] [Accepted: 11/08/2023] [Indexed: 11/25/2023] Open
Abstract
Response to threatening environmental stimuli requires detection and encoding of important environmental features that dictate threat. Aversive events are highly salient, which promotes associative learning about stimuli that signal this threat. The nucleus accumbens is uniquely positioned to process this salient, aversive information and promote motivated output, through plasticity on the major projection neurons in the brain area. We describe a nucleus accumbens core local circuit whereby excitatory plasticity facilitates learning and recall of discrete aversive cues. We demonstrate that putative nucleus accumbens substance P release and long-term excitatory plasticity on dopamine 2 receptor-expressing projection neurons are required for cue-dependent fear learning. Additionally, we find that fear learning and recall is dependent on distinct projection neuron subtypes. Our work demonstrates a critical role for nucleus accumbens substance P in cue-dependent aversive learning.
Collapse
Affiliation(s)
- Andrew Belilos
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD 21224, USA
| | - Cortez Gray
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA
| | - Christie Sanders
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD 21224, USA
| | - Destiny Black
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA
| | - Elizabeth Mays
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA
| | - Christopher Richie
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD 21224, USA
| | - Ayesha Sengupta
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD 21224, USA
| | - Holly Hake
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD 21224, USA
| | - T Chase Francis
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA.
| |
Collapse
|
22
|
Nakajima S, Demers G, Machuca-Parra AI, Pour ZD, Bairamian D, Bouyakdan K, Fisette A, Kabahizi A, Robb J, Rodaros D, Laurent C, Ferreira G, Arbour N, Alquier T, Fulton S. Central activation of the fatty acid sensor GPR120 suppresses microglia reactivity and alleviates sickness- and anxiety-like behaviors. J Neuroinflammation 2023; 20:302. [PMID: 38111048 PMCID: PMC10729532 DOI: 10.1186/s12974-023-02978-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 11/29/2023] [Indexed: 12/20/2023] Open
Abstract
G protein-coupled receptor 120 (GPR120, Ffar4) is a sensor for long-chain fatty acids including omega-3 polyunsaturated fatty acids (n-3 PUFAs) known for beneficial effects on inflammation, metabolism, and mood. GPR120 mediates the anti-inflammatory and insulin-sensitizing effects of n-3 PUFAs in peripheral tissues. The aim of this study was to determine the impact of GPR120 stimulation on microglial reactivity, neuroinflammation and sickness- and anxiety-like behaviors by acute proinflammatory insults. We found GPR120 mRNA to be enriched in both murine and human microglia, and in situ hybridization revealed GPR120 expression in microglia of the nucleus accumbens (NAc) in mice. In a manner similar to or exceeding n-3 PUFAs, GPR120 agonism (Compound A, CpdA) strongly attenuated lipopolysaccharide (LPS)-induced proinflammatory marker expression in primary mouse microglia, including tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β), and inhibited nuclear factor-ĸB translocation to the nucleus. Central administration of CpdA to adult mice blunted LPS-induced hypolocomotion and anxiety-like behavior and reduced TNF-α, IL-1β and IBA-1 (microglia marker) mRNA in the NAc, a brain region modulating anxiety and motivation and implicated in neuroinflammation-induced mood deficits. GPR120 agonist pre-treatment attenuated NAc microglia reactivity and alleviated sickness-like behaviors elicited by central injection TNF-α and IL-1β. These findings suggest that microglial GPR120 contributes to neuroimmune regulation and behavioral changes in response to acute infection and elevated brain cytokines. GPR120 may participate in the protective action of n-3 PUFAs at the neural and behavioral level and offers potential as treatment target for neuroinflammatory conditions.
Collapse
Affiliation(s)
- Shingo Nakajima
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, H3T1J4, Canada
| | - Geneviève Demers
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, H3T1J4, Canada
- Department of Nutrition, Université de Montréal, Montréal, QC, H3T1J4, Canada
| | - Arturo Israel Machuca-Parra
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, H3T1J4, Canada
| | - Zahra Dashtehei Pour
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, H3T1J4, Canada
- Department of Nutrition, Université de Montréal, Montréal, QC, H3T1J4, Canada
| | - Diane Bairamian
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, H3T1J4, Canada
- Department of Nutrition, Université de Montréal, Montréal, QC, H3T1J4, Canada
| | - Khalil Bouyakdan
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, H3T1J4, Canada
| | - Alexandre Fisette
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, H3T1J4, Canada
- Research Group in Cellular Signaling, Department of Medical Biology, Université du Québec à Trois-Rivières, Trois-Rivières, Canada
| | - Anita Kabahizi
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, H3T1J4, Canada
- Department of Nutrition, Université de Montréal, Montréal, QC, H3T1J4, Canada
| | - Josephine Robb
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, H3T1J4, Canada
| | - Demetra Rodaros
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, H3T1J4, Canada
| | - Cyril Laurent
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, H3T1J4, Canada
- Department of Neuroscience, Université de Montréal, Montréal, QC, H3T1J4, Canada
| | - Guillaume Ferreira
- Nutrition and Integrative Neurobiology Unit, UMR 1286, INRA-Université de Bordeaux, Bordeaux, France
| | - Nathalie Arbour
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, H3T1J4, Canada
- Department of Neuroscience, Université de Montréal, Montréal, QC, H3T1J4, Canada
| | - Thierry Alquier
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, H3T1J4, Canada
- Department of Medicine, Université de Montréal, Montréal, QC, H3T1J4, Canada
| | - Stephanie Fulton
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, H3T1J4, Canada.
- Department of Nutrition, Université de Montréal, Montréal, QC, H3T1J4, Canada.
| |
Collapse
|
23
|
Domingues AV, Rodrigues AJ, Soares-Cunha C. A novel perspective on the role of nucleus accumbens neurons in encoding associative learning. FEBS Lett 2023; 597:2601-2610. [PMID: 37643893 DOI: 10.1002/1873-3468.14727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/16/2023] [Accepted: 08/18/2023] [Indexed: 08/31/2023]
Abstract
The nucleus accumbens (NAc) has been considered a key brain region for encoding reward/aversion and cue-outcome associations. These processes are encoded by medium spiny neurons that express either dopamine receptor D1 (D1-MSNs) or D2 (D2-MSNs). Despite the well-established role of NAc neurons in encoding reward/aversion, the underlying processing by D1-/D2-MSNs remains largely unknown. Recent electrophysiological, optogenetic and calcium imaging studies provided insight on the complex role of D1- and D2-MSNs in these behaviours and helped to clarify their involvement in associative learning. Here, we critically discuss findings supporting an intricate and complementary role of NAc D1- and D2-MSNs in associative learning, emphasizing the need for additional studies in order to fully understand the role of these neurons in behaviour.
Collapse
Affiliation(s)
- Ana Verónica Domingues
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Ana João Rodrigues
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Carina Soares-Cunha
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
24
|
Zhang YF, Wu J, Wang Y, Johnson NL, Bhattarai JP, Li G, Wang W, Guevara C, Shoenhard H, Fuccillo MV, Wesson DW, Ma M. Ventral striatal islands of Calleja neurons bidirectionally mediate depression-like behaviors in mice. Nat Commun 2023; 14:6887. [PMID: 37898623 PMCID: PMC10613228 DOI: 10.1038/s41467-023-42662-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 10/17/2023] [Indexed: 10/30/2023] Open
Abstract
The ventral striatum is a reward center implicated in the pathophysiology of depression. It contains islands of Calleja, clusters of dopamine D3 receptor-expressing granule cells, predominantly in the olfactory tubercle (OT). These OT D3 neurons regulate self-grooming, a repetitive behavior manifested in affective disorders. Here we show that chronic restraint stress (CRS) induces robust depression-like behaviors in mice and decreases excitability of OT D3 neurons. Ablation or inhibition of these neurons leads to depression-like behaviors, whereas their activation ameliorates CRS-induced depression-like behaviors. Moreover, activation of OT D3 neurons has a rewarding effect, which diminishes when grooming is blocked. Finally, we propose a model that explains how OT D3 neurons may influence dopamine release via synaptic connections with OT spiny projection neurons (SPNs) that project to midbrain dopamine neurons. Our study reveals a crucial role of OT D3 neurons in bidirectionally mediating depression-like behaviors, suggesting a potential therapeutic target.
Collapse
Affiliation(s)
- Yun-Feng Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China.
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, 100101, Beijing, China.
- Department of Neuroscience, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA.
| | - Jialiang Wu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, 100101, Beijing, China
| | - Yingqi Wang
- Department of Neuroscience, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Natalie L Johnson
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, 32610, USA
| | - Janardhan P Bhattarai
- Department of Neuroscience, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Guanqing Li
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, 100101, Beijing, China
- College of Life Sciences, Hebei University, Baoding, 071002, Hebei, China
| | - Wenqiang Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, 100101, Beijing, China
- College of Life Sciences, Hebei University, Baoding, 071002, Hebei, China
| | - Camilo Guevara
- Department of Neuroscience, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Hannah Shoenhard
- Department of Neuroscience, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Marc V Fuccillo
- Department of Neuroscience, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Daniel W Wesson
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, 32610, USA
| | - Minghong Ma
- Department of Neuroscience, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA.
| |
Collapse
|
25
|
Belilos A, Gray C, Sanders C, Black D, Mays E, Richie CT, Sengupta A, Hake HS, Francis TC. Nucleus Accumbens Local Circuit for Cue-Dependent Aversive Learning. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.06.527338. [PMID: 36798245 PMCID: PMC9934565 DOI: 10.1101/2023.02.06.527338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Response to threatening environmental stimuli requires detection and encoding of important environmental features that dictate threat. Aversive events are highly salient which promotes associative learning about stimuli that signal this threat. The nucleus accumbens is uniquely positioned to process this salient, aversive information and promote motivated output, through plasticity on the major projection neurons in the brain area. We uncovered a nucleus accumbens core local circuit whereby excitatory plasticity facilitates learning and recall of discrete aversive cues. We demonstrate that putative nucleus accumbens substance P release and long-term excitatory plasticity on dopamine 2 receptor expressing projection neurons is required for cue-dependent fear learning. Additionally, we found fear learning and recall were dependent on distinct projection-neuron subtypes. Our work demonstrates a critical role for Nucleus Accumbens substance P in cue-dependent aversive learning.
Collapse
|
26
|
Raghanti MA, Miller EN, Jones DN, Smith HN, Munger EL, Edler MK, Phillips KA, Hopkins WD, Hof PR, Sherwood CC, Lovejoy CO. Hedonic eating, obesity, and addiction result from increased neuropeptide Y in the nucleus accumbens during human brain evolution. Proc Natl Acad Sci U S A 2023; 120:e2311118120. [PMID: 37695892 PMCID: PMC10515152 DOI: 10.1073/pnas.2311118120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 07/25/2023] [Indexed: 09/13/2023] Open
Abstract
The nucleus accumbens (NAc) is central to motivation and action, exhibiting one of the highest densities of neuropeptide Y (NPY) in the brain. Within the NAc, NPY plays a role in reward and is involved in emotional behavior and in increasing alcohol and drug addiction and fat intake. Here, we examined NPY innervation and neurons of the NAc in humans and other anthropoid primates in order to determine whether there are differences among these various species that would correspond to behavioral or life history variables. We quantified NPY-immunoreactive axons and neurons in the NAc of 13 primate species, including humans, great apes, and monkeys. Our data show that the human brain is unique among primates in having denser NPY innervation within the NAc, as measured by axon length density to neuron density, even after accounting for brain size. Combined with our previous finding of increased dopaminergic innervation in the same region, our results suggest that the neurochemical profile of the human NAc appears to have rendered our species uniquely susceptible to neurophysiological conditions such as addiction. The increase in NPY specific to the NAc may represent an adaptation that favors fat intake and contributes to an increased vulnerability to eating disorders, obesity, as well as alcohol and drug dependence. Along with our findings for dopamine, these deeply rooted structural attributes of the human brain are likely to have emerged early in the human clade, laying the groundwork for later brain expansion and the development of cognitive and behavioral specializations.
Collapse
Affiliation(s)
- Mary Ann Raghanti
- Department of Anthropology and School of Biomedical Sciences, Kent State University, Kent, OH44242
- Brain Health Research Institute, Kent State University, Kent, OH44242
| | - Elaine N. Miller
- Department of Anthropology, The George Washington University, Washington, DC20052
- Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, DC20052
| | - Danielle N. Jones
- Department of Anthropology and School of Biomedical Sciences, Kent State University, Kent, OH44242
- Brain Health Research Institute, Kent State University, Kent, OH44242
| | - Heather N. Smith
- Department of Anthropology and School of Biomedical Sciences, Kent State University, Kent, OH44242
- Brain Health Research Institute, Kent State University, Kent, OH44242
| | - Emily L. Munger
- Department of Anthropology and School of Biomedical Sciences, Kent State University, Kent, OH44242
- Brain Health Research Institute, Kent State University, Kent, OH44242
| | - Melissa K. Edler
- Department of Anthropology and School of Biomedical Sciences, Kent State University, Kent, OH44242
- Brain Health Research Institute, Kent State University, Kent, OH44242
| | - Kimberley A. Phillips
- Department of Psychology, Trinity University, San Antonio, TX78212
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX78245
| | - William D. Hopkins
- Department of Comparative Medicine, University of Texas MD Anderson Cancer Center, Bastrop, TX78602
| | - Patrick R. Hof
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY10029
| | - Chet C. Sherwood
- Department of Anthropology, The George Washington University, Washington, DC20052
- Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, DC20052
| | - C. Owen Lovejoy
- Department of Anthropology and School of Biomedical Sciences, Kent State University, Kent, OH44242
- Brain Health Research Institute, Kent State University, Kent, OH44242
| |
Collapse
|
27
|
Zhu Y, Wang K, Ma T, Ji Y, Lou Y, Fu X, Lu Y, Liu Y, Dang W, Zhang Q, Yin F, Wang K, Yu B, Zhang H, Lai J, Wang Y. Nucleus accumbens D1/D2 circuits control opioid withdrawal symptoms in mice. J Clin Invest 2023; 133:e163266. [PMID: 37561576 PMCID: PMC10503809 DOI: 10.1172/jci163266] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 07/27/2023] [Indexed: 08/12/2023] Open
Abstract
The nucleus accumbens (NAc) is the most promising target for drug use disorder treatment. Deep brain stimulation (DBS) of NAc is effective for drug use disorder treatment. However, the mechanisms by which DBS produces its therapeutic effects remain enigmatic. Here, we define a behavioral cutoff criterion to distinguish depressive-like behaviors and non-depressive-like behaviors in mice after morphine withdrawal. We identified a basolateral amygdala (BLA) to NAc D1 medium spiny neuron (MSN) pathway that controls depressive-like behaviors after morphine withdrawal. Furthermore, the paraventricular nucleus of thalamus (PVT) to NAc D2 MSN pathway controls naloxone-induced acute withdrawal symptoms. Optogenetically induced long-term potentiation with κ-opioid receptor (KOR) antagonism enhanced BLA to NAc D1 MSN signaling and also altered the excitation/inhibition balance of NAc D2 MSN signaling. We also verified that a new 50 Hz DBS protocol reversed morphine withdrawal-evoked abnormal plasticity in NAc. Importantly, this refined DBS treatment effectively alleviated naloxone-induced withdrawal symptoms and depressive-like behaviors and prevented stress-induced reinstatement. Taken together, the results demonstrated that input- and cell type-specific synaptic plasticity underlies morphine withdrawal, which may lead to novel targets for the treatment of opioid use disorder.
Collapse
Affiliation(s)
- Yongsheng Zhu
- College of Forensic Science, Key Laboratory of National Health Commission for Forensic Science, National Biosafety Evidence Foundation, Xi’an Jiaotong University, Xi’an, China
| | - Kejia Wang
- Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, Xiamen Key Laboratory of Regeneration Medicine, Organ Transplantation Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Tengfei Ma
- School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Yuanyuan Ji
- College of Forensic Science, Key Laboratory of National Health Commission for Forensic Science, National Biosafety Evidence Foundation, Xi’an Jiaotong University, Xi’an, China
| | - Yin Lou
- College of Forensic Science, Key Laboratory of National Health Commission for Forensic Science, National Biosafety Evidence Foundation, Xi’an Jiaotong University, Xi’an, China
| | - Xiaoyu Fu
- College of Forensic Science, Key Laboratory of National Health Commission for Forensic Science, National Biosafety Evidence Foundation, Xi’an Jiaotong University, Xi’an, China
| | - Ye Lu
- College of Forensic Science, Key Laboratory of National Health Commission for Forensic Science, National Biosafety Evidence Foundation, Xi’an Jiaotong University, Xi’an, China
| | - Yige Liu
- College of Forensic Science, Key Laboratory of National Health Commission for Forensic Science, National Biosafety Evidence Foundation, Xi’an Jiaotong University, Xi’an, China
| | - Wei Dang
- The Sixth Ward, Xi’an Mental Health Center, Xi’an, China
| | - Qian Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Fangyuan Yin
- College of Forensic Science, Key Laboratory of National Health Commission for Forensic Science, National Biosafety Evidence Foundation, Xi’an Jiaotong University, Xi’an, China
| | - Kena Wang
- College of Forensic Science, Key Laboratory of National Health Commission for Forensic Science, National Biosafety Evidence Foundation, Xi’an Jiaotong University, Xi’an, China
| | - Bing Yu
- School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Hongbo Zhang
- College of Forensic Science, Key Laboratory of National Health Commission for Forensic Science, National Biosafety Evidence Foundation, Xi’an Jiaotong University, Xi’an, China
| | - Jianghua Lai
- College of Forensic Science, Key Laboratory of National Health Commission for Forensic Science, National Biosafety Evidence Foundation, Xi’an Jiaotong University, Xi’an, China
| | - Yunpeng Wang
- College of Forensic Science, Key Laboratory of National Health Commission for Forensic Science, National Biosafety Evidence Foundation, Xi’an Jiaotong University, Xi’an, China
- Department of Psychiatry and Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Shaanxi Belt and Road Joint Laboratory of Precision Medicine in Psychiatry, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
28
|
Fitzgerald E, Arcego DM, Shen MJ, O'Toole N, Wen X, Nagy C, Mostafavi S, Craig K, Silveira PP, Rayan NA, Diorio J, Meaney MJ, Zhang TY. Sex and cell-specific gene expression in corticolimbic brain regions associated with psychiatric disorders revealed by bulk and single-nuclei RNA sequencing. EBioMedicine 2023; 95:104749. [PMID: 37549631 PMCID: PMC10432187 DOI: 10.1016/j.ebiom.2023.104749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 06/28/2023] [Accepted: 07/25/2023] [Indexed: 08/09/2023] Open
Abstract
BACKGROUND There are sex-specific differences in the prevalence, symptomology and course of psychiatric disorders. However, preclinical models have primarily used males, such that the molecular mechanisms underlying sex-specific differences in psychiatric disorders are not well established. METHODS In this study, we compared transcriptome-wide gene expression profiles in male and female rats within the corticolimbic system, including the cingulate cortex, nucleus accumbens medial shell (NAcS), ventral dentate gyrus and the basolateral amygdala (n = 22-24 per group/region). FINDINGS We found over 3000 differentially expressed genes (DEGs) in the NAcS between males and females. Of these DEGs in the NAcS, 303 showed sex-dependent conservation DEGs in humans and were significantly enriched for gene ontology terms related to blood vessel morphogenesis and regulation of cell migration. Single nuclei RNA sequencing in the NAcS of male and female rats identified widespread sex-dependent expression, with genes upregulated in females showing a notable enrichment for synaptic function. Female upregulated genes in astrocytes, Drd3+MSNs and oligodendrocyte were also enriched in several psychiatric genome-wide association studies (GWAS). INTERPRETATION Our data provide comprehensive evidence of sex- and cell-specific molecular profiles in the NAcS. Importantly these differences associate with anxiety, bipolar disorder, schizophrenia, and cross-disorder, suggesting an intrinsic molecular basis for sex-based differences in psychiatric disorders that strongly implicates the NAcS. FUNDING This work was supported by funding from the Hope for Depression Research Foundation (MJM).
Collapse
Affiliation(s)
- Eamon Fitzgerald
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montréal, H4H 1R3, Canada; Ludmer Centre for Neuroinformatics and Mental Health, McGill University, Montréal, H4H 1R3, Canada
| | - Danusa Mar Arcego
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montréal, H4H 1R3, Canada; Ludmer Centre for Neuroinformatics and Mental Health, McGill University, Montréal, H4H 1R3, Canada
| | - Mo Jun Shen
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Nicholas O'Toole
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montréal, H4H 1R3, Canada; Ludmer Centre for Neuroinformatics and Mental Health, McGill University, Montréal, H4H 1R3, Canada
| | - Xianglan Wen
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montréal, H4H 1R3, Canada; Ludmer Centre for Neuroinformatics and Mental Health, McGill University, Montréal, H4H 1R3, Canada
| | - Corina Nagy
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montréal, H4H 1R3, Canada
| | - Sara Mostafavi
- Paul G. Allen School of Computer Science and Engineering, University of Washington, 185 E Stevens Way NE, Seattle, WA 9819, USA
| | - Kelly Craig
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montréal, H4H 1R3, Canada
| | - Patricia Pelufo Silveira
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montréal, H4H 1R3, Canada; Ludmer Centre for Neuroinformatics and Mental Health, McGill University, Montréal, H4H 1R3, Canada; Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Nirmala Arul Rayan
- Translational Neuroscience Program, Singapore Institute for Clinical Sciences and Brain - Body Initiative, Agency for Science, Technology and Research (A∗STAR), Singapore
| | - Josie Diorio
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montréal, H4H 1R3, Canada
| | - Michael J Meaney
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montréal, H4H 1R3, Canada; Ludmer Centre for Neuroinformatics and Mental Health, McGill University, Montréal, H4H 1R3, Canada; Translational Neuroscience Program, Singapore Institute for Clinical Sciences and Brain - Body Initiative, Agency for Science, Technology and Research (A∗STAR), Singapore; Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Tie-Yuan Zhang
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montréal, H4H 1R3, Canada; Ludmer Centre for Neuroinformatics and Mental Health, McGill University, Montréal, H4H 1R3, Canada.
| |
Collapse
|
29
|
Grunze H. The role of the D3 dopamine receptor and its partial agonist cariprazine in patients with schizophrenia and substance use disorder. Expert Opin Pharmacother 2023; 24:1985-1992. [PMID: 37817489 DOI: 10.1080/14656566.2023.2266359] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 09/29/2023] [Indexed: 10/12/2023]
Abstract
INTRODUCTION Comorbidity of substance use disorder (SUD) with schizophrenia, referred to as dual disorder (DD), significantly increases morbidity and mortality compared to schizophrenia alone. A dopaminergic dysregulation seems to be a common pathophysiological basis of the comorbidity. AREAS COVERED This article reports the current evidence on the role of dopamine dysregulations in DD, the pharmacological profile of cariprazine, a partial agonist of D3 and D2 dopamine receptors, and first clinical observations that may support its usefulness in the therapy of DD. PubMed/MEDLINE was searched for the keywords 'cariprazine,' 'schizophrenia,' 'dual disorder,' 'dopamine,' and 'dopamine receptor.' Preclinical and clinical studies, and reviews published in English were retrieved. EXPERT OPINION Although the management of DD remains challenging, and the evidence for pharmacologic treatments is still unsatisfactory, cariprazine may be a candidate medication in DD due to its unique mechanism of action. Preliminary clinical experiences suggest that cariprazine has both antipsychotic and anticraving properties and should be considered early in patients with DD.
Collapse
Affiliation(s)
- Heinz Grunze
- Psychiatrie Schwäbisch Hall, Schwäbisch Hall, Germany
- Department of Psychiatry, Paracelsus Medical University Nuremberg, Nuremberg, Germany
| |
Collapse
|
30
|
Knouse MC, Deutschmann AU, Nenov MN, Wimmer ME, Briand LA. Sex differences in pre- and post-synaptic glutamate signaling in the nucleus accumbens core. Biol Sex Differ 2023; 14:52. [PMID: 37596655 PMCID: PMC10439632 DOI: 10.1186/s13293-023-00537-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 08/08/2023] [Indexed: 08/20/2023] Open
Abstract
BACKGROUND Glutamate signaling within the nucleus accumbens underlies motivated behavior and is involved in psychiatric disease. Although behavioral sex differences in these processes are well-established, the neural mechanisms driving these differences are largely unexplored. In these studies, we examine potential sex differences in synaptic plasticity and excitatory transmission within the nucleus accumbens core. Further understanding of baseline sex differences in reward circuitry will shed light on potential mechanisms driving behavioral differences in motivated behavior and psychiatric disease. METHODS Behaviorally naïve adult male and female Long-Evans rats, C57Bl/6J mice, and constitutive PKMζ knockout mice were killed and tissue containing the nucleus accumbens core was collected for ex vivo slice electrophysiology experiments. Electrophysiology recordings examined baseline sex differences in synaptic plasticity and transmission within this region and the potential role of PKMζ in long-term depression. RESULTS Within the nucleus accumbens core, both female mice and rats exhibit higher AMPA/NMDA ratios compared to male animals. Further, female mice have a larger readily releasable pool of glutamate and lower release probability compared to male mice. No significant sex differences were detected in spontaneous excitatory postsynaptic current amplitude or frequency. Finally, the threshold for induction of long-term depression was lower for male animals than females, an effect that appears to be mediated, in part, by PKMζ. CONCLUSIONS We conclude that there are baseline sex differences in synaptic plasticity and excitatory transmission in the nucleus accumbens core. Our data suggest there are sex differences at multiple levels in this region that should be considered in the development of pharmacotherapies to treat psychiatric illnesses such as depression and substance use disorder.
Collapse
Affiliation(s)
- Melissa C Knouse
- Department of Psychology, Temple University, Weiss Hall, 1701 North 13th Street, Philadelphia, PA, 19122, USA
| | - Andre U Deutschmann
- Department of Psychology, Temple University, Weiss Hall, 1701 North 13th Street, Philadelphia, PA, 19122, USA
| | - Miroslav N Nenov
- Department of Psychology, Temple University, Weiss Hall, 1701 North 13th Street, Philadelphia, PA, 19122, USA
| | - Mathieu E Wimmer
- Department of Psychology, Temple University, Weiss Hall, 1701 North 13th Street, Philadelphia, PA, 19122, USA
| | - Lisa A Briand
- Department of Psychology, Temple University, Weiss Hall, 1701 North 13th Street, Philadelphia, PA, 19122, USA.
- Neuroscience Program, Temple University, Weiss Hall, 1701 North 13th Street, Philadelphia, PA, 19122, USA.
| |
Collapse
|
31
|
Favoretto CA, Bertagna NB, Righi T, Rodolpho BT, Anjos-Santos A, Silva FBR, Bianchi PC, Cruz FC. Impacts of maternal separation stress on ethanol-related responses, anxiety- and depressive-like behaviors in adolescent mice. Neurosci Lett 2023; 809:137295. [PMID: 37182574 DOI: 10.1016/j.neulet.2023.137295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 04/18/2023] [Accepted: 05/08/2023] [Indexed: 05/16/2023]
Abstract
The present work evaluated the consequences of chronic maternal separation (MS), an animal model of early-life stress, on ethanol intake and striatal Fos expression induced by ethanol consumption. Furthermore, we analyzed MS impacts on anxiety- and depressive-like behaviors and on locomotor and plasma corticosterone responses to intraperitoneal treatment with ethanol in adolescent mice. For that, male and female C57BL/6J mice were exposed or not to MS stress, for 3 h per day, from postnatal day (PND) 1 to 14, and submitted to behavioral tests from PND 28. In Experiment 1, MS and control groups of mice were submitted to an involuntary ethanol intake protocol, and striatal Fos expression following ethanol exposure was analyzed. In Experiment 2, mice behavior was assessed in elevated plus-maze, sucrose splash, saccharin preference, and open field tests. Locomotor and plasma corticosterone responses induced by a systemic dose of ethanol (1.75 g/kg) were also evaluated. Our results demonstrated that MS increased ethanol intake only in an acute manner and did not impact ethanol-induced Fos expression in the dorsal striatum and nucleus accumbens (NAc) core and shell subregions. MS did not change the parameters analyzed during elevated plus-maze, sucrose splash, preference for saccharin, and open field tests. MS did not affect locomotor activity following ethanol injection nor plasma corticosterone response to the drug. Thus, our data showed that MS transiently increased ethanol intake. However, early-life stress did not impact Fos, locomotor, or plasma corticosterone responses to the drug. In addition, MS did not affect anxiety- and depressive-like behaviors in adolescent mice.
Collapse
Affiliation(s)
- C A Favoretto
- Molecular and Behavioral Neuroscience Laboratory, Pharmacology Department, Universidade Federal de São Paulo, São Paulo, Brazil
| | - N B Bertagna
- Molecular and Behavioral Neuroscience Laboratory, Pharmacology Department, Universidade Federal de São Paulo, São Paulo, Brazil
| | - T Righi
- Molecular and Behavioral Neuroscience Laboratory, Pharmacology Department, Universidade Federal de São Paulo, São Paulo, Brazil
| | - B T Rodolpho
- Molecular and Behavioral Neuroscience Laboratory, Pharmacology Department, Universidade Federal de São Paulo, São Paulo, Brazil
| | - A Anjos-Santos
- Molecular and Behavioral Neuroscience Laboratory, Pharmacology Department, Universidade Federal de São Paulo, São Paulo, Brazil
| | - F B R Silva
- Molecular and Behavioral Neuroscience Laboratory, Pharmacology Department, Universidade Federal de São Paulo, São Paulo, Brazil
| | - P C Bianchi
- Molecular and Behavioral Neuroscience Laboratory, Pharmacology Department, Universidade Federal de São Paulo, São Paulo, Brazil
| | - F C Cruz
- Molecular and Behavioral Neuroscience Laboratory, Pharmacology Department, Universidade Federal de São Paulo, São Paulo, Brazil.
| |
Collapse
|
32
|
Ghosal S, Gebara E, Ramos-Fernández E, Chioino A, Grosse J, Guillot de Suduiraut I, Zanoletti O, Schneider B, Zorzano A, Astori S, Sandi C. Mitofusin-2 in nucleus accumbens D2-MSNs regulates social dominance and neuronal function. Cell Rep 2023; 42:112776. [PMID: 37440411 DOI: 10.1016/j.celrep.2023.112776] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 05/14/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023] Open
Abstract
The nucleus accumbens (NAc) is a brain hub regulating motivated behaviors, including social competitiveness. Mitochondrial function in the NAc links anxiety with social competitiveness, and the mitochondrial fusion protein mitofusin 2 (Mfn2) in NAc neurons regulates anxiety-related behaviors. However, it remains unexplored whether accumbal Mfn2 levels also affect social behavior and whether Mfn2 actions in the emotional and social domain are driven by distinct cell types. Here, we found that subordinate-prone highly anxious rats show decreased accumbal Mfn2 levels and that Mfn2 overexpression promotes dominant behavior. In mice, selective Mfn2 downregulation in NAc dopamine D2 receptor-expressing medium spiny neurons (D2-MSNs) induced social subordination, accompanied by decreased accumbal mitochondrial functions and decreased excitability in D2-MSNs. Instead, D1-MSN-targeted Mfn2 downregulation affected competitive ability only transiently and likely because of an increase in anxiety-like behaviors. Our results assign dissociable cell-type specific roles to Mfn2 in the NAc in modulating social dominance and anxiety.
Collapse
Affiliation(s)
- Sriparna Ghosal
- Laboratory of Behavioral Genetics, Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Elias Gebara
- Laboratory of Behavioral Genetics, Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Eva Ramos-Fernández
- Laboratory of Behavioral Genetics, Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Alessandro Chioino
- Laboratory of Behavioral Genetics, Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Jocelyn Grosse
- Laboratory of Behavioral Genetics, Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Isabelle Guillot de Suduiraut
- Laboratory of Behavioral Genetics, Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Olivia Zanoletti
- Laboratory of Behavioral Genetics, Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Bernard Schneider
- Bertarelli Platform for Gene Therapy, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1202 Geneva, Switzerland
| | - Antonio Zorzano
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain; Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Simone Astori
- Laboratory of Behavioral Genetics, Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland.
| | - Carmen Sandi
- Laboratory of Behavioral Genetics, Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland.
| |
Collapse
|
33
|
Favoretto CA, Pagliusi M, Morais-Silva G. Involvement of brain cell phenotypes in stress-vulnerability and resilience. Front Neurosci 2023; 17:1175514. [PMID: 37476833 PMCID: PMC10354562 DOI: 10.3389/fnins.2023.1175514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 06/19/2023] [Indexed: 07/22/2023] Open
Abstract
Stress-related disorders' prevalence is epidemically increasing in modern society, leading to a severe impact on individuals' well-being and a great economic burden on public resources. Based on this, it is critical to understand the mechanisms by which stress induces these disorders. The study of stress made great progress in the past decades, from deeper into the hypothalamic-pituitary-adrenal axis to the understanding of the involvement of a single cell subtype on stress outcomes. In fact, many studies have used state-of-the-art tools such as chemogenetic, optogenetic, genetic manipulation, electrophysiology, pharmacology, and immunohistochemistry to investigate the role of specific cell subtypes in the stress response. In this review, we aim to gather studies addressing the involvement of specific brain cell subtypes in stress-related responses, exploring possible mechanisms associated with stress vulnerability versus resilience in preclinical models. We particularly focus on the involvement of the astrocytes, microglia, medium spiny neurons, parvalbumin neurons, pyramidal neurons, serotonergic neurons, and interneurons of different brain areas in stress-induced outcomes, resilience, and vulnerability to stress. We believe that this review can shed light on how diverse molecular mechanisms, involving specific receptors, neurotrophic factors, epigenetic enzymes, and miRNAs, among others, within these brain cell subtypes, are associated with the expression of a stress-susceptible or resilient phenotype, advancing the understanding/knowledge on the specific machinery implicate in those events.
Collapse
Affiliation(s)
- Cristiane Aparecida Favoretto
- Molecular and Behavioral Neuroscience Laboratory, Department of Pharmacology, Universidade Federal de São Paulo (UNIFESP), São Paulo, São Paulo, Brazil
| | - Marco Pagliusi
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
| | - Gessynger Morais-Silva
- Laboratory of Pharmacology, Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| |
Collapse
|
34
|
Zhang M, Luo Y, Wang J, Sun Y, Xie B, Zhang L, Cong B, Ma C, Wen D. Roles of nucleus accumbens shell small-conductance calcium-activated potassium channels in the conditioned fear freezing. J Psychiatr Res 2023; 163:180-194. [PMID: 37216772 DOI: 10.1016/j.jpsychires.2023.05.057] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 04/27/2023] [Accepted: 05/15/2023] [Indexed: 05/24/2023]
Abstract
BACKGROUND Posttraumatic stress disorder (PTSD), a psychiatric disorder caused by stressful events, is characterized by long-lasting fear memory. The nucleus accumbens shell (NAcS) is a key brain region that regulates fear-associated behavior. Small-conductance calcium-activated potassium channels (SK channels) play a key role in regulating the excitability of NAcS medium spiny neurons (MSNs) but their mechanisms of action in fear freezing are unclear. METHOD We established an animal model of traumatic memory using conditioned fear freezing paradigm, and investigated the alterations in SK channels of NAc MSNs subsequent to fear conditioning in mice. We then utilized an adeno-associated virus (AAV) transfection system to overexpress the SK3 subunit and explore the function of the NAcS MSNs SK3 channel in conditioned fear freezing. RESULTS Fear conditioning activated NAcS MSNs with enhanced excitability and reduced the SK channel-mediated medium after-hyperpolarization (mAHP) amplitude. The expression of NAcS SK3 were also reduced time-dependently. The overexpression of NAcS SK3 impaired conditioned fear consolidation without affecting conditioned fear expression, and blocked fear conditioning-induced alterations in NAcS MSNs excitability and mAHP amplitude. Additionally, the amplitudes of mEPSC, AMPAR/NMDAR ratio, and membrane surface GluA1/A2 expression in NAcS MSNs was increased by fear conditioning and returned to normal levels upon SK3 overexpression, indicating that fear conditioning-induced decrease of SK3 expression caused postsynaptic excitation by facilitating AMPAR transmission to the membrane. CONCLUSION These findings show that the NAcS MSNs SK3 channel plays a critical role in conditioned fear consolidation and that it may influence PTSD pathogenesis, making it a potential therapeutic target against PTSD.
Collapse
Affiliation(s)
- Minglong Zhang
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Hebei Province, Shijiazhuang, 050017, PR China
| | - Yixiao Luo
- Hunan Province People's Hospital, The First-Affiliated Hospital of Hunan Normal University, Changsha, 410081, PR China
| | - Jian Wang
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Hebei Province, Shijiazhuang, 050017, PR China
| | - Yufei Sun
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Hebei Province, Shijiazhuang, 050017, PR China
| | - Bing Xie
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Hebei Province, Shijiazhuang, 050017, PR China
| | - Ludi Zhang
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Hebei Province, Shijiazhuang, 050017, PR China
| | - Bin Cong
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Hebei Province, Shijiazhuang, 050017, PR China
| | - Chunling Ma
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Hebei Province, Shijiazhuang, 050017, PR China.
| | - Di Wen
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Hebei Province, Shijiazhuang, 050017, PR China.
| |
Collapse
|
35
|
Francis TC, Porcu A. Emotionally clocked out: cell-type specific regulation of mood and anxiety by the circadian clock system in the brain. Front Mol Neurosci 2023; 16:1188184. [PMID: 37441675 PMCID: PMC10333695 DOI: 10.3389/fnmol.2023.1188184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 05/29/2023] [Indexed: 07/15/2023] Open
Abstract
Circadian rhythms are self-sustained oscillations of biological systems that allow an organism to anticipate periodic changes in the environment and optimally align feeding, sleep, wakefulness, and the physiological and biochemical processes that support them within the 24 h cycle. These rhythms are generated at a cellular level by a set of genes, known as clock genes, which code for proteins that inhibit their own transcription in a negative feedback loop and can be perturbed by stress, a risk factor for the development of mood and anxiety disorders. A role for circadian clocks in mood and anxiety has been suggested for decades on the basis of clinical observations, and the dysregulation of circadian rhythms is a prominent clinical feature of stress-related disorders. Despite our understanding of central clock structure and function, the effect of circadian dysregulation in different neuronal subtypes in the suprachiasmatic nucleus (SCN), the master pacemaker region, as well as other brain systems regulating mood, including mesolimbic and limbic circuits, is just beginning to be elucidated. In the brain, circadian clocks regulate neuronal physiological functions, including neuronal activity, synaptic plasticity, protein expression, and neurotransmitter release which in turn affect mood-related behaviors via cell-type specific mechanisms. Both animal and human studies have revealed an association between circadian misalignment and mood disorders and suggest that internal temporal desynchrony might be part of the etiology of psychiatric disorders. To date, little work has been conducted associating mood-related phenotypes to cell-specific effects of the circadian clock disruptions. In this review, we discuss existing literature on how clock-driven changes in specific neuronal cell types might disrupt phase relationships among cellular communication, leading to neuronal circuit dysfunction and changes in mood-related behavior. In addition, we examine cell-type specific circuitry underlying mood dysfunction and discuss how this circuitry could affect circadian clock. We provide a focus for future research in this area and a perspective on chronotherapies for mood and anxiety disorders.
Collapse
Affiliation(s)
- T. Chase Francis
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, United States
| | - Alessandra Porcu
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, United States
| |
Collapse
|
36
|
Lucantonio F, Li S, Lu J, Roeglin J, Bontempi L, Shields BC, Zarate CA, Tadross MR, Pignatelli M. Ketamine rescues anhedonia by cell-type and input specific adaptations in the Nucleus Accumbens. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.08.544088. [PMID: 37333325 PMCID: PMC10274891 DOI: 10.1101/2023.06.08.544088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Ketamine's role in providing a rapid and sustained antidepressant response, particularly for patients unresponsive to conventional treatments, is increasingly recognized. A core symptom of depression, anhedonia, or the loss of enjoyment or interest in previously pleasurable activities, is known to be significantly alleviated by ketamine. While several hypotheses have been proposed regarding the mechanisms by which ketamine alleviates anhedonia, the specific circuits and synaptic changes responsible for its sustained therapeutic effects are not yet understood. Here, we show that the nucleus accumbens (NAc), a major hub of the reward circuitry, is essential for ketamine's effect in rescuing anhedonia in mice subjected to chronic stress, a critical risk factor in the genesis of depression in humans. Specifically, a single exposure to ketamine rescues stress-induced decreased strength of excitatory synapses on NAc D1 dopamine receptor-expressing medium spiny neurons (D1-MSNs). By using a novel cell-specific pharmacology method, we demonstrate that this cell-type specific neuroadaptation is necessary for the sustained therapeutic effects of ketamine. To test for causal sufficiency, we artificially mimicked ketamine-induced increase in excitatory strength on D1-MSNs and found that this recapitulates the behavioral amelioration induced by ketamine. Finally, to determine the presynaptic origin of the relevant glutamatergic inputs for ketamine-elicited synaptic and behavioral effects, we used a combination of opto- and chemogenetics. We found that ketamine rescues stress-induced reduction in excitatory strength at medial prefrontal cortex and ventral hippocampus inputs to NAc D1-MSNs. Chemogenetically preventing ketamine-evoked plasticity at those unique inputs to the NAc reveals a ketamine-operated input-specific control of hedonic behavior. These results establish that ketamine rescues stress-induced anhedonia via cell-type-specific adaptations as well as information integration in the NAc via discrete excitatory synapses.
Collapse
|
37
|
Liu GX, Li ZL, Lin SY, Wang Q, Luo ZY, Wu K, Zhou YL, Ning YP. Mapping metabolite change in the mouse brain after esketamine injection by ambient mass spectrometry imaging and metabolomics. Front Psychiatry 2023; 14:1109344. [PMID: 37234214 PMCID: PMC10206402 DOI: 10.3389/fpsyt.2023.1109344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 03/20/2023] [Indexed: 05/27/2023] Open
Abstract
Ketamine is a new, fast, and effective antidepression treatment method; however, the possible dissociation effects, sensory changes, abuse risk, and the inability to accurately identify whether patients have a significant response to ketamine limit its clinical use. Further exploration of the antidepressant mechanisms of ketamine will contribute to its safe and practical application. Metabolites, the products of upstream gene expression and protein regulatory networks, play an essential role in various physiological and pathophysiological processes. In traditional metabonomics it is difficult to achieve the spatial localization of metabolites, which limits the further analysis of brain metabonomics by researchers. Here, we used a metabolic network mapping method called ambient air flow-assisted desorption electrospray ionization (AFADESI)-mass spectrometry imaging (MSI). We found the main changes in glycerophospholipid metabolism around the brain and sphingolipid metabolism changed mainly in the globus pallidus, which showed the most significant metabolite change after esketamine injection. The spatial distribution of metabolic changes was evaluated in the whole brain, and the potential mechanism of esketamine's antidepressant effect was explored in this research.
Collapse
Affiliation(s)
- Guan-Xi Liu
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou Huiai Hospital, Guangzhou, China
| | - Ze-Lin Li
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou Huiai Hospital, Guangzhou, China
| | - Su-Yan Lin
- The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qian Wang
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou Huiai Hospital, Guangzhou, China
| | - Zheng-Yi Luo
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou Huiai Hospital, Guangzhou, China
| | - Kai Wu
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, China
| | - Yan-Lin Zhou
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou Huiai Hospital, Guangzhou, China
| | - Yu-Ping Ning
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou Huiai Hospital, Guangzhou, China
| |
Collapse
|
38
|
Torres-Berrío A, Estill M, Ramakrishnan A, Kronman H, Patel V, Minier-Toribio A, Issler O, Browne CJ, Parise EM, van der Zee Y, Walker D, Martínez-Rivera FJ, Lardner CK, Cuttoli RDD, Russo SJ, Shen L, Sidoli S, Nestler EJ. Monomethylation of Lysine 27 at Histone 3 Confers Lifelong Susceptibility to Stress. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.08.539829. [PMID: 37214877 PMCID: PMC10197593 DOI: 10.1101/2023.05.08.539829] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Histone post-translational modifications are critical for mediating persistent alterations in gene expression. By combining unbiased proteomics profiling, and genome-wide approaches, we uncovered a role for mono-methylation of lysine 27 at histone H3 (H3K27me1) in the enduring effects of stress. Specifically, mice exposed to early life stress (ELS) or to chronic social defeat stress (CSDS) in adulthood displayed increased enrichment of H3K27me1, and transient decreases in H3K27me2, in the nucleus accumbens (NAc), a key brain-reward region. Stress induction of H3K27me1 was mediated by the VEFS domain of SUZ12, a core subunit of the polycomb repressive complex-2, which is induced by chronic stress and controls H3K27 methylation patterns. Overexpression of the VEFS domain led to social, emotional, and cognitive abnormalities, and altered excitability of NAc D1 mediums spiny neurons. Together, we describe a novel function of H3K27me1 in brain and demonstrate its role as a "chromatin scar" that mediates lifelong stress susceptibility.
Collapse
|
39
|
Jung C, Kim J, Choi S, Seo YK, Park KS, Choi Y, Choi SM, Kwon O, Song Y, Kim J, Cho G, Cheong C, Napadow V, Jung IC, Kim H. Attenuated facial movement in depressed women is associated with symptom severity, and nucleus accumbens functional connectivity. Neuroimage Clin 2023; 38:103380. [PMID: 36989853 PMCID: PMC10074984 DOI: 10.1016/j.nicl.2023.103380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 03/12/2023] [Accepted: 03/13/2023] [Indexed: 03/18/2023]
Abstract
It is assumed that mood can be inferred from one's facial expression. While this association may prove to be an objective marker for mood disorders, few studies have explicitly evaluated this linkage. The facial movement responses of women with major depressive disorder (n = 66) and healthy controls (n = 46) under emotional stimuli were recorded using webcam. To boost facial movements, the naturalistic audio-visual stimuli were presented. To assess consistent global patterns across facial movements, scores for facial action units were extracted and projected onto principal component using principal component analysis. The associations of component for facial movements with functional brain circuitry was also investigated. Clusters of mouth movements, such as lip press and stretch, identified by principal component analysis, were attenuated in depressive patients compared to those in healthy controls. This component of facial movements was associated with depressive symptoms, and the strengths of resting brain functional connectivity between nucleus accumbens and both posterior insular cortex and thalamus. The evaluation of facial movements may prove to be a promising quantitative marker for assessing depressive symptoms and their underlying brain circuitry.
Collapse
Affiliation(s)
- Changjin Jung
- Division of KM Science Research, Korea Institute of Oriental Medicine, Daejeon, South Korea; Department of Electronics and Information Convergence Engineering, Kyung Hee University, Gyeonggi, South Korea
| | - Jieun Kim
- Division of KM Science Research, Korea Institute of Oriental Medicine, Daejeon, South Korea
| | - Sunyoung Choi
- Division of KM Science Research, Korea Institute of Oriental Medicine, Daejeon, South Korea
| | - Young Kyung Seo
- Department of Oriental Neuropsychiatry, College of Korean Medicine, Daejeon University, Daejeon, South Korea
| | - Ki-Sun Park
- Division of KM Science Research, Korea Institute of Oriental Medicine, Daejeon, South Korea
| | - Youngeun Choi
- Division of KM Science Research, Korea Institute of Oriental Medicine, Daejeon, South Korea
| | - Sung Min Choi
- Division of KM Science Research, Korea Institute of Oriental Medicine, Daejeon, South Korea
| | - Ojin Kwon
- Division of KM Science Research, Korea Institute of Oriental Medicine, Daejeon, South Korea
| | - Youngkyu Song
- Bio-Chemical Analysis Team, Ochang Center, Korea Basic Science Institute, Chungbuk, South Korea
| | - Jooyeon Kim
- Bio-Chemical Analysis Team, Ochang Center, Korea Basic Science Institute, Chungbuk, South Korea
| | - Gyunggoo Cho
- Bio-Chemical Analysis Team, Ochang Center, Korea Basic Science Institute, Chungbuk, South Korea
| | - Chaejoon Cheong
- Bio-Chemical Analysis Team, Ochang Center, Korea Basic Science Institute, Chungbuk, South Korea
| | - Vitaly Napadow
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA; Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Network, Harvard Medical School, Charlestown, MA, USA
| | - In Chul Jung
- Department of Oriental Neuropsychiatry, College of Korean Medicine, Daejeon University, Daejeon, South Korea; Department of Neuropsychiatry, Daejeon Korean Medicine Hospital of Daejeon University, Daejeon, South Korea.
| | - Hyungjun Kim
- Division of KM Science Research, Korea Institute of Oriental Medicine, Daejeon, South Korea.
| |
Collapse
|
40
|
Fox ME, Wulff AB, Franco D, Choi EY, Calarco CA, Engeln M, Turner MD, Chandra R, Rhodes VM, Thompson SM, Ament SA, Lobo MK. Adaptations in Nucleus Accumbens Neuron Subtypes Mediate Negative Affective Behaviors in Fentanyl Abstinence. Biol Psychiatry 2023; 93:489-501. [PMID: 36435669 PMCID: PMC9931633 DOI: 10.1016/j.biopsych.2022.08.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/25/2022] [Accepted: 08/24/2022] [Indexed: 01/18/2023]
Abstract
BACKGROUND Opioid discontinuation generates a withdrawal syndrome marked by increased negative affect. Increased symptoms of anxiety and dysphoria during opioid discontinuation are significant barriers to achieving long-term abstinence in opioid-dependent individuals. While adaptations in the nucleus accumbens are implicated in opioid abstinence syndrome, the precise neural mechanisms are poorly understood. Additionally, our current knowledge is limited to changes following natural and semisynthetic opioids, despite recent increases in synthetic opioid use and overdose. METHODS We used a combination of cell subtype-specific viral labeling and electrophysiology in male and female mice to investigate structural and functional plasticity in nucleus accumbens medium spiny neuron (MSN) subtypes after fentanyl abstinence. We characterized molecular adaptations after fentanyl abstinence with subtype-specific RNA sequencing and weighted gene co-expression network analysis. We used viral-mediated gene transfer to manipulate the molecular signature of fentanyl abstinence in D1-MSNs. RESULTS Here, we show that fentanyl abstinence increases anxiety-like behavior, decreases social interaction, and engenders MSN subtype-specific plasticity in both sexes. D1-MSNs, but not D2-MSNs, exhibit dendritic atrophy and an increase in excitatory drive. We identified a cluster of coexpressed dendritic morphology genes downregulated selectively in D1-MSNs that are transcriptionally coregulated by E2F1. E2f1 expression in D1-MSNs protects against loss of dendritic complexity, altered physiology, and negative affect-like behaviors caused by fentanyl abstinence. CONCLUSIONS Our findings indicate that fentanyl abstinence causes unique structural, functional, and molecular changes in nucleus accumbens D1-MSNs that can be targeted to alleviate negative affective symptoms during abstinence.
Collapse
Affiliation(s)
- Megan E Fox
- Departments of Anesthesiology and Pharmacology, Penn State College of Medicine, Hershey, Pennsylvania; Department of Anatomy & Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland.
| | - Andreas B Wulff
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Daniela Franco
- Department of Anatomy & Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Eric Y Choi
- Department of Anatomy & Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Cali A Calarco
- Department of Anatomy & Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Michel Engeln
- Department of Anatomy & Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Makeda D Turner
- Department of Anatomy & Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Ramesh Chandra
- Department of Anatomy & Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Victoria M Rhodes
- Department of Anatomy & Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Scott M Thompson
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland; Department of Psychiatry, University of Maryland School of Medicine, Baltimore, Maryland
| | - Seth A Ament
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland; Department of Psychiatry, University of Maryland School of Medicine, Baltimore, Maryland
| | - Mary Kay Lobo
- Department of Anatomy & Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland; Department of Psychiatry, University of Maryland School of Medicine, Baltimore, Maryland.
| |
Collapse
|
41
|
Jiang Y, Zou M, Wang Y, Wang Y. Nucleus accumbens in the pathogenesis of major depressive disorder: A brief review. Brain Res Bull 2023; 196:68-75. [PMID: 36889362 DOI: 10.1016/j.brainresbull.2023.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 02/16/2023] [Accepted: 03/05/2023] [Indexed: 03/08/2023]
Abstract
Major depressive disorder (MDD) is the most prevalent mental disorder characterized by anhedonia, loss of motivation, avolition, behavioral despair and cognitive abnormalities. Despite substantial advancements in the pathophysiology of MDD in recent years, the pathogenesis of this disorder is not fully understood. Meanwhile,the treatment of MDD with currently available antidepressants is inadequate, highlighting the urgent need for clarifying the pathophysiology of MDD and developing novel therapeutics. Extensive studies have demonstrated the involvement of nuclei such as the prefrontal cortex (PFC), hippocampus (HIP), nucleus accumbens (NAc), hypothalamus, etc., in MDD. NAc,a region critical for reward and motivation,dysregulation of its activity seems to be a hallmark of this mood disorder. In this paper, we present a review of NAc related circuits, cellular and molecular mechanisms underlying MDD and share an analysis of the gaps in current research and possible future research directions.
Collapse
Affiliation(s)
- Yajie Jiang
- Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China; Hunan Key Laboratory of Traditional Chinese Medicine Prevention & Treatment of Depressive Diseases, Changsha, China
| | - Manshu Zou
- Hunan Key Laboratory of Traditional Chinese Medicine Prevention & Treatment of Depressive Diseases, Changsha, China
| | - Yeqing Wang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Yuhong Wang
- Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China; Hunan Key Laboratory of Traditional Chinese Medicine Prevention & Treatment of Depressive Diseases, Changsha, China.
| |
Collapse
|
42
|
Wu M, Li A, Guo Y, Cao F, You S, Cao J, Mi W, Tong L. GABAergic neurons in the nucleus accumbens core mediate the antidepressant effects of sevoflurane. Eur J Pharmacol 2023; 946:175627. [PMID: 36868292 DOI: 10.1016/j.ejphar.2023.175627] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 02/26/2023] [Accepted: 02/27/2023] [Indexed: 03/05/2023]
Abstract
General anaesthetics have been widely applied to induce reversible loss and recovery of consciousness in clinical practice and have been shown to have reliably safe profiles. Since brief exposure to general anaesthetics can result in long-lasting and global changes in neuronal structures and function, these drugs also exhibit strong therapeutic potential for mood disorders. Preliminary and clinical studies have suggested that the inhalational anaesthetic drug sevoflurane might relieve symptoms of depression. However, the antidepressant effects of sevoflurane and the underlying mechanisms remain elusive. In the present study, we confirmed that the antidepressant and anxiolytic effects of inhaling 2.5% sevoflurane for 30 min were comparable to those of ketamine and could be sustained for 48 h. Activation of GABAergic (γ-aminobutyric acidergic) neurons in the nucleus accumbens core by chemogenetics was shown to mimic the antidepressant effects of inhaled sevoflurane, whereas inhibition of these neurons significantly prevented these effects. Considered together, these results suggested that sevoflurane might exert rapid and long-lasting antidepressant effects via modulation of neuronal activities in the nucleus accumbens core nucleus.
Collapse
Affiliation(s)
- Meng Wu
- Anesthesia and Operation Center, The First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China; Department of Anesthesiology, Peking University Shougang Hospital, Beijing, 100144, China
| | - Ao Li
- Anesthesia and Operation Center, The First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
| | - Yongxin Guo
- Anesthesia and Operation Center, The First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
| | - Fuyang Cao
- Department of Anesthesia, The Sixth Medical Center of Chinese PLA General Hospital, Beijing, 100048, China
| | - Shaohua You
- Department of Pain Medicine, The First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
| | - Jiangbei Cao
- Anesthesia and Operation Center, The First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
| | - Weidong Mi
- Anesthesia and Operation Center, The First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China.
| | - Li Tong
- Anesthesia and Operation Center, The First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
43
|
Reorganization of Brain Networks as a Substrate of Resilience: An Analysis of Cytochrome c Oxidase Activity in Rats. Neuroscience 2023; 516:75-90. [PMID: 36805003 DOI: 10.1016/j.neuroscience.2023.01.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 01/12/2023] [Accepted: 01/14/2023] [Indexed: 02/18/2023]
Abstract
The unpredictable chronic mild stress (UCMS) model has been used to induce depressive-like symptoms in animal models, showing adequate predictive validity. Our work aims to evaluate the effects of environmental enrichment (EE) on resilience in this experimental model of depression. We also aim to assess changes in brain connectivity using cytochrome c oxidase histochemistry in cerebral regions related to cognitive-affective processes associated with depressive disorder: dorsal hippocampus, prefrontal cortex, amygdala, accumbens, and habenula nuclei. Five groups of rats were used: UCMS, EE, EE + UCMS (enrichment + stress), BG (basal level of brain activity), and CONT (behavioral tests only). We assessed the hedonic responses elicited by sucrose solution using a consumption test; the anxiety level was evaluated using the elevated zero maze test, and the unconditioned fear responses were assessed by the cat odor test. The behavioral results showed that the UCMS protocol induces elevated anhedonia and anxiety. But these responses are attenuated previous exposure to EE. Regarding brain activity, the UCMS group showed greater activity in the habenula compared to the EE + UCMS group. EE induced a functional reorganization of brain activity. The EE + UCMS and UCMS groups showed different patterns of connections between brain regions. Our results showed that EE favors greater resilience and could reduce vulnerability to disorders such as depression and anxiety, modifying metabolic brain activity.
Collapse
|
44
|
Matcha Tea Powder's Antidepressant-like Effect through the Activation of the Dopaminergic System in Mice Is Dependent on Social Isolation Stress. Nutrients 2023; 15:nu15030581. [PMID: 36771286 PMCID: PMC9921318 DOI: 10.3390/nu15030581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/02/2023] [Accepted: 01/17/2023] [Indexed: 01/24/2023] Open
Abstract
Matcha tea powder is believed to have various physiological benefits; however, its detailed mechanism of action has been poorly understood. Here, we investigated whether the mental state of mice, due to social isolation stress, affects the antidepressant-like effect of Matcha tea powder by using the tail suspension test. Oral administration of Matcha tea powder reduced the duration of immobility in the stress-susceptible C57BL/6J strain, but not in BALB/c strain. In C57BL/6J mice, SCH23390, a dopamine D1 receptor blocker, prevented Matcha tea powder from exerting its antidepressant-like effect. Matcha tea powder also increased the number of c-Fos-positive cells in the prefrontal cortex (PFC) region and the nucleus accumbens (NAc) region in C57BL/6J mice, but not in BALB/c mice. In contrast, Matcha tea powder did not change the number of c-Fos-positive cells in the ventral tegmental area (VTA) region. Notably, C57BL/6J mice with a shorter immobility time had a higher number of c-Fos-positive cells in the PFC, NAc, and VTA regions. However, no such correlation was observed in the stress-tolerant BALB/c mice. These results suggest that Matcha tea powder exerts an antidepressant-like effect through the activation of the dopaminergic system including the PFC-NAc-VTA circuit and that mental states are important factors affecting the physiological benefits of Matcha tea powder.
Collapse
|
45
|
Morais-Silva G, Campbell RR, Nam H, Basu M, Pagliusi M, Fox ME, Chan CS, Iñiguez SD, Ament S, Cramer N, Marin MT, Lobo MK. Molecular, Circuit, and Stress Response Characterization of Ventral Pallidum Npas1-Neurons. J Neurosci 2023; 43:405-418. [PMID: 36443000 PMCID: PMC9864552 DOI: 10.1523/jneurosci.0971-22.2022] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 10/31/2022] [Accepted: 11/12/2022] [Indexed: 11/30/2022] Open
Abstract
Altered activity of the ventral pallidum (VP) underlies disrupted motivation in stress and drug exposure. The VP is a very heterogeneous structure composed of many neuron types with distinct physiological properties and projections. Neuronal PAS 1-positive (Npas1+) VP neurons are thought to send projections to brain regions critical for motivational behavior. While Npas1+ neurons have been characterized in the globus pallidus external, there is limited information on these neurons in the VP. To address this limitation, we evaluated the projection targets of the VP Npas1+ neurons and performed RNA-sequencing on ribosome-associated mRNA from VP Npas1+ neurons to determine their molecular identity. Finally, we used a chemogenetic approach to manipulate VP Npas1+ neurons during social defeat stress (SDS) and behavioral tasks related to anxiety and motivation in Npas1-Cre mice. We used a similar approach in females using the chronic witness defeat stress (CWDS). We identified VP Npas1+ projections to the nucleus accumbens, ventral tegmental area, medial and lateral habenula, lateral hypothalamus, thalamus, medial and lateral septum, and periaqueductal gray area. VP Npas1+ neurons displayed distinct translatome representing distinct biological processes. Chemogenetic activation of hM3D(Gq) receptors in VP Npas1+ neurons increased susceptibility to a subthreshold SDS and anxiety-like behavior in the elevated plus maze and open field while the activation of hM4D(Gi) receptors in VP Npas1+ neurons enhanced resilience to chronic SDS and CWDS. Thus, the activity of VP Npas1+ neurons modulates susceptibility to social stressors and anxiety-like behavior. Our studies provide new information on VP Npas1+ neuron circuitry, molecular identity, and their role in stress response.SIGNIFICANCE STATEMENT The ventral pallidum (VP) is a structure connected to both reward-related and aversive brain centers. It is a key brain area that signals the hedonic value of natural rewards. Disruption in the VP underlies altered motivation in stress and substance use disorder. However, VP is a very heterogeneous area with multiple neuron subtypes. This study characterized the projection pattern and molecular signatures of VP Neuronal PAS 1-positive (Npas1+) neurons. We further used tools to alter receptor signaling in VP Npas1+ neurons in stress to demonstrate a role for these neurons in stress behavioral outcomes. Our studies have implications for understanding brain cell type identities and their role in brain disorders, such as depression, a serious disorder that is precipitated by stressful events.
Collapse
Affiliation(s)
- Gessynger Morais-Silva
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland 21201
- Sao Paulo State University (UNESP), School of Pharmaceutical Sciences, Laboratory of Pharmacology, Araraquara, Sao Paulo 14800903, Brazil
- Joint Graduate Program in Physiological Sciences, Federal University of São Carlos/Sao Paulo State University, CEP 13565-905, São Carlos/Araraquara, Brazil
| | - Rianne R Campbell
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Hyungwoo Nam
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Mahashweta Basu
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, Maryland 21201
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Marco Pagliusi
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland 21201
- Department of Structural and Functional Biology, State University of Campinas, SP-13083-872, Campinas, Brazil
| | - Megan E Fox
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - C Savio Chan
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| | - Sergio D Iñiguez
- Department of Psychology, University of Texas at El Paso, El Paso, Texas 79902
| | - Seth Ament
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, Maryland 21201
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Nathan Cramer
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Marcelo Tadeu Marin
- Sao Paulo State University (UNESP), School of Pharmaceutical Sciences, Laboratory of Pharmacology, Araraquara, Sao Paulo 14800903, Brazil
- Joint Graduate Program in Physiological Sciences, Federal University of São Carlos/Sao Paulo State University, CEP 13565-905, São Carlos/Araraquara, Brazil
| | - Mary Kay Lobo
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| |
Collapse
|
46
|
Thompson SM. Plasticity of synapses and reward circuit function in the genesis and treatment of depression. Neuropsychopharmacology 2023; 48:90-103. [PMID: 36057649 PMCID: PMC9700729 DOI: 10.1038/s41386-022-01422-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/18/2022] [Accepted: 08/01/2022] [Indexed: 11/08/2022]
Abstract
What changes in brain function cause the debilitating symptoms of depression? Can we use the answers to this question to invent more effective, faster acting antidepressant drug therapies? This review provides an overview and update of the converging human and preclinical evidence supporting the hypothesis that changes in the function of excitatory synapses impair the function of the circuits they are embedded in to give rise to the pathological changes in mood, hedonic state, and thought processes that characterize depression. The review also highlights complementary human and preclinical findings that classical and novel antidepressant drugs relieve the symptoms of depression by restoring the functions of these same synapses and circuits. These findings offer a useful path forward for designing better antidepressant compounds.
Collapse
Affiliation(s)
- Scott M Thompson
- Department of Psychiatry, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, 80045, CO, USA.
| |
Collapse
|
47
|
Wang J, Lai S, Zhou T, Xia Z, Li W, Sha W, Liu J, Chen Y. Progranulin from different gliocytes in the nucleus accumbens exerts distinct roles in FTD- and neuroinflammation-induced depression-like behaviors. J Neuroinflammation 2022; 19:318. [PMID: 36581897 PMCID: PMC9798954 DOI: 10.1186/s12974-022-02684-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 12/23/2022] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Neuroinflammation in the nucleus accumbens (NAc) is well known to influence the progression of depression. However, the molecular mechanisms triggering NAc neuroinflammation in depression have not been fully elucidated. Progranulin (PGRN) is a multifunctional growth factor that is linked to the innate immune response and inflammation, and PGRN plays a key role in neurodegenerative diseases such as frontotemporal dementia (FTD). Here, the purpose of this study was to validate whether PGRN was involved in the NAc neuroinflammation-promoted depressive-like phenotype. METHODS A NAc neuroinflammation-relevant depression-like model was established using wild-type (WT) and PGRN-knockout (KO) mice after NAc injection with lipopolysaccharide (LPS), and various behavioral tests related to cognition, social recognition, depression and anxiety were performed with WT and PGRNKO mice with or without NAc immune challenge. RT‒PCR, ELISA, western blotting and immunofluorescence staining were used to determine the expression and function of PGRN in the neuroinflammatory reaction in the NAc after LPS challenge. The morphology of neurons in the NAc from WT and PGRNKO mice under conditions of NAc neuroinflammation was analyzed using Golgi-Cox staining, followed by Sholl analyses. The potential signaling pathways involved in NAc neuroinflammation in PGRNKO mice were investigated by western blotting. RESULTS Under normal conditions, PGRN deficiency induced FTD-like behaviors in mice and astrocyte activation in the NAc, promoted the release of the inflammatory cytokines interleukin (IL)-6 and IL-10 and increased dendritic complexity and synaptic protein BDNF levels in the NAc. However, NAc neuroinflammation enhanced PGRN expression, which was located in astrocytes and microglia within the NAc, and PGRN deficiency in mice alleviated NAc neuroinflammation-elicited depression-like behaviors, seemingly inhibiting astrocyte- and microglia-related inflammatory reactions and neuroplasticity complexity in the NAc via the p38 and nuclear factor of kappa (NF-κB) signaling pathways present in the NAc after neuroinflammation. CONCLUSIONS Our results suggest that PGRN exerts distinct function on different behaviors, showing protective roles in the FTD-like behavior and detrimental effects on the neuroinflammation-related depression-like behavior, resulting from mediating astrocyte and microglial functions from the NAc in different status.
Collapse
Affiliation(s)
- Jing Wang
- Department of Immunology and Pathogenic Biology, College of Basic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, People's Republic of China
| | - Simin Lai
- Department of Immunology and Pathogenic Biology, College of Basic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, People's Republic of China
| | - Ting Zhou
- Department of Laboratory Medicine, The Second Affiliated Hospital, Xi'an Jiaotong University Health Science Center, Xi'an, People's Republic of China
| | - Zhihao Xia
- Department of Immunology and Pathogenic Biology, College of Basic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, People's Republic of China
| | - Weina Li
- Department of Immunology and Pathogenic Biology, College of Basic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, People's Republic of China
| | - Wenqi Sha
- Department of Immunology and Pathogenic Biology, College of Basic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, People's Republic of China
| | - Jingjie Liu
- Department of Neurology, The Second Affiliated Hospital, Xi'an Jiaotong University Health Science Center, Xi'an, People's Republic of China
| | - Yanjiong Chen
- Department of Immunology and Pathogenic Biology, College of Basic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, People's Republic of China.
| |
Collapse
|
48
|
Zou W, Guo Z, Suo L, Zhu J, He H, Li X, Wang K, Chen R. Nucleus accumbens shell modulates seizure propagation in a mouse temporal lobe epilepsy model. Front Cell Dev Biol 2022; 10:1031872. [PMID: 36589737 PMCID: PMC9797862 DOI: 10.3389/fcell.2022.1031872] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
Temporal lobe epilepsy (TLE) is the most common form of epilepsy with focal seizures which in some conditions can develop into secondarily generalized tonic-clonic seizures by the propagation of epileptic activities in the temporal lobe to other brain areas. The nucleus accumbens (NAc) has been suggested as a treatment target for TLE as accumulating evidence indicates that the NAc, especially its shell, participates in the process of epileptic seizures of patients and animal models with TLE. The majority of neurons in the NAc are GABAergic medium spiny neurons (MSNs) expressing dopamine receptor D1 (D1R) or dopamine receptor D2 (D2R). However, the direct evidence of the NAc shell participating in the propagation of TLE seizures is missing, and its cell type-specific modulatory roles in TLE seizures are unknown. In this study, we microinjected kainic acid into basolateral amygdala (BLA) to make a mouse model of TLE with initial focal seizures and secondarily generalized seizures (SGSs). We found that TLE seizures caused robust c-fos expression in the NAc shell and increased neuronal excitability of D1R-expressing MSN (D1R-MSN) and D2R-expressing MSN (D2R-MSN). Pharmacological inhibition of the NAc shell alleviated TLE seizures by reducing the number of SGSs and seizure stages. Cell-type-specific chemogenetic inhibition of either D1R-MSN or D2R-MSN showed similar effects with pharmacological inhibition of the NAc shell. Both pharmacological and cell-type-specific chemogenetic inhibition of the NAc shell did not alter the onset time of focal seizures. Collectively, these findings indicate that the NAc shell and its D1R-MSN or D2R-MSN mainly participate in the propagation and generalization of the TLE seizures.
Collapse
Affiliation(s)
- Wenjie Zou
- Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Zhipeng Guo
- Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Longge Suo
- Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Jianping Zhu
- Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Haiyang He
- Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Xiufeng Li
- Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Kewan Wang
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China,*Correspondence: Kewan Wang, ; Rongqing Chen,
| | - Rongqing Chen
- Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China,Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou, China,*Correspondence: Kewan Wang, ; Rongqing Chen,
| |
Collapse
|
49
|
Deng Q, Zhang S, Yang P, Dong W, Wang J, Chen J, Wang F, Long L. A thalamic circuit facilitates stress susceptibility via melanocortin 4 receptor-mediated activation of nucleus accumbens shell. CNS Neurosci Ther 2022; 29:646-658. [PMID: 36510669 PMCID: PMC9873525 DOI: 10.1111/cns.14046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 11/16/2022] [Accepted: 11/21/2022] [Indexed: 12/14/2022] Open
Abstract
AIMS Central melanocortin 4 receptor (MC4R) has been reported to induce anhedonia via eliciting dysfunction of excitatory synapses. It is evident that metabolic signals are closely related to chronic stress-induced depression. Here, we investigated that a neural circuit is involved in melanocortin signaling contributing to susceptibility to stress. METHODS Chronic social defeat stress (CSDS) was used to develop depressive-like behavior. Electrophysiologic and chemogenetic approaches were performed to evaluate the role of paraventricular thalamus (PVT) glutamatergic to nucleus accumbens shell (NAcsh) circuit in stress susceptibility. Pharmacological and genetic manipulations were applied to investigate the molecular mechanisms of melanocortin signaling in the circuit. RESULTS CSDS increases the excitatory neurotransmission in NAcsh through MC4R signaling. The enhanced excitatory synaptic input in NAcsh is projected from PVT glutamatergic neurons. Moreover, chemogenetic manipulation of PVTGlu -NAcsh projection mediates the susceptibility to stress, which is dependent on MC4R signaling. Overall, these results reveal that the strengthened excitatory neurotransmission in NAcsh originates from PVT glutamatergic neurons, facilitating the susceptibility to stress through melanocortin signaling. CONCLUSIONS Our results make a strong case for harnessing a thalamic circuit to reorganize excitatory synaptic transmission in relieving stress susceptibility and provide insights gained on metabolic underpinnings of protection against stress-induced depressive-like behavior.
Collapse
Affiliation(s)
- Qiao Deng
- Department of PharmacologySchool of Basic Medicine, Tongji Medical College, Huazhong University of Science and TechnologyWuhan CityHubeiChina
| | - Shao‐Qi Zhang
- Department of PharmacologySchool of Basic Medicine, Tongji Medical College, Huazhong University of Science and TechnologyWuhan CityHubeiChina
| | - Ping‐Fen Yang
- Department of PharmacologySchool of Basic Medicine, Tongji Medical College, Huazhong University of Science and TechnologyWuhan CityHubeiChina
| | - Wan‐Ting Dong
- Department of PharmacologySchool of Basic Medicine, Tongji Medical College, Huazhong University of Science and TechnologyWuhan CityHubeiChina
| | - Jia‐Lin Wang
- Department of PharmacologySchool of Basic Medicine, Tongji Medical College, Huazhong University of Science and TechnologyWuhan CityHubeiChina
| | - Jian‐Guo Chen
- Department of PharmacologySchool of Basic Medicine, Tongji Medical College, Huazhong University of Science and TechnologyWuhan CityHubeiChina,The Research Center for DepressionTongji Medical College, Huazhong University of Science and TechnologyWuhanChina,The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei ProvinceWuhanChina,Key Laboratory of Neurological Diseases (HUST)Ministry of Education of ChinaWuhan CityHubeiChina,Laboratory of Neuropsychiatric DiseasesThe Institute of Brain Research, Huazhong University of Science and TechnologyWuhanChina
| | - Fang Wang
- Department of PharmacologySchool of Basic Medicine, Tongji Medical College, Huazhong University of Science and TechnologyWuhan CityHubeiChina,The Research Center for DepressionTongji Medical College, Huazhong University of Science and TechnologyWuhanChina,The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei ProvinceWuhanChina,Key Laboratory of Neurological Diseases (HUST)Ministry of Education of ChinaWuhan CityHubeiChina,Laboratory of Neuropsychiatric DiseasesThe Institute of Brain Research, Huazhong University of Science and TechnologyWuhanChina
| | - Li‐Hong Long
- Department of PharmacologySchool of Basic Medicine, Tongji Medical College, Huazhong University of Science and TechnologyWuhan CityHubeiChina,The Research Center for DepressionTongji Medical College, Huazhong University of Science and TechnologyWuhanChina,The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei ProvinceWuhanChina
| |
Collapse
|
50
|
Acute restraint stress impairs histamine type 2 receptor ability to increase the excitability of medium spiny neurons in the nucleus accumbens. Neurobiol Dis 2022; 175:105932. [DOI: 10.1016/j.nbd.2022.105932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/07/2022] [Accepted: 11/21/2022] [Indexed: 11/24/2022] Open
|