1
|
Mahdifar M, Boostani R, Taylor GP, Rezaee SA, Rafatpanah H. Comprehensive Insight into the Functional Roles of NK and NKT Cells in HTLV-1-Associated Diseases and Asymptomatic Carriers. Mol Neurobiol 2024; 61:7877-7889. [PMID: 38436833 DOI: 10.1007/s12035-024-03999-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 01/29/2024] [Indexed: 03/05/2024]
Abstract
Human T cell leukemia virus type 1 (HTLV-1) is the first human oncogenic retrovirus to be discovered and causes two major diseases: a progressive neuro-inflammatory disease, termed HTLV-1 associated myelopathy/tropical spastic paraparesis (HAM/TSP), and an aggressive malignancy of T lymphocytes known as adult T cell leukemia (ATL). Innate and acquired immune responses play pivotal roles in controlling the status of HTLV-1-infected cells and such, the outcome of HTLV-1 infection. Natural killer cells (NKCs) are the effector cells of the innate immune system and are involved in controlling viral infections and several types of cancers. The ability of NKCs to trigger cytotoxicity to provide surveillance against viruses and cancer depends on the balance between the inhibitory and activating signals. In this review, we will discuss NKC function and the alterations in the frequency of these cells in HTLV-1 infection.
Collapse
Affiliation(s)
- Maryam Mahdifar
- Immunology Research Center, Inflammation and Inflammatory Diseases Division, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reza Boostani
- Department of Neurology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Graham P Taylor
- Section of Infectious Diseases, Department of Medicine, Imperial College London, London, UK
| | - Seyed Abdolrahim Rezaee
- Immunology Research Center, Inflammation and Inflammatory Diseases Division, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Houshang Rafatpanah
- Immunology Research Center, Inflammation and Inflammatory Diseases Division, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
2
|
Beraldo-Neto E, Amador FC, Fernandes KR, Justo GZ, Lacerda JT, Juliano MA. Proteomic Dynamics of Multidrug Resistance Mechanisms in Lucena 1 Cell Line. Cells 2024; 13:1427. [PMID: 39272999 PMCID: PMC11394376 DOI: 10.3390/cells13171427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/16/2024] [Accepted: 08/20/2024] [Indexed: 09/15/2024] Open
Abstract
The Lucena 1 cell line, derived from the human chronic myeloid leukemia cell line K562 under selective pressure of vincristine supplementation, exhibits multidrug resistance (MDR). This study aims to explore and elucidate the underlying mechanisms driving MDR in the Lucena 1 cell line. A proteomic analysis comparing K562 and Lucena 1 revealed qualitative differences, with a focus on the ATP-dependent efflux pump, Translocase ABCB1, a key contributor to drug resistance. Tubulin analysis identified two unique isoforms, Tubulin beta 8B and alpha chain-like 3, exclusive to Lucena 1, potentially influencing resistance mechanisms. Additionally, the association of Rap1A and Krit1 in cytoskeletal regulation and the presence of STAT1, linked to the urea cycle and tumor development, offered insights into Lucena 1's distinctive biology. The increased expression of carbonic anhydrase I suggested a role in pH regulation. The discovery of COP9, a tumor suppressor targeting p53, further highlighted the Lucena 1 complex molecular landscape. This study offers new insights into the MDR phenotype and its multifactorial consequences in cellular pathways. Thus, unraveling the mechanisms of MDR holds promise for innovating cancer models and antitumor targeted strategies, since inhibiting the P-glycoprotein (P-gp)/ABCB1 protein is not always an effective approach given the associated treatment toxicity.
Collapse
Affiliation(s)
- Emidio Beraldo-Neto
- Biochemistry Laboratory, Butantan Institute, São Paulo 05503-900, Brazil
- Department of Biophysics, Paulista School of Medicine, Federal University of São Paulo, São Paulo 04023-062, Brazil
| | - Fernanda Cardoso Amador
- Department of Biophysics, Paulista School of Medicine, Federal University of São Paulo, São Paulo 04023-062, Brazil
| | - Karolina Rosa Fernandes
- Department of Biophysics, Paulista School of Medicine, Federal University of São Paulo, São Paulo 04023-062, Brazil
| | - Giselle Zenker Justo
- Department of Biochemistry, Paulista School of Medicine, Federal University of São Paulo, São Paulo 04023-062, Brazil
| | - José Thalles Lacerda
- Department of Biophysics, Paulista School of Medicine, Federal University of São Paulo, São Paulo 04023-062, Brazil
| | - Maria A. Juliano
- Department of Biophysics, Paulista School of Medicine, Federal University of São Paulo, São Paulo 04023-062, Brazil
| |
Collapse
|
3
|
Zannikou M, Fish EN, Platanias LC. Signaling by Type I Interferons in Immune Cells: Disease Consequences. Cancers (Basel) 2024; 16:1600. [PMID: 38672681 PMCID: PMC11049350 DOI: 10.3390/cancers16081600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/08/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024] Open
Abstract
This review addresses interferon (IFN) signaling in immune cells and the tumor microenvironment (TME) and examines how this affects cancer progression. The data reveal that IFNs exert dual roles in cancers, dependent on the TME, exhibiting both anti-tumor activity and promoting cancer progression. We discuss the abnormal IFN signaling induced by cancerous cells that alters immune responses to permit their survival and proliferation.
Collapse
Affiliation(s)
- Markella Zannikou
- Robert H. Lurie Comprehensive Cancer Center, Division of Hematology-Oncology, Feinberg School of Medicine, Northwestern University, 303 East Superior Ave., Chicago, IL 60611, USA
| | - Eleanor N. Fish
- Toronto General Hospital Research Institute, University Health Network, 67 College Street, Toronto, ON M5G 2M1, Canada;
- Department of Immunology, University of Toronto, 1 King’s College Circle, Toronto, ON M5S 1A8, Canada
| | - Leonidas C. Platanias
- Robert H. Lurie Comprehensive Cancer Center, Division of Hematology-Oncology, Feinberg School of Medicine, Northwestern University, 303 East Superior Ave., Chicago, IL 60611, USA
- Department of Medicine, Jesse Brown Veterans Affairs Medical Center, 820 S. Damen Ave., Chicago, IL 60612, USA
| |
Collapse
|
4
|
Hu J, Xu H, Wu T, Zhang C, Shen H, Dong R, Hu Q, Xiang Q, Chai S, Luo G, Chen X, Huang Y, Zhao X, Peng C, Wu X, Lin B, Zhang Y, Xu Y. Discovery of Highly Potent and Efficient CBP/p300 Degraders with Strong In Vivo Antitumor Activity. J Med Chem 2024. [PMID: 38649304 DOI: 10.1021/acs.jmedchem.3c02195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
The transcriptional coactivator cAMP response element binding protein (CREB)-binding protein (CBP) and its homologue p300 have emerged as attractive therapeutic targets for human cancers such as acute myeloid leukemia (AML). Herein, we report the design, synthesis, and biological evaluation of a series of cereblon (CRBN)-recruiting CBP/p300 proteolysis targeting chimeras (PROTACs) based on the inhibitor CCS1477. The representative compounds 14g (XYD190) and 14h (XYD198) potently inhibited the growth of AML cells with low nanomolar IC50 values and effectively degraded CBP and p300 proteins in a concentration- and time-dependent manner. Mechanistic studies confirmed that 14g and 14h can selectively bind to CBP/p300 bromodomains and induce CBP and p300 degradation in bromodomain family proteins in a CRBN- and proteasome-dependent manner. 14g and 14h displayed remarkable antitumor efficacy in the MV4;11 xenograft model (TGI = 88% and 93%, respectively). Our findings demonstrated that 14g and 14h are useful lead compounds and deserve further optimization and activity evaluation for the treatment of human cancers.
Collapse
Affiliation(s)
- Jiankang Hu
- China-New Zealand Joint Laboratory of Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Biocomputing, Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Guangzhou 510530, China
- University of Chinese Academy of Sciences, No. 19 Yuquan Road, Beijing 100049, China
| | - Hongrui Xu
- Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Guangzhou Medical University, Guangzhou 511436, China
| | - Tianbang Wu
- China-New Zealand Joint Laboratory of Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Biocomputing, Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Guangzhou 510530, China
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Cheng Zhang
- China-New Zealand Joint Laboratory of Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Biocomputing, Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Guangzhou 510530, China
| | - Hui Shen
- China-New Zealand Joint Laboratory of Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Biocomputing, Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Guangzhou 510530, China
| | - Ruibo Dong
- China-New Zealand Joint Laboratory of Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Biocomputing, Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Guangzhou 510530, China
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin 130021, China
| | - Qingqing Hu
- China-New Zealand Joint Laboratory of Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Biocomputing, Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Guangzhou 510530, China
| | - Qiuping Xiang
- Ningbo No. 2 Hospital, Ningbo, Zhejiang 315010, China
- Guoke Ningbo Life Science and Health Industry Research Institute, Ningbo, Zhejiang 315010, China
| | - Shuang Chai
- China-New Zealand Joint Laboratory of Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Biocomputing, Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Guangzhou 510530, China
| | - Guolong Luo
- China-New Zealand Joint Laboratory of Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Biocomputing, Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Guangzhou 510530, China
| | - Xiaoshan Chen
- China-New Zealand Joint Laboratory of Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Biocomputing, Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Guangzhou 510530, China
- University of Chinese Academy of Sciences, No. 19 Yuquan Road, Beijing 100049, China
| | - Yumin Huang
- China-New Zealand Joint Laboratory of Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Biocomputing, Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Guangzhou 510530, China
- University of Chinese Academy of Sciences, No. 19 Yuquan Road, Beijing 100049, China
| | - Xiaofan Zhao
- Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Guangzhou Medical University, Guangzhou 511436, China
| | - Chao Peng
- Jiangsu S&T Exchange Center with Foreign Countries, No. 175 Longpan Road, Nanjing 210042, China
| | - Xishan Wu
- China-New Zealand Joint Laboratory of Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Biocomputing, Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Guangzhou 510530, China
| | - Bin Lin
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yan Zhang
- China-New Zealand Joint Laboratory of Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Biocomputing, Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Guangzhou 510530, China
| | - Yong Xu
- China-New Zealand Joint Laboratory of Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Biocomputing, Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Guangzhou 510530, China
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
5
|
Lim L, Hu MH, Fan D, Tu HF, Tsai YC, Cheng M, Wang S, Chang CL, Wu TC, Hung CF. STAT1-Deficient HPV E6/E7-Associated Cancers Maintain Host Immunocompetency against Therapeutic Intervention. Vaccines (Basel) 2024; 12:430. [PMID: 38675812 PMCID: PMC11053987 DOI: 10.3390/vaccines12040430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/05/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Human papillomavirus (HPV) remains a global health concern because it contributes to the initiation of various HPV-associated cancers such as anal, cervical, oropharyngeal, penile, vaginal, and vulvar cancer. In HPV-associated cancers, oncogenesis begins with an HPV infection, which is linked to the activation of the Janus protein tyrosine kinase (JAK)/STAT signaling pathway. Various STAT signaling pathways, such as STAT3 activation, have been well documented for their tumorigenic role, yet the role of STAT1 in tumor formation remains unclear. In the current study, STAT1-/- mice were used to investigate the role of STAT1 in the tumorigenesis of a spontaneous HPV E6/E7-expressing oral tumor model. Subsequently, our candidate HPV DNA vaccine CRT/E7 was administered to determine whether the STAT1-/- host preserves a therapeutic-responsive tumor microenvironment. The results indicated that STAT1-/- induces robust tumorigenesis, yet a controlled tumor response was attained upon CRT/E7 vaccination. Characterizing this treatment effect, immunological analysis found a higher percentage of circulating CD4+ and CD8+ T cells and tumor-specific cytotoxic T cells. In addition, a reduction in exhaustive lymphocyte activity was observed. Further analysis of a whole-cell tumor challenge affirmed these findings, as spontaneous tumor growth was more rapid in STAT1-/- mice. In conclusion, STAT1 deletion accelerates tumorigenesis, but STAT1-/- mice maintains immunocompetency in CRT/E7 treatments.
Collapse
Affiliation(s)
- Ling Lim
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA (T.-C.W.)
- Department of Obstetrics and Gynecology, MacKay Memorial Hospital, Taipei 104217, Taiwan;
| | - Ming-Hung Hu
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA (T.-C.W.)
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei 100, Taiwan
- Division of Hematology and Oncology, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei 11031, Taiwan
- Cancer Center, Wan Fang Hospital, Taipei Medical University, Taipei 11031, Taiwan
| | - Darrell Fan
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA (T.-C.W.)
| | - Hsin-Fang Tu
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA (T.-C.W.)
| | - Ya-Chea Tsai
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA (T.-C.W.)
| | - Michelle Cheng
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA (T.-C.W.)
| | - Suyang Wang
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA (T.-C.W.)
| | - Chih-Long Chang
- Department of Obstetrics and Gynecology, MacKay Memorial Hospital, Taipei 104217, Taiwan;
| | - Tzyy-Choou Wu
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA (T.-C.W.)
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
- Department of Obstetrics and Gynecology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
- Molecular Microbiology and Immunology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Chien-Fu Hung
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA (T.-C.W.)
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| |
Collapse
|
6
|
Wang W, Lopez McDonald MC, Hariprasad R, Hamilton T, Frank DA. Oncogenic STAT Transcription Factors as Targets for Cancer Therapy: Innovative Strategies and Clinical Translation. Cancers (Basel) 2024; 16:1387. [PMID: 38611065 PMCID: PMC11011165 DOI: 10.3390/cancers16071387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 03/25/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024] Open
Abstract
Despite advances in our understanding of molecular aspects of oncogenesis, cancer remains a leading cause of death. The malignant behavior of a cancer cell is driven by the inappropriate activation of transcription factors. In particular, signal transducers and activators of transcription (STATs), which regulate many critical cellular processes such as proliferation, apoptosis, and differentiation, are frequently activated inappropriately in a wide spectrum of human cancers. Multiple signaling pathways converge on the STATs, highlighting their importance in the development and progression of oncogenic diseases. STAT3 and STAT5 are two members of the STAT protein family that are the most frequently activated in cancers and can drive cancer pathogenesis directly. The development of inhibitors targeting STAT3 and STAT5 has been the subject of intense investigations in the last decade, although effective treatment options remain limited. In this review, we investigate the specific roles of STAT3 and STAT5 in normal physiology and cancer biology, discuss the opportunities and challenges in pharmacologically targeting STAT proteins and their upstream activators, and offer insights into novel therapeutic strategies to identify STAT inhibitors as cancer therapeutics.
Collapse
Affiliation(s)
- Weiyuan Wang
- Department of Hematology and Medical Oncology, Winship Cancer Institute, School of Medicine, Emory University, Atlanta, GA 30322, USA; (W.W.); (M.C.L.M.); (T.H.)
| | - Melanie Cristina Lopez McDonald
- Department of Hematology and Medical Oncology, Winship Cancer Institute, School of Medicine, Emory University, Atlanta, GA 30322, USA; (W.W.); (M.C.L.M.); (T.H.)
| | | | - Tiara Hamilton
- Department of Hematology and Medical Oncology, Winship Cancer Institute, School of Medicine, Emory University, Atlanta, GA 30322, USA; (W.W.); (M.C.L.M.); (T.H.)
| | - David A. Frank
- Department of Hematology and Medical Oncology, Winship Cancer Institute, School of Medicine, Emory University, Atlanta, GA 30322, USA; (W.W.); (M.C.L.M.); (T.H.)
| |
Collapse
|
7
|
Liang D, Wang Q, Zhang W, Tang H, Song C, Yan Z, Liang Y, Wang H. JAK/STAT in leukemia: a clinical update. Mol Cancer 2024; 23:25. [PMID: 38273387 PMCID: PMC10811937 DOI: 10.1186/s12943-023-01929-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 12/28/2023] [Indexed: 01/27/2024] Open
Abstract
Over the past three decades, considerable efforts have been expended on understanding the Janus kinase/signal transducer and activator of transcription (JAK/STAT) signaling pathway in leukemia, following the identification of the JAK2V617F mutation in myeloproliferative neoplasms (MPNs). The aim of this review is to summarize the latest progress in our understanding of the involvement of the JAK/STAT signaling pathway in the development of leukemia. We also attempt to provide insights into the current use of JAK/STAT inhibitors in leukemia therapy and explore pertinent clinical trials in this field.
Collapse
Affiliation(s)
- Dong Liang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Qiaoli Wang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Wenbiao Zhang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Hailin Tang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Cailu Song
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Zhimin Yan
- Department of Hematology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China.
| | - Yang Liang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, China.
| | - Hua Wang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, China.
| |
Collapse
|
8
|
Chen X, Xu Z, Zhou W, Zhang L, Huang J, Bao D. Single-Cell Transcriptomics Reveals STAT1 Drives LHPP Downregulation in Esophageal Squamous Cell Carcinoma Progression. Technol Cancer Res Treat 2024; 23:15330338241293485. [PMID: 39497541 PMCID: PMC11536641 DOI: 10.1177/15330338241293485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/09/2024] [Accepted: 09/20/2024] [Indexed: 11/07/2024] Open
Abstract
BACKGROUND Esophageal Squamous Cell Carcinoma (ESCC) poses a significant health challenge in China due to its high incidence and mortality. Single-cell transcriptomics has transformed the approach to cancer research, allowing detailed analysis of cellular and molecular heterogeneity. The interaction between the transcription factor STAT1 and the tumor suppressor LHPP is crucial, potentially influencing cancer progression and therapeutic outcomes. OBJECTIVE This study aims to explore the molecular mechanisms and cellular dynamics underlying ESCC, with a focus on the role of transcription factors, particularly STAT1, and its regulatory relationship with LHPP, in the pathogenesis of ESCC. METHODS Utilizing single-cell transcriptomics data sourced from the public database GEO (GSE160269), we identified major cell types and their transcriptomic changes in ESCC patients. Differential gene expression profiles were examined to understand the dynamics of the tumor microenvironment (TME). A cohort of 21 ESCC patients was recruited to validate the findings. Furthermore, in ESCC cell lines, we validated the transcriptional regulatory relationship between STAT1 and LHPP. RESULTS Our analysis identified six major cell types within the ESCC microenvironment, revealing significant changes in cellular composition and gene expression profiles associated with tumorigenesis. Notably, a novel association between STAT1's regulatory role over LHPP was observed, suggesting a complex regulatory loop in ESCC pathogenesis. Elevated STAT1 and reduced LHPP expression were confirmed in patient samples with STAT1 negatively regulates LHPP expression at the promoter level; when the promoter binding motif regions were mutated, the transcriptional repression ability on LHPP was weakened. CONCLUSION The study highlights STAT1 as a core regulator in ESCC, directly influencing LHPP expression. The findings offer novel insights into the molecular mechanisms driving ESCC, shedding light on the cellular alterations and gene regulation dynamics within the ESCC microenvironment. This research provides a foundation for developing targeted therapeutic strategies, potentially utilizing the STAT1-LHPP axis as a focal point in ESCC treatment and prognosis.
Collapse
Affiliation(s)
- Xia Chen
- Department of Pathology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, China
| | - Zhiyun Xu
- Department of Thoracic Surgery, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, China
| | - Wubi Zhou
- Department of Pathology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, China
| | - Lili Zhang
- Department of Pathology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, China
| | - Jian Huang
- Department of Pathology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, China
| | - Dawei Bao
- Department of Pathology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, China
| |
Collapse
|
9
|
Xie X, Zhang W, Zhou X, Xu B, Wang H, Qiu Y, Hu Y, Guo B, Ye Z, Hu L, Zhang H, Li Y, Bai X. Low doses of IFN-γ maintain self-renewal of leukemia stem cells in acute myeloid leukemia. Oncogene 2023; 42:3657-3669. [PMID: 37872214 DOI: 10.1038/s41388-023-02874-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 10/25/2023]
Abstract
Conventional therapies for acute myeloid leukemia (AML) often fail to eliminate the disease-initiating leukemia stem cell (LSC) population, leading to disease relapse. Interferon-γ (IFN-γ) is a known inflammatory cytokine that promotes antitumor responses. Here, we found that low serum IFN-γ levels correlated with a higher percentage of LSCs and greater relapse incidence in AML patients. Furthermore, IFNGR1 was overexpressed in relapsed patients with AML and associated with a poor prognosis. We showed that high doses (5-10 μg/day) of IFN-γ exerted an anti-AML effect, while low doses (0.01-0.05 μg/day) of IFN-γ accelerated AML development and supported LSC self-renewal in patient-derived AML-LSCs and in an LSC-enriched MLL-AF9-driven mouse model. Importantly, targeting the IFN-γ receptor IFNGR1 by using lentiviral shRNAs or neutralizing antibodies induced AML differentiation and delayed leukemogenesis in vitro and in mice. Overall, we uncovered essential roles for IFN-γ and IFNGR1 in AML stemness and showed that targeting IFNGR1 is a strategy to decrease stemness and increase differentiation in relapsed AML patients.
Collapse
Affiliation(s)
- Xiaoling Xie
- Department of Hematology, Zhujiang Hospital, Southern Medical University, 510280, Guangzhou, China.
| | - Wuju Zhang
- Central Laboratory, The Fifth Affiliated Hospital, Southern Medical University, 510910, Guangzhou, China
| | - Xuan Zhou
- Department of Hematology, Zhujiang Hospital, Southern Medical University, 510280, Guangzhou, China
| | - Binyan Xu
- Department of Hematology, Zhujiang Hospital, Southern Medical University, 510280, Guangzhou, China
| | - Hao Wang
- Department of Hematology, Zhujiang Hospital, Southern Medical University, 510280, Guangzhou, China
| | - Yingqi Qiu
- Department of Hematology, Zhujiang Hospital, Southern Medical University, 510280, Guangzhou, China
| | - Yuxing Hu
- Department of Hematology, Zhujiang Hospital, Southern Medical University, 510280, Guangzhou, China
| | - Bin Guo
- Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, 510515, Guangzhou, China
| | - Zhixin Ye
- Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, 510515, Guangzhou, China
| | - Le Hu
- Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, 510515, Guangzhou, China
| | - Honghao Zhang
- Department of Hematology, Zhujiang Hospital, Southern Medical University, 510280, Guangzhou, China
| | - Yuhua Li
- Department of Hematology, Zhujiang Hospital, Southern Medical University, 510280, Guangzhou, China.
| | - Xiaochun Bai
- Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, 510515, Guangzhou, China.
| |
Collapse
|
10
|
Hu J, Yan J, Chen Y, Li X, Yang L, Di H, Zhang H, Shi Y, Zhao J, Shi Y, Xu Y, Ren X, Wang Z. ESCO2 promotes hypopharyngeal carcinoma progression in a STAT1-dependent manner. BMC Cancer 2023; 23:1114. [PMID: 37968576 PMCID: PMC10647066 DOI: 10.1186/s12885-023-11527-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 10/14/2023] [Indexed: 11/17/2023] Open
Abstract
BACKGROUND The establishment of sister chromatid cohesion N-acetyltransferase 2 (ESCO2) is involved in the development of multiple malignancies. However, its role in hypopharyngeal carcinoma (HPC) progression remains uncharacterized. METHODS This study employed bioinformatics to determine the ESCO2 expression in head and neck squamous cell carcinoma (HNSC) and normal tissues. In vitro cell proliferation, migration, apoptosis, and/or cell cycle distribution assays were used to determine the function of ESCO2 and its relationship with STAT1. Xenograft models were established in nude mice to determine ESCO2 in HPC growth in vivo. Co-immunoprecipitation/mass spectrometry (Co-IP/MS) was conducted to identify the potential ESCO2 binding partners. RESULTS We found that ESCO2 expression was elevated in HNSC tissues, and ESCO2 depletion suppressed tumor cell migration in vitro and inhibited tumor growth in vitro and in vivo. Co-IP/MS and immunoblotting assays revealed the interaction between ESCO2 and STAT1 in HPC cells. STAT1-overexpression compromised ESCO2-mediated suppressive effects on HPC cell proliferation, viability, and migration. CONCLUSIONS These findings suggest that ESCO2 is crucial in promoting HPC malignant progression through the STAT1 pathway and provides novel therapeutic targets for HPC treatment.
Collapse
Affiliation(s)
- Juan Hu
- Department of Otorhinolaryngology, Head and Neck Surgery, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Jing Yan
- Department of Otorhinolaryngology, Head and Neck Surgery, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yijie Chen
- Department of Otorhinolaryngology, Head and Neck Surgery, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Xiaohui Li
- Department of Otorhinolaryngology, Head and Neck Surgery, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Liu Yang
- Department of Otorhinolaryngology, Head and Neck Surgery, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Haiyu Di
- Department of Otorhinolaryngology, Head and Neck Surgery, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Huihui Zhang
- Department of Otorhinolaryngology, Head and Neck Surgery, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yewen Shi
- Department of Otorhinolaryngology, Head and Neck Surgery, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Junjie Zhao
- Department of Otorhinolaryngology, Head and Neck Surgery, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yanxia Shi
- Department of Otorhinolaryngology, Head and Neck Surgery, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yinglong Xu
- Department of Otorhinolaryngology, Head and Neck Surgery, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Xiaoyong Ren
- Department of Otorhinolaryngology, Head and Neck Surgery, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Zhenghui Wang
- Department of Otorhinolaryngology, Head and Neck Surgery, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.
- Department of Maxillofacial Surgery, Affiliated Stomatological Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.
| |
Collapse
|
11
|
Ibáñez-Navarro M, Fernández A, Escudero A, Esteso G, Campos-Silva C, Navarro-Aguadero MÁ, Leivas A, Caracuel BR, Rodríguez-Antolín C, Ortiz A, Navarro-Zapata A, Mestre-Durán C, Izquierdo M, Balaguer-Pérez M, Ferreras C, Martínez-López J, Valés-Gómez M, Pérez-Martínez A, Fernández L. NKG2D-CAR memory T cells target pediatric T-cell acute lymphoblastic leukemia in vitro and in vivo but fail to eliminate leukemia initiating cells. Front Immunol 2023; 14:1187665. [PMID: 37928520 PMCID: PMC10622787 DOI: 10.3389/fimmu.2023.1187665] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 10/02/2023] [Indexed: 11/07/2023] Open
Abstract
Introduction Refractory/relapsed pediatric acute leukemia are still clinically challenging and new therapeutic strategies are needed. Interactions between Natural Killer Group 2D (NKG2D) receptor, expressed in cytotoxic immune cells, and its ligands (NKG2DL), which are upregulated in leukemic blasts, are important for anti-leukemia immunosurveillance. Nevertheless, leukemia cells may develop immunoescape strategies as NKG2DL shedding and/or downregulation. Methods In this report, we analyzed the anti-leukemia activity of NKG2D chimeric antigen receptor (CAR) redirected memory (CD45RA-) T cells in vitro and in a murine model of T-cell acute lymphoblastic leukemia (T-ALL). We also explored in vitro how soluble NKG2DL (sNKG2DL) affected NKG2D-CAR T cells' cytotoxicity and the impact of NKG2D-CAR T cells on Jurkat cells gene expression and in vivo functionality. Results In vitro, we found NKG2D-CAR T cells targeted leukemia cells and showed resistance to the immunosuppressive effects exerted by sNKG2DL. In vivo, NKG2D-CAR T cells controlled T cell leukemia burden and increased survival of the treated mice but failed to cure the animals. After CAR T cell treatment, Jurkat cells upregulated genes related to proliferation, survival and stemness, and in vivo, they exhibited functional properties of leukemia initiating cells. Discussion The data here presented suggest, that, in combination with other therapeutic approaches, NKG2D-CAR T cells could be a novel treatment for pediatric T-ALL.
Collapse
Affiliation(s)
- Marta Ibáñez-Navarro
- Hematological Malignancies-H12O Lab. Clinical Research Department, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Adrián Fernández
- Hematological Malignancies-H12O Lab. Clinical Research Department, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Adela Escudero
- Pediatric Oncology Department, Instituto de Genética Médica y Molecular (INGEMM), Hospital Universitario La Paz, Madrid, Spain
| | - Gloria Esteso
- Tumor Immune Activation and Evasion Lab. Immunology and Oncology Department, National Biotechnology Center (CNB), Madrid, Spain
| | - Carmen Campos-Silva
- Tumor Immune Activation and Evasion Lab. Immunology and Oncology Department, National Biotechnology Center (CNB), Madrid, Spain
| | - Miguel Ángel Navarro-Aguadero
- Hematological Malignancies-H12O Lab. Clinical Research Department, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Alejandra Leivas
- Hematological Malignancies-H12O Lab. Clinical Research Department, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
- Hematology Department, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Beatriz Ruz Caracuel
- Pediatric Oncology Department, Instituto de Genética Médica y Molecular (INGEMM), Hospital Universitario La Paz, Madrid, Spain
| | - Carlos Rodríguez-Antolín
- Biomarkers and Experimental Therapeutics in Cancer, Hospital La Paz Institute for Health Research-IdiPAZ, Madrid, Spain
- Cancer Epigenetics Laboratory, Genetic Unit, Hospital Universitario La Paz, Madrid, Spain
| | - Alejandra Ortiz
- Hematological Malignancies-H12O Lab. Clinical Research Department, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
- Hematology Department, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Alfonso Navarro-Zapata
- Translational Research in Pediatric Oncology, Hematopoietic Transplantation and Cell Therapy, IdiPAZ, Hospital Universitario La Paz, Madrid, Spain
| | - Carmen Mestre-Durán
- Translational Research in Pediatric Oncology, Hematopoietic Transplantation and Cell Therapy, IdiPAZ, Hospital Universitario La Paz, Madrid, Spain
| | - Manuel Izquierdo
- Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM), Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain
| | - María Balaguer-Pérez
- Hematological Malignancies-H12O Lab. Clinical Research Department, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Cristina Ferreras
- Translational Research in Pediatric Oncology, Hematopoietic Transplantation and Cell Therapy, IdiPAZ, Hospital Universitario La Paz, Madrid, Spain
| | - Joaquín Martínez-López
- Hematological Malignancies-H12O Lab. Clinical Research Department, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
- Hematology Department, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Mar Valés-Gómez
- Tumor Immune Activation and Evasion Lab. Immunology and Oncology Department, National Biotechnology Center (CNB), Madrid, Spain
| | - Antonio Pérez-Martínez
- Translational Research in Pediatric Oncology, Hematopoietic Transplantation and Cell Therapy, IdiPAZ, Hospital Universitario La Paz, Madrid, Spain
- Pediatric Hemato-Oncology, Hospital Universitario La Paz, Madrid, Spain
- Pediatric Department, Universidad Autónoma de Madrid, Madrid, Spain
| | - Lucía Fernández
- Hematological Malignancies-H12O Lab. Clinical Research Department, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| |
Collapse
|
12
|
Parackova Z, Vrabcova P, Zentsova I, Sediva A, Bloomfield M. Neutrophils in STAT1 Gain-Of-Function Have a Pro-inflammatory Signature Which Is Not Rescued by JAK Inhibition. J Clin Immunol 2023; 43:1640-1659. [PMID: 37358695 PMCID: PMC10499747 DOI: 10.1007/s10875-023-01528-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 05/28/2023] [Indexed: 06/27/2023]
Abstract
STAT1 gain-of-function (GOF) mutations cause an inborn error of immunity with diverse phenotype ranging from chronic mucocutaneous candidiasis (CMC) to various non-infectious manifestations, the most precarious of which are autoimmunity and vascular complications. The pathogenesis centers around Th17 failure but is far from being understood. We hypothesized that neutrophils, whose functions have not been explored in the context of STAT1 GOF CMC yet, might be involved in the associated immunodysregulatory and vascular pathology. In a cohort of ten patients, we demonstrate that STAT1 GOF human ex-vivo peripheral blood neutrophils are immature and highly activated; have strong propensity for degranulation, NETosis, and platelet-neutrophil aggregation; and display marked inflammatory bias. STAT1 GOF neutrophils exhibit increased basal STAT1 phosphorylation and expression of IFN stimulated genes, but contrary to other immune cells, STAT1 GOF neutrophils do not display hyperphosphorylation of STAT1 molecule upon stimulation with IFNs. The patient treatment with JAKinib ruxolitinib does not ameliorate the observed neutrophil aberrations. To our knowledge, this is the first work describing features of peripheral neutrophils in STAT1 GOF CMC. The presented data suggest that neutrophils may contribute to the immune pathophysiology of the STAT1 GOF CMC.
Collapse
Affiliation(s)
- Zuzana Parackova
- Department of Immunology, 2nd Faculty of Medicine Charles University, University Hospital in Motol, V Uvalu 84, 515006, Prague, Czech Republic.
| | - Petra Vrabcova
- Department of Immunology, 2nd Faculty of Medicine Charles University, University Hospital in Motol, V Uvalu 84, 515006, Prague, Czech Republic
| | - Irena Zentsova
- Department of Immunology, 2nd Faculty of Medicine Charles University, University Hospital in Motol, V Uvalu 84, 515006, Prague, Czech Republic
| | - Anna Sediva
- Department of Immunology, 2nd Faculty of Medicine Charles University, University Hospital in Motol, V Uvalu 84, 515006, Prague, Czech Republic
| | - Marketa Bloomfield
- Department of Immunology, 2nd Faculty of Medicine Charles University, University Hospital in Motol, V Uvalu 84, 515006, Prague, Czech Republic
| |
Collapse
|
13
|
Jung SM, Baek IW, Park KS, Kim KJ. De novo molecular subtyping of salivary gland tissue in the context of Sjögren's syndrome heterogeneity. Clin Immunol 2022; 245:109171. [DOI: 10.1016/j.clim.2022.109171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 11/08/2022]
|
14
|
The JAK-STAT pathway at 30: Much learned, much more to do. Cell 2022; 185:3857-3876. [PMID: 36240739 PMCID: PMC9815833 DOI: 10.1016/j.cell.2022.09.023] [Citation(s) in RCA: 269] [Impact Index Per Article: 89.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/01/2022] [Accepted: 09/14/2022] [Indexed: 11/24/2022]
Abstract
The discovery of the Janus kinase (JAK)-signal transducer and activator of transcription (STAT) pathway arose from investigations of how cells respond to interferons (IFNs), revealing a paradigm in cell signaling conserved from slime molds to mammals. These discoveries revealed mechanisms underlying rapid gene expression mediated by a wide variety of extracellular polypeptides including cytokines, interleukins, and related factors. This knowledge has provided numerous insights into human disease, from immune deficiencies to cancer, and was rapidly translated to new drugs for autoimmune, allergic, and infectious diseases, including COVID-19. Despite these advances, major challenges and opportunities remain.
Collapse
|
15
|
Pujantell M, Altfeld M. Consequences of sex differences in Type I IFN responses for the regulation of antiviral immunity. Front Immunol 2022; 13:986840. [PMID: 36189206 PMCID: PMC9522975 DOI: 10.3389/fimmu.2022.986840] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/24/2022] [Indexed: 12/02/2022] Open
Abstract
The immune system protects us from pathogens, such as viruses. Antiviral immune mechanisms aim to limit viral replication, and must maintain immunological homeostasis to avoid excessive inflammation and damage to the host. Sex differences in the manifestation and progression of immune-mediated disease point to sex-specific factors modulating antiviral immunity. The exact mechanisms regulating these immunological differences between females and males are still insufficiently understood. Females are known to display stronger Type I IFN responses and are less susceptible to viral infections compared to males, indicating that Type I IFN responses might contribute to the sexual dimorphisms observed in antiviral responses. Here, we review the impact of sex hormones and X chromosome-encoded genes on differences in Type I IFN responses between females and males; and discuss the consequences of sex differences in Type I IFN responses for the regulation of antiviral immune responses.
Collapse
Affiliation(s)
| | - Marcus Altfeld
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
16
|
Deng Y, Hu B, Miao Y, Wang J, Zhang S, Wan H, Wu Z, Lv Y, Feng J, Ji N, Park D, Hao S. A Nicotinamide Phosphoribosyltransferase Inhibitor, FK866, Suppresses the Growth of Anaplastic Meningiomas and Inhibits Immune Checkpoint Expression by Regulating STAT1. Front Oncol 2022; 12:836257. [PMID: 35515130 PMCID: PMC9065474 DOI: 10.3389/fonc.2022.836257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 03/22/2022] [Indexed: 11/18/2022] Open
Abstract
Anaplastic meningioma is classified as a World Health Organization (WHO) grade III tumor and shows a strong tendency to recur. Although the incidence of anaplastic meningioma is low, the high rate of recurrence and death still makes treatment a challenge. A proteomics analysis was performed to investigate the differentially expressed proteins between anaplastic meningiomas and fibrous meningiomas by micro-LC-MS/MS. The key metabolic enzyme nicotinamide phosphoribosyltransferase (NAMPT) showed upregulated expression in anaplastic meningiomas. However, targeting NAMPT to treat anaplastic meningiomas has not been reported. In vitro, NAMPT inhibitor -FK866 reduced the viability of anaplastic meningiomas by inducing cell cycle arrest at the G2/M phase. Intriguingly, the NAMPT inhibitor -FK866 decreased the protein expression of immune checkpoints PD-L1 and B7-H3 by down-regulating the STAT1 and p-STAT1 expression in vitro. Furthermore, FK866 suppressed the growth of anaplastic meningiomas in an in vivo xenograft model. The expression of Ki-67 and immune checkpoint proteins (PD-L1 and B7-H3) showed significant differences between the group treated with FK866 and the control group treated with DMSO. In conclusion, the expression of NAMPT, which plays a crucial role in energy metabolism, was upregulated in anaplastic meningiomas. The NAMPT inhibitor -FK866 significantly suppressed the growth of anaplastic meningiomas in vitro and in vivo. More strikingly, FK866 potently inhibited immune checkpoint protein (PD-L1 and B7-H3) expression by regulating STAT1 in vitro and in vivo. Our results demonstrated that NAMPT inhibitors could potentially be an effective treatment method for patients suffering from anaplastic meningiomas.
Collapse
Affiliation(s)
- Yuxuan Deng
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Boyi Hu
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Yazhou Miao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jing Wang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Shaodong Zhang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Hong Wan
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Zhen Wu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yifan Lv
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jie Feng
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Nan Ji
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Deric Park
- Department of Neurology, University of Chicago Medical Center, Chicago, IL, United States
| | - Shuyu Hao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
17
|
JAK-STAT1 Signaling Pathway Is an Early Response to Helicobacter pylori Infection and Contributes to Immune Escape and Gastric Carcinogenesis. Int J Mol Sci 2022; 23:ijms23084147. [PMID: 35456965 PMCID: PMC9031264 DOI: 10.3390/ijms23084147] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 03/22/2022] [Indexed: 01/05/2023] Open
Abstract
Helicobacter pylori infection induces a number of pro-inflammatory signaling pathways contributing to gastric inflammation and carcinogenesis and has been identified as a major risk factor for the development of gastric cancer (GC). Janus kinase-signal transducer and activator of transcription (JAK-STAT) signaling mediates immune regulatory processes, including tumor-driven immune escape. Programmed death ligand 1 (PD-L1) expressed on gastric epithelium can suppress the immune system by shutting down T cell effector function. In a human cohort of subjects with gastric lesions and GC analyzed by proteomics, STAT1 increased along the cascade of progression of precancerous gastric lesions to GC and was further associated with a poor prognosis of GC (Hazard Ratio (95% confidence interval): 2.34 (1.04-5.30)). We observed that STAT1 was activated in human H. pylori-positive gastritis, while in GC, STAT1, and its target gene, PD-L1, were significantly elevated. To confirm the dependency of H. pylori, we infected gastric epithelial cells in vitro and observed strong activation of STAT1 and upregulation of PD-L1, which depended on cytokines produced by immune cells. To investigate the correlation of immune infiltration with STAT1 activation and PD-L1 expression, we employed a mouse model of H. pylori-induced gastric lesions in an Rnf43-deficient background. Here, phosphorylated STAT1 and PD-L1 were correlated with immune infiltration and proliferation. STAT1 and PD-L1 were upregulated in gastric tumor tissues compared with normal tissues and were associated with immune infiltration and poor prognosis based on the TCGA-STAD database. H. pylori-induced activation of STAT1 and PD-L1 expression may prevent immune surveillance in the gastric mucosa, allowing premalignant lesions to progress to gastric cancer.
Collapse
|
18
|
Erdogan F, Radu TB, Orlova A, Qadree AK, de Araujo ED, Israelian J, Valent P, Mustjoki SM, Herling M, Moriggl R, Gunning PT. JAK-STAT core cancer pathway: An integrative cancer interactome analysis. J Cell Mol Med 2022; 26:2049-2062. [PMID: 35229974 PMCID: PMC8980946 DOI: 10.1111/jcmm.17228] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/14/2021] [Accepted: 12/22/2021] [Indexed: 12/25/2022] Open
Abstract
Through a comprehensive review and in silico analysis of reported data on STAT-linked diseases, we analysed the communication pathways and interactome of the seven STATs in major cancer categories and proposed rational targeting approaches for therapeutic intervention to disrupt critical pathways and addictions to hyperactive JAK/STAT in neoplastic states. Although all STATs follow a similar molecular activation pathway, STAT1, STAT2, STAT4 and STAT6 exert specific biological profiles associated with a more restricted pattern of activation by cytokines. STAT3 and STAT5A as well as STAT5B have pleiotropic roles in the body and can act as critical oncogenes that promote many processes involved in cancer development. STAT1, STAT3 and STAT5 also possess tumour suppressive action in certain mutational and cancer type context. Here, we demonstrated member-specific STAT activity in major cancer types. Through systems biology approaches, we found surprising roles for EGFR family members, sex steroid hormone receptor ESR1 interplay with oncogenic STAT function and proposed new drug targeting approaches of oncogenic STAT pathway addiction.
Collapse
Affiliation(s)
- Fettah Erdogan
- Department of Chemical and Physical SciencesUniversity of Toronto MississaugaMississaugaOntarioCanada
- Department of ChemistryUniversity of TorontoTorontoOntarioCanada
| | - Tudor Bogdan Radu
- Department of Chemical and Physical SciencesUniversity of Toronto MississaugaMississaugaOntarioCanada
- Department of ChemistryUniversity of TorontoTorontoOntarioCanada
| | - Anna Orlova
- Institute of Animal Breeding and GeneticsUniversity of Veterinary MedicineViennaAustria
| | - Abdul Khawazak Qadree
- Department of Chemical and Physical SciencesUniversity of Toronto MississaugaMississaugaOntarioCanada
- Department of ChemistryUniversity of TorontoTorontoOntarioCanada
| | - Elvin Dominic de Araujo
- Department of Chemical and Physical SciencesUniversity of Toronto MississaugaMississaugaOntarioCanada
| | - Johan Israelian
- Department of Chemical and Physical SciencesUniversity of Toronto MississaugaMississaugaOntarioCanada
- Department of ChemistryUniversity of TorontoTorontoOntarioCanada
| | - Peter Valent
- Division of Hematology and HemostaseologyDepartment of Internal Medicine IMedical University of ViennaViennaAustria
- Ludwig Boltzmann Institute for Hematology and OncologyMedical University of ViennaViennaAustria
| | - Satu M. Mustjoki
- Translational Immunology Research Program and Department of Clinical Chemistry and HematologyUniversity of HelsinkiHelsinkiFinland
- Hematology Research UnitHelsinki University Hospital Comprehensive Cancer CenterHelsinkiFinland
- iCAN Digital Precision Cancer Medicine FlagshipHelsinkiFinland
| | - Marco Herling
- Department of Hematology, Cellular Therapy, and HemostaseologyUniversity of LeipzigLeipzigGermany
| | - Richard Moriggl
- Institute of Animal Breeding and GeneticsUniversity of Veterinary MedicineViennaAustria
| | - Patrick Thomas Gunning
- Department of Chemical and Physical SciencesUniversity of Toronto MississaugaMississaugaOntarioCanada
- Department of ChemistryUniversity of TorontoTorontoOntarioCanada
| |
Collapse
|
19
|
Erdogan F, Qadree AK, Radu TB, Orlova A, de Araujo ED, Israelian J, Valent P, Mustjoki SM, Herling M, Moriggl R, Gunning PT. Structural and mutational analysis of member-specific STAT functions. Biochim Biophys Acta Gen Subj 2022; 1866:130058. [PMID: 34774983 DOI: 10.1016/j.bbagen.2021.130058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 10/29/2021] [Accepted: 11/05/2021] [Indexed: 12/21/2022]
Abstract
BACKGROUND The STAT family of transcription factors control gene expression in response to signals from various stimulus. They display functions in diseases ranging from autoimmunity and chronic inflammatory disease to cancer and infectious disease. SCOPE OF REVIEW This work uses an approach informed by structural data to explore how domain-specific structural variations, post-translational modifications, and the cancer genome mutational landscape dictate STAT member-specific activities. MAJOR CONCLUSIONS We illustrated the structure-function relationship of STAT proteins and highlighted their effect on member-specific activity. We correlated disease-linked STAT mutations to the structure and cancer genome mutational landscape and proposed rational drug targeting approaches of oncogenic STAT pathway addiction. GENERAL SIGNIFICANCE Hyper-activated STATs and their variants are associated with multiple diseases and are considered high value oncology targets. A full understanding of the molecular basis of member-specific STAT-mediated signaling and the strategies to selectively target them requires examination of the difference in their structures and sequences.
Collapse
Affiliation(s)
- Fettah Erdogan
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Rd N., Mississauga, Canada; Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Canada
| | - Abdul K Qadree
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Rd N., Mississauga, Canada; Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Canada
| | - Tudor B Radu
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Rd N., Mississauga, Canada; Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Canada
| | - Anna Orlova
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine, A-1210 Vienna, Austria
| | - Elvin D de Araujo
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Rd N., Mississauga, Canada
| | - Johan Israelian
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Rd N., Mississauga, Canada; Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Canada
| | - Peter Valent
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, Vienna, Austria; Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, Vienna, Austria
| | - Satu M Mustjoki
- Hematology Research Unit, Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland; Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki, Helsinki, Finland; iCAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland
| | - Marco Herling
- Department of Hematology, Cellular Therapy, and Hemostaseology, University of Leipzig, Leipzig, Germany
| | - Richard Moriggl
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine, A-1210 Vienna, Austria
| | - Patrick T Gunning
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Rd N., Mississauga, Canada; Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Canada.
| |
Collapse
|
20
|
Hu X, Li J, Fu M, Zhao X, Wang W. The JAK/STAT signaling pathway: from bench to clinic. Signal Transduct Target Ther 2021; 6:402. [PMID: 34824210 PMCID: PMC8617206 DOI: 10.1038/s41392-021-00791-1] [Citation(s) in RCA: 1009] [Impact Index Per Article: 252.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 09/09/2021] [Accepted: 09/21/2021] [Indexed: 02/08/2023] Open
Abstract
The Janus kinase/signal transducer and activator of transcription (JAK/STAT) signaling pathway was discovered more than a quarter-century ago. As a fulcrum of many vital cellular processes, the JAK/STAT pathway constitutes a rapid membrane-to-nucleus signaling module and induces the expression of various critical mediators of cancer and inflammation. Growing evidence suggests that dysregulation of the JAK/STAT pathway is associated with various cancers and autoimmune diseases. In this review, we discuss the current knowledge about the composition, activation, and regulation of the JAK/STAT pathway. Moreover, we highlight the role of the JAK/STAT pathway and its inhibitors in various diseases.
Collapse
Affiliation(s)
- Xiaoyi Hu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy Chengdu, 610041, Sichuan, P. R. China
- Department of Gynecology and Obstetrics, Development and Related Disease of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, 610041, Chengdu, P. R. China
| | - Jing Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy Chengdu, 610041, Sichuan, P. R. China
| | - Maorong Fu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy Chengdu, 610041, Sichuan, P. R. China
| | - Xia Zhao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy Chengdu, 610041, Sichuan, P. R. China.
- Department of Gynecology and Obstetrics, Development and Related Disease of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, 610041, Chengdu, P. R. China.
| | - Wei Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy Chengdu, 610041, Sichuan, P. R. China.
| |
Collapse
|
21
|
Characterization of microRNA expression in B cells derived from Japanese black cattle naturally infected with bovine leukemia virus by deep sequencing. PLoS One 2021; 16:e0256588. [PMID: 34506539 PMCID: PMC8432782 DOI: 10.1371/journal.pone.0256588] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 08/10/2021] [Indexed: 12/21/2022] Open
Abstract
Bovine leukemia virus (BLV) is the causative agent of enzootic bovine leukosis (EBL), a malignant B cell lymphoma. However, the mechanisms of BLV-associated lymphomagenesis remain poorly understood. Here, after deep sequencing, we performed comparative analyses of B cell microRNAs (miRNAs) in cattle infected with BLV and those without BLV. In BLV-infected cattle, BLV-derived miRNAs (blv-miRNAs) accounted for 38% of all miRNAs in B cells. Four of these blv-miRNAs (blv-miR-B1-5p, blv-miR-B2-5p, blv-miR-B4-3p, and blv-miR-B5-5p) had highly significant positive correlations with BLV proviral load (PVL). The read counts of 90 host-derived miRNAs (bta-miRNAs) were significantly down-regulated in BLV-infected cattle compared to those in uninfected cattle. Only bta-miR-375 had a positive correlation with PVL in BLV-infected cattle and was highly expressed in the B cell lymphoma tissue of EBL cattle. There were a few bta-miRNAs that correlated with BLV tax/rex gene expression; however, BLV AS1 expression had a significant negative correlation with many of the down-regulated bta-miRNAs that are important for tumor development and/or tumor suppression. These results suggest that BLV promotes lymphomagenesis via AS1 and blv-miRNAs, rather than tax/rex, by down-regulating the expression of bta-miRNAs that have a tumor-suppressing function, and this downregulation is linked to increased PVL.
Collapse
|
22
|
Xie J, Zhao C, Sun J, Li J, Yang F, Wang J, Nie Q. Prediction of Essential Genes in Comparison States Using Machine Learning. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2021; 18:1784-1792. [PMID: 32991286 DOI: 10.1109/tcbb.2020.3027392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Identifying essential genes in comparison states (EGS) is vital to understanding cell differentiation, performing drug discovery, and identifying disease causes. Here, we present a machine learning method termed Prediction of Essential Genes in Comparison States (PreEGS). To capture the alteration of the network in comparison states, PreEGS extracts topological and gene expression features of each gene in a five-dimensional vector. PreEGS also recruits a positive sample expansion method to address the problem of unbalanced positive and negative samples, which is often encountered in practical applications. Different classifiers are applied to the simulated datasets, and the PreEGS based on the random forests model (PreEGSRF) was chosen for optimal performance. PreEGSRF was then compared with six other methods, including three machine learning methods, to predict EGS in a specific state. On real datasets with four gene regulatory networks, PreEGSRF predicted five essential genes related to leukemia and five enriched KEGG pathways. Four of the predicted essential genes and all predicted pathways were consistent with previous studies and highly correlated with leukemia. With high prediction accuracy and generalization ability, PreEGSRF is broadly applicable for the discovery of disease-causing genes, driver genes for cell fate decisions, and complex biomarkers of biological systems.
Collapse
|
23
|
Fasouli ES, Katsantoni E. JAK-STAT in Early Hematopoiesis and Leukemia. Front Cell Dev Biol 2021; 9:669363. [PMID: 34055801 PMCID: PMC8160090 DOI: 10.3389/fcell.2021.669363] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 04/20/2021] [Indexed: 12/14/2022] Open
Abstract
Hematopoietic stem cells (HSCs) produce all the terminally differentiated blood cells and are controlled by extracellular signals from the microenvironment, the bone marrow (BM) niche, as well as intrinsic cell signals. Intrinsic signals include the tightly controlled action of signaling pathways, as the Janus kinase-signal transducer and activator of transcription (JAK-STAT) pathway. Activation of JAK-STAT leads to phosphorylation of members of the STAT family to regulate proliferation, survival, and self-renewal of HSCs. Mutations in components of the JAK-STAT pathway are linked with defects in HSCs and hematologic malignancies. Accumulating mutations in HSCs and aging contribute to leukemia transformation. Here an overview of hematopoiesis, and the role of the JAK-STAT pathway in HSCs and in the promotion of leukemic transformation is presented. Therapeutic targeting of JAK-STAT and clinical implications of the existing research findings are also discussed.
Collapse
Affiliation(s)
- Eirini Sofia Fasouli
- Basic Research Center, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Eleni Katsantoni
- Basic Research Center, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| |
Collapse
|
24
|
Lone SN, Bhat AA, Wani NA, Karedath T, Hashem S, Nisar S, Singh M, Bagga P, Das BC, Bedognetti D, Reddy R, Frenneaux MP, El-Rifai W, Siddiqi MA, Haris M, Macha MA. miRNAs as novel immunoregulators in cancer. Semin Cell Dev Biol 2021; 124:3-14. [PMID: 33926791 DOI: 10.1016/j.semcdb.2021.04.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 04/07/2021] [Accepted: 04/13/2021] [Indexed: 02/06/2023]
Abstract
The immune system is a well-known vital regulator of tumor growth, and one of the main hallmarks of cancer is evading the immune system. Immune system deregulation can lead to immune surveillance evasion, sustained cancer growth, proliferation, and metastasis. Tumor-mediated disruption of the immune system is accomplished by different mechanisms that involve extensive crosstalk with the immediate microenvironment, which includes endothelial cells, immune cells, and stromal cells, to create a favorable tumor niche that facilitates the development of cancer. The essential role of non-coding RNAs such as microRNAs (miRNAs) in the mechanism of cancer cell immune evasion has been highlighted in recent studies. miRNAs are small non-coding RNAs that regulate a wide range of post-transcriptional gene expression in a cell. Recent studies have focused on the function that miRNAs play in controlling the expression of target proteins linked to immune modulation. Studies show that miRNAs modulate the immune response in cancers by regulating the expression of different immune-modulatory molecules associated with immune effector cells, such as macrophages, dendritic cells, B-cells, and natural killer cells, as well as those present in tumor cells and the tumor microenvironment. This review explores the relationship between miRNAs, their altered patterns of expression in tumors, immune modulation, and the functional control of a wide range of immune cells, thereby offering detailed insights on the crosstalk of tumor-immune cells and their use as prognostic markers or therapeutic agents.
Collapse
Affiliation(s)
- Saife N Lone
- Department of Biotechnology, School of Life Sciences, Central University of Kashmir, Ganderbal, Jammu & Kashmir, India
| | - Ajaz A Bhat
- Molecular and Metabolic Imaging Laboratory, Cancer Research Department, Sidra Medicine, Doha, Qatar
| | - Nissar A Wani
- Department of Biotechnology, School of Life Sciences, Central University of Kashmir, Ganderbal, Jammu & Kashmir, India
| | | | - Sheema Hashem
- Molecular and Metabolic Imaging Laboratory, Cancer Research Department, Sidra Medicine, Doha, Qatar
| | - Sabah Nisar
- Molecular and Metabolic Imaging Laboratory, Cancer Research Department, Sidra Medicine, Doha, Qatar
| | - Mayank Singh
- Dr. B. R. Ambedkar Institute Rotary Cancer Hospital (BRAIRCH), AIIMS, New Delhi, India
| | - Puneet Bagga
- Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Bhudev Chandra Das
- Amity Institute of Molecular Medicine and Stem Cell Research, Amity University, Uttar Pradesh, India
| | - Davide Bedognetti
- Laboratory of Cancer Immunogenomics, Cancer Research Department, Sidra Medicine, Doha, Qatar; Department of Internal Medicine and Medical Specialties, University of Genoa, Genoa, Italy; College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Ravinder Reddy
- Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, USA
| | | | - Wael El-Rifai
- Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Mushtaq A Siddiqi
- Watson-Crick Centre for Molecular Medicine, Islamic University of Science and Technology, India
| | - Mohammad Haris
- Molecular and Metabolic Imaging Laboratory, Cancer Research Department, Sidra Medicine, Doha, Qatar; Laboratory Animal Research Center, Qatar University, Doha, Qatar.
| | - Muzafar A Macha
- Watson-Crick Centre for Molecular Medicine, Islamic University of Science and Technology, India.
| |
Collapse
|
25
|
Lopusna K, Nowialis P, Opavska J, Abraham A, Riva A, Haney SL, Opavsky R. Decreases in different Dnmt3b activities drive distinct development of hematologic malignancies in mice. J Biol Chem 2021; 296:100285. [PMID: 33450231 PMCID: PMC7949038 DOI: 10.1016/j.jbc.2021.100285] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 01/04/2021] [Accepted: 01/11/2021] [Indexed: 12/20/2022] Open
Abstract
DNA methylation regulates gene transcription and is involved in various physiological processes in mammals, including development and hematopoiesis. It is catalyzed by DNA methyltransferases including Dnmt1, Dnmt3a, and Dnmt3b. For Dnmt3b, its effects on transcription can result from its own DNA methylase activity, the recruitment of other Dnmts to mediate methylation, or transcription repression in a methylation-independent manner. Low-frequency mutations in human DNMT3B are found in hematologic malignancies including cutaneous T-cell lymphomas, hairy cell leukemia, and diffuse large B-cell lymphomas. Moreover, Dnmt3b is a tumor suppressor in oncogene-driven lymphoid and myeloid malignancies in mice. However, it is poorly understood how the different Dnmt3b activities contribute to these outcomes. We modulated Dnmt3b activity in vivo by generating Dnmt3b+/- mice expressing one wild-type allele as well as Dnmt3b+/CI and Dnmt3bCI/CI mice where one or both alleles express catalytically inactive Dnmt3bCI. We show that 43% of Dnmt3b+/- mice developed T-cell lymphomas, chronic lymphocytic leukemia, and myeloproliferation over 18 months, thus resembling phenotypes previously observed in Dnmt3a+/- mice, possibly through regulation of shared target genes. Interestingly, Dnmt3b+/CI and Dnmt3bCI/CI mice survived postnatal development and were affected by B-cell rather than T-cell malignancies with decreased penetrance. Genome-wide hypomethylation, increased expression of oncogenes such as Jdp2, STAT1, and Trip13, and p53 downregulation were major events contributing to Dnmt3b+/- lymphoma development. We conclude that Dnmt3b catalytic activity is critical to prevent B-cell transformation in vivo, whereas accessory and methylation-independent repressive functions are important to prevent T-cell transformation.
Collapse
MESH Headings
- ATPases Associated with Diverse Cellular Activities/genetics
- ATPases Associated with Diverse Cellular Activities/metabolism
- Animals
- Cell Cycle Proteins/genetics
- Cell Cycle Proteins/metabolism
- DNA (Cytosine-5-)-Methyltransferases/deficiency
- DNA (Cytosine-5-)-Methyltransferases/genetics
- DNA Methylation
- DNA, Neoplasm/genetics
- DNA, Neoplasm/metabolism
- Female
- Gene Expression Regulation, Neoplastic
- Heterozygote
- Homozygote
- Humans
- Isoenzymes/genetics
- Isoenzymes/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/enzymology
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Lymphoma, B-Cell/enzymology
- Lymphoma, B-Cell/genetics
- Lymphoma, B-Cell/pathology
- Lymphoma, T-Cell/enzymology
- Lymphoma, T-Cell/genetics
- Lymphoma, T-Cell/pathology
- Male
- Mice
- Mice, Knockout
- Myeloproliferative Disorders/enzymology
- Myeloproliferative Disorders/genetics
- Myeloproliferative Disorders/pathology
- Neoplasms, Experimental/enzymology
- Neoplasms, Experimental/genetics
- Neoplasms, Experimental/pathology
- Repressor Proteins/genetics
- Repressor Proteins/metabolism
- STAT1 Transcription Factor/genetics
- STAT1 Transcription Factor/metabolism
- Tumor Suppressor Protein p53/genetics
- Tumor Suppressor Protein p53/metabolism
- DNA Methyltransferase 3B
Collapse
Affiliation(s)
- Katarina Lopusna
- Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Pawel Nowialis
- Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Jana Opavska
- Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Ajay Abraham
- Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Alberto Riva
- ICBR Bioinformatics, Cancer and Genetics Research Complex, University of Florida, Gainesville, Florida, USA
| | - Staci L Haney
- Department of Internal Medicine, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, Nebraska, USA
| | - Rene Opavsky
- Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, Florida, USA.
| |
Collapse
|
26
|
Zhan X, Guo S, Li Y, Ran H, Huang H, Mi L, Wu J, Wang X, Xiao D, Chen L, Li D, Zhang S, Yan X, Yu Y, Li T, Han Q, He K, Cui J, Li T, Zhou T, Rich JN, Bao S, Zhang X, Li A, Man J. Glioma stem-like cells evade interferon suppression through MBD3/NuRD complex-mediated STAT1 downregulation. J Exp Med 2020; 217:151561. [PMID: 32181805 PMCID: PMC7201922 DOI: 10.1084/jem.20191340] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 12/06/2019] [Accepted: 01/13/2020] [Indexed: 12/18/2022] Open
Abstract
Type I interferons (IFNs) are known to mediate antineoplastic effects during tumor progression. Type I IFNs can be produced by multiple cell types in the tumor microenvironment; however, the molecular mechanisms by which tumor cells evade the inhibition of immune microenvironment remain unknown. Here we demonstrate that glioma stem-like cells (GSCs) evade type I IFN suppression through downregulation of STAT1 to initiate tumor growth under inhospitable conditions. The downregulation of STAT1 is mediated by MBD3, an epigenetic regulator. MBD3 is preferentially expressed in GSCs and recruits NuRD complex to STAT1 promoter to suppress STAT1 expression by histone deacetylation. Importantly, STAT1 overexpression or MBD3 depletion induces p21 transcription, resensitizes GSCs to IFN suppression, attenuates GSC tumor growth, and prolongs animal survival. Our findings demonstrate that inactivation of STAT1 signaling by MBD3/NuRD provides GSCs with a survival advantage to escape type I IFN suppression, suggesting that targeting MBD3 may represent a promising therapeutic opportunity to compromise GSC tumorigenic potential.
Collapse
Affiliation(s)
- Xiaoyan Zhan
- State Key Laboratory of Proteomics, Institute of Basic Medical Sciences, National Center of Biomedical Analysis, Beijing, China.,China Military Institute of Chinese Materia, the Fifth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Saisai Guo
- State Key Laboratory of Proteomics, Institute of Basic Medical Sciences, National Center of Biomedical Analysis, Beijing, China
| | - Yuanyuan Li
- State Key Laboratory of Proteomics, Institute of Basic Medical Sciences, National Center of Biomedical Analysis, Beijing, China
| | - Haowen Ran
- State Key Laboratory of Proteomics, Institute of Basic Medical Sciences, National Center of Biomedical Analysis, Beijing, China
| | - Haohao Huang
- State Key Laboratory of Proteomics, Institute of Basic Medical Sciences, National Center of Biomedical Analysis, Beijing, China
| | - Lanjuan Mi
- State Key Laboratory of Proteomics, Institute of Basic Medical Sciences, National Center of Biomedical Analysis, Beijing, China
| | - Jin Wu
- State Key Laboratory of Proteomics, Institute of Basic Medical Sciences, National Center of Biomedical Analysis, Beijing, China
| | - Xinzheng Wang
- State Key Laboratory of Proteomics, Institute of Basic Medical Sciences, National Center of Biomedical Analysis, Beijing, China
| | - Dake Xiao
- State Key Laboratory of Proteomics, Institute of Basic Medical Sciences, National Center of Biomedical Analysis, Beijing, China
| | - Lishu Chen
- State Key Laboratory of Proteomics, Institute of Basic Medical Sciences, National Center of Biomedical Analysis, Beijing, China
| | - Da Li
- State Key Laboratory of Proteomics, Institute of Basic Medical Sciences, National Center of Biomedical Analysis, Beijing, China
| | - Songyang Zhang
- State Key Laboratory of Proteomics, Institute of Basic Medical Sciences, National Center of Biomedical Analysis, Beijing, China
| | - Xu Yan
- The First Hospital of Jilin University, Changchun, China
| | - Yu Yu
- The First Hospital of Jilin University, Changchun, China
| | - Tingting Li
- State Key Laboratory of Proteomics, Institute of Basic Medical Sciences, National Center of Biomedical Analysis, Beijing, China
| | - Qiuying Han
- State Key Laboratory of Proteomics, Institute of Basic Medical Sciences, National Center of Biomedical Analysis, Beijing, China
| | - Kun He
- State Key Laboratory of Proteomics, Institute of Basic Medical Sciences, National Center of Biomedical Analysis, Beijing, China
| | - Jiuwei Cui
- The First Hospital of Jilin University, Changchun, China
| | - Tao Li
- State Key Laboratory of Proteomics, Institute of Basic Medical Sciences, National Center of Biomedical Analysis, Beijing, China
| | - Tao Zhou
- State Key Laboratory of Proteomics, Institute of Basic Medical Sciences, National Center of Biomedical Analysis, Beijing, China
| | - Jeremy N Rich
- Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA
| | - Shideng Bao
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH.,Center for Cancer Stem Cell Research, Lerner Research Institute, Cleveland, OH.,Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH
| | - Xuemin Zhang
- State Key Laboratory of Proteomics, Institute of Basic Medical Sciences, National Center of Biomedical Analysis, Beijing, China.,State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, National Center of Biomedical Analysis, Beijing, China.,The First Hospital of Jilin University, Changchun, China
| | - Ailing Li
- State Key Laboratory of Proteomics, Institute of Basic Medical Sciences, National Center of Biomedical Analysis, Beijing, China.,The First Hospital of Jilin University, Changchun, China
| | - Jianghong Man
- State Key Laboratory of Proteomics, Institute of Basic Medical Sciences, National Center of Biomedical Analysis, Beijing, China
| |
Collapse
|
27
|
Vainer ED, Kania-Almog J, Zatara G, Levin Y, Vainer GW. Novel Proteome Extraction Method Illustrates a Conserved Immunological Signature of MSI-H Colorectal Tumors. Mol Cell Proteomics 2020; 19:1619-1631. [PMID: 32641473 PMCID: PMC8015011 DOI: 10.1074/mcp.ra120.002152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 06/29/2020] [Indexed: 11/14/2022] Open
Abstract
Using a simple, environment friendly proteome extraction (TOP), we were able to optimize the analysis of clinical samples. Using our TOP method we analyzed a clinical cohort of microsatellite stable (MSS) and unstable (MSI-H) colorectal carcinoma (CRC). We identified a tumor cell specific, STAT1-centered, immune signature expressed by the MSI-H tumor cells. We then showed that long, but not short, exposure to Interferon-γ induces a similar signature in vitro We identified 10 different temporal protein expression patterns, classifying the Interferon-γ protein temporal regulation in CRC. Our data sheds light on the changes that tumor cells undergo under long-term immunological pressure in vivo, the importance of STAT proteins in specific biological scenarios. The data generated could help find novel clinical biomarkers and therapeutic approaches.
Collapse
Affiliation(s)
- Elez D Vainer
- Department of Gastroenterology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Juliane Kania-Almog
- Tel Aviv Sourasky Medical Center, Sackler School of Medicine, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Ghadeer Zatara
- Department of Pathology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Yishai Levin
- De Botton Institute for Protein Profiling, The Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel
| | - Gilad W Vainer
- Department of Pathology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel.
| |
Collapse
|
28
|
Meissl K, Simonović N, Amenitsch L, Witalisz-Siepracka A, Klein K, Lassnig C, Puga A, Vogl C, Poelzl A, Bosmann M, Dohnal A, Sexl V, Müller M, Strobl B. STAT1 Isoforms Differentially Regulate NK Cell Maturation and Anti-tumor Activity. Front Immunol 2020; 11:2189. [PMID: 33042133 PMCID: PMC7519029 DOI: 10.3389/fimmu.2020.02189] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 08/11/2020] [Indexed: 12/18/2022] Open
Abstract
Natural killer (NK) cells are important components of the innate immune defense against infections and cancers. Signal transducer and activator of transcription 1 (STAT1) is a transcription factor that is essential for NK cell maturation and NK cell-dependent tumor surveillance. Two alternatively spliced isoforms of STAT1 exist: a full-length STAT1α and a C-terminally truncated STAT1β isoform. Aberrant splicing is frequently observed in cancer cells and several anti-cancer drugs interfere with the cellular splicing machinery. To investigate whether NK cell-mediated tumor surveillance is affected by a switch in STAT1 splicing, we made use of knock-in mice expressing either only the STAT1α (Stat1α/α) or the STAT1β (Stat1β/β ) isoform. NK cells from Stat1α/α mice matured normally and controlled transplanted tumor cells as efficiently as NK cells from wild-type mice. In contrast, NK cells from Stat1β/β mice showed impaired maturation and effector functions, albeit less severe than NK cells from mice that completely lack STAT1 (Stat1-/- ). Mechanistically, we show that NK cell maturation requires the presence of STAT1α in the niche rather than in NK cells themselves and that NK cell maturation depends on IFNγ signaling under homeostatic conditions. The impaired NK cell maturation in Stat1β/β mice was paralleled by decreased IL-15 receptor alpha (IL-15Rα) surface levels on dendritic cells, macrophages and monocytes. Treatment of Stat1β/β mice with exogenous IL-15/IL-15Rα complexes rescued NK cell maturation but not their effector functions. Collectively, our findings provide evidence that STAT1 isoforms are not functionally redundant in regulating NK cell activity and that the absence of STAT1α severely impairs, but does not abolish, NK cell-dependent tumor surveillance.
Collapse
Affiliation(s)
- Katrin Meissl
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Natalija Simonović
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Lena Amenitsch
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Agnieszka Witalisz-Siepracka
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, Austria
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Klara Klein
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, Austria
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Caroline Lassnig
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, Austria
- Biomodels Austria, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Ana Puga
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Claus Vogl
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Andrea Poelzl
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Markus Bosmann
- Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, MA, United States
- Center for Thrombosis and Hemostasis, University Medical Center Mainz, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Alexander Dohnal
- Tumor Immunology, St. Anna Kinderkrebsforschung, Children’s Cancer Research Institute, Vienna, Austria
| | - Veronika Sexl
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Mathias Müller
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, Austria
- Biomodels Austria, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Birgit Strobl
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, Austria
| |
Collapse
|
29
|
Niu M, Yi M, Dong B, Luo S, Wu K. Upregulation of STAT1-CCL5 axis is a biomarker of colon cancer and promotes the proliferation of colon cancer cells. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:951. [PMID: 32953751 PMCID: PMC7475405 DOI: 10.21037/atm-20-4428] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Background Colorectal cancer (CRC) is the third most commonly diagnosed cancer in men and women globally. Investigating genetic ground differences between normal and CRC tissues would be significant for identifying some key oncogenic pathways and developing anti-cancer agents. Methods Weighted gene co-expression network analysis (WGCNA) method was used to screen out core pathways related to the clinical traits of CRC patients. Then, multiple databases were utilized to further verify the hub genes obtained from data mining. Finally, to explore the role of hub genes in CRC, cell counting and EdU assays were performed. Results The results of the WGCNA analysis showed that a module (turquoise module) was highly related with CRC differentiation grade (R =0.53, P<0.0001). Enrichment analysis indicated that genes of the turquoise module were remarkably enriched in multiple inflammatory processes and pathways. Among all hub genes of the turquoise module, the mRNA levels of STAT1 and CCL5 were significantly higher in CRC than in normal colon tissues. STAT1 expression was highly positively correlated with the level of CCL5. The results of the cell counting, EdU, CCK-8, and CFSE staining assays showed that interfering with STAT1 and CCL5 could inhibit the proliferation of CRC cells. Conclusions Our study indicated that the STAT1-CCL5 axis is an important modulator in the development of CRC through promoting cell proliferation. Moreover, the levels of STAT1 and CCL5 might be valuable biomarkers for CRC screening.
Collapse
Affiliation(s)
- Mengke Niu
- Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Ming Yi
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bing Dong
- Department of Molecular Pathology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Suxia Luo
- Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Kongming Wu
- Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China.,Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
30
|
Wang F, Zhang L, Liu J, Zhang J, Xu G. Highly expressed STAT1 contributes to the suppression of stemness properties in human paclitaxel-resistant ovarian cancer cells. Aging (Albany NY) 2020; 12:11042-11060. [PMID: 32516753 PMCID: PMC7346083 DOI: 10.18632/aging.103317] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 04/28/2020] [Indexed: 02/06/2023]
Abstract
Signal transducer and activator of transcription-1 (STAT1) is an important factor in various cellular processes. The cancer stem cell (CSC) is considered as a tumor-initiating cell that drives the inner hierarchy in many cancers including epithelial ovarian cancer (EOC). Here, we explored for the first time the regulation of STAT1 on stemness properties in chemoresistant EOC cells. The paclitaxel (PTX)-resistant EOC cell line (OV3R-PTX) was derived from PTX-sensitive OVCAR-3 cells treated by the PTX regimen. A single cell clone OV3R-PTX-B4 was selected by fluorescence-activated cell sorting. PTX-resistant cells grew slowly in conventional 2D and 3D cultures, but tumor xenograft with PTX-resistant cells grew fast in nude mice. Interestingly, OV3R-PTX-B4 cells shared the characteristics of CSCs and stemness properties were found to be increased in the non-adherent spheroid culture system. The PTX-resistant cells had a high expression of CSC-related markers and low expression of STAT1 that had a high methylation level of CpG in its promoter region. Overexpressed STAT1 suppressed stemness properties, cell proliferation, and colony formation and favored the overall survival of patients with EOC. In summary, these data indicate a regulatory mechanism of STAT1 underlying drug resistance and provide a potential therapeutic application for EOC patients with PTX resistance.
Collapse
Affiliation(s)
- Fanchen Wang
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, Shanghai 201508, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Lingyun Zhang
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, Shanghai 201508, China
| | - Jiao Liu
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, Shanghai 201508, China
| | - Jinguo Zhang
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, Shanghai 201508, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Guoxiong Xu
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, Shanghai 201508, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.,Center for Tumor Diagnosis and Therapy, Jinshan Hospital, Fudan University, Shanghai 201508, China
| |
Collapse
|
31
|
Zhang T, Yang J, Vaikari VP, Beckford JS, Wu S, Akhtari M, Alachkar H. Apolipoprotein C2 - CD36 Promotes Leukemia Growth and Presents a Targetable Axis in Acute Myeloid Leukemia. Blood Cancer Discov 2020; 1:198-213. [PMID: 32944714 DOI: 10.1158/2643-3230.bcd-19-0077] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Acute myeloid leukemia (AML) is a devastating hematologic malignancy that affects the hematopoietic stem cells. The 5-year overall survival (OS) of patients with AML is less than 30%, highlighting the urgent need to identify new therapeutic targets. Here, we analyze gene expression datasets for genes that are differentially overexpressed in AML cells compared with healthy hematopoietic cells. We report that apolipoprotein C2 (APOC2) mRNA is significantly overexpressed in AML, particularly in patients with mixed-lineage leukemia rearrangements. By multivariate analysis, high APOC2 expression in leukemia blasts is significantly associated with decreased OS (HR: 2.51; 95% CI, 1.03-6.07; P = 0.04). APOC2 is a small secreted apolipoprotein that constitutes chylomicrons, very-low-density lipoproteins, and high-density lipoproteins with other apolipoproteins. APOC2 activates lipoprotein lipase and contributes to lipid metabolism. By gain and loss of function approaches in cultured AML cells, we demonstrate that APOC2 promotes leukemia growth via CD36-mediated LYN-ERK signaling activation. Knockdown or pharmacological inhibition of either APOC2 or CD36 reduces cell proliferation, induces apoptosis in vitro, and delays leukemia progression in mice. Altogether, this study establishes APOC2-CD36 axis as a potential therapeutic target in AML.
Collapse
Affiliation(s)
- Tian Zhang
- Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Jiawen Yang
- Titus Family Department of Clinical Pharmacy, School of Pharmacy, University of Southern California, Los Angeles, California
| | - Vijaya P Vaikari
- Titus Family Department of Clinical Pharmacy, School of Pharmacy, University of Southern California, Los Angeles, California
| | - John S Beckford
- Titus Family Department of Clinical Pharmacy, School of Pharmacy, University of Southern California, Los Angeles, California
| | - Sharon Wu
- Titus Family Department of Clinical Pharmacy, School of Pharmacy, University of Southern California, Los Angeles, California
| | - Mojtaba Akhtari
- Keck School of Medicine, University of Southern California, Los Angeles, California.,Loma Linda University Cancer Center, Loma Linda University, Loma Linda, California.,USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California
| | - Houda Alachkar
- Titus Family Department of Clinical Pharmacy, School of Pharmacy, University of Southern California, Los Angeles, California.,USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California
| |
Collapse
|
32
|
Prinz D, Klein K, List J, Knab VM, Menzl I, Leidenfrost N, Heller G, Polić B, Putz EM, Witalisz-Siepracka A, Sexl V, Gotthardt D. Loss of NKG2D in murine NK cells leads to increased perforin production upon long-term stimulation with IL-2. Eur J Immunol 2020; 50:880-890. [PMID: 32052406 PMCID: PMC7318224 DOI: 10.1002/eji.201948222] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 01/07/2020] [Accepted: 02/11/2020] [Indexed: 01/12/2023]
Abstract
NK cells are innate lymphocytes responsible for lysis of pathogen-infected and transformed cells. One of the major activating receptors required for target cell recognition is the NK group 2D (NKG2D) receptor. Numerous reports show the necessity of NKG2D for effective tumor immune surveillance. Further studies identified NKG2D as a key element allowing tumor immune escape. We here use a mouse model with restricted deletion of NKG2D in mature NKp46+ cells (NKG2DΔNK ). NKG2DΔNK NK cells develop normally, have an unaltered IFN-γ production but kill tumor cell lines expressing NKG2D ligands (NKG2DLs) less efficiently. However, upon long-term stimulation with IL-2, NKG2D-deficient NK cells show increased levels of the lytic molecule perforin. Thus, our findings demonstrate a dual function of NKG2D for NK cell cytotoxicity; while NKG2D is a crucial trigger for cytotoxicity of tumor cells expressing activating ligands it is also capable to limit perforin production in IL-2 activated NK cells.
Collapse
Affiliation(s)
- Daniela Prinz
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine, Vienna, Austria
| | - Klara Klein
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine, Vienna, Austria
| | - Julia List
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine, Vienna, Austria
| | - Vanessa M Knab
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine, Vienna, Austria
| | - Ingeborg Menzl
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine, Vienna, Austria
| | - Nicoletta Leidenfrost
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine, Vienna, Austria
| | - Gerwin Heller
- Institute of Internal Medicine I, Medical University, Vienna, Austria
| | - Bojan Polić
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Eva Maria Putz
- St. Anna Children's Cancer Research Institute (CCRI), Medical University of Vienna, Vienna, Austria
| | | | - Veronika Sexl
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine, Vienna, Austria
| | - Dagmar Gotthardt
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine, Vienna, Austria
| |
Collapse
|
33
|
Orlova A, Wagner C, de Araujo ED, Bajusz D, Neubauer HA, Herling M, Gunning PT, Keserű GM, Moriggl R. Direct Targeting Options for STAT3 and STAT5 in Cancer. Cancers (Basel) 2019; 11:E1930. [PMID: 31817042 PMCID: PMC6966570 DOI: 10.3390/cancers11121930] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 11/22/2019] [Accepted: 11/29/2019] [Indexed: 12/21/2022] Open
Abstract
Signal transducer and activator of transcription (STAT)3 and STAT5 are important transcription factors that are able to mediate or even drive cancer progression through hyperactivation or gain-of-function mutations. Mutated STAT3 is mainly associated with large granular lymphocytic T-cell leukemia, whereas mutated STAT5B is associated with T-cell prolymphocytic leukemia, T-cell acute lymphoblastic leukemia and γδ T-cell-derived lymphomas. Hyperactive STAT3 and STAT5 are also implicated in various hematopoietic and solid malignancies, such as chronic and acute myeloid leukemia, melanoma or prostate cancer. Classical understanding of STAT functions is linked to their phosphorylated parallel dimer conformation, in which they induce gene transcription. However, the functions of STAT proteins are not limited to their phosphorylated dimerization form. In this review, we discuss the functions and the roles of unphosphorylated STAT3/5 in the context of chromatin remodeling, as well as the impact of STAT5 oligomerization on differential gene expression in hematopoietic neoplasms. The central involvement of STAT3/5 in cancer has made these molecules attractive targets for small-molecule drug development, but currently there are no direct STAT3/5 inhibitors of clinical grade available. We summarize the development of inhibitors against the SH2 domains of STAT3/5 and discuss their applicability as cancer therapeutics.
Collapse
Affiliation(s)
- Anna Orlova
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine, 1210 Vienna, Austria; (A.O.); (C.W.); (H.A.N.)
| | - Christina Wagner
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine, 1210 Vienna, Austria; (A.O.); (C.W.); (H.A.N.)
| | - Elvin D. de Araujo
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada; (E.D.d.A.); (P.T.G.)
- Centre for Medicinal Chemistry, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada
| | - Dávid Bajusz
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, H-1117 Budapest, Hungary; (D.B.); (G.M.K.)
| | - Heidi A. Neubauer
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine, 1210 Vienna, Austria; (A.O.); (C.W.); (H.A.N.)
| | - Marco Herling
- Department I of Internal Medicine, Center for Integrated Oncology (CIO), Excellence Cluster for Cellular Stress Response and Aging-Associated Diseases (CECAD), and Center for Molecular Medicine Cologne (CMMC), Cologne University, 50937 Cologne, Germany;
| | - Patrick T. Gunning
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada; (E.D.d.A.); (P.T.G.)
- Centre for Medicinal Chemistry, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada
| | - György M. Keserű
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, H-1117 Budapest, Hungary; (D.B.); (G.M.K.)
| | - Richard Moriggl
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine, 1210 Vienna, Austria; (A.O.); (C.W.); (H.A.N.)
| |
Collapse
|
34
|
Gotthardt D, Trifinopoulos J, Sexl V, Putz EM. JAK/STAT Cytokine Signaling at the Crossroad of NK Cell Development and Maturation. Front Immunol 2019; 10:2590. [PMID: 31781102 PMCID: PMC6861185 DOI: 10.3389/fimmu.2019.02590] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 10/18/2019] [Indexed: 01/14/2023] Open
Abstract
Natural Killer (NK) cells are cytotoxic lymphocytes of the innate immune system and play a critical role in anti-viral and anti-tumor responses. NK cells develop in the bone marrow from hematopoietic stem cells (HSCs) that differentiate through common lymphoid progenitors (CLPs) to NK lineage-restricted progenitors (NKPs). The orchestrated action of multiple cytokines is crucial for NK cell development and maturation. Many of these cytokines such as IL-2, IL-7, IL-12, IL-15, IL-21, IL-27, and interferons (IFNs) signal via the Janus Kinase / Signal Transducer and Activator of Transcription (JAK/STAT) pathway. We here review the current knowledge about these cytokines and the downstream signaling involved in the development and maturation of conventional NK cells and their close relatives, innate lymphoid cells type 1 (ILC1). We further discuss the role of suppressor of cytokine signaling (SOCS) proteins in NK cells and highlight their potential for therapeutic application.
Collapse
Affiliation(s)
- Dagmar Gotthardt
- Department for Biomedical Sciences, Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Jana Trifinopoulos
- Department for Biomedical Sciences, Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Veronika Sexl
- Department for Biomedical Sciences, Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Eva Maria Putz
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
| |
Collapse
|
35
|
Zeng X, Baba T, Hamanishi J, Matsumura N, Kharma B, Mise Y, Abiko K, Yamaguchi K, Horikawa N, Hunstman DG, Mulati K, Kitamura S, Taki M, Murakami R, Hosoe Y, Mandai M. Phosphorylation of STAT1 serine 727 enhances platinum resistance in uterine serous carcinoma. Int J Cancer 2019; 145:1635-1647. [PMID: 31228268 DOI: 10.1002/ijc.32501] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 05/12/2019] [Accepted: 05/24/2019] [Indexed: 11/07/2022]
Abstract
Uterine serous carcinoma (USC) is a highly aggressive histological subtype of endometrial cancers harboring highly metastatic and chemoresistant features. Our previous study showed that STAT1 is highly expressed in USC and acts as a key molecule that is positively correlated with tumor progression, but it remains unclear whether STAT1 is relevant to the malicious chemorefractory nature of USC. In the present study, we investigated the regulatory role of STAT1 toward platinum-cytotoxicity in USC. STAT1 suppression sensitized USC cells to increase cisplatin-mediated apoptosis (p < 0.001). Furthermore, phosphorylation of STAT1 was prominently observed on serine-727 (pSTAT1-Ser727), but not on tyrosine-701, in the nucleus of USC cells treated with cisplatin. Mechanistically, the inhibition of pSTAT1-Ser727 by dominant-negative plasmid elevated cisplatin-mediated apoptosis by increasing intracellular accumulation of cisplatin through upregulation of CTR1 expression. TBB has an inhibitory effect on casein kinase 2 (CK2), which phosphorylate STAT1 at serine residues. Sequential treatment with TBB and cisplatin on USC cells greatly reduced nuclear pSTAT1-Ser727, enhanced intracellular accumulation of cisplatin, and subsequently increased apoptosis. Tumor load was significantly reduced by combination therapy of TBB and cisplatin in in vivo xenograft models (p < 0.001). Our results collectively suggest that pSTAT1-Ser727 may play a key role in platinum resistance as well as tumor progression in USC. Thus, targeting the STAT1 pathway via CK2 inhibitor can be a novel method for attenuating the chemorefractory nature of USC.
Collapse
Affiliation(s)
- Xiang Zeng
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Tsukasa Baba
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Department of Obstetrics and Gynecology, Iwate Medical University School of Medicine, Iwate, Japan
| | - Junzo Hamanishi
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Noriomi Matsumura
- Department of Obstetrics and Gynecology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Budiman Kharma
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yuka Mise
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Kaoru Abiko
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Ken Yamaguchi
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Naoki Horikawa
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - David G Hunstman
- Department of Pathology and Laboratory Medicine, University of British Columbia, British Columbia Cancer Agency, Vancouver, BC, Canada.,Genetic Pathology Evaluation Centre, Vancouver General Hospital, Vancouver, BC, Canada
| | - Kumuluzi Mulati
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Sachiko Kitamura
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Mana Taki
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Ryusuke Murakami
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yuko Hosoe
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Masaki Mandai
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
36
|
Blazanin N, Cheng T, Carbajal S, DiGiovanni J. Activation of a protumorigenic IFNγ/STAT1/IRF-1 signaling pathway in keratinocytes following exposure to solar ultraviolet light. Mol Carcinog 2019; 58:1656-1669. [PMID: 31237385 DOI: 10.1002/mc.23073] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 05/30/2019] [Accepted: 05/31/2019] [Indexed: 01/03/2025]
Abstract
In this study, we evaluated the role of signal transducer and activator of transcription 1 (STAT1) in response to acute solar ultraviolet (SUV) radiation in mouse epidermis. Analysis of the epidermis from SUV-irradiated mice revealed rapid phosphorylation of STAT1 (pSTAT1) on both tyrosine (tyr701) and serine (ser727) residues and increased levels of IRF-1 while later timepoints showed increased levels of unphosphorylated STAT1 (uSTAT1). STAT1 activation led to upregulation of several proinflammatory chemokine mRNAs in epidermis including Cxcl9, Cxcl10, and Ccl2, as well as, the immune checkpoint inhibitor Pd-l1. In addition, mRNA and protein levels of cyclooxygenase-2 (Cox-2/COX2) were upregulated in epidermis following exposure to SUV. Mice with keratinocyte-specific STAT1 deletion did not exhibit increased IRF-1 or proinflammatory gene expression in epidermis. Furthermore, epidermal COX-2 induction after SUV exposure was significantly reduced in mice with keratinocyte-specific deletion of STAT1. Additionally, SUV irradiation rapidly upregulated interferon gamma (IFNγ) mRNA in the epidermis and that skin resident epidermal CD3 + T-cells were the source of IFNγ production. IFNγ receptor-deficient mice confirmed dependency of STAT1 activation, proinflammatory gene expression and COX-2 upregulation in the epidermis on paracrine IFNγ signaling. Furthermore, keratinocyte-specific STAT1-deficiency reduced proliferation and hyperplasia due to SUV irradiation and this was associated with decreased immune infiltration of mast cells in the dermis. Collectively, the current results demonstrate that exposure to SUV leads to upregulation of IFNγ and downstream pSTAT1/IRF-1/uSTAT1 signaling in the epidermis. Further study of this pathway could lead to identification of novel targets for the prevention of nonmelanoma skin cancer.
Collapse
Affiliation(s)
- Nicholas Blazanin
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, Texas
| | - Tianyi Cheng
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, Texas
| | - Steve Carbajal
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, Texas
| | - John DiGiovanni
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, Texas
- Department of Pediatrics, Dell Medical School, The University of Texas at Austin, Austin, Texas
- Center for Molecular Carcinogenesis and Toxicology, The University of Texas at Austin, Austin, Texas
| |
Collapse
|
37
|
Kollmann S, Grundschober E, Maurer B, Warsch W, Grausenburger R, Edlinger L, Huuhtanen J, Lagger S, Hennighausen L, Valent P, Decker T, Strobl B, Mueller M, Mustjoki S, Hoelbl-Kovacic A, Sexl V. Twins with different personalities: STAT5B-but not STAT5A-has a key role in BCR/ABL-induced leukemia. Leukemia 2019; 33:1583-1597. [PMID: 30679796 PMCID: PMC6755975 DOI: 10.1038/s41375-018-0369-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 10/03/2018] [Accepted: 12/03/2018] [Indexed: 01/12/2023]
Abstract
Deregulation of the Janus kinase/signal transducers and activators of transcription (JAK/STAT) signaling pathway is found in cancer with STAT5A/B controlling leukemic cell survival and disease progression. As mutations in STAT5B, but not STAT5A, have been frequently described in hematopoietic tumors, we used BCR/ABL as model systems to investigate the contribution of STAT5A or STAT5B for leukemogenesis. The absence of STAT5A decreased cell survival and colony formation. Even more drastic effects were observed in the absence of STAT5B. STAT5B-deficient cells formed BCR/ABL+ colonies or stable cell lines at low frequency. The rarely evolving Stat5b-/- cell lines expressed enhanced levels of BCR/ABL oncoprotein compared to wild-type cells. In line, Stat5b-/- leukemic cells induced leukemia with a significantly prolonged disease onset, whereas Stat5a-/- cells rapidly caused a fatal disease superimposable to wild-type cells. RNA-sequencing (RNA-seq) profiling revealed a marked enhancement of interferon (IFN)-α and IFN-γ signatures in Stat5b-/- cells. Inhibition of IFN responses rescued BCR/ABL+ colony formation of Stat5b-/--deficient cells. A downregulated IFN response was also observed in patients suffering from leukemia carrying STAT5B mutations. Our data define STAT5B as major STAT5 isoform driving BCR/ABL+ leukemia. STAT5B enables transformation by suppressing IFN-α/γ, thereby facilitating leukemogenesis. Our findings might help explain the high frequency of STAT5B mutations in hematopoietic tumors.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/pharmacology
- Cell Proliferation
- Cell Transformation, Neoplastic/drug effects
- Cell Transformation, Neoplastic/metabolism
- Cell Transformation, Neoplastic/pathology
- Fusion Proteins, bcr-abl/genetics
- Fusion Proteins, bcr-abl/metabolism
- Humans
- Interferons/pharmacology
- Leukemia, Large Granular Lymphocytic/drug therapy
- Leukemia, Large Granular Lymphocytic/metabolism
- Leukemia, Large Granular Lymphocytic/pathology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Mice
- Mice, Inbred NOD
- Mice, Knockout
- Mice, SCID
- Mutation
- STAT5 Transcription Factor/genetics
- STAT5 Transcription Factor/metabolism
- Survival Rate
- Tumor Suppressor Proteins/genetics
- Tumor Suppressor Proteins/metabolism
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Sebastian Kollmann
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, 1210, Vienna, Austria
| | - Eva Grundschober
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, 1210, Vienna, Austria
| | - Barbara Maurer
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, 1210, Vienna, Austria
| | - Wolfgang Warsch
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, 1210, Vienna, Austria
| | - Reinhard Grausenburger
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, 1210, Vienna, Austria
| | - Leo Edlinger
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, 1210, Vienna, Austria
| | - Jani Huuhtanen
- Hematology Research Unit Helsinki, Department of Clinical Chemistry and Hematology, University of Helsinki and Helsinki University Hospital Comprehensive Cancer Center, P.O.Box 700, 00290, Helsinki, Finland
| | - Sabine Lagger
- Unit of Laboratory Animal Pathology, University of Veterinary Medicine Vienna, 1210, Vienna, Austria
| | - Lothar Hennighausen
- Laboratory of Genetics and Physiology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Peter Valent
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Comprehensive Cancer Center, Medical University of Vienna, 1090, Vienna, Austria
- Ludwig Boltzmann Cluster Oncology, Medical University of Vienna, 1090, Vienna, Austria
| | - Thomas Decker
- Max F. Perutz Laboratories (MFPL), University of Vienna, 1030, Vienna, Austria
| | - Birgit Strobl
- Department for Biomedical Sciences Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, 1210, Vienna, Austria
| | - Mathias Mueller
- Department for Biomedical Sciences Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, 1210, Vienna, Austria
| | - Satu Mustjoki
- Hematology Research Unit Helsinki, Department of Clinical Chemistry and Hematology, University of Helsinki and Helsinki University Hospital Comprehensive Cancer Center, P.O.Box 700, 00290, Helsinki, Finland
| | - Andrea Hoelbl-Kovacic
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, 1210, Vienna, Austria
| | - Veronika Sexl
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, 1210, Vienna, Austria.
| |
Collapse
|
38
|
Ji D, Feng Y, Peng W, Li J, Gu Q, Zhang Z, Qian W, Wang Q, Zhang Y, Sun Y. NMI promotes cell proliferation through TGFβ/Smad pathway by upregulating STAT1 in colorectal cancer. J Cell Physiol 2019; 235:429-441. [PMID: 31230364 DOI: 10.1002/jcp.28983] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 05/26/2019] [Accepted: 05/29/2019] [Indexed: 12/29/2022]
Affiliation(s)
- Dongjian Ji
- The First College of Clinical Medicine Nanjing Medical University Nanjing P.R. China
- Department of Colorectal Surgery The First Affiliated Hospital of Nanjing Medical University Nanjing P.R. China
| | - Yifei Feng
- Department of Colorectal Surgery The First Affiliated Hospital of Nanjing Medical University Nanjing P.R. China
| | - Wen Peng
- The First College of Clinical Medicine Nanjing Medical University Nanjing P.R. China
- Department of Colorectal Surgery The First Affiliated Hospital of Nanjing Medical University Nanjing P.R. China
| | - Jie Li
- The First College of Clinical Medicine Nanjing Medical University Nanjing P.R. China
- Department of Colorectal Surgery The First Affiliated Hospital of Nanjing Medical University Nanjing P.R. China
| | - Qi’ou Gu
- The First College of Clinical Medicine Nanjing Medical University Nanjing P.R. China
- Department of Colorectal Surgery The First Affiliated Hospital of Nanjing Medical University Nanjing P.R. China
| | - Zhiyuan Zhang
- The First College of Clinical Medicine Nanjing Medical University Nanjing P.R. China
- Department of Colorectal Surgery The First Affiliated Hospital of Nanjing Medical University Nanjing P.R. China
| | - Wenwei Qian
- The First College of Clinical Medicine Nanjing Medical University Nanjing P.R. China
- Department of Colorectal Surgery The First Affiliated Hospital of Nanjing Medical University Nanjing P.R. China
| | - Qingyuan Wang
- The First College of Clinical Medicine Nanjing Medical University Nanjing P.R. China
- Department of Colorectal Surgery The First Affiliated Hospital of Nanjing Medical University Nanjing P.R. China
| | - Yue Zhang
- Department of Colorectal Surgery The First Affiliated Hospital of Nanjing Medical University Nanjing P.R. China
| | - Yueming Sun
- Department of Colorectal Surgery The First Affiliated Hospital of Nanjing Medical University Nanjing P.R. China
| |
Collapse
|
39
|
Kang YH, Biswas A, Field M, Snapper SB. STAT1 signaling shields T cells from NK cell-mediated cytotoxicity. Nat Commun 2019; 10:912. [PMID: 30796216 PMCID: PMC6385318 DOI: 10.1038/s41467-019-08743-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 01/14/2019] [Indexed: 12/19/2022] Open
Abstract
The JAK-STAT pathway critically regulates T-cell differentiation, and STAT1 is postulated to regulate several immune-mediated diseases by inducing proinflammatory subsets. Here we show that STAT1 enables CD4+ T-cell-mediated intestinal inflammation by protecting them from natural killer (NK) cell-mediated elimination. Stat1−/− T cells fail to expand and establish colitis in lymphopenic mice. This defect is not fully recapitulated by the combinatorial loss of type I and II IFN signaling. Mechanistically, Stat1−/− T cells have reduced expression of Nlrc5 and multiple MHC class I molecules that serve to protect cells from NK cell-mediated killing. Consequently, the depletion of NK cells significantly rescues the survival and spontaneous proliferation of Stat1−/− T cells, and restores their ability to induce colitis in adoptive transfer mouse models. Stat1−/− mice however have normal CD4+ T cell numbers as innate STAT1 signaling is required for their elimination. Overall, our findings reveal a critical perspective on JAK-STAT1 signaling that might apply to multiple inflammatory diseases. The JAK-STAT signaling pathway is important for cytokine responses and CD4 T-cell differentiation. Here the authors show that Stat1 also serves to protect CD4 T cells from natural killer cell-mediated killing, potentially by promoting the expression of Nlrc5 and MHC-I, to preserve the induction of experimental colitis via the adoptive transfer of CD4 T cells.
Collapse
Affiliation(s)
- Yu Hui Kang
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, Boston, MA, 02115, USA.,Harvard Medical School, Boston, MA, 02115, USA
| | - Amlan Biswas
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, Boston, MA, 02115, USA.,Harvard Medical School, Boston, MA, 02115, USA.,Discovery Immunology, Abbvie, 200 Sidney Street, Cambridge, MA, 02139, USA
| | - Michael Field
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, Boston, MA, 02115, USA.,Harvard Medical School, Boston, MA, 02115, USA
| | - Scott B Snapper
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, Boston, MA, 02115, USA. .,Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
40
|
Cul4 E3 ubiquitin ligase regulates ovarian cancer drug resistance by targeting the antiapoptotic protein BIRC3. Cell Death Dis 2019; 10:104. [PMID: 30718461 PMCID: PMC6362125 DOI: 10.1038/s41419-018-1200-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 10/30/2018] [Accepted: 11/02/2018] [Indexed: 02/05/2023]
Abstract
CRL4, a well-defined E3 ligase, has been reported to be upregulated and is proposed to be a potential drug target in ovarian cancers. However, the biological functions of CRL4 and the underlying mechanism regulating cancer chemoresistance are still largely elusive. Here, we show that CRL4 is considerably increased in cisplatin-resistant ovarian cancer cells, and CRL4 knockdown with shRNAs is able to reverse cisplatin-resistance of ovarian cancer cells. Moreover, CRL4 knockdown markedly inhibits the expression of BIRC3, one of the inhibitors of apoptosis proteins (IAPs). Besides, lower expression level of BIRC3 is associated with better prognosis of ovarian cancer patients, and BIRC3 knockdown in ovarian cancer cells can recover their sensitivity to cisplatin. More importantly, we demonstrate that CRL4 regulates BIRC3 expression by mediating the STAT3, but not the PI3K pathway. Therefore, our results identified CRL4 as an important factor in ovarian cancer chemoresistance, suggesting that CRL4 and BIRC3 may serve as novel therapeutic targets for relapsed patients after treatment with cisplatin and its derivative to overcome the bottle neck of ovarian cancer chemoresistance.
Collapse
|
41
|
Tang W, Wallace TA, Yi M, Magi-Galluzzi C, Dorsey TH, Onabajo OO, Obajemu A, Jordan SV, Loffredo CA, Stephens RM, Silverman RH, Stark GR, Klein EA, Prokunina-Olsson L, Ambs S. IFNL4-ΔG Allele Is Associated with an Interferon Signature in Tumors and Survival of African-American Men with Prostate Cancer. Clin Cancer Res 2018; 24:5471-5481. [PMID: 30012562 PMCID: PMC6214748 DOI: 10.1158/1078-0432.ccr-18-1060] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 06/12/2018] [Accepted: 07/10/2018] [Indexed: 12/27/2022]
Abstract
Purpose: Men of African ancestry experience an excessive prostate cancer mortality that could be related to an aggressive tumor biology. We previously described an immune-inflammation signature in prostate tumors of African-American (AA) patients. Here, we further deconstructed this signature and investigated its relationships with tumor biology, survival, and a common germline variant in the IFNλ4 (IFNL4) gene.Experimental Design: We analyzed gene expression in prostate tissue datasets and performed genotype and survival analyses. We also overexpressed IFNL4 in human prostate cancer cells.Results: We found that a distinct interferon (IFN) signature that is analogous to the previously described "IFN-related DNA damage resistance signature" (IRDS) occurs in prostate tumors. Evaluation of two independent patient cohorts revealed that IRDS is detected about twice as often in prostate tumors of AA than European-American men. Furthermore, analysis in TCGA showed an association of increased IRDS in prostate tumors with decreased disease-free survival. To explain these observations, we assessed whether IRDS is associated with an IFNL4 germline variant (rs368234815-ΔG) that controls production of IFNλ4, a type III IFN, and is most common in individuals of African ancestry. We show that the IFNL4 rs368234815-ΔG allele was significantly associated with IRDS in prostate tumors and overall survival of AA patients. Moreover, IFNL4 overexpression induced IRDS in three human prostate cancer cell lines.Conclusions: Our study links a germline variant that controls production of IFNλ4 to the occurrence of a clinically relevant IFN signature in prostate tumors that may predominantly affect men of African ancestry. Clin Cancer Res; 24(21); 5471-81. ©2018 AACR.
Collapse
Affiliation(s)
- Wei Tang
- Laboratory of Human Carcinogenesis, Center for Cancer Research (CCR), NCI, NIH, Bethesda, Maryland
| | - Tiffany A Wallace
- Laboratory of Human Carcinogenesis, Center for Cancer Research (CCR), NCI, NIH, Bethesda, Maryland
| | - Ming Yi
- Cancer Research Technology Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | | | - Tiffany H Dorsey
- Laboratory of Human Carcinogenesis, Center for Cancer Research (CCR), NCI, NIH, Bethesda, Maryland
| | - Olusegun O Onabajo
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, NCI, NIH, Bethesda, Maryland
| | - Adeola Obajemu
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, NCI, NIH, Bethesda, Maryland
| | - Symone V Jordan
- Laboratory of Human Carcinogenesis, Center for Cancer Research (CCR), NCI, NIH, Bethesda, Maryland
| | - Christopher A Loffredo
- Cancer Prevention and Control Program, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC
| | - Robert M Stephens
- Cancer Research Technology Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Robert H Silverman
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - George R Stark
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Eric A Klein
- Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, Ohio
| | - Ludmila Prokunina-Olsson
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, NCI, NIH, Bethesda, Maryland
| | - Stefan Ambs
- Laboratory of Human Carcinogenesis, Center for Cancer Research (CCR), NCI, NIH, Bethesda, Maryland.
| |
Collapse
|
42
|
Aggressive B-cell lymphomas in patients with myelofibrosis receiving JAK1/2 inhibitor therapy. Blood 2018; 132:694-706. [PMID: 29907599 DOI: 10.1182/blood-2017-10-810739] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 03/07/2018] [Indexed: 12/16/2022] Open
Abstract
Inhibition of Janus-kinase 1/2 (JAK1/2) is a mainstay to treat myeloproliferative neoplasms (MPN). Sporadic observations reported the co-incidence of B-cell non-Hodgkin lymphomas during treatment of MPN with JAK1/2 inhibitors. We assessed 626 patients with MPN, including 69 with myelofibrosis receiving JAK1/2 inhibitors for lymphoma development. B-cell lymphomas evolved in 4 (5.8%) of 69 patients receiving JAK1/2 inhibition compared with 2 (0.36%) of 557 with conventional treatment (16-fold increased risk). A similar 15-fold increase was observed in an independent cohort of 929 patients with MPN. Considering primary myelofibrosis only (N = 216), 3 lymphomas were observed in 31 inhibitor-treated patients (9.7%) vs 1 (0.54%) of 185 control patients. Lymphomas were of aggressive B-cell type, extranodal, or leukemic with high MYC expression in the absence of JAK2 V617F or other MPN-associated mutations. Median time from initiation of inhibitor therapy to lymphoma diagnosis was 25 months. Clonal immunoglobulin gene rearrangements were already detected in the bone marrow during myelofibrosis in 16.3% of patients. Lymphomas occurring during JAK1/2 inhibitor treatment were preceded by a preexisting B-cell clone in all 3 patients tested. Sequencing verified clonal identity in 2 patients. The effects of JAK1/2 inhibition were mirrored in Stat1-/- mice: 16 of 24 mice developed a spontaneous myeloid hyperplasia with the concomitant presence of aberrant B cells. Transplantations of bone marrow from diseased mice unmasked the outgrowth of a malignant B-cell clone evolving into aggressive B-cell leukemia-lymphoma. We conclude that JAK/STAT1 pathway inhibition in myelofibrosis is associated with an elevated frequency of aggressive B-cell lymphomas. Detection of a preexisting B-cell clone may identify individuals at risk.
Collapse
|
43
|
Qadir AS, Ceppi P, Brockway S, Law C, Mu L, Khodarev NN, Kim J, Zhao JC, Putzbach W, Murmann AE, Chen Z, Chen W, Liu X, Salomon AR, Liu H, Weichselbaum RR, Yu J, Peter ME. CD95/Fas Increases Stemness in Cancer Cells by Inducing a STAT1-Dependent Type I Interferon Response. Cell Rep 2017; 18:2373-2386. [PMID: 28273453 DOI: 10.1016/j.celrep.2017.02.037] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 12/22/2016] [Accepted: 02/11/2017] [Indexed: 01/07/2023] Open
Abstract
Stimulation of CD95/Fas drives and maintains cancer stem cells (CSCs). We now report that this involves activation of signal transducer and activator of transcription 1 (STAT1) and induction of STAT1-regulated genes and that this process is inhibited by active caspases. STAT1 is enriched in CSCs in cancer cell lines, patient-derived human breast cancer, and CD95high-expressing glioblastoma neurospheres. CD95 stimulation of cancer cells induced secretion of type I interferons (IFNs) that bind to type I IFN receptors, resulting in activation of Janus-activated kinases, activation of STAT1, and induction of a number of STAT1-regulated genes that are part of a gene signature recently linked to therapy resistance in five primary human cancers. Consequently, we identified type I IFNs as drivers of cancer stemness. Knockdown or knockout of STAT1 resulted in a strongly reduced ability of CD95L or type I IFN to increase cancer stemness. This identifies STAT1 as a key regulator of the CSC-inducing activity of CD95.
Collapse
Affiliation(s)
- Abdul S Qadir
- Division of Hematology/Oncology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Paolo Ceppi
- Division of Hematology/Oncology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Sonia Brockway
- Division of Hematology/Oncology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Calvin Law
- Division of Hematology/Oncology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Liang Mu
- Division of Neurological Surgery, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Nikolai N Khodarev
- Department of Radiation and Cellular Oncology and Ludwig Center for Metastasis Research, The University of Chicago, Chicago, IL 60637, USA
| | - Jung Kim
- Division of Hematology/Oncology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Jonathan C Zhao
- Division of Hematology/Oncology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - William Putzbach
- Division of Hematology/Oncology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Andrea E Murmann
- Division of Hematology/Oncology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Zhuo Chen
- Center for Cancer Research and Development, Proteomics Core Facility, Rhode Island Hospital, Providence, RI 02903, USA; Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI 02903, USA
| | - Wenjing Chen
- Department of Pathology, School of Medicine, Case Western Reserve University and Case Comprehensive Cancer Center, Cleveland, OH 44106, USA
| | - Xia Liu
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Arthur R Salomon
- Center for Cancer Research and Development, Proteomics Core Facility, Rhode Island Hospital, Providence, RI 02903, USA; Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI 02903, USA
| | - Huiping Liu
- Division of Hematology/Oncology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Department of Pathology, School of Medicine, Case Western Reserve University and Case Comprehensive Cancer Center, Cleveland, OH 44106, USA; Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Ralph R Weichselbaum
- Department of Radiation and Cellular Oncology and Ludwig Center for Metastasis Research, The University of Chicago, Chicago, IL 60637, USA
| | - Jindan Yu
- Division of Hematology/Oncology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Marcus E Peter
- Division of Hematology/Oncology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
44
|
Wang S, Darini C, Désaubry L, Koromilas AE. STAT1 Promotes KRAS Colon Tumor Growth and Susceptibility to Pharmacological Inhibition of Translation Initiation Factor eIF4A. Mol Cancer Ther 2017; 15:3055-3063. [PMID: 27913706 DOI: 10.1158/1535-7163.mct-16-0416] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 08/29/2016] [Accepted: 09/12/2016] [Indexed: 11/16/2022]
Abstract
The transcription factor STAT1 displays antitumor functions for certain forms of cancer via immunoregulatory and cell-autonomous pathways. Paradoxically, STAT1 can promote the survival of different tumor types treated with chemotherapeutic drugs through mechanisms that are not clearly defined. Herein, we demonstrate that STAT1 displays prosurvival effects in human KRAS colon tumor cells by regulating pathways that converge on the initiation of mRNA translation. Specifically, STAT1 increases PI3K class IB signaling and promotes the downregulation of the programmed cell death protein 4 (PDCD4), a protein with tumor-suppressive properties. PDCD4 downregulation by STAT1 increases the activity of the translation initiation factor eIF4A, which facilitates the cap-independent translation of mRNAs encoding for the antiapoptotic XIAP and BCL-XL in colon tumors with mutated but not normal KRAS Genetic inactivation of STAT1 impairs the tumorigenic potency of human KRAS colon tumor cells and renders them resistant to the antitumor effects of the pharmacologic inhibition of eIF4A in culture and immunodeficient mice. Our data demonstrate an important connection between mRNA translation and KRAS tumorigenesis under the control of STAT1, which can determine the susceptibility of KRAS tumors to pharmacologic inhibition of mRNA translation initiation. Mol Cancer Ther; 15(12); 3055-63. ©2016 AACR.
Collapse
Affiliation(s)
- Shuo Wang
- Lady Davis Institute for Medical Research, McGill University, Sir Mortimer B. Davis-Jewish General Hospital, Montreal, Quebec, Canada
| | - Cedric Darini
- Lady Davis Institute for Medical Research, McGill University, Sir Mortimer B. Davis-Jewish General Hospital, Montreal, Quebec, Canada
| | - Laurent Désaubry
- Laboratoire d'Innovation Thérapeutique (UMR 7200), Faculté de Pharmacie de l'Université de Strasbourg, Strasbourg, France
| | - Antonis E Koromilas
- Lady Davis Institute for Medical Research, McGill University, Sir Mortimer B. Davis-Jewish General Hospital, Montreal, Quebec, Canada.
- Department of Oncology, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
45
|
Müller L, Aigner P, Stoiber D. Type I Interferons and Natural Killer Cell Regulation in Cancer. Front Immunol 2017; 8:304. [PMID: 28408907 PMCID: PMC5374157 DOI: 10.3389/fimmu.2017.00304] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 03/03/2017] [Indexed: 01/05/2023] Open
Abstract
Type I interferons (IFNs) are known to mediate antitumor effects against several tumor types and have therefore been commonly used in clinical anticancer treatment. However, how IFN signaling exerts its beneficial effects is only partially understood. The clinically relevant activity of type I IFNs has been mainly attributed to their role in tumor immune surveillance. Different mechanisms have been postulated to explain how type I IFNs stimulate the immune system. On the one hand, they modulate innate immune cell subsets such as natural killer (NK) cells. On the other hand, type I IFNs also influence adaptive immune responses. Here, we review evidence for the impact of type I IFNs on immune surveillance against cancer and highlight the role of NK cells therein.
Collapse
Affiliation(s)
- Lena Müller
- Ludwig Boltzmann Institute for Cancer Research, Vienna, Austria
| | - Petra Aigner
- Ludwig Boltzmann Institute for Cancer Research, Vienna, Austria
| | - Dagmar Stoiber
- Ludwig Boltzmann Institute for Cancer Research, Vienna, Austria
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
46
|
Friedrich K, Dolznig H, Han X, Moriggl R. Steering of carcinoma progression by the YIN/YANG interaction of STAT1/STAT3. Biosci Trends 2017; 11:1-8. [PMID: 28154246 DOI: 10.5582/bst.2016.01250] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
STAT1/STAT3 transcription factors are important regulators for development of normal, infected or inflammed cells. They are also critically involved in the progression of various malignant tumours, including epithelial-derived carcinomas. Here, we focus on colorectal cancer (CRC) insights for STAT1/3, where controversial functions for STAT3 were reported. For a long time STAT3 has been regarded as a driver of tumour malignancy and its activation was associated with negative clinical outcome. In contrast, STAT1 was generally viewed as an independent tumour suppressor and positive prognostic marker. Here we discuss the experimental evidence for the tight association and regulation of oncogenic STAT3 transcription kept at bay by nuclear STAT1. We summarise current research and describe cellular models of different STAT1/STAT3 expression ratios. STAT1/3 expression levels are influenced by the mutational status of carcinoma cells associated with nuclear unphosphorylated STAT1. Animal tumour models and results from in vitro experiments allow for the conclusion that both proteins interact as antagonistic transcription factors in CRC cells. These STATs steer also important processes during infection and inflammation that influence development and progression of CRC. The STAT1/3 interplay is important to understand gene regulation and we describe it here similar like the YIN/YANG dualism. Thus, we propose to evaluate both STAT1 and STAT3 expression patterns in cancers in a dual manner instead of regarding them as independent transcription factors. This conceptual dualistic view could advance diagnostic predictions in the future.
Collapse
|
47
|
Haney SL, Upchurch GM, Opavska J, Klinkebiel D, Hlady RA, Roy S, Dutta S, Datta K, Opavsky R. Dnmt3a Is a Haploinsufficient Tumor Suppressor in CD8+ Peripheral T Cell Lymphoma. PLoS Genet 2016; 12:e1006334. [PMID: 27690235 PMCID: PMC5045215 DOI: 10.1371/journal.pgen.1006334] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 08/31/2016] [Indexed: 12/29/2022] Open
Abstract
DNA methyltransferase 3A (DNMT3A) is an enzyme involved in DNA methylation that is frequently mutated in human hematologic malignancies. We have previously shown that inactivation of Dnmt3a in hematopoietic cells results in chronic lymphocytic leukemia in mice. Here we show that 12% of Dnmt3a-deficient mice develop CD8+ mature peripheral T cell lymphomas (PTCL) and 29% of mice are affected by both diseases. 10% of Dnmt3a+/- mice develop lymphomas, suggesting that Dnmt3a is a haploinsufficient tumor suppressor in PTCL. DNA methylation was deregulated genome-wide with 10-fold more hypo- than hypermethylated promoters and enhancers, demonstrating that hypomethylation is a major event in the development of PTCL. Hypomethylated promoters were enriched for binding sites of transcription factors AML1, NF-κB and OCT1, implying the transcription factors potential involvement in Dnmt3a-associated methylation. Whereas 71 hypomethylated genes showed an increased expression in PTCL, only 3 hypermethylated genes were silenced, suggesting that cancer-specific hypomethylation has broader effects on the transcriptome of cancer cells than hypermethylation. Interestingly, transcriptomes of Dnmt3a+/- and Dnmt3aΔ/Δ lymphomas were largely conserved and significantly overlapped with those of human tumors. Importantly, we observed downregulation of tumor suppressor p53 in Dnmt3a+/- and Dnmt3aΔ/Δ lymphomas as well as in pre-tumor thymocytes from 9 months old but not 6 weeks old Dnmt3a+/- tumor-free mice, suggesting that p53 downregulation is chronologically an intermediate event in tumorigenesis. Decrease in p53 is likely an important event in tumorigenesis because its overexpression inhibited proliferation in mouse PTCL cell lines, suggesting that low levels of p53 are important for tumor maintenance. Altogether, our data link the haploinsufficient tumor suppressor function of Dnmt3a in the prevention of mouse mature CD8+ PTCL indirectly to a bona fide tumor suppressor of T cell malignancies p53. Global deregulation of cytosine methylation is an epigenetic hallmark of hematologic malignancies that may promote tumorigenesis by silencing tumor suppressor genes, upregulating oncogenes, and inducing genomic instability. DNA methyltransferase 3a (DNMT3A) is one of the three catalytically active enzymes responsible for cytosine methylation and one of the most frequently mutated genes in myeloid and T cell malignancies. Its role in malignant hematopoiesis, however, remains poorly understood. Here we show that Dnmt3a is a haploinsufficient tumor suppressor in the prevention of peripheral T cell lymphomas in mice. Our molecular studies identified a large number of genes deregulated in the absence of Dnmt3a that may be putative drivers of oncogenesis. We also show that downregulation of the tumor suppressor p53 is an important event in the development of mouse T cell lymphomas. Thus, this study establishes a novel mouse model to elucidate how epigenetic deregulation of transcription contributes to the pathogenesis of T cell lymphomas.
Collapse
Affiliation(s)
- Staci L. Haney
- Department of Genetics, Cell Biology, and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - G. Michael Upchurch
- Eppley Institute for Research in Cancer and Allied Diseases, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Jana Opavska
- Eppley Institute for Research in Cancer and Allied Diseases, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - David Klinkebiel
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Ryan A. Hlady
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Sohini Roy
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Samikshan Dutta
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Kaustubh Datta
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Rene Opavsky
- Department of Genetics, Cell Biology, and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- Eppley Institute for Research in Cancer and Allied Diseases, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- Center for Leukemia and Lymphoma Research, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- * E-mail:
| |
Collapse
|
48
|
Haney SL, Upchurch GM, Opavska J, Klinkebiel D, Appiah AK, Smith LM, Heavican TB, Iqbal J, Joshi S, Opavsky R. Loss of Dnmt3a induces CLL and PTCL with distinct methylomes and transcriptomes in mice. Sci Rep 2016; 6:34222. [PMID: 27677595 PMCID: PMC5039761 DOI: 10.1038/srep34222] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 09/07/2016] [Indexed: 01/09/2023] Open
Abstract
Cytosine methylation of DNA is an epigenetic modification involved in the repression of genes that affect biological processes including hematopoiesis. It is catalyzed by DNA methyltransferases, one of which -DNMT3A- is frequently mutated in human hematologic malignancies. We have previously reported that Dnmt3a inactivation in hematopoietic stem cells results in chronic lymphocytic leukemia (CLL) and CD8-positive peripheral T cell lymphomas (PTCL) in EμSRα-tTA;Teto-Cre;Dnmt3afl/fl; Rosa26LOXPEGFP/EGFP (Dnmt3aΔ/Δ) mice. The extent to which molecular changes overlap between these diseases is not clear. Using high resolution global methylation and expression analysis we show that whereas patterns of methylation and transcription in normal B-1a cells and CD8-positive T cells are similar, methylomes and transcriptomes in malignant B-1a and CD8+ T cells are remarkably distinct, suggesting a cell-type specific function for Dnmt3a in cellular transformation. Promoter hypomethylation in tumors was 10 times more frequent than hypermethylation, three times more frequent in CLL than PTCL and correlated better with gene expression than hypermethylation. Cross-species molecular comparison of mouse and human CLL and PTCL reveals significant overlaps and identifies putative oncogenic drivers of disease. Thus, Dnmt3aΔ/Δ mice can serve as a new mouse model to study CLL and PTCL in relevant physiological settings.
Collapse
Affiliation(s)
- Staci L Haney
- Department of Genetics, Cell Biology, and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska, 68198, USA
| | - Garland M Upchurch
- Eppley Institute for Research in Cancer and Allied Diseases, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska, 68198, USA
| | - Jana Opavska
- Eppley Institute for Research in Cancer and Allied Diseases, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska, 68198, USA
| | - David Klinkebiel
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, 68198, USA
| | | | | | - Tayla B Heavican
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, 68198, USA
| | - Javeed Iqbal
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, 68198, USA.,Center for Leukemia and Lymphoma Research, University of Nebraska Medical Center, Omaha, Nebraska, 68198, USA
| | - Shantaram Joshi
- Department of Genetics, Cell Biology, and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska, 68198, USA.,Center for Leukemia and Lymphoma Research, University of Nebraska Medical Center, Omaha, Nebraska, 68198, USA
| | - Rene Opavsky
- Department of Genetics, Cell Biology, and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska, 68198, USA.,Eppley Institute for Research in Cancer and Allied Diseases, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska, 68198, USA.,Center for Leukemia and Lymphoma Research, University of Nebraska Medical Center, Omaha, Nebraska, 68198, USA
| |
Collapse
|
49
|
Putz EM, Majoros A, Gotthardt D, Prchal-Murphy M, Zebedin-Brandl EM, Fux DA, Schlattl A, Schreiber RD, Carotta S, Müller M, Gerner C, Decker T, Sexl V. Novel non-canonical role of STAT1 in Natural Killer cell cytotoxicity. Oncoimmunology 2016; 5:e1186314. [PMID: 27757297 PMCID: PMC5048756 DOI: 10.1080/2162402x.2016.1186314] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 04/28/2016] [Accepted: 04/30/2016] [Indexed: 01/31/2023] Open
Abstract
STAT1 is an important regulator of NK cell maturation and cytotoxicity. Although the consequences of Stat1-deficiency have been described in detail the underlying molecular functions of STAT1 in NK cells are only partially understood. Here, we describe a novel non-canonical role of STAT1 that was unmasked in NK cells expressing a Stat1-Y701F mutant. This mutation prevents JAK-dependent phosphorylation, subsequent nuclear translocation and cytokine-induced transcriptional activity as verified by RNA-seq analysis. As expected Stat1-Y701F mice displayed impaired NK cell maturation comparable to Stat1−/− animals. In contrast Stat1-Y701F NK cells exerted a significantly enhanced cytotoxicity in vitro and in vivo compared to Stat1−/− NK cells in the absence of detectable transcriptional activity. We thus investigated the STAT1 interactome using primary NK cells derived from Stat1ind mice that inducibly express a FLAG-tagged STAT1. Mass spectrometry revealed that STAT1 directly binds proteins involved in cell junction formation and proteins associated to membrane or membrane-bound vesicles. In line, immunofluorescence studies uncovered the recruitment of STAT1 to the target-cell interphase during NK cell killing. This led us to propose a novel function for STAT1 at the immunological synapse in NK cells regulating tumor surveillance and cytotoxicity.
Collapse
Affiliation(s)
- Eva Maria Putz
- Institute of Pharmacology and Toxicology, Department for Biomedical Sciences, University of Veterinary Medicine Vienna , Vienna, Austria
| | - Andrea Majoros
- Max F. Perutz Laboratories, University of Vienna , Vienna, Austria
| | - Dagmar Gotthardt
- Institute of Pharmacology and Toxicology, Department for Biomedical Sciences, University of Veterinary Medicine Vienna , Vienna, Austria
| | - Michaela Prchal-Murphy
- Institute of Pharmacology and Toxicology, Department for Biomedical Sciences, University of Veterinary Medicine Vienna , Vienna, Austria
| | - Eva Maria Zebedin-Brandl
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna , Vienna, Austria
| | - Daniela Alexandra Fux
- Institute of Pharmacology and Toxicology, Department for Biomedical Sciences, University of Veterinary Medicine Vienna , Vienna, Austria
| | | | - Robert D Schreiber
- Department of Pathology and Immunology, Washington University School of Medicine , St Louis, MO, USA
| | - Sebastian Carotta
- Boehringer Ingelheim RCV GmBH & CO KG, Vienna, Austria; Division of Molecular Immunology, Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia; Department of Medical Biology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Mathias Müller
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, Austria; Biomodels Austria, Vienna, Austria
| | - Christopher Gerner
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna , Vienna, Austria
| | - Thomas Decker
- Max F. Perutz Laboratories, University of Vienna , Vienna, Austria
| | - Veronika Sexl
- Institute of Pharmacology and Toxicology, Department for Biomedical Sciences, University of Veterinary Medicine Vienna , Vienna, Austria
| |
Collapse
|
50
|
Meng D, Chen Y, Yun D, Zhao Y, Wang J, Xu T, Li X, Wang Y, Yuan L, Sun R, Song X, Huai C, Hu L, Yang S, Min T, Chen J, Chen H, Lu D. High expression of N-myc (and STAT) interactor predicts poor prognosis and promotes tumor growth in human glioblastoma. Oncotarget 2016; 6:4901-19. [PMID: 25669971 PMCID: PMC4467123 DOI: 10.18632/oncotarget.3208] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 12/25/2014] [Indexed: 12/20/2022] Open
Abstract
Glioma is the most malignant brain tumor and glioblastoma (GBM) is the most aggressive type. The involvement of N-myc (and STAT) interactor (NMI) in tumorigenesis was sporadically reported but far from elucidation. This study aims to investigate roles of NMI in human glioma. Three independent cohorts, the Chinese tissue microarray (TMA) cohort (N = 209), the Repository for Molecular Brain Neoplasia Data (Rembrandt) cohort (N = 371) and The Cancer Genome Atlas (TCGA) cohort (N = 528 or 396) were employed. Transcriptional or protein levels of NMI expression were significantly increased according to tumor grade in all three cohorts. High expression of NMI predicted significantly unfavorable clinical outcome for GBM patients, which was further determined as an independent prognostic factor. Additionally, expression and prognostic value of NMI were associated with molecular features of GBM including PTEN deletion and EGFR amplification in TCGA cohort. Furthermore, overexpression or depletion of NMI revealed its regulation on G1/S progression and cell proliferation (both in vitro and in vivo), and this effect was partially dependent on STAT1, which interacted with and was regulated by NMI. These data demonstrate that NMI may serve as a novel prognostic biomarker and a potential therapeutic target for glioblastoma.
Collapse
Affiliation(s)
- Delong Meng
- State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Yuanyuan Chen
- State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Dapeng Yun
- State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Yingjie Zhao
- State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Jingkun Wang
- State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Tao Xu
- Department of Neurosurgery, Shanghai Institute of Neurosurgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Xiaoying Li
- State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Yuqi Wang
- State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Li Yuan
- State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Ruochuan Sun
- The Eighth Department of General Surgery and Department of Pathology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xiao Song
- State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Cong Huai
- State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Lingna Hu
- State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Song Yang
- The Eighth Department of General Surgery and Department of Pathology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Taishan Min
- State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Juxiang Chen
- Department of Neurosurgery, Shanghai Institute of Neurosurgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Hongyan Chen
- State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Daru Lu
- State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| |
Collapse
|