1
|
Ghamari M, Sun D, Dai Y, See CH, Yu H, Edirisinghe M, Sundaram S. Valorization of diverse waste-derived nanocellulose for multifaceted applications: A review. Int J Biol Macromol 2024:136130. [PMID: 39443179 DOI: 10.1016/j.ijbiomac.2024.136130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 09/16/2024] [Accepted: 09/27/2024] [Indexed: 10/25/2024]
Abstract
The study underscores the urgent need for sustainable waste management by focusing on circular economy principles, government regulations, and public awareness to combat ecological threats, pollution, and climate change effects. It explores extracting nanocellulose from waste streams such as textile, paper, agricultural matter, wood, animal, and food waste, providing a detailed process framework. The emphasis is on waste-derived nanocellulose as a promising material for eco-friendly products. The research evaluates the primary mechanical and thermal properties of nanocellulose from various waste sources. For instance, cotton-derived nanocellulose has a modulus of 2.04-2.71 GPa, making it flexible for lightweight applications. Most waste-derived nanocelluloses have densities between 1550 and 1650 kg/m3, offering strong, lightweight packaging support while enhancing biodegradability and moisture control. Crystallinity influences material usage: high crystallinity is ideal for packaging (e.g., softwood, hardwood), while low crystallinity suits textiles (e.g., cotton, bamboo). Nanocelluloses exhibit excellent thermal stability above 200 °C, useful for flame-retardant coatings, insulation, and polymer reinforcement. The research provides a comprehensive guide for selecting nanocellulose materials, highlighting their potential across industries like packaging, biomedical, textiles, apparel, and electronics, promoting sustainable innovation and a more eco-conscious future.
Collapse
Affiliation(s)
- Mehrdad Ghamari
- Cybersecurity and Systems Engineering, School of Computing, Engineering and the Built Environment, Edinburgh Napier University, Merchiston Campus, Edinburgh EH10 5DT, United Kingdom
| | - Dongyang Sun
- Cybersecurity and Systems Engineering, School of Computing, Engineering and the Built Environment, Edinburgh Napier University, Merchiston Campus, Edinburgh EH10 5DT, United Kingdom
| | - Yanqi Dai
- Department of Mechanical Engineering, University College London UCL, London WC1E 7JE, United Kingdom
| | - Chan Hwang See
- Cybersecurity and Systems Engineering, School of Computing, Engineering and the Built Environment, Edinburgh Napier University, Merchiston Campus, Edinburgh EH10 5DT, United Kingdom
| | - Hongnian Yu
- Cybersecurity and Systems Engineering, School of Computing, Engineering and the Built Environment, Edinburgh Napier University, Merchiston Campus, Edinburgh EH10 5DT, United Kingdom
| | - Mohan Edirisinghe
- Department of Mechanical Engineering, University College London UCL, London WC1E 7JE, United Kingdom
| | - Senthilarasu Sundaram
- School of Computing, Engineering and Digital Technologies, Teesside University, Tees Valley, Middlesbrough TS1 3BX, United Kingdom.
| |
Collapse
|
2
|
Ahn MR, Wang S, Kim J, You SM, Jung CD, Seong H, Choi JH, Park S, Choi IG, Kim H. Catalyst-recirculating system in steam explosion pretreatment for producing high-yield of xylooligosaccharides from oat husk. Carbohydr Polym 2024; 342:122411. [PMID: 39048203 DOI: 10.1016/j.carbpol.2024.122411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/12/2024] [Accepted: 06/14/2024] [Indexed: 07/27/2024]
Abstract
We propose a closed-loop pretreatment process, wherein volatiles produced during steam explosion pretreatment were recovered and reintroduced as acid catalysts into the pretreatment system. The volatiles were separated through a drastic decompression process followed by a steam explosion process and recovered as a liquified catalyst (LFC) through a heat exchanger. The LFC effectively served as an acid catalyst for hemicellulose hydrolysis, significantly decreasing residence time from 90 min to 30 min to achieve 80 % conversion yield at 170 °C. Hydrolysates with high content of lower molecular weight oligomeric sugars were obtained using LFC, and were considered advantageous for application as prebiotics. These results are attributed to the complementary features of acetic acid and furfural contained within the LFC. Computational simulation using Aspen Plus was used to investigate the effects of recycling on LFC, and it demonstrated the feasibility of the catalyst-recirculating system. A validation study was conducted based on simulation results to predict the actual performance of the proposed pretreatment system. Based on these results, the recirculating system was predicted to improve the conversion yield and low-molecular weight oligomers yield by 1.5-fold and 1.6-fold, respectively.
Collapse
Affiliation(s)
- Myeong Rok Ahn
- Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), 406-30, Jongga-ro, Jung-gu, Ulsan 44429, Republic of Korea; Department of Agriculture, Forestry, and Bioresources, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Song Wang
- Department of Forest Biomaterials, North Carolina State University, Raleigh, NC 27695, USA
| | - Jonghwa Kim
- Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), 406-30, Jongga-ro, Jung-gu, Ulsan 44429, Republic of Korea
| | - Sang-Mook You
- Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), 406-30, Jongga-ro, Jung-gu, Ulsan 44429, Republic of Korea
| | - Chan-Duck Jung
- Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), 406-30, Jongga-ro, Jung-gu, Ulsan 44429, Republic of Korea
| | - Hyolin Seong
- Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), 406-30, Jongga-ro, Jung-gu, Ulsan 44429, Republic of Korea
| | - June-Ho Choi
- Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), 406-30, Jongga-ro, Jung-gu, Ulsan 44429, Republic of Korea
| | - Sunkyu Park
- Department of Forest Biomaterials, North Carolina State University, Raleigh, NC 27695, USA
| | - In-Gyu Choi
- Department of Agriculture, Forestry, and Bioresources, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea; Research Institute of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Hoyong Kim
- Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), 406-30, Jongga-ro, Jung-gu, Ulsan 44429, Republic of Korea.
| |
Collapse
|
3
|
Xie J, Zhao J, Xu H, Zhang N, Chen Y, Yang J, Wang K, Jiang J. A coupling strategy combined with acid-hydrothermal and novel DES pretreatment: Enhancing biomethane yield under solid-state anaerobic digestion and efficiently producing xylo-oligosaccharides and recovered lignin from poplar waste. Int J Biol Macromol 2024; 274:133443. [PMID: 38942405 DOI: 10.1016/j.ijbiomac.2024.133443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 04/26/2024] [Accepted: 06/24/2024] [Indexed: 06/30/2024]
Abstract
Lignocellulose is an abundant renewable bio-macromolecular complex, which can be used to produce biomethane and other high-value products. The lignin, presents in lignocellulose is typically regarded as an inhibitor of anaerobic digestion. Therefore, it is crucial to develop a novel selective separation strategy to achieve efficient biomethane production and all-component utilization of biomass. Hence, a combination of two-step pretreatment and solid-state anaerobic digestion was employed to enhance the production of biomethane and to generate valuable chemicals from poplar waste. Optimal conditions (4 % acetic acid, 170 °C, and 40 min) resulted in 70.85 % xylan removal, yielding 50.28 % xylo-oligosaccharides. The effect of a strong acid 4-CSA-based novel three-constituent DES on delignification was investigated from 80 °C to 100 °C; the cellulose content of DES pretreated poplar increased from 64.11 % to 80.92 %, and the delignification rate increased from 49.0 % to 90.4 %. However, high delignification of the pretreated poplar (DES-100 and DES-110) led to a rapid accumulation of volatile organic acids during the hydrolysis and acidogenesis stages, resulting in methanogenesis inhibition. The highest biomethane yield of 208 L/kg VS was achieved with DES-80 (49.0 % delignification), representing a 148 % improvement compared over untreated poplar. This approach demonstrates the potential for comprehensive utilization of all components of biomass waste.
Collapse
Affiliation(s)
- Jingcong Xie
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, National Engineering Lab. for Biomass Chemical Utilization, Key Lab. of Chemical Engineering of Forest Products, National Forestry and Grassland Administration, Key Lab. of Biomass Energy and Material, Jiangsu Province, Nanjing 210042, China
| | - Jian Zhao
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, National Engineering Lab. for Biomass Chemical Utilization, Key Lab. of Chemical Engineering of Forest Products, National Forestry and Grassland Administration, Key Lab. of Biomass Energy and Material, Jiangsu Province, Nanjing 210042, China
| | - Hao Xu
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, National Engineering Lab. for Biomass Chemical Utilization, Key Lab. of Chemical Engineering of Forest Products, National Forestry and Grassland Administration, Key Lab. of Biomass Energy and Material, Jiangsu Province, Nanjing 210042, China
| | - Ning Zhang
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, National Engineering Lab. for Biomass Chemical Utilization, Key Lab. of Chemical Engineering of Forest Products, National Forestry and Grassland Administration, Key Lab. of Biomass Energy and Material, Jiangsu Province, Nanjing 210042, China
| | - Yifeng Chen
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, National Engineering Lab. for Biomass Chemical Utilization, Key Lab. of Chemical Engineering of Forest Products, National Forestry and Grassland Administration, Key Lab. of Biomass Energy and Material, Jiangsu Province, Nanjing 210042, China
| | - Jing Yang
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, National Engineering Lab. for Biomass Chemical Utilization, Key Lab. of Chemical Engineering of Forest Products, National Forestry and Grassland Administration, Key Lab. of Biomass Energy and Material, Jiangsu Province, Nanjing 210042, China.
| | - Kui Wang
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, National Engineering Lab. for Biomass Chemical Utilization, Key Lab. of Chemical Engineering of Forest Products, National Forestry and Grassland Administration, Key Lab. of Biomass Energy and Material, Jiangsu Province, Nanjing 210042, China
| | - Jianchun Jiang
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, National Engineering Lab. for Biomass Chemical Utilization, Key Lab. of Chemical Engineering of Forest Products, National Forestry and Grassland Administration, Key Lab. of Biomass Energy and Material, Jiangsu Province, Nanjing 210042, China.
| |
Collapse
|
4
|
Zhai Y, Zhang L, Yao S, Zhou X, Jiang K. Green Process for Producing Xylooligosaccharides by Using Sequential Auto-hydrolysis and Xylanase Hydrolysis. Appl Biochem Biotechnol 2024; 196:5317-5333. [PMID: 38157156 DOI: 10.1007/s12010-023-04800-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2023] [Indexed: 01/03/2024]
Abstract
Xylooligosaccharides (XOS), as prebiotic oligomers, are increasingly receiving attention as high value-added products produced from lignocellulosic biomass. Although the XOS contains a series of different degrees of polymerization (DP) of xylose units, DP 2 and 3 (xylobiose (X2) and xylotriose (X3)) are regarded as the main active components in food and pharmaceutical fields. Therefore, in the study, in order to achieve the maximum production of XOS with the desired DP, a combination strategy of sequential auto-hydrolysis and xylanase hydrolysis was developed with corncob as raw material. The evidences showed that the hemicellulosic xylan could be effectively decomposed into various higher DP saccharides (> 4), which were dissolved into the auto-hydrolysate; sequentially, the soluble saccharides could be rapidly hydrolyzed into XOS with desired DP by xylanase hydrolysis. Finally, a maximum XOS yield of 56.3% was achieved and the ratio of (X2 + X3)/XOS was over 80%; meanwhile, the by-products could be controlled at lower levels. Overall, this study provides solid data that support the selective and precise preparation of XOS from corncob, vigorously promoting the application of XOS as functional sugar products.
Collapse
Affiliation(s)
- Yujie Zhai
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
| | - Lei Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
| | - Shuangquan Yao
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - Xin Zhou
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, People's Republic of China.
| | - Kankan Jiang
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, China.
| |
Collapse
|
5
|
Saini R, Singhania RR, Patel AK, Chen CW, Dong CD. A circular biorefinery approach for the production of xylooligosaccharides by using mild acid hydrothermal pretreatment of pineapple leaves waste. BIORESOURCE TECHNOLOGY 2023; 388:129767. [PMID: 37730141 DOI: 10.1016/j.biortech.2023.129767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/07/2023] [Accepted: 09/10/2023] [Indexed: 09/22/2023]
Abstract
A hydrothermal process is a sustainable approach for biorefinery leading to conversion of lignocellulosic (LC) biomass into value-added products. This study is based on the production of xylooligosaccharides (XOS) from pineapple leaves (PL) waste by using mild acid like gluconic acid (GA). GA, when used as catalyst in hydrothermal process to produce XOS the yield improved. The above process can be integrated with bacterial cellulose (BC) production bioprocess via Komagataeibacter europaeus 14,148 where gluconic acid is produced as by-product. Maximum XOS (2-5 degree of polymerisation) yield of 67.79 % in the liquid fraction was obtained via hydrothermal treatment at 160 °C for 60 min with 5% gluconic acid concentration. It is based on the selective solubilization of hemicellulose fraction. Enzymatic hydrolysis of GA hydrothermally pretreated solid fraction of PL biomass gave 14.5 g/L glucose with 5% solid loading and 10 FPU/gds enzyme loading which was employed for Bacterial cellulose production.
Collapse
Affiliation(s)
- Reetu Saini
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Reeta Rani Singhania
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Sustainable Environment Research Center, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Centre for Energy and Environmental Sustainability, Lucknow 226 029, India
| | - Anil Kumar Patel
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Centre for Energy and Environmental Sustainability, Lucknow 226 029, India
| | - Chiu-Wen Chen
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Sustainable Environment Research Center, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Cheng-Di Dong
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Sustainable Environment Research Center, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan.
| |
Collapse
|
6
|
Liao H, Feng B, Ying W, Zhang J. Efficient production of xylobiose and xylotriose from corncob by mixed acids and xylanase hydrolysis. BIORESOURCE TECHNOLOGY 2023; 387:129686. [PMID: 37595810 DOI: 10.1016/j.biortech.2023.129686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/13/2023] [Accepted: 08/14/2023] [Indexed: 08/20/2023]
Abstract
Propionic acid (PA) hydrolysis offers a potential pathway for industrial xylooligosaccharide (XOS) production owing to efficiency and simplicity of the process. However, the cost of XOS production needs to be reduced as PA is expensive. This work proposed a strategy of mixed acids hydrolysis, replacing 20% of PA with formic acid (FA), and combined with xylanase hydrolysis to reduce production costs and increase the production of XOS from corncob. The hydrolysis of corncob using mixed FA and PA in a mass ratio of 2:8 produced 61.8% XOS. Xylanase hydrolysis of corncob residue improved XOS yield to 73.1%. Among them, the X2 + X3 yield was as high as 50.6%. Economic evaluation showed that the combined process reduced the XOS production cost by 10.8% compared to PA hydrolysis. The strategy of using FA instead of 20% PA for hydrolysis and enzymatic hydrolysis, with high XOS and monosaccharide yields from corncob, has potential industrial promise.
Collapse
Affiliation(s)
- Hong Liao
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China; Key Laboratory of Forestry Genetics & Biotechnology (Nanjing Forestry University), Ministry of Education, Nanjing 210037, China; Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, Nanjing 210037, China
| | - Baojun Feng
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China; Key Laboratory of Forestry Genetics & Biotechnology (Nanjing Forestry University), Ministry of Education, Nanjing 210037, China; Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, Nanjing 210037, China
| | - Wenjun Ying
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China; Key Laboratory of Forestry Genetics & Biotechnology (Nanjing Forestry University), Ministry of Education, Nanjing 210037, China; Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, Nanjing 210037, China
| | - Junhua Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China; Key Laboratory of Forestry Genetics & Biotechnology (Nanjing Forestry University), Ministry of Education, Nanjing 210037, China; Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, Nanjing 210037, China.
| |
Collapse
|
7
|
Cheng X, Zhang L, Zhang F, Li P, Ji L, Wang K, Jiang J. Coproduction of xylooligosaccharides, glucose, and less-condensed lignin from sugarcane bagasse using syringic acid pretreatment. BIORESOURCE TECHNOLOGY 2023; 386:129527. [PMID: 37481042 DOI: 10.1016/j.biortech.2023.129527] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/15/2023] [Accepted: 07/17/2023] [Indexed: 07/24/2023]
Abstract
Current strategies for the production of xylooligosaccharides (XOS) from biomass through non-enzymatic catalysis often led to a certain degree of lignin condensation, which severely restrains subsequent enzyme hydrolysis of cellulose. Herein, syringic acid (SA) pretreatment was investigated to coproduce XOS, glucose, and less-condensed lignin from sugarcane bagasse. SA acted as a catalyst and lignin condensation inhibitor during the pretreatment. The highest XOS yield of 58.7% (27.7% xylobiose and 24.7% xylotriose) was obtained at 180 °C - 20 min - 9% SA, and the corresponding xylose/XOS ratio was only 0.42. Compared with the pretreatment at 180 °C - 20 min - 0% SA, the addition of 9% SA increased the glucose yield from 85.7% to 92.4% and decreased the degree of lignin condensation from 0.55 to 0.42. Moreover, 26.7% of SA could be easily recovered. This work presents a pretreatment strategy in which the efficient production of XOS and the suppression of lignin condensation are achieved simultaneously.
Collapse
Affiliation(s)
- Xichuang Cheng
- Department of Chemistry and Chemical Engineering, Engineering Research Center of Forestry Biomass Materials and Bioenergy (Ministry of Education), Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Leping Zhang
- Department of Chemistry and Chemical Engineering, Engineering Research Center of Forestry Biomass Materials and Bioenergy (Ministry of Education), Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Fenglun Zhang
- Nanjing Institute for the Comprehensive Utilization of Wild Plants, Nanjing, 210042, China
| | - Pengfei Li
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Minzu University, Nanning 530006, China
| | - Li Ji
- Department of Chemistry and Chemical Engineering, Engineering Research Center of Forestry Biomass Materials and Bioenergy (Ministry of Education), Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Kun Wang
- Department of Chemistry and Chemical Engineering, Engineering Research Center of Forestry Biomass Materials and Bioenergy (Ministry of Education), Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Jianxin Jiang
- Department of Chemistry and Chemical Engineering, Engineering Research Center of Forestry Biomass Materials and Bioenergy (Ministry of Education), Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
8
|
Deng J, Yun J, Gu Y, Yan B, Yin B, Huang C. Evaluating the In Vitro and In Vivo Prebiotic Effects of Different Xylo-Oligosaccharides Obtained from Bamboo Shoots by Hydrothermal Pretreatment Combined with Endo-Xylanase Hydrolysis. Int J Mol Sci 2023; 24:13422. [PMID: 37686227 PMCID: PMC10488140 DOI: 10.3390/ijms241713422] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/10/2023] [Accepted: 08/18/2023] [Indexed: 09/10/2023] Open
Abstract
Xylo-oligosaccharides (XOS) enriched with high fractions of X2-X3 are regarded as an effective prebiotic for regulating the intestinal microflora. In this study, the original XOS solution was obtained from bamboo shoots through hydrothermal pretreatment under optimized conditions. Subsequently, enzymatic hydrolysis with endo-xylanase was performed on the original XOS solution to enhance the abundance of the X2-X3 fractions. The results demonstrated that hydrothermal pretreatment yielded 21.24% of XOS in the hydrolysate solution, and subsequent enzymatic hydrolysis significantly increased the proportion of the X2-X3 fractions from 38.87% to 68.21%. Moreover, the XOS solutions with higher amounts of X2-X3 fractions exhibited superior performance in promoting the growth of probiotics such as Bifidobacterium adolescentis and Lactobacillus acidophilus in vitro, leading to increased production of short-chain fatty acids. In the in vivo colitis mouse model, XOS solutions with higher contents of X2-X3 fractions demonstrated enhanced efficacy against intestinal inflammation. Compared with the colitis mice (model group), the XOS solution with higher X2-X3 fractions (S1 group) could significantly increase the number of Streptomyces in the intestinal microflora, while the original XOS solution (S2 group) could significantly increase the number of Bacteroides in the intestinal microflora of colitis mice. In addition, the abundances of Alcaligenes and Pasteurella in the intestinal microflora of the S1 and S2 groups were much lower than in the model group. This effect was attributed to the ability of these XOS solutions to enhance species diversity, reversing the imbalance and disorder within the intestinal microflora. Overall, this work highlights the outstanding potential of XOS enriched with high contents of X2-X3 fractions as a regulator of the intestinal microbiota and as an anti-colitis agent.
Collapse
Affiliation(s)
- Junping Deng
- Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China; (J.D.); (Y.G.); (B.Y.)
| | - Jinyan Yun
- College of Animal Science and Technology, Jilin Agricultural Science and Technology University, Jilin 132109, China;
| | - Yang Gu
- Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China; (J.D.); (Y.G.); (B.Y.)
| | - Bowen Yan
- Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China; (J.D.); (Y.G.); (B.Y.)
| | - Baishuang Yin
- College of Animal Science and Technology, Jilin Agricultural Science and Technology University, Jilin 132109, China;
| | - Caoxing Huang
- Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China; (J.D.); (Y.G.); (B.Y.)
| |
Collapse
|
9
|
Li X, Wu X, Ma W, Xu H, Chen W, Zhao F. Feeding Behavior, Growth Performance and Meat Quality Profile in Broiler Chickens Fed Multiple Levels of Xylooligosaccharides. Animals (Basel) 2023; 13:2582. [PMID: 37627372 PMCID: PMC10451349 DOI: 10.3390/ani13162582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/01/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
A total of 240 1-day-old Arbor Acres broiler chickens were randomly distributed to 4 treatment groups with 6 replicates and 10 birds per replicate. Chickens were fed with corn-soybean meal diet supplementation with additions of 0, 150, 300, and 450 mg/kg XOS for 42 days. At 4 weeks of age, the average feeding time was reduced in the 450 mg/kg XOS group (p < 0.05), and the percentage of feeding time was increased in the 300 mg/kg XOS group (p < 0.05). At 5 weeks of age, broilers fed with 300 mg/kg XOS had increased the percentage of feeding time (p < 0.05), and 450 mg/kg XOS had increased the feeding frequency and percentage of feeding time (p < 0.05). At 6 weeks of age, the feeding frequency was highest in the 450 mg/kg XOS group (p < 0.05). During 4 to 6 weeks of age, the average feeding time was increased in 300 mg/kg XOS group (p < 0.05), the frequency was improved in the 450 mg/kg XOS group (p < 0.05), and the percentage of feeding time was longer in the XOS group than that in the control group (p < 0.05). The average daily gain was improved during days 22-42 and days 1-42 in the 150 mg/kg XOS group (p < 0.05). Broilers fed with 300 mg/kg XOS had an increased eviscerated rate (p < 0.05). The pH45min of breast muscle was highest in the 450 mg/kg XOS group (p < 0.05), as well as the pH45min and pH24h of thigh muscle, which improved in the 300 mg/kg and 450 mg/kg XOS groups (p < 0.05). In addition, the cooking loss of thigh muscle was reduced in the 300 mg/kg XOS group (p < 0.05). In conclusion, dietary supplementation with XOS had positive effects on the feeding behavior, growth performance, and meat quality of broiler chickens.
Collapse
Affiliation(s)
- Xixi Li
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China; (X.L.); (X.W.); (W.M.)
| | - Xiaohong Wu
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China; (X.L.); (X.W.); (W.M.)
| | - Wenfeng Ma
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China; (X.L.); (X.W.); (W.M.)
| | - Houqiang Xu
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Guizhou University, Guiyang 550025, China; (H.X.); (W.C.)
| | - Wei Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Guizhou University, Guiyang 550025, China; (H.X.); (W.C.)
| | - Furong Zhao
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China; (X.L.); (X.W.); (W.M.)
| |
Collapse
|
10
|
Manicardi T, Baioni e Silva G, Longati AA, Paiva TD, Souza JPM, Pádua TF, Furlan FF, Giordano RLC, Giordano RC, Milessi TS. Xylooligosaccharides: A Bibliometric Analysis and Current Advances of This Bioactive Food Chemical as a Potential Product in Biorefineries' Portfolios. Foods 2023; 12:3007. [PMID: 37628006 PMCID: PMC10453364 DOI: 10.3390/foods12163007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/07/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
Xylooligosaccharides (XOS) are nondigestible compounds of great interest for food and pharmaceutical industries due to their beneficial prebiotic, antibacterial, antioxidant, and antitumor properties. The market size of XOS is increasing significantly, which makes its production from lignocellulosic biomass an interesting approach to the valorization of the hemicellulose fraction of biomass, which is currently underused. This review comprehensively discusses XOS production from lignocellulosic biomass, aiming at its application in integrated biorefineries. A bibliometric analysis is carried out highlighting the main players in the field. XOS production yields after different biomass pretreatment methods are critically discussed using Microsoft PowerBI® (2.92.706.0) software, which involves screening important trends for decision-making. Enzymatic hydrolysis and the major XOS purification strategies are also explored. Finally, the integration of XOS production into biorefineries, with special attention to economic and environmental aspects, is assessed, providing important information for the implementation of biorefineries containing XOS in their portfolio.
Collapse
Affiliation(s)
- Tainá Manicardi
- Graduate Program of Energy Engineering, Federal University of Itajubá, Av. Benedito Pereira dos Santos, 1303, Itajubá 37500-903, MG, Brazil
| | - Gabriel Baioni e Silva
- Graduate Program of Chemical Engineering, Federal University of São Carlos, Rodovia Washington Luíz, Km 235, São Carlos 13565-905, SP, Brazil
| | - Andreza A. Longati
- Department of Chemical Engineering, Federal University of São Carlos, Rodovia Washington Luíz, Km 235, São Carlos 13565-905, SP, Brazil
| | - Thiago D. Paiva
- Graduate Program of Chemical Engineering, Federal University of São Carlos, Rodovia Washington Luíz, Km 235, São Carlos 13565-905, SP, Brazil
| | - João P. M. Souza
- Institute of Natural Resources, Federal University of Itajubá, Av. Benedito Pereira dos Santos, 1303, Itajubá 37500-903, MG, Brazil
| | - Thiago F. Pádua
- Department of Chemical Engineering, Federal University of São Carlos, Rodovia Washington Luíz, Km 235, São Carlos 13565-905, SP, Brazil
| | - Felipe F. Furlan
- Graduate Program of Chemical Engineering, Federal University of São Carlos, Rodovia Washington Luíz, Km 235, São Carlos 13565-905, SP, Brazil
- Department of Chemical Engineering, Federal University of São Carlos, Rodovia Washington Luíz, Km 235, São Carlos 13565-905, SP, Brazil
| | - Raquel L. C. Giordano
- Department of Chemical Engineering, Federal University of São Carlos, Rodovia Washington Luíz, Km 235, São Carlos 13565-905, SP, Brazil
| | - Roberto C. Giordano
- Graduate Program of Chemical Engineering, Federal University of São Carlos, Rodovia Washington Luíz, Km 235, São Carlos 13565-905, SP, Brazil
- Department of Chemical Engineering, Federal University of São Carlos, Rodovia Washington Luíz, Km 235, São Carlos 13565-905, SP, Brazil
| | - Thais S. Milessi
- Graduate Program of Energy Engineering, Federal University of Itajubá, Av. Benedito Pereira dos Santos, 1303, Itajubá 37500-903, MG, Brazil
- Graduate Program of Chemical Engineering, Federal University of São Carlos, Rodovia Washington Luíz, Km 235, São Carlos 13565-905, SP, Brazil
- Department of Chemical Engineering, Federal University of São Carlos, Rodovia Washington Luíz, Km 235, São Carlos 13565-905, SP, Brazil
| |
Collapse
|
11
|
Deng HQ, Lin XH, Fan JT, Fu PZ, Guan JJ, Lei HL, Liu LH, Lai LH, Hou XD, Lou WY. Glycolic acid-based deep eutectic solvents boosting co-production of xylo-oligomers and fermentable sugars from corncob and the related kinetic mechanism. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:126. [PMID: 37550714 PMCID: PMC10408180 DOI: 10.1186/s13068-023-02369-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 07/19/2023] [Indexed: 08/09/2023]
Abstract
BACKGROUND Xylo-oligomers are a kind of high value-added products in biomass fractionation. Although there are several chemical methods to obtain xylo-oligomers from biomass, the reports about the deep eutectic solvents (DESs)-mediated co-production of xylo-oligomers and fermentable sugars and the related kinetic mechanism are limited. RESULTS In this work, glycolic acid-based DESs were used to obtain xylo-oligomers from corncob. The highest xylo-oligomers yield of 65.9% was achieved at 120 °C for 20 min, of which the functional xylo-oligosaccharides (XOSs, DP 2-5) accounted for up to 31.8%. Meanwhile, the enzymatic digestion of cellulose and xylan in residues reached 81.0% and 95.5%, respectively. Moreover, the addition of metal inorganic salts significantly accelerated the hydrolysis of xylan and even the degradation of xylo-oligomers in DES, thus resulting in higher selectivity of xylan removal. AlCl3 showed the strongest synergistic effect with DES on accelerating the processes, while FeCl2 is best one for xylo-oligomers accumulation, affording the highest xylo-oligomers yield of 66.1% for only 10 min. Furthermore, the kinetic study indicates that the 'potential hydrolysis degree' model could well describe the xylan hydrolysis processes and glycolic acid/lactic acid (3:1) is a promising solvent for xylo-oligomers production, in particular, it worked well with FeCl2 for the excellent accumulation of xylo-oligomers. CONCLUSIONS Glycolic acid-based deep eutectic solvents can be successfully applied in corncob fractionation with excellent xylo-oligomers and fermentable sugars yields on mild conditions, and the large amount of xylo-oligosaccharides accumulation could be achieved by specific process controlling. The strategies established here can be useful for developing high-valued products from biomass.
Collapse
Affiliation(s)
- Hai-Qing Deng
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China
| | - Xiao-Hui Lin
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China
| | - Jun-Tao Fan
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China
| | - Ping-Zhang Fu
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China
| | - Jia-Jun Guan
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China
| | - Han-Lin Lei
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China
| | - Li-Hao Liu
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China
| | - Lin-Hao Lai
- Lab of Applied Biocatalysis, School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, Guangdong, China
| | - Xue-Dan Hou
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China.
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangdong University of Technology, Guangzhou, 510006, China.
| | - Wen-Yong Lou
- Lab of Applied Biocatalysis, School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, Guangdong, China.
| |
Collapse
|
12
|
Yang Q, Zhang L, Lian Z, Zhang J. Efficient co-production of xylo-oligosaccharides and probiotics from corncob by combined lactic acid pretreatment and two-step enzymatic hydrolysis. BIORESOURCE TECHNOLOGY 2023; 382:129172. [PMID: 37201871 DOI: 10.1016/j.biortech.2023.129172] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/09/2023] [Accepted: 05/11/2023] [Indexed: 05/20/2023]
Abstract
Lactic acid (LA) is efficient in xylo-oligosaccharides (XOS) production from poplar. However, the role of LA in XOS production from corncob has not been carefully elucidated, and the co-production of probiotics of Bacillus subtilis from corncob residue has not been reported. In this study, LA pretreatment was combined with enzymatic hydrolysis to produce XOS and monosaccharides from corncob. An XOS yield of 69.9% was obtained from corncob by combining 2% LA pretreatment and xylanase hydrolysis. Yields of 95.6% glucose and 54.0% xylose were obtained from corncob residue via cellulase, and the resulting cellulase hydrolysate was used to culture B. subtilis YS01. The resulting viable count of the strain was 6.4×108 CFU/mL, and the glucose and xylose utilization rates were 99.0% and 89.8%, respectively. This study demonstrates a green, efficient, and mild process for producing XOS and probiotics from corncob by combining LA pretreatment and enzymatic hydrolysis.
Collapse
Affiliation(s)
- Qianqian Yang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China; Key Laboratory of Forestry Genetics & Biotechnology (Nanjing Forestry University), Ministry of Education, Nanjing 210037, China; Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, Nanjing 210037, China
| | - Lei Zhang
- State Key Laboratory of Civilian NBC Protection, Beijing 102205, PR China
| | - Zhina Lian
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China; Key Laboratory of Forestry Genetics & Biotechnology (Nanjing Forestry University), Ministry of Education, Nanjing 210037, China; Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, Nanjing 210037, China
| | - Junhua Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China; Key Laboratory of Forestry Genetics & Biotechnology (Nanjing Forestry University), Ministry of Education, Nanjing 210037, China; Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, Nanjing 210037, China.
| |
Collapse
|
13
|
Liao H, Xu Y, Sun FF, Zhang J. Optimizing tri-acid mixture hydrolysis: An improved strategy for efficient xylooligosaccharides production from corncob. BIORESOURCE TECHNOLOGY 2023; 369:128500. [PMID: 36535614 DOI: 10.1016/j.biortech.2022.128500] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
Propionic acid (PA) hydrolysis of corncob for xylooligosaccharides (XOS) production has the advantages of simple operation, high XOS yield and less by-products, but the high price of PA limits its application. Therefore, partially replacing PA with less expensive organic acids, such as formic acid (FA) and acetic acid (AC), may lower the cost of hydrolysis in XOS production. This work investigated the feasibility of XOS production from corncob using a tri-acid mixture of FA, AC and PA. A high XOS yield of 69.1 % was achieved under the optimal FA:PA:AC volume ratio of 1:5:4 at 150 °C for 50 min. Overall, in the XOS production from corncob, it was able to replace 60 % of PA with FA and AC, and decreased the hydrolysis temperature from 170 °C to 150 °C, all of which were important to lower the cost of XOS production using organic acid hydrolysis.
Collapse
Affiliation(s)
- Hong Liao
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China; Key Laboratory of Forestry Genetics & Biotechnology (Nanjing Forestry University), Ministry of Education, Nanjing 210037, China; Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, Nanjing 210037, China
| | - Yong Xu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China; Key Laboratory of Forestry Genetics & Biotechnology (Nanjing Forestry University), Ministry of Education, Nanjing 210037, China; Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, Nanjing 210037, China
| | - Fubao Fuelbiol Sun
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Junhua Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China; Key Laboratory of Forestry Genetics & Biotechnology (Nanjing Forestry University), Ministry of Education, Nanjing 210037, China; Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, Nanjing 210037, China.
| |
Collapse
|
14
|
Liu X, Cao R, Xu Y. Acidic hydrolyzed xylo-oligosaccharides bioactivity on the antioxidant and immune activities of macrophage. Food Res Int 2023; 163:112152. [PMID: 36596103 DOI: 10.1016/j.foodres.2022.112152] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 11/09/2022] [Accepted: 11/15/2022] [Indexed: 11/27/2022]
Abstract
Xylo-oligosaccharides (XOS) prepared by the acetic acid hydrolysis of corncob were adulterated with many impurities including pigments, salts, and monosaccharides. Monosaccharides, acids, and most of the pigment were removed by a combination of decolorization, bipolar membrane electrodialysis and catalysis by Gluconobacter oxydans. These steps retain 90% of XOS in the acidolysis slurry. In this study, the effects of purified-XOS (PXOS) and crude XOS (CXOS) on the antioxidant and immune activities of macrophage were compared to verify the bioactivity of acidic hydrolyzed XOS, mainly focusing on the benefits of the purification process. PXOS was more effective in increasing superoxide dismutase activity and reducing malondialdehyde content, and thus had more potent antioxidant activity. In addition, PXOS could more efficiently promote the secretion of tumor necrosis factor-α, interleukin-6, nitric oxide, and interleukin-1β by macrophage. All these data, suggest that the purification process contributed to improve the immunomodulatory activity of XOS from acidolysis slurry.
Collapse
Affiliation(s)
- Xinlu Liu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China; Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, Nanjing 210037, People's Republic of China; Key Laboratory of Forestry Genetics & Biotechnology (Nanjing Forestry University), Ministry of Education, Nanjing 210037, People's Republic of China
| | - Rou Cao
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China; Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, Nanjing 210037, People's Republic of China; Key Laboratory of Forestry Genetics & Biotechnology (Nanjing Forestry University), Ministry of Education, Nanjing 210037, People's Republic of China
| | - Yong Xu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China; Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, Nanjing 210037, People's Republic of China; Key Laboratory of Forestry Genetics & Biotechnology (Nanjing Forestry University), Ministry of Education, Nanjing 210037, People's Republic of China.
| |
Collapse
|
15
|
Noguchi T, Nishiyama R, Shimokawa T, Yamada K, Kagawa Y. Simultaneous production of cellobiose and xylobiose from alkali-treated bagasse using cellulase secreted by Fe-ion-irradiated Trichoderma reesei mutant. J Biosci Bioeng 2022; 134:491-495. [PMID: 36220721 DOI: 10.1016/j.jbiosc.2022.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 09/02/2022] [Accepted: 09/06/2022] [Indexed: 11/05/2022]
Abstract
Cellobiose and xylobiose are disaccharides composed of two glucose or xylose units with β-1,4 linkages. This study aimed to isolate a Trichoderma reesei mutant that lacks β-glucosidase and β-xylosidase activities for the simultaneous production of these disaccharides. Mutagenesis using Fe-ion beam resulted in a mutant strain, T. reesei T1640; the cellulase production in this strain was as high as that in the parent strain. Genomic analysis revealed that T1640 lost both the β-glucosidase and β-xylosidase activities owing to the translocation of the responsible genes. Hydrolysis of alkali-treated bagasse using the enzymes from T1640 leads to high yields (365 mg/g-biomass) and ratios (72.7% of the total sugars) of cellobiose and xylobiose.
Collapse
Affiliation(s)
- Takuya Noguchi
- New Frontiers Research Laboratory, Toray Industries, Inc., 6-10-1 Tebiro, Kamakura, Kanagawa 248-8555, Japan
| | - Ryuji Nishiyama
- New Frontiers Research Laboratory, Toray Industries, Inc., 6-10-1 Tebiro, Kamakura, Kanagawa 248-8555, Japan
| | - Takashi Shimokawa
- National Institutes of Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage, Chiba 263-8555, Japan
| | - Katsushige Yamada
- New Frontiers Research Laboratory, Toray Industries, Inc., 6-10-1 Tebiro, Kamakura, Kanagawa 248-8555, Japan
| | - Yusuke Kagawa
- New Frontiers Research Laboratory, Toray Industries, Inc., 6-10-1 Tebiro, Kamakura, Kanagawa 248-8555, Japan.
| |
Collapse
|
16
|
Ying W, Li X, Lian Z, Xu Y, Zhang J. An integrated process using acetic acid hydrolysis and deep eutectic solvent pretreatment for xylooligosaccharides and monosaccharides production from wheat bran. BIORESOURCE TECHNOLOGY 2022; 363:127966. [PMID: 36113818 DOI: 10.1016/j.biortech.2022.127966] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 06/15/2023]
Abstract
Organic acid hydrolysis for xylooligosaccharides (XOS) production from lignocelluloses provides the benefits of simple operation, rapid reaction and high XOS yield. However, no literature reported the XOS production from wheat bran (WB) by organic acid hydrolysis. In this paper, acetic acid (AA) hydrolysis was employed to produce XOS from WB. After AA hydrolysis (5 %, v/v, 170 °C, 20 min) of 100 g/L WB, the concentrations of X2, X3, X4, X5 and X6 were 2.4, 5.0, 1.9, 1.9 and 1.4 g/L respectively and the total XOS yield was 62.9 %, which was the highest among the previous researches. The arabinose yield reached 76.1 %. Then, AA-hydrolyzed WB was delignified by deep eutectic solvent (DES) pretreatment and the resulting residue had the glucose and xylose yields of 83.8 % and 54.8 %, respectively. This work offers a productive method for the conversion of WB into XOS, arabinose and glucose by AA hydrolysis and DES pretreatment.
Collapse
Affiliation(s)
- Wenjun Ying
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Xudong Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Zhina Lian
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China; Key Laboratory of Forestry Genetics & Biotechnology (Nanjing Forestry University), Ministry of Education, Nanjing 210037, China
| | - Yong Xu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China; Key Laboratory of Forestry Genetics & Biotechnology (Nanjing Forestry University), Ministry of Education, Nanjing 210037, China
| | - Junhua Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China; Key Laboratory of Forestry Genetics & Biotechnology (Nanjing Forestry University), Ministry of Education, Nanjing 210037, China.
| |
Collapse
|
17
|
Yan F, Tian S, Du K, Xue X, Gao P, Chen Z. Preparation and nutritional properties of xylooligosaccharide from agricultural and forestry byproducts: A comprehensive review. Front Nutr 2022; 9:977548. [PMID: 36176637 PMCID: PMC9513447 DOI: 10.3389/fnut.2022.977548] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/11/2022] [Indexed: 11/13/2022] Open
Abstract
Xylooligosaccharide (XOS) are functional oligosaccharides with prebiotic activities, which originate from lignocellulosic biomass and have attracted extensive attention from scholars in recent years. This paper summarizes the strategies used in the production of XOS, and introduces the raw materials, preparation methods, and purification technology of XOS. In addition, the biological characteristics and applications of XOS are also presented. The most commonly recommended XOS production strategy is the two-stage method of alkaline pre-treatment and enzymatic hydrolysis; and further purification by membrane filtration to achieve the high yield of XOS is required for prebiotic function. At the same time, new strategies and technologies such as the hydrothermal and steam explosion have been used as pre-treatment methods combined with enzymatic hydrolysis to prepare XOS. XOS have many critical physiological activities, especially in regulating blood glucose, reducing blood lipid, and improving the structure of host intestinal flora.
Collapse
Affiliation(s)
| | - Shuangqi Tian
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, China
| | | | | | | | - Zhicheng Chen
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, China
| |
Collapse
|
18
|
Batsalova T, Georgiev Y, Moten D, Teneva I, Dzhambazov B. Natural Xylooligosaccharides Exert Antitumor Activity via Modulation of Cellular Antioxidant State and TLR4. Int J Mol Sci 2022; 23:10430. [PMID: 36142342 PMCID: PMC9499660 DOI: 10.3390/ijms231810430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/05/2022] [Accepted: 09/06/2022] [Indexed: 11/16/2022] Open
Abstract
It has been recently proven that xylooligosaccharides (XOS) with prebiotic properties have diverse beneficial biological effects including immunomodulatory and antitumor activities. The present article focused on the chemical and biological evaluation of corn-derived commercially available XOS and aimed to elucidate their cytotoxicity and inhibitory potential against tumor cells. Spectrophotometric chemical analyses, Fourier transform infrared spectroscopy, and high-performance liquid chromatography analyses were performed. Antioxidant activity was determined by measuring the oxygen radical absorbance capacity and hydroxyl radical averting capacity. In vitro cytotoxicity assays with human cell lines derived from normal and tumor tissues, assessments of ATP production, mitochondrial membrane potential specific staining, cytokine assays, and molecular docking were used to evaluate the biological activity of XOS. The sample showed significant antioxidant activity, and it was determined that most xylose oligomers in it are composed of six units. XOS exhibited antitumor activity with pronounced inhibitory effect on lysosomes, but mitochondrial functionality was also affected. The production of proinflammatory cytokines by lipopolysaccharide-stimulated U-937 cells was reduced by XOS treatment, which suggested the involvement of Toll-like receptor 4 (TLR4)-mediated signaling in the mechanism of XOS action. Molecular docking analyses confirmed the potential inhibitory interaction between the sample and TLR4. In addition, XOS treatment had significant tumor-cell-specific influence on the glutathione antioxidant system, affecting its balance and thus contributing to the inhibition of cellular viability. The present study elucidated the tumor-inhibitory potential of commercially available XOS that could be utilized in pharmaceutical and food industry providing disease-preventive and therapeutic benefits.
Collapse
Affiliation(s)
- Tsvetelina Batsalova
- Faculty of Biology, Paisii Hilendarski University of Plovdiv, 4000 Plovdiv, Bulgaria
| | - Yordan Georgiev
- Laboratory of Biologically Active Substances, Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences (IOCCP-BAS), 4000 Plovdiv, Bulgaria
| | - Dzhemal Moten
- Faculty of Biology, Paisii Hilendarski University of Plovdiv, 4000 Plovdiv, Bulgaria
| | - Ivanka Teneva
- Faculty of Biology, Paisii Hilendarski University of Plovdiv, 4000 Plovdiv, Bulgaria
| | - Balik Dzhambazov
- Faculty of Biology, Paisii Hilendarski University of Plovdiv, 4000 Plovdiv, Bulgaria
| |
Collapse
|
19
|
Shabbirahmed AM, Haldar D, Dey P, Patel AK, Singhania RR, Dong CD, Purkait MK. Sugarcane bagasse into value-added products: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:62785-62806. [PMID: 35802333 DOI: 10.1007/s11356-022-21889-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 07/02/2022] [Indexed: 06/15/2023]
Abstract
Strategic valorization of readily available sugarcane bagasse (SB) is very important for waste management and sustainable biorefinery. Conventional SB pretreatment methods are ineffective to meet the requirement for industrial adaptation. Several past studies have highlighted different pretreatment procedures which are lacking environmentally benign characteristics and effective SB bioconversion. This article provides an in-depth review of a variety of environmentally acceptable thermochemical and biological pretreatment techniques for SB. Advancements in the conversion processes such as pyrolysis, liquefaction, gasification, cogeneration, lignin conversion, and cellulose conversion via fermentation processes are critically reviewed for the formation of an extensive array of industrially relevant products such as biofuels, bioelectricity, bioplastics, bio adsorbents, and organic acids. This article would provide comprehensive insights into several crucial aspects of thermochemical and biological conversion processes, including systematic perceptions and scientific developments for value-added products from SB valorization. Moreover, it would lead to determining efficient pretreatment and/or conversion processes for sustainable development of industrial-scale sugarcane-based biorefinery.
Collapse
Affiliation(s)
- Asma Musfira Shabbirahmed
- Department of Biotechnology, School of Agriculture and Biosciences, Karunya Institute of Technology and Sciences, Coimbatore-641114, Tamil Nadu, India
| | - Dibyajyoti Haldar
- Department of Biotechnology, School of Agriculture and Biosciences, Karunya Institute of Technology and Sciences, Coimbatore-641114, Tamil Nadu, India.
| | - Pinaki Dey
- Department of Biotechnology, School of Agriculture and Biosciences, Karunya Institute of Technology and Sciences, Coimbatore-641114, Tamil Nadu, India
| | - Anil Kumar Patel
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
- Centre for Energy and Environmental Sustainability, Lucknow, 226029, India
| | - Reeta Rani Singhania
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
- Centre for Energy and Environmental Sustainability, Lucknow, 226029, India
| | - Cheng-Di Dong
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Mihir Kumar Purkait
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| |
Collapse
|
20
|
Huang C, Yu Y, Li Z, Yan B, Pei W, Wu H. The preparation technology and application of xylo-oligosaccharide as prebiotics in different fields: A review. Front Nutr 2022; 9:996811. [PMID: 36091224 PMCID: PMC9453253 DOI: 10.3389/fnut.2022.996811] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 08/04/2022] [Indexed: 12/17/2022] Open
Abstract
Xylo-oligosaccharide (XOS) is a class of functional oligosaccharides that have been demonstrated with prebiotic activity over several decades. XOS has several advantages relative to other oligosaccharide molecules, such as promoting root development as a plant regulator, a sugar supplement for people, and prebiotics to promote intestinal motility utilization health. Now, the preparation and extraction process of XOS is gradually mature, which can maximize the extraction and avoid waste. To fully understand the recent preparation and application of XOS in different areas, we summarized the various technologies for obtaining XOS (including acid hydrolysis, enzymatic hydrolysis, hydrothermal pretreatment, and alkaline extraction) and current applications of XOS, including in animal feed, human food additives, and medicine. It is hoped that this review will serve as an entry point for those looking into the prebiotic field of research, and perhaps begin to dedicate their work toward this exciting classification of bio-based molecules.
Collapse
Affiliation(s)
- Caoxing Huang
- Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Department of Bioengineering, Nanjing Forestry University, Nanjing, China
| | - Yuxin Yu
- Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Department of Bioengineering, Nanjing Forestry University, Nanjing, China
| | - Zheng Li
- The Affiliated Zhongda Hospital of Southeast University Medical School, Nanjing, China
| | - Bowen Yan
- Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Department of Bioengineering, Nanjing Forestry University, Nanjing, China
| | - Wenhui Pei
- Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Department of Bioengineering, Nanjing Forestry University, Nanjing, China
| | - Hao Wu
- Department of Biomedical Engineering, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, China
- *Correspondence: Hao Wu,
| |
Collapse
|
21
|
Li S, Liu G, Xu Y, Liu J, Chen Z, Zheng A, Cai H, Chang W. Comparison of the effects of applying xylooligosaccharides alone or in combination with calcium acetate in broiler chickens. Anim Feed Sci Technol 2022. [DOI: 10.1016/j.anifeedsci.2022.115360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
22
|
Lian Z, Zhang Q, Xu Y, Zhou X, Jiang K. Biorefinery Cascade Processing for Converting Corncob to Xylooligosaccharides and Glucose by Maleic Acid Pretreatment. Appl Biochem Biotechnol 2022; 194:4946-4958. [PMID: 35674923 DOI: 10.1007/s12010-022-03985-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/27/2022] [Indexed: 01/07/2023]
Abstract
Corncob as an abundant and low-cost waste resource has received increasing attention to produce value-added chemicals, it is rich in xylan and regarded as the most preferable feedstock for preparing high value added xylooligosaccharides. The use of xylooligosaccharides as core products can cut costs and improve the economic efficiency in biorefinery. In this study, maleic acid, as a non-toxic and edible acidic catalyst, was employed to pretreat corncob and produce xylooligosaccharides. Firstly, the response surface methodology experimental procedure was employed to maximize the yield of the xylooligosaccharides; a yield of 52.9% (w/v) was achieved with 0.5% maleic acid (w/v) at 155 °C for 26 min. In addition, maleic acid pretreatment was also beneficial to enhance the enzymatic hydrolysis efficiency, resulting in an enzymatic glucose yield of 85.4% (w/v) with a total of 10% solids loading. Finally, a total of 160 g of xylooligosaccharides and 275 g glucose could be produced from 1000 g corncob starting from the maleic acid pretreatment. Overall, a cascade processing for converting corncob to xylooligosaccharides and glucose by sequential maleic acid pretreatment and enzymatic hydrolysis was successfully designed for the corncob wastes utilization.
Collapse
Affiliation(s)
- Zhina Lian
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, 210037, Nanjing, People's Republic of China
| | - Qibo Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, 210037, Nanjing, People's Republic of China
| | - Yong Xu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, 210037, Nanjing, People's Republic of China
| | - Xin Zhou
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, 210037, Nanjing, People's Republic of China.
| | - Kankan Jiang
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, 310053, Hangzhou, People's Republic of China
| |
Collapse
|
23
|
Gong WH, Zhang C, He JW, Gao YY, Li YJ, Zhu MQ, Wen JL. A synergistic hydrothermal-deep eutectic solvents (DES) pretreatment for acquiring xylooligosaccharides and lignin nanoparticles from Eucommia ulmoides wood. Int J Biol Macromol 2022; 209:188-197. [DOI: 10.1016/j.ijbiomac.2022.04.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/21/2022] [Accepted: 04/02/2022] [Indexed: 12/23/2022]
|
24
|
Effect of pretreatments on production of xylooligosaccharides and monosaccharides from corncob by a two-step hydrolysis. Carbohydr Polym 2022; 285:119217. [DOI: 10.1016/j.carbpol.2022.119217] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 01/31/2022] [Accepted: 01/31/2022] [Indexed: 01/17/2023]
|
25
|
Jiang K, Fu X, Huang R, Fan X, Ji L, Cai D, Liu X, Fu Y, Sun A, Feng C. Production of Prebiotic Xylooligosaccharides via Dilute Maleic Acid-Mediated Xylan Hydrolysis Using an RSM-Model-Based Optimization Strategy. Front Nutr 2022; 9:909283. [PMID: 35619949 PMCID: PMC9127663 DOI: 10.3389/fnut.2022.909283] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 04/19/2022] [Indexed: 11/13/2022] Open
Abstract
Xylooligosaccharides (XOS) are functional feed additives that are attracting growing commercial interest owing to their excellent ability to modulate the composition of the gut microbiota. The acid hydrolysis-based processing of xylan-containing materials has been proposed to represent a cost-effective approach to XOS preparation, with organic acids being preferable in this context. As such, in the present study, maleic acid was selected as a mild, edible organic acid for use in the hydrolysis of xylan to produce XOS. A response surface methodology (RSM) approach with a central composite design was employed to optimize maleic acid-mediated XOS production, resulting in a yield of 50.3% following a 15 min treatment with 0.08% maleic acid at 168°C. Under these conditions, the desired XOS degree of polymerization (2-3) was successfully achieved, demonstrating the viability of this using a low acid dose and a high reaction temperature to expedite the production of desired functional products. Moreover, as maleic acid is a relatively stable carboxylic acid, it has the potential to be recycled. These results suggest that dilute maleic acid-based thermal treatment of corncob-derived xylan can achieve satisfactory XOS yields, highlighting a promising and cost-effective approach to XOS production.
Collapse
Affiliation(s)
- Kankan Jiang
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, China
| | - Xiaoliang Fu
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, China
| | - Rong Huang
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, China
| | - Xingli Fan
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, China
| | - Lei Ji
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, China
| | - Damin Cai
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, China
| | - Xiaoxiang Liu
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, China
| | - Yixiu Fu
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, China
| | - Aihua Sun
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, China
| | - Chenzhuo Feng
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
26
|
Zhang W, Zhang B, Lei F, Li P, Jiang J. Coproduction xylo-oligosaccharides with low degree of polymerization and glucose from sugarcane bagasse by non-isothermal subcritical carbon dioxide assisted seawater autohydrolysis. BIORESOURCE TECHNOLOGY 2022; 349:126866. [PMID: 35183726 DOI: 10.1016/j.biortech.2022.126866] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/13/2022] [Accepted: 02/14/2022] [Indexed: 06/14/2023]
Abstract
High pretreatment temperature is necessary to obtain xylo-oligosaccharides (XOS) with low degree of polymerization (DP). However, traditional isothermal pretreatment for XOS production may increase the generation of xylose and furfural with the reaction time extending (10-100 min). In this study, non-isothermal subcritical CO2-assisted seawater autohydrolysis (NSCSA) firstly used seawater and CO2 for the coproduction of XOS with low DP and glucose. 51.44% XOS was obtained at 205 °C/5 MPa, and low-DP (2-4) XOS accounted for 79.13% of the total XOS. Furthermore, the specific surface area and total pore volume of the pretreated sugarcane bagasse (SCB) were 1.96 m2/g and 0.011 cm3/g, respectively, increased by 148% and 83% than that of nature SCB. Compared with subcritical CO2 pretreatment, NSCSA is an efficient method for the coproduction of XOS with low DP and glucose through inorganic salts in seawater and H2CO3 formed from CO2.
Collapse
Affiliation(s)
- Weiwei Zhang
- Department of Chemistry and Chemical Engineering, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, National Forest and Grass Administration Woody Spices (East China) Engineering Technology Research Center, Beijing Forestry University, Beijing 100083, PR China
| | - Bo Zhang
- Department of Food Science and Engineering, College of Biological Sciences and Technology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100083, PR China
| | - Fuhou Lei
- Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, College of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning 530006, PR China
| | - Pengfei Li
- Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, College of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning 530006, PR China
| | - Jianxin Jiang
- Department of Chemistry and Chemical Engineering, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, National Forest and Grass Administration Woody Spices (East China) Engineering Technology Research Center, Beijing Forestry University, Beijing 100083, PR China.
| |
Collapse
|
27
|
Zhang L, Zhang X, Lei F, Jiang J, Ji L. Coproduction of xylo-oligosaccharides and glucose from sugarcane bagasse in subcritical CO 2-assisted seawater system. BIORESOUR BIOPROCESS 2022; 9:34. [PMID: 38647821 PMCID: PMC10991134 DOI: 10.1186/s40643-022-00525-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 03/15/2022] [Indexed: 11/10/2022] Open
Abstract
Abundant seawater resources can replace the shortage of freshwater resources. The co-production of xylo-oligosaccharides and glucose from sugarcane bagasse by subcritical CO2-assisted seawater pretreatment was studied in this paper. We investigated the effects of pretreatment conditions of temperature, CO2 pressure and reaction time on the yield of xylo-oligosaccharides in subcritical CO2-assisted seawater systems. The maximum xylo-oligosaccharide yield of 68.23% was obtained at 165 °C/2 MPa/5 min. After further enzymatic hydrolysis of the solid residue, the highest glucose yield of 94.45% was obtained. In this system, there is a synergistic effect of mixed ions in seawater and CO2 to depolymerize xylan into xylo-oligosaccharides with a lower degree of polymerization. At the same time, the addition of CO2 increased the pore size and porosity of sugarcane bagasse, improved the efficiency of enzymatic hydrolysis and increased the yield of glucose. Therefore, this study provides a more environmentally friendly and sustainable process for the co-production of xylo-oligosaccharides and glucose from sugarcane bagasse, and improves the utilization of seawater resources.
Collapse
Affiliation(s)
- Leping Zhang
- Department of Chemistry and Chemical Engineering, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing, 100083, China
| | - Xiankun Zhang
- Department of Chemistry and Chemical Engineering, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing, 100083, China
| | - Fuhou Lei
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning, 530006, China
| | - Jianxin Jiang
- Department of Chemistry and Chemical Engineering, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing, 100083, China.
| | - Li Ji
- Department of Chemistry and Chemical Engineering, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
28
|
RSM-Modeling and Optimization of High Titer Functional Xylo-oligosaccharides Production by Edible Gluconic Acid Catalysis. Appl Biochem Biotechnol 2022; 194:2919-2930. [PMID: 35298767 DOI: 10.1007/s12010-022-03842-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/28/2022] [Indexed: 11/02/2022]
Abstract
Xylo-oligosaccharides have great value in food, feed fields. Previous studies have shown that organic acids catalyze the hydrolysis of xylan-rich sources for the production of xylo-oligosaccharides. In this study, gluconic acid of aldonic acid generated xylo-oligosaccharides via hydrolysis of xylan from corncob. In order to maximize efficiency of xylo-oligosaccharides production, the optimum conditions was ascertained by Box-Behnken design-based response surface methodology. The developed process resulted in a maximum xylo-oligosaccharides yield of 57.73% using 4.6% gluconic acid at 167 °C for 28 min, which was similar to the predicted value and fitted models of xylo-oligosaccharides production. The results showed that the reaction temperature was crucial to xylo-oligosaccharides production, and by-product yields (xylose and furfural) could be effectively controlled by both reaction temperature and time. In addition, 44.87 g/L XOS was achieved by decreasing the solid-liquid ratio. Overall, the described process may be a preferred option for future high concentration xylo-oligosaccharides production.
Collapse
|
29
|
Yang X, Liu X, Sheng Y, Yang H, Xu X, Tao Y, Zhang M. Optimization of Different Acid-Catalyzed Pretreatments on Co-Production of Xylooligosaccharides and Glucose from Sorghum Stalk. Polymers (Basel) 2022; 14:830. [PMID: 35215743 PMCID: PMC8963002 DOI: 10.3390/polym14040830] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 02/10/2022] [Accepted: 02/18/2022] [Indexed: 11/23/2022] Open
Abstract
There is an increasing emphasis on the transformation of lignocellulosic biomass into versatile products. The feasibility of preparing xylooligosaccharides (XOS) by hydrolysis of sorghum stalk (SS) using organic and inorganic acids was studied. The influences of different acids (gluconic acid, acetic acid, sulfuric acid, and oxalic acid), process time and temperature on the hydrolysis of SS were explored. The findings indicated XOS yield can be maintained at a high level under different conditions with organic acid pretreatments. Optimum yield of XOS (39.4%) was obtained using sulfuric acid (pH 2.2) at 170 °C and 75 min of process time. It is suggested when reaction temperature and time were increased, both X5 and X6 are cracked into XOS with lower molecular mass such as X2, X3, and X4. Moreover, the results based on mass balance showed that up to 110 g (XOS) plus 117 g (glucose) can be recovered from 1000 g of SS. Results will give insights into establishing an efficient acid pretreatment of sorghum stalk to coproduction of XOS and glucose.
Collapse
Affiliation(s)
- Xiaocui Yang
- Engineering Training Center, Nanjing Vocational University of Industry Technology, Nanjing 210023, China;
| | - Xiaoliu Liu
- College of Bioscience and Engineering, Hebei University of Economics and Business, Shijiazhuang 050061, China;
| | - Yequan Sheng
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China; (H.Y.); (X.X.)
| | - Hanzhou Yang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China; (H.Y.); (X.X.)
| | - Xinshuai Xu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China; (H.Y.); (X.X.)
| | - Yuheng Tao
- Department of Bioengineering, School of Pharmacy & School of Medicine, Changzhou University, Changzhou 213164, China;
| | - Minglong Zhang
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
- Anhui Hongsen Hi-Tech Forestry Co., Ltd., Bozhou 233600, China
| |
Collapse
|
30
|
Saini R, Patel AK, Saini JK, Chen CW, Varjani S, Singhania RR, Di Dong C. Recent advancements in prebiotic oligomers synthesis via enzymatic hydrolysis of lignocellulosic biomass. Bioengineered 2022; 13:2139-2172. [PMID: 35034543 PMCID: PMC8973729 DOI: 10.1080/21655979.2021.2023801] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Interest in functional food, such as non-digestible prebiotic oligosaccharides is increasing day by day and their production is shifting toward sustainable manufacturing. Due to the presence of high carbohydrate content, lignocellulosic biomass (LCB) is the most-potential, cost-effective and sustainable substrate for production of many useful products, including lignocellulose-derived prebiotic oligosaccharides (LDOs). These have the same worthwhile properties as other common oligosaccharides, such as short chain carbohydrates digestible to the gut flora but not to humans mainly due to their resistance to the low pH and high temperature and their demand is constantly increasing mainly due to increased awareness about their potential health benefits. Despite several advantages over the thermo-chemical route of synthesis, comprehensive and updated information on the conversion of lignocellulosic biomass to prebiotic oligomers via controlled enzymatic saccharification is not available in the literature. Thus, the main objective of this review is to highlight recent advancements in enzymatic synthesis of LDOs, current challenges, and future prospects of sustainably producing prebiotic oligomers via enzymatic hydrolysis of LCB substrates. Enzyme reaction engineering practices, custom-made enzyme preparations, controlled enzymatic hydrolysis, and protein engineering approaches have been discussed with regard to their applications in sustainable synthesis of lignocellulose-derived oligosaccharide prebiotics. An overview of scale-up aspects and market potential of LDOs has also been provided.
Collapse
Affiliation(s)
- Reetu Saini
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Anil Kumar Patel
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | | | - Chiu-Wen Chen
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | | | - Reeta Rani Singhania
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Cheng Di Dong
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| |
Collapse
|
31
|
Scapini T, Dalastra C, Camargo AF, Kubeneck S, Modkovski TA, Júnior SLA, Treichel H. Seawater-based biorefineries: A strategy to reduce the water footprint in the conversion of lignocellulosic biomass. BIORESOURCE TECHNOLOGY 2022; 344:126325. [PMID: 34785329 DOI: 10.1016/j.biortech.2021.126325] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/07/2021] [Accepted: 11/09/2021] [Indexed: 06/13/2023]
Abstract
Biorefineries are an essential step towards implementing a circular economy in the long term. They are based on renewable raw materials and must be designed holistically, recovering building blocks from being converted into several products. Lignocellulosic biomass is considered a critical pillar for a biologically based economy and a high value-added feedstock. The separation of the structural complexity that makes up the biomass allows the development of different product flows. Chemical, physical, and biological processes are evaluated for fractionation, hydrolysis, and fermentation processes in biorefineries; however, the volume of freshwater used affects water safety and increases the economic costs. Non-potable-resources-based technologies for biomass bioconversion are essential for biorefineries to become environmentally and economically sustainable systems. Studies are being carried out to substitute freshwater with seawater to reduce the water footprint. Accordingly, this review addresses a comprehensive discussion about seawater-based biorefineries focusing on lignocellulosic biomass conversion in biofuel and value-added products.
Collapse
Affiliation(s)
- Thamarys Scapini
- Laboratory of Microbiology and Bioprocess (LAMIBI), Federal University of Fronteira Sul, Erechim, RS, Brazil; Bioprocess Engineering and Biotechnology Department, Federal University of Paraná, Curitiba, PR, Brazil
| | - Caroline Dalastra
- Laboratory of Microbiology and Bioprocess (LAMIBI), Federal University of Fronteira Sul, Erechim, RS, Brazil
| | - Aline Frumi Camargo
- Laboratory of Microbiology and Bioprocess (LAMIBI), Federal University of Fronteira Sul, Erechim, RS, Brazil; Department of Biological Science, Graduate Program in Biotechnology and Bioscience, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Simone Kubeneck
- Laboratory of Microbiology and Bioprocess (LAMIBI), Federal University of Fronteira Sul, Erechim, RS, Brazil
| | | | - Sérgio Luiz Alves Júnior
- Laboratory of Biochemistry and Genetics, Federal University of Fronteira Sul, Chapecó, SC, Brazil
| | - Helen Treichel
- Laboratory of Microbiology and Bioprocess (LAMIBI), Federal University of Fronteira Sul, Erechim, RS, Brazil; Department of Biological Science, Graduate Program in Biotechnology and Bioscience, Federal University of Santa Catarina, Florianópolis, SC, Brazil.
| |
Collapse
|
32
|
Liao H, Li X, Lian Z, Xu Y, Zhang J. Two-step acetic acid/sodium acetate and xylanase hydrolysis for xylooligosaccharides production from corncob. BIORESOURCE TECHNOLOGY 2021; 342:125979. [PMID: 34571332 DOI: 10.1016/j.biortech.2021.125979] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 06/13/2023]
Abstract
At present, xylooligosaccharides (XOS) from corncob using acid-base conjugate system has not been reported. In this study, XOS production from corncob by two-step acetic acid/sodium acetate (AC/SA) conjugate system hydrolysis and xylanase hydrolysis was optimized, and monosaccharides were subsequently produced from corncob residues by cellulase hydrolysis. The XOS of 19.9 g/L was obtained from corncob (10%, w/v) using 0.15 M AC/SA hydrolysis at a molar ratio of 3.0 at 170 °C for 60 min, followed by xylanase hydrolysis. The second-step AC/SA hydrolysis of hydrolyzed corncob (10%, w/v) produced 3.1 g/L of XOS. Finally, the maximum XOS yield of 74.8% (based on xylan in corncob) was achieved, which is the highest yield among yields reported previously. The purity of XOS was high, whereas the contents of by-products were very low. This work presents a novel and promising strategy for co-production of XOS and monosaccharides from corncob without xylan isolation and purification.
Collapse
Affiliation(s)
- Hong Liao
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, PR China
| | - Xin Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, PR China
| | - Zhina Lian
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, PR China
| | - Yong Xu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, PR China; Key Laboratory of Forestry Genetics & Biotechnology (Nanjing Forestry University), Ministry of Education, Nanjing 210037, PR China
| | - Junhua Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, PR China; Key Laboratory of Forestry Genetics & Biotechnology (Nanjing Forestry University), Ministry of Education, Nanjing 210037, PR China; College of Forestry, Northwest A&F University, Yangling 712100, PR China.
| |
Collapse
|
33
|
Yang Q, Ying W, Wen P, Zhu J, Xu Y, Zhang J. Delignification of poplar for xylo-oligosaccharides production using lactic acid catalysis. BIORESOURCE TECHNOLOGY 2021; 342:125943. [PMID: 34547710 DOI: 10.1016/j.biortech.2021.125943] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/08/2021] [Accepted: 09/10/2021] [Indexed: 06/13/2023]
Abstract
Recently, xylo-oligosaccharides (XOS) production from lignocelluloses by organic acid catalysis has been widely reported. However, the effect of delignification of lignocelluloses on XOS production by organic acid catalysis was unclear, and lactic acid (LA) catalysis in XOS production from lignocelluloses has not been reported. In this work, the effect of delignification on XOS production from poplar by LA catalysis was investigated. Results demonstrated that hydrogen peroxide-acetic acid (HPAA) pretreatment removed 83.2% of lignin and retained 95.4% of xylan. After 2% LA catalysis (170 °C, 30 min), a high XOS yield of 42.7% was obtained from HPAA1-LA-pretreated poplar. Lignin removal from poplar was positively correlated with XOS yield. Glucose yield of HPAA1-LA-pretreated poplar by cellulase was 88.9%. Compared with LA-catalyzed poplar, the XOS and glucose production from HPAA1-LA-pretreated poplar by cellulase increased by 1.4-fold and 6.8-fold, respectively. This work presents a novel strategy for efficient producing XOS and monosaccharides from poplar.
Collapse
Affiliation(s)
- Qianqian Yang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Wenjun Ying
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Peiyao Wen
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Junjun Zhu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China; Key Laboratory of Forestry Genetics & Biotechnology (Nanjing Forestry University), Ministry of Education, Nanjing 210037, China
| | - Yong Xu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China; Key Laboratory of Forestry Genetics & Biotechnology (Nanjing Forestry University), Ministry of Education, Nanjing 210037, China
| | - Junhua Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China; Key Laboratory of Forestry Genetics & Biotechnology (Nanjing Forestry University), Ministry of Education, Nanjing 210037, China; College of Forestry, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
34
|
Liao H, Xu Y, Zhang J. Efficient production of xylooligosaccharides and fermentable sugars from corncob by propionic acid and enzymatic hydrolysis. BIORESOURCE TECHNOLOGY 2021; 342:125680. [PMID: 34583110 DOI: 10.1016/j.biortech.2021.125680] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 07/24/2021] [Accepted: 07/26/2021] [Indexed: 06/13/2023]
Abstract
Xylooligosaccharides (XOS) are usually produced by xylan isolation from lignocellulose by alkaline followed by enzymatic hydrolysis, but the process is complicated. Recently acid hydrolysis for XOS preparation has become popular as it is faster and easier. This study investigated a novel strategy for producing XOS from corncob using propionic acid (PA) hydrolysis, then producing monosaccharides from solid residues by cellulase hydrolysis. The effect of alkaline post-treatment on enzymatic hydrolysis was studied. The maximum XOS yield of 68.5% was achieved using 5% PA at 170 °C for 50 min. About 84% of lignin in PA-hydrolyzed corncob was removed using alkaline post-treatment. The yields of glucose and xylose reached 89.8% and 80.1%, respectively, using 5 FPU cellulase/g dry matter. The results indicated that alkaline post-treatment reduced 50% cellulase loading and improved the saccharification of PA-hydrolyzed corncob. This study presents an innovative option for efficient production of XOS and monosaccharides from corncob.
Collapse
Affiliation(s)
- Hong Liao
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yong Xu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China; Key Laboratory of Forestry Genetics & Biotechnology (Nanjing Forestry University), Ministry of Education, Nanjing 210037, China
| | - Junhua Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China; Key Laboratory of Forestry Genetics & Biotechnology (Nanjing Forestry University), Ministry of Education, Nanjing 210037, China; College of Forestry, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
35
|
Zhang L, Zhang W, Zhang F, Jiang J. Xylo-oligosaccharides and lignin production from Camellia oleifera shell by malic acid hydrolysis at mild conditions. BIORESOURCE TECHNOLOGY 2021; 341:125897. [PMID: 34523561 DOI: 10.1016/j.biortech.2021.125897] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/31/2021] [Accepted: 09/03/2021] [Indexed: 06/13/2023]
Abstract
Camellia oleifera shell (COS), a by-product of processing woody vegetable oil, is rich in hemicellulose and lignin. In this study, we investigated the effects of acid concentration, pretreatment temperature and reaction time on the concentration and yield of xylo-oligosaccharides (XOS) and the degree of polymerization (DP) distribution of XOS when pretreating COS with malic acid (MA). Under moderate condition (2 M MA, 120 ℃, 30 min), the maximum yield of XOS with DP 2-4 was 48.78% (based on the initial xylan) with low xylose, 5-hydroxymethylfurfural (HMF) and furfural, in which xylobiose (X2), xylotriose (X3) and xylotraose (X4) concentrations were 5.22 g/L, 2.75 g/L and 2.91 g/L, respectively. In addition, acid-insoluble lignin (AIL) in the residue after MA pretreatment and milling wood lignin (MWL) were mainly composed of guaiacyl and syringyl. AIL has higher thermal stability than MWL, which can be the stabilizer for producing flame-resistant materials.
Collapse
Affiliation(s)
- Leping Zhang
- Department of Chemistry and Chemical Engineering, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, National Forest and Grass Administration Woody Spices (East China) Engineering Technology Research Center, Beijing Forestry University, Beijing 100083, China
| | - Weiwei Zhang
- Department of Chemistry and Chemical Engineering, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, National Forest and Grass Administration Woody Spices (East China) Engineering Technology Research Center, Beijing Forestry University, Beijing 100083, China
| | - Fenglun Zhang
- Nanjing Institute for the Comprehensive Utilization of Wild Plants, Nanjing 210042, China
| | - Jianxin Jiang
- Department of Chemistry and Chemical Engineering, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, National Forest and Grass Administration Woody Spices (East China) Engineering Technology Research Center, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
36
|
Zhao J, Yang Y, Zhang M, Wang D. Effects of post-washing on pretreated biomass and hydrolysis of the mixture of acetic acid and sodium hydroxide pretreated biomass and their mixed filtrate. BIORESOURCE TECHNOLOGY 2021; 339:125605. [PMID: 34311408 DOI: 10.1016/j.biortech.2021.125605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/14/2021] [Accepted: 07/15/2021] [Indexed: 06/13/2023]
Abstract
Effects of post-washing [one-volume water (I-VW) or double-volume water (Ⅱ-VW)] on pretreated hemp and poplar biomass and enzymatic hydrolysis of the mixture of HOAc and NaOH pretreated biomass and their mixed filtrate were investigated. Compared to I-VW, Ⅱ-VW increased 3.76-6.80% of glucan content in NaOH pretreated biomass, diminished lignin recondensation, and heightened cellulose-related FTIR peak intensities, crystallinity index, and lignin removal. The pH of mixed filtrate was around 4.80, precipitating the NaOH soluble lignin partially. Although Ⅱ-VW showed lower lignin recoveries than I-VW, their FTIR characteristics were equivalent to the commercial alkali lignin. Enzymatic hydrolysis at solid loadings of 2.5-10% (w/v) demonstrated that I-VW and Ⅱ-VW had marginal variations in sugar concentration and conversion efficiency, indicating that I-VW is sufficient for post-washing pretreated biomass. Glucose concentration exhibited a quadratic correlation with solid loading and hemp biomass reached the maximum glucose (43.88 g/L) and total sugar (57.08 g/L) concentrations with I-VW.
Collapse
Affiliation(s)
- Jikai Zhao
- Department of Biological and Agricultural Engineering, Kansas State University, Manhattan, KS 66506, USA
| | - Yang Yang
- Department of Industrial and Manufacturing Systems Engineering, Kansas State University, Manhattan, KS 66506, USA
| | - Meng Zhang
- Department of Industrial and Manufacturing Systems Engineering, Kansas State University, Manhattan, KS 66506, USA
| | - Donghai Wang
- Department of Biological and Agricultural Engineering, Kansas State University, Manhattan, KS 66506, USA.
| |
Collapse
|
37
|
Wang Y, Yang Y, Qu Y, Zhang J. Selective removal of lignin with sodium chlorite to improve the quality and antioxidant activity of xylo-oligosaccharides from lignocellulosic biomass. BIORESOURCE TECHNOLOGY 2021; 337:125506. [PMID: 34320775 DOI: 10.1016/j.biortech.2021.125506] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 06/29/2021] [Accepted: 06/30/2021] [Indexed: 06/13/2023]
Abstract
As a key anti-degradation barrier that restricts the biotransformation of lignocellulose, the presence of lignin usually severely affects the quality of the extracted xylo-oligosaccharides (XOS). Herein, this study proposed a practical route to improve the quality and antioxidant activity of XOS extracted from lignocellulosic biomass via selective removal of lignin. The highest delignification of 92.6% was successfully achieved with 8% sodium chlorite at 75°C for 2 h. An ideal hemicellulose sample with a purity of 86.1% was obtained by selective removal of lignin. A high-quality XOS sample with a purity of 96.3%, a yield of 77.4%, and a color value of 814 was obtained by separating and purifying the enzymatic hydrolysate. Antioxidant activity assay showed that the highest radical scavenging activity of XOS was 87.3%. Importantly, this study provide a feasible and effective route for the lignocellulosic biomass utilization strategy based on the selective removal of lignin.
Collapse
Affiliation(s)
- Yuehai Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China; State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; School of Chemical and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yongqing Yang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; School of Chemical and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yongshui Qu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Jie Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
38
|
Chen Y, Xie Y, Ajuwon KM, Zhong R, Li T, Chen L, Zhang H, Beckers Y, Everaert N. Xylo-Oligosaccharides, Preparation and Application to Human and Animal Health: A Review. Front Nutr 2021; 8:731930. [PMID: 34568407 PMCID: PMC8458953 DOI: 10.3389/fnut.2021.731930] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 08/16/2021] [Indexed: 01/19/2023] Open
Abstract
Xylo-oligosaccharides (XOS) are considered as functional oligosaccharides and have great prebiotic potential. XOS are the degraded products of xylan prepared via chemical, physical or enzymatic degradation. They are mainly composed of xylose units linked by β-1, 4 bonds. XOS not only exhibit some specific physicochemical properties such as excellent water solubility and high temperature resistance, but also have a variety of functional biological activities including anti-inflammation, antioxidative, antitumor, antimicrobial properties and so on. Numerous studies have revealed in the recent decades that XOS can be applied to many food and feed products and exert their nutritional benefits. XOS have also been demonstrated to reduce the occurrence of human health-related diseases, improve the growth and resistance to diseases of animals. These effects open a new perspective on XOS potential applications for human consumption and animal production. Herein, this review aims to provide a general overview of preparation methods for XOS, and will also discuss the current application of XOS to human and animal health field.
Collapse
Affiliation(s)
- Yuxia Chen
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China.,Precision Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, TERRA Teaching and Research Centre, Liège University, Gembloux, Belgium
| | - Yining Xie
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Kolapo M Ajuwon
- Departments of Animal Sciences, Purdue University, West Lafayette, IN, United States
| | - Ruqing Zhong
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Tao Li
- Hunan United Bio-Technology Co., Changsha, China
| | - Liang Chen
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hongfu Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yves Beckers
- Precision Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, TERRA Teaching and Research Centre, Liège University, Gembloux, Belgium
| | - Nadia Everaert
- Precision Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, TERRA Teaching and Research Centre, Liège University, Gembloux, Belgium
| |
Collapse
|
39
|
Gan X, Chen L, Chen X, Pan S, Pan H. Agricultural bio-waste for removal of organic and inorganic contaminants from waste diesel engine oil. JOURNAL OF HAZARDOUS MATERIALS 2021; 414:124906. [PMID: 33640730 DOI: 10.1016/j.jhazmat.2020.124906] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 11/20/2020] [Accepted: 12/16/2020] [Indexed: 06/12/2023]
Abstract
Corncob, an agricultural bio-waste, was used as adsorbent to remove organic and inorganic contaminants in waste lubricating oil (WLO) from diesel engine. To improve its adsorption capacity, corncob was modified with mixed solution of nitric acid, Hexadecyl trimethyl ammonium bromide and ethanol. Characterization results showed the crystallinity index of corncob enhanced 12%, which would be ascribed to the disruption of the dense lignin-carbohydrates structure in lignocellulose biomass by modification. The surface of modified corncob became smoother and porous. The adsorption results showed modified corncob had better removal rates to contaminants than raw corncob. For WLO with 80,000 km mileage, the removal rates to Fe, Al, Cu were enhanced from 19%, 6.4%, 48-27%, 27%, 53%, while that for oxide, sulphate, aromates, soot and insoluble resins were enhanced 1.7, 1.2, 3.0, 1.7 and 1.7 times. The reduction rate of total acid number to WLO with 40,000, 60,000, 80,000 km were enhanced 16%, 9%, 12% by modified corncob, respectively. The optimal adsorption condition was explored as adsorbing 60 min at 90 °C with 2% adsorbent. Corncob, with the advantages of low cost, good biodegradability and high adsorption capacity, could be used as alternative to conventional adsorbent for WLO.
Collapse
Affiliation(s)
- Xianqian Gan
- National Engineering Research Center of Chemical Fertilizer Catalyst, School of Chemical Engineering, Fuzhou University, Fuzhou 350002, Fujian, PR China; School of Chemical Engineering, Fuzhou University, Fuzhou 350116, Fujian, PR China
| | - Lu Chen
- National Engineering Research Center of Chemical Fertilizer Catalyst, School of Chemical Engineering, Fuzhou University, Fuzhou 350002, Fujian, PR China; School of Chemical Engineering, Fuzhou University, Fuzhou 350116, Fujian, PR China
| | - Xiaohui Chen
- National Engineering Research Center of Chemical Fertilizer Catalyst, School of Chemical Engineering, Fuzhou University, Fuzhou 350002, Fujian, PR China; School of Chemical Engineering, Fuzhou University, Fuzhou 350116, Fujian, PR China.
| | - Shouquan Pan
- Fuzhou Savon Environmental Technology Co. Ltd, Fuzhou 350026, PR China
| | - Hongkun Pan
- Fuzhou Savon Environmental Technology Co. Ltd, Fuzhou 350026, PR China
| |
Collapse
|
40
|
Zhao J, Zhang X, Zhou X, Xu Y. Selective Production of Xylooligosaccharides by Xylan Hydrolysis Using a Novel Recyclable and Separable Furoic Acid. Front Bioeng Biotechnol 2021; 9:660266. [PMID: 33898408 PMCID: PMC8062972 DOI: 10.3389/fbioe.2021.660266] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/09/2021] [Indexed: 11/13/2022] Open
Abstract
Xylooligosaccharides (XOS) have gained considerable attention worldwide as prebiotics due to their immune-strengthening activity and beneficial gut bacteria development and can be produced from xylan-rich resources by acid hydrolysis. The present study proved the organic acid hydrolysis to be beneficial for XOS yield. In this study, a recyclable and separable organic acid, i.e., furoic acid, was used for hydrolyzing xylan to produce XOS, and the response surface methodology design was applied to maximize the XOS yield; the results indicated that the quadratic model terms of the interaction between reaction temperature and hydrolysis time showed the most significant impact on XOS yields (P < 0.05). The predicted maximum yield of XOS was 49.0% with 1.2% furoic acid at 167°C for 33 min, being close to the experimental value (49.2%), indicating that the fitted models were in good agreement with the experimental results. Meanwhile, the primary byproducts, including xylose and furfural, were concurrently bio-oxidized into xylonic acid and furoic acid by Gluconobacter oxydans and separated by electrodialysis. Subsequently, the furoic acid with low solubility (<3.7%, 25°C) was recovered by natural crystallization. The above results indicate that the use of multi-steps contributes to sustainable XOS production by furoic acid.
Collapse
Affiliation(s)
- Jianglin Zhao
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China.,Key Laboratory of Forest Genetics and Biotechnology, Ministry of Education, Nanjing Forestry University, Nanjing, China
| | - Xiaotong Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China.,Key Laboratory of Forest Genetics and Biotechnology, Ministry of Education, Nanjing Forestry University, Nanjing, China
| | - Xin Zhou
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China.,Key Laboratory of Forest Genetics and Biotechnology, Ministry of Education, Nanjing Forestry University, Nanjing, China.,Jiangsu Province Key Laboratory of Green Biomass-Based Fuels and Chemicals, Nanjing, China
| | - Yong Xu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China.,Key Laboratory of Forest Genetics and Biotechnology, Ministry of Education, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
41
|
Guo J, Huang K, Cao R, Zhang J, Xu Y. Aliphatic extractive effects on acetic acid catalysis of typical agricultural residues to xylo-oligosaccharide and enzymatic hydrolyzability of cellulose. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:97. [PMID: 33865437 PMCID: PMC8052792 DOI: 10.1186/s13068-021-01952-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 04/07/2021] [Indexed: 05/28/2023]
Abstract
BACKGROUND Xylo-oligosaccharide is the spotlight of functional sugar that improves the economic benefits of lignocellulose biorefinery. Acetic acid acidolysis technology provides a promising application for xylo-oligosaccharide commercial production, but it is restricted by the aliphatic (wax-like) compounds, which cover the outer and inner surfaces of plants. RESULTS We removed aliphatic compounds by extraction with two organic solvents. The benzene-ethanol extraction increased the yield of acidolyzed xylo-oligosaccharides of corncob, sugarcane bagasse, wheat straw, and poplar sawdust by 14.79, 21.05, 16.68, and 7.26% while ethanol extraction increased it by 11.88, 17.43, 1.26, and 13.64%, respectively. CONCLUSION The single ethanol extraction was safer, more environmentally friendly, and more cost-effective than benzene-ethanol solvent. In short, organic solvent extraction provided a promising auxiliary method for the selective acidolysis of herbaceous xylan to xylo-oligosaccharides, while it had minimal impact on woody poplar.
Collapse
Affiliation(s)
- Jianming Guo
- Key Laboratory of Forestry Genetics & Biotechnology, Ministry of Education, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
- Jiangsu Province Key Laboratory of Green Biomass-Based Fuels and Chemicals, Nanjing, 210037, People's Republic of China
| | - Kaixuan Huang
- Key Laboratory of Forestry Genetics & Biotechnology, Ministry of Education, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
- Jiangsu Province Key Laboratory of Green Biomass-Based Fuels and Chemicals, Nanjing, 210037, People's Republic of China
| | - Rou Cao
- Key Laboratory of Forestry Genetics & Biotechnology, Ministry of Education, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
- Jiangsu Province Key Laboratory of Green Biomass-Based Fuels and Chemicals, Nanjing, 210037, People's Republic of China
| | - Junhua Zhang
- College of Forestry, Northwest A&F University, 3 Taicheng Road, Yangling, 712100, Shanxi, People's Republic of China
| | - Yong Xu
- Key Laboratory of Forestry Genetics & Biotechnology, Ministry of Education, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, People's Republic of China.
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, People's Republic of China.
- Jiangsu Province Key Laboratory of Green Biomass-Based Fuels and Chemicals, Nanjing, 210037, People's Republic of China.
| |
Collapse
|
42
|
Guo J, Zhao J, Nawaz A, Haq IU, Chang W, Xu Y. In Situ Chemical Locking of Acetates During Xylo-Oligosaccharide Preparation by Lignocellulose Acidolysis. Appl Biochem Biotechnol 2021; 193:2602-2615. [PMID: 33797025 DOI: 10.1007/s12010-021-03550-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/22/2021] [Indexed: 11/26/2022]
Abstract
Xylo-oligosaccharides with high value could be obtained by acidolysis of lignocellulosic biomass with acetic acid, which was an urgent problem to solve for the separation of acetic acid from crude xylo-oligosaccharides solution. Four neutralizers, CaCO3, CaO, Na2CO3, and NaOH, were used for in situ chemically locking the acetic acid in the acidolyzed hydrolysate of corncob. The chemically locked hydrolysate was analyzed and compared using vacuum evaporation and spray drying. After CaCO3, CaO, Na2CO3, and NaOH treatment, the locking rates of acetic acid were 92.62%, 94.89%, 95.05%, and 95.58%, respectively, and 39.55 g, 41.13 g, 41.78 g, and 41.87 g of the compound of xylo-oligosaccharide and acetate were obtained. Sodium neutralizer had lesser effect on xylo-oligosaccharide content, and Na2CO3 was the best chemical for locking acetic acid among these four neutralizers. This process provides a novel method for effectively utilizing acetic acid during the industrial production of xylo-oligosaccharides via acetic acid.
Collapse
Affiliation(s)
- Jianming Guo
- Key Laboratory of Forestry Genetics & Biotechnology, Nanjing Forestry University, Ministry of Education, Nanjing, 210037, People's Republic of China
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, No. 159 Longpan Road, Nanjing, 210037, People's Republic of China
- Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, Nanjing, 210037, People's Republic of China
| | - Jianglin Zhao
- Key Laboratory of Forestry Genetics & Biotechnology, Nanjing Forestry University, Ministry of Education, Nanjing, 210037, People's Republic of China
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, No. 159 Longpan Road, Nanjing, 210037, People's Republic of China
- Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, Nanjing, 210037, People's Republic of China
| | - Ali Nawaz
- Institute of Industrial Biotechnology, GC University, Lahore, 54000, Pakistan
| | - Ikram Ul Haq
- Institute of Industrial Biotechnology, GC University, Lahore, 54000, Pakistan
| | - Wenhuan Chang
- The Key Laboratory of Feed Biotechnology of Ministry of Agriculture, Feed Research Institute of Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Yong Xu
- Key Laboratory of Forestry Genetics & Biotechnology, Nanjing Forestry University, Ministry of Education, Nanjing, 210037, People's Republic of China.
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, No. 159 Longpan Road, Nanjing, 210037, People's Republic of China.
- Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, Nanjing, 210037, People's Republic of China.
| |
Collapse
|
43
|
Cao R, Liu X, Guo J, Xu Y. Comparison of various organic acids for xylo-oligosaccharide productions in terms of pKa values and combined severity. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:69. [PMID: 33726832 PMCID: PMC7968336 DOI: 10.1186/s13068-021-01919-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 03/03/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Methods to produce XOS have been intensively investigated, including enzymatic hydrolysis, steam explosion, and acid hydrolysis. Acid hydrolysis is currently the most widely used method to produce XOS due to its advantages of fewer processing steps, stronger raw material adaptability, higher yield, and better reproducibility. Especially, organic acids such as acetic acid, formic acid and xylonic acid work better as compared with mineral acids. However, the catalytic mechanism of different organic acids has been little studied. In this paper, four different organic acids, including formic acid, glycolic acid, lactic acid, and acetic acid were selected to compare their hydrolytic effects. RESULTS Using pKa values as the benchmark, the yield of xylo-oligosaccharide (XOS) increased with the increasing value of pKa. The yield of XOS was 37% when hydrolyzed by 5% acetic acid (pKa = 4.75) at 170 ℃ for 20 min. Combined severity (CS), a parameter associated with temperature and reaction time was proposed, was proposed to evaluate the hydrolysis effect. The results of CS were consistent with that of pKa values on both the yield of XOS and the inhibitor. CONCLUSION The results based on pKa values and combined severity, a parameter associated with temperature and reaction time, concluded that acetic acid is a preferred catalyst. Combining the techno-economic analysis and environmental benefits, acetic acid hydrolysis process has lower factory production costs, and it is also an important metabolite and a carbon source for wastewater anaerobic biological treatment. In conclusion, production of xylo-oligosaccharides by acetic acid is an inexpensive, environment-friendly, and sustainable processing technique.
Collapse
Affiliation(s)
- Rou Cao
- Key Laboratory of Forestry Genetics & Biotechnology (Nanjing Forestry University), Ministry of Education, Nanjing, 210037, People's Republic of China
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
- Jiangsu Province Key Laboratory of Green Biomass-Based Fuels and Chemicals, Nanjing, 210037, People's Republic of China
| | - Xinlu Liu
- Key Laboratory of Forestry Genetics & Biotechnology (Nanjing Forestry University), Ministry of Education, Nanjing, 210037, People's Republic of China
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
- Jiangsu Province Key Laboratory of Green Biomass-Based Fuels and Chemicals, Nanjing, 210037, People's Republic of China
| | - Jianming Guo
- Key Laboratory of Forestry Genetics & Biotechnology (Nanjing Forestry University), Ministry of Education, Nanjing, 210037, People's Republic of China
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
- Jiangsu Province Key Laboratory of Green Biomass-Based Fuels and Chemicals, Nanjing, 210037, People's Republic of China
| | - Yong Xu
- Key Laboratory of Forestry Genetics & Biotechnology (Nanjing Forestry University), Ministry of Education, Nanjing, 210037, People's Republic of China.
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, People's Republic of China.
- Jiangsu Province Key Laboratory of Green Biomass-Based Fuels and Chemicals, Nanjing, 210037, People's Republic of China.
- College of Chemical Engineering, Nanjing Forestry University, No. 159 Longpan Road, Nanjing, 201137, People's Republic of China.
| |
Collapse
|
44
|
Catenza KF, Donkor KK. Recent approaches for the quantitative analysis of functional oligosaccharides used in the food industry: A review. Food Chem 2021; 355:129416. [PMID: 33774226 DOI: 10.1016/j.foodchem.2021.129416] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 01/15/2021] [Accepted: 02/17/2021] [Indexed: 02/07/2023]
Abstract
Functional oligosaccharides (OS) are diverse groups of carbohydrates that confer several health benefits stemming from their prebiotic activity. Commonly used oligosaccharides, fructooligosaccharides and galactooligosaccharides, are used in a wide range of applications from food ingredients to mimic the prebiotic activity of human milk oligosaccharides (HMOs) in infant formula to sugar and fat replacers in dairy and bakery products. However, while consumption of these compounds is associated with several positive health effects, increased consumption can cause intestinal discomfort and aggravation of intestinal bowel syndrome symptoms. Hence, it is essential to develop rapid and reliable techniques to quantify OS for quality control and proper assessment of their functionality in food and food products. The present review will focus on recent analytical techniques used to quantify OS in different matrices such as food and beverage products.
Collapse
Affiliation(s)
- K F Catenza
- Department of Physical Sciences (Chemistry), Thompson Rivers University, 805 TRU Way, Kamloops, BC V2C 0C8, Canada
| | - K K Donkor
- Department of Physical Sciences (Chemistry), Thompson Rivers University, 805 TRU Way, Kamloops, BC V2C 0C8, Canada.
| |
Collapse
|
45
|
Wang J, Xu Y, Meng X, Pu Y, Ragauskas A, Zhang J. Production of xylo-oligosaccharides from poplar by acetic acid pretreatment and its impact on inhibitory effect of poplar lignin. BIORESOURCE TECHNOLOGY 2021; 323:124593. [PMID: 33387707 DOI: 10.1016/j.biortech.2020.124593] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/16/2020] [Accepted: 12/17/2020] [Indexed: 06/12/2023]
Abstract
Recently, efficient production of xylo-oligosaccharides (XOS) from poplar by acetic acid (AA) pretreatment was developed; but the effect of residual lignin on subsequent cellulase hydrolysis was unclear. Herein, XOS was produced from poplar by AA pretreatment and the effect of AA pretreatment on lignin inhibition to cellulase hydrolysis was investigated. The results indicated that a high XOS yield of 55.8% was obtained, and the inhibition degree of lignin in poplar increased from 1.0% to 6.8% after AA pretreatment. Lignin was acetylated and its molecular weight decreased from 12,211 to 2871 g/mol after AA pretreatment. The increase of S/G ratio, phenolic hydroxyl, and condensed units of lignin after AA pretreatment might be reasons for this intensified inhibition. The results advanced our understanding of the structural and inhibitory properties of lignin after production of XOS from poplar with AA pretreatment, and provided references for efficient cellulase hydrolysis of poplar after AA pretreatment.
Collapse
Affiliation(s)
- Jinye Wang
- College of Forestry, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yong Xu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China; Key Laboratory of Forestry Genetics & Biotechnology (Nanjing Forestry University), Ministry of Education, Nanjing 210037, China
| | - Xianzhi Meng
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996-2200, USA
| | - Yunqiao Pu
- Joint Institute for Biological Sciences, Oak Ridge National Laboratory (ORNL), Oak Ridge, TN 37831, USA
| | - Arthur Ragauskas
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996-2200, USA; Joint Institute for Biological Sciences, Oak Ridge National Laboratory (ORNL), Oak Ridge, TN 37831, USA
| | - Junhua Zhang
- College of Forestry, Northwest A&F University, Yangling 712100, Shaanxi, China; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China; Key Laboratory of Forestry Genetics & Biotechnology (Nanjing Forestry University), Ministry of Education, Nanjing 210037, China.
| |
Collapse
|
46
|
Dai L, Huang T, Jiang K, Zhou X, Xu Y. A novel recyclable furoic acid-assisted pretreatment for sugarcane bagasse biorefinery in co-production of xylooligosaccharides and glucose. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:35. [PMID: 33531058 PMCID: PMC7856728 DOI: 10.1186/s13068-021-01884-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 12/13/2020] [Indexed: 05/26/2023]
Abstract
BACKGROUND Pretreatment is the key step for utilizing lignocellulosic biomass, which can extract cellulose from lignin and disrupt its recalcitrant crystalline structure to allow much more effective enzymatic hydrolysis; and organic acids pretreatment with dual benefic for generating xylooligosaccharides and boosting enzymatic hydrolysis has been widely used in adding values to lignocellulose materials. In this work, furoic acid, a novel recyclable organic acid as catalyst, was employed to pretreat sugarcane bagasse to recover the xylooligosaccharides fraction from hemicellulose and boost the subsequent cellulose saccharification. RESULTS The FA-assisted hydrolysis of sugarcane bagasse using 3% furoic acid at 170 °C for 15 min resulted in the highest xylooligosaccharides yield of 45.6%; subsequently, 83.1 g/L of glucose was harvested by a fed-batch operation with a solid loading of 15%. Overall, a total of 120 g of xylooligosaccharides and 335 g glucose could be collected from 1000 g sugarcane bagasse starting from the furoic acid pretreatment. Furthermore, furoic acid can be easily recovered by cooling crystallization. CONCLUSION This work put forward a novel furoic acid pretreatment method to convert sugarcane bagasse into xylooligosaccharides and glucose, which provides a strategy that the sugar and nutraceutical industries can be used to reduce the production cost. The developed process showed that the yields of xylooligosaccharides and byproducts were controllable by shortening the reaction time; meanwhile, the recyclability of furoic acid also can potentially reduce the pretreatment cost and potentially replace the traditional mineral acids pretreatment.
Collapse
Affiliation(s)
- Lin Dai
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, No. 159 Longpan Road, Nanjing, 210037, People's Republic of China
- Key Laboratory of Forestry Genetics & Biotechnology (Nanjing Forestry University), Ministry of Education, Nanjing, 210037, People's Republic of China
- Jiangsu Province Key Laboratory of Green Biomass-Based Fuels and Chemicals, Nanjing, 210037, People's Republic of China
| | - Tian Huang
- Key Laboratory of Forestry Genetics & Biotechnology (Nanjing Forestry University), Ministry of Education, Nanjing, 210037, People's Republic of China
- Jiangsu Province Key Laboratory of Green Biomass-Based Fuels and Chemicals, Nanjing, 210037, People's Republic of China
| | - Kankan Jiang
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, 310053, People's Republic of China
| | - Xin Zhou
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, No. 159 Longpan Road, Nanjing, 210037, People's Republic of China.
- Key Laboratory of Forestry Genetics & Biotechnology (Nanjing Forestry University), Ministry of Education, Nanjing, 210037, People's Republic of China.
- Jiangsu Province Key Laboratory of Green Biomass-Based Fuels and Chemicals, Nanjing, 210037, People's Republic of China.
| | - Yong Xu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, No. 159 Longpan Road, Nanjing, 210037, People's Republic of China
- Key Laboratory of Forestry Genetics & Biotechnology (Nanjing Forestry University), Ministry of Education, Nanjing, 210037, People's Republic of China
- Jiangsu Province Key Laboratory of Green Biomass-Based Fuels and Chemicals, Nanjing, 210037, People's Republic of China
| |
Collapse
|
47
|
Monteiro CR, Ávila PF, Pereira MAF, Pereira GN, Bordignon SE, Zanella E, Stambuk BU, de Oliveira D, Goldbeck R, Poletto P. Hydrothermal treatment on depolymerization of hemicellulose of mango seed shell for the production of xylooligosaccharides. Carbohydr Polym 2021; 253:117274. [DOI: 10.1016/j.carbpol.2020.117274] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 10/14/2020] [Accepted: 10/16/2020] [Indexed: 11/15/2022]
|
48
|
Xu W, Han M, Zhang W, Zhang F, Lei F, Wang K, Jiang J. Production of manno-oligosaccharide from Gleditsia microphylla galactomannan using acetic acid and ferrous chloride. Food Chem 2021; 346:128844. [PMID: 33418412 DOI: 10.1016/j.foodchem.2020.128844] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 11/09/2020] [Accepted: 12/05/2020] [Indexed: 01/10/2023]
Abstract
A novel and efficient method for manno-oligosaccharides (MOS) production has been proposed by utilizing Gleditsia microphylla galactomannan as the starting material. This co-operative hydrolysis using ferrous chloride (Fe2+) and acetic acid (HAc) effectively improved the MOS yield and meanwhile decreased the amount of monosaccharide and the 5-hydroxymethyl-furfural (HMF). The highest yields under the optimum conditions were 46.7% by HAc hydrolysis (5 M HAc at 130 °C for 120 min); 37.3% by Fe2+ hydrolysis (0.1 M Fe2+ at 150 °C for 120 min); and 51.4% by co-operative hydrolysis (2 M HAc, 0.05 M Fe2+ at 160 °C for 10 min). From the changes in the value of M/G (mannose/galactose) ratios, it was deduced that Fe2+ predominantly cleaves the main chain, and HAc assists in the breakage of the side chain, thus resulting in the high-efficient co-operative hydrolysis for the production of MOS.
Collapse
Affiliation(s)
- Wei Xu
- Beijing Forestry University, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing 100083, China
| | - Minghui Han
- Beijing Forestry University, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing 100083, China
| | - Weiwei Zhang
- Beijing Forestry University, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing 100083, China
| | - Fenglun Zhang
- Nanjing Institute for the Comprehensive Utilization of Wild Plants, Nanjing 210042, China
| | - Fuhou Lei
- Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, College of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning 530006, China
| | - Kun Wang
- Beijing Forestry University, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing 100083, China
| | - Jianxin Jiang
- Beijing Forestry University, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing 100083, China.
| |
Collapse
|
49
|
Santibáñez L, Henríquez C, Corro-Tejeda R, Bernal S, Armijo B, Salazar O. Xylooligosaccharides from lignocellulosic biomass: A comprehensive review. Carbohydr Polym 2021; 251:117118. [DOI: 10.1016/j.carbpol.2020.117118] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/22/2020] [Accepted: 09/04/2020] [Indexed: 02/04/2023]
|
50
|
Alokika, Anu, Kumar A, Kumar V, Singh B. Cellulosic and hemicellulosic fractions of sugarcane bagasse: Potential, challenges and future perspective. Int J Biol Macromol 2020; 169:564-582. [PMID: 33385447 DOI: 10.1016/j.ijbiomac.2020.12.175] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/29/2020] [Accepted: 12/23/2020] [Indexed: 12/01/2022]
Abstract
Sugarcane bagasse is a rich source of cellulose (32-45%), hemicellulose (20-32%) and lignin (17-32%), 1.0-9.0% ash and some extractives. Huge amount of the generation of sugarcane bagasse has been a great challenge to industries and environment at global level for many years. Though cellulosic and hemicellulosic fractions in bagasse makes it a potential raw substrate for the production of value-added products at large scale, the presence of lignin hampers its saccharification which further leads to low yields of the value-added products. Therefore, an appropriate pretreatment strategy is of utmost importance that effectively solubilizes the lignin that exposes cellulose and hemicellulose for enzymatic action. Pretreatment also reduces the biomass recalcitrance i.e., cellulose crystallinity, structural complexity of cell wall and lignification for its effective utilization in biorefinery. Sugarcane bagasse served as nutrient medium for the cultivation of diverse microorganisms for the production of industrially important metabolites including enzymes, reducing sugars, prebiotic, organic acids and biofuels. Sugarcane bagasse has been utilized in the generation of electricity, syngas and as biosorbant in the bioremediation of heavy metals. Furthermore, the ash generated from bagasse is an excellent source for the synthesis of high strength and light weight bricks and tiles. Present review describes the utility of sugarcane bagasse as sustainable and renewable lignocellulosic substrate for the production of industrially important multifarious value-added products.
Collapse
Affiliation(s)
- Alokika
- Laboratory of Bioprocess Technology, Department of Microbiology, Maharshi Dayanand University, Rohtak 124001, Haryana, India
| | - Anu
- Laboratory of Bioprocess Technology, Department of Microbiology, Maharshi Dayanand University, Rohtak 124001, Haryana, India
| | - Anil Kumar
- Department of Botany, Pt. N.R.S. Govt. College, Rohtak 124001, Haryana, India
| | - Vinod Kumar
- Department of Chemistry, Central University of Haryana, Jant-Pali, Mahendergarh 123031, Haryana, India
| | - Bijender Singh
- Laboratory of Bioprocess Technology, Department of Microbiology, Maharshi Dayanand University, Rohtak 124001, Haryana, India; Department of Biotechnology, Central University of Haryana, Jant-Pali, Mahendergarh 123031, Haryana, India.
| |
Collapse
|