1
|
Paliya BS, Sharma VK, Tuohy MG, Singh HB, Koffas M, Benhida R, Tiwari BK, Kalaskar DM, Singh BN, Gupta VK. Bacterial glycobiotechnology: A biosynthetic route for the production of biopharmaceutical glycans. Biotechnol Adv 2023; 67:108180. [PMID: 37236328 DOI: 10.1016/j.biotechadv.2023.108180] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/16/2023] [Accepted: 05/21/2023] [Indexed: 05/28/2023]
Abstract
The recent advancement in the human glycome and progress in the development of an inclusive network of glycosylation pathways allow the incorporation of suitable machinery for protein modification in non-natural hosts and explore novel opportunities for constructing next-generation tailored glycans and glycoconjugates. Fortunately, the emerging field of bacterial metabolic engineering has enabled the production of tailored biopolymers by harnessing living microbial factories (prokaryotes) as whole-cell biocatalysts. Microbial catalysts offer sophisticated means to develop a variety of valuable polysaccharides in bulk quantities for practical clinical applications. Glycans production through this technique is highly efficient and cost-effective, as it does not involve expensive initial materials. Metabolic glycoengineering primarily focuses on utilizing small metabolite molecules to alter biosynthetic pathways, optimization of cellular processes for glycan and glycoconjugate production, characteristic to a specific organism to produce interest tailored glycans in microbes, using preferably cheap and simple substrate. However, metabolic engineering faces one of the unique challenges, such as the need for an enzyme to catalyze desired substrate conversion when natural native substrates are already present. So, in metabolic engineering, such challenges are evaluated, and different strategies have been developed to overcome them. The generation of glycans and glycoconjugates via metabolic intermediate pathways can still be supported by glycol modeling achieved through metabolic engineering. It is evident that modern glycans engineering requires adoption of improved strain engineering strategies for creating competent glycoprotein expression platforms in bacterial hosts, in the future. These strategies include logically designing and introducing orthogonal glycosylation pathways, identifying metabolic engineering targets at the genome level, and strategically improving pathway performance (for example, through genetic modification of pathway enzymes). Here, we highlight current strategies, applications, and recent progress in metabolic engineering for producing high-value tailored glycans and their applications in biotherapeutics and diagnostics.
Collapse
Affiliation(s)
- Balwant S Paliya
- Herbal Nanobiotechnology Lab, Pharmacology Division, CSIR-National Botanical Research Institute, Lucknow 226001, India
| | - Vivek K Sharma
- Herbal Nanobiotechnology Lab, Pharmacology Division, CSIR-National Botanical Research Institute, Lucknow 226001, India
| | - Maria G Tuohy
- Biochemistry, School of Biological and Chemical Sciences, College of Science & Engineering, University of Galway (Ollscoil na Gaillimhe), University Road, Galway City, Ireland
| | - Harikesh B Singh
- Department of Biotechnology, GLA University, Mathura 281406, Uttar Pradesh, India
| | - Mattheos Koffas
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Rachid Benhida
- Institut de Chimie de Nice, UMR7272, Université Côte d'Azur, Nice, France; Mohamed VI Polytechnic University, Lot 660, Hay Moulay Rachid 43150, Benguerir, Morocco
| | | | - Deepak M Kalaskar
- UCL Division of Surgery and Interventional Science, Royal Free Hospital Campus, University College London, Rowland Hill Street, NW3 2PF, UK
| | - Brahma N Singh
- Herbal Nanobiotechnology Lab, Pharmacology Division, CSIR-National Botanical Research Institute, Lucknow 226001, India.
| | - Vijai K Gupta
- Biorefining and Advanced Materials Research Centre, SRUC, Barony Campus, Parkgate, Dumfries DG1 3NE, United Kingdom.
| |
Collapse
|
2
|
Thirumalai A, Ganapathy Raman P, Jayavelu T, Subramanian R. Bridging the gap between maleate hydratase, citraconase and isopropylmalate isomerase: Insights into the single broad-specific enzyme. Enzyme Microb Technol 2023; 162:110140. [DOI: 10.1016/j.enzmictec.2022.110140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 09/23/2022] [Accepted: 10/08/2022] [Indexed: 11/13/2022]
|
3
|
Yang T, Wu P, Zhang Y, Cao M, Yuan J. High‐titer production of aromatic amines in metabolically engineered
Escherichia coli. J Appl Microbiol 2022; 133:2931-2940. [DOI: 10.1111/jam.15745] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/23/2022] [Accepted: 07/27/2022] [Indexed: 11/27/2022]
Affiliation(s)
- Taiwei Yang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences Xiamen University Fujian China
| | - Peiling Wu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences Xiamen University Fujian China
| | - Yang Zhang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences Xiamen University Fujian China
| | - Mingfeng Cao
- College of Chemistry and Chemical Engineering Xiamen University Fujian China
| | - Jifeng Yuan
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences Xiamen University Fujian China
| |
Collapse
|
4
|
Song C, Li Y, Ma W. ATP is not essential for cadaverine production by Escherichia coli whole-cell bioconversion. J Biotechnol 2022; 353:44-50. [PMID: 35660066 DOI: 10.1016/j.jbiotec.2022.05.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 03/08/2022] [Accepted: 05/30/2022] [Indexed: 10/18/2022]
Abstract
ATP plays an essential role in the substrate/product transmembrane transportation during whole-cell bioconversion. This study aimed to address the impact of ATP upon cadaverine synthesis by whole-cell biocatalysts. The results showed no significant change in the ATP content (P = 0.625), and the specific cadaverine yield (P = 0.374) was observed in enzyme-catalyzed cadaverine synthesis with exogenous addition of ATP, indicating that the enzyme-catalyzed process does not require the participation of ATP. Furthermore, a whole-cell biocatalyst co-overexpressed methionine adenosyltransferase (MetK), lysine decarboxylase (CadA), and lysine/cadaverine antiporter (CadB) was constructed and used to investigate the effect of ATP deficiency on the cadaverine production by conversion of L-methionine and L-lysine, simultaneously. The results showed no significant difference (P = 0.585) in the specific cadaverine content between high and low levels of intracellular ATP. In addition, the intra- and extracellular cadaverine concentration and the ratio of ATP/ADP of whole-cell biocatalyst were determined. Results showed that the extracellular cadaverine concentration was much higher than the intracellular concentration, and no significant changes in ATP/ADP ratio during cadaverine synthesis. In contrast, an inhibition effect of the proton motive force (PMF) inhibitor carbonyl cyanide m-chlorophenylhydrazone (CCCP) on cadaverine production was detected. These findings strongly suggest that cadaverine transport in whole-cell biocatalysts was energized by PMF rather than ATP. Finally, a model was proposed to describe cadaverine's PMF-driven transport under different external pHs during whole-cell biocatalysis. This study is the first to experimentally confirm that the cadaverine production by Escherichia coli whole-cell bioconversion is independent of intracellular ATP, which helps guide the subsequent construction of biocatalysts and optimize transformation conditions.
Collapse
Affiliation(s)
- Chenbin Song
- Tianshui Engineering Research Center for Agricultural Products Deep Processing, College of Bioengineering and Biotechnology, Tianshui Normal University, Tianshui, 741001, China
| | - Yijing Li
- Tianshui Engineering Research Center for Agricultural Products Deep Processing, College of Bioengineering and Biotechnology, Tianshui Normal University, Tianshui, 741001, China
| | - Weichao Ma
- Tianshui Engineering Research Center for Agricultural Products Deep Processing, College of Bioengineering and Biotechnology, Tianshui Normal University, Tianshui, 741001, China.
| |
Collapse
|
5
|
Wu J, Cui S, Liu J, Tang X, Zhao J, Zhang H, Mao B, Chen W. The recent advances of glucosinolates and their metabolites: Metabolism, physiological functions and potential application strategies. Crit Rev Food Sci Nutr 2022:1-18. [PMID: 35389274 DOI: 10.1080/10408398.2022.2059441] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Glucosinolates and their metabolites from Brassicaceae plants have received widespread attention due to their anti-inflammatory effects. Glucosinolates occurs an "enterohepatic circulation" in the body, and the glucosinolates metabolism mainly happens in the intestine. Glucosinolates can be converted into isothiocyanates by intestinal bacteria, which are active substances with remarkable anti-inflammatory, anti-cancer, anti-obesity and neuroprotective properties. This biotransformation can greatly improve the bioactivities of glucosinolates. However, multiple factors in the environment can affect the biotransformation to isothiocyanates, including acidic pH, ferrous ions and thiocyanate-forming protein. The derivatives of glucosinolates under those conditions are usually nitriles and thiocyanates, which may impair the potential health benefits. In addition, isothiocyanates are extremely unstable because of an active sulfhydryl group, which limits their applications. This review mainly summarizes the classification, synthesis, absorption, metabolism, physiological functions and potential application strategies of glucosinolates and their metabolites.
Collapse
Affiliation(s)
- Jiaying Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Shumao Cui
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Junsheng Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Xin Tang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China.,National Engineering Research Center for Functional Food, Jiangnan University, China
| | - Bingyong Mao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China.,National Engineering Research Center for Functional Food, Jiangnan University, China
| |
Collapse
|
6
|
Huo K, Liu Y, Huang R, Zhang Y, Liu H, Che Y, Yang C. Development of a novel promoter engineering-based strategy for creating an efficient para-nitrophenol-mineralizing bacterium. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127672. [PMID: 34753648 DOI: 10.1016/j.jhazmat.2021.127672] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 10/20/2021] [Accepted: 10/29/2021] [Indexed: 06/13/2023]
Abstract
A toxic and persistent pollutant para-nitrophenol (PNP) enters into the environment through improper industrial waste treatment and agricultural usage of chemical pesticides, leading to a potential risk to humans. Although a variety of PNP-degrading bacteria have been isolated, their application in bioremediation has been precluded due to unknown biosafety, poor PNP-mineralizing capacity, and lack of genome editing tools. In this study, a novel promoter engineering-based strategy is developed for creating efficient PNP-mineralizing bacteria. Initially, a complete PNP biodegradation pathway from Pseudomonas sp. strain WBC-3 was introduced into the genome of a biosafety and soil-dwelling bacterium Pseudomonas putida KT2440. Subsequently, five strong promoters were identified from P. putida KT2440 by transcriptome analysis and strength characterization, and each of the five promoters was independently inserted into upstream of the pnp operon in the KT2440 genome. Consequently, a P8 promoter-substituted mutant strain showed the highest PNP degradation rate and strong tolerance against high concentrations of PNP. Furthermore, when using P8 promoter to regulate the transcription of all PNP degradation genes pnpABCDEF, the complete and efficient PNP mineralization was demonstrated by stable isotope 13C-labeled PNP transformation assay. Additionally, the finally constructed KTU-P8pnp can be monitored using integrated GFP on chromosome. This strategy of a combination of pathway construction and promoter engineering should open new avenues for creating efficient degraders for bioremediation.
Collapse
Affiliation(s)
- Kaiyue Huo
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yujie Liu
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Rui Huang
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yiting Zhang
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Honglu Liu
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - You Che
- Dermatology Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, NIH, Bethesda, MD 20892, USA.
| | - Chao Yang
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China.
| |
Collapse
|
7
|
Luo ZW, Ahn JH, Chae TU, Choi SY, Park SY, Choi Y, Kim J, Prabowo CPS, Lee JA, Yang D, Han T, Xu H, Lee SY. Metabolic Engineering of
Escherichia
coli. Metab Eng 2021. [DOI: 10.1002/9783527823468.ch11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
8
|
Bio-conversion of CO 2 into biofuels and other value-added chemicals via metabolic engineering. Microbiol Res 2021; 251:126813. [PMID: 34274880 DOI: 10.1016/j.micres.2021.126813] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 06/28/2021] [Accepted: 07/04/2021] [Indexed: 11/24/2022]
Abstract
Carbon dioxide (CO2) occurs naturally in the atmosphere as a trace gas, which is produced naturally as well as by anthropogenic activities. CO2 is a readily available source of carbon that in principle can be used as a raw material for the synthesis of valuable products. The autotrophic organisms are naturally equipped to convert CO2 into biomass by obtaining energy from sunlight or inorganic electron donors. This autotrophic CO2 fixation has been exploited in biotechnology, and microbial cell factories have been metabolically engineered to convert CO2 into biofuels and other value-added bio-based chemicals. A variety of metabolic engineering efforts for CO2 fixation ranging from basic copy, paste, and fine-tuning approaches to engineering and testing of novel synthetic CO2 fixing pathways have been demonstrated. In this paper, we review the current advances and innovations in metabolic engineering for bio-conversion of CO2 into bio biofuels and other value-added bio-based chemicals.
Collapse
|
9
|
Zhao Y, Che Y, Zhang F, Wang J, Gao W, Zhang T, Yang C. Development of an efficient pathway construction strategy for rapid evolution of the biodegradation capacity of Pseudomonas putida KT2440 and its application in bioremediation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 761:143239. [PMID: 33158512 DOI: 10.1016/j.scitotenv.2020.143239] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/11/2020] [Accepted: 10/16/2020] [Indexed: 06/11/2023]
Abstract
In this work, we developed an efficient pathway construction strategy, consisting of DNA assembler-assisted pathway assembly and counterselection system-based chromosomal integration, for the rapid and efficient integration of synthetic biodegradation pathways into the chromosome of Pseudomonas putida KT2440. Using this strategy, we created a novel degrader capable of complete mineralization of γ-hexachlorocyclohexane (γ-HCH) and 1,2,3-trichloropropane (TCP) by integrating γ-HCH and TCP biodegradation pathways into the chromosome of P. putida KT2440. Furthermore, the chromosomal integration efficiencies of γ-HCH and TCP biodegradation pathways were improved to 50% and 41.6% in P. putida KT2440, respectively, by the inactivation of a type I DNA restriction-modification system. The currently developed pathway construction strategy coupled with the mutant KTUΔhsdRMS will facilitate implantation of heterologous catabolic pathways into the chromosome for rapid evolution of the biodegradation capacity of P. putida. More importantly, the successful removal of γ-HCH (10 mg/kg soil) and TCP (0.2 mM) from soil and wastewater within 14 days, respectively, highlighted the potential of the novel degrader for in situ bioremediation of γ-HCH- and TCP-contaminated sites. Moreover, chromosomal integration of gfp made the degrader to be monitored easily during bioremediation. In the future, this strategy can be expanded to a broad range of bacterial species for widespread applications in bioremediation.
Collapse
Affiliation(s)
- Yuxin Zhao
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - You Che
- Environmental Microbiome Engineering and Biotechnology Laboratory, The University of Hong Kong, Hong Kong
| | - Fang Zhang
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Jiacheng Wang
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Weixia Gao
- MOE Key Laboratory of Industrial Fermentation Microbiology, College of Life Sciences, Tianjin University of Science and Technology, Tianjin, China
| | - Tong Zhang
- Environmental Microbiome Engineering and Biotechnology Laboratory, The University of Hong Kong, Hong Kong
| | - Chao Yang
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China.
| |
Collapse
|
10
|
Jiang Y, Wu R, Lu J, Dong W, Zhou J, Zhang W, Xin F, Jiang M. Quantitative proteomic analysis to reveal expression differences for butanol production from glycerol and glucose by Clostridium sp. strain CT7. Microb Cell Fact 2021; 20:12. [PMID: 33422075 PMCID: PMC7797090 DOI: 10.1186/s12934-021-01508-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 01/02/2021] [Indexed: 11/16/2022] Open
Abstract
Clostridium sp. strain CT7 is a new emerging microbial cell factory with high butanol production ratio owing to its non-traditional butanol fermentation mode with uncoupled acetone and 1,3-propanediol formation. Significant changes of metabolic products profile were shown in glycerol- and glucose-fed strain CT7, especially higher butanol and lower volatile fatty acids (VFAs) production occurred from glycerol-fed one. However, the mechanism of this interesting phenomenon was still unclear. To better elaborate the bacterial response towards glycerol and glucose, the quantitative proteomic analysis through iTRAQ strategy was performed to reveal the regulated proteomic expression levels under different substrates. Proteomics data showed that proteomic expression levels related with carbon metabolism and solvent generation under glycerol media were highly increased. In addition, the up-regulation of hydrogenases, ferredoxins and electron-transferring proteins may attribute to the internal redox balance, while the earlier triggered sporulation response in glycerol-fed media may be associated with the higher butanol production. This study will pave the way for metabolic engineering of other industrial microorganisms to obtain efficient butanol production from glycerol.
Collapse
Affiliation(s)
- Yujia Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Puzhu South Road 30#, 211800, Nanjing, P. R. China
| | - Ruofan Wu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Puzhu South Road 30#, 211800, Nanjing, P. R. China
| | - Jiasheng Lu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Puzhu South Road 30#, 211800, Nanjing, P. R. China
| | - Weiliang Dong
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Puzhu South Road 30#, 211800, Nanjing, P. R. China.,Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, 211800, Nanjing, P.R. China
| | - Jie Zhou
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Puzhu South Road 30#, 211800, Nanjing, P. R. China
| | - Wenming Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Puzhu South Road 30#, 211800, Nanjing, P. R. China.,Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, 211800, Nanjing, P.R. China
| | - Fengxue Xin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Puzhu South Road 30#, 211800, Nanjing, P. R. China. .,Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, 211800, Nanjing, P.R. China.
| | - Min Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Puzhu South Road 30#, 211800, Nanjing, P. R. China. .,Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, 211800, Nanjing, P.R. China.
| |
Collapse
|
11
|
Galitskaya P, Biktasheva L, Blagodatsky S, Selivanovskaya S. Response of bacterial and fungal communities to high petroleum pollution in different soils. Sci Rep 2021; 11:164. [PMID: 33420266 PMCID: PMC7794381 DOI: 10.1038/s41598-020-80631-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 12/21/2020] [Indexed: 01/29/2023] Open
Abstract
Petroleum pollution of soils is a major environmental problem. Soil microorganisms can decompose a significant fraction of petroleum hydrocarbons in soil at low concentrations (1-5%). This characteristic can be used for soil remediation after oil pollution. Microbial community dynamics and functions are well studied in cases of moderate petroleum pollution, while cases with heavy soil pollution have received much less attention. We studied bacterial and fungal successions in three different soils with high petroleum contents (6 and 25%) in a laboratory experiment. The proportion of aliphatic and aromatic compounds decreased by 4-7% in samples with 6% pollution after 120 days of incubation but remained unchanged in samples with 25% hydrocarbons. The composition of the microbial community changed significantly in all cases. Oil pollution led to an increase in the relative abundance of bacteria such as Actinobacteria and the candidate TM7 phylum (Saccaribacteria) and to a decrease in that of Bacteroidetes. The gene abundance (number of OTUs) of oil-degrading bacteria (Rhodococcus sp., candidate class TM7-3 representative) became dominant in all soil samples, irrespective of the petroleum pollution level and soil type. The fungal communities in unpolluted soil samples differed more significantly than the bacterial communities. Nonmetric multidimensional scaling revealed that in the polluted soil, successions of fungal communities differed between soils, in contrast to bacterial communities. However, these successions showed similar trends: fungi capable of lignin and cellulose decomposition, e.g., from the genera Fusarium and Mortierella, were dominant during the incubation period.
Collapse
Affiliation(s)
- Polina Galitskaya
- grid.77268.3c0000 0004 0543 9688Institute of Environmental Sciences, Kazan Federal University, Kazan, 420008 Russia
| | - Liliya Biktasheva
- grid.77268.3c0000 0004 0543 9688Institute of Environmental Sciences, Kazan Federal University, Kazan, 420008 Russia
| | - Sergey Blagodatsky
- grid.9464.f0000 0001 2290 1502Institute of Plant Production and Agroecology in the Tropics and Subtropics, University of Hohenheim, 70599 Stuttgart, Germany ,grid.451005.5Institute of Physico-Chemical and Biological Problems of Soil Science, Pushchino, 142290 Russia
| | - Svetlana Selivanovskaya
- grid.77268.3c0000 0004 0543 9688Institute of Environmental Sciences, Kazan Federal University, Kazan, 420008 Russia
| |
Collapse
|
12
|
Adegboye MF, Ojuederie OB, Talia PM, Babalola OO. Bioprospecting of microbial strains for biofuel production: metabolic engineering, applications, and challenges. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:5. [PMID: 33407786 PMCID: PMC7788794 DOI: 10.1186/s13068-020-01853-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 12/09/2020] [Indexed: 05/17/2023]
Abstract
The issues of global warming, coupled with fossil fuel depletion, have undoubtedly led to renewed interest in other sources of commercial fuels. The search for renewable fuels has motivated research into the biological degradation of lignocellulosic biomass feedstock to produce biofuels such as bioethanol, biodiesel, and biohydrogen. The model strain for biofuel production needs the capability to utilize a high amount of substrate, transportation of sugar through fast and deregulated pathways, ability to tolerate inhibitory compounds and end products, and increased metabolic fluxes to produce an improved fermentation product. Engineering microbes might be a great approach to produce biofuel from lignocellulosic biomass by exploiting metabolic pathways economically. Metabolic engineering is an advanced technology for the construction of highly effective microbial cell factories and a key component for the next-generation bioeconomy. It has been extensively used to redirect the biosynthetic pathway to produce desired products in several native or engineered hosts. A wide range of novel compounds has been manufactured through engineering metabolic pathways or endogenous metabolism optimizations by metabolic engineers. This review is focused on the potential utilization of engineered strains to produce biofuel and gives prospects for improvement in metabolic engineering for new strain development using advanced technologies.
Collapse
Affiliation(s)
- Mobolaji Felicia Adegboye
- Food Security and Safety Niche Area, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, Private Bag X2046, 2735, South Africa
| | - Omena Bernard Ojuederie
- Food Security and Safety Niche Area, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, Private Bag X2046, 2735, South Africa
- Department of Biological Sciences, Faculty of Science, Kings University, Ode-Omu, PMB 555, Osun State, Nigeria
| | - Paola M Talia
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), Instituto Nacional de Tecnología Agropecuaria (INTA CICVyA, CNIA, INTA Castelar, Dr. N. Repetto y Los Reseros s/n, (1686) Hurlingham, 1686) Hurlingham, Provincia de Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas Y Tecnológicas (CONICET), Buenos Aires, Provincia de Buenos Aires, Argentina
| | - Olubukola Oluranti Babalola
- Food Security and Safety Niche Area, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, Private Bag X2046, 2735, South Africa.
| |
Collapse
|
13
|
Osire T, Yang T, Xu M, Zhang X, Long M, Ngon NKA, Rao Z. Integrated gene engineering synergistically improved substrate-product transport, cofactor generation and gene translation for cadaverine biosynthesis in E. coli. Int J Biol Macromol 2020; 169:8-17. [PMID: 33301846 DOI: 10.1016/j.ijbiomac.2020.12.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 12/03/2020] [Indexed: 12/13/2022]
Abstract
Several approaches for efficient production of cadaverine, a bio-based diamine with broad industrial applications have been explored. Here, Serratia marcescens lysine decarboxylase (SmcadA) was expressed in E. coli; mild surfactants added in biotransformation reactions; the E. coli native lysine/cadaverine antiporter cadB, E. coli pyridoxal kinases pdxK and pdxY overexpressed and synthetic RBS libraries screened. Addition of mild surfactants and overexpression of antiporter cadB increased cadaverine biosynthesis of SmcadA. Moreover, expression of pdxY gene yielded 19.82 g/L in a reaction mixture containing added cofactor precursor pyridoxal (PL), without adding exogenous PLP. The screened synthetic RBS1, applied to fully exploit pdxY gene expression, ultimately resulted in PLP self-sufficiency, producing 27.02 g/L cadaverine using strain T7R1_PL. To boost SmcadA catalytic activity, the designed mutants Arg595Lys and Ser512Ala had significantly improved cumulative cadaverine production of 219.54 and 201.79 g/L respectively compared to the wild-type WT (181.62 g/L), after 20 h reaction. Finally, molecular dynamics simulations for WT and variants indicated that increased flexibility at the binding sites of the protein enhanced residue-ligand interactions, contributing to high cadaverine synthesis. This work demonstrates potential of harnessing different pull factors through integrated gene engineering of efficient biocatalysts and gaining insight into the mechanisms involved through MD simulations.
Collapse
Affiliation(s)
- Tolbert Osire
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 LiHu Boulevard, Wuxi 214122, Jiangsu, China
| | - Taowei Yang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 LiHu Boulevard, Wuxi 214122, Jiangsu, China
| | - Meijuan Xu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 LiHu Boulevard, Wuxi 214122, Jiangsu, China
| | - Xian Zhang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 LiHu Boulevard, Wuxi 214122, Jiangsu, China
| | - Mengfei Long
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 LiHu Boulevard, Wuxi 214122, Jiangsu, China
| | - Noelle Kewang A Ngon
- National Engineering Laboratory for Cereal Fermentation Technology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 LiHu Boulevard, Wuxi 214122, Jiangsu, China
| | - Zhiming Rao
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 LiHu Boulevard, Wuxi 214122, Jiangsu, China.
| |
Collapse
|
14
|
Kuepper J, Otto M, Dickler J, Behnken S, Magnus J, Jäger G, Blank LM, Wierckx N. Adaptive laboratory evolution of Pseudomonas putida and Corynebacterium glutamicum to enhance anthranilate tolerance. Microbiology (Reading) 2020; 166:1025-1037. [DOI: 10.1099/mic.0.000982] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Microbial bioproduction of the aromatic acid anthranilate (ortho-aminobenzoate) has the potential to replace its current, environmentally demanding production process. The host organism employed for such a process needs to fulfil certain demands to achieve industrially relevant product levels. As anthranilate is toxic for microorganisms, the use of particularly robust production hosts can overcome issues from product inhibition. The microorganisms
Corynebacterium glutamicum
and
Pseudomonas putida
are known for high tolerance towards a variety of chemicals and could serve as promising platform strains. In this study, the resistance of both wild-type strains towards anthranilate was assessed. To further enhance their native tolerance, adaptive laboratory evolution (ALE) was applied. Sequential batch fermentation processes were developed, adapted to the cultivation demands for
C. glutamicum
and P. putida, to enable long-term cultivation in the presence of anthranilate. Isolation and analysis of single mutants revealed phenotypes with improved growth behaviour in the presence of anthranilate for both strains. The characterization and improvement of both potential hosts provide an important basis for further process optimization and will aid the establishment of an industrially competitive method for microbial synthesis of anthranilate.
Collapse
Affiliation(s)
- Jannis Kuepper
- Institute of Applied Microbiology, RWTH Aachen University, 52074 Aachen, Germany
| | - Maike Otto
- Institute of Bio- and Geosciences (IBG-1: Biotechnology), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
- Institute of Applied Microbiology, RWTH Aachen University, 52074 Aachen, Germany
| | - Jasmin Dickler
- Institute of Applied Microbiology, RWTH Aachen University, 52074 Aachen, Germany
| | | | | | - Gernot Jäger
- Covestro Deutschland AG, 51365 Leverkusen, Germany
| | - Lars M. Blank
- Institute of Applied Microbiology, RWTH Aachen University, 52074 Aachen, Germany
| | - Nick Wierckx
- Institute of Bio- and Geosciences (IBG-1: Biotechnology), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| |
Collapse
|
15
|
Fan X, Zhang Y, Zhao F, Liu Y, Zhao Y, Wang S, Liu R, Yang C. Genome reduction enhances production of polyhydroxyalkanoate and alginate oligosaccharide in Pseudomonas mendocina. Int J Biol Macromol 2020; 163:2023-2031. [DOI: 10.1016/j.ijbiomac.2020.09.067] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/11/2020] [Accepted: 09/10/2020] [Indexed: 12/15/2022]
|
16
|
Velasco J, Oliva B, Gonçalves AL, Lima AS, Ferreira G, França BA, Mulinari EJ, Gonçalves TA, Squina FM, Kadowaki MAS, Maiorano A, Polikarpov I, Oliveira LCD, Segato F. Functional characterization of a novel thermophilic exo-arabinanase from Thermothielavioides terrestris. Appl Microbiol Biotechnol 2020; 104:8309-8326. [PMID: 32813063 DOI: 10.1007/s00253-020-10806-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 07/06/2020] [Accepted: 08/02/2020] [Indexed: 10/23/2022]
Abstract
Arabinanases from glycoside hydrolase family GH93 are enzymes with exo-activity that hydrolyze the α-1,5 bonds between arabinose residues present on arabinan. Currently, several initiatives aiming to use byproducts rich in arabinan such as pectin and sugar beet pulp as raw material to produce various compounds of interest are being developed. However, it is necessary to use robust enzymes that have an optimal performance under pH and temperature conditions used in the industrial processes. In this work, the first GH93 from the thermophilic fungus Thermothielavioides terrestris (Abn93T) was heterologously expressed in Aspergillus nidulans, purified and biochemically characterized. The enzyme is a thermophilic glycoprotein (optimum activity at 70 °C) with prolonged stability in acid pHs (4.0 to 6.5). The presence of glycosylation affected slightly the hydrolytic capacity of the enzyme, which was further increased by 34% in the presence of 1 mM CoCl2. Small-angle X-ray scattering results show that Abn93T is a globular-like-shaped protein with a slight bulge at one end. The hydrolytic mechanism of the enzyme was elucidated using capillary zone electrophoresis and molecular docking calculations. Abn93T has an ability to produce (in synergism with arabinofuranosidases) arabinose and arabinobiose from sugar beet arabinan, which can be explored as fermentable sugars and prebiotics. KEY POINTS: • Thermophilic exo-arabinanase from family GH93 • Molecular basis of arabinan depolymerization.
Collapse
Affiliation(s)
- Josman Velasco
- Department of Biotechnology, Lorena School of Engineering, University of São Paulo, Lorena, SP, Brazil
| | - Bianca Oliva
- Department of Biotechnology, Lorena School of Engineering, University of São Paulo, Lorena, SP, Brazil
| | - Aline Larissa Gonçalves
- Department of Biotechnology, Lorena School of Engineering, University of São Paulo, Lorena, SP, Brazil
| | - Awana Silva Lima
- Department of Biotechnology, Lorena School of Engineering, University of São Paulo, Lorena, SP, Brazil
| | - Gislene Ferreira
- Department of Biotechnology, Lorena School of Engineering, University of São Paulo, Lorena, SP, Brazil
| | - Bruno Alves França
- Department of Biotechnology, Lorena School of Engineering, University of São Paulo, Lorena, SP, Brazil
| | - Evandro José Mulinari
- Departamento de Física e Ciências Aplicadas, Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, SP, Brazil
| | - Thiago Augusto Gonçalves
- Departamento de Bioquímica, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, SP, Brazil.,Programa de Processos Tecnológicos e Ambientais, Universidade de Sorocaba, Sorocaba, SP, Brazil
| | - Fábio Márcio Squina
- Programa de Processos Tecnológicos e Ambientais, Universidade de Sorocaba, Sorocaba, SP, Brazil
| | - Marco Antonio Seiki Kadowaki
- Departamento de Física e Ciências Aplicadas, Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, SP, Brazil
| | - Alfredo Maiorano
- Instituto de Pesquisas Tecnológicas do Estado de São Paulo, Diretoria de Operações e Negócios, Núcleo de Bionanomanufatura, São Paulo, SP, Brazil
| | - Igor Polikarpov
- Departamento de Física e Ciências Aplicadas, Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, SP, Brazil
| | - Leandro Cristante de Oliveira
- Department of Physics - Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), São José do Rio Preto, SP, Brazil
| | - Fernando Segato
- Department of Biotechnology, Lorena School of Engineering, University of São Paulo, Lorena, SP, Brazil.
| |
Collapse
|
17
|
Dasgupta A, Chowdhury N, De RK. Metabolic pathway engineering: Perspectives and applications. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2020; 192:105436. [PMID: 32199314 DOI: 10.1016/j.cmpb.2020.105436] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 02/29/2020] [Accepted: 03/03/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND Metabolic engineering aims at contriving microbes as biocatalysts for enhanced and cost-effective production of countless secondary metabolites. These secondary metabolites can be treated as the resources of industrial chemicals, pharmaceuticals and fuels. Plants are also crucial targets for metabolic engineers to produce necessary secondary metabolites. Metabolic engineering of both microorganism and plants also contributes towards drug discovery. In order to implement advanced metabolic engineering techniques efficiently, metabolic engineers should have detailed knowledge about cell physiology and metabolism. Principle behind methodologies: Genome-scale mathematical models of integrated metabolic, signal transduction, gene regulatory and protein-protein interaction networks along with experimental validation can provide such knowledge in this context. Incorporation of omics data into these models is crucial in the case of drug discovery. Inverse metabolic engineering and metabolic control analysis (MCA) can help in developing such models. Artificial intelligence methodology can also be applied for efficient and accurate metabolic engineering. CONCLUSION In this review, we discuss, at the beginning, the perspectives of metabolic engineering and its application on microorganism and plant leading to drug discovery. At the end, we elaborate why inverse metabolic engineering and MCA are closely related to modern metabolic engineering. In addition, some crucial steps ensuring efficient and optimal metabolic engineering strategies have been discussed. Moreover, we explore the use of genomics data for the activation of silent metabolic clusters and how it can be integrated with metabolic engineering. Finally, we exhibit a few applications of artificial intelligence to metabolic engineering.
Collapse
Affiliation(s)
- Abhijit Dasgupta
- Department of Data Science, School of Interdisciplinary Studies, University of Kalyani, Kalyani, Nadia 741235, West Bengal, India
| | - Nirmalya Chowdhury
- Department of Computer Science & Engineering, Jadavpur University, Kolkata 700032, India
| | - Rajat K De
- Machine Intelligence Unit, Indian Statistical Institute, 203 B.T. Road, Kolkata 700108, India.
| |
Collapse
|
18
|
Shen YP, Niu FX, Yan ZB, Fong LS, Huang YB, Liu JZ. Recent Advances in Metabolically Engineered Microorganisms for the Production of Aromatic Chemicals Derived From Aromatic Amino Acids. Front Bioeng Biotechnol 2020; 8:407. [PMID: 32432104 PMCID: PMC7214760 DOI: 10.3389/fbioe.2020.00407] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 04/14/2020] [Indexed: 12/16/2022] Open
Abstract
Aromatic compounds derived from aromatic amino acids are an important class of diverse chemicals with a wide range of industrial and commercial applications. They are currently produced via petrochemical processes, which are not sustainable and eco-friendly. In the past decades, significant progress has been made in the construction of microbial cell factories capable of effectively converting renewable carbon sources into value-added aromatics. Here, we systematically and comprehensively review the recent advancements in metabolic engineering and synthetic biology in the microbial production of aromatic amino acid derivatives, stilbenes, and benzylisoquinoline alkaloids. The future outlook concerning the engineering of microbial cell factories for the production of aromatic compounds is also discussed.
Collapse
Affiliation(s)
- Yu-Ping Shen
- Guangdong Province Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals, Biomedical Center, School of Life Sciences, Institute of Synthetic Biology, Sun Yat-sen University, Guangzhou, China
| | - Fu-Xing Niu
- Guangdong Province Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals, Biomedical Center, School of Life Sciences, Institute of Synthetic Biology, Sun Yat-sen University, Guangzhou, China
| | - Zhi-Bo Yan
- Guangdong Province Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals, Biomedical Center, School of Life Sciences, Institute of Synthetic Biology, Sun Yat-sen University, Guangzhou, China
| | - Lai San Fong
- Guangdong Province Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals, Biomedical Center, School of Life Sciences, Institute of Synthetic Biology, Sun Yat-sen University, Guangzhou, China
| | - Yuan-Bin Huang
- Guangdong Province Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals, Biomedical Center, School of Life Sciences, Institute of Synthetic Biology, Sun Yat-sen University, Guangzhou, China
| | - Jian-Zhong Liu
- Guangdong Province Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals, Biomedical Center, School of Life Sciences, Institute of Synthetic Biology, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
19
|
Rui J, You S, Zheng Y, Wang C, Gao Y, Zhang W, Qi W, Su R, He Z. High-efficiency and low-cost production of cadaverine from a permeabilized-cell bioconversion by a Lysine-induced engineered Escherichia coli. BIORESOURCE TECHNOLOGY 2020; 302:122844. [PMID: 32006927 DOI: 10.1016/j.biortech.2020.122844] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 01/15/2020] [Accepted: 01/16/2020] [Indexed: 06/10/2023]
Abstract
Cadaverine is the monomer of bio-based nylons polyamide 5.4, 5.6 and 5.10. In this study, a litre-scale integrated strategy was developed for high-efficiency and low-cost production of cadaverine using an engineered Escherichia coli. Firstly, the engineered strain BL21-Pcad-CadA induced by cheap l-lysine-HCl instead of IPTG was constructed. Then the permeabilized cells were served as the biocatalyst for the production of cadaverine, because the enhanced permeability facilitated the mass transfer of the substrate and the release of products. After the replacement of industrial materials and the solution of the scale-up permeabilization process, cadaverine concentration reached 205 g/L with the yield of 92.1% after 20 h in a 2 L bioconversion system, achieving the level of industrial production. Furthermore, the costs of industrial materials for 2 L integrated strategy ($2.78) was only 1/11 of the lab reagents ($30.88). Therefore, the proposed strategy is a promising candidate for the industrial process of cadaverine.
Collapse
Affiliation(s)
- Jinqiu Rui
- Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| | - Shengping You
- Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China; Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin 300072, PR China
| | - Yunxin Zheng
- Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| | - Chengyu Wang
- Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| | - Yingtong Gao
- Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| | - Wei Zhang
- Ever-Sky Bioscience (Tianjin) Co., Ltd., PR China
| | - Wei Qi
- Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China; State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, PR China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, PR China; Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin 300072, PR China.
| | - Rongxin Su
- Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China; State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, PR China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, PR China; Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin 300072, PR China
| | - Zhimin He
- Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China; State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, PR China
| |
Collapse
|
20
|
Huo J, Shanks BH. Bioprivileged Molecules: Integrating Biological and Chemical Catalysis for Biomass Conversion. Annu Rev Chem Biomol Eng 2020; 11:63-85. [PMID: 32155351 DOI: 10.1146/annurev-chembioeng-101519-121127] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Further development of biomass conversions to viable chemicals and fuels will require improved atom utilization, process efficiency, and synergistic allocation of carbon feedstock into diverse products, as is the case in the well-developed petroleum industry. The integration of biological and chemical processes, which harnesses the strength of each type of process, can lead to advantaged processes over processes limited to one or the other. This synergy can be achieved through bioprivileged molecules that can be leveraged to produce a diversity of products, including both replacement molecules and novel molecules with enhanced performance properties. However, important challenges arise in the development of bioprivileged molecules. This review discusses the integration of biological and chemical processes and its use in the development of bioprivileged molecules, with a further focus on key hurdles that must be overcome for successful implementation.
Collapse
Affiliation(s)
- Jiajie Huo
- Center for Biorenewable Chemicals and Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa 50011, USA;
| | - Brent H Shanks
- Center for Biorenewable Chemicals and Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa 50011, USA;
| |
Collapse
|
21
|
Building cell factories for the production of advanced fuels. Biochem Soc Trans 2020; 47:1701-1714. [PMID: 31803925 DOI: 10.1042/bst20190168] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 11/13/2019] [Accepted: 11/15/2019] [Indexed: 12/31/2022]
Abstract
Synthetic biology-based engineering strategies are being extensively employed for microbial production of advanced fuels. Advanced fuels, being comparable in energy efficiency and properties to conventional fuels, have been increasingly explored as they can be directly incorporated into the current fuel infrastructure without the need for reconstructing the pre-existing set-up rendering them economically viable. Multiple metabolic engineering approaches have been used for rewiring microbes to improve existing or develop newly programmed cells capable of efficient fuel production. The primary challenge in using these approaches is improving the product yield for the feasibility of the commercial processes. Some of the common roadblocks towards enhanced fuel production include - limited availability of flux towards precursors and desired pathways due to presence of competing pathways, limited cofactor and energy supply in cells, the low catalytic activity of pathway enzymes, obstructed product transport, and poor tolerance of host cells for end products. Consequently, despite extensive studies on the engineering of microbial hosts, the costs of industrial-scale production of most of these heterologously produced fuel compounds are still too high. Though considerable progress has been made towards successfully producing some of these biofuels, a substantial amount of work needs to be done for improving the titers of others. In this review, we have summarized the different engineering strategies that have been successfully used for engineering pathways into commercial hosts for the production of advanced fuels and different approaches implemented for tuning host strains and pathway enzymes for scaling up production levels.
Collapse
|
22
|
Miscevic D, Mao JY, Moo-Young M, Chou CHP. High-level heterologous production of propionate in engineered Escherichia coli. Biotechnol Bioeng 2020; 117:1304-1315. [PMID: 31956980 DOI: 10.1002/bit.27276] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 01/13/2020] [Accepted: 01/16/2020] [Indexed: 12/14/2022]
Abstract
A propanologenic (i.e., 1-propanol-producing) bacterium Escherichia coli strain was previously derived by activating the genomic sleeping beauty mutase (Sbm) operon. The activated Sbm pathway branches out of the tricarboxylic acid (TCA) cycle at the succinyl-CoA node to form propionyl-CoA and its derived metabolites of 1-propanol and propionate. In this study, we targeted several TCA cycle genes encoding enzymes near the succinyl-CoA node for genetic manipulation to identify the individual contribution of the carbon flux into the Sbm pathway from the three TCA metabolic routes, that is, oxidative TCA cycle, reductive TCA branch, and glyoxylate shunt. For the control strain CPC-Sbm, in which propionate biosynthesis occurred under relatively anaerobic conditions, the carbon flux into the Sbm pathway was primarily derived from the reductive TCA branch, and both succinate availability and the SucCD-mediated interconversion of succinate/succinyl-CoA were critical for such carbon flux redirection. Although the oxidative TCA cycle normally had a minimal contribution to the carbon flux redirection, the glyoxylate shunt could be an alternative and effective carbon flux contributor under aerobic conditions. With mechanistic understanding of such carbon flux redirection, metabolic strategies based on blocking the oxidative TCA cycle (via ∆sdhA mutation) and deregulating the glyoxylate shunt (via ∆iclR mutation) were developed to enhance the carbon flux redirection and therefore propionate biosynthesis, achieving a high propionate titer of 30.9 g/L with an overall propionate yield of 49.7% upon fed-batch cultivation of the double mutant strain CPC-Sbm∆sdhA∆iclR under aerobic conditions. The results also suggest that the Sbm pathway could be metabolically active under both aerobic and anaerobic conditions.
Collapse
Affiliation(s)
- Dragan Miscevic
- Department of Chemical Engineering, University of Waterloo, Waterloo, Ontario, Canada
| | - Ju-Yi Mao
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, Taiwan
| | - Murray Moo-Young
- Department of Chemical Engineering, University of Waterloo, Waterloo, Ontario, Canada
| | | |
Collapse
|
23
|
Hakizimana O, Matabaro E, Lee BH. The current strategies and parameters for the enhanced microbial production of 2,3-butanediol. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2019; 25:e00397. [PMID: 31853445 PMCID: PMC6911977 DOI: 10.1016/j.btre.2019.e00397] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 10/23/2019] [Accepted: 11/08/2019] [Indexed: 01/05/2023]
Abstract
2,3-Butanediol (2,3-BD) is a propitious compound with many industrial uses. 2,3-BD production has always been hampered by low fermentation yields and high production costs. 2,3-BD production may be enhanced by optimization of culture conditions and use of high-producing strains. TMetabolic engineering tools are currently used to generate high-yielding strains.
2,3-Butanediol (2,3-BD) is a propitious compound with many industrial uses ranging from rubber, fuels, and cosmetics to food additives. Its microbial production has especially attracted as an alternative way to the petroleum-based production. However, 2,3-BD production has always been hampered by low yields and high production costs. The enhanced production of 2,3-butanediol requires screening of the best strains and a systematic optimization of fermentation conditions. Moreover, the metabolic pathway engineering is essential to achieve the best results and minimize the production costs by rendering the strains to use efficiently low cost substrates. This review is to provide up-to-date information on the current strategies and parameters for the enhanced microbial production of 2,3-BD.
Collapse
Key Words
- 2, 3-Butanediol
- 2,3-BD, 2,3-Butanediol
- AlsD, α-acetolactate decarboxylase
- AlsS, α-acetolactate synthase
- Butanediol dehydrogenase
- Klebsiella
- MEK, methyl ethyl ketone
- Metabolic engineering
- PUMAs, polyurethane-melamides
- Species
- ackA, acetate kinase-phosphotransacetylase
- adhE, alcohol dehydrogenase
- gldA, glycerophosphate dehydrogenase gene
- ldhA, lactate dehydrogenase
Collapse
Affiliation(s)
- Olivier Hakizimana
- School of Biotechnology, Jiangnan University, Wuxi, 214122, Jiangsu Prov, China
| | - Emmanuel Matabaro
- Department of Biology, Institute of Microbiology, ETH Zürich, 8093 Zürich, Switzerland
| | - Byong H Lee
- Department of Microbiology and Immunology, McGill University, Montreal, QC, H3A2B4, Canada
| |
Collapse
|
24
|
Otto M, Wynands B, Lenzen C, Filbig M, Blank LM, Wierckx N. Rational Engineering of Phenylalanine Accumulation in Pseudomonas taiwanensis to Enable High-Yield Production of Trans-Cinnamate. Front Bioeng Biotechnol 2019; 7:312. [PMID: 31824929 PMCID: PMC6882275 DOI: 10.3389/fbioe.2019.00312] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 10/23/2019] [Indexed: 12/31/2022] Open
Abstract
Microbial biocatalysis represents a promising alternative for the production of a variety of aromatic chemicals, where microorganisms are engineered to convert a renewable feedstock under mild production conditions into a valuable chemical building block. This study describes the rational engineering of the solvent-tolerant bacterium Pseudomonas taiwanensis VLB120 toward accumulation of L-phenylalanine and its conversion into the chemical building block t-cinnamate. We recently reported rational engineering of Pseudomonas toward L-tyrosine accumulation by the insertion of genetic modifications that allow both enhanced flux and prevent aromatics degradation. Building on this knowledge, three genes encoding for enzymes involved in the degradation of L-phenylalanine were deleted to allow accumulation of 2.6 mM of L-phenylalanine from 20 mM glucose. The amino acid was subsequently converted into the aromatic model compound t-cinnamate by the expression of a phenylalanine ammonia-lyase (PAL) from Arabidopsis thaliana. The engineered strains produced t-cinnamate with yields of 23 and 39% Cmol Cmol−1 from glucose and glycerol, respectively. Yields were improved up to 48% Cmol Cmol−1 from glycerol when two enzymes involved in the shikimate pathway were additionally overexpressed, however with negative impact on strain performance and reproducibility. Production titers were increased in fed-batch fermentations, in which 33.5 mM t-cinnamate were produced solely from glycerol, in a mineral medium without additional complex supplements. The aspect of product toxicity was targeted by the utilization of a streamlined, genome-reduced strain, which improves upon the already high tolerance of P. taiwanensis VLB120 toward t-cinnamate.
Collapse
Affiliation(s)
- Maike Otto
- Institute of Bio- and Geosciences (IBG-1: Biotechnology), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Benedikt Wynands
- Institute of Bio- and Geosciences (IBG-1: Biotechnology), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Christoph Lenzen
- Institute of Applied Microbiology, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen, Germany
| | - Melanie Filbig
- Institute of Applied Microbiology, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen, Germany
| | - Lars M Blank
- Institute of Applied Microbiology, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen, Germany
| | - Nick Wierckx
- Institute of Bio- and Geosciences (IBG-1: Biotechnology), Forschungszentrum Jülich GmbH, Jülich, Germany
| |
Collapse
|
25
|
Li W, Jayakody LN, Franden MA, Wehrmann M, Daun T, Hauer B, Blank LM, Beckham GT, Klebensberger J, Wierckx N. Laboratory evolution reveals the metabolic and regulatory basis of ethylene glycol metabolism by
Pseudomonas putida
KT2440. Environ Microbiol 2019; 21:3669-3682. [DOI: 10.1111/1462-2920.14703] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 05/29/2019] [Accepted: 06/03/2019] [Indexed: 12/30/2022]
Affiliation(s)
- Wing‐Jin Li
- Institute of Applied Microbiology‐iAMB, Aachen Biology and Biotechnology‐ABBt RWTH Aachen University Worringerweg 1, 52074 Aachen Germany
| | - Lahiru N. Jayakody
- National Bioenergy Center National Renewable Energy Laboratory Golden CO 80401 USA
| | - Mary Ann Franden
- National Bioenergy Center National Renewable Energy Laboratory Golden CO 80401 USA
| | - Matthias Wehrmann
- University of Stuttgart Institute of Biochemistry and Technical Biochemistry Allmandring 31, 70569 Stuttgart Germany
| | - Tristan Daun
- Institute of Applied Microbiology‐iAMB, Aachen Biology and Biotechnology‐ABBt RWTH Aachen University Worringerweg 1, 52074 Aachen Germany
| | - Bernhard Hauer
- University of Stuttgart Institute of Biochemistry and Technical Biochemistry Allmandring 31, 70569 Stuttgart Germany
| | - Lars M. Blank
- Institute of Applied Microbiology‐iAMB, Aachen Biology and Biotechnology‐ABBt RWTH Aachen University Worringerweg 1, 52074 Aachen Germany
| | - Gregg T. Beckham
- National Bioenergy Center National Renewable Energy Laboratory Golden CO 80401 USA
| | - Janosch Klebensberger
- University of Stuttgart Institute of Biochemistry and Technical Biochemistry Allmandring 31, 70569 Stuttgart Germany
| | - Nick Wierckx
- Institute of Applied Microbiology‐iAMB, Aachen Biology and Biotechnology‐ABBt RWTH Aachen University Worringerweg 1, 52074 Aachen Germany
- Institute of Bio‐ and Geosciences IBG‐1: Biotechnology Forschungszentrum Jülich, 52425 Jülich Germany
| |
Collapse
|
26
|
Petersen A, Crocoll C, Halkier BA. De novo production of benzyl glucosinolate in Escherichia coli. Metab Eng 2019; 54:24-34. [DOI: 10.1016/j.ymben.2019.02.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 02/11/2019] [Accepted: 02/24/2019] [Indexed: 12/30/2022]
|
27
|
Boecker S, Zahoor A, Schramm T, Link H, Klamt S. Broadening the Scope of Enforced ATP Wasting as a Tool for Metabolic Engineering in Escherichia coli. Biotechnol J 2019; 14:e1800438. [PMID: 30927494 DOI: 10.1002/biot.201800438] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 02/25/2019] [Indexed: 01/21/2023]
Abstract
The targeted increase of cellular adenosine triphosphate (ATP) turnover (enforced ATP wasting) has recently been recognized as a promising tool for metabolic engineering when product synthesis is coupled with net ATP formation. The goal of the present study is to further examine and to further develop the concept of enforced ATP wasting and to broaden its scope for potential applications. In particular, considering the fermentation products synthesized by Escherichia coli under anaerobic conditions as a proxy for target chemical(s), i) a new genetic module for dynamic and gradual induction of the F1 -part of the ATPase is developed and it is found that ii) induction of the ATPase leads to higher metabolic activity and increased product formation in E. coli under anaerobic conditions, and that iii) ATP wasting significantly increases substrate uptake and productivity of growth-arrested cells, which is vital for its use in two-stage processes. To the best of the authors' knowledge, the glucose uptake rate of 6.49 mmol gCDW-1 h-1 achieved with enforced ATP wasting is the highest value reported for nongrowing E. coli cells. In summary, this study shows that enforced ATP wasting can be used to improve yield and titer (in growth-coupled processes) as well as volumetric productivity (in two-stage processes) depending on which of the performance measures is more crucial for the process and product of interest.
Collapse
Affiliation(s)
- Simon Boecker
- Analysis and Redesign of Biological Networks, Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstr. 1, 39106, Magdeburg, Germany
| | - Ahmed Zahoor
- Analysis and Redesign of Biological Networks, Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstr. 1, 39106, Magdeburg, Germany
| | - Thorben Schramm
- Dynamic Control of Metabolic Networks, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 16, 35043, Marburg, Germany
| | - Hannes Link
- Dynamic Control of Metabolic Networks, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 16, 35043, Marburg, Germany
| | - Steffen Klamt
- Analysis and Redesign of Biological Networks, Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstr. 1, 39106, Magdeburg, Germany
| |
Collapse
|
28
|
Li L, Liu X, Wei K, Lu Y, Jiang W. Synthetic biology approaches for chromosomal integration of genes and pathways in industrial microbial systems. Biotechnol Adv 2019; 37:730-745. [PMID: 30951810 DOI: 10.1016/j.biotechadv.2019.04.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 04/01/2019] [Accepted: 04/01/2019] [Indexed: 12/14/2022]
Abstract
Industrial biotechnology is reliant on native pathway engineering or foreign pathway introduction for efficient biosynthesis of target products. Chromosomal integration, with intrinsic genetic stability, is an indispensable step for reliable expression of homologous or heterologous genes and pathways in large-scale and long-term fermentation. With advances in synthetic biology and CRISPR-based genome editing approaches, a wide variety of novel enabling technologies have been developed for single-step, markerless, multi-locus genomic integration of large biochemical pathways, which significantly facilitate microbial overproduction of chemicals, pharmaceuticals and other value-added biomolecules. Notably, the newly discovered homology-mediated end joining strategy could be widely applicable for high-efficiency genomic integration in a number of homologous recombination-deficient microbes. In this review, we explore the fundamental principles and characteristics of genomic integration, and highlight the development and applications of targeted integration approaches in the three representative industrial microbial systems, including Escherichia coli, actinomycetes and yeasts.
Collapse
Affiliation(s)
- Lei Li
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Xiaocao Liu
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Keke Wei
- Department of Biochemistry, Shanghai Institute of Pharmaceutical Industry, Shanghai 201210, China
| | - Yinhua Lu
- College of Life Sciences, Shanghai Normal University, 200232, China.
| | - Weihong Jiang
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China.
| |
Collapse
|
29
|
Separation and purification of three, four, and five carbon diamines from fermentation broth. Chem Eng Sci 2019. [DOI: 10.1016/j.ces.2018.11.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
30
|
Huccetogullari D, Luo ZW, Lee SY. Metabolic engineering of microorganisms for production of aromatic compounds. Microb Cell Fact 2019; 18:41. [PMID: 30808357 PMCID: PMC6390333 DOI: 10.1186/s12934-019-1090-4] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 02/19/2019] [Indexed: 01/09/2023] Open
Abstract
Metabolic engineering has been enabling development of high performance microbial strains for the efficient production of natural and non-natural compounds from renewable non-food biomass. Even though microbial production of various chemicals has successfully been conducted and commercialized, there are still numerous chemicals and materials that await their efficient bio-based production. Aromatic chemicals, which are typically derived from benzene, toluene and xylene in petroleum industry, have been used in large amounts in various industries. Over the last three decades, many metabolically engineered microorganisms have been developed for the bio-based production of aromatic chemicals, many of which are derived from aromatic amino acid pathways. This review highlights the latest metabolic engineering strategies and tools applied to the biosynthesis of aromatic chemicals, many derived from shikimate and aromatic amino acids, including L-phenylalanine, L-tyrosine and L-tryptophan. It is expected that more and more engineered microorganisms capable of efficiently producing aromatic chemicals will be developed toward their industrial-scale production from renewable biomass.
Collapse
Affiliation(s)
- Damla Huccetogullari
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Plus Program) and Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, KAIST, Daejeon, 34141, Republic of Korea
| | - Zi Wei Luo
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Plus Program) and Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, KAIST, Daejeon, 34141, Republic of Korea
| | - Sang Yup Lee
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Plus Program) and Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
- Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, KAIST, Daejeon, 34141, Republic of Korea.
- BioProcess Engineering Research Center and Bioinformatics Research Center, KAIST, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
31
|
Abstract
Renewable biofuel represents one of the answers to solving the energy crisis and climate change problems. Butanol produced naturally by clostridia has superior liquid fuel characteristics and thus has the potential to replace gasoline. Due to the lack of efficient genetic manipulation tools, however, clostridial strain improvement has been slower than improvement of other microorganisms. Furthermore, fermentation coproducing various by-products requires costly downstream processing for butanol purification. Here, we report the results of enzyme engineering of aldehyde/alcohol dehydrogenase (AAD) to increase butanol selectivity. A metabolically engineered Clostridium acetobutylicum strain expressing the engineered aldehyde/alcohol dehydrogenase gene was capable of producing butanol at a high level of selectivity. Butanol production by Clostridium acetobutylicum is accompanied by coproduction of acetone and ethanol, which reduces the yield of butanol and increases the production cost. Here, we report development of several clostridial aldehyde/alcohol dehydrogenase (AAD) variants showing increased butanol selectivity by a series of design and analysis procedures, including random mutagenesis, substrate specificity feature analysis, and structure-based butanol selectivity design. The butanol/ethanol ratios (B/E ratios) were dramatically increased to 17.47 and 15.91 g butanol/g ethanol for AADF716L and AADN655H, respectively, which are 5.8-fold and 5.3-fold higher than the ratios obtained with the wild-type AAD. The much-increased B/E ratio obtained was due to the dramatic reduction in ethanol production (0.59 ± 0.01 g/liter) that resulted from engineering the substrate binding chamber and the active site of AAD. This protein design strategy can be applied generally for engineering enzymes to alter substrate selectivity.
Collapse
|
32
|
Li F, Yang K, Xu Y, Qiao Y, Yan Y, Yan J. A genetically-encoded synthetic self-assembled multienzyme complex of lipase and P450 fatty acid decarboxylase for efficient bioproduction of fatty alkenes. BIORESOURCE TECHNOLOGY 2019; 272:451-457. [PMID: 30390537 DOI: 10.1016/j.biortech.2018.10.067] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Revised: 10/24/2018] [Accepted: 10/25/2018] [Indexed: 05/21/2023]
Abstract
We develop an efficient and economic cascade multienzymes for fatty alkene bioproduction based on the lipase hydrolysis coupled to the P450 decarboxylation in the form of multiple enzyme complex. One step preparation of a multienzyme complex was based on a mixture of cell extracts including dockerin-enzyme fusions and one cohesin-cellulose binding module (CBM) fusion through high specific interaction of dockerin and cohesin. Simultaneously, the CBM was bound to cellulose carrier to form co-immobilized multienzyme. The key factors affecting overall efficiency of alkene bioproduction including substrate channeling of hydrolysis and decarboxylation, the ratio and position of two enzymes, stability were all addressed by genetically engineering of the synthetic CBM-cohesin fusions. The multienzymes exhibited more than 9.2 fold enhancement in initial reaction rate and much higher conversion yields (69%-72%) compared to mixture of free enzyme counterpart. The enzymatic cascade based multienzymes could efficiently convert renewable triglycerides to alkenes.
Collapse
Affiliation(s)
- Fei Li
- Key Lab of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Kaixin Yang
- Key Lab of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Yun Xu
- Key Lab of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Yangge Qiao
- Key Lab of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Yunjun Yan
- Key Lab of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Jinyong Yan
- Key Lab of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China; Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen Production and Research Base Block B, No. 9 Avenue 3 Yuexing, Yuehai Street, Nanshan District, Shenzhen 518057, China.
| |
Collapse
|
33
|
Li L, Wei K, Liu X, Wu Y, Zheng G, Chen S, Jiang W, Lu Y. aMSGE: advanced multiplex site-specific genome engineering with orthogonal modular recombinases in actinomycetes. Metab Eng 2018; 52:153-167. [PMID: 30529239 DOI: 10.1016/j.ymben.2018.12.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 11/27/2018] [Accepted: 12/04/2018] [Indexed: 11/18/2022]
Abstract
Chromosomal integration of genes and pathways is of particular importance for large-scale and long-term fermentation in industrial biotechnology. However, stable, multi-copy integration of long DNA segments (e.g., large gene clusters) remains challenging. Here, we describe a plug-and-play toolkit that allows for high-efficiency, single-step, multi-locus integration of natural product (NP) biosynthetic gene clusters (BGCs) in actinomycetes, based on the innovative concept of "multiple integrases-multiple attB sites". This toolkit consists of 27 synthetic modular plasmids, which contain single- or multi-integration modules (from two to four) derived from five orthogonal site-specific recombination (SSR) systems. The multi-integration modules can be readily ligated into plasmids containing large BGCs by Gibson assembly, which can be simultaneously inserted into multiple native attB sites in a single step. We demonstrated the applicability of this toolkit by performing stabilized amplification of acetyl-CoA carboxylase genes to facilitate actinorhodin biosynthesis in Streptomyces coelicolor. Furthermore, using this toolkit, we achieved a 185.6% increase in 5-oxomilbemycin titers (from 2.23 to 6.37 g/L) in Streptomyces hygroscopicus via the multi-locus integration of the entire 5-oxomilbemycin BGC (72 kb) (up to four copies). Compared with previously reported methods, the advanced multiplex site-specific genome engineering (aMSGE) method does not require the introduction of any modifications into host genomes before the amplification of target genes or BGCs, which will drastically simplify and accelerate efforts to improve NP production. Considering that SSR systems are widely distributed in a variety of industrial microbes, this novel technique also promises to be a valuable tool for the enhanced biosynthesis of other high-value bioproducts.
Collapse
Affiliation(s)
- Lei Li
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Keke Wei
- School of Pharmacy, Fudan University, Shanghai 201203, China; Department of Biochemistry, Shanghai Institute of Pharmaceutical Industry, Shanghai 201210, China
| | - Xiaocao Liu
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; School of Life Science, Henan University, Kaifeng 475004, China
| | - Yuanjie Wu
- Department of Biochemistry, Shanghai Institute of Pharmaceutical Industry, Shanghai 201210, China
| | - Guosong Zheng
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Shaoxin Chen
- Department of Biochemistry, Shanghai Institute of Pharmaceutical Industry, Shanghai 201210, China
| | - Weihong Jiang
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; Jiangsu National Synergetic Innovation Center for Advanced Materials, SICAM, Nanjing 210009, China.
| | - Yinhua Lu
- College of Life Sciences, Shanghai Normal University, Shanghai 200232, China.
| |
Collapse
|
34
|
Erian AM, Gibisch M, Pflügl S. Engineered E. coli W enables efficient 2,3-butanediol production from glucose and sugar beet molasses using defined minimal medium as economic basis. Microb Cell Fact 2018; 17:190. [PMID: 30501633 PMCID: PMC6267845 DOI: 10.1186/s12934-018-1038-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 11/23/2018] [Indexed: 12/03/2022] Open
Abstract
Background Efficient microbial production of chemicals is often hindered by the cytotoxicity of the products or by the pathogenicity of the host strains. Hence 2,3-butanediol, an important drop-in chemical, is an interesting alternative target molecule for microbial synthesis since it is non-cytotoxic. Metabolic engineering of non-pathogenic and industrially relevant microorganisms, such as Escherichia coli, have already yielded in promising 2,3-butanediol titers showing the potential of microbial synthesis of 2,3-butanediol. However, current microbial 2,3-butanediol production processes often rely on yeast extract as expensive additive, rendering these processes infeasible for industrial production. Results The aim of this study was to develop an efficient 2,3-butanediol production process with E. coli operating on the premise of using cost-effective medium without complex supplements, considering second generation feedstocks. Different gene donors and promoter fine-tuning allowed for construction of a potent E. coli strain for the production of 2,3-butanediol as important drop-in chemical. Pulsed fed-batch cultivations of E. coli W using microaerobic conditions showed high diol productivity of 4.5 g l−1 h−1. Optimizing oxygen supply and elimination of acetoin and by-product formation improved the 2,3-butanediol titer to 68 g l−1, 76% of the theoretical maximum yield, however, at the expense of productivity. Sugar beet molasses was tested as a potential substrate for industrial production of chemicals. Pulsed fed-batch cultivations produced 56 g l−1 2,3-butanediol, underlining the great potential of E. coli W as production organism for high value-added chemicals. Conclusion A potent 2,3-butanediol producing E. coli strain was generated by considering promoter fine-tuning to balance cell fitness and production capacity. For the first time, 2,3-butanediol production was achieved with promising titer, rate and yield and no acetoin formation from glucose in pulsed fed-batch cultivations using chemically defined medium without complex hydrolysates. Furthermore, versatility of E. coli W as production host was demonstrated by efficiently converting sucrose from sugar beet molasses into 2,3-butanediol. Electronic supplementary material The online version of this article (10.1186/s12934-018-1038-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Anna Maria Erian
- Institute for Chemical, Environmental and Bioscience Engineering, Research Area Biochemical Engineering, Technische Universität Wien, Gumpendorfer Straße 1a, 1060, Vienna, Austria
| | - Martin Gibisch
- Institute for Chemical, Environmental and Bioscience Engineering, Research Area Biochemical Engineering, Technische Universität Wien, Gumpendorfer Straße 1a, 1060, Vienna, Austria
| | - Stefan Pflügl
- Institute for Chemical, Environmental and Bioscience Engineering, Research Area Biochemical Engineering, Technische Universität Wien, Gumpendorfer Straße 1a, 1060, Vienna, Austria.
| |
Collapse
|
35
|
Yamada R, Yamauchi A, Ando Y, Kumata Y, Ogino H. Modulation of gene expression by cocktail δ-integration to improve carotenoid production in Saccharomyces cerevisiae. BIORESOURCE TECHNOLOGY 2018; 268:616-621. [PMID: 30138874 DOI: 10.1016/j.biortech.2018.08.044] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 08/12/2018] [Accepted: 08/13/2018] [Indexed: 06/08/2023]
Abstract
Carotenoids, including β-carotene, are commercially valuable compounds, and their production by engineered Saccharomyces cerevisiae is a promising strategy for their industrial production. Here, to improve β-carotene productivity in engineered S. cerevisiae, a cocktail δ-integration strategy, which involves simultaneous integration of various multi-copy genes, followed by selection of desirable transformants, was applied for modulation of β-carotene production-related genes expression. The engineered strain, YPH499/Mo3Crt79, was constructed by three repeated rounds of cocktail δ-integration using CrtE, CrtYB, and CrtI derived from the yeast, Xanthophyllomyces dendrorhous. The recombinant strain produced 7.3 mg/L of carotenoids in 48 h and 52.3 mg/L of β-carotene in 96 h, which were greater values than those achieved by CrtE, CrtYB, and CrtI co-overexpressing strains. Therefore, repeated cocktail δ-integration was effective in improving carotenoid productivity in S. cerevisiae and could be a promising technique for constructing metabolically engineered S. cerevisiae capable of producing bio-based chemicals.
Collapse
Affiliation(s)
- Ryosuke Yamada
- Department of Chemical Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan.
| | - Azusa Yamauchi
- Department of Chemical Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Yorichika Ando
- Department of Chemical Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Yuki Kumata
- Department of Chemical Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Hiroyasu Ogino
- Department of Chemical Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| |
Collapse
|
36
|
Nöh K, Niedenführ S, Beyß M, Wiechert W. A Pareto approach to resolve the conflict between information gain and experimental costs: Multiple-criteria design of carbon labeling experiments. PLoS Comput Biol 2018; 14:e1006533. [PMID: 30379837 PMCID: PMC6209137 DOI: 10.1371/journal.pcbi.1006533] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 09/27/2018] [Indexed: 01/23/2023] Open
Abstract
Science revolves around the best way of conducting an experiment to obtain insightful results. Experiments with maximal information content can be found by computational experimental design (ED) strategies that identify optimal conditions under which to perform the experiment. Several criteria have been proposed to measure the information content, each emphasizing different aspects of the design goal, i.e., reduction of uncertainty. Where experiments are complex or expensive, second sight is at the budget governing the achievable amount of information. In this context, the design objectives cost and information gain are often incommensurable, though dependent. By casting the ED task into a multiple-criteria optimization problem, a set of trade-off designs is derived that approximates the Pareto-frontier which is instrumental for exploring preferable designs. In this work, we present a computational methodology for multiple-criteria ED of information-rich experiments that accounts for virtually any set of design criteria. The methodology is implemented for the case of 13C metabolic flux analysis (MFA), which is arguably the most expensive type among the ‘omics’ technologies, featuring dozens of design parameters (tracer composition, analytical platform, measurement selection etc.). Supported by an innovative visualization scheme, we demonstrate with two realistic showcases that the use of multiple criteria reveals deep insights into the conflicting interplay between information carriers and cost factors that are not amendable to single-objective ED. For instance, tandem mass spectrometry turns out as best-in-class with respect to information gain, while it delivers this information quality cheaper than the other, routinely applied analytical technologies. Therewith, our Pareto approach to ED offers the investigator great flexibilities in the conception phase of a study to balance costs and benefits. Designing experiments is obligatory in the biosciences to valorize their scientific outcome. When the experiments are expensive, unfortunately, in practice often the costs emerge to be showstoppers. In this situation the question arises: How to get the most out of the experiment for your invest in terms of time and money? We approach this question by formulating the design task as a multiple-criteria optimization problem. Its solution produces a set of Pareto-optimal design proposals that feature the trade-off between information gain, as measured by different metrics, and the costs. Then, exploration of the design proposals allows us to make the best decision on information-economic experiments under given circumstances. Implemented in the field of isotope-based metabolic flux analysis, practical application of the Pareto approach provides detailed insight into the tight interplay of plenty of information carriers and cost factors. Supported by an innovative tailored visual representation scheme, the investigator is enabled to explore the options before conducting the experiment. With a practical showcase at hand, our computational study highlights the benefits of incorporating multiple information criteria apart from the costs, balancing the shortcomings of conventional single-objective experimental design strategies.
Collapse
Affiliation(s)
- Katharina Nöh
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany
- * E-mail:
| | - Sebastian Niedenführ
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Martin Beyß
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Wolfgang Wiechert
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany
- Computational Systems Biotechnology, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
37
|
Jiang L, Fu H, Yang HK, Xu W, Wang J, Yang ST. Butyric acid: Applications and recent advances in its bioproduction. Biotechnol Adv 2018; 36:2101-2117. [PMID: 30266343 DOI: 10.1016/j.biotechadv.2018.09.005] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 09/24/2018] [Accepted: 09/24/2018] [Indexed: 12/20/2022]
Abstract
Butyric acid is an important C4 organic acid with broad applications. It is currently produced by chemosynthesis from petroleum-based feedstocks. However, the fermentative production of butyric acid from renewable feedstocks has received growing attention because of consumer demand for green products and natural ingredients in foods, pharmaceuticals, animal feed supplements, and cosmetics. In this review, strategies for improving microbial butyric acid production, including strain engineering and novel fermentation process development are discussed and compared regarding product yield, titer, purity and productivity. Future perspectives on strain and process improvements for butyric acid production are also discussed.
Collapse
Affiliation(s)
- Ling Jiang
- School of Biology & Biological Engineering, South China University of Technology, Guangzhou 510006, China; College of Food Science and Light Industry, Nanjing Tech University, No. 5 Xinmofan Road, Nanjing 210009, China
| | - Hongxin Fu
- School of Biology & Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Hopen K Yang
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Wei Xu
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, USA; School of Chemical and Biological Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Jufang Wang
- School of Biology & Biological Engineering, South China University of Technology, Guangzhou 510006, China; Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, USA.
| | - Shang-Tian Yang
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
38
|
Hijosa-Valsero M, Paniagua-García AI, Díez-Antolínez R. Industrial potato peel as a feedstock for biobutanol production. N Biotechnol 2018; 46:54-60. [PMID: 30044962 DOI: 10.1016/j.nbt.2018.07.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Revised: 06/28/2018] [Accepted: 07/21/2018] [Indexed: 01/01/2023]
Abstract
Potato peel from a snack factory was assessed as possible feedstock for biobutanol production. This lignocellulosic biomass was subjected to various physicochemical pretreatments (autohydrolysis and hydrolysis with dilute acids, alkalis, organic solvents or surfactants) under different conditions of time, temperature and reagent concentrations, in order to favour the release of sugars and reduce the generation of fermentation inhibitors. Thereafter, the pretreated potato peel was treated enzymatically to complete the hydrolysis. Autohydrolysis at 140 °C and 56 min was the most effective pretreatment, releasing 37.9 ± 2.99 g/L sugars from an aqueous mixture containing 10% (w/w) potato peel (sugar recovery efficiency 55 ± 13%). The fermentability of the hydrolysates was checked with six strains of Clostridium beijerinckii, C. acetobutylicum, C. saccharobutylicum and C. saccaroperbutylacetonicum. C. saccharobutylicum DSM 13864 produced 2.1 g/L acetone, 7.6 g/L butanol and 0.6 g/L ethanol in 96 h (0.186 gB/gS), whereas C. saccharoperbutylacetonicum DSM 2152 generated 1.8 g/L acetone, 8.1 g/L butanol and 1.0 g/L ethanol in 120 h (0.203 gB/gS). Detoxification steps of the hydrolysate before fermentation were not necessary. Potato peel may be an interesting feedstock for biorefineries focused on butanol production.
Collapse
Affiliation(s)
- María Hijosa-Valsero
- Biofuels and Bioproducts Research Centre, Institute of Agricultural Technology of Castile and Leon (ITACyL), Villarejo de Órbigo, E-24358 León, Spain.
| | - Ana I Paniagua-García
- Biofuels and Bioproducts Research Centre, Institute of Agricultural Technology of Castile and Leon (ITACyL), Villarejo de Órbigo, E-24358 León, Spain; Chemical and Environmental Bioprocess Engineering, Institute of Natural Resources (IRENA), University of Leon, Avenida de Portugal 42, E-24071 León, Spain.
| | - Rebeca Díez-Antolínez
- Biofuels and Bioproducts Research Centre, Institute of Agricultural Technology of Castile and Leon (ITACyL), Villarejo de Órbigo, E-24358 León, Spain; Chemical and Environmental Bioprocess Engineering, Institute of Natural Resources (IRENA), University of Leon, Avenida de Portugal 42, E-24071 León, Spain.
| |
Collapse
|
39
|
Huang W, Daboussi F. Genetic and metabolic engineering in diatoms. Philos Trans R Soc Lond B Biol Sci 2018; 372:rstb.2016.0411. [PMID: 28717021 DOI: 10.1098/rstb.2016.0411] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/22/2017] [Indexed: 12/23/2022] Open
Abstract
Diatoms have attracted considerable attention due to their success in diverse environmental conditions, which probably is a consequence of their complex origins. Studies of their metabolism will provide insight into their adaptation capacity and are a prerequisite for metabolic engineering. Several years of investigation have led to the development of the genome engineering tools required for such studies, and a profusion of appropriate tools is now available for exploring and exploiting the metabolism of these organisms. Diatoms are highly prized in industrial biotechnology, due to both their richness in natural lipids and carotenoids and their ability to produce recombinant proteins, of considerable value in diverse markets. This review provides an overview of recent advances in genetic engineering methods for diatoms, from the development of gene expression cassettes and gene delivery methods, to cutting-edge genome-editing technologies. It also highlights the contributions of these rapid developments to both basic and applied research: they have improved our understanding of key physiological processes; and they have made it possible to modify the natural metabolism to favour the production of specific compounds or to produce new compounds for green chemistry and pharmaceutical applications.This article is part of the themed issue 'The peculiar carbon metabolism in diatoms'.
Collapse
Affiliation(s)
- Weichao Huang
- LISBP, Université de Toulouse, CNRS, INRA, INSA (LISBP-INSA Toulouse), 135 Avenue de Rangueil, 31077 Toulouse, France
| | - Fayza Daboussi
- LISBP, Université de Toulouse, CNRS, INRA, INSA (LISBP-INSA Toulouse), 135 Avenue de Rangueil, 31077 Toulouse, France
| |
Collapse
|
40
|
Characterization of a Whole-Cell Biotransformation Using a Constitutive Lysine Decarboxylase from Escherichia coli for the High-Level Production of Cadaverine from Industrial Grade l-Lysine. Appl Biochem Biotechnol 2018; 185:909-924. [DOI: 10.1007/s12010-018-2696-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 01/08/2018] [Indexed: 10/18/2022]
|
41
|
Liu C, Men X, Chen H, Li M, Ding Z, Chen G, Wang F, Liu H, Wang Q, Zhu Y, Zhang H, Xian M. A systematic optimization of styrene biosynthesis in Escherichia coli BL21(DE3). BIOTECHNOLOGY FOR BIOFUELS 2018; 11:14. [PMID: 29416559 PMCID: PMC5784704 DOI: 10.1186/s13068-018-1017-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Accepted: 01/10/2018] [Indexed: 05/28/2023]
Abstract
BACKGROUND Styrene is a versatile commodity petrochemical used as a monomer building-block for the synthesis of many useful polymers. Although achievements have been made on styrene biosynthesis in microorganisms, several bottleneck problems limit factors for further improvement in styrene production. RESULTS A two-step styrene biosynthesis pathway was developed and introduced into Escherichia coli BL21(DE3). Systematic optimization of styrene biosynthesis, such as enzyme screening, codon and plasmid optimization, metabolic flow balance, and in situ fermentation was performed. Candidate isoenzymes of the rate-limiting enzyme phenylalanine ammonia lyase (PAL) were screened from Arabidopsis thaliana (AtPAL2), Fagopyrum tataricum (FtPAL), Petroselinum crispum (PcPAL), and Artemisia annua (AaPAL). After codon optimization, AtPAL2 was found to be the most effective one, and the engineered strain was able to produce 55 mg/L styrene. Subsequently, plasmid optimization was performed, which improved styrene production to 103 mg/L. In addition, two upstream shikimate pathway genes, aroF and pheA, were overexpressed in the engineered strain, which resulted in styrene production of 210 mg/L. Subsequently, combined overexpression of tktA and ppsA increased styrene production to 275 mg/L. Finally, in situ product removal was used to ease the burden of end-product toxicity. By using isopropyl myristate as a solvent, styrene production reached a final titer of 350 mg/L after 48 h of shake-flask fermentation, representing a 636% improvement, which compared with that achieved in the original strain. CONCLUSIONS This present study achieved the highest titer of de novo production of styrene in E. coli at shake-flask fermentation level. These results obtained provided new insights for the development of microbial production of styrene in a sustainable and environment friendly manner.
Collapse
Affiliation(s)
- Changqing Liu
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No.189 Songling Road, Laoshan District, Qingdao, 266101 China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiao Men
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No.189 Songling Road, Laoshan District, Qingdao, 266101 China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hailin Chen
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No.189 Songling Road, Laoshan District, Qingdao, 266101 China
- University of Chinese Academy of Sciences, Beijing, China
| | - Meijie Li
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No.189 Songling Road, Laoshan District, Qingdao, 266101 China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhaorui Ding
- School of Biological Science, Jining Medical University, Jining, 272067 People’s Republic of China
| | - Guoqiang Chen
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No.189 Songling Road, Laoshan District, Qingdao, 266101 China
- University of Chinese Academy of Sciences, Beijing, China
| | - Fan Wang
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No.189 Songling Road, Laoshan District, Qingdao, 266101 China
- University of Chinese Academy of Sciences, Beijing, China
| | - Haobao Liu
- Key Laboratory for Tobacco, Gene Resources’ Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101 People’s Republic of China
| | - Qian Wang
- Key Laboratory for Tobacco, Gene Resources’ Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101 People’s Republic of China
| | - Youshuang Zhu
- School of Biological Science, Jining Medical University, Jining, 272067 People’s Republic of China
| | - Haibo Zhang
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No.189 Songling Road, Laoshan District, Qingdao, 266101 China
- University of Chinese Academy of Sciences, Beijing, China
| | - Mo Xian
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No.189 Songling Road, Laoshan District, Qingdao, 266101 China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
42
|
Liu C, Zhang K, Cao W, Zhang G, Chen G, Yang H, Wang Q, Liu H, Xian M, Zhang H. Genome mining of 2-phenylethanol biosynthetic genes from Enterobacter sp. CGMCC 5087 and heterologous overproduction in Escherichia coli. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:305. [PMID: 30455734 PMCID: PMC6223000 DOI: 10.1186/s13068-018-1297-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 10/22/2018] [Indexed: 05/22/2023]
Abstract
BACKGROUND 2-Phenylethanol (2-PE) is a higher aromatic alcohol that is widely used in the perfumery, cosmetics, and food industries and is also a potentially valuable next-generation biofuel. In our previous study, a new strain Enterobacter sp. CGMCC 5087 was isolated to produce 2-PE from glucose through the phenylpyruvate pathway. RESULTS In this study, candidate genes for 2-PE biosynthesis were identified from Enterobacter sp. CGMCC 5087 by draft whole-genome sequence, metabolic engineering, and shake flask fermentation. Subsequently, the identified genes encoding the 2-keto acid decarboxylase (Kdc) and alcohol dehydrogenase (Adh) enzymes from Enterobacter sp. CGMCC 5087 were introduced into E. coli BL21(DE3) to construct a high-efficiency microbial cell factory for 2-PE production using the prokaryotic phenylpyruvate pathway. The enzymes Kdc4427 and Adh4428 from Enterobacter sp. CGMCC 5087 showed higher performances than did the corresponding enzymes ARO10 and ADH2 from Saccharomyces cerevisiae, respectively. The E. coli cell factory was further improved by overexpressing two upstream shikimate pathway genes, aroF/aroG/aroH and pheA, to enhance the metabolic flux of the phenylpyruvate pathway, which resulted in 2-PE production of 260 mg/L. The combined overexpression of tktA and ppsA increased the precursor supply of erythrose-4-phosphate and phosphoenolpyruvate, which resulted in 2-PE production of 320 mg/L, with a productivity of 13.3 mg/L/h. CONCLUSIONS The present study achieved the highest titer of de novo 2-PE production of in a recombinant E. coli system. This study describes a new, efficient 2-PE producer that lays foundation for the industrial-scale production of 2-PE and its derivatives in the future.
Collapse
Affiliation(s)
- Changqing Liu
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No.189 Songling Road, Laoshan District, Qingdao, 266101 China
- University of Chinese Academy of Sciences, Beijing, China
| | - Kai Zhang
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No.189 Songling Road, Laoshan District, Qingdao, 266101 China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wenyan Cao
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No.189 Songling Road, Laoshan District, Qingdao, 266101 China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ge Zhang
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No.189 Songling Road, Laoshan District, Qingdao, 266101 China
- University of Chinese Academy of Sciences, Beijing, China
- Key Laboratory for Tobacco Gene Resources’ Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101 People’s Republic of China
| | - Guoqiang Chen
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No.189 Songling Road, Laoshan District, Qingdao, 266101 China
- University of Chinese Academy of Sciences, Beijing, China
- Key Laboratory for Tobacco Gene Resources’ Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101 People’s Republic of China
| | - Haiyan Yang
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No.189 Songling Road, Laoshan District, Qingdao, 266101 China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qian Wang
- Key Laboratory for Tobacco Gene Resources’ Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101 People’s Republic of China
| | - Haobao Liu
- Key Laboratory for Tobacco Gene Resources’ Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101 People’s Republic of China
| | - Mo Xian
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No.189 Songling Road, Laoshan District, Qingdao, 266101 China
- University of Chinese Academy of Sciences, Beijing, China
| | - Haibo Zhang
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No.189 Songling Road, Laoshan District, Qingdao, 266101 China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
43
|
Mao X, Liu Z, Sun J, Lee SY. Metabolic engineering for the microbial production of marine bioactive compounds. Biotechnol Adv 2017; 35:1004-1021. [DOI: 10.1016/j.biotechadv.2017.03.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 03/01/2017] [Accepted: 03/01/2017] [Indexed: 01/22/2023]
|
44
|
Hoffart E, Grenz S, Lange J, Nitschel R, Müller F, Schwentner A, Feith A, Lenfers-Lücker M, Takors R, Blombach B. High Substrate Uptake Rates Empower Vibrio natriegens as Production Host for Industrial Biotechnology. Appl Environ Microbiol 2017; 83:e01614-17. [PMID: 28887417 PMCID: PMC5666143 DOI: 10.1128/aem.01614-17] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 08/31/2017] [Indexed: 12/17/2022] Open
Abstract
The productivity of industrial fermentation processes is essentially limited by the biomass-specific substrate consumption rate (qS ) of the applied microbial production system. Since qS depends on the growth rate (μ), we highlight the potential of the fastest-growing nonpathogenic bacterium, Vibrio natriegens, as a novel candidate for future biotechnological processes. V. natriegens grows rapidly in BHIN complex medium with a μ of up to 4.43 h-1 (doubling time of 9.4 min) as well as in minimal medium supplemented with various industrially relevant substrates. Bioreactor cultivations in minimal medium with glucose showed that V. natriegens possesses an exceptionally high qS under aerobic (3.90 ± 0.08 g g-1 h-1) and anaerobic (7.81 ± 0.71 g g-1 h-1) conditions. Fermentations with resting cells of genetically engineered V. natriegens under anaerobic conditions yielded an overall volumetric productivity of 0.56 ± 0.10 g alanine liter-1 min-1 (i.e., 34 g liter-1 h-1). These inherent properties render V. natriegens a promising new microbial platform for future industrial fermentation processes operating with high productivity.IMPORTANCE Low conversion rates are one major challenge to realizing microbial fermentation processes for the production of commodities operating competitively with existing petrochemical approaches. For this reason, we screened for a novel platform organism possessing characteristics superior to those of traditionally employed microbial systems. We identified the fast-growing V. natriegens, which exhibits a versatile metabolism and shows striking growth and conversion rates, as a solid candidate to reach outstanding productivities. Due to these inherent characteristics, V. natriegens can speed up common laboratory routines, is suitable for already existing production procedures, and forms an excellent foundation for engineering next-generation bioprocesses.
Collapse
Affiliation(s)
- Eugenia Hoffart
- Institute of Biochemical Engineering, University of Stuttgart, Stuttgart, Germany
| | - Sebastian Grenz
- Institute of Biochemical Engineering, University of Stuttgart, Stuttgart, Germany
| | - Julian Lange
- Institute of Biochemical Engineering, University of Stuttgart, Stuttgart, Germany
| | - Robert Nitschel
- Institute of Biochemical Engineering, University of Stuttgart, Stuttgart, Germany
| | - Felix Müller
- Institute of Biochemical Engineering, University of Stuttgart, Stuttgart, Germany
| | - Andreas Schwentner
- Institute of Biochemical Engineering, University of Stuttgart, Stuttgart, Germany
| | - André Feith
- Institute of Biochemical Engineering, University of Stuttgart, Stuttgart, Germany
| | - Mira Lenfers-Lücker
- Institute of Biochemical Engineering, University of Stuttgart, Stuttgart, Germany
| | - Ralf Takors
- Institute of Biochemical Engineering, University of Stuttgart, Stuttgart, Germany
| | - Bastian Blombach
- Institute of Biochemical Engineering, University of Stuttgart, Stuttgart, Germany
| |
Collapse
|
45
|
Niu K, Cheng XL, Qin HB, Liu JS, Zheng YG. Investigation of the key factors on 3-hydroxypropionic acid production with different recombinant strains. 3 Biotech 2017; 7:314. [PMID: 28955611 DOI: 10.1007/s13205-017-0966-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 09/07/2017] [Indexed: 12/26/2022] Open
Abstract
3-Hydroxypropionic acid (3-HP) is an important compound and precursor for a series of chemicals and polymeric materials. In this study, the 3-HP producing bacteria were constructed and studied for efficient synthesis of 3-HP. The results indicated that the instability of glycerol dehydratase (GDHt) affected the 3-HP production significantly, which was successfully solved by the expression of glycerol dehydratase reactivase (GdrB), with fivefold increase in 3-HP yield. Meanwhile, NAD+-regenerating enzymes GPD1 (glycerol-3-phosphate dehydrogenase) was expressed; however, the results showed 3-HP was significantly decreased from 56.73-4 mM, and malic acid was obviously increased. Analysis of the C flux distribution showed that the main reason for the results was the lack of NAD+. The addition of NAD+ further increased the 3-HP production to 23.87 mM, demonstrating that the "regeneration of NAD+" was the major factor for enhancing 3-HP production.
Collapse
Affiliation(s)
- Kun Niu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014 People's Republic of China
| | - Xiu-Li Cheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014 People's Republic of China
| | - Hai-Bin Qin
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014 People's Republic of China
| | - Ji-Song Liu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014 People's Republic of China
| | - Yu-Guo Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014 People's Republic of China
| |
Collapse
|
46
|
Combinatorial Engineering of Yarrowia lipolytica as a Promising Cell Biorefinery Platform for the de novo Production of Multi-Purpose Long Chain Dicarboxylic Acids. FERMENTATION-BASEL 2017. [DOI: 10.3390/fermentation3030040] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
47
|
Combinatorial metabolic engineering of Pseudomonas putida KT2440 for efficient mineralization of 1,2,3-trichloropropane. Sci Rep 2017; 7:7064. [PMID: 28765600 PMCID: PMC5539299 DOI: 10.1038/s41598-017-07435-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 06/23/2017] [Indexed: 01/03/2023] Open
Abstract
An industrial waste, 1,2,3-trichloropropane (TCP), is toxic and extremely recalcitrant to biodegradation. To date, no natural TCP degraders able to mineralize TCP aerobically have been isolated. In this work, we engineered a biosafety Pseudomonas putida strain KT2440 for aerobic mineralization of TCP by implantation of a synthetic biodegradation pathway into the chromosome and further improved TCP mineralization using combinatorial engineering strategies. Initially, a synthetic pathway composed of haloalkane dehalogenase, haloalcohol dehalogenase and epoxide hydrolase was functionally assembled for the conversion of TCP into glycerol in P. putida KT2440. Then, the growth lag-phase of using glycerol as a growth precursor was eliminated by deleting the glpR gene, significantly enhancing the flux of carbon through the pathway. Subsequently, we improved the oxygen sequestering capacity of this strain through the heterologous expression of Vitreoscilla hemoglobin, which makes this strain able to mineralize TCP under oxygen-limited conditions. Lastly, we further improved intracellular energy charge (ATP/ADP ratio) and reducing power (NADPH/NADP+ ratio) by deleting flagella-related genes in the genome of P. putida KT2440. The resulting strain (named KTU-TGVF) could efficiently utilize TCP as the sole source of carbon for growth. Degradation studies in a bioreactor highlight the value of this engineered strain for TCP bioremediation.
Collapse
|
48
|
du Lac M, Scarpelli AH, Younger AKD, Bates DG, Leonard JN. Predicting the Dynamics and Heterogeneity of Genomic DNA Content within Bacterial Populations across Variable Growth Regimes. ACS Synth Biol 2017; 6:1131-1139. [PMID: 27689718 DOI: 10.1021/acssynbio.5b00217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
For many applications in microbial synthetic biology, optimizing a desired function requires careful tuning of the degree to which various genes are expressed. One challenge for predicting such effects or interpreting typical characterization experiments is that in bacteria such as E. coli, genome copy number varies widely across different phases and rates of growth, which also impacts how and when genes are expressed from different loci. While such phenomena are relatively well-understood at a mechanistic level, our quantitative understanding of such processes is essentially limited to ideal exponential growth. In contrast, common experimental phenomena such as growth on heterogeneous media, metabolic adaptation, and oxygen restriction all cause substantial deviations from ideal exponential growth, particularly as cultures approach the higher densities at which industrial biomanufacturing and even routine screening experiments are conducted. To meet the need for predicting and explaining how gene dosage impacts cellular functions outside of exponential growth, we here report a novel modeling strategy that leverages agent-based simulation and high performance computing to robustly predict the dynamics and heterogeneity of genomic DNA content within bacterial populations across variable growth regimes. We show that by feeding routine experimental data, such as optical density time series, into our heterogeneous multiphasic growth simulator, we can predict genomic DNA distributions over a range of nonexponential growth conditions. This modeling strategy provides an important advance in the ability of synthetic biologists to evaluate the role of genomic DNA content and heterogeneity in affecting the performance of existing or engineered microbial functions.
Collapse
Affiliation(s)
- Melchior du Lac
- Warwick
Integrative Synthetic Biology Centre, School of Engineering, University of Warwick, Coventry CV4 7AL, United Kingdom
| | | | | | - Declan G. Bates
- Warwick
Integrative Synthetic Biology Centre, School of Engineering, University of Warwick, Coventry CV4 7AL, United Kingdom
| | | |
Collapse
|
49
|
Zheng Y, Yuan Q, Yang X, Ma H. Engineering Escherichia coli for poly-(3-hydroxybutyrate) production guided by genome-scale metabolic network analysis. Enzyme Microb Technol 2017; 106:60-66. [PMID: 28859811 DOI: 10.1016/j.enzmictec.2017.07.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 06/22/2017] [Accepted: 07/07/2017] [Indexed: 11/16/2022]
Abstract
Poly-(3-hydroxybutyrate) (P3HB) is a promising biodegradable plastic synthesized from acetyl-CoA. One important factor affecting the P3HB production cost is the P3HB yield. Through flux balance analysis of an extended genome-scale metabolic network of E. coli, we found that the introduction of non-oxidative glycolysis pathway (NOG), a previously reported pathway enabling complete carbon conservation, can increase the theoretical carbon yield from 67% to 89%, equivalent to the theoretical mass yield from 0.48g P3HB/g glucose to 0.64g P3HB/g glucose. Based on this analysis result, we introduced phosphoketolase and enhanced the NOG pathway in E. coli. The mass yield in the engineered strain was increased from 0.16g P3HB/g glucose to 0.24g P3HB/g glucose. We further overexpressed pntAB to enhance the NADPH availability and down-regulated TCA cycle to divert more acetyl-CoA toward P3HB. The final construct accumulated 5.7g/L P3HB and reached a carbon yield of 0.43 (a mass yield of 0.31g P3HB/g glucose) in shake flask cultures in shake flask cultures. The introduction of NOG pathway could also be useful for improving yields of many other biochemicals derived from acetyl-coA.
Collapse
Affiliation(s)
- Yangyang Zheng
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qianqian Yuan
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Xiaoyan Yang
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Hongwu Ma
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.
| |
Collapse
|
50
|
A New Player in the Biorefineries Field: Phasin PhaP Enhances Tolerance to Solvents and Boosts Ethanol and 1,3-Propanediol Synthesis in Escherichia coli. Appl Environ Microbiol 2017; 83:AEM.00662-17. [PMID: 28476770 DOI: 10.1128/aem.00662-17] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 05/02/2017] [Indexed: 11/20/2022] Open
Abstract
The microbial production of biofuels and other added-value chemicals is often limited by the intrinsic toxicity of these compounds. The phasin PhaP from the soil bacterium Azotobacter sp. strain FA8 is a polyhydroxyalkanoate granule-associated protein that protects recombinant Escherichia coli against several kinds of stress. PhaP enhances growth and poly(3-hydroxybutyrate) synthesis in polymer-producing recombinant strains and reduces the formation of inclusion bodies during overproduction of heterologous proteins. In this work, the heterologous expression of this phasin in E. coli was used as a strategy to increase tolerance to several biotechnologically relevant chemicals. PhaP was observed to enhance bacterial fitness in the presence of biofuels, such as ethanol and butanol, and other chemicals, such as 1,3-propanediol. The effect of PhaP was also studied in a groELS mutant strain, in which both GroELS and PhaP were observed to exert a beneficial effect that varied depending on the chemical tested. Lastly, the potential of PhaP and GroEL to enhance the accumulation of ethanol or 1,3-propanediol was analyzed in recombinant E. coli Strains that overexpressed either groEL or phaP had increased growth, reflected in a higher final biomass and product titer than the control strain. Taken together, these results add a novel application to the already multifaceted phasin protein group, suggesting that expression of these proteins or other chaperones can be used to improve the production of biofuels and other chemicals.IMPORTANCE This work has both basic and applied aspects. Our results demonstrate that a phasin with chaperone-like properties can increase bacterial tolerance to several biochemicals, providing further evidence of the diverse properties of these proteins. Additionally, both the PhaP phasin and the well-known chaperone GroEL were used to increase the biosynthesis of the biotechnologically relevant compounds ethanol and 1,3-propanediol in recombinant E. coli These findings open the road for the use of these proteins for the manipulation of bacterial strains to optimize the synthesis of diverse bioproducts from renewable carbon sources.
Collapse
|