1
|
Tomaru Y, Sugaya H, Yoshioka T, Arai N, Abe T, Tsukagoshi Y, Kamada H, Yamazaki M, Mishima H. Effects of bone marrow-derived mesenchymal stem cell transplantation in piglet Legg-Calve-Perthes disease models: a pilot study. J Pediatr Orthop B 2024; 33:358-362. [PMID: 37266936 DOI: 10.1097/bpb.0000000000001095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
This preliminary study investigated the efficacy and safety of bone marrow-derived mesenchymal stem cell transplantation in a piglet Legg-Calve-Perthes disease (LCPD) model. The LCPD model was induced in two Landrace piglets (6- and 7-week-old, weighing 12 and 17 kg, respectively) by ligaturing the femoral neck. In the first piglet, the natural LCPD course was observed. In the second piglet, 4 weeks after ligaturing the femoral neck, simple medium and medium containing 2.44 × 10 7 bone marrow-derived mesenchymal stem cells were transplanted into the right and left femoral heads after core decompression, respectively. Plain radiographs were obtained every 4 weeks, and the epiphyseal quotient was calculated by dividing the maximum epiphysis height by the maximum epiphysis diameter. The piglets were sacrificed at 14 weeks postoperatively. The femoral heads were extracted and evaluated grossly, pathologically, and by using computed tomography. The transplanted cell characteristics were evaluated using flow cytometry. Flattening of the epiphysis was observed in both femoral heads of the first piglet and only in the right hip of the second piglet. The epiphyseal quotients immediately and at 14 weeks postoperatively in the right femoral head of the second piglet were 0.40 and 0.14, respectively, while those of the left femoral head were 0.30 and 0.42, respectively. Hematoxylin and eosin staining did not reveal physeal bar or tumor cell formation. The transplanted cells were 99.2%, 65.9%, 18.2%, and 0.16% positive for CD44, CD105, CD29, and CD31, respectively. Core decompression combined with bone marrow-derived mesenchymal stem cell transplantation prevented epiphyseal collapse.
Collapse
Affiliation(s)
- Yohei Tomaru
- Department of Orthopaedic Surgery, Faculty of Medicine, University of Tsukuba
| | - Hisashi Sugaya
- Department of Orthopaedic Surgery, Tsukuba University of Technology, Tsukuba, Ibaraki
| | - Tomokazu Yoshioka
- Department of Orthopaedic Surgery, Faculty of Medicine, University of Tsukuba
| | - Norihito Arai
- Department of Orthopaedic Surgery, Faculty of Medicine, University of Tsukuba
| | - Tomoyuki Abe
- Division of Regenerative Medicine, Center for Molecular Medicine, Jichi Medical University, Tochigi, Japan
| | - Yuta Tsukagoshi
- Department of Orthopaedic Surgery, Faculty of Medicine, University of Tsukuba
| | - Hiroshi Kamada
- Department of Orthopaedic Surgery, Faculty of Medicine, University of Tsukuba
| | - Masashi Yamazaki
- Department of Orthopaedic Surgery, Faculty of Medicine, University of Tsukuba
| | - Hajime Mishima
- Department of Orthopaedic Surgery, Faculty of Medicine, University of Tsukuba
| |
Collapse
|
2
|
Yi Y, Song J, Zhou P, Shu Y, Liang P, Liang H, Liu Y, Yuan X, Shan X, Wu X. An ultrasound-triggered injectable sodium alginate scaffold loaded with electrospun microspheres for on-demand drug delivery to accelerate bone defect regeneration. Carbohydr Polym 2024; 334:122039. [PMID: 38553236 DOI: 10.1016/j.carbpol.2024.122039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/02/2024] [Accepted: 03/07/2024] [Indexed: 04/02/2024]
Abstract
Biological processes, such as bone defects healing are precisely controlled in both time and space. This spatiotemporal characteristic inspires novel therapeutic strategies. The sustained-release systems including hydrogels are commonly utilized in the treatment of bone defect; however, traditional hydrogels often release drugs at a consistent rate, lacking temporal precision. In this study, a hybrid hydrogel has been developed by using sodium alginate, sucrose acetate isobutyrate, and electrospray microspheres as the base materials, and designed with ultrasound response, and on-demand release properties. Sucrose acetate isobutyrate was added to the hybrid hydrogel to prevent burst release. The network structure of the hybrid hydrogel is formed by the interconnection of Ca2+ with the carboxyl groups of sodium alginate. Notably, when the hybrid hydrogel is exposed to ultrasound, the ionic bond can be broken to promote drug release; when ultrasound is turned off, the release returned to a low-release state. This hybrid hydrogel reveals not only injectability, degradability, and good mechanical properties but also shows multiple responses to ultrasound. And it has good biocompatibility and promotes osteogenesis efficiency in vivo. Thus, this hybrid hydrogel provides a promising therapeutic strategy for the treatment of bone defects.
Collapse
Affiliation(s)
- Yin Yi
- Stomatological Hospital of Chongqing Medical University, No. 426, Songshibei Road, Yubei District, Chongqing 401147, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China
| | - Jinlin Song
- Stomatological Hospital of Chongqing Medical University, No. 426, Songshibei Road, Yubei District, Chongqing 401147, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China
| | - Pengfei Zhou
- Stomatological Hospital of Chongqing Medical University, No. 426, Songshibei Road, Yubei District, Chongqing 401147, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China
| | - Yu Shu
- Stomatological Hospital of Chongqing Medical University, No. 426, Songshibei Road, Yubei District, Chongqing 401147, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China
| | - Panpan Liang
- Stomatological Hospital of Chongqing Medical University, No. 426, Songshibei Road, Yubei District, Chongqing 401147, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China
| | - Huimin Liang
- Stomatological Hospital of Chongqing Medical University, No. 426, Songshibei Road, Yubei District, Chongqing 401147, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China
| | - Yanling Liu
- Stomatological Hospital of Chongqing Medical University, No. 426, Songshibei Road, Yubei District, Chongqing 401147, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China
| | - Xiaoyan Yuan
- Stomatological Hospital of Chongqing Medical University, No. 426, Songshibei Road, Yubei District, Chongqing 401147, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China
| | - Xujia Shan
- Stomatological Hospital of Chongqing Medical University, No. 426, Songshibei Road, Yubei District, Chongqing 401147, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China
| | - Xiaohong Wu
- Stomatological Hospital of Chongqing Medical University, No. 426, Songshibei Road, Yubei District, Chongqing 401147, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China.
| |
Collapse
|
3
|
Naidu G, Tripathi DK, Nagar N, Mishra A, Poluri KM. Targeting chemokine-receptor mediated molecular signaling by ethnopharmacological approaches. JOURNAL OF ETHNOPHARMACOLOGY 2024; 325:117837. [PMID: 38310985 DOI: 10.1016/j.jep.2024.117837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 12/07/2023] [Accepted: 01/26/2024] [Indexed: 02/06/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Infection and inflammation are critical to global human health status and the goal of current pharmacological interventions intends formulating medications/preventives as a measure to deal with this situation. Chemokines and their cognate receptors are major regulatory molecules in many of these ailments. Natural products have been a keen source to the drug development industry, every year contributing significantly to the growing list of FDA approved drugs. A multiverse of natural resource is employed as a part of curative regimen in folk/traditional/ethnomedicine which can be employed to discover, repurpose, and design potent medications for the diseases of clinical concern. AIM OF THE STUDY This review aims to systematically document the ethnopharmacologically active agents targeting the infectious-inflammatory diseases through the chemokine-receptor nexus. MATERIALS AND METHODS Articles related to chemokine/receptor modulating ethnopharmacological anti-inflammatory, anti-infectious natural sources, bioactive compounds, and formulations have been examined with special emphasis on women related diseases. The available literature has been thoroughly scrutinized for the application of traditional medicines in chemokine associated experimental methods, their regulatory outcomes, and pertinence to women's health wherever applicable. Moreover, the potential traditional regimens under clinical trials have been critically assessed. RESULTS A systematic and comprehensive review on the chemokine-receptor targeting ethnopharmaceutics from the available literature has been provided. The article discusses the implication of traditional medicine in the chemokine system dynamics in diverse infectious-inflammatory disorders such as cardiovascular diseases, allergic diseases, inflammatory diseases, neuroinflammation, and cancer. On this note, critical evaluation of the available data surfaced multiple diseases prevalent in women such as osteoporosis, rheumatoid arthritis, breast cancer, cervical cancer and urinary tract infection. Currently there is no available literature highlighting chemokine-receptor targeting using traditional medicinal approach from women's health perspective. Moreover, despite being potent in vitro and in vivo setups there remains a gap in clinical translation of these formulations, which needs to be strategically and scientifically addressed to pave the way for their successful industrial translation. CONCLUSIONS The review provides an optimistic global perspective towards the applicability of ethnopharmacology in chemokine-receptor regulated infectious and inflammatory diseases with special emphasis on ailments prevalent in women, consecutively addressing their current status of clinical translation and future directions.
Collapse
Affiliation(s)
- Goutami Naidu
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India.
| | - Deepak Kumar Tripathi
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Nupur Nagar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur, 342011, Rajasthan, India
| | - Krishna Mohan Poluri
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India; Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India.
| |
Collapse
|
4
|
Peng Y, Qu R, Xu S, Bi H, Guo D. Regulatory mechanism and therapeutic potentials of naringin against inflammatory disorders. Heliyon 2024; 10:e24619. [PMID: 38317884 PMCID: PMC10839891 DOI: 10.1016/j.heliyon.2024.e24619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 12/02/2023] [Accepted: 01/11/2024] [Indexed: 02/07/2024] Open
Abstract
Naringin is a natural flavonoid with therapeutic properties found in citrus fruits and an active natural product from herbal plants. Naringin has become a focus of attention in recent years because of its ability to actively participate in the body's immune response and maintain the integrity of the immune barrier. This review aims to elucidate the mechanism of action and therapeutic efficacy of naringin in various inflammatory diseases and to provide a valuable reference for further research in this field. The review provided the chemical structure, bioavailability, pharmacological properties, and pharmacokinetics of naringin and found that naringin has good therapeutic potential for inflammatory diseases, exerting anti-inflammatory, anti-apoptotic, anti-oxidative stress, anti-ulcerative and detoxifying effects in the disease. Moreover, we found that the great advantage of naringin treatment is that it is safe and can even alleviate the toxic side effects associated with some of the other drugs, which may become a highlight of naringin research. Naringin, an active natural product, plays a significant role in systemic diseases' anti-inflammatory and antioxidant regulation through various signaling pathways and molecular mechanisms.
Collapse
Affiliation(s)
- Yuan Peng
- Shandong University of Traditional Chinese Medicine, Jinan, 250002, China
| | - Ruyi Qu
- Shandong University of Traditional Chinese Medicine, Jinan, 250002, China
| | - Shuqin Xu
- Shandong University of Traditional Chinese Medicine, Jinan, 250002, China
| | - Hongsheng Bi
- Affiliated Eye Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250002, China
| | - Dadong Guo
- Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases, Shandong Academy of Eye Disease Prevention and Therapy, Medical College of Optometry and Ophthalmology, Shandong University of Traditional Chinese Medicine, Jinan, 250002, China
| |
Collapse
|
5
|
Ostrowska-Lesko M, Rajtak A, Moreno-Bueno G, Bobinski M. Scientific and clinical relevance of non-cellular tumor microenvironment components in ovarian cancer chemotherapy resistance. Biochim Biophys Acta Rev Cancer 2024; 1879:189036. [PMID: 38042260 DOI: 10.1016/j.bbcan.2023.189036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 11/24/2023] [Accepted: 11/25/2023] [Indexed: 12/04/2023]
Abstract
The tumor microenvironment (TME) components play a crucial role in cancer cells' resistance to chemotherapeutic agents. This phenomenon is exceptionally fundamental in patients with ovarian cancer (OvCa), whose outcome depends mainly on their response to chemotherapy. Until now, most reports have focused on the role of cellular components of the TME, while less attention has been paid to the stroma and other non-cellular elements of the TME, which may play an essential role in the therapy resistance. Inhibiting these components could help define new therapeutic targets and potentially restore chemosensitivity. The aim of the present article is both to summarize the knowledge about non-cellular components of the TME in the development of OvCa chemoresistance and to suggest targeting of non-cellular elements of the TME as a valuable strategy to overcome chemoresistance and to develop new therapeutic strategies in OvCA patients.
Collapse
Affiliation(s)
- Marta Ostrowska-Lesko
- Chair and Department of Toxicology, Medical University of Lublin, 8b Jaczewskiego Street, 20-090 Lublin, Poland.
| | - Alicja Rajtak
- 1st Chair and Department of Oncological Gynecology and Gynecology, Medical University of Lublin, Poland
| | - Gema Moreno-Bueno
- Biochemistry Department, Universidad Autónoma de Madrid (UAM), Instituto de Investigaciones Biomédicas 'Sols-Morreale' (IIBm-CISC), Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Spain; Fundación MD Anderson Internacional (FMDA), Spain.
| | - Marcin Bobinski
- 1st Chair and Department of Oncological Gynecology and Gynecology, Medical University of Lublin, Poland.
| |
Collapse
|
6
|
Bonnici L, Suleiman S, Schembri-Wismayer P, Cassar A. Targeting Signalling Pathways in Chronic Wound Healing. Int J Mol Sci 2023; 25:50. [PMID: 38203220 PMCID: PMC10779022 DOI: 10.3390/ijms25010050] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/11/2023] [Accepted: 12/15/2023] [Indexed: 01/12/2024] Open
Abstract
Chronic wounds fail to achieve complete closure and are an economic burden to healthcare systems due to the limited treatment options and constant medical attention. Chronic wounds are characterised by dysregulated signalling pathways. Research has focused on naturally derived compounds, stem-cell-based therapy, small molecule drugs, oligonucleotide delivery nanoparticles, exosomes and peptide-based platforms. The phosphoinositide-3-kinase (PI3K)/protein kinase B (AKT), Wingless-related integration (Wnt)/β-catenin, transforming growth factor-β (TGF-β), nuclear factor erythroid 2-related factor 2 (Nrf2), Notch and hypoxia-inducible factor 1 (HIF-1) signalling pathways have critical roles in wound healing by modulating the inflammatory, proliferative and remodelling phases. Moreover, several regulators of the signalling pathways were demonstrated to be potential treatment targets. In this review, the current research on targeting signalling pathways under chronic wound conditions will be discussed together with implications for future studies.
Collapse
Affiliation(s)
| | | | | | - Analisse Cassar
- Department of Anatomy, University of Malta, MSD 2080 Msida, Malta; (L.B.); (S.S.); (P.S.-W.)
| |
Collapse
|
7
|
Liu ZB, Fan XY, Wang CW, Ye X, Wu CJ. Potentially active compounds that improve PAD through angiogenesis: A review. Biomed Pharmacother 2023; 168:115634. [PMID: 37879211 DOI: 10.1016/j.biopha.2023.115634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/25/2023] [Accepted: 10/03/2023] [Indexed: 10/27/2023] Open
Abstract
Peripheral arterial disease (PAD) has been historically neglected, which has resulted in a lack of effective drugs in clinical practice. However, with the increasing prevalence of diseases like atherosclerosis and diabetes, the incidence of PAD is rising and cannot be ignored. Researchers are exploring the potential of promoting angiogenesis through exogenous compounds to improve PAD. This paper focuses on the therapeutic effect of natural products (Salidroside, Astragaloside IV, etc.) and synthetic compounds (Cilostazol, Dapagliflozin, etc.). Specifically, it examines how they can promote autocrine secretion of vascular endothelial cells, enhance cell paracrine interactions, and regulate endothelial progenitor cell function. The activation of these effects may be closely related to PI3K, AMPK, and other pathways. Overall, these exogenous compounds have promising therapeutic potential for PAD. This study aims to summarize the potential active compounds, provide a variety of options for the search for drugs for the treatment of PAD, and bring light to the treatment of patients.
Collapse
Affiliation(s)
- Zi-Bo Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xin-Yun Fan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Chen-Wei Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xun Ye
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Chun-Jie Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy/Academy for Interdiscipline, Chengdu Univesity of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
8
|
Zhang C, Ye W, Zhao M, Xia D, Fan Z. tRNA-derived small RNA changes in bone marrow stem cells under hypoxia and osteogenic conduction. J Oral Rehabil 2023; 50:1487-1497. [PMID: 37574812 DOI: 10.1111/joor.13566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/04/2023] [Accepted: 08/01/2023] [Indexed: 08/15/2023]
Abstract
BACKGROUND Tissue engineering using bone mesenchymal stem cells (BMSCs) transplantation is a promising therapeutic for bone regeneration. However, the effect of bone regeneration remains unsatisfactory due to the BMSCs' functional abnormality influenced by hypoxia. In this study, we attempt to explore the mechanism of osteogenic differentiation of BMSCs under hypoxic conditions from the perspective of non-coding RNA regulation. METHODS The study employed BMSCs obtained from healthy donors and simulated hypoxia using CoCl2 stimulation. High-throughput sequencing technique was used to identify differential expression profiles of tRNA-derived small RNA (tsRNA) in three experimental groups: BMSCs-0d, BMSCs-7d and BMSCs-0d-CoCl2 . TargetScan and miRanda algorithms were used to determine tsRNA target genes, while Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analysis were employed for the prediction of biological functions. Real-time reverse transcriptase-polymerase chain reaction (Real-time RT-PCR) was carried out on four selected differentially expressed tsRNAs. RESULTS After the osteogenic induction and CoCl2 stimulated separately, there were 19 tsRNAs differentially expressed in BMSCs, including 14 upregulated and five downregulated. According to the analysis of biological information, these tsRNAs may regulate 311 potential target genes and mainly enrich the pathways such as metabolic pathways, Wnt signalling pathway, osteoclast differentiation, cellular senescence and mTOR signalling pathway. The results of Real-time RT-PCR for 3'tiRNA-41-GlnTTG-6, 3'tiRNA-42-LysTTT-8, 5'tiRNA-35-CysACA-1 and tRF3a-AsnGTT-9 were consistent with small RNA sequencing data. CONCLUSION We discovered the tsRNA that changes the process of osteogenesis and hypoxia, which provides new targets for promoting survival and regeneration functions after BMSCs transplantation.
Collapse
Affiliation(s)
- Chen Zhang
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
- Department of Dental Emergency, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Weilong Ye
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Mengyao Zhao
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Dengsheng Xia
- Department of Dental Emergency, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Zhipeng Fan
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
- Beijing Laboratory of Oral Health, Capital Medical University, Beijing, China
- Research Unit of Tooth Development and Regeneration, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
9
|
Calabrese EJ, Pressman P, Hayes AW, Dhawan G, Kapoor R, Agathokleous E, Manes P, Calabrese V. Naringin commonly acts via hormesis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 896:164728. [PMID: 37295528 DOI: 10.1016/j.scitotenv.2023.164728] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/05/2023] [Accepted: 06/05/2023] [Indexed: 06/12/2023]
Abstract
The present paper provides the first integrative assessment of the capacity of naringin and its metabolite, naringenin, to induce hormetic dose responses within a broad range of experimental biomedical models. The findings indicate that these agents commonly induced protective effects that are typically mediated via hormetic mechanisms leading to biphasic dose-response relationships. The maximum protective effects are generally modest, 30-60 % greater than control group values. The range of experimental findings with these agents has been reported for models with various neurodegenerative diseases, nucleus pulpous cells (NPCs) located within intravertebral discs, several types of stem cells (i.e., bone marrow, amniotic fluid, periodontal, endothelial) as well as cardiac cells. These agents also were effective within preconditioning protocols protecting against environmental toxins such as ultraviolet radiation (UV), cadmium, and paraquat. The mechanism(s) by which the hormetic responses mediates these biphasic dose responses is complex but commonly involves the activation of nuclear factor erythroid 2-related factor (Nrf2), an increasingly recognized regulator of cellular resistance to oxidants. Nrf2 appears to play a role in controlling the basal and induced expression of an array of antioxidant response element-dependent genes to regulate oxidant exposure's physiological and pathophysiological outcomes. Hence its importance in the assessment of toxicologic and adaptive potential is likely to be significant.
Collapse
Affiliation(s)
- Edward J Calabrese
- Department of Environmental Health Sciences, Morrill I, N344, University of Massachusetts, Amherst, MA 01003, USA.
| | - Peter Pressman
- University of Maine, 5728 Fernald Hall, Room 201, Orono, ME 04469, USA.
| | - A Wallace Hayes
- Center for Environmental Occupational Risk Analysis and Management, College of Public Health, University of South Florida, Tampa, FL, USA
| | | | - Rachna Kapoor
- Saint Francis Hospital and Medical Center, Hartford, CT, USA
| | - Evgenios Agathokleous
- Department of Ecology, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China.
| | | | - Vittorio Calabrese
- Department of Biomedical and Biotechnological Sciences, School of Medicine University of Catania, Via Santa Sofia 97, Catania 95123, Italy.
| |
Collapse
|
10
|
Wang J, Zhan H, Wang M, Song H, Sun J, Zhao G. Sonic hedgehog signaling promotes angiogenesis of endothelial progenitor cells to improve pressure ulcers healing by PI3K/AKT/eNOS signaling. Aging (Albany NY) 2023; 15:10540-10548. [PMID: 37815888 PMCID: PMC10599757 DOI: 10.18632/aging.205093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 08/21/2023] [Indexed: 10/12/2023]
Abstract
BACKGROUND Pressure ulcer is a severe disease in the paralyzed and aging populations. Endothelial progenitor cells (EPCs) are able to regulate ulcer healing by modulating angiogenesis, but the molecular mechanism is still obscure. Sonic hedgehog (SHH) signaling contributes to angiogenesis in various diseases and has been identified to modulate EPCs function. Here, we aimed to explore the significance of SHH signaling in EPCs function during pressure ulcers. METHODS The EPCs were isolated and characterized by the expression of DiI-acLDL and bind fluorescein iso-thiocyanate UEA-1. Cell proliferation was detected by cell counting kit 8 (CCK-8). The DiI-acLDL and bind fluorescein iso-thiocyanate UEA-1 were analyzed by immunofluorescent analysis. The angiogenesis of EPCs was analyzed by tube formation assay. The pressure ulcers rat model was constructed, the wound injury was analyzed by H&E staining and angiogenesis was analyzed by the accumulation of CD31 based on immunofluorescent analysis. RESULTS The expression of patched-1 and Gli-1 was enhanced by SHH activator SAG but reduced by SHH inhibitor cyclopamine in the EPCsThe PI3K, Akt, eNOS expression and the Akt phosphorylation were induced by SAG, while the treatment of cyclopamine presented a reversed result. The proliferation and migration of EPCs were enhanced by SAG but repressed by cyclopamine or PI3K/AKT/eNOS signaling inhibitor Y294002, in which the co-treatment of Y294002 could reverse the effect of SAG. CONCLUSIONS Thus, we found that SHH signaling activated angiogenesis properties of EPCs to improve pressure ulcers healing by PI3K/AKT/eNOS signaling. SHH signaling may serve as the potential target for attenuating pressure ulcers.
Collapse
Affiliation(s)
- Jianhua Wang
- Department of Orthopaedics, Jinan Central Hospital, Jinan, Shandong Province, China
| | - Hongyan Zhan
- Department of B-Ultrasound, Fourth People’s Hospital of Jinan, Jinan, Shandong Province, China
| | - Mingming Wang
- Department of Orthopaedics, Tengzhou Central People’s Hospital, Tengzhou, Shandong Province, China
| | - Hua Song
- Department of Orthopaedics, Tengzhou Central People’s Hospital, Tengzhou, Shandong Province, China
| | - Jianhua Sun
- Department of Orthopaedics, Tengzhou Central People’s Hospital, Tengzhou, Shandong Province, China
| | - Gang Zhao
- Department of Orthopaedics, Jinan Central Hospital, Jinan, Shandong Province, China
| |
Collapse
|
11
|
You J, Liu M, Li M, Zhai S, Quni S, Zhang L, Liu X, Jia K, Zhang Y, Zhou Y. The Role of HIF-1α in Bone Regeneration: A New Direction and Challenge in Bone Tissue Engineering. Int J Mol Sci 2023; 24:ijms24098029. [PMID: 37175732 PMCID: PMC10179302 DOI: 10.3390/ijms24098029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/22/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
The process of repairing significant bone defects requires the recruitment of a considerable number of cells for osteogenesis-related activities, which implies the consumption of a substantial amount of oxygen and nutrients. Therefore, the limited supply of nutrients and oxygen at the defect site is a vital constraint that affects the regenerative effect, which is closely related to the degree of a well-established vascular network. Hypoxia-inducible factor (HIF-1α), which is an essential transcription factor activated in hypoxic environments, plays a vital role in vascular network construction. HIF-1α, which plays a central role in regulating cartilage and bone formation, induces vascular invasion and differentiation of osteoprogenitor cells to promote and maintain extracellular matrix production by mediating the adaptive response of cells to changes in oxygen levels. However, the application of HIF-1α in bone tissue engineering is still controversial. As such, clarifying the function of HIF-1α in regulating the bone regeneration process is one of the urgent issues that need to be addressed. This review provides insight into the mechanisms of HIF-1α action in bone regeneration and related recent advances. It also describes current strategies for applying hypoxia induction and hypoxia mimicry in bone tissue engineering, providing theoretical support for the use of HIF-1α in establishing a novel and feasible bone repair strategy in clinical settings.
Collapse
Affiliation(s)
- Jiaqian You
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, China
- School of Stomatology, Jilin University, Changchun 130021, China
| | - Manxuan Liu
- School of Stomatology, Jilin University, Changchun 130021, China
| | - Minghui Li
- School of Stomatology, Jilin University, Changchun 130021, China
| | - Shaobo Zhai
- School of Stomatology, Jilin University, Changchun 130021, China
| | - Sezhen Quni
- School of Stomatology, Jilin University, Changchun 130021, China
| | - Lu Zhang
- School of Stomatology, Jilin University, Changchun 130021, China
| | - Xiuyu Liu
- School of Stomatology, Jilin University, Changchun 130021, China
| | - Kewen Jia
- School of Stomatology, Jilin University, Changchun 130021, China
| | - Yidi Zhang
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, China
- School of Stomatology, Jilin University, Changchun 130021, China
| | - Yanmin Zhou
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, China
- School of Stomatology, Jilin University, Changchun 130021, China
| |
Collapse
|
12
|
Sun T, Xu W, Wang J, Wang T, Wang S, Liu K, Liu J. Saxagliptin alleviates erectile dysfunction through increasing stromal cell-derived factor-1 in diabetes mellitus. Andrology 2023; 11:295-306. [PMID: 36113503 DOI: 10.1111/andr.13296] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 08/29/2022] [Accepted: 09/13/2022] [Indexed: 01/18/2023]
Abstract
BACKGROUND Diabetes mellitus-induced erectile dysfunction (DMED) is one of the complications of diabetes and has a poor response to phosphodiesterase type 5 inhibitor, the first-line treatment for ED. Saxagliptin (Sax), a dipeptidyl peptidase-4 inhibitor (DPP-4i), has been officially used in the treatment of type 2 diabetes. Stromal cell-derived factor-1 (SDF-1) is one of the important substrates of DPP-4, and has been proven to be beneficial for several DM complications. However, it is unknown whether Sax contributes to the management of DMED. OBJECTIVES To explore the effect and possible underlying mechanisms of Sax in the treatment of DMED. METHODS The model of DM was established by intraperitoneal injection of streptozotocin. All rats were divided into three groups (n = 8 per group): control group, DMED group and DMED+Sax group. In cellular experiments, the corpus cavernosum smooth muscle cells (CCSMCs) were exposed to high glucose (HG), and treated with Sax and AMD3100 (SDF-1 receptor inhibitor). The penile tissue and CCSMCs were harvested for detection. RESULTS We found that erectile function was impaired in DMED rats compared with the control group, which was partially relieved by Sax. Decreased expression of DPP-4 and increased level of SDF-1 were also observed in DMED+Sax group, together with elevation of PI3K/AKT pathway and inhibition of endothelial dysfunction, oxidative stress and apoptosis in corpus cavernosum. Moreover, Sax could also regulate oxidative stress and apoptosis in CCSMCs under HG condition, which was blocked in part by AMD3100. CONCLUSION Sax could alleviate DMED through increasing SDF-1 and PI3K/AKT pathway, in company with moderation of endothelial dysfunction, oxidative stress and apoptosis. Our findings indicated that DPP-4 is may be beneficial to the management of DMED.
Collapse
Affiliation(s)
- Taotao Sun
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenchao Xu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiaxin Wang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tao Wang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shaogang Wang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kang Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jihong Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
13
|
Wang Y, Li X, Lv H, Sun L, Liu B, Zhang X, Xu X. Therapeutic potential of naringin in improving the survival rate of skin flap: A review. Front Pharmacol 2023; 14:1128147. [PMID: 36937856 PMCID: PMC10017745 DOI: 10.3389/fphar.2023.1128147] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 02/20/2023] [Indexed: 03/06/2023] Open
Abstract
Naringin is the main component of Drynaria. Modern pharmacological studies have shown that naringin has a wide range of pharmacological activities, including antioxidant, anti-inflammatory, anti-apoptotic, anti-ulcer, and anti-osteoporosis effects. Its therapeutic effects have been observed in various clinical models, such as atherosclerosis, cardiovascular diseases, diabetes, neurodegenerative diseases, and rheumatic diseases. This review investigates the pharmacological effects of naringin and the associated mechanisms in improving flap survival. This review will also provide a reference for future rational application of naringin, especially in research to improve flap survival.
Collapse
Affiliation(s)
- Yincang Wang
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xiaodong Li
- The Third Department of Orthopedics and Traumatology, The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Hang Lv
- The Third Department of Orthopedics and Traumatology, The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Lin Sun
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Bo Liu
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xiaofeng Zhang
- Teaching and Research Section of Orthopedics and Traumatology, Heilongjiang University of Chinese Medicine, Harbin, China
- *Correspondence: Xiaofeng Zhang, ; Xilin Xu,
| | - Xilin Xu
- The Third Department of Orthopedics and Traumatology, The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
- *Correspondence: Xiaofeng Zhang, ; Xilin Xu,
| |
Collapse
|
14
|
Li X, Wei Z, Chen Y. CXCL12 regulates bone marrow–derived endothelial progenitor cells to promote aortic aneurysm recovery. Tissue Cell 2022; 77:101810. [DOI: 10.1016/j.tice.2022.101810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 04/13/2022] [Accepted: 04/24/2022] [Indexed: 11/28/2022]
|
15
|
Zhao R, Liu J, Li Z, Zhang W, Wang F, Zhang B. Recent Advances in CXCL12/CXCR4 Antagonists and Nano-Based Drug Delivery Systems for Cancer Therapy. Pharmaceutics 2022; 14:pharmaceutics14081541. [PMID: 35893797 PMCID: PMC9332179 DOI: 10.3390/pharmaceutics14081541] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/15/2022] [Accepted: 07/22/2022] [Indexed: 01/27/2023] Open
Abstract
Chemokines can induce chemotactic cell migration by interacting with G protein-coupled receptors to play a significant regulatory role in the development of cancer. CXC chemokine-12 (CXCL12) can specifically bind to CXC chemokine receptor 4 (CXCR4) and is closely associated with the progression of cancer via multiple signaling pathways. Over recent years, many CXCR4 antagonists have been tested in clinical trials; however, Plerixafor (AMD3100) is the only drug that has been approved for marketing thus far. In this review, we first summarize the mechanisms that mediate the physiological effects of the CXCL12/CXCR4 axis. Then, we describe the use of CXCL12/CXCR4 antagonists. Finally, we discuss the use of nano-based drug delivery systems that exert action on the CXCL12/CXCR4 biological axis.
Collapse
Affiliation(s)
| | | | | | | | - Feng Wang
- Correspondence: (F.W.); (B.Z.); Tel.: +86-536-8462490 (B.Z.)
| | - Bo Zhang
- Correspondence: (F.W.); (B.Z.); Tel.: +86-536-8462490 (B.Z.)
| |
Collapse
|
16
|
Yang H, He C, Bi Y, Zhu X, Deng D, Ran T, Ji X. Synergistic effect of VEGF and SDF-1α in endothelial progenitor cells and vascular smooth muscle cells. Front Pharmacol 2022; 13:914347. [PMID: 35910392 PMCID: PMC9335858 DOI: 10.3389/fphar.2022.914347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/27/2022] [Indexed: 11/13/2022] Open
Abstract
Vascular endothelial growth factor (VEGF) is a potent agonist of angiogenesis that induces proliferation and differentiation of endothelial progenitor cells (EPCs) after vascular injury. Previous studies have suggested that stromal cell-derived factor 1-alpha (SDF-1α) and VEGF have a synergistic effect on vascular stenosis. The aim of the present study was to investigate whether VEGF and SDF-1α act synergistically in EPCs and vascular smooth muscle cells (VSMCs). In this study, EPCs were isolated from rat bone marrow and their morphology and function were studied. Subsequently, VEGF was delivered into EPCs using an adenoviral vector. Tube formation, migration, proliferation, and apoptosis of VEGF-overexpressing EPCs was analyzed. Then, EPCs were co-cultured with VSMCs in the presence or absence of SDF-1α, the migration, proliferation, apoptosis, and differentiation capacity of EPCs and VSMCs were analyzed respectively. The isolated EPCs showed typical morphological features, phagocytic capacity, and expressed surface proteins. While stable expression of VEGF remarkably enhanced tube formation, migration, and proliferation capacity of EPCs, apoptosis was decreased. Moreover, the proliferation, migration, and differentiation capacity of EPCs in the co-cultured model was enhanced in the presence of SDF-1α, and apoptosis was decreased. However, these effects were reversed in VSMCs. Therefore, our results showed that VEGF and SDF-1α synergistically increased the migration, differentiation, and proliferation capabilities of EPCs, but not VSMCs. This study suggests a promising strategy to prevent vascular stenosis.
Collapse
Affiliation(s)
- Haiyan Yang
- Department of Ultrasound, Chongqing General Hospital, Chongqing, China
- Department of Macromolecular Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, China
| | - Cancan He
- Department of Pediatrics, The Affiliated Hospital of Zunyi Medical University, Guizhou Children’s Hospital, Zunyi, GZ, China
| | - Yang Bi
- Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical and Research Center of Child Health and Disorders, Chongqing Engineering Research Center of Stem Cell Therapy, Department of Ultrasound, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Xu Zhu
- Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical and Research Center of Child Health and Disorders, Chongqing Engineering Research Center of Stem Cell Therapy, Department of Ultrasound, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Dan Deng
- School of Medical Imaging, Changsha Medical University, Changsha, China
| | - Tingting Ran
- Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical and Research Center of Child Health and Disorders, Chongqing Engineering Research Center of Stem Cell Therapy, Department of Ultrasound, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaojuan Ji
- Department of Ultrasound, Chongqing General Hospital, Chongqing, China
- *Correspondence: Xiaojuan Ji,
| |
Collapse
|
17
|
Synovitis Ointment Improved Knee Osteoarthritis by Suppressing SDF-1/CXCR4 Signaling Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:7719301. [PMID: 35815270 PMCID: PMC9270124 DOI: 10.1155/2022/7719301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/06/2022] [Accepted: 06/01/2022] [Indexed: 11/24/2022]
Abstract
Objective Knee osteoarthritis (KOA) remains a challenge for clinicians worldwide and lacks major advancements in treatment. In this study, we investigated the mechanism of synovitis ointment interference on KOA. Methods SD rats were used to establish KOA models and were randomly divided into five groups: the control group, the KOA group, the KOA + synovitis ointment group, the KOA + Western medicine group, and the KOA + Chinese medicine group. Detection of pathological injury of the joint was observed through HE staining. Enzyme-linked immunosorbent assay (ELISA) was used to measure the expression of SDF-1, CXCR4, MMP-9, and MMP-13. Effects of synovitis ointment on bone cell fibrosis were detected through Masson staining, and the relative mRNA expression of PLOD2, COL1A1, TIMP1, and TGF-β was observed using the real-time quantitative (RT-PCR) method. Results Mankin's score and the knee diameters showed that the KOA model has been successfully established; compared with the OA group, the synovitis ointment group improved the pathological injury of the knee joint. Compared with the KOA group, the synovitis ointment group, the KOA + Western medicine group, and the KOA + Chinese medicine group significantly decreased the expression of SDF-1, CXCR4, MMP-9, and MMP-13. Synovitis ointment reduced the relative content of bone cell fiber compared to that in the KOA group. While, the relative mRNA expression of PLOD2, COL1A1, TIMP1, and TGF-β was significantly decreased in the synovitis ointment group. Conclusion Synovitis ointment inhibited the inflammation and bone cell fibrosis of KOA, and the mechanism was related to the SDF-1/CXCR4 singling pathway.
Collapse
|
18
|
Li S, Li Y, Jiang Z, Hu C, Gao Y, Zhou Q. Efficacy of total flavonoids of Rhizoma drynariae on the blood vessels and the bone graft in the induced membrane. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 99:153995. [PMID: 35278899 DOI: 10.1016/j.phymed.2022.153995] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 02/11/2022] [Accepted: 02/15/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Total flavonoids of Rhizoma drynariae (TFRD), a Chinese medicine, is widely used in the treatment of orthopedic diseases. However, there are few basic and clinical studies on the effect of TFRD on induced membrane technique (Masquelet technique). PURPOSE This trial is to explore effects of TFRD on vascularization of the induced membrane, and mineralization of the bone graft in rats with femoral bone defects. STUDY DESIGN AND METHODS Forty-eight Sprague-Dawley rats were randomly divided into high dose group (H-TFRD), medium dose group (M-TFRD), low dose group (L-TFRD) and control group (control). The segmental bone defects were established with 12 rats in per group. The polymethyl methacrylate (PMMA) spacer was implanted into the femoral bone defect of rats in the first-stage surgery. About 4 weeks after first-stage surgery, induced membranes of 6 rats in each group were selected. The blood vessels and angiogenesis-related factors in the induced membrane were analyzed by hematoxylin-eosin (HE) and masson staining, western blot, qPCR and immunohistostaining. The remaining rats in per group underwent second-stage surgery (bone grafting). Twelve weeks after the bone grafting, the bone tissues was examined by X-ray, micro-computed tomography (Micro-CT), HE staining and enzyme-linked immunosorbent assay (ELISA) to evaluate the growth of the bone graft. Meanwhile, the TFRD-containing serum was collected from rats to culture osteoblasts in vitro. Cell Counting Kit-8 (CCK-8) method, Alizarin Red S (ARS) staining, western blot and immunofluorescence were used to detect effects of TFRD on the osteoblasts' proliferation and BMP-SMAD signaling pathway. RESULTS Compared with the L-TFRD and control groups, the number of blood vessels and the expression of angiogenesis-related factors (VEGF, TGF-β1, BMP-2, PDGF-BB and CD31) were higher in the H-TFRD and M-TFRD groups. The Lane-Sandhu X-ray score, bone mass and growth rate of the bone graft in the H-TFRD and M-TFRD groups were significantly better than those in the L-TFRD and control groups. In addition, medium and high doses of TFRD significantly increased the expression of BMP-SMAD pathway proteins (BMP-2, SMAD1, SMAD4, SMAD5 and RUNX2) in rat serum and bone graft. In vitro, after osteoblasts were intervened with TFRD-containing serum from the H-TFRD and M-TFRD groups, the cell viability, the number of mineralized nodules and the phosphorylation of BMP-SMAD pathway proteins were markedly increased. CONCLUSION TFRD could promote the formation of blood vessels and the expression of angiogenesis-related factors during the formation of the induced membrane. During the growing period of bone graft, it could facilitate the growth and mineralization of bone graft in a dose-dependent manner, which is partly related to the activation and phosphorylation of BMP-SMAD signaling pathway.
Collapse
Affiliation(s)
- Shuyuan Li
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yue Li
- First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zexin Jiang
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Cheng Hu
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ya Gao
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qishi Zhou
- First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
19
|
Nambiar J, Jana S, Nandi SK. Strategies for Enhancing Vascularization of Biomaterial-Based Scaffold in Bone Regeneration. CHEM REC 2022; 22:e202200008. [PMID: 35352873 DOI: 10.1002/tcr.202200008] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/12/2022] [Indexed: 12/29/2022]
Abstract
Despite the recent advances in reconstructive orthopedics; fracture union is a challenge to bone regeneration. Concurrent angiogenesis is a complex process governed by events, delicately entwined with osteogenesis. However, poorly perfused scaffolds have lower success rates; necessitating the need for a better vascular component, which is important for the delivery of nutrients, oxygen, waste elimination, recruitment of cells for optimal bone repair. This review highlights the latest strategies to promote biomaterial-based scaffold vascularization by incorporation of cells, growth factors, inorganic ions, etc. into natural or synthetic polymers, ceramic materials, or composites of organic and inorganic compounds. Furthermore, it emphasizes structural modifications, biophysical stimuli, and natural molecules to fabricate scaffolds aiding the genesis of dense vascularization following their implantation to manifest a compatible regenerative microenvironment without graft rejection.
Collapse
Affiliation(s)
- Jasna Nambiar
- Department of Veterinary Surgery and Radiology, West Bengal University of Animal & Fishery Sciences, Kolkata, 700037, India
| | - Sonali Jana
- Department of Veterinary Physiology, West Bengal University of Animal & Fishery Sciences, Kolkata, 700037, India
| | - Samit Kumar Nandi
- Department of Veterinary Surgery and Radiology, West Bengal University of Animal & Fishery Sciences, Kolkata, 700037, India
| |
Collapse
|
20
|
Liu F, Chen GD, Fan LK. Knockdown of PDX1 enhances the osteogenic differentiation of ADSCs partly via activation of the PI3K/Akt signaling pathway. J Orthop Surg Res 2022; 17:107. [PMID: 35183219 PMCID: PMC8858563 DOI: 10.1186/s13018-021-02825-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 11/01/2021] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Osteoporosis (OP) is a systemic bone disease manifested as low bone mass, destruction of bone microstructure, increased bone fragility and fracture risk. The purpose of this study was to explore the role and mechanism of PDX1 for osteogenic differentiation of adipose derived stem cells (ADSCs).
Methods
GSE37329 dataset was retrieved from NCBI Gene Expression Omnibus (GEO) database and performed bioinformatic analyses. ADSCs were incubated with normal medium, osteogenic induction medium (OIM) and OIM+si-PDX1. Then, alkaline phosphatase (ALP) staining and Alizarin Red Staining (ARS) were performed to assess the role of PDX1 for osteogenesis of ADSCs. PI3K inhibitor, LY294002 was then added to further explore the mechanism of PDX1 for osteogenic differentiation of ADSCs. Western blot assay was used to assess the osteogenic-related markers. Graphpad software was used to perform statistically analysis.
Results
A total of 285 DEGs were obtained from analysis of the dataset GSE37329, of which 145 were upregulated and 140 were downregulated genes. These differentially expressed genes mainly enriched in cell differentiation and PI3K/Akt signaling pathway. Moreover, PDX1 was decreased in osteogenic induced ADSCs. Knockdown of PDX1 significantly increased osteogenic differentiation capacity and p-PI3K and p-Akt protein levels. Administration with LY294002 could partially reversed the promotion effects of si-PDX1.
Conclusion
In conclusion, knockdown of PDX1 promotes osteogenic differentiation of ADSCs through the PI3K/Akt signaling pathway.
Collapse
|
21
|
Guo W, Yang XG, Shi YL, Wang H. The effects and mechanism of paeoniflorin in promoting osteogenic differentiation of MC3T3-E1. J Orthop Surg Res 2022; 17:90. [PMID: 35164817 PMCID: PMC8842535 DOI: 10.1186/s13018-022-02965-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 01/25/2022] [Indexed: 01/19/2023] Open
Abstract
Background The incidence of osteoporosis and osteoporotic fractures is increasing every year. Traditional Chinese Medicine (TCM) can shed new light on the treatment of osteoporosis. This study aimed to explore the role and mechanism of paeoniflorin in promoting osteogenic differentiation of an osteoblast precursor cell line (MC3T3-E1). Methods MC3T3-E1 cells were cultured in osteogenic induction medium (OIM) and OIM combined with different concentrations of paeoniflorin. The optimal dose of paeoniflorin was assessed by a cell counting kit-8 (CCK-8) assay. Then, alkaline phosphatase (ALP) and Alizarin Red S (ARS) staining were performed to assess the osteogenic capacity of paeoniflorin. The transcription of osteogenic genes and the expression of osteogenic proteins were assessed by RT-PCR and Western blotting, respectively. The transcription of Wnt/β-catenin signaling pathway genes and proteins was assessed by RT-PCR and Western blotting, respectively. Finally, Dickkopf-1 (DKK-1), a Wnt/β-catenin signaling pathway inhibitor, was used to identify whether the Wnt/β-catenin signaling pathway was involved in the osteogenic differentiation of paeoniflorin. Osteoclastogenesis in RAW264.7 cells was identified by tartrate-resistant acid phosphatase (TRAP) staining. Results At concentrations ranging from 0.1 to 100 μM, paeoniflorin was not cytotoxic to MC3T3-E1 cells. Paeoniflorin significantly increased the osteogenic differentiation of MC3T3-E1 cells in a dose-dependent manner. Moreover, paeoniflorin significantly increased osteogenic differentiation gene and protein expression. Through bioinformatic analysis, paeoniflorin-affected genes were found to be involved in different signaling pathways, such as the Wnt/β-catenin signaling pathway. Paeoniflorin enhanced β-catenin and CyclinD1 expression compared with that of the control groups. DKK-1 partially reversed the promoting effects of paeoniflorin in promoting osteogenic differentiation of MC3T3-E1 cells. Moreover, paeoniflorin inhibited the osteoclastogenesis of RAW264.7 cells. Conclusion Paeoniflorin promotes osteogenic differentiation in MC3T3-E1 cells by regulating the Wnt/β-catenin pathway. Paeoniflorin is a potential therapeutic agent for the treatment of osteoporosis.
Collapse
|
22
|
Zhao ZH, Ma XL, Ma JX, Kang JY, Zhang Y, Guo Y. Sustained release of naringin from silk-fibroin-nanohydroxyapatite scaffold for the enhancement of bone regeneration. Mater Today Bio 2022; 13:100206. [PMID: 35128373 PMCID: PMC8808263 DOI: 10.1016/j.mtbio.2022.100206] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 12/14/2022] Open
Abstract
Bone defects are a common challenge in the clinical setting. Bone tissue engineering (BTE) is an effective treatment for the clinical problem of large bone defects. In this study, we fabricated silk fibroin (SF)/hydroxyapatite (HAp) scaffolds inlaid with naringin poly lactic-co-glycolic acid (PLGA) microspheres, investigating the feasibility of their application in BTE. Naringin PLGA microspheres were manufactured and adhered to the SF/HAp scaffold. Bone mesenchymal stem cells (BMSCs) were inoculated onto the SF/HAp scaffold containing naringin PLGA microsphere to examine the biocompatibility of the SF/HAp scaffolds. A rabbit femoral distal bone defect model was used to evaluate the in vivo function of the SF/HAp scaffolds containing naringin-loaded PLGA microspheres. The current study demonstrated that SF/HAp scaffolds containing naringin-loaded PLGA microspheres show promise as osteo-modulatory biomaterials for bone regeneration.
Collapse
Key Words
- ALP, Alkaline phosphatase activity
- ANOVA, one-way analysis of variance
- BMSCs, Bone mesenchymal stem cells
- BP, biological process
- BTE, Bone tissue engineering
- Bone defect
- CC, cellular component
- CCK-8, Cell count kit-8
- DAVID, database for annotation, visualization, and integrated discovery
- GO, Gene ontology
- HAp, hydroxyapatite
- HUVEC, human umbilical endothelial cells
- Hydroxyapatite
- KEGG, Kyoto Encyclopedia of Genes and Genomes
- MF, molecular function
- Microsphere
- Naringin
- PLGA
- PLGA, poly lactic-co-glycolic acid
- PVA, Polyvinyl alcohol
- RNA-Seq, RNA sequencing
- RT-PCR, real-time quantitative polymerase chain reaction
- SEM, scanning electron microscopy
- SF, silk fibroin
- Silk
Collapse
Affiliation(s)
- Zhi-hu Zhao
- Department of Orthopaedics, Tianjin Hospital, No. 406, Jiefangnan Road, Hexi District, Tianjin, 300000, China
| | - Xin-long Ma
- Department of Orthopaedics, Tianjin Hospital, No. 406, Jiefangnan Road, Hexi District, Tianjin, 300000, China
| | - Jian-xiong Ma
- Tianjin Institute of Orthopedics in Traditional Chinese and Western Medicine, No. 122, Munan Road, Tianjin, 300050, China
| | - Jia-yu Kang
- Department of Orthopedics, Jinhua Municipal Central Hospital, Jinhua, Zhejiang Province, China
| | - Yang Zhang
- Tianjin Institute of Orthopedics in Traditional Chinese and Western Medicine, No. 122, Munan Road, Tianjin, 300050, China
| | - Yue Guo
- Tianjin Institute of Orthopedics in Traditional Chinese and Western Medicine, No. 122, Munan Road, Tianjin, 300050, China
| |
Collapse
|
23
|
Liang F, Peng L, Ma YG, Hu W, Zhang WB, Deng M, Li YM. Bioinformatics analysis and experimental validation of differentially expressed genes in mouse articular chondrocytes treated with IL-1β using microarray data. Exp Ther Med 2022; 23:6. [PMID: 34815758 PMCID: PMC8593859 DOI: 10.3892/etm.2021.10928] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 02/02/2021] [Indexed: 12/14/2022] Open
Abstract
Osteoarthritis (OA) is the most prevalent chronic degenerative disease that affects the health of the elderly. The present study aimed to identify significant genes involved in OA via bioinformatics analysis. A gene expression dataset (GSE104793) was downloaded from the Gene Expression Omnibus. Bioinformatics analysis was then performed in order to identify differentially expressed genes (DEGs) between untreated chondrocytes and chondrocytes cultured with interleukin-1β (IL-1β) for 24 h. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed using Metascape. A protein-protein interaction network of DEGs was constructed using the Search Tool for the Retrieval of Interacting Genes. Gene set enrichment analysis (GSEA) was performed using GSEA software. Furthermore, chondrocytes were extracted and treated with IL-1β (10 ng/ml) for 24 h, and reverse-transcription quantitative PCR was used to confirm differential expression of hub genes. Patient samples were also collected to verify the bioinformatic analysis results. Based on the cut-off criteria used for determination of the DEGs, a total of 844 DEGs, including 498 upregulated and 346 downregulated DEGs, were identified. The DEGs were mainly enriched in the GO terms and KEGG pathways 'inflammatory response', 'negative regulation of cell proliferation', 'ossification', 'taxis', 'blood vessel morphogenesis', 'extracellular structure organization', 'mitotic cell cycle process' and 'TNF signaling pathway'. The majority of the PCR results, namely the differential expression of kininogen 2, complement C3, cyclin B1, cell division cycle 20, cyclin A2, 1-phosphatidylinositol 4-kinase, BUB1 mitotic checkpoint serine/threonine kinase, kinesin family member 11, cyclin B2 and BUB1 mitotic checkpoint serine/threonine kinase B were consistent with the bioinformatics results. Collectively, the present observations provided a regulation network of IL-1β-stimulated chondrocytes, which may provide potential targets of OA therapy.
Collapse
Affiliation(s)
- Fan Liang
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Le Peng
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Yong-Gang Ma
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Wei Hu
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Wei-Bing Zhang
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Ming Deng
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Ya-Ming Li
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
24
|
Murad HAS, Rafeeq MM, Alqurashi TMA. Role and implications of the CXCL12/CXCR4/CXCR7 axis in atherosclerosis: still a debate. Ann Med 2021; 53:1598-1612. [PMID: 34494495 PMCID: PMC8439212 DOI: 10.1080/07853890.2021.1974084] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 08/23/2021] [Indexed: 01/20/2023] Open
Abstract
Atherosclerosis is one of the leading causes of mortality and morbidity worldwide. Chemokines and their receptors are implicated in the pathogenesis of atherosclerosis. CXCL12 is a member of the chemokine family exerting a myriad role in atherosclerosis through its classical CXCR4 and atypical ACKR3 (CXCR7) receptors. The modulatory and regulatory functional spectrum of CXCL12/CXCR4/ACKR3 axis in atherosclerosis spans from proatherogenic, prothrombotic and proinflammatory to atheroprotective, plaque stabilizer and dyslipidemia rectifier. This diverse continuum is executed in a wide range of biological units including endothelial cells (ECs), progenitor cells, macrophages, monocytes, platelets, lymphocytes, neutrophils and vascular smooth muscle cells (VSMCs) through complex heterogeneous and homogenous coupling of CXCR4 and ACKR3 receptors, employing different downstream signalling pathways, which often cross-talk among themselves and with other signalling interactomes. Hence, a better understanding of this structural and functional heterogeneity and complex phenomenon involving CXCL12/CXCR4/ACKR3 axis in atherosclerosis would not only help in formulation of novel therapeutics, but also in elucidation of the CXCL12 ligand and its receptors, as possible diagnostic and prognostic biomarkers.Key messagesThe role of CXCL12 per se is proatherogenic in atherosclerosis development and progression.The CXCL12 receptors, CXCR4 and ACKR3 perform both proatherogenic and athero-protective functions in various cell typesDue to functional heterogeneity and cross talk of CXCR4 and ACKR3 at receptor level and downstream pathways, regional boosting with specific temporal and spatial modulators of CXCL12, CXCR4 and ACKR3 need to be explored.
Collapse
Affiliation(s)
- Hussam A. S. Murad
- Department of Pharmacology, Faculty of Medicine, Rabigh, King Abdulaziz University (KAU), Jeddah, Saudi Arabia
| | - Misbahuddin M. Rafeeq
- Department of Pharmacology, Faculty of Medicine, Rabigh, King Abdulaziz University (KAU), Jeddah, Saudi Arabia
| | - Thamer M. A. Alqurashi
- Department of Pharmacology, Faculty of Medicine, Rabigh, King Abdulaziz University (KAU), Jeddah, Saudi Arabia
| |
Collapse
|
25
|
Zhou YH, Xie Q. Total glycosides from Eucommia ulmoides seed promoted osteogenic differentiation of adipose-derived mesenchymal stem cells and bone formation in ovariectomized rats through regulating Notch signaling pathway. J Orthop Surg Res 2021; 16:660. [PMID: 34742334 PMCID: PMC8572498 DOI: 10.1186/s13018-021-02797-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 10/13/2021] [Indexed: 12/27/2022] Open
Abstract
Background Osteoporosis (OP) is a well-known chronic degenerative disease, with impaired mesenchymal stem cells (MSCs) function and suppressed osteogenic differentiation. Total glycosides from Eucommia ulmoides seed (TGEUS) was a Chinese medicine and have rich pharmacological effects. This study was designed to explore the mechanism of TGEUS in promoting osteogenic differentiation and bone formation in ovariectomized (OVX) rats. Methods Adipose‐derived mesenchymal stem cells (ADSCs) were isolated and treated with different concentration of TGEUS. Cell viability was assessed using cell counting kit-8 (CCK-8) assay. Osteogenic capacity was identified by ALP staining and ARS staining. Moreover, RNA sequencing between control and TGEUS treated ADSCs were further performed to reveal the mechanism of TGEUS in promoting osteogenic differentiation. The expression of Jag1, Lfng and Hey1 were measured using quantitative real-time polymerase chain reaction (qRTPCR). Osteogenic markers were further assessed by western blot. DAPT and NICD were further used to identify whether Notch signaling pathway involved into TGEUS promoting osteogenic differentiation of ADSCs. Ovariectomy-induced bone loss rats model was established and divided into three groups: sham, OVX and OVX + TGEUS groups. HE staining and immunohistochemical staining were further performed to identify whether TGEUS could promote bone formation. Results TGEUS treatment significantly enhanced the cell viability and ALP activity than control group, the optimal dose of TGEUS was 5 μM. We selected 5 μM TGEUS for further study. TGEUS significantly enhanced ALP activity and calcium deposition than that of control group. Activation of Notch signaling fully blocked TGEUS-induced osteogenic differentiation of ADSCs. Following TGEUS treatment, the trabecular bone of the rats was significantly increased, thickened, and more connected compared to the OVX group. With the treatment of TGEUS, the expression of Osterix (Osx), Osteocalcin (OCN) and RUNX Family Transcription Factor 2 (RUNX2) increased than OVX group. Conclusion TGEUS enhanced osteogenic differentiation of ADSCs and promoted bone formation in ovariectomy-induced bone loss rats. Our study broadened the understanding of TGEUS as a therapeutic target against osteoporosis.
Collapse
Affiliation(s)
- Yu-Hu Zhou
- Department of Orthopedics, Yan'an University Affiliated Hospital, Yan'an, 716000, Shaanxi Province, China
| | - Qiang Xie
- Department of Orthopedics, Tianshui Combine Traditional Chinese and Western Medicine Hospital, No. 26, Weibingbei Road, Maiji District, Tianshui, 741020, Gansu, China.
| |
Collapse
|
26
|
Chen J, Gu S, Song Y, Ji X, Zeng W, Wang X, Wang Y, Feng Q. The impact of cardiomotor rehabilitation on endothelial function in elderly patients with chronic heart failure. BMC Cardiovasc Disord 2021; 21:524. [PMID: 34724901 PMCID: PMC8561974 DOI: 10.1186/s12872-021-02327-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 09/27/2021] [Indexed: 12/19/2022] Open
Abstract
Background To explore the effects of cardiac exercise rehabilitation on peripheral blood endothelial progenitor cells (EPC) in elderly patients with chronic heart failure. Methods 80 elderly patients with chronic heart failure were selected from March 2017 to March 2019 and randomly divided into two groups (N = 40). The control group was treated routinely and walked freely for 30–60 min every day. The patients in the exercise rehabilitation group developed a cardiac exercise rehabilitation plan. Then, cardiac function and peripheral blood B-natriuretic peptide (BNP) levels in the two groups were compared. The cell viability, proliferation, apoptosis, and invasion ability of EPCs were detected. The levels of the PI3K/AKT pathway and eNOS and VEGF were compared. Results There were no significant differences in all indexes between the two groups before treatment (P > 0.05), and both improved significantly after treatment (P < 0.05). After treatment, LVEF and LVFS in the exercise rehabilitation group were significantly higher than those in the control group (P < 0.05), and LVEDD and LVESD were significantly lower than those in the control group (P < 0.05). The BNP level in the exercise rehabilitation group was significantly lower than that in the control group (P < 0.05). The cell viability, proliferation, invasion ability of EPC, and the levels of PI3K, AKT, eNOS, and VEGF mRNA and protein in the exercise rehabilitation group were significantly higher than those in the control group. Apoptosis rate was significantly lower than those in the control group (P < 0.05). Conclusions Visceral exercise rehabilitation can improve cardiac ejection and myocardial function in elderly patients with chronic heart failure, and can promote the vitality, proliferation, and invasion of peripheral blood EPC, and promote the expression of eNOS and VEGF by upregulating the PI3K/AKT pathway to promote angiogenesis and endothelial function. Supplementary Information The online version contains supplementary material available at 10.1186/s12872-021-02327-5.
Collapse
Affiliation(s)
- Juming Chen
- Department of General Practice, The First Affiliated Hospital of Hainan Medical University, Haikou City, 570102, Hainan Province, China
| | - Shenhong Gu
- Department of General Practice, The First Affiliated Hospital of Hainan Medical University, Haikou City, 570102, Hainan Province, China.
| | - Yanling Song
- Department of General Practice, The First Affiliated Hospital of Hainan Medical University, Haikou City, 570102, Hainan Province, China
| | - Xinbo Ji
- Department of General Practice, The First Affiliated Hospital of Hainan Medical University, Haikou City, 570102, Hainan Province, China
| | - Wangyuan Zeng
- Department of General Practice, The First Affiliated Hospital of Hainan Medical University, Haikou City, 570102, Hainan Province, China
| | - Xiaoxi Wang
- Department of General Practice, The First Affiliated Hospital of Hainan Medical University, Haikou City, 570102, Hainan Province, China
| | - Yachun Wang
- Department of General Practice, The First Affiliated Hospital of Hainan Medical University, Haikou City, 570102, Hainan Province, China
| | - Qingfeng Feng
- Graduate School, Hainan Medical University, China Medical University, Haikou City, 571199, Hainan Province, China
| |
Collapse
|
27
|
Lu P, Shen YM, Hua T, Pan T, Chen G, Dai T, Shi KQ. Overexpression of FGF2 delays the progression of osteonecrosis of the femoral head activating the PI3K/Akt signaling pathway. J Orthop Surg Res 2021; 16:613. [PMID: 34663382 PMCID: PMC8522004 DOI: 10.1186/s13018-021-02715-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 09/10/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The purpose of the current study was to explore the role and underlying mechanism of FGF-2 in dexamethasone (DEX)-induced apoptosis in MC3T3-E1 cells. METHODS GSE21727 was downloaded from the Gene Expression Omnibus (GEO) database to identify the differentially expressed genes (DEGs) by the limma/R package. MC3T3-E1 cells were exposed to DEX at different concentrations (0, 10-8, 10-7, 10-6, 10-5 and 10-4 mol/L), and cell viability, flow cytometry and TUNEL assay were used to detect cell proliferation and apoptosis. An FGF-2-pcDNA3 plasmid (oe-FGF-2) was used to overexpress FGF-2, and western blotting was conducted to detect protein expression. RESULTS We found that FGF-2 was downregulated in the DEX-treated group. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses indicated that DEGs were associated with PI3K/Akt signaling pathway. DEX downregulated FGF-2 gene and protein expression, inhibited viability and induced MC3T3-E1 cell apoptosis. Overexpression of FGF-2 reversed DEX-induced apoptosis in MC3T3-E1 cells. FGF-2-mediated anti-apoptosis was impaired by inactivating the PI3K/AKT pathway with LY294002. Moreover, overexpression of FGF2 delayed the progression of DEX-induced osteonecrosis of the femoral head (ONFH) animal model by regulation PI3K/Akt signaling pathway. CONCLUSION In conclusion, FGF-2 is effective at inhibiting DEX-induced MC3T3-E1 cell apoptosis through regulating PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Pei Lu
- Department of Orthopaedics, The Affiliated Wuxi No.2 People's Hospital of Nanjing Medical University, No. 68 Zhongshan Road, Wuxi City, 214000, Jiangsu Province, China
| | - Yi-Min Shen
- Department of Orthopaedics, The Affiliated Wuxi No.2 People's Hospital of Nanjing Medical University, No. 68 Zhongshan Road, Wuxi City, 214000, Jiangsu Province, China
| | - Ting Hua
- Department of Orthopaedics, The Affiliated Wuxi No.2 People's Hospital of Nanjing Medical University, No. 68 Zhongshan Road, Wuxi City, 214000, Jiangsu Province, China
| | - Ting Pan
- Department of Orthopaedics, The Affiliated Wuxi No.2 People's Hospital of Nanjing Medical University, No. 68 Zhongshan Road, Wuxi City, 214000, Jiangsu Province, China
| | - Gang Chen
- Department of Orthopaedics, The Affiliated Wuxi No.2 People's Hospital of Nanjing Medical University, No. 68 Zhongshan Road, Wuxi City, 214000, Jiangsu Province, China
| | - Teng Dai
- Department of Orthopaedics, The Affiliated Wuxi No.2 People's Hospital of Nanjing Medical University, No. 68 Zhongshan Road, Wuxi City, 214000, Jiangsu Province, China
| | - Ke-Qin Shi
- Department of Orthopaedics, The Affiliated Wuxi No.2 People's Hospital of Nanjing Medical University, No. 68 Zhongshan Road, Wuxi City, 214000, Jiangsu Province, China.
| |
Collapse
|
28
|
Jing WB, Ji H, Jiang R, Wang J. Astragaloside positively regulated osteogenic differentiation of pre-osteoblast MC3T3-E1 through PI3K/Akt signaling pathway. J Orthop Surg Res 2021; 16:579. [PMID: 34620219 PMCID: PMC8496022 DOI: 10.1186/s13018-021-02690-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 08/24/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Osteoporosis is a widespread chronic disease characterized by low bone density. There is currently no gold standard treatment for osteoporosis. The aim of this study was to explore the role and mechanism of Astragaloside on osteogenic differentiation of MC3T3-E1 cells. METHODS MC3T3-E1 cells were divided into control and different dose of Astragaloside (10, 20, 40, 50, and 60 μg/ml). Then, ALP and ARS staining were performed to identify the effects of Astragaloside for early and late osteogenic capacity of MC3T3-E1 cells, respectively. Real-time PCR and western blot were performed to assess the ALP, OCN, and OSX expression. PI3K/Akt signaling pathway molecules were then assessed by Western blot. Finally, PI3K inhibitor, LY294002, was implemented to assess the mechanism of Astragaloside in promoting osteogenic differentiation of MC3T3-E1 cells. RESULTS Astragaloside significantly increased the cell viability than the control group. Moreover, Astragaloside enhanced the ALP activity and calcium deposition than the control groups. Compared with the control group, Astragaloside increased the ALP, OCN, and OSX expression in a dose-response manner. Western blot assay further confirmed the real-time PCR results. Astragaloside could significantly increase the p-PI3K and p-Akt expression than the control group. LY294002 partially reversed the promotion effects of Astragaloside on osteogenic differentiation of MC3T3-E1 cells. LY294002 partially reversed the promotion effects of Astragaloside on ALP, OCN, and OSX of MC3T3-E1 cells. CONCLUSION The present study suggested that Astragaloside promoted osteogenic differentiation of MC3T3-E1 cells through regulating PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Wei Bing Jing
- Department of Orthopedics, The People's Hospital of Danyang, Affiliated Danyang Hospital of Nantong University, Danyang, 212300, Jiangsu Province, China
| | - Hongjuan Ji
- Department of Orthopedics, Huai'an Second People's Hospital, The Affiliated Huaian Hospital of Xuzhou Medical University, Huai'an, China
| | - Rui Jiang
- Department of Orthopedics, Lianshui County People's Hospital, 6 Hongri Road, Huai'an, 223400, Jiangsu, P.R. China
| | - Jinlong Wang
- Department of Orthopedics, Hongze District People's Hospital, 102 Dongfeng Road, Hongze District, Huai'an, 223100, Jiangsu Province, China.
| |
Collapse
|
29
|
Li L, Zheng B, Zhang F, Luo X, Li F, Xu T, Zhao H, Shi G, Guo Y, Shi J, Sun J. LINC00370 modulates miR-222-3p-RGS4 axis to protect against osteoporosis progression. Arch Gerontol Geriatr 2021; 97:104505. [PMID: 34450404 DOI: 10.1016/j.archger.2021.104505] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/09/2021] [Accepted: 08/09/2021] [Indexed: 11/18/2022]
Abstract
BACKGROUND We aimed to determine the role of the LINC00370/miR-222-3p/RGS4 axis in modulating the process of adipose-derived stem cell (ADSC) osteogenic differentiation. METHODS We first evaluated the differential expression of LINC00370, miR-222-3p and RGS4 between normal and osteogenically induced ADSCs. Moreover, we transfected ADSCs with LINC00370 siRNA and an miR-222-3p inhibitor to determine the role of LINC00370 in modulating the process of ADSC osteogenic differentiation. Finally, we analyzed the dual-luciferase reporter gene to identify the relationship between LINC00370 and miR-222-3p. We first created osteoporotic rat models by ovariectomy (OVX) and treated with pcDNA-LINC00370. HE and immunohistochemical staining of OCN were performed to assess the changes in bone microarchitecture. RESULTS LINC00370 and RGS4 expression was remarkably upregulated in the osteogenic ADSC group compared with the normal medium group. On the other hand, miR-222-3p expression was remarkably decreased in the osteogenic group compared with the normal medium group. Knockdown of LINC00370 reduced the osteogenic differentiation of ADSCs. Moreover, the inhibitor of miR-222-3p partially reversed the reduction of osteogenic differentiation by LINC00370 knockdown. Knockdown of LINC00370 reduced the expression of p-Akt and p-PI3K. The inhibitor of miR-222-3p partially reversed the reduction of the expression of p-Akt and p-PI3K by LINC00370 knockdown. A dual luciferase reporter assay indicated that LINC00370 can directly bind miR-222-3p. LINC00370 suppressed OP progression in OVX and partially upregulated OCN protein expression. CONCLUSION Collectively, the above results confirm that LINC00370 promotes the process of ADSC osteogenic differentiation via the miR-222-3p/RGS4 axis. Moreover, LINC00370 could protect against OVX-induced OP.
Collapse
Affiliation(s)
- Lintao Li
- Department of Orthopedic Surgery, Jinling Hospital, Nanjing University, Nanjing, China
| | - Bing Zheng
- Department of Spine Surgery, Changzheng Hospital, Second Military Medical University, No.415 Fengyang Road, Shanghai 200001, China
| | - Fan Zhang
- Department of Spine Surgery, Changzheng Hospital, Second Military Medical University, No.415 Fengyang Road, Shanghai 200001, China
| | - Xi Luo
- Department of Spine Surgery, Changzheng Hospital, Second Military Medical University, No.415 Fengyang Road, Shanghai 200001, China
| | - Fudong Li
- Department of Spine Surgery, Changzheng Hospital, Second Military Medical University, No.415 Fengyang Road, Shanghai 200001, China
| | - Tao Xu
- Department of Orthopedic Surgery, No. 906 Hospital of the People's Liberation Army, Zhejiang, China
| | - Hong Zhao
- Department of Orthopedic Surgery, No. 906 Hospital of the People's Liberation Army, Zhejiang, China
| | - Guodong Shi
- Department of Spine Surgery, Changzheng Hospital, Second Military Medical University, No.415 Fengyang Road, Shanghai 200001, China
| | - Yongfei Guo
- Department of Spine Surgery, Changzheng Hospital, Second Military Medical University, No.415 Fengyang Road, Shanghai 200001, China
| | - Jiangang Shi
- Department of Spine Surgery, Changzheng Hospital, Second Military Medical University, No.415 Fengyang Road, Shanghai 200001, China.
| | - Jingchuan Sun
- Department of Spine Surgery, Changzheng Hospital, Second Military Medical University, No.415 Fengyang Road, Shanghai 200001, China.
| |
Collapse
|
30
|
Wu R, Long L, Zhou Q, Su J, Su W, Zhu J. Identification of hub genes in rheumatoid arthritis through an integrated bioinformatics approach. J Orthop Surg Res 2021; 16:458. [PMID: 34271942 PMCID: PMC8283956 DOI: 10.1186/s13018-021-02583-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 06/27/2021] [Indexed: 12/22/2022] Open
Abstract
Background Rheumatoid arthritis (RA) is a common chronic autoimmune disease characterized by inflammation of the synovial membrane. However, the etiology and underlying molecular events of RA are unclear. Here, we applied bioinformatics analysis to identify the key genes involved in RA. Methods GSE77298 was downloaded from the Gene Expression Omnibus (GEO) database. We used the R software screen the differentially expressed genes (DEGs). Gene ontology enrichment analysis and Kyoto Encyclopedia of Genes and Genomes pathway were analyzed by using the DAVID online tool. The STRING database was used to analyze the interaction of differentially encoded proteins. PPI interaction network was divided into subnetworks using MCODE algorithm and was analyzed using Cytoscape. Gene set enrichment analysis (GSEA) was performed to identify relevant biological functions. qRT-PCR analysis was also performed to verify the expression of identified hub DEGs. Results A total of 4062 differentially expressed genes were selected, including 1847 upregulated genes and 2215 downregulated genes. In the biological process, DEGs were mainly concentrated in the fields of muscle filament sliding, muscle contraction, intracellular signal transduction, cardiac muscle contraction, signal transduction, and skeletal muscle tissue development. In the cellular components, DEGs were mainly concentrated in the parts of cytosol, Z disk, membrane, extracellular exosome, mitochondrion, and M band. In molecular functions, DEGs were mainly concentrated in protein binding, structural constituent of muscle, actin binding, and actin filament binding. KEGG pathway analysis shows that DEGs mainly focuses on pathways about lysosome, Wnt/β-catenin signaling pathway, and NF-κB signaling pathway. CXCR3, GNB4, and CXCL16 were identified as the core genes that involved in the progression of RA. By qRT-PCR analysis, we found that CXCR3, GNB4, and CXCL16 were significantly upregulated in RA tissue as compared to healthy controls. Conclusion In conclusion, DEGs and hub genes identified in the present study help us understand the molecular mechanisms underlying the progression of RA, and provide candidate targets for diagnosis and treatment of RA.
Collapse
Affiliation(s)
- Rui Wu
- Department of Rheumatology and Immunology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, 32 West of First Ring Road, Chengdu, Sichuan, 610072, P.R. China.,Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, 610072, China
| | - Li Long
- Department of Rheumatology and Immunology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, 32 West of First Ring Road, Chengdu, Sichuan, 610072, P.R. China.,Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, 610072, China
| | - Qiao Zhou
- Department of Rheumatology and Immunology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, 32 West of First Ring Road, Chengdu, Sichuan, 610072, P.R. China.,Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, 610072, China
| | - Jiang Su
- Department of Rheumatology and Immunology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, 32 West of First Ring Road, Chengdu, Sichuan, 610072, P.R. China.,Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, 610072, China
| | - Wei Su
- Department of Rheumatology and Immunology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, 32 West of First Ring Road, Chengdu, Sichuan, 610072, P.R. China.,Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, 610072, China
| | - Jing Zhu
- Department of Rheumatology and Immunology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, 32 West of First Ring Road, Chengdu, Sichuan, 610072, P.R. China. .,Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, 610072, China.
| |
Collapse
|
31
|
Bone Regeneration Improves with Mesenchymal Stem Cell Derived Extracellular Vesicles (EVs) Combined with Scaffolds: A Systematic Review. BIOLOGY 2021; 10:biology10070579. [PMID: 34202598 PMCID: PMC8301056 DOI: 10.3390/biology10070579] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/16/2021] [Accepted: 06/21/2021] [Indexed: 02/07/2023]
Abstract
Scaffolds associated with mesenchymal stem cell (MSC) derivatives, such as extracellular vesicles (EVs), represent interesting carriers for bone regeneration. This systematic review aims to analyze in vitro and in vivo studies that report the effects of EVs combined with scaffolds in bone regeneration. A methodical review of the literature was performed from PubMed and Embase from 2012 to 2020. Sixteen papers were analyzed; of these, one study was in vitro, eleven were in vivo, and four were both in vitro and in vivo studies. This analysis shows a growing interest in this upcoming field, with overall positive results. In vitro results were demonstrated as both an effect on bone mineralization and proangiogenic ability. The interesting in vitro outcomes were confirmed in vivo. Particularly, these studies showed positive effects on bone regeneration and mineralization, activation of the pathway for bone regeneration, induction of vascularization, and modulation of inflammation. However, several aspects remain to be elucidated, such as the concentration of EVs to use in clinic for bone-related applications and the definition of the real advantages.
Collapse
|
32
|
Gao F, Xia SL, Wang XH, Zhou XX, Wang J. Cornuside I promoted osteogenic differentiation of bone mesenchymal stem cells through PI3K/Akt signaling pathway. J Orthop Surg Res 2021; 16:397. [PMID: 34154621 PMCID: PMC8218506 DOI: 10.1186/s13018-021-02508-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 05/23/2021] [Indexed: 11/29/2022] Open
Abstract
Background Osteoporosis is a common disease closely associated with aging. In this study, we aimed to investigate the role of Cornuside I in promoting osteogenic differentiation of bone mesenchymal stem cells (BMSCs) and the potential mechanism. Methods BMSCs were isolated and treated with different concentrations of Cornuside I (0, 10, 30, 60 μM). Cell proliferation was analyzed by Cell Counting Kit-8 (CCK-8) assay. RNA sequencing was performed on the isolated BMSCs with control and Cornuside I treatment. Differentially expressed genes were obtained by the R software. Alkaline phosphatase (ALP) staining and Alizarin Red Staining (ARS) were performed to assess the osteogenic capacity of the NEO. qRT-PCR and western blot were used to detect the expression of osteoblast markers. Results Cornuside I treatment significantly improved BMSC proliferation. The optimal dose of Cornuside I was 30 μM (P < 0.05). Cornuside I dose dependently increased the ALP activity and calcium deposition than control group (P < 0.05). A total of 704 differentially expressed genes were identified between Cornuside I and normal BMSCs. Cornuside I significantly increased the PI3K and Akt expression. Moreover, the promotion effects of Cornuside I on osteogenic differentiation of BMSCs were partially blocked by PI3K/Akt inhibitor, LY294002. Conclusion Cornuside I plays a positive role in promoting osteogenic differentiation of BMSCs, which was related with activation of PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Feng Gao
- Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai Pudong New District Zhoupu Hospital, Shanghai, 201318, China
| | - Sheng-Li Xia
- Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai Pudong New District Zhoupu Hospital, Shanghai, 201318, China
| | - Xiu-Hui Wang
- Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai Pudong New District Zhoupu Hospital, Shanghai, 201318, China
| | - Xiao-Xiao Zhou
- Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai Pudong New District Zhoupu Hospital, Shanghai, 201318, China
| | - Jun Wang
- Department of Orthopedics, Shanghai Fifth People's Hospital Affiliated to Fudan University, No. 801, Heqing Road, Minhang District, Shanghai, 200240, China.
| |
Collapse
|
33
|
Tang JZ, Zhao GY, Zhao JZ, Di DH, Wang B. lncRNA IGF2-AS promotes the osteogenic differentiation of bone marrow mesenchymal stem cells by sponging miR-3,126-5p to upregulate KLK4. J Gene Med 2021; 23:e3372. [PMID: 34101307 DOI: 10.1002/jgm.3372] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/29/2021] [Accepted: 06/04/2021] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Osteoporosis (OP) is a bone disease characterized by reduced amount and quality of bone. This study was designed to explore the role and mechanism of lncRNA IGF2-AS in the osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs). METHODS Human lncRNA and miRNA microarray analyses were performed to measure the differential expression levels of lncRNAs and miRNAs in undifferentiated and osteogenically differentiated BMSCs. lncRNA IGF2-AS, miR-3,126-5p, and KLK4 levels were measured by real-time quantitative polymerase chain reaction (RT-qPCR). Osteogenic differentiation of BMSCs was assessed by alkaline phosphatase (ALP) staining and Alizarin Red staining (ARS). Protein levels of osterix (Osx), osteocalcin (OCN), and runt-related transcription factor 2 (RUNX2) were examined by RT-PCR and western blot assays. The binding relationship between miR-3,126-5p and lncRNA IGF2-AS or KLK4 was predicted by TargetScan (http://www.targetscan.org/vert_72/) and then verified with a dual-luciferase reporter assay. RESULTS lncRNA IGF2-AS and KLK4 were highly expressed and miR-3,126-5p was weakly expressed in osteogenically differentiated BMSCs. Moreover, lncRNA IGF2-AS overexpression enhanced the osteogenic differentiation of BMSCs. In contrast, lncRNA IGF2-AS knockdown showed the opposite trend. Moreover, miR-3,126-5p overexpression abolished the lncRNA IGF2-AS-mediated osteogenic differentiation of BMSCs. lncRNA IGF2-AS functions as a sponge of miR-3,126-5p to regulate KLK4 expression. CONCLUSION lncRNA IGF2-AS enhances the osteogenic differentiation of BMSCs by modulating the miR-3,126-5p/KLK4 axis, suggesting a promising therapeutic target for bone-related diseases.
Collapse
Affiliation(s)
- Jia Zhu Tang
- Department of Joint Surgery, Affiliated Hospital of Jiangsu University, Zhen Jiang, Jiangsu Province, China
| | - Guo Yang Zhao
- Department of Joint Surgery, Affiliated Hospital of Jiangsu University, Zhen Jiang, Jiangsu Province, China
| | - Jian Zhong Zhao
- Department of Joint Surgery, Affiliated Hospital of Jiangsu University, Zhen Jiang, Jiangsu Province, China
| | - Dong Hua Di
- Department of Joint Surgery, Affiliated Hospital of Jiangsu University, Zhen Jiang, Jiangsu Province, China
| | - Bo Wang
- Department of Joint Surgery, Affiliated Hospital of Jiangsu University, Zhen Jiang, Jiangsu Province, China
| |
Collapse
|
34
|
Chemometric Analyses for the Characterization of Raw and Stir-Frying Processed Drynariae Rhizoma Based on HPLC Fingerprints. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:6651657. [PMID: 34194522 PMCID: PMC8203375 DOI: 10.1155/2021/6651657] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 05/18/2021] [Indexed: 11/20/2022]
Abstract
The processing of traditional Chinese medicine (TCM) is a necessary practice and usually occurs before most herbs are prescribed. According to Chinese medicine theory, raw (RDR) and stir-frying processed (PDR) Drynariae Rhizoma have different clinical applications. The purpose of this study was to establish HPLC fingerprints coupled with chemometric methods to evaluate the differences between RDR and PDR. Multivariate chemometric methods were applied to analyze the obtained HPLC fingerprints, including hierarchical cluster analysis (HCA), principle components analysis (PCA), and partial least squares discriminant analysis (PLS-DA). The results indicated that RDR and PDR samples showed a clear classification of the two groups, and seven chemical markers having great contributions to the differentiation were screened out. The findings suggested that 5-hydroxymethyl-2-furaldehyde (5-HMF) with a variable importance in the project (VIP > 1) can be used to differentiate between RDR and PDR. Moreover, 5-HMF, naringin, and neoeriocitrin were determined to evaluate their contents in RDR and PDR. The chemometrics combined with the quantitative analysis based on HPLC fingerprint results indicated that stir-frying processing may change the contents and types of components in Drynariae Rhizoma. These changes are probably responsible for the various pharmacological effects of RDR and PDR.
Collapse
|
35
|
Sun J, Zhang F, Luo X, Shi G, Li F, Zheng B, Guo Y, Shi J, Li L. Long noncoding RNA AC092155 facilitates osteogenic differentiation of adipose-derived stem cells through the miR-143-3p/STMN1 axis. J Gene Med 2021; 23:e3363. [PMID: 33991434 DOI: 10.1002/jgm.3363] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/08/2021] [Accepted: 04/15/2021] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Numerous studies have demonstrated that long noncoding RNAs (lncRNAs) induce osteogenesis in adipose-derived stem cells (ADSCs). This study aimed to explore the role of lncRNAs AC092155 in promoting osteogenic differentiation of ADSCs. METHODS MicroRNA (miRNA) and lncRNA sequencing were performed in ADSCs that underwent normal or osteogenic induction. Differentially expressed miRNAs and lncRNAs were identified using R software. The relative expression levels of lncRNA AC092155, miR-143-3p, and STMN1 during the process of osteogenic induction were determined by real-time polymerase chain reaction (RT-PCR). ADSCs were then transfected with agomiR-143-3p and pcDNA3.1-sh-lncRNA AC092155. Alkaline phosphatase (ALP) and alizarin red staining (ARS) were used to confirm the regulatory function of the lncRNA AC092155/miR-143-3p/STMN1 axis in osteogenic differentiation of ADSCs. RESULTS lncRNA AC092155 was significantly upregulated in ADSCs following induction in the osteogenic medium. lncRNA AC092155 and STMN1 mimics increase the markers of osteogenic differentiation in the early and late phases, which was reflected in increased ALP activity as well as the higher deposition of calcium nodules. An miR-143-3p mimic showed the opposite effect. Luciferase reporter gene analysis demonstrated that lncRNA AC092155 directly targets miR-143-3p. Moreover, the lncRNA AC092155/miR-143-3p/STMN1 regulatory axis was found to activate the Wnt/β-catenin signaling pathway. CONCLUSIONS lncRNA AC092155 contributes to the osteogenic differentiation of ADSCs. The lncRNA AC092155/miR-143-3p/STMN1 axis may be a new therapeutic target for bone-related diseases.
Collapse
Affiliation(s)
- Jingchuan Sun
- Department of Spine Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Fan Zhang
- Department of Spine Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Xi Luo
- Department of Spine Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Guodong Shi
- Department of Spine Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Fudong Li
- Department of Spine Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Bing Zheng
- Department of Spine Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Yongfei Guo
- Department of Spine Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Jiangang Shi
- Department of Spine Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Lintao Li
- Department of Orthopedic Surgery, Jinling Hospital, Nanjing University, Nanjing, China
| |
Collapse
|
36
|
Rivoira MA, Rodriguez V, Talamoni G, de Talamoni NT. New Perspectives in the Pharmacological Potential of Naringin in Medicine. Curr Med Chem 2021; 28:1987-2007. [PMID: 32496985 DOI: 10.2174/0929867327666200604171351] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 04/22/2020] [Accepted: 04/24/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Naringin (NAR) is a flavonoid enriched in several medicinal plants and fruits. An increasing interest in this molecule has emerged because it has the potential to contribute to alleviating many health problems. OBJECTIVE This review briefly describes the NAR pharmacokinetics and it mainly focuses on the in vitro and in vivo animal studies showing NAR beneficial effects on cardiovascular, metabolic, neurological and pulmonary disorders and cancer. The anabolic effects of NAR on different models of bone and dental diseases are also analyzed. In addition, the evidence of the NAR action on the gastrointestinal tract is reported as well as its influence on the microbiota composition and activity. Finally, current research on NAR formulations and clinical applications are discussed. METHODS The PubMed database was searched until 2019, using the keywords NAR, naringenin, cardiovascular and metabolic disorders, neurological and pulmonary disorders, cancer, bone and dental diseases, gastrointestinal tract, microbiota, NAR formulations, clinical trials. RESULTS The number of studies related to the bioavailability and pharmacokinetics of NAR is limited. Positive effects of NAR have been reported on cardiovascular diseases, Type 2 Diabetes Mellitus (T2DM), metabolic syndrome, pulmonary disorders, neurodegenerative diseases, cancer, and gastrointestinal pathologies. The current NAR formulations seem to improve its bioavailability, which would allow its clinical applications. CONCLUSION NAR is endowed with broad biological effects that could improve human health. Since a scarce number of clinical studies have been performed, the NAR use requires more investigation in order to know better their safety, efficacy, delivery, and bioavailability in humans.
Collapse
Affiliation(s)
- María Angélica Rivoira
- Laboratorio "Dr. Fernando Canas", Catedra de Bioquimica y Biologia Molecular, Facultad de Ciencias Medicas, INICSA (CONICET-Universidad Nacional de Cordoba), Pabellon Argentina, 2do. Piso, Ciudad Universitaria, 5000 Cordoba, Argentina
| | - Valeria Rodriguez
- Laboratorio "Dr. Fernando Canas", Catedra de Bioquimica y Biologia Molecular, Facultad de Ciencias Medicas, INICSA (CONICET-Universidad Nacional de Cordoba), Pabellon Argentina, 2do. Piso, Ciudad Universitaria, 5000 Cordoba, Argentina
| | - Germán Talamoni
- Laboratorio "Dr. Fernando Canas", Catedra de Bioquimica y Biologia Molecular, Facultad de Ciencias Medicas, INICSA (CONICET-Universidad Nacional de Cordoba), Pabellon Argentina, 2do. Piso, Ciudad Universitaria, 5000 Cordoba, Argentina
| | - Nori Tolosa de Talamoni
- Laboratorio "Dr. Fernando Canas", Catedra de Bioquimica y Biologia Molecular, Facultad de Ciencias Medicas, INICSA (CONICET-Universidad Nacional de Cordoba), Pabellon Argentina, 2do. Piso, Ciudad Universitaria, 5000 Cordoba, Argentina
| |
Collapse
|
37
|
Chang YW, Zhu WJ, Gu W, Sun J, Li ZQ, Wei XE. Neohesperidin promotes the osteogenic differentiation of bone mesenchymal stem cells by activating the Wnt/β-catenin signaling pathway. J Orthop Surg Res 2021; 16:334. [PMID: 34020675 PMCID: PMC8139099 DOI: 10.1186/s13018-021-02468-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 05/06/2021] [Indexed: 12/12/2022] Open
Abstract
Background Osteoporosis is a common disease in aging populations. However, osteoporosis treatment is still challenging. Here, we aimed to investigate the role of neohesperidin (NEO) in osteoporosis progression and the potential mechanism. Methods Bone mesenchymal stem cells (BMSCs) were isolated and treated with different concentrations of NEO (0, 10, 30, 100 M). Cell proliferation was analyzed by cell count kit-8 (CCK-8) assay. RNA-sequencing was performed on the isolated BMSCs with control and NEO treatment. Differentially expressed genes were obtained by R software. Alkaline phosphatase (ALP) staining and Alizarin red staining (ARS) were performed to assess the osteogenic capacity of the NEO. qRT-PCR was used to detect the expression of osteoblast markers. Western blot was used to evaluate the protein levels in BMSCs. Results NEO treatment significantly improved hBMSC proliferation at different time points, particularly when cells were incubated with 30 M NEO (P < 0.05). NEO dose-dependently increased the ALP activity and calcium deposition than the control group (P < 0.05). A total of 855 differentially expressed genes were identified according to the significance criteria of log2 (fold change) > 1 and adj P < 0.05. DKK1 partially reversed the promotion effects of NEO on osteogenic differentiation of BMSCs. NEO increased levels of the -catenin protein in BMSCs. Conclusion NEO plays a positive role in promoting osteogenic differentiation of BMSCs, which was related with activation of Wnt/-catenin pathway.
Collapse
Affiliation(s)
- Yue-Wen Chang
- Department of Orthopedics, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, No. 185, Puan Road, Huangpu District, Shanghai, 200021, China.
| | - Wen-Jun Zhu
- Department of Orthopedics, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, No. 185, Puan Road, Huangpu District, Shanghai, 200021, China
| | - Wei Gu
- Department of Orthopedics, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, No. 185, Puan Road, Huangpu District, Shanghai, 200021, China
| | - Jun Sun
- Department of Orthopedics, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, No. 185, Puan Road, Huangpu District, Shanghai, 200021, China
| | - Zhi-Qiang Li
- Department of Orthopedics, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, No. 185, Puan Road, Huangpu District, Shanghai, 200021, China
| | - Xiao-En Wei
- Department of Orthopedics, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, No. 185, Puan Road, Huangpu District, Shanghai, 200021, China
| |
Collapse
|
38
|
Zhao ZH, Ma XL, Zhao B, Tian P, Ma JX, Kang JY, Zhang Y, Guo Y, Sun L. Naringin-inlaid silk fibroin/hydroxyapatite scaffold enhances human umbilical cord-derived mesenchymal stem cell-based bone regeneration. Cell Prolif 2021; 54:e13043. [PMID: 34008897 PMCID: PMC8249788 DOI: 10.1111/cpr.13043] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/17/2021] [Accepted: 04/03/2021] [Indexed: 12/19/2022] Open
Abstract
OBJECTIVES Large bone defects are a common, debilitating clinical condition that have substantial global health and economic burden. Bone tissue engineering technology has become one of the most promising approaches for regenerating defective bones. In this study, we fabricated a naringin-inlaid composite silk fibroin/hydroxyapatite (NG/SF/HAp) scaffold to repair bone defects. MATERIALS AND METHODS The salt-leaching technology was used to fabricate the NG/SF/HAp scaffold. The cytocompatibility of the NG/SF/HAp scaffold was assessed using scanning electron microscopy, live/dead cell staining and phalloidin staining. The osteogenic and angiogenic properties were assessed in vitro and in vivo. RESULTS The porous NG/SF/HAp scaffold had a well-designed biomimetic porous structure with osteoinductive and angiogenic activities. A gene microarray identified 854 differentially expressed genes between human umbilical cord-derived mesenchymal stem cells (hUCMSCs) cultured on SF-nHAp scaffolds and cells cultured on NG/SF/HAp scaffolds. The underlying osteoblastic mechanism was investigated using hUCMSCs in vitro. Naringin facilitated hUCMSC ingrowth into the SF/HAp scaffold and promoted osteogenic differentiation. The osteogenic and angiogenic capabilities of cells cultured in the NG/SF/HAp scaffold were superior to those of cells cultured in the SF/HAp scaffold. CONCLUSIONS The data indicate the potential of the SF/HAp composite scaffold incorporating naringin for bone regeneration.
Collapse
Affiliation(s)
- Zhi-Hu Zhao
- Department of Orthopaedics, Tianjin Hospital, Tianjin, China
| | - Xin-Long Ma
- Department of Orthopaedics, Tianjin Hospital, Tianjin, China
| | - Bin Zhao
- Department of Orthopaedics, Tianjin Hospital, Tianjin, China
| | - Peng Tian
- Department of Orthopaedics, Tianjin Hospital, Tianjin, China
| | - Jian-Xiong Ma
- Tianjin Institute of Orthopedics in Traditional Chinese and Western Medicine, Tianjin, China
| | - Jia-Yu Kang
- Department of Orthopedics, Jinhua Municipal Central Hospital, Jinhua, Zhejiang Province, China
| | - Yang Zhang
- Tianjin Institute of Orthopedics in Traditional Chinese and Western Medicine, Tianjin, China
| | - Yue Guo
- Tianjin Institute of Orthopedics in Traditional Chinese and Western Medicine, Tianjin, China
| | - Lei Sun
- Tianjin Institute of Orthopedics in Traditional Chinese and Western Medicine, Tianjin, China
| |
Collapse
|
39
|
Wang J, Wang Y, Zuo Y, Duan J, Pan A, Li JM, Yan XX, Liu F. MFGE8 mitigates brain injury in a rat model of SAH by maintaining vascular endothelial integrity via TIGβ5/PI3K/CXCL12 signaling. Exp Brain Res 2021; 239:2193-2205. [PMID: 33991211 DOI: 10.1007/s00221-021-06111-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 04/08/2021] [Indexed: 12/25/2022]
Abstract
Leaked blood components, injured endothelial cells, local inflammatory response and vasospasm may converge to promote microthrombosis following subarachnoid hemorrhage (SAH). Previously, we showed that the milk fat globule-epidermal growth factor 8 (MFGE8) can mitigate SAH-induced microthrombosis. This present study was aimed to explore the molecular pathway participated in MFGE8-dependent protection on vascular endothelium. Immunofluorescence, immunoblot and behavioral tests were used to determine the molecular partner and signaling pathway mediating the effect of MFGE8 in vascular endothelium in rats with experimental SAH and controls, together with the applications of RNA silencing and pharmacological intervention methods. Relative to control, recombinant human MFGE8 (rhMFGE8) treatment increased 5-bromo-2'-deoxyuridine (BrdU) labeled new endothelial cells, reduced TUNUL-positive endothelial cells and elevated the expression of phosphatidylinositol 3-kinase (PI3K) and chemokine (C-X-C motif) ligand 12 (CXCL12), in the brains of SAH rats. These effects were reversed by MFGE8 RNA silencing, as well as following cilengitide and wortmannin intervention. These results suggest that MFGE8 promotes endothelial regeneration and mitigates endothelial DNA damage through the activation of the TIGβ5/PI3K/CXCL12 signaling pathway.
Collapse
Affiliation(s)
- Jikai Wang
- Department of Neurosurgery, The Fifth Affiliated Hospital of Sun Yat-sen University, No. 52 Meihuadong Road, Zhuhai, 519000, Guangdong, China
| | - Yiping Wang
- Department of Neurosurgery, The Fifth Affiliated Hospital of Sun Yat-sen University, No. 52 Meihuadong Road, Zhuhai, 519000, Guangdong, China
| | - Yuchun Zuo
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Jiajia Duan
- Department of Anatomy and Neurobiology, Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Aihua Pan
- Department of Anatomy and Neurobiology, Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Jian-Ming Li
- Department of Anatomy, School of Basic Sciences, Changsha Medical University, Changsha, 410219, Hunan, China
| | - Xiao-Xin Yan
- Department of Anatomy and Neurobiology, Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Fei Liu
- Department of Neurosurgery, The Fifth Affiliated Hospital of Sun Yat-sen University, No. 52 Meihuadong Road, Zhuhai, 519000, Guangdong, China.
| |
Collapse
|
40
|
You WL, Xu ZL. Curculigoside promotes osteogenic differentiation of ADSCs to prevent ovariectomized-induced osteoporosis. J Orthop Surg Res 2021; 16:279. [PMID: 33902663 PMCID: PMC8074499 DOI: 10.1186/s13018-021-02389-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 03/30/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Curculigoside is a natural phenolic glycoside compound produced by Curculigo orchioides Gaertn. This study aimed to explore the effects of curculigoside in promoting the osteogenic differentiation of adipose-derived stem cells (ADSCs) as well as the underlying mechanism. METHODS ADSCs were treated with curculigoside at different concentrations (0 μmol/L, 1 μmol/L, 2.5 μmol/L, 5 μmol/L, 10 μmol/L, and 20 μmol/L), and cell viability was assessed by CCK-8 assay. Then, the alkaline phosphatase (ALP) activity was determined, and alizarin red S (ARS) staining was performed to measure the extracellular mineralization of curculigoside. Information about protein-chemical interactions is provided by the search tool for interactions of chemicals (STITCH) database. Then, LY294002 was administered to explore the mechanism by which curculigoside promotes the osteogenic differentiation of ADSCs. Western blot assays were performed to assess changes in the expression of osteogenic-related markers and the phosphorylation of PI3K and AKT. Finally, we established an ovariectomized (OVX)-induced osteoporosis mouse model and administered curculigoside to explore the effects of curculigoside in preventing bone loss in vivo. RESULTS The CCK-8 assay indicated that curculigoside did not induce cytotoxicity at a concentration of 5 μmol/L after 48 h. The ALP and ARS results revealed that the induced group had higher ALP activity and calcium deposition than the control group. Moreover, the curculigoside group exhibited increased biomineralization, ALP activity, and ARS staining compared to the induced and control groups, and these effects were partially inhibited by LY294002. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis indicated that the target genes of curculigoside were mainly involved in the PI3K-Akt signaling pathway. PCR and western blot analysis showed that the expression of RUNX2, ALP, and Osterix was upregulated in curculigoside-treated ADSCs, but this effect was partially reversed by the PI3K inhibitor LY294002. Moreover, the curculigoside-treated group exhibited significantly increased phosphorylation of AKT to P-AKT compared with the osteogenic induction group. After treatment with curculigoside, the mice had a higher bone volume than the OVX mice, suggesting partial protection from cancellous bone loss. In addition, when LY294002 was added, the protective effects of curculigoside could be neutralized. CONCLUSIONS Curculigoside could induce the osteogenic differentiation of ADSCs and prevent bone loss in an OVX model through the PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Wei-Li You
- Department of Pharmacy, The First People's Hospital of Lianyungang, No. 128, Tongguanbei Road, Haizhou District, Lianyungang, 222002, Jiangsu Province, China.
| | - Zheng-Long Xu
- Department of Pharmacy, Xinghua City People's Hospital, Xinghua City, Jiangsu Province, China
| |
Collapse
|
41
|
Zhang H, Yu Z, Sun F, Jin J. Overexpression of CRABP2 inhibits dexamethasone-induced apoptosis in human osteoblast cells. J Orthop Surg Res 2021; 16:272. [PMID: 33879199 PMCID: PMC8059161 DOI: 10.1186/s13018-021-02386-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 03/29/2021] [Indexed: 12/23/2022] Open
Abstract
Background The purpose of the current study was to explore the role and underlying mechanism of cellular retinoic acid binding protein 2 (CRABP2) in dexamethasone (DEX)-induced apoptosis in human osteoblast cells. Methods GSE10311 was downloaded from the Gene Expression Omnibus (GEO) database to identify the differentially expressed genes (DEGs) by the limma/R package. Primary human osteoblast was isolated and treated with different concentration of DEX (0, 10-8, 10-7, 10-6, 10-5, and 10-4 mol/L), and cell viability and flow cytometry were used to detect cell proliferation and apoptosis. A CRABP2 overexpression plasmid (oe-CRABP2) was used to overexpress CRABP2, and western blotting was conducted to detect protein expression. Results We found that CRABP2 was downregulated in the DEX-treated group. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses indicated that DEGs were associated with PI3K/Akt signaling pathway. DEX downregulated CRABP2 gene and protein expression, inhibited viability, and induced human osteoblast apoptosis. Overexpression of CRABP2 reversed DEX-induced apoptosis in human osteoblast. Moreover, overexpression of CRABP2 delayed the progression of DEX-induced osteonecrosis of the femoral head (ONFH) animal model. Conclusion In conclusion, CRABP2 is effective at inhibiting DEX-induced human osteoblast apoptosis and delayed ONFH progression.
Collapse
Affiliation(s)
- Haiping Zhang
- Department of Orthopaedics, Affiliated Hospital 2 of Nantong University, Nantong University, Nantong, 226000, Jiangsu, People's Republic of China
| | - Ziliang Yu
- Department of Orthopaedics, Affiliated Hospital 2 of Nantong University, Nantong University, Nantong, 226000, Jiangsu, People's Republic of China
| | - Farui Sun
- Department of Orthopaedics, Huangshi Central Hospital (Affiliated Hospital of Hubei Polytechnic University), Edong Healthcare Group, Huangshi, 435000, Hubei, People's Republic of China. .,Medical College, Wuhan University of Science and Technology, Wuhan, China.
| | - Jin Jin
- Department of Endocrinology, the Affiliated Hospital of Xuzhou medical University, Xuzhou, 221000, China.
| |
Collapse
|
42
|
Ni K, Guo J, Bu B, Pan Y, Li J, Liu L, Luo M, Deng L. Naringin as a plant-derived bitter tastant promotes proliferation of cultured human airway epithelial cells via activation of TAS2R signaling. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 84:153491. [PMID: 33601237 DOI: 10.1016/j.phymed.2021.153491] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 01/29/2021] [Accepted: 01/29/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Bitter tastants can activate bitter taste receptors (TAS2Rs) and thus initiate relaxation of airway smooth muscle cells (ASMCs), which have great potential in the development of novel bronchodilator drugs for asthma therapy. However, the canonical bitter substance, denatonium is known to induce apoptosis of airway epithelial cells (AECs), indicating that other bitter tastants may also impair the epithelial integrity to prevent hazardous particulate matters such as coronaviruses. Therefore, any bitter tastants intended for treating airway disease should be carefully evaluated for potential toxicity to AECs. HYPOTHESIS/PURPOSE Considering the vast diversity of bitter tastants in nature and different types of TAS2Rs expressed in airway cells, we hypothesized that there must be some natural bitter tastants to be not only potent in inducing relaxation of ASMCs but also unharmful to AECs. STUDY DESIGN AND METHODS Here we evaluated a group of bitter flavonoids that are derived from fruits and commonly used in traditional herbal medicine, including apigenin, hesperetin, kaempferol, naringenin, quercetin, and naringin, for their effects on the proliferation of human airway epithelial-like (16HBE14o-, BEAS-2B, and A549) cells cultured in vitro. Cell proliferation and associated signaling pathways were assessed by cell counting, ATP assay, cell cycling assay, quantitative RT-PCR, Fluo-4 labeling, and fluorescence resonance energy transfer, respectively. RESULTS The results show that five of the six tested bitter tastants inhibited, but only naringin promoted the proliferation of the 16HBE14o-, BEAS-2B, and A549 cells at the dose of a few hundred micromoles. Furthermore, the naringin-promoted proliferation of the 16HBE14o- cells was associated with enhanced cell cycle progression, mRNA expression of cyclin E, and evoked calcium signaling/ERK signaling, which were all attenuated by inhibition of the TAS2R signaling pathways with specific blockers. CONCLUSION These findings indicate that although the majority of the bitter flavonoids may inhibit the proliferation of AECs, naringin emerged as one to promote the proliferation of AECs via cell cycle progression and TAS2R-activated intracellular signaling. It suggests that naringin and not a few other bitter tastants can be proven with nontoxicity to the airway epithelial structure and function, which provides further confidence in the development of safe and effective TAS2R-based bronchodilators for asthma therapy.
Collapse
Affiliation(s)
- Kai Ni
- Institute of Biomedical Engineering and Health Sciences, Changzhou University, Changzhou, Jiangsu, China
| | - Jia Guo
- Institute of Biomedical Engineering and Health Sciences, Changzhou University, Changzhou, Jiangsu, China
| | - Bing Bu
- Institute of Biomedical Engineering and Health Sciences, Changzhou University, Changzhou, Jiangsu, China
| | - Yan Pan
- Institute of Biomedical Engineering and Health Sciences, Changzhou University, Changzhou, Jiangsu, China
| | - Jingjing Li
- Institute of Biomedical Engineering and Health Sciences, Changzhou University, Changzhou, Jiangsu, China
| | - Lei Liu
- Institute of Biomedical Engineering and Health Sciences, Changzhou University, Changzhou, Jiangsu, China
| | - Mingzhi Luo
- Institute of Biomedical Engineering and Health Sciences, Changzhou University, Changzhou, Jiangsu, China.
| | - Linhong Deng
- Institute of Biomedical Engineering and Health Sciences, Changzhou University, Changzhou, Jiangsu, China.
| |
Collapse
|
43
|
Pentraxin 3 promotes the osteoblastic differentiation of MC3T3-E1 cells through the PI3K/Akt signaling pathway. Biosci Rep 2021; 40:224914. [PMID: 32436939 PMCID: PMC7284320 DOI: 10.1042/bsr20201165] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 04/29/2020] [Accepted: 04/29/2020] [Indexed: 12/12/2022] Open
Abstract
Osteoblast cells are responsible for synthesizing new bone tissue, and determining how to control osteoblastic differentiation is vital to the treatment of osteoporosis. In the present study, we show that pentraxin 3 (PTX3) signaling is involved in the regulation of osteoblastic differentiation in MC3T3-E1 cells. Our data reveal that PTX3 is abundantly expressed in MC3T3-E1 cells and that its expression is inducible by the introduction of osteogenic induction medium (OIM). Overexpression of PTX3 was observed to significantly increase the expression of four osteoblast signature genes, including Runt-related transcription factor 2 (RUNX2), alkaline phosphatase (ALP), osteocalcin (OCN) and osterix (OSX), suggesting that the overexpression of PTX3 promotes osteoblastic differentiation. The relative level of gene expression between OIM and OIM plus overexpressed PTX3 was evaluated using the Affymetrix Gene Chip® mouse gene microarray. PTX3-related differentially expressed genes (DEGs) were screened. Gene ontology (GO) functional and Kyoto Encyclopedia of Genes and Genomes database (KEGG) pathway enrichment analyses were performed, and the PI3K/Akt signaling pathway was primarily involved in the osteogenic differentiation of PTX3. Protein-protein interactions (PPIs) were also constructed, and the molecular complex detection (MCODE) plugin calculated modules of PPI networks. Moreover, we show that the effect of PTX3 is mediated by its induction of the PI3K/Akt signaling pathway. Mechanistically, we show that the action of PTX3 requires the activation of PI3K and Akt, and deactivation of PI3K by its inhibitor LY294002 weakens the PTX3-mediated induction of osteoblast signature genes, ALP and matrix mineralization. The present study revealed a new role played by PTX3 and suggest a potential mechanism governing the osteoblastic differentiation of MC3T3-E1 cells.
Collapse
|
44
|
Guan Y, Wang X. Salvianic Acid A Regulates High-Glucose-Treated Endothelial Progenitor Cell Dysfunction via the AKT/Endothelial Nitric Oxide Synthase (eNOS) Pathway. Med Sci Monit 2021; 27:e928153. [PMID: 33770068 PMCID: PMC8008975 DOI: 10.12659/msm.928153] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND The primary cause of death in patients with diabetes mellitus (DM) is diabetic macroangiopathy, a complication that related to the function and number of endothelial progenitor cells (EPCs). Salvianic acid A (SAA) is a water-soluble active ingredient of Salvia miltiorrhiza, a traditional Chinese medicine used to treat cardiovascular diseases. The purpose of this study was to explore the effects of SAA on the function of rat EPCs cultured in vitro in a high-glucose environment. MATERIAL AND METHODS Bone marrow-derived EPCs from 40 Sprague-Dawley rats were identified by fluorescence staining. Cell viability, apoptosis, tube formation, lactated dehydrogenase (LDH) release, and nitric oxide (NO) production were detected by 3-[4,5-dimethylthylthiazol-2-yl]-2,5 diphenyltetrazolium bromide assay, flow cytometry, tube formation, LDH, and 3-amino,4-aminomethyl-2',7'-difluorescein, and diacetate assays, respectively. The expression levels of proteins were examined by western blotting. RESULTS Cultured EPCs showed a cobblestone morphology and positive expression of Dil-ac-LDL and FITC-UEA-1. High glucose impaired cell viability. Different concentrations of SAA had no significant effect on EPC viability. SAA reduced the apoptosis rate and LDH release, but promoted tube formation, viability, and NO production in high-glucose-treated EPCs. The ratios of p-AKT/AKT and p-eNOS/eNOS in high-glucose-treated EPCs were elevated by SAA. Phosphoinositide 3-kinase inhibitor LY294002 blocked the rescue effects of SAA on high-glucose-treated EPCs. CONCLUSIONS SAA protected EPCs against high-glucose-induced dysfunction via the AKT/eNOS pathway.
Collapse
Affiliation(s)
- Yanhua Guan
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China (mainland).,Department of Endocrinology, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China (mainland)
| | - Xu Wang
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China (mainland).,Department of Endocrinology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China (mainland)
| |
Collapse
|
45
|
Sun JB, Wang Z, An WJ. Protection of Icariin Against Hydrogen Peroxide-Induced MC3T3-E1 Cell Oxidative Damage. Orthop Surg 2021; 13:632-640. [PMID: 33619876 PMCID: PMC7957425 DOI: 10.1111/os.12891] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 10/30/2020] [Accepted: 11/16/2020] [Indexed: 01/04/2023] Open
Abstract
Objective The aim of the present study was to evaluate the potential protective mechanism of icariin against oxidative damage caused by hydrogen peroxide in MC3T3‐E1 cells. Methods MC3T3‐E1 cells were treated with different concentrations of icariin to explore the optimal dose of icariin. MC3T3‐E1 cells were divided into groups treated with various concentrations of hydrogen peroxide (H2O2; 0, 0.1, 0.2, 0.5, 1, and 2 mM) for 24 h to induce oxidative damage and cell viability was assessed by Cell Counting Kit‐8 (CCK‐8) assay. Then, cells were divided into five groups: control, H2O2 (0.2 mM), icariin (0.1 μM) and H2O2 (0.2 mM), + icariin (0.1 μM). Cell viability was detected by CCK‐8 assay. In addition, the content of glutathione and superoxide dismutase and the activity level of malondialdehyde in these treatment groups were determined. Alkaline phosphatase (ALP) and alizarin red S (ARS) staining were also performed to measure the early and late osteogenesis, respectively. Protein expression of β‐catenin and cyclin D1 was measured by western blot assay. Then, we used an antagonist of Wnt/β‐catenin signaling pathway (DKK‐1) and western blot analysis to further explore potential mechanism. Results After 24 h of exposure to 0.2 mM H2O2, the viability of MC3T3‐E1 cells was significantly decreased compared to that of the control cells. We first found that icariin can promote cell proliferation of MC3T3‐E1 cells in a dose‐dependent manner, with the dosage 0.1 μM showing the best pro‐proliferative effect. Furthermore, icariin could promote the protein expression of OSX and RUNX2. The results showed that icariin can reverse the inhibitory osteogenic effects of MC3T3‐E1 caused by H2O2. In addition, icariin could increase the Wnt‐signaling related proteins. The results showed that MC3T3‐E1 cells in the H2O2 (0.2 mM) + icariin (0.1 μM) + Wnt‐signaling antagonist (DKK‐1) group had weaker ALP and ARS staining compared with that observed in the control and H2O2 (0.2 mM) + icariin (0.1 μM) groups. The ALP activity and calcium content were decreased in the 0.2 mM H2O2 + 0.1 μM icariin + DKK‐1 group compared to that observed in the 0.2 mM H2O2 + 0.1 μM icariin group. Conclusion The results showed that icariin can increase the viability of MC3T3‐E1 cells, reverse the oxidative stress induced by H2O2 and protect MC3T3‐E1 cells against H2O2‐induced inhibition of osteogenic differentiation, which may occur through the Wnt/β‐catenin signaling pathway.
Collapse
Affiliation(s)
- Jian-Bin Sun
- Department of Trauma Orthopaedics, The General Hospital of Ningxia Medical University, Yinchuan, China
| | - Zheng Wang
- Department of Trauma Orthopaedics, The General Hospital of Ningxia Medical University, Yinchuan, China
| | - Wei-Jun An
- Department of Trauma Orthopaedics, The General Hospital of Ningxia Medical University, Yinchuan, China
| |
Collapse
|
46
|
Zhao R, Feng D, Zhuang G, Liu Y, Chi S, Zhang J, Zhou X, Zhang W, Wang H. Protein kinase CK2 participates in estrogen-mediated endothelial progenitor cell homing to endometriotic lesions through stromal cells in a stromal cell-derived factor-1- CXCR4-dependent manner. Fertil Steril 2021; 113:1067-1079.e5. [PMID: 32386617 DOI: 10.1016/j.fertnstert.2019.12.035] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 12/19/2019] [Accepted: 12/23/2019] [Indexed: 02/07/2023]
Abstract
OBJECTIVE To explore the possible mechanism of protein kinase CK2, which participates in estrogen recruitment of endothelial progenitor cells (EPCs), and its role in the angiogenesis of endometriosis lesions. DESIGN Laboratory study. SETTING University. ANIMAL(S) BALB/c mice. INTERVENTION(S) Exposure of human endometrial stromal cells (HESCs) to estrogen and CK2 inhibitor CX-4945 and endometrial stromal cells transfected with the protein kinase CK2 vector (HESC-CK2). Endometriosis models were induced by allogeneic mice transplantation of the endometrium into dorsal skinfold chambers. The mice received an IP injection of 50 mg/kg emodin per day or were treated with 100 μg/kg estrogen by SC injection once a week. MAIN OUTCOME MEASURE(S) The concentration of cytokines in cells was measured with ELISA. The migration of EPCs was examined using the scratch assay method and Transwell, a capillary tube-formation assay to determine EPC tube-forming capacity, and protein and mRNA expression with Western blot and polymerase chain reaction analyses, respectively. RESULT(S) Protein kinase CK2 participates in estrogen-mediated EPC homing to endometriotic lesions through stromal cells in a stromal cell-derived factor-1 (SDF-1)-CXCR4-dependent manner. Conditioned medium from endometrial stromal cells that were stably transfected with the protein kinase CK2 vector (HESC-CK2) or pretreated with estrogen significantly enhanced the migration and recruitment of EPCs. In contrast, conditioned medium from HESCs that were treated with CX-4945, a selective inhibitor of CK2, inhibited the mobility and viability of EPCs. Furthermore, CK2 overexpression significantly upregulated SDF-1 expression and secretion in endometrial stromal cells by activating the AKT/mTOR pathway. Moreover, treatment with the SDF-1 receptor CXCR4-specific inhibitor AMD3100 completely reversed the CK2-enhanced migration of EPCs. CONCLUSION(S) This study demonstrates that CK2 participates in estrogen-mediated EPC homing to endometriotic lesions through stromal cells in an SDF-1-CXCR4-dependent manner and may be a therapeutic target.
Collapse
Affiliation(s)
- Rong Zhao
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huang Zhong University of Science and Technology, Wuhan, People's Republic of China
| | - Dilu Feng
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huang Zhong University of Science and Technology, Wuhan, People's Republic of China
| | - Guobin Zhuang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huang Zhong University of Science and Technology, Wuhan, People's Republic of China
| | - Yan Liu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huang Zhong University of Science and Technology, Wuhan, People's Republic of China
| | - Shuqi Chi
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, People's Republic of China
| | - Jun Zhang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huang Zhong University of Science and Technology, Wuhan, People's Republic of China
| | - Xing Zhou
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huang Zhong University of Science and Technology, Wuhan, People's Republic of China
| | - Wei Zhang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huang Zhong University of Science and Technology, Wuhan, People's Republic of China
| | - Hongbo Wang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huang Zhong University of Science and Technology, Wuhan, People's Republic of China.
| |
Collapse
|
47
|
Effect of Naringin Treatment on Postmenopausal Osteoporosis in Ovariectomized Rats: A Meta-Analysis and Systematic Review. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:6016874. [PMID: 33628301 PMCID: PMC7889366 DOI: 10.1155/2021/6016874] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/30/2020] [Accepted: 01/28/2021] [Indexed: 11/17/2022]
Abstract
Background Osteoporosis is a major disease that affects the quality of life of middle-aged and old people, so it is very important to find efficient and safe drugs to treat osteoporosis. The purpose of this study was to investigate the therapeutic effect of naringin on postmenopausal osteoporosis in ovariectomized (OVX) rats. Methods Chinese biomedical databases, CNKI, PubMed, EMBASE, and Wan Fang were searched for articles from inception to March 2020. Two independent researchers screened articles according to inclusion criteria. RevMan 5.3 was used for data analysis. Results Ten studies were included in the systematic review. The bone mineral density (BMD) significantly increased after naringin treatment (weighted mean difference, 0.06; 95% CI, 0.03–0.09; P < 0.01). There was no significant increase in BMD after estrogen treatment compared with naringin (weighted mean difference, 0.00; 95% CI, −0.00 to 0.01; P = 0.06). The trabecular bone volume (BV/TV) (weighted mean difference, 2.09; 95% CI, 1.85–2.34; P < 0.01) and trabecular thickness (Tb.Th) (weighted mean difference, 6.65; 95% CI, 6.55–6.74; P < 0.01) significantly increased after using naringin. Conclusions Naringin had been shown to promote bone formation in OVX rats. However, the mechanism of naringin needs more research to confirm.
Collapse
|
48
|
Luo Z, Bian Y, Zheng G, Wang H, Yan B, Su W, Dong W, Hu Z, Ding J, Wang A, Li S, Fu W, Xue J. Chemically Modified SDF-1α mRNA Promotes Random Flap Survival by Activating the SDF-1α/CXCR4 Axis in Rats. Front Cell Dev Biol 2021; 9:623959. [PMID: 33614652 PMCID: PMC7890013 DOI: 10.3389/fcell.2021.623959] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/14/2021] [Indexed: 12/25/2022] Open
Abstract
Random skin flaps are frequently applied in plastic and reconstructive surgery for patients suffering from soft tissue defects caused by congenital deformities, trauma and tumor resection. However, ischemia and necrosis in distal parts of random skin flaps remains a common challenge that limits the clinical application of this procedure. Recently, chemically modified mRNA (modRNA) was found to have great therapeutic potential. Here, we explored the potential of fibroblasts engineered to express modified mRNAs encoding the stromal cell-derived factor-1α (SDF-1α) to improve vascularization and survival of therapeutic random skin flaps. Our study showed that fibroblasts pre-treated with SDF-1α modRNA have the potential to salvage ischemic skin flaps. Through a detailed analysis, we revealed that a fibroblast SDF-1α modRNA combinatorial treatment dramatically reduced tissue necrosis and significantly promoted neovascularization in random skin flaps compared to that in the control and vehicle groups. Moreover, SDF-1α modRNA transcription in fibroblasts promoted activation of the SDF-1α/CXCR4 pathway, with concomitant inactivation of the MEK/ERK, PI3K/AKT, and JAK2/STAT3 signaling pathways, indicating a possible correlation with cell proliferation and migration. Therefore, fibroblast-mediated SDF-1α modRNA expression represents a promising strategy for random skin flap regeneration.
Collapse
Affiliation(s)
- Zucheng Luo
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou Medical University, Wenzhou, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Yujie Bian
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou Medical University, Wenzhou, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Gang Zheng
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou Medical University, Wenzhou, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Huijing Wang
- Shanghai Children's Medical Center, School of Medicine, Institute of Pediatric Translational Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Bingqian Yan
- Shanghai Children's Medical Center, School of Medicine, Institute of Pediatric Translational Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wenting Su
- Department of Dermatology, Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine, Wenzhou, China
| | - Wei Dong
- Department of Pediatric Cardiothoracic Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhichao Hu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou Medical University, Wenzhou, China
| | - Jian Ding
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou Medical University, Wenzhou, China
| | - Anyuan Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou Medical University, Wenzhou, China
| | - Shi Li
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou Medical University, Wenzhou, China
| | - Wei Fu
- Shanghai Children's Medical Center, School of Medicine, Institute of Pediatric Translational Medicine, Shanghai Jiao Tong University, Shanghai, China.,Department of Pediatric Cardiothoracic Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Tissue Engineering, School of Medicine, Shanghai 9th People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Jixin Xue
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou Medical University, Wenzhou, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
49
|
Wang Q, Zhang X, Wang K, Zhu L, Qiu B, Chen X, Lin X, Nie Y. An In Vitro Model of Diabetic Retinal Vascular Endothelial Dysfunction and Neuroretinal Degeneration. J Diabetes Res 2021; 2021:9765119. [PMID: 34805414 PMCID: PMC8598328 DOI: 10.1155/2021/9765119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 10/09/2021] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Diabetic retinopathy (DR) is a leading cause of blindness in working-age populations. Proper in vitro DR models are crucial for exploring pathophysiology and identifying novel therapeutic targets. This study establishes a rational in vitro diabetic retinal neuronal-endothelial dysfunction model and a comprehensive downstream validation system. METHODS Human retinal vascular endothelial cells (HRMECs) and retinal ganglion cells (RGCs) were treated with different glucose concentrations with mannitol as matched osmotic controls. Cell proliferation and viability were evaluated by the Cell Counting Kit-8. Cell migration was measured using a transwell migration assay. Cell sprouting was assessed by a tube formation assay. The VEGF expression was assessed by ELISA. RGCs were labeled by neurons and RGC markers TUJ1 and BRN3A for quantitative and morphological analysis. Apoptosis was detected using PI/Hoechst staining and TUNEL assay and quantified by ImageJ. RESULTS Cell proliferation and migration in HRMECs were significantly higher in the 25 mM glucose-treated group (p < 0.001) but lower in the 50 mM and 100 mM groups (p < 0.001). The permeability and the apoptotic index in HRMECs were statistically higher in the 25 mM, 50 mM, and 100 mM groups (p < 0.05). The tube formation assay found that all the parameters were significantly higher in the 25 mM and 50 mM groups (p < 0.001) concomitant with the elevated VEGFA expression in HRMECs (p = 0.016). Cell viability was significantly lower in the 50 mM, 100 mM, and 150 mM groups in RGCs (p 50mM = 0.013, p 100mM = 0.019, and p 150mM = 0.002). Apoptosis was significantly elevated, but the proportion of RGCs with neurite extension was significantly lower in the 50 mM, 100 mM, and 150 mM groups (p 50mM < 0.001, p 100mM < 0.001, and p 150mM < 0.001). CONCLUSIONS We have optimized glucose concentrations to model diabetic retinal endothelial (25-50 mM) or neuronal (50-100 mM) dysfunction in vitro, which have a wide range of downstream applications.
Collapse
Affiliation(s)
- Qiyun Wang
- Beijing Institute of Ophthalmology, Tongren Eye Center, Beijing Tongren Hospital, Capital Medical Univeristy, Beijing, China
- Beijing Retinal and Choroidal Vascular Diseases Study Group, China
| | - Xinyuan Zhang
- Beijing Institute of Ophthalmology, Tongren Eye Center, Beijing Tongren Hospital, Capital Medical Univeristy, Beijing, China
- Beijing Retinal and Choroidal Vascular Diseases Study Group, China
| | - Kaiyue Wang
- Beijing Institute of Ophthalmology, Tongren Eye Center, Beijing Tongren Hospital, Capital Medical Univeristy, Beijing, China
| | - Ling Zhu
- Save Sight Institute, Department of Ophthalmology, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - Bingjie Qiu
- Beijing Institute of Ophthalmology, Tongren Eye Center, Beijing Tongren Hospital, Capital Medical Univeristy, Beijing, China
- Beijing Retinal and Choroidal Vascular Diseases Study Group, China
| | - Xiaosi Chen
- Beijing Institute of Ophthalmology, Tongren Eye Center, Beijing Tongren Hospital, Capital Medical Univeristy, Beijing, China
- Beijing Retinal and Choroidal Vascular Diseases Study Group, China
| | - Xiao Lin
- Beijing Institute of Ophthalmology, Tongren Eye Center, Beijing Tongren Hospital, Capital Medical Univeristy, Beijing, China
| | - Yao Nie
- Beijing Institute of Ophthalmology, Tongren Eye Center, Beijing Tongren Hospital, Capital Medical Univeristy, Beijing, China
- Beijing Retinal and Choroidal Vascular Diseases Study Group, China
| |
Collapse
|
50
|
Miao Y, Lu J, Fan B, Sun L. MicroRNA-126-5p Inhibits the Migration of Breast Cancer Cells by Directly Targeting CNOT7. Technol Cancer Res Treat 2020; 19:1533033820977545. [PMID: 33256566 PMCID: PMC7711228 DOI: 10.1177/1533033820977545] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Background: To assess the effect of microRNA-126-5p (miR-126-5p) on the migration of the
breast cancer MCF7 cell line. Methods: GSE143564 was downloaded from the Gene Expression Omnibus (GEO; http://www.ncbi.nlm.nih.gov/geo) to identify the
differentially expressed miRNAs between breast cancer and adjacent tissues.
Quantitative reverse transcription PCR (RT-qPCR) was used to assess
miR-126-5p levels in the normal 184A1 breast cell line and the breast cancer
MCF7 cell line. The MCF7 cell line was then transfected with miR-126-5p
mimics or corresponding negative control (NC-mimic). The proliferation and
migration abilities of the MCF7 cell line were measured by methyl thiazolyl
tetrazolium (MTT), Transwell and scratch healing assays. CCR4-NOT
transcription complex and subunit 7 (CNOT7) expression levels in the
NC-mimic and miR-126-5p mimic groups were measured by Western blot analysis.
Bioinformatic analysis and a dual-luciferase reporter assay were performed
to identify the miR-126-5p target gene. Results: One hundred forty-eight differentially expressed miRNAs (downregulated = 55,
upregulated = 93) were identified. MiR-126-5p expression in the MCF7 cell
line was significantly downregulated relative to that of 184A1 cell line (P
< 0.05). Compared with that observed in the control and NC-mimic groups,
cell proliferation in the miR-126-5p mimic group was significantly decreased
at 48 and 72 h posttransfection (P < 0.05). In addition, the scratch
healing rate and number of membrane-piercing cells in the miR-126-5p
overexpression group were lower than those detected in the control and NC
groups (P < 0.05). Furthermore, miR-126-5p could reduce the luciferase
activity for the wild-type CNOT7 gene 3’-untranslated region (UTR) reporter
(P < 0.05) but had no effect on the mutant 3’UTR reporter (P > 0.05).
Compared with that observed in the NC and control groups, the levels of
CNOT7 in the miR-126-5p overexpression group decreased (P < 0.05). Conclusion: Upregulation of miR-126-5p can inhibit the migration of the breast cancer
MCF7 cell line, which may involve its direct targeting of the 3’UTR of
CNOT7.
Collapse
Affiliation(s)
- Yuying Miao
- Department of Breast Surgery Ward, Jingjiang People's Hospital, Jingjiang, China
| | - Jiang Lu
- Department of Breast Surgery Ward, Jingjiang People's Hospital, Jingjiang, China
| | - Baozhen Fan
- Department of Breast Surgery Ward, Jingjiang People's Hospital, Jingjiang, China
| | - Lecan Sun
- Department of Blood Hernia Minimally Invasive Surgery, XuZhou Central Hospital, Xuzhou, China
| |
Collapse
|