1
|
Jibon MJN, Ruku SMRP, Islam ARMT, Khan MN, Mallick J, Bari ABMM, Senapathi V. Impact of climate change on vector-borne diseases: Exploring hotspots, recent trends and future outlooks in Bangladesh. Acta Trop 2024; 259:107373. [PMID: 39214233 DOI: 10.1016/j.actatropica.2024.107373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 08/10/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Climate change is a significant risk multiplier and profoundly influences the transmission dynamics, geographical distribution, and resurgence of vector-borne diseases (VBDs). Bangladesh has a noticeable rise in VBDs attributed to climate change. Despite the severity of this issue, the interconnections between climate change and VBDs in Bangladesh have yet to be thoroughly explored. To address this research gap, our review meticulously examined existing literature on the relationship between climate change and VBDs in Bangladesh. Using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) approach, we identified 3849 records from SCOPUS, Web of Science, and Google Scholar databases. Ultimately, 22 research articles meeting specific criteria were included. We identified that the literature on the subject matter of this study is non-contemporaneous, with 68% of studies investing datasets before 2014, despite studies on climate change and dengue nexus having increased recently. We pinpointed Dhaka and Chittagong Hill Tracts as the dengue and malaria research hotspots, respectively. We highlighted that the 2023 dengue outbreak illustrates a possible shift in dengue-endemic areas in Bangladesh. Moreover, dengue cases surged by 317% in 2023 compared to 2019 records, with a corresponding 607% increase in mortality compared to 2022. A weak connection was observed between dengue incidents and climate drivers, including the El Niño Southern Oscillation (ENSO) and Indian Ocean Dipole (IOD). However, no compelling evidence supported an association between malaria cases, and Sea Surface Temperature (SST) in the Bay of Bengal, along with the NINO3 phenomenon. We observed minimal microclimatic and non-climatic data inclusion in selected studies. Our review holds implications for policymakers, urging the prioritization of mitigation measures such as year-round surveillance and early warning systems. Ultimately, it calls for resource allocation to empower researchers in advancing the understanding of VBD dynamics amidst changing climates.
Collapse
Affiliation(s)
| | | | - Abu Reza Md Towfiqul Islam
- Department of Disaster Management, Begum Rokeya University, Rangpur 5400, Bangladesh; Department of Development Studies, Daffodil International University, Dhaka 1216, Bangladesh.
| | - Md Nuruzzaman Khan
- Department of Population Science, Jatiya Kabi Kazi Nazrul Islam University, Bangladesh
| | - Javed Mallick
- Department of Civil Engineering, College of Engineering, King Khalid University, Abha, Saudi Arabia
| | - A B M Mainul Bari
- Department of Industrial and Production Engineering, Bangladesh University of Engineering and Technology, Dhaka 1000, Bangladesh
| | - Venkatramanan Senapathi
- PG and Research Department of Geology, National College (Autonomous), Tiruchirappalli, Tamil Nadu 620001, India
| |
Collapse
|
2
|
Shocket MS, Bernhardt JR, Miazgowicz KL, Orakzai A, Savage VM, Hall RJ, Ryan SJ, Murdock CC. Mean daily temperatures can predict the thermal limits of malaria transmission better than rate summation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.20.614098. [PMID: 39386442 PMCID: PMC11463682 DOI: 10.1101/2024.09.20.614098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Temperature shapes the distribution, seasonality, and magnitude of mosquito-borne disease outbreaks. Mechanistic models predicting transmission often use mosquito and pathogen thermal responses from constant temperature experiments. However, mosquitoes live in fluctuating environments. Rate summation (nonlinear averaging) is a common approach to infer performance in fluctuating environments, but its accuracy is rarely validated. We measured three mosquito traits that impact transmission (bite rate, survival, fecundity) in a malaria mosquito (Anopheles stephensi) across temperature gradients with three diurnal temperature ranges (0, 9 and 12°C). We compared thermal suitability models with temperature-trait relationships observed under constant temperatures, fluctuating temperatures, and those predicted by rate summation. We mapped results across An. stephenesi's native Asian and invasive African ranges. We found: 1) daily temperature fluctuation significantly altered trait thermal responses; 2) rate summation partially captured decreases in performance near thermal optima, but also incorrectly predicted increases near thermal limits; and 3) while thermal suitability characterized across constant temperatures did not perfectly capture suitability in fluctuating environments, it was more accurate for estimating and mapping thermal limits than predictions from rate summation. Our study provides insight into methods for predicting mosquito-borne disease risk and emphasizes the need to improve understanding of organismal performance under fluctuating conditions.
Collapse
Affiliation(s)
- Marta S. Shocket
- Lancaster Environment Centre, Lancaster University, UK
- Department of Geography, University of Florida, USA
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, USA
| | | | | | | | - Van M. Savage
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, USA
| | - Richard J. Hall
- Department of Infectious Diseases, University of Georgia, USA
- Odum School of Ecology, University of Georgia, USA
| | | | | |
Collapse
|
3
|
Brass DP, Cobbold CA, Purse BV, Ewing DA, Callaghan A, White SM. Role of vector phenotypic plasticity in disease transmission as illustrated by the spread of dengue virus by Aedes albopictus. Nat Commun 2024; 15:7823. [PMID: 39242617 PMCID: PMC11379831 DOI: 10.1038/s41467-024-52144-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 08/21/2024] [Indexed: 09/09/2024] Open
Abstract
The incidence of vector-borne disease is on the rise globally, with burdens increasing in endemic countries and outbreaks occurring in new locations. Effective mitigation and intervention strategies require models that accurately predict both spatial and temporal changes in disease dynamics, but this remains challenging due to the complex and interactive relationships between environmental variation and the vector traits that govern the transmission of vector-borne diseases. Predictions of disease risk in the literature typically assume that vector traits vary instantaneously and independently of population density, and therefore do not capture the delayed response of these same traits to past biotic and abiotic environments. We argue here that to produce accurate predictions of disease risk it is necessary to account for environmentally driven and delayed instances of phenotypic plasticity. To show this, we develop a stage and phenotypically structured model for the invasive mosquito vector, Aedes albopictus, and dengue, the second most prevalent human vector-borne disease worldwide. We find that environmental variation drives a dynamic phenotypic structure in the mosquito population, which accurately predicts global patterns of mosquito trait-abundance dynamics. In turn, this interacts with disease transmission to capture historic dengue outbreaks. By comparing the model to a suite of simpler models, we reveal that it is the delayed phenotypic structure that is critical for accurate prediction. Consequently, the incorporation of vector trait relationships into transmission models is critical to improvement of early warning systems that inform mitigation and control strategies.
Collapse
Affiliation(s)
- Dominic P Brass
- UK Centre for Ecology & Hydrology, Benson Lane, Wallingford, Oxfordshire, UK.
- Ecology and Evolutionary Biology, School of Biological Sciences, University of Reading, Reading, UK.
| | - Christina A Cobbold
- School of Mathematics and Statistics, College of Science and Engineering, University of Glasgow, Glasgow, UK
| | - Bethan V Purse
- UK Centre for Ecology & Hydrology, Benson Lane, Wallingford, Oxfordshire, UK
| | - David A Ewing
- Biomathematics and Statistics Scotland, Edinburgh, UK
| | - Amanda Callaghan
- Ecology and Evolutionary Biology, School of Biological Sciences, University of Reading, Reading, UK
| | - Steven M White
- UK Centre for Ecology & Hydrology, Benson Lane, Wallingford, Oxfordshire, UK
| |
Collapse
|
4
|
Del-Águila-Mejía J, Morilla F, Donado-Campos JDM. A system dynamics modelling and analytical framework for imported dengue outbreak surveillance and risk mapping. Acta Trop 2024; 257:107304. [PMID: 38942132 DOI: 10.1016/j.actatropica.2024.107304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 06/30/2024]
Abstract
System Dynamics (SD) models have been used to understand complex, multi-faceted dengue transmission dynamics, but a gap persists between research and actionable public health tools for decision-making. Spain is an at-risk country of imported dengue outbreaks, but only qualitative assessments are available to guide public health action and control. We propose a modular SD model combining temperature-dependent vector population, transmission parameters, and epidemiological interactions to simulate outbreaks from imported cases accounting for heterogeneous local climate-related transmission patterns. Under our assumptions, 15 provinces sustain vector populations capable of generating outbreaks from imported cases, with heterogeneous risk profiles regarding seasonality, magnitude and risk window shifting from late Spring to early Autum. Results being relative to given vector-to-human populations allow flexibility when translating outcomes between geographic scales. The model and the framework are meant to serve public health by incorporating transmission dynamics and quantitative-qualitative input to the evidence-based decision-making chain. It is a flexible tool that can easily adapt to changing contexts, parametrizations and epidemiological settings thanks to the modular approach.
Collapse
Affiliation(s)
- Javier Del-Águila-Mejía
- Departamento de Medicina Preventiva y Salud Pública y Microbiología, Facultad de Medicina, Universidad Autónoma de Madrid, C. Arzobispo Morcillo, 4, Madrid 28029, Spain; Servicio de Medicina Preventiva, Hospital Universitario de Móstoles, C. Dr. Luis Montes s/n, Madrid, Móstoles 28935, Spain.
| | - Fernando Morilla
- Departamento de Informática y Automática, Universidad Nacional de Educación a Distancia, Juan del Rosal 16, Madrid 28040, Spain
| | - Juan de Mata Donado-Campos
- Departamento de Medicina Preventiva y Salud Pública y Microbiología, Facultad de Medicina, Universidad Autónoma de Madrid, C. Arzobispo Morcillo, 4, Madrid 28029, Spain; Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III, Calle Monforte de Lemos 3-5, Madrid 28029, Spain; Departamento de Medicina, Facultad de Ciencias Biomédicas y de la Salud, Universidad Europea de Madrid, C. Tajo, s/n, Madrid, Villaviciosa de Odón 28670, Spain; Instituto de Investigación Sanitaria del Hospital Universitario La Paz (IdiPAZ), Universidad Autónoma de Madrid, C. Arzobispo Morcillo 4, Madrid 28029, Spain
| |
Collapse
|
5
|
Cannac M, Nisole S. TRIMming down Flavivirus Infections. Viruses 2024; 16:1262. [PMID: 39205236 PMCID: PMC11359179 DOI: 10.3390/v16081262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/02/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024] Open
Abstract
Flaviviruses comprise a large number of arthropod-borne viruses, some of which are associated with life-threatening diseases. Flavivirus infections are rising worldwide, mainly due to the proliferation and geographical expansion of their vectors. The main human pathogens are mosquito-borne flaviviruses, including dengue virus, Zika virus, and West Nile virus, but tick-borne flaviviruses are also emerging. As with any viral infection, the body's first line of defense against flavivirus infections is the innate immune defense, of which type I interferon is the armed wing. This cytokine exerts its antiviral activity by triggering the synthesis of hundreds of interferon-induced genes (ISGs), whose products can prevent infection. Among the ISGs that inhibit flavivirus replication, certain tripartite motif (TRIM) proteins have been identified. Although involved in other biological processes, TRIMs constitute a large family of antiviral proteins active on a wide range of viruses. Furthermore, whereas some TRIM proteins directly block viral replication, others are positive regulators of the IFN response. Therefore, viruses have developed strategies to evade or counteract TRIM proteins, and some even hijack certain TRIM proteins to their advantage. In this review, we summarize the current state of knowledge on the interactions between flaviviruses and TRIM proteins, covering both direct and indirect antiviral mechanisms.
Collapse
Affiliation(s)
| | - Sébastien Nisole
- Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, CNRS, 34090 Montpellier, France
| |
Collapse
|
6
|
Blanco-Sierra L, Bellver-Arnau J, Escartin S, Mariani S, Bartumeus F. Human-Environment Interactions Shape Mosquito Seasonal Population Dynamics. INSECTS 2024; 15:527. [PMID: 39057260 PMCID: PMC11276872 DOI: 10.3390/insects15070527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024]
Abstract
Mosquito species, including the Asian tiger mosquito, can transmit disease-causing pathogens such as dengue, Zika, and chikungunya, with their population dynamics influenced by a variety of factors including climate shifts, human activity, and local environmental conditions. Understanding these dynamics is vital for effective control measures. Our study, conducted in Jardí Botanic Marimurtra from May to November 2021, monitored Ae. albopictus activity using BG-Traps and investigated larval control effects. We employed Generalized Linear Mixed Models to analyze variables like weather, human presence, and larvicidal control on adult mosquito abundance. Adults of Ae. albopictus exhibited a seasonal pattern influenced by temperature but with bimodal peaks linked to cumulative rainfall. Proximity to stagnant water and visitor influx directly affected mosquito captures. Additionally, the effectiveness of larvicide treatments depended on interactions between preceding rainfall levels and treatment timing. Our research emphasizes the significance of studying vector ecology at local scales to enhance the efficacy of control programs and address the escalating burden of vector-borne diseases. Considering the impacts of extreme weather events and climate shifts is essential for the development of robust vector control strategies. Furthermore, our distinct findings serve as a prime illustration of utilizing statistical modeling to gain mechanistic insights into ecological patterns and processes.
Collapse
Affiliation(s)
- Laura Blanco-Sierra
- Centre d’Estudis Avançats de Blanes (CEAB-CSIC), Carrer d’Accés a la Cala St. Francesc 14, 17300 Blanes, Girona, Spain; (J.B.-A.); (S.E.); (S.M.); (F.B.)
| | - Jesús Bellver-Arnau
- Centre d’Estudis Avançats de Blanes (CEAB-CSIC), Carrer d’Accés a la Cala St. Francesc 14, 17300 Blanes, Girona, Spain; (J.B.-A.); (S.E.); (S.M.); (F.B.)
| | - Santi Escartin
- Centre d’Estudis Avançats de Blanes (CEAB-CSIC), Carrer d’Accés a la Cala St. Francesc 14, 17300 Blanes, Girona, Spain; (J.B.-A.); (S.E.); (S.M.); (F.B.)
| | - Simone Mariani
- Centre d’Estudis Avançats de Blanes (CEAB-CSIC), Carrer d’Accés a la Cala St. Francesc 14, 17300 Blanes, Girona, Spain; (J.B.-A.); (S.E.); (S.M.); (F.B.)
| | - Frederic Bartumeus
- Centre d’Estudis Avançats de Blanes (CEAB-CSIC), Carrer d’Accés a la Cala St. Francesc 14, 17300 Blanes, Girona, Spain; (J.B.-A.); (S.E.); (S.M.); (F.B.)
- Centre de Recerca Ecològica i Aplicacions Forestals (CREAF), Cerdanyola del Vallès, 08193 Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig de Lluís Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
7
|
Hall DR, Johnson RM, Kwon H, Ferdous Z, Laredo-Tiscareño SV, Blitvich BJ, Brackney DE, Smith RC. Mosquito immune cells enhance dengue and Zika virus dissemination in Aedes aegypti. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.03.587950. [PMID: 38617257 PMCID: PMC11014501 DOI: 10.1101/2024.04.03.587950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Mosquito-borne viruses cause more than 400 million annual infections and place over half of the world's population at risk. Despite this importance, the mechanisms by which arboviruses infect the mosquito host and disseminate to tissues required for transmission are not well understood. Here, we provide evidence that mosquito immune cells, known as hemocytes, play an integral role in the dissemination of dengue virus (DENV) and Zika virus (ZIKV) in the mosquito Aedes aegypti. We establish that phagocytic hemocytes are a focal point for virus infection and demonstrate that these immune cell populations facilitate virus dissemination to the ovaries and salivary glands. Additional transfer experiments confirm that virus-infected hemocytes confer a virus infection to non-infected mosquitoes more efficiently than free virus in acellular hemolymph, revealing that hemocytes are an important tropism to enhance virus dissemination in the mosquito host. These data support a "trojan horse" model of virus dissemination where infected hemocytes transport virus through the hemolymph to deliver virus to mosquito tissues required for transmission and parallels vertebrate systems where immune cell populations promote virus dissemination to secondary sites of infection. In summary, this study significantly advances our understanding of virus infection dynamics in mosquitoes and highlights conserved roles of immune cells in virus dissemination across vertebrate and invertebrate systems.
Collapse
Affiliation(s)
- David R. Hall
- Interdepartmental Program in Genetics and Genomics, Iowa State University, Ames, Iowa
- Department of Plant Pathology, Entomology and Microbiology, Iowa State University, Ames, Iowa
| | - Rebecca M. Johnson
- Center for Vector-Borne and Zoonotic Diseases, Department of Entomology, The Connecticut Agricultural Experiment Station, New Haven, Connecticut
| | - Hyeogsun Kwon
- Department of Plant Pathology, Entomology and Microbiology, Iowa State University, Ames, Iowa
| | - Zannatul Ferdous
- Center for Vector-Borne and Zoonotic Diseases, Department of Entomology, The Connecticut Agricultural Experiment Station, New Haven, Connecticut
| | | | - Bradley J. Blitvich
- Department of Veterinary Microbiology and Preventative Medicine, Iowa State University, Ames, Iowa
| | - Doug E. Brackney
- Center for Vector-Borne and Zoonotic Diseases, Department of Entomology, The Connecticut Agricultural Experiment Station, New Haven, Connecticut
| | - Ryan C. Smith
- Department of Plant Pathology, Entomology and Microbiology, Iowa State University, Ames, Iowa
| |
Collapse
|
8
|
Wang Y, Li C, Zhao S, Wei Y, Li K, Jiang X, Ho J, Ran J, Han L, Zee BCY, Chong KC. Projection of dengue fever transmissibility under climate change in South and Southeast Asian countries. PLoS Negl Trop Dis 2024; 18:e0012158. [PMID: 38683870 PMCID: PMC11081495 DOI: 10.1371/journal.pntd.0012158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 05/09/2024] [Accepted: 04/19/2024] [Indexed: 05/02/2024] Open
Abstract
Vector-borne infectious disease such as dengue fever (DF) has spread rapidly due to more suitable living environments. Considering the limited studies investigating the disease spread under climate change in South and Southeast Asia, this study aimed to project the DF transmission potential in 30 locations across four South and Southeast Asian countries. In this study, weekly DF incidence data, daily mean temperature, and rainfall data in 30 locations in Singapore, Sri Lanka, Malaysia, and Thailand from 2012 to 2020 were collected. The effects of temperature and rainfall on the time-varying reproduction number (Rt) of DF transmission were examined using generalized additive models. Projections of location-specific Rt from 2030s to 2090s were determined using projected temperature and rainfall under three Shared Socioeconomic Pathways (SSP126, SSP245, and SSP585), and the peak DF transmissibility and epidemic duration in the future were estimated. According to the results, the projected changes in the peak Rt and epidemic duration varied across locations, and the most significant change was observed under middle-to-high greenhouse gas emission scenarios. Under SSP585, the country-specific peak Rt was projected to decrease from 1.63 (95% confidence interval: 1.39-1.91), 2.60 (1.89-3.57), and 1.41 (1.22-1.64) in 2030s to 1.22 (0.98-1.51), 2.09 (1.26-3.47), and 1.37 (0.83-2.27) in 2090s in Singapore, Thailand, and Malaysia, respectively. Yet, the peak Rt in Sri Lanka changed slightly from 2030s to 2090s under SSP585. The epidemic duration in Singapore and Malaysia was projected to decline under SSP585. In conclusion, the change of peak DF transmission potential and disease outbreak duration would vary across locations, particularly under middle-to-high greenhouse gas emission scenarios. Interventions should be considered to slow down global warming as well as the potential increase in DF transmissibility in some locations of South and Southeast Asia.
Collapse
Affiliation(s)
- Yawen Wang
- Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Conglu Li
- Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Shi Zhao
- Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
- Centre for Health Systems and Policy Research, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
- Clinical Trials and Biostatistics Laboratory, Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
- School of Public Health, Tianjin Medical University, Tianjin, China
| | - Yuchen Wei
- Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
- Centre for Health Systems and Policy Research, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Kehang Li
- Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Xiaoting Jiang
- Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Janice Ho
- Division of Landscape Architecture, Department of Architecture, Faculty of Architecture, The University of Hong Kong, Hong Kong, Hong Kong Special Administrative Region, China
| | - Jinjun Ran
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lefei Han
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Benny Chung-ying Zee
- Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
- Centre for Health Systems and Policy Research, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
- Clinical Trials and Biostatistics Laboratory, Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Ka Chun Chong
- Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
- Centre for Health Systems and Policy Research, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
- Clinical Trials and Biostatistics Laboratory, Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| |
Collapse
|
9
|
Cerri J, Sciandra C, Contardo T, Bertolino S. Local Economic Conditions Affect Aedes albopictus Management. ECOHEALTH 2024; 21:9-20. [PMID: 38658454 PMCID: PMC11127834 DOI: 10.1007/s10393-024-01682-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 12/01/2023] [Accepted: 03/19/2024] [Indexed: 04/26/2024]
Abstract
Invasive mosquitoes are an emerging public health issue, as many species are competent vectors for pathogens. We assessed how multiple environmental and socio-economic factors affected the engagement of municipalities in Italy (n = 7679) in actions against Aedes albopictus, an invasive mosquito affecting human health and well-being, between 2000 and 2020. We collected information about mosquito control from official documents and municipal websites and modeled the role played by multiple environmental and socioeconomic factors characterizing each municipality through the random forest algorithm. Municipalities are more prone to manage A. albopictus if more urbanized, in lowlands and with long infestation periods. Moreover, these variables are more predictive of management in municipalities with a high median income and thus more economic resources. Only 25.5% of Italian municipalities approved regulations for managing A. albopictus, and very few of them were in Southern Italy, the most deprived area of the country. Our findings indicate that local economic conditions moderate the effect of other drivers of mosquito control and ultimately can lead to better management of A. albopictus. If the management of invasive mosquitoes, or other forms of global change, is subjected to local economic conditions, economic inequalities will jeopardize the success of large-scale policies, also raising issues of environmental and climate justice.
Collapse
Affiliation(s)
- Jacopo Cerri
- Dipartimento di Medicina Veterinaria, Università degli Studi di Sassari, Via Vienna 2, 07100, Sassari, Italy.
| | - Chiara Sciandra
- Research Centre for Plant Protection and Certification (CREA-DC), Florence, Italy
| | - Tania Contardo
- Dipartimento di Ingegneria Civile, Architettura, Territorio, Ambiente e di Matematica, Università degli Studi di Brescia, Via Branze 43, 25121, Brescia, Italy
| | - Sandro Bertolino
- Dipartimento di Scienze Della Vita e Biologia dei Sistemi, Università degli Studi di Torino, Via Accademia Albertina 13, 10123, Turin, Italy
| |
Collapse
|
10
|
Yang M, Jiao Y, Li L, Yan Y, Fu Z, Liu Z, Hu X, Li M, Shi Y, He J, Shen Z, Peng G. A potential dual protection vaccine: Recombinant feline herpesvirus-1 expressing feline parvovirus VP2 antigen. Vet Microbiol 2024; 290:109978. [PMID: 38185071 DOI: 10.1016/j.vetmic.2023.109978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 12/12/2023] [Accepted: 12/29/2023] [Indexed: 01/09/2024]
Abstract
Recently, herpesvirus viral vectors that stimulate strong humoral and cellular immunity have been demonstrated to be the most promising platforms for the development of multivalent vaccines, because they contain various nonessential genes and exhibit long-life latency characteristics. Previously, we showed that the feline herpesvirus-1 (FHV-1) mutant WH2020-ΔTK/gI/gE, which was safe for felines and provided efficacious protection against FHV-1 challenge, can be used as a vaccine vector. Moreover, previous studies have shown that the major neutralizing epitope VP2 protein of feline parvovirus (FPV) can elicit high levels of neutralizing antibodies. Therefore, to develop a bivalent vaccine against FPV and FHV-1, we first generated a novel recombinant virus by CRISPR/Cas9-mediated homologous recombination, WH2020-ΔTK/gI/gE-VP2, which expresses the VP2 protein of FPV. The growth characteristics of WH2020-ΔTK/gI/gE-VP2 were similar to those of WH2020-ΔTK/gI/gE, and WH2020-ΔTK/gI/gE-VP2 was stable for at least 30 generations in CRFK cells. As expected, we found that the felines immunized with WH2020-ΔTK/gI/gE-VP2 produced FPV-neutralizing antibody titers (27.5) above the positive cutoff (26) on day 14 after single inoculation. More importantly, recombinant WH2020-ΔTK/gI/gE-VP2 exhibited severely impaired pathogenicity in inoculated and cohabiting cats. The kittens immunized with WH2020-ΔTK/gI/gE and WH2020-ΔTK/gI/gE-VP2 produced similar levels of FHV-specific antibodies and IFN-β. Furthermore, felines immunized with WH2020-ΔTK/gI/gE-VP2 were protected against challenge with FPV and FHV-1. These data showed that WH2020-ΔTK/gI/gE-VP2 appears to be a potentially safe, effective, and economical bivalent vaccine against FPV and FHV-1 and that WH2020-ΔTK/gI/gE can be used as a viral vector to develop feline multivalent vaccines.
Collapse
Affiliation(s)
- Mengfang Yang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Yuzhou Jiao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Lisha Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Yuanyuan Yan
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Zhen Fu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Zirui Liu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Xiaoshuai Hu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Mengxia Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Yuejun Shi
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Junwei He
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Zhou Shen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China.
| | - Guiqing Peng
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China.
| |
Collapse
|
11
|
Loterio RK, Monson EA, Templin R, de Bruyne JT, Flores HA, Mackenzie JM, Ramm G, Helbig KJ, Simmons CP, Fraser JE. Antiviral Wolbachia strains associate with Aedes aegypti endoplasmic reticulum membranes and induce lipid droplet formation to restrict dengue virus replication. mBio 2024; 15:e0249523. [PMID: 38132636 PMCID: PMC10865983 DOI: 10.1128/mbio.02495-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 11/20/2023] [Indexed: 12/23/2023] Open
Abstract
Wolbachia are a genus of insect endosymbiotic bacteria which includes strains wMel and wAlbB that are being utilized as a biocontrol tool to reduce the incidence of Aedes aegypti-transmitted viral diseases like dengue. However, the precise mechanisms underpinning the antiviral activity of these Wolbachia strains are not well defined. Here, we generated a panel of Ae. aegypti-derived cell lines infected with antiviral strains wMel and wAlbB or the non-antiviral Wolbachia strain wPip to understand host cell morphological changes specifically induced by antiviral strains. Antiviral strains were frequently found to be entirely wrapped by the host endoplasmic reticulum (ER) membrane, while wPip bacteria clustered separately in the host cell cytoplasm. ER-derived lipid droplets (LDs) increased in volume in wMel- and wAlbB-infected cell lines and mosquito tissues compared to cells infected with wPip or Wolbachia-free controls. Inhibition of fatty acid synthase (required for triacylglycerol biosynthesis) reduced LD formation and significantly restored ER-associated dengue virus replication in cells occupied by wMel. Together, this suggests that antiviral Wolbachia strains may specifically alter the lipid composition of the ER to preclude the establishment of dengue virus (DENV) replication complexes. Defining Wolbachia's antiviral mechanisms will support the application and longevity of this effective biocontrol tool that is already being used at scale.IMPORTANCEAedes aegypti transmits a range of important human pathogenic viruses like dengue. However, infection of Ae. aegypti with the insect endosymbiotic bacterium, Wolbachia, reduces the risk of mosquito to human viral transmission. Wolbachia is being utilized at field sites across more than 13 countries to reduce the incidence of viruses like dengue, but it is not well understood how Wolbachia induces its antiviral effects. To examine this at the subcellular level, we compared how different strains of Wolbachia with varying antiviral strengths associate with and modify host cell structures. Strongly antiviral strains were found to specifically associate with the host endoplasmic reticulum and induce striking impacts on host cell lipid droplets. Inhibiting Wolbachia-induced lipid redistribution partially restored dengue virus replication demonstrating this is a contributing role for Wolbachia's antiviral activity. These findings provide new insights into how antiviral Wolbachia strains associate with and modify Ae. aegypti host cells.
Collapse
Affiliation(s)
- Robson K. Loterio
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, Australia
| | - Ebony A. Monson
- Department of Microbiology, Anatomy, Physiology and Pharmacology; School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, Australia
| | - Rachel Templin
- Ramaciotti Centre For Cryo-Electron Microscopy, Monash University, Clayton, Australia
| | | | - Heather A. Flores
- School of Biological Sciences, Monash University, Clayton, Australia
| | - Jason M. Mackenzie
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Georg Ramm
- Ramaciotti Centre For Cryo-Electron Microscopy, Monash University, Clayton, Australia
| | - Karla J. Helbig
- Department of Microbiology, Anatomy, Physiology and Pharmacology; School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, Australia
| | - Cameron P. Simmons
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, Australia
- World Mosquito Program, Monash University, Clayton, Australia
| | - Johanna E. Fraser
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, Australia
| |
Collapse
|
12
|
Gómez M, Martínez D, Páez-Triana L, Luna N, Ramírez A, Medina J, Cruz-Saavedra L, Hernández C, Castañeda S, Bohórquez Melo R, Suarez LA, Palma-Cuero M, Murcia LM, González Páez L, Estrada Bustos L, Medina MA, Ariza Campo K, Padilla HD, Zamora Flórez A, De las Salas JL, Muñoz M, Ramírez JD. Influence of dengue virus serotypes on the abundance of Aedes aegypti insect-specific viruses (ISVs). J Virol 2024; 98:e0150723. [PMID: 38095414 PMCID: PMC10804971 DOI: 10.1128/jvi.01507-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/13/2023] [Indexed: 01/24/2024] Open
Abstract
A comprehensive understanding of the virome in mosquito vectors is crucial for assessing the potential transmission of viral agents, designing effective vector control strategies, and advancing our knowledge of insect-specific viruses (ISVs). In this study, we utilized Oxford Nanopore Technologies metagenomics to characterize the virome of Aedes aegypti mosquitoes collected in various regions of Colombia, a country hyperendemic for dengue virus (DENV). Analyses were conducted on groups of insects with previous natural DENV infection (DENV-1 and DENV-2 serotypes), as well as mosquito samples that tested negative for virus infection (DENV-negative). Our findings indicate that the Ae. aegypti virome exhibits a similar viral composition at the ISV family and species levels in both DENV-positive and DENV-negative samples across all study sites. However, differences were observed in the relative abundance of viral families such as Phenuiviridae, Partitiviridae, Flaviviridae, Rhabdoviridae, Picornaviridae, Bromoviridae, and Virgaviridae, depending on the serotype of DENV-1 and DENV-2. In addition, ISVs are frequently found in the core virome of Ae. aegypti, such as Phasi Charoen-like phasivirus (PCLV), which was the most prevalent and showed variable abundance in relation to the presence of specific DENV serotypes. Phylogenetic analyses of the L, M, and S segments of the PCLV genome are associated with sequences from different regions of the world but show close clustering with sequences from Brazil and Guadeloupe, indicating a shared evolutionary relationship. The profiling of the Ae. aegypti virome in Colombia presented here improves our understanding of viral diversity within mosquito vectors and provides information that opens the way to possible connections between ISVs and arboviruses. Future studies aimed at deepening our understanding of the mechanisms underlying the interactions between ISVs and DENV serotypes in Ae. aegypti could provide valuable information for the design of effective vector-borne viral disease control and prevention strategies.IMPORTANCEIn this study, we employed a metagenomic approach to characterize the virome of Aedes aegypti mosquitoes, with and without natural DENV infection, in several regions of Colombia. Our findings indicate that the mosquito virome is predominantly composed of insect-specific viruses (ISVs) and that infection with different DENV serotypes (DENV-1 and DENV-2) could lead to alterations in the relative abundance of viral families and species constituting the core virome in Aedes spp. The study also sheds light on the identification of the genome and evolutionary relationships of the Phasi Charoen-like phasivirus in Ae. aegypti in Colombia, a widespread ISV in areas with high DENV incidence.
Collapse
Affiliation(s)
- Marcela Gómez
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogota, Colombia
- Grupo de Investigación en Ciencias Básicas (NÚCLEO), Facultad de Ciencias e Ingeniería, Universidad de Boyacá, Tunja, Colombia
| | - David Martínez
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogota, Colombia
| | - Luisa Páez-Triana
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogota, Colombia
| | - Nicolás Luna
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogota, Colombia
| | - Angie Ramírez
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogota, Colombia
| | - Julián Medina
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogota, Colombia
| | - Lissa Cruz-Saavedra
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogota, Colombia
| | - Carolina Hernández
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogota, Colombia
- Centro de Tecnología en Salud (CETESA), Innovaseq SAS, Bogotá, Colombia
| | - Sergio Castañeda
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogota, Colombia
| | - Ramiro Bohórquez Melo
- Grupo de Estudios en Salud Pública de la Amazonía, Laboratorio de Salud Pública de Amazonas, Leticia, Colombia
| | - Luis Alejandro Suarez
- Grupo de Estudios en Salud Pública de la Amazonía, Laboratorio de Salud Pública de Amazonas, Leticia, Colombia
| | - Mónica Palma-Cuero
- Grupo de Estudios en Salud Pública de la Amazonía, Laboratorio de Salud Pública de Amazonas, Leticia, Colombia
| | - Luz Mila Murcia
- Grupo de Estudios en Salud Pública de la Amazonía, Laboratorio de Salud Pública de Amazonas, Leticia, Colombia
| | | | | | | | | | | | | | | | - Marina Muñoz
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogota, Colombia
| | - Juan David Ramírez
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogota, Colombia
- Department of Pathology, Molecular and Cell-Based Medicine, Molecular Microbiology Laboratory, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
13
|
Laverdeur J, Desmecht D, Hayette MP, Darcis G. Dengue and chikungunya: future threats for Northern Europe? FRONTIERS IN EPIDEMIOLOGY 2024; 4:1342723. [PMID: 38456075 PMCID: PMC10911022 DOI: 10.3389/fepid.2024.1342723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 01/02/2024] [Indexed: 03/09/2024]
Abstract
Arthropod-borne viral diseases are likely to be affected by the consequences of climate change with an increase in their distribution and intensity. Among these infectious diseases, chikungunya and dengue viruses are two (re)emergent arboviruses transmitted by Aedes species mosquitoes and which have recently demonstrated their capacity for rapid expansion. They most often cause mild diseases, but they can both be associated with complications and severe forms. In Europe, following the establishment of invasive Aedes spp, the first outbreaks of autochtonous dengue and chikungunya have already occurred. Northern Europe is currently relatively spared, but climatic projections show that the conditions are permissive for the establishment of Aedes albopictus (also known as the tiger mosquito) in the coming decades. It is therefore essential to question and improve the means of surveillance in northern Europe, at the dawn of inevitable future epidemics.
Collapse
Affiliation(s)
- Justine Laverdeur
- Department of General Practice, University Hospital of Liège, Liège, Belgium
| | - Daniel Desmecht
- Department of Animal Pathology, Fundamental and Applied Research for Animals & Health, University of Liège, Liège, Belgium
| | - Marie-Pierre Hayette
- Department of Clinical Microbiology, University Hospital of Liège, Liège, Belgium
| | - Gilles Darcis
- Department of Infectious Diseases and General Internal Medicine, University Hospital of Liège, Liège, Belgium
| |
Collapse
|
14
|
Wang Y, Zhao S, Wei Y, Li K, Jiang X, Li C, Ren C, Yin S, Ho J, Ran J, Han L, Zee BCY, Chong KC. Impact of climate change on dengue fever epidemics in South and Southeast Asian settings: A modelling study. Infect Dis Model 2023; 8:645-655. [PMID: 37440763 PMCID: PMC10333599 DOI: 10.1016/j.idm.2023.05.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/25/2023] [Accepted: 05/29/2023] [Indexed: 07/15/2023] Open
Abstract
The potential for dengue fever epidemic due to climate change remains uncertain in tropical areas. This study aims to assess the impact of climate change on dengue fever transmission in four South and Southeast Asian settings. We collected weekly data of dengue fever incidence, daily mean temperature and rainfall from 2012 to 2020 in Singapore, Colombo, Selangor, and Chiang Mai. Projections for temperature and rainfall were drawn for three Shared Socioeconomic Pathways (SSP126, SSP245, and SSP585) scenarios. Using a disease transmission model, we projected the dengue fever epidemics until 2090s and determined the changes in annual peak incidence, peak time, epidemic size, and outbreak duration. A total of 684,639 dengue fever cases were reported in the four locations between 2012 and 2020. The projected change in dengue fever transmission would be most significant under the SSP585 scenario. In comparison to the 2030s, the peak incidence would rise by 1.29 times in Singapore, 2.25 times in Colombo, 1.36 times in Selangor, and >10 times in Chiang Mai in the 2090s under SSP585. Additionally, the peak time was projected to be earlier in Singapore, Colombo, and Selangor, but be later in Chiang Mai under the SSP585 scenario. Even in a milder emission scenario of SSP126, the epidemic size was projected to increase by 5.94%, 10.81%, 12.95%, and 69.60% from the 2030s-2090s in Singapore, Colombo, Selangor, and Chiang Mai, respectively. The outbreak durations in the four settings were projected to be prolonged over this century under SSP126 and SSP245, while a slight decrease is expected in 2090s under SSP585. The results indicate that climate change is expected to increase the risk of dengue fever transmission in tropical areas of South and Southeast Asia. Limiting greenhouse gas emissions could be crucial in reducing the transmission of dengue fever in the future.
Collapse
Affiliation(s)
- Yawen Wang
- Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Shi Zhao
- Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
- Centre for Health Systems and Policy Research, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
- Clinical Trials and Biostatistics Laboratory, Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Yuchen Wei
- Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
- Centre for Health Systems and Policy Research, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Kehang Li
- Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Xiaoting Jiang
- Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Conglu Li
- Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Chao Ren
- Division of Landscape Architecture, Department of Architecture, Faculty of Architecture, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Shi Yin
- Division of Landscape Architecture, Department of Architecture, Faculty of Architecture, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Janice Ho
- Division of Landscape Architecture, Department of Architecture, Faculty of Architecture, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Jinjun Ran
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lefei Han
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Benny Chung-ying Zee
- Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
- Centre for Health Systems and Policy Research, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
- Clinical Trials and Biostatistics Laboratory, Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Ka Chun Chong
- Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
- Centre for Health Systems and Policy Research, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
- Clinical Trials and Biostatistics Laboratory, Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| |
Collapse
|
15
|
Saeed A, Ali S, Khan F, Muhammad S, Reboita MS, Khan AW, Goheer MA, Khan MA, Kumar R, Ikram A, Jabeen A, Pongpanich S. Modelling the impact of climate change on dengue outbreaks and future spatiotemporal shift in Pakistan. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:3489-3505. [PMID: 36367603 DOI: 10.1007/s10653-022-01429-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 10/31/2022] [Indexed: 06/01/2023]
Abstract
Climate change has a significant impact on the intensity and spread of dengue outbreaks. The objective of this study is to assess the number of dengue transmission suitable days (DTSD) in Pakistan for the baseline (1976-2005) and future (2006-2035, 2041-2070, and 2071-2099) periods under Representative Concentration Pathway (RCP4.5 and RCP8.5) scenarios. Moreover, potential spatiotemporal shift and future hotspots of DTSD due to climate change were also identified. The analysis is based on fourteen CMIP5 models that have been downscaled and bias-corrected with quantile delta mapping technique, which addresses data stationarity constraints while preserving future climate signal. The results show a higher DTSD during the monsoon season in the baseline in the study area except for Sindh (SN) and South Punjab (SP). In future periods, there is a temporal shift (extension) towards pre- and post-monsoon. During the baseline period, the top ten hotspot cities with a higher frequency of DTSD are Karachi, Hyderabad, Sialkot, Jhelum, Lahore, Islamabad, Balakot, Peshawar, Kohat, and Faisalabad. However, as a result of climate change, there is an elevation-dependent shift in DTSD to high-altitude cities, e.g. in the 2020s, Kotli, Muzaffarabad, and Drosh; in the 2050s, Garhi Dopatta, Quetta, and Zhob; and in the 2080s, Chitral and Bunji. Karachi, Islamabad, and Balakot will remain highly vulnerable to dengue outbreaks for all the future periods of the twenty-first century. Our findings also indicate that DTSD would spread across Pakistan, particularly in areas where we have never seen dengue infections previously. The good news is that the DTSD in current hotspot cities is projected to decrease in the future due to climate change. There is also a temporal shift in the region during the post- and pre-monsoon season, which provides suitable breeding conditions for dengue mosquitos due to freshwater; therefore, local authorities need to take adaption and mitigation actions.
Collapse
Affiliation(s)
- Alia Saeed
- Health Services Academy, Islamabad, Pakistan
| | - Shaukat Ali
- Global Change Impact Studies Centre (GCISC), Ministry of Climate Change, Islamabad, Pakistan
| | - Firdos Khan
- School of Natural Sciences (SNS), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Sher Muhammad
- International Centre for Integrated Mountain Development (ICIMOD), Kathmandu, Nepal
| | | | | | - Muhammad Arif Goheer
- Global Change Impact Studies Centre (GCISC), Ministry of Climate Change, Islamabad, Pakistan
| | | | - Ramesh Kumar
- Health Services Academy, Islamabad, Pakistan.
- College of Public Health Sciences, Chulalongkorn University, Bangkok, Thailand.
| | - Aamer Ikram
- National Institute of Health, Islamabad, Pakistan
| | - Aliya Jabeen
- National Institute of Health, Islamabad, Pakistan
| | | |
Collapse
|
16
|
Lamy K, Tran A, Portafaix T, Leroux MD, Baldet T. Impact of regional climate change on the mosquito vector Aedes albopictus in a tropical island environment: La Réunion. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 875:162484. [PMID: 36889019 DOI: 10.1016/j.scitotenv.2023.162484] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 02/22/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
The recent expansion of Aedes albopictus across continents in both tropical and temperate regions and the exponential growth of dengue cases over the past 50 years represent a significant risk to human health. Although climate change is not the only factor responsible for the increase and spread of dengue cases worldwide, it might increase the risk of disease transmission at global and regional scale. Here we show that regional and local variations in climate can induce differential impacts on the abundance of Ae. albopictus. We use the instructive example of Réunion Island with its varied climatic and environmental conditions and benefiting from the availability of meteorological, climatic, entomological and epidemiological data. Temperature and precipitation data based on regional climate model simulations (3 km × 3 km) are used as inputs to a mosquito population model for three different climate emission scenarios. Our objective is to study the impact of climate change on the life cycle dynamics of Ae. albopictus in the 2070-2100 time horizon. Our results show the joint influence of temperature and precipitation on Ae. albopictus abundance as a function of elevation and geographical subregion. At low-elevations areas, decreasing precipitation is expected to have a negative impact on environmental carrying capacity and, consequently, on Ae. albopictus abundance. At mid- and high-elevations, decreasing precipitation is expected to be counterbalanced by a significant warming, leading to faster development rates at all life stages, and consequently increasing the abundance of this important dengue vector in 2070-2100.
Collapse
Affiliation(s)
- K Lamy
- LACy, Laboratoire de l'Atmosphère et des Cyclones (UMR 8105 CNRS, Université de La Réunion, Météo-France), Saint-Denis de La Réunion, France.
| | - A Tran
- CIRAD, UMR TETIS, Sainte-Clotilde, La Réunion, France
| | - T Portafaix
- LACy, Laboratoire de l'Atmosphère et des Cyclones (UMR 8105 CNRS, Université de La Réunion, Météo-France), Saint-Denis de La Réunion, France
| | - M D Leroux
- Météo-France, Direction Interrégionale pour l'Océan Indien, Saint-Denis de La Réunion, France
| | - T Baldet
- ASTRE, Univ. Montpellier, Cirad, INRA, Sainte-Clotilde, La Réunion, France
| |
Collapse
|
17
|
Hussain Z, Rani S, Ma F, Li W, Shen W, Gao T, Wang J, Pei R. Dengue determinants: Necessities and challenges for universal dengue vaccine development. Rev Med Virol 2023; 33:e2425. [PMID: 36683235 DOI: 10.1002/rmv.2425] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 01/08/2023] [Accepted: 01/13/2023] [Indexed: 01/24/2023]
Abstract
Dengue illness can range from mild illness to life-threatening haemorrhage. It is an Aedes-borne infectious disease caused by the dengue virus, which has four serotypes. Each serotype acts as an independent infectious agent. The antibodies against one serotype confer homotypic immunity but temporary protection against heterotypic infection. Dengue has become a growing health concern for up to one third of the world's population. Currently, there is no potent anti-dengue medicine, and treatment for severe dengue relies on intravenous fluid management and pain medications. The burden of dengue dramatically increases despite advances in vector control measures. These factors underscore the need for a vaccine. Various dengue vaccine strategies have been demonstrated, that is, live attenuated vaccine, inactivated vaccine, DNA vaccine, subunit vaccine, and viral-vector vaccines, some of which are at the stage of clinical testing. Unfortunately, the forefront candidate vaccine is less than satisfactory, and its performance depends on serostatus and age factors. The lessons from clinical studies depicted ambiguity concerning the efficacy of dengue vaccine. Our study highlighted that viral structural heterogeneity, epitope accessibility, autoimmune complications, genetic variants, genetic diversities, antigen competition, virulence variation, host-pathogen specific interaction, antibody-dependent enhancement, cross-reactive immunity among Flaviviruses, and host-susceptibility determinants not only influence infection outcomes but also hampered successful vaccine development. This review integrates dengue determinants allocated necessities and challenges, which would provide insight for universal dengue vaccine development.
Collapse
Affiliation(s)
- Zahid Hussain
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China (USTC), Hefei, China.,CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou, China.,Molecular Virology Laboratory, Department of Biosciences, Comsats University Islamabad (CUI), Islamabad, Pakistan
| | - Saima Rani
- Molecular Virology Laboratory, Department of Biosciences, Comsats University Islamabad (CUI), Islamabad, Pakistan
| | - Fanshu Ma
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou, China
| | - Wenjing Li
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China (USTC), Hefei, China.,CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou, China
| | - Wenqi Shen
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou, China
| | - Tian Gao
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou, China
| | - Jine Wang
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China (USTC), Hefei, China.,CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou, China
| | - Renjun Pei
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China (USTC), Hefei, China.,CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou, China
| |
Collapse
|
18
|
Diagnosis of Dengue Virus Infections Imported to Hungary and Phylogenetic Analysis of Virus Isolates. Diagnostics (Basel) 2023; 13:diagnostics13050873. [PMID: 36900018 PMCID: PMC10001143 DOI: 10.3390/diagnostics13050873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/16/2023] [Accepted: 02/19/2023] [Indexed: 03/03/2023] Open
Abstract
BACKGROUND Dengue virus is one of the most important arbovirus infections of public health concern. Between 2017 and June 2022, 75 imported dengue infections were confirmed by laboratory diagnostic methods in Hungary. Our study aimed to isolate the imported Dengue strains and characterize them by whole-genome sequencing. METHODS Laboratory diagnosis of imported infections was carried out using both serological and molecular methods. Virus isolation was attempted on Vero E6 cell lines. An in-house amplicon-based whole-genome sequencing method was applied for the detailed molecular characterization of the isolated virus strains. RESULTS From 75 confirmed Dengue infected patients, 68 samples were used for virus isolation. Isolation and whole-genome sequencing were successful in the case of eleven specimens. Isolated strains belonged to Dengue-1,-2,-3 serotypes. DISCUSSION The isolated strains corresponded to the circulating genotypes of the visited geographic area, and some of the genotypes were linked with more severe DENV cases in the literature. We found that multiple factors, including viral load, specimen type, and patient antibody status, influence the isolation efficacy. CONCLUSIONS Analysis of imported DENV strains can help estimate the outcomes of a possible local DENV transmission in Hungary, a threat from the near future.
Collapse
|
19
|
Factors Affecting Arbovirus Midgut Escape in Mosquitoes. Pathogens 2023; 12:pathogens12020220. [PMID: 36839492 PMCID: PMC9963182 DOI: 10.3390/pathogens12020220] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/25/2023] [Accepted: 01/29/2023] [Indexed: 02/04/2023] Open
Abstract
Arboviral diseases spread by mosquitoes cause significant morbidity and mortality throughout much of the world. The treatment and prevention of these diseases through medication and vaccination is often limited, which makes controlling arboviruses at the level of the vector ideal. One way to prevent the spread of an arbovirus would be to stop its vector from developing a disseminated infection, which is required for the virus to make its way to the saliva of the mosquito to be potentially transmitted to a new host. The midgut of the mosquito provides one such opportunity to stop an arbovirus in its tracks. It has been known for many years that in certain arbovirus-vector combinations, or under certain circumstances, an arbovirus can infect and replicate in the midgut but is unable to escape from the tissue to cause disseminated infection. This situation is known as a midgut escape barrier. If we better understand why this barrier occurs, it might aid in the development of more informed control strategies. In this review, we discuss how the midgut escape barrier contributes to virus-vector specificity and possible mechanisms that may allow this barrier to be overcome in successful virus-vector combinations. We also discuss several of the known factors that either increase or decrease the likelihood of midgut escape.
Collapse
|
20
|
Khan W, Rahman A, Zaman S, Kabir M, Khan R, Ali W, Ahmad S, Shabir S, Jamil S, Ríos-Escalante PDL. Knowledge, attitude and practices regarding dengue and its vector among medical practitioners in Malakand region, Pakistan. BRAZ J BIOL 2023; 83:e244966. [DOI: 10.1590/1519-6984.244966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 01/05/2021] [Indexed: 11/21/2022] Open
Abstract
Abstract Dengue fever (DF) is increasingly recognized as one of the world’s major mosquito borne diseases and causes significant morbidity and mortality in tropical and subtropical countries. Dengue fever is endemic in most part of Pakistan and continues to be a public health concern. Knowledge, attitude and practices can play an important role in management of the disease. Current study was aimed to determine the level of knowledge, attitude and practices regarding dengue fever among health practitioners, to study the level of knowledge and attitude with preventive practices for dengue fever. A cross sectional study was carried out in medical practitioners of the four districts of Malakand region during October to November 2019. A pre-structured questionnaire was used to collect data from medical practitioners. Data was analyzed using Graph Pad version 5. Significant value was considered when less than 0.05 (at 95% confidence of interval). The results revealed that most of participants have seen dengue vector (62%), the media being the most quoted source of information. Nearly 81.2% participants were aware from transmission of dengue fever is by mosquito bite. Practices based upon preventive measures were found to be predominantly focused towards prevention of mosquito bites rather than elimination of breeding places. Although the knowledge regarding DF and mosquito control measure was quite high among the medical practitioners but this knowledge was not put into practice. Further studies are required to aware the people about dengue and its vector in order to get prevention and control.
Collapse
Affiliation(s)
- W. Khan
- University of Malakand, Pakistan
| | | | - S. Zaman
- University of Malakand, Pakistan
| | - M. Kabir
- University of Sargodha, Pakistan
| | - R. Khan
- University of Malakand, Pakistan
| | - W. Ali
- University of Malakand, Pakistan
| | - S. Ahmad
- University of Malakand, Pakistan
| | - S. Shabir
- Agriculture University Faisalabad, Pakistan
| | - S. Jamil
- Rawalpindi Women University, Pakistan
| | | |
Collapse
|
21
|
Pauly I, Jakoby O, Becker N. Efficacy of native cyclopoid copepods in biological vector control with regard to their predatory behavior against the Asian tiger mosquito, Aedes albopictus. Parasit Vectors 2022; 15:351. [PMID: 36183110 PMCID: PMC9526276 DOI: 10.1186/s13071-022-05460-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 07/18/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The control of the Asian tiger mosquito Aedes albopictus (Diptera: Culicidae) is crucial owing to its high vector competence for more than 20 arboviruses-the most important being dengue, chikungunya and Zika virus. Aedes albopictus has an enormous adaptive potential, and its invasive spreading across urban and suburban environments poses challenges for its control. Therefore, all suitable, cost-effective and eco-friendly control tools should be put into practice. In this context, cyclopoid copepods are already known as effective predators of mosquito larvae. This study reports an essential preliminary step towards the integration of copepods into the vector control strategy in Germany, in order to provide a sustainable tool in an integrated control strategy based on the elimination or sanitation of breeding sites, the use of formulations based on Bacillus thuringiensis israelensis (Bti.) and the sterile insect technique (SIT). METHODS The predatory potential of native cyclopoid copepods, namely the field-derived species Megacyclops viridis (Crustacea: Cyclopidae), was examined against the larvae of Ae. albopictus, and for comparison, against the larvae of the common house mosquito, Culex pipiens sensu lato (Diptera: Culicidae). The use of different larval instars as prey, and various predator-to-prey ratios, were examined under laboratory and semi-field conditions. The compatibility of Bti. applications along with the use of copepods was assessed in the laboratory. RESULTS High predation efficiency of M. viridis upon first-instar larvae of Ae. albopictus was observed under laboratory (up to 96%) and semi-field conditions (65.7%). The copepods did not prey upon stages further developed than the first instars, and in comparison with Ae. albopictus, the predation rates on the larvae of Cx. pipiens s.l. were significantly lower. CONCLUSIONS The results indicate a high predation potential of M. viridis against Ae. albopictus larvae, even though strong larval stage and mosquito species preferences were implicated. The integration of copepods as a promising biocontrol agent to the vector control strategy in Germany is therefore highly recommended, especially because of the excellent compatibility of copepods with the use of Bti. However, further research is required, concerning all the probable parameters that may impact the copepod performance under natural conditions.
Collapse
Affiliation(s)
- Isabel Pauly
- Faculty of Bioscience, University of Heidelberg, Im Neuenheimer Feld 230, 69120, Heidelberg, Germany
| | - Oliver Jakoby
- Effect Modelling and Statistics, RIFCON GmbH, Goldbeckstraße 13, 69493, Hirschberg, Germany
| | - Norbert Becker
- Faculty of Bioscience, University of Heidelberg, Im Neuenheimer Feld 230, 69120, Heidelberg, Germany. .,Institute of Dipterology (IfD), Gesellschaft Zur Förderung Der Stechmückenbekämpfung E.V., Georg-Peter-Süß-Str. 3, 67346, Speyer, Germany.
| |
Collapse
|
22
|
Piovezan-Borges AC, Valente-Neto F, Urbieta GL, Laurence SGW, de Oliveira Roque F. Global trends in research on the effects of climate change on Aedes aegypti: international collaboration has increased, but some critical countries lag behind. Parasit Vectors 2022; 15:346. [PMID: 36175962 PMCID: PMC9520940 DOI: 10.1186/s13071-022-05473-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 08/25/2022] [Indexed: 11/10/2022] Open
Abstract
Background Mosquito-borne diseases (e.g., transmitted by Aedes aegypti) affect almost 700 million people each year and result in the deaths of more than 1 million people annually. Methods We examined research undertaken during the period 1951–2020 on the effects of temperature and climate change on Ae. aegypti, and also considered research location and between-country collaborations. Results The frequency of publications on the effects of climate change on Ae. aegypti increased over the period examined, and this topic received more attention than the effects of temperature alone on this species. The USA, UK, Australia, Brazil, and Argentina were the dominant research hubs, while other countries fell behind with respect to number of scientific publications and/or collaborations. The occurrence of Ae. aegypti and number of related dengue cases in the latter are very high, and climate change scenarios predict changes in the range expansion and/or occurrence of this species in these countries. Conclusions We conclude that some of the countries at risk of expanding Ae. aegypti populations have poor research networks that need to be strengthened. A number of mechanisms can be considered for the improvement of international collaboration, representativity and diversity, such as research networks, internationalization programs, and programs that enhance representativity. These types of collaboration are considered important to expand the relevant knowledge of these countries and for the development of management strategies in response to climate change scenarios. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-022-05473-7.
Collapse
Affiliation(s)
- Ana Cláudia Piovezan-Borges
- Instituto de Biociências (INBIO), Universidade Federal de Mato Grosso do Sul (UFMS), Campo Grande, Mato Grosso do Sul, Brazil
| | - Francisco Valente-Neto
- Instituto de Biociências (INBIO), Universidade Federal de Mato Grosso do Sul (UFMS), Campo Grande, Mato Grosso do Sul, Brazil
| | - Gustavo Lima Urbieta
- Laboratório de Mamíferos, Departamento de Sistemática e Ecologia, Programa de Pós-Graduação em Ciências Biológicas (Zoologia), Universidade Federal da Paraíba (UFPB), João Pessoa, Paraíba, Brasil.
| | - Susan G W Laurence
- Centre for Tropical Environmental and Sustainability Science (TESS), College of Science and Engineering, James Cook University, Cairns, Australia
| | - Fabio de Oliveira Roque
- Instituto de Biociências (INBIO), Universidade Federal de Mato Grosso do Sul (UFMS), Campo Grande, Mato Grosso do Sul, Brazil.,Centre for Tropical Environmental and Sustainability Science (TESS), College of Science and Engineering, James Cook University, Cairns, Australia
| |
Collapse
|
23
|
Time-Scale Analysis and Parameter Fitting for Vector-Borne Diseases with Spatial Dynamics. Bull Math Biol 2022; 84:124. [PMID: 36121515 DOI: 10.1007/s11538-022-01083-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 09/07/2022] [Indexed: 11/02/2022]
Abstract
Vector-borne diseases are progressively spreading in a growing number of countries, and it has the potential to invade new areas and habitats. From the dynamical perspective, the spatial-temporal interaction of models that try to adjust to such events is rich and challenging. The first challenge is to address the dynamics of vectors (very fast and local) and the dynamics of humans (very heterogeneous and non-local). The objective of this work is to use the well-known Ross-Macdonald models, identifying different time scales, incorporating human spatial movements and estimate in a suitable way the parameters. We will concentrate on a practical example, a simplified space model, and apply it to dengue spread in the state of Rio de Janeiro, Brazil.
Collapse
|
24
|
Gómez M, Martínez D, Hernández C, Luna N, Patiño LH, Bohórquez Melo R, Suarez LA, Palma-Cuero M, Murcia LM, González Páez L, Estrada Bustos L, Medina MA, Ariza Campo K, Padilla HD, Zamora Flórez A, De las Salas JL, Muñoz M, Ramírez JD. Arbovirus infection in Aedes aegypti from different departments of Colombia. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.999169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The lack of precise and timely knowledge about the molecular epidemiology of arboviruses of public health importance, particularly in the vector, has limited the comprehensive control of arboviruses. In Colombia and the Americas, entomovirological studies are scarce. Therefore, this study aimed to describe the frequency of natural infection and/or co-infection by Dengue (DENV), Zika (ZIKV), and Chikungunya (CHIKV) in Aedes spp. circulating in different departments of Colombia (Amazonas, Boyacá, Magdalena, and Vichada) and identifying vector species by barcoding. Aedes mosquitoes were collected in departments with reported prevalence or incidence of arbovirus cases during 2020–2021, located in different biogeographic zones of the country: Amazonas, Boyacá, Magdalena, and Vichada. The insects were processed individually for RNA extraction, cDNA synthesis, and subsequent detection of DENV (serotypes DENV1-4 by multiplex PCR), CHIKV, and ZIKV (qRT-PCR). The positive mosquitoes for arboviruses were sequenced (Sanger method) using the subunit I of the cytochrome oxidase (COI) gene for species-level identification. In total, 558 Aedes mosquitoes were captured, 28.1% (n = 157) predominantly infected by DENV in all departments. The serotypes with the highest frequency of infection were DENV-1 and DENV-2 with 10.7% (n = 58) and 14.5% (n = 81), respectively. Coinfections between serotypes represented 3.9% (n = 22). CHIKV infection was detected in one individual (0.2%), and ZIKV infections were not detected. All infected samples were identified as A. aegypti (100%). From the COI dataset (593 bp), high levels of haplotype diversity (H = 0.948 ± 0.012) and moderate nucleotide diversity (π = 0.0225 ± 0.003) were identified, suggesting recent population expansions. Constructed phylogenetic analyses showed our COI sequences’ association with lineage I, which was reported widespread and related to a West African conspecific. We conclude that natural infection in A. aegypti by arbovirus might reflect the country’s epidemiological behavior, with a higher incidence of serotypes DENV-1 and DENV-2, which may be associated with high seroprevalence and asymptomatic infections in humans. This study demonstrates the high susceptibility of this species to arbovirus infection and confirms that A. aegypti is the main vector in Colombia. The importance of including entomovirological surveillance strategy within public health systems to understand transmission dynamics and the potential risk to the population is highlighted herein.
Collapse
|
25
|
Expressing the Pro-Apoptotic Reaper Protein via Insertion into the Structural Open Reading Frame of Sindbis Virus Reduces the Ability to Infect Aedes aegypti Mosquitoes. Viruses 2022; 14:v14092035. [PMID: 36146841 PMCID: PMC9501589 DOI: 10.3390/v14092035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 09/07/2022] [Accepted: 09/09/2022] [Indexed: 11/17/2022] Open
Abstract
Arboviruses continue to threaten a significant portion of the human population, and a better understanding is needed of the determinants of successful arbovirus infection of arthropod vectors. Avoiding apoptosis has been shown to be one such determinant. Previous work showed that a Sindbis virus (SINV) construct called MRE/rpr that expresses the Drosophila pro-apoptotic protein Reaper via a duplicated subgenomic promoter had a reduced ability to orally infect Aedes aegypti mosquitoes at 3 days post-blood meal (PBM), but this difference diminished over time as virus variants containing deletions in the inserted reaper gene rapidly predominated. In order to further clarify the effect of midgut apoptosis on disseminated infection in Ae. aegypti, we constructed MRE/rprORF, a version of SINV containing reaper inserted into the structural open reading frame (ORF) as an in-frame fusion. MRE/rprORF successfully expressed Reaper, replicated similarly to MRE/rpr in cell lines, induced apoptosis in cultured cells, and caused increased effector caspase activity in mosquito midgut tissue. Mosquitoes that fed on blood containing MRE/rprORF developed significantly less midgut and disseminated infection when compared to MRE/rpr or a control virus up to at least 7 days PBM, when less than 50% of mosquitoes that ingested MRE/rprORF had detectable disseminated infection, compared with around 80% or more of mosquitoes fed with MRE/rpr or control virus. However, virus titer in the minority of mosquitoes that became infected with MRE/rprORF was not significantly different from control virus. Deep sequencing of virus populations from ten mosquitoes infected with MRE/rprORF indicated that the reaper insert was stable, with only a small number of point mutations and no deletions being observed at frequencies greater than 1%. Our results indicate that expression of Reaper by this method significantly reduces infection prevalence, but if infection is established then Reaper expression has limited ability to continue to suppress replication.
Collapse
|
26
|
Gómez M, Martinez D, Muñoz M, Ramírez JD. Aedes aegypti and Ae. albopictus microbiome/virome: new strategies for controlling arboviral transmission? Parasit Vectors 2022; 15:287. [PMID: 35945559 PMCID: PMC9364528 DOI: 10.1186/s13071-022-05401-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 07/14/2022] [Indexed: 02/07/2023] Open
Abstract
Aedes aegypti and Aedes albopictus are the main vectors of highly pathogenic viruses for humans, such as dengue (DENV), chikungunya (CHIKV), and Zika (ZIKV), which cause febrile, hemorrhagic, and neurological diseases and remain a major threat to global public health. The high ecological plasticity, opportunistic feeding patterns, and versatility in the use of urban and natural breeding sites of these vectors have favored their dispersal and adaptation in tropical, subtropical, and even temperate zones. Due to the lack of available treatments and vaccines, mosquito population control is the most effective way to prevent arboviral diseases. Resident microorganisms play a crucial role in host fitness by preventing or enhancing its vectorial ability to transmit viral pathogens. High-throughput sequencing and metagenomic analyses have advanced our understanding of the composition and functionality of the microbiota of Aedes spp. Interestingly, shotgun metagenomics studies have established that mosquito vectors harbor a highly conserved virome composed of insect-specific viruses (ISV). Although ISVs are not infectious to vertebrates, they can alter different phases of the arboviral cycle, interfering with transmission to the human host. Therefore, this review focuses on the description of Ae. aegypti and Ae. albopictus as vectors susceptible to infection by viral pathogens, highlighting the role of the microbiota-virome in vectorial competence and its potential in control strategies for new emerging and re-emerging arboviruses.
Collapse
Affiliation(s)
- Marcela Gómez
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia.,Grupo de Investigación en Ciencias Básicas (NÚCLEO) Facultad de Ciencias e Ingeniería, Universidad de Boyacá, Tunja, Colombia
| | - David Martinez
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Marina Muñoz
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Juan David Ramírez
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia. .,Molecular Microbiology Laboratory, Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
27
|
Spatial Analysis of Mosquito-Borne Diseases in Europe: A Scoping Review. SUSTAINABILITY 2022. [DOI: 10.3390/su14158975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Mosquito-borne infections are increasing in endemic areas and previously unaffected regions. In 2020, the notification rate for Dengue was 0.5 cases per 100,000 population, and for Chikungunya <0.1/100,000. In 2019, the rate for Malaria was 1.3/100,000, and for West Nile Virus, 0.1/100,000. Spatial analysis is increasingly used in surveillance and epidemiological investigation, but reviews about their use in this research topic are scarce. We identify and describe the methodological approaches used to investigate the distribution and ecological determinants of mosquito-borne infections in Europe. Relevant literature was extracted from PubMed, Scopus, and Web of Science from inception until October 2021 and analysed according to PRISMA-ScR protocol. We identified 110 studies. Most used geographical correlation analysis (n = 50), mainly applying generalised linear models, and the remaining used spatial cluster detection (n = 30) and disease mapping (n = 30), mainly conducted using frequentist approaches. The most studied infections were Dengue (n = 32), Malaria (n = 26), Chikungunya (n = 26), and West Nile Virus (n = 24), and the most studied ecological determinants were temperature (n = 39), precipitation (n = 24), water bodies (n = 14), and vegetation (n = 11). Results from this review may support public health programs for mosquito-borne disease prevention and may help guide future research, as we recommended various good practices for spatial epidemiological studies.
Collapse
|
28
|
Fukui S, Kuwano Y, Ueno K, Atsumi K, Ohta S. Modeling the effect of rainfall changes to predict population dynamics of the Asian tiger mosquito Aedes albopictus under future climate conditions. PLoS One 2022; 17:e0268211. [PMID: 35613220 PMCID: PMC9132271 DOI: 10.1371/journal.pone.0268211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 04/25/2022] [Indexed: 11/29/2022] Open
Abstract
The population dynamics of mosquitoes in temperate regions are not as well understood as those in tropical and subtropical regions, despite concerns that vector-borne diseases may be prevalent in future climates. Aedes albopictus, a vector mosquito in temperate regions, undergoes egg diapause while overwintering. To assess the prevalence of mosquito-borne diseases in the future, this study aimed to simulate and predict mosquito population dynamics under estimated future climatic conditions. In this study, we tailored the physiology-based climate-driven mosquito population (PCMP) model for temperate mosquitoes to incorporate egg diapauses for overwintering. We also investigated how the incorporation of the effect of rainfall on larval carrying capacity (into a model) changes the population dynamics of this species under future climate conditions. The PCMP model was constructed to simulate mosquito population dynamics, and the parameters of egg diapause and rainfall effects were estimated for each model to fit the observed data in Tokyo. We applied the global climate model data to the PCMP model and observed an increase in the mosquito population under future climate conditions. By applying the PCMP models (with or without the rainfall effect on the carrying capacity of the A. albopictus), our projections indicated that mosquito population dynamics in the future could experience changes in the patterns of their active season and population abundance. According to our results, the peak population number simulated using the highest CO2 emission scenario, while incorporating the rainfall effect on the carrying capacity, was approximately 1.35 times larger than that predicted using the model that did not consider the rainfall effect. This implies that the inclusion of rainfall effects on mosquito population dynamics has a major impact on the risk assessments of mosquito-borne diseases in the future.
Collapse
Affiliation(s)
- Shin Fukui
- Department of Human Behavior and Environment Sciences, Faculty of Human Sciences, Waseda University, Tokyo, Japan
- Fisheries Data Sciences Division, Fisheries Stock Assessment Center, Fisheries Resources Institute, Japan Fisheries Research and Education Agency, Yokohama, Japan
| | - Yusuke Kuwano
- Department of Human Behavior and Environment Sciences, Faculty of Human Sciences, Waseda University, Tokyo, Japan
- Department of Evolutionary Studies of Biosystems, School of Advanced Sciences, SOKENDAI (The Graduate University for Advanced Studies), Hayama, Japan
| | - Kazuki Ueno
- Department of Human Behavior and Environment Sciences, Faculty of Human Sciences, Waseda University, Tokyo, Japan
| | - Kazuyuki Atsumi
- Department of Human Behavior and Environment Sciences, Faculty of Human Sciences, Waseda University, Tokyo, Japan
| | - Shunji Ohta
- Department of Human Behavior and Environment Sciences, Faculty of Human Sciences, Waseda University, Tokyo, Japan
- * E-mail:
| |
Collapse
|
29
|
Baharom M, Ahmad N, Hod R, Abdul Manaf MR. Dengue Early Warning System as Outbreak Prediction Tool: A Systematic Review. Healthc Policy 2022; 15:871-886. [PMID: 35535237 PMCID: PMC9078425 DOI: 10.2147/rmhp.s361106] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 04/16/2022] [Indexed: 12/01/2022] Open
Abstract
Early warning system (EWS) for vector-borne diseases is incredibly complex due to numerous factors originating from human, environmental, vector and the disease itself. Dengue EWS aims to collect data that leads to prompt decision-making processes that trigger disease intervention strategies to minimize the impact on a specific population. Dengue EWS may have a similar structural design, functions, and analytical approaches but different performance and ability to predict outbreaks. Hence, this review aims to summarise and discuss the evidence of different EWSs, their performance, and their ability to predict dengue outbreaks. A systematic literature search was performed of four primary databases: Scopus, Web of Science, Ovid MEDLINE, and EBSCOhost. Eligible articles were evaluated using a checklist for assessing the quality of the studies. A total of 17 studies were included in this systematic review. All EWS models demonstrated reasonably good predictive abilities to predict dengue outbreaks. However, the accuracy of their predictions varied greatly depending on the model used and the data quality. The reported sensitivity ranged from 50 to 100%, while specificity was 74 to 94.7%. A range between 70 to 96.3% was reported for prediction model accuracy and 43 to 86% for PPV. Overall, meteorological alarm indicators (temperatures and rainfall) were the most frequently used and displayed the best performing indicator. Other potential alarm indicators are entomology (female mosquito infection rate), epidemiology, population and socioeconomic factors. EWS is an essential tool to support district health managers and national health planners to mitigate or prevent disease outbreaks. This systematic review highlights the benefits of integrating several epidemiological tools focusing on incorporating climatic, environmental, epidemiological and socioeconomic factors to create an early warning system. The early warning system relies heavily on the country surveillance system. The lack of timely and high-quality data is critical for developing an effective EWS.
Collapse
Affiliation(s)
- Mazni Baharom
- Department of Community Health, Faculty of Medicine, Universiti Kebangsaan Malaysia, Bandar Tun Razak, Kuala Lumpur, 56000, Malaysia
| | - Norfazilah Ahmad
- Department of Community Health, Faculty of Medicine, Universiti Kebangsaan Malaysia, Bandar Tun Razak, Kuala Lumpur, 56000, Malaysia
- Correspondence: Norfazilah Ahmad, Department of Community Health, Faculty of Medicine, Universiti Kebangsaan Malaysia, Bandar Tun Razak, Kuala Lumpur, 56000, Malaysia, Tel +60391458781, Fax +60391456670, Email
| | - Rozita Hod
- Department of Community Health, Faculty of Medicine, Universiti Kebangsaan Malaysia, Bandar Tun Razak, Kuala Lumpur, 56000, Malaysia
| | - Mohd Rizal Abdul Manaf
- Department of Community Health, Faculty of Medicine, Universiti Kebangsaan Malaysia, Bandar Tun Razak, Kuala Lumpur, 56000, Malaysia
| |
Collapse
|
30
|
Mercier A, Obadia T, Carraretto D, Velo E, Gabiane G, Bino S, Vazeille M, Gasperi G, Dauga C, Malacrida AR, Reiter P, Failloux AB. Impact of temperature on dengue and chikungunya transmission by the mosquito Aedes albopictus. Sci Rep 2022; 12:6973. [PMID: 35484193 PMCID: PMC9051100 DOI: 10.1038/s41598-022-10977-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 03/16/2022] [Indexed: 12/28/2022] Open
Abstract
The mosquito Aedes albopictus is an invasive species first detected in Europe in Albania in 1979, and now established in 28 European countries. Temperature is a limiting factor in mosquito activities and in the transmission of associated arboviruses namely chikungunya (CHIKV) and dengue (DENV). Since 2007, local transmissions of CHIKV and DENV have been reported in mainland Europe, mainly in South Europe. Thus, the critical question is how far north transmission could occur. In this context, the Albanian infestation by Ae. albopictus is of interest because the species is present up to 1200 m of altitude; this allows using altitude as a proxy for latitude. Here we show that Ae. albopictus can transmit CHIKV at 28 °C as well as 20 °C, however, the transmission of DENV is only observed at 28 °C. We conclude that if temperature is the key environmental factor limiting transmission, then transmission of CHIKV, but not DENV is feasible in much of Europe.
Collapse
Affiliation(s)
- Aurélien Mercier
- Institut Pasteur, Université Paris Cité, Insects and Infectious Diseases, 75015, Paris, France.,INSERM, Univ. Limoges, CHU Limoges, IRD, U1094 Neuroépidémiologie Tropicale, Institut d'Epidémiologie Et de Neurologie Tropicale, GEIST, Limoges, France
| | - Thomas Obadia
- Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub, 75015, Paris, France.,Institut Pasteur, Université Paris Cité, G5 Infectious Disease Epidemiology and Analytics, 75015, Paris, France
| | - Davide Carraretto
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | | | - Gaelle Gabiane
- Institut Pasteur, Université Paris Cité, Arboviruses and Insect Vectors, 75015, Paris, France
| | | | - Marie Vazeille
- Institut Pasteur, Université Paris Cité, Arboviruses and Insect Vectors, 75015, Paris, France
| | - Giuliano Gasperi
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Catherine Dauga
- Institut Pasteur, Université Paris Cité, Arboviruses and Insect Vectors, 75015, Paris, France
| | - Anna R Malacrida
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Paul Reiter
- Institut Pasteur, Université Paris Cité, Insects and Infectious Diseases, 75015, Paris, France
| | - Anna-Bella Failloux
- Institut Pasteur, Université Paris Cité, Arboviruses and Insect Vectors, 75015, Paris, France.
| |
Collapse
|
31
|
Labiros DA, Catalig AMP, Ymbong RRJ, Sakuntabhai A, Lluisma AO, Edillo FE. Novel and Broadly Applicable Microsatellite Markers in Identified Chromosomes of the Philippine Dengue Mosquitoes, Aedes aegypti (Diptera: Culicidae). JOURNAL OF MEDICAL ENTOMOLOGY 2022; 59:545-553. [PMID: 35134978 PMCID: PMC8924974 DOI: 10.1093/jme/tjab194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Indexed: 05/12/2023]
Abstract
Dengue is the leading arboviral infection in the Philippines. Its endemicity in the country is due to the presence of its primary mosquito vector, Aedes aegypti (L.). This species has limited microsatellite markers. This study characterized microsatellite markers screened in silico from intergenic regions of the updated reference genome of Ae. aegypti from Liverpool, U.K. Criteria for good markers are: polymorphic, inherited in a Mendelian codominant manner, no null alleles, selectively neutral, randomly associated, and broadly applicable across different regions. Genotypes were scored using ABI Peak Scanner and were screened for the presence of null alleles. Hardy-Weinberg equilibrium, linkage disequilibrium, and robustness of the markers were determined by GENEPOP using Ae. aegypti samples from selected highland and lowland sites (n = 30 each) in the Philippines and outgroups (Thailand and Vietnam). Mendelian codominant inheritance was examined using F1 offspring of Ae. aegypti family (n = 30 each) derived from samples collected from Cebu city highlands and Maramag, Bukidnon. From the 63 randomly selected markers, nine were polymorphic. Two markers (Aaeg1-3D of chromosome 1 and Aaeg3-4C of chromosome 3) satisfied all criteria, hence, are good broadly useful microsatellite markers. Two other markers (Aaeg2-2E of chromosome 2 and Aaeg3-2A of chromosome 3) met all criteria but deviated from Mendelian codominant inheritance. These new markers of the Philippine Ae. aegypti with their chromosomal locations relative to the other published markers are presented, and will ultimately be useful in a variety of population genetic studies of Ae. aegypti to protect the public health.
Collapse
Affiliation(s)
- Dinesse A Labiros
- Department of Biology, University of San Carlos—Talamban Campus, Talamban, Cebu city, 6000, Philippines
| | - Antonio Mari P Catalig
- Marine Science Institute, University of the Philippines Diliman, Diliman, Quezon city, Philippines
| | - Rhoniel Ryan J Ymbong
- Department of Biology, University of San Carlos—Talamban Campus, Talamban, Cebu city, 6000, Philippines
| | - Anavaj Sakuntabhai
- Functional Genetics of Infectious Diseases Unit, Institut Pasteur, Rue de Docteur Roux, 75015, Paris, France
- Centre National de la Recherche Scientifique, 75015, Paris, France
| | - Arturo O Lluisma
- Marine Science Institute, University of the Philippines Diliman, Diliman, Quezon city, Philippines
| | - Frances E Edillo
- Department of Biology, University of San Carlos—Talamban Campus, Talamban, Cebu city, 6000, Philippines
- Corresponding author, e-mail:
| |
Collapse
|
32
|
Single-cell Temporal Analysis of Natural Dengue Infection Reveals Skin-Homing Lymphocyte Expansion One Day before Defervescence. iScience 2022; 25:104034. [PMID: 35345453 PMCID: PMC8957021 DOI: 10.1016/j.isci.2022.104034] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 02/02/2022] [Accepted: 03/02/2022] [Indexed: 11/28/2022] Open
Abstract
Effective clinical management of acute dengue virus (DENV) infection relies on the timing of suitable treatments during the disease progression. We analyzed single-cell transcriptomic profiles of the peripheral blood mononuclear cell samples from two DENV patients, collected daily during acute phase and also at convalescence. Key immune cell types demonstrated different dynamic responses over the course of the infection. On the day before defervescence (Day −1), we observed the peak expression of several prominent genes in the adaptive immunological pathways. We also characterized unique effector T cell clusters that expressed skin-homing signature genes at Day −1, whereas upregulation of skin and gut homing genes was also observed in plasma cells and plasmablasts during the febrile period. This work provides an overview of unique molecular dynamics that signify the entry of the critical phase, and the findings could improve the patient management of DENV infection. Time-course scRNA-seq reveals immune response dynamics during acute dengue infection Rapid transcriptional switching was observed one day before fever subsided (Day -1) Skin-homing signatures were observed in specific T cells during the febrile phase Expansion of skin-homing CD69+ PD-1+ T cells at Day -1 was confirmed with FACS
Collapse
|
33
|
Rupasinghe R, Chomel BB, Martínez-López B. Climate change and zoonoses: A review of the current status, knowledge gaps, and future trends. Acta Trop 2022; 226:106225. [PMID: 34758355 DOI: 10.1016/j.actatropica.2021.106225] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 10/25/2021] [Accepted: 10/27/2021] [Indexed: 12/23/2022]
Abstract
Emerging infectious diseases (EIDs), especially those with zoonotic potential, are a growing threat to global health, economy, and safety. The influence of global warming and geoclimatic variations on zoonotic disease epidemiology is evident by alterations in the host, vector, and pathogen dynamics and their interactions. The objective of this article is to review the current literature on the observed impacts of climate change on zoonoses and discuss future trends. We evaluated several climate models to assess the projections of various zoonoses driven by the predicted climate variations. Many climate projections revealed potential geographical expansion and the severity of vector-borne, waterborne, foodborne, rodent-borne, and airborne zoonoses. However, there are still some knowledge gaps, and further research needs to be conducted to fully understand the magnitude and consequences of some of these changes. Certainly, by understanding the impact of climate change on zoonosis emergence and distribution, we could better plan for climate mitigation and climate adaptation strategies.
Collapse
Affiliation(s)
- Ruwini Rupasinghe
- Center for Animal Disease Modeling and Surveillance (CADMS), Department of Medicine and Epidemiology, University of California, Davis, CA, USA.
| | - Bruno B Chomel
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Beatriz Martínez-López
- Center for Animal Disease Modeling and Surveillance (CADMS), Department of Medicine and Epidemiology, University of California, Davis, CA, USA.
| |
Collapse
|
34
|
Ochida N, Mangeas M, Dupont-Rouzeyrol M, Dutheil C, Forfait C, Peltier A, Descloux E, Menkes C. Modeling present and future climate risk of dengue outbreak, a case study in New Caledonia. Environ Health 2022; 21:20. [PMID: 35057822 PMCID: PMC8772089 DOI: 10.1186/s12940-022-00829-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 01/03/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Dengue dynamics result from the complex interactions between the virus, the host and the vector, all being under the influence of the environment. Several studies explored the link between weather and dengue dynamics and some investigated the impact of climate change on these dynamics. Most attempted to predict incidence rate at a country scale or assess the environmental suitability at a global or regional scale. Here, we propose a new approach which consists in modeling the risk of dengue outbreak at a local scale according to climate conditions and study the evolution of this risk taking climate change into account. We apply this approach in New Caledonia, where high quality data are available. METHODS We used a statistical estimation of the effective reproduction number (Rt) based on case counts to create a categorical target variable : epidemic week/non-epidemic week. A machine learning classifier has been trained using relevant climate indicators in order to estimate the probability for a week to be epidemic under current climate data and this probability was then estimated under climate change scenarios. RESULTS Weekly probability of dengue outbreak was best predicted with the number of days when maximal temperature exceeded 30.8°C and the mean of daily precipitation over 80 and 60 days prior to the predicted week respectively. According to scenario RCP8.5, climate will allow dengue outbreak every year in New Caledonia if the epidemiological and entomological contexts remain the same. CONCLUSION We identified locally relevant climatic factor driving dengue outbreaks in New Caledonia and assessed the inter-annual and seasonal risk of dengue outbreak under different climate change scenarios up to the year 2100. We introduced a new modeling approach to estimate the risk of dengue outbreak depending on climate conditions. This approach is easily reproducible in other countries provided that reliable epidemiological and climate data are available.
Collapse
Affiliation(s)
- Noé Ochida
- UMR ENTROPIE (IRD, Université de la Réunion, CNRS, Ifremer, Université de la Nouvelle-Calédonie), Nouméa, New Caledonia.
- URE-Dengue et Arboviroses, Institut Pasteur de Nouvelle-Calédonie, Pasteur Network, Nouméa, New Caledonia.
| | - Morgan Mangeas
- UMR ENTROPIE (IRD, Université de la Réunion, CNRS, Ifremer, Université de la Nouvelle-Calédonie), Nouméa, New Caledonia
| | - Myrielle Dupont-Rouzeyrol
- URE-Dengue et Arboviroses, Institut Pasteur de Nouvelle-Calédonie, Pasteur Network, Nouméa, New Caledonia
| | - Cyril Dutheil
- Department of Physical Oceanography and Instrumentation, Leibniz Institute for Baltic Sea Research, Warnemünde, Rostock, Germany
| | - Carole Forfait
- Direction des Affaires Sanitaires et Sociales, Nouméa, New Caledonia
| | | | - Elodie Descloux
- Service de Médecine interne, Centre Hospitalier Territorial Gaston-Bourret, 988935, Dumbea-Sur-Mer, New Caledonia
| | - Christophe Menkes
- UMR ENTROPIE (IRD, Université de la Réunion, CNRS, Ifremer, Université de la Nouvelle-Calédonie), Nouméa, New Caledonia
| |
Collapse
|
35
|
Contenti J, Carles M. Le SARS-Cov2, partie émergée des virus émergents : quels enjeux pour la médecine d’urgence ? ANNALES FRANCAISES DE MEDECINE D URGENCE 2022. [DOI: 10.3166/afmu-2022-0454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
36
|
The Epidemic Risk of Dengue Fever in Japan: Climate Change and Seasonality. CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY 2021; 2021:6699788. [PMID: 34721747 PMCID: PMC8553502 DOI: 10.1155/2021/6699788] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 10/08/2021] [Indexed: 12/27/2022]
Abstract
Dengue fever is a leading cause of illness and death in the tropics and subtropics, and the disease has become a threat to many nonendemic countries where the competent vectors such as Aedes albopictus and Aedes aegypti are abundant. The dengue epidemic in Tokyo, 2014, poses the critical importance to accurately model and predict the outbreak risk of dengue fever in nonendemic regions. Using climatological datasets and traveler volumes in Japan, where dengue was not seen for 70 years by 2014, we investigated the outbreak risk of dengue in 47 prefectures, employing the temperature-dependent basic reproduction number and a branching process model. Our results show that the effective reproduction number varies largely by season and by prefecture, and, moreover, the probability of outbreak if an untraced case is imported varies greatly with the calendar time of importation and location of destination. Combining the seasonally varying outbreak risk with time-dependent traveler volume data, the unconditional outbreak risk was calculated, illustrating different outbreak risks between southern coastal areas and northern tourist cities. As the main finding, the large travel volume with nonnegligible risk of outbreak explains the reason why a summer outbreak in Tokyo, 2014, was observed. Prefectures at high risk of future outbreak would be Tokyo again, Kanagawa or Osaka, and highly populated prefectures with large number of travelers.
Collapse
|
37
|
Lim AY, Cheong HK, Chung Y, Sim K, Kim JH. Mosquito abundance in relation to extremely high temperatures in urban and rural areas of Incheon Metropolitan City, South Korea from 2015 to 2020: an observational study. Parasit Vectors 2021; 14:559. [PMID: 34715902 PMCID: PMC8555308 DOI: 10.1186/s13071-021-05071-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 10/16/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Despite concerns regarding increasingly frequent and intense heat waves due to global warming, there is still a lack of information on the effects of extremely high temperatures on the adult abundance of mosquito species that are known to transmit vector-borne diseases. This study aimed to evaluate the effects of extremely high temperatures on the abundance of mosquitoes by analyzing time series data for temperature and mosquito abundance in Incheon Metropolitan City (IMC), Republic of Korea, for the period from 2015 to 2020. METHODS A generalized linear model with Poisson distribution and overdispersion was used to model the nonlinear association between temperature and mosquito count for the whole study area and for its constituent urban and rural regions. The association parameters were pooled using multivariate meta-regression. The temperature-mosquito abundance curve was estimated from the pooled estimates, and the ambient temperature at which mosquito populations reached maximum abundance (TMA) was estimated using a Monte Carlo simulation method. To quantify the effect of extremely high temperatures on mosquito abundance, we estimated the mosquito abundance ratio (AR) at the 99th temperature percentile (AR99th) against the TMA. RESULTS Culex pipiens was the most common mosquito species (51.7%) in the urban region of the IMC, while mosquitoes of the genus Aedes (Ochlerotatus) were the most common in the rural region (47.8%). Mosquito abundance reached a maximum at 23.5 °C for Cx. pipiens and 26.4 °C for Aedes vexans. Exposure to extremely high temperatures reduced the abundance of Cx. pipiens mosquitoes {AR99th 0.34 [95% confidence interval (CI) 0.21-0.54]} to a greater extent than that of Anopheles spp. [AR99th 0.64 (95% CI 0.40-1.03)]. When stratified by region, Ae. vexans and Ochlerotatus koreicus mosquitoes showed higher TMA and a smaller reduction in abundance at extreme heat in urban Incheon than in Ganghwa, suggesting that urban mosquitoes can thrive at extremely high temperatures as they adapt to urban thermal environments. CONCLUSIONS We confirmed that the temperature-related abundance of the adult mosquitoes was species and location specific. Tailoring measures for mosquito prevention and control according to mosquito species and anticipated extreme temperature conditions would help to improve the effectiveness of mosquito-borne disease control programs.
Collapse
Affiliation(s)
- Ah-Young Lim
- Department of Social and Preventive Medicine, Sungkyunkwan University School of Medicine, Suwon, Gyeonggi-do, Republic of Korea
| | - Hae-Kwan Cheong
- Department of Social and Preventive Medicine, Sungkyunkwan University School of Medicine, Suwon, Gyeonggi-do, Republic of Korea
| | - Yeonseung Chung
- Department of Mathematical Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Kisung Sim
- Department of Mathematical Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Jong-Hun Kim
- Department of Social and Preventive Medicine, Sungkyunkwan University School of Medicine, Suwon, Gyeonggi-do, Republic of Korea.
| |
Collapse
|
38
|
Dražić T, Kühl N, Gottscheber N, Hacker CN, Klein CD. The spectrum between substrates and inhibitors: Pinpointing the binding mode of dengue protease ligands with modulated basicity and hydrophobicity. Bioorg Med Chem 2021; 48:116412. [PMID: 34592636 DOI: 10.1016/j.bmc.2021.116412] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/06/2021] [Accepted: 09/09/2021] [Indexed: 10/20/2022]
Abstract
Peptides can be inhibitors and substrates of proteases. The present study describes the inhibitor- vs. substrate-like properties of peptidic ligands of dengue protease which were designed to provide insight into their binding modes. Of particular interest was the localization of the cleavable peptide bond and the placement of hydrophobic elements in the binding site. The findings provide clues for the design of covalent inhibitors in which electrophilic functional groups bind to the catalytic serine, and in addition for the development of inhibitors that are less basic than the natural substrate and therefore have an improved pharmacokinetic profile. We observed a tendency of basic elements to favor a substrate-like binding mode, whereas hydrophobic elements decrease or eliminate enzymatic cleavage. This indicates a necessity to include basic elements which closely mimic the natural substrates into covalent inhibitors, posing a challenge from the chemical and pharmacokinetic perspective. However, hydrophobic elements may offer opportunities to develop non-covalent inhibitors with a favorable ADME profile and potentially improved target-binding kinetics.
Collapse
Affiliation(s)
- Tonko Dražić
- Medicinal Chemistry, Institute of Pharmacy and Molecular Biotechnology IPMB, Heidelberg University, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany
| | - Nikos Kühl
- Medicinal Chemistry, Institute of Pharmacy and Molecular Biotechnology IPMB, Heidelberg University, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany
| | - Nicole Gottscheber
- Medicinal Chemistry, Institute of Pharmacy and Molecular Biotechnology IPMB, Heidelberg University, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany
| | - Christina N Hacker
- Medicinal Chemistry, Institute of Pharmacy and Molecular Biotechnology IPMB, Heidelberg University, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany
| | - Christian D Klein
- Medicinal Chemistry, Institute of Pharmacy and Molecular Biotechnology IPMB, Heidelberg University, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany.
| |
Collapse
|
39
|
Conflicting diagnostic and prognostic framing of epidemics? Newspaper representations of dengue as a public health problem in Peru. Soc Sci Med 2021; 289:114398. [PMID: 34600359 DOI: 10.1016/j.socscimed.2021.114398] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 07/20/2021] [Accepted: 09/13/2021] [Indexed: 11/20/2022]
Abstract
The way newspapers frame infectious disease outbreaks and their connection to the environmental determinants of disease transmission matter because they shape how we understand and respond to these major events. In 2017, following an unexpected climatic event named "El Niño Costero," a dengue epidemic in Peru affected over seventy-five thousand people. This paper examines how the Peruvian news media presented dengue, a climate-sensitive disease, as a public health problem by analyzing a sample of 265 news stories on dengue from two major newspapers published between January 1st and December 31st of 2017. In analyzing the construction of responsibility for the epidemic, I find frames that blamed El Niño Costero's flooding and Peru's poorly prepared cities and public health infrastructure as the causes of the dengue outbreak. However, when analyzing frames that offer solutions to the epidemic, I find that news articles call for government-led, short-term interventions (e.g., fogging) that fail to address the decaying public health infrastructure and lack of climate-resilient health systems. Overall, news media tended to over-emphasize dengue as requiring technical solutions that ignore the root causes of health inequality and environmental injustice that allow dengue to spread in the first place. This case speaks to the medicalization of public health and to a long history of disease-control programs in the Global South that prioritized top-down technical approaches, turning attention away from the social and environmental determinants of health, which are particularly important in an era of climate change.
Collapse
|
40
|
Trájer AJ. Aedes aegypti in the Mediterranean container ports at the time of climate change: A time bomb on the mosquito vector map of Europe. Heliyon 2021; 7:e07981. [PMID: 34568601 PMCID: PMC8449062 DOI: 10.1016/j.heliyon.2021.e07981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/10/2021] [Accepted: 09/08/2021] [Indexed: 10/27/2022] Open
Abstract
In the past, Aedes aegypti was present in Southern Europe. Although the mosquito was eradicated from the Mediterranean region, its regional ecotype survived the second half of the 20th century in the eastern Black Sea area. The aim of the study was to model the changes in the altering climatic suitability, ontogenetic development time and the survival rate of Aedes aegypti from first-stage larvae to adulthood in Southern Europe. The modelled present climatic suitability patterns of the mosquito show that large areas of the lower altitude Mediterranean regions, including the coastal areas of the Balkan Peninsula, South France, and large regions of the Apennines and the Iberian Peninsulas could be suitable for Ae. aegypti. The future (2041-2060 and 2061-2080) projections predict the potential northward shift of the northern occurrence of the species in the circum-Mediterranean and Black Sea areas. Both, the potential development time, and survival rate of Ae. aegypti in the late 19th and the early 20th century could be like in the present times along the Mediterranean coast. The current climatic conditions cannot explain the absence of the mosquito in wide areas of the Mediterranean and sub-Mediterranean ecoregions. The future models predict the notable increase in the development time and survival rate of the mosquito in the southern and central regions of Europe. In general, the container ports of the Alboran, Balearic, and Aegean seas seem to be the most suitable sites for the re-colonization of the mosquito, and such northern parts of the Mediterranean Sea like the Gulf of Lion, the Ligurian, and Adriatic Seas are in less extent.
Collapse
Affiliation(s)
- Attila J. Trájer
- Sustainability Solutions Research Lab, University of Pannonia, Egyetem utca 10, H-8200, Veszprém, Hungary
| |
Collapse
|
41
|
Hussain-Alkhateeb L, Rivera Ramírez T, Kroeger A, Gozzer E, Runge-Ranzinger S. Early warning systems (EWSs) for chikungunya, dengue, malaria, yellow fever, and Zika outbreaks: What is the evidence? A scoping review. PLoS Negl Trop Dis 2021; 15:e0009686. [PMID: 34529649 PMCID: PMC8445439 DOI: 10.1371/journal.pntd.0009686] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Early warning systems (EWSs) are of increasing importance in the context of outbreak-prone diseases such as chikungunya, dengue, malaria, yellow fever, and Zika. A scoping review has been undertaken for all 5 diseases to summarize existing evidence of EWS tools in terms of their structural and statistical designs, feasibility of integration and implementation into national surveillance programs, and the users' perspective of their applications. METHODS Data were extracted from Cochrane Database of Systematic Reviews (CDSR), Google Scholar, Latin American and Caribbean Health Sciences Literature (LILACS), PubMed, Web of Science, and WHO Library Database (WHOLIS) databases until August 2019. Included were studies reporting on (a) experiences with existing EWS, including implemented tools; and (b) the development or implementation of EWS in a particular setting. No restrictions were applied regarding year of publication, language or geographical area. FINDINGS Through the first screening, 11,710 documents for dengue, 2,757 for Zika, 2,706 for chikungunya, 24,611 for malaria, and 4,963 for yellow fever were identified. After applying the selection criteria, a total of 37 studies were included in this review. Key findings were the following: (1) a large number of studies showed the quality performance of their prediction models but except for dengue outbreaks, only few presented statistical prediction validity of EWS; (2) while entomological, epidemiological, and social media alarm indicators are potentially useful for outbreak warning, almost all studies focus primarily or exclusively on meteorological indicators, which tends to limit the prediction capacity; (3) no assessment of the integration of the EWS into a routine surveillance system could be found, and only few studies addressed the users' perspective of the tool; (4) almost all EWS tools require highly skilled users with advanced statistics; and (5) spatial prediction remains a limitation with no tool currently able to map high transmission areas at small spatial level. CONCLUSIONS In view of the escalating infectious diseases as global threats, gaps and challenges are significantly present within the EWS applications. While some advanced EWS showed high prediction abilities, the scarcity of tool assessments in terms of integration into existing national surveillance systems as well as of the feasibility of transforming model outputs into local vector control or action plans tends to limit in most cases the support of countries in controlling disease outbreaks.
Collapse
Affiliation(s)
- Laith Hussain-Alkhateeb
- Global Health, School of Public Health and Community Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | | | - Axel Kroeger
- Centre for Medicine and Society, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | | | - Silvia Runge-Ranzinger
- Centre for Medicine and Society, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
- Heidelberg Institute of Global Health, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
42
|
Cottingham E, Johnstone T, Hartley CA, Devlin JM. Use of feline herpesvirus as a vaccine vector offers alternative applications for feline health. Vet Microbiol 2021; 261:109210. [PMID: 34416538 DOI: 10.1016/j.vetmic.2021.109210] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 08/15/2021] [Indexed: 12/26/2022]
Abstract
Herpesviruses are attractive vaccine vector candidates due to their large double stranded DNA genome and latency characteristics. Within the scope of veterinary vaccines, herpesvirus-vectored vaccines have been well studied and commercially available vectored vaccines are used to help prevent diseases in different animal species. Felid alphaherpesvirus 1 (FHV-1) has been characterised as a vector candidate to protect against a range of feline pathogens. In this review we highlight the methods used to construct FHV-1 based vaccines and their outcomes, while also proposing alternative uses for FHV-1 as a viral vector.
Collapse
Affiliation(s)
- Ellen Cottingham
- The Asia Pacific Centre for Animal Health, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria, 3010, Australia.
| | - Thurid Johnstone
- U-Vet Animal Hospital, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Werribee, Victoria, 3030, Australia
| | - Carol A Hartley
- The Asia Pacific Centre for Animal Health, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Joanne M Devlin
- The Asia Pacific Centre for Animal Health, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria, 3010, Australia
| |
Collapse
|
43
|
Brass DP, Cobbold CA, Ewing DA, Purse BV, Callaghan A, White SM. Phenotypic plasticity as a cause and consequence of population dynamics. Ecol Lett 2021; 24:2406-2417. [PMID: 34412157 DOI: 10.1111/ele.13862] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 06/04/2021] [Accepted: 07/05/2021] [Indexed: 11/28/2022]
Abstract
Predicting complex species-environment interactions is crucial for guiding conservation and mitigation strategies in a dynamically changing world. Phenotypic plasticity is a mechanism of trait variation that determines how individuals and populations adapt to changing and novel environments. For individuals, the effects of phenotypic plasticity can be quantified by measuring environment-trait relationships, but it is often difficult to predict how phenotypic plasticity affects populations. The assumption that environment-trait relationships validated for individuals indicate how populations respond to environmental change is commonly made without sufficient justification. Here we derive a novel general mathematical framework linking trait variation due to phenotypic plasticity to population dynamics. Applying the framework to the classical example of Nicholson's blowflies, we show how seemingly sensible predictions made from environment-trait relationships do not generalise to population responses. As a consequence, trait-based analyses that do not incorporate population feedbacks risk mischaracterising the effect of environmental change on populations.
Collapse
Affiliation(s)
- Dominic P Brass
- UK Centre for Ecology & Hydrology, Wallingford, Oxfordshire, UK.,Ecology and Evolutionary Biology, School of Biological Sciences, University of Reading, Reading, UK
| | - Christina A Cobbold
- School of Mathematics and Statistics, College of Science and Engineering, University of Glasgow, University Place, Glasgow, UK
| | - David A Ewing
- Biomathematics and Statistics Scotland, Edinburgh, UK
| | - Bethan V Purse
- UK Centre for Ecology & Hydrology, Wallingford, Oxfordshire, UK
| | - Amanda Callaghan
- Ecology and Evolutionary Biology, School of Biological Sciences, University of Reading, Reading, UK
| | - Steven M White
- UK Centre for Ecology & Hydrology, Wallingford, Oxfordshire, UK
| |
Collapse
|
44
|
A Review of Dengue's Historical and Future Health Risk from a Changing Climate. Curr Environ Health Rep 2021; 8:245-265. [PMID: 34269994 PMCID: PMC8416809 DOI: 10.1007/s40572-021-00322-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2021] [Indexed: 10/27/2022]
Abstract
PURPOSE OF REVIEW The purpose of this review is to summarize research articles that provide risk estimates for the historical and future impact that climate change has had upon dengue published from 2007 through 2019. RECENT FINDINGS Findings from 30 studies on historical health estimates, with the majority of the studies conducted in Asia, emphasized the importance of temperature, precipitation, and relative humidity, as well as lag effects, when trying to understand how climate change can impact the risk of contracting dengue. Furthermore, 35 studies presented findings on future health risk based upon climate projection scenarios, with a third of them showcasing global level estimates and findings across the articles emphasizing the need to understand risk at a localized level as the impacts from climate change will be experienced inequitably across different geographies in the future. Dengue is one of the most rapidly spreading viral diseases in the world, with ~390 million people infected worldwide annually. Several factors have contributed towards its proliferation, including climate change. Multiple studies have previously been conducted examining the relationship between dengue and climate change, both from a historical and a future risk perspective. We searched the U.S. National Institute of Environmental Health (NIEHS) Climate Change and Health Portal for literature (spanning January 2007 to September 2019) providing historical and future health risk estimates of contracting dengue infection in relation to climate variables worldwide. With an overview of the evidence of the historical and future health risk posed by dengue from climate change across different regions of the world, this review article enables the research and policy community to understand where the knowledge gaps are and what areas need to be addressed in order to implement localized adaptation measures to mitigate the health risks posed by future dengue infection.
Collapse
|
45
|
Colón-González FJ, Sewe MO, Tompkins AM, Sjödin H, Casallas A, Rocklöv J, Caminade C, Lowe R. Projecting the risk of mosquito-borne diseases in a warmer and more populated world: a multi-model, multi-scenario intercomparison modelling study. Lancet Planet Health 2021; 5:e404-e414. [PMID: 34245711 PMCID: PMC8280459 DOI: 10.1016/s2542-5196(21)00132-7] [Citation(s) in RCA: 136] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 04/20/2021] [Accepted: 04/22/2021] [Indexed: 06/07/2023]
Abstract
BACKGROUND Mosquito-borne diseases are expanding their range, and re-emerging in areas where they had subsided for decades. The extent to which climate change influences the transmission suitability and population at risk of mosquito-borne diseases across different altitudes and population densities has not been investigated. The aim of this study was to quantify the extent to which climate change will influence the length of the transmission season and estimate the population at risk of mosquito-borne diseases in the future, given different population densities across an altitudinal gradient. METHODS Using a multi-model multi-scenario framework, we estimated changes in the length of the transmission season and global population at risk of malaria and dengue for different altitudes and population densities for the period 1951-99. We generated projections from six mosquito-borne disease models, driven by four global circulation models, using four representative concentration pathways, and three shared socioeconomic pathways. FINDINGS We show that malaria suitability will increase by 1·6 additional months (mean 0·5, SE 0·03) in tropical highlands in the African region, the Eastern Mediterranean region, and the region of the Americas. Dengue suitability will increase in lowlands in the Western Pacific region and the Eastern Mediterranean region by 4·0 additional months (mean 1·7, SE 0·2). Increases in the climatic suitability of both diseases will be greater in rural areas than in urban areas. The epidemic belt for both diseases will expand towards temperate areas. The population at risk of both diseases might increase by up to 4·7 additional billion people by 2070 relative to 1970-99, particularly in lowlands and urban areas. INTERPRETATION Rising global mean temperature will increase the climatic suitability of both diseases particularly in already endemic areas. The predicted expansion towards higher altitudes and temperate regions suggests that outbreaks can occur in areas where people might be immunologically naive and public health systems unprepared. The population at risk of malaria and dengue will be higher in densely populated urban areas in the WHO African region, South-East Asia region, and the region of the Americas, although we did not account for urban-heat island effects, which can further alter the risk of disease transmission. FUNDING UK Space Agency, Royal Society, UK National Institute for Health Research, and Swedish Research Council.
Collapse
Affiliation(s)
- Felipe J Colón-González
- Centre for the Mathematical Modelling of Infectious Diseases, London School of Hygiene & Tropical Medicine, London, UK; Centre on Climate Change and Planetary Health, London School of Hygiene & Tropical Medicine, London, UK; Tyndall Centre for Climate Change Research, School of Environmental Sciences, University of East Anglia, Norwich, UK.
| | - Maquins Odhiambo Sewe
- Department of Public Health and Clinical Medicine, Section of Sustainable Health, Umeå University, Umeå, Sweden
| | - Adrian M Tompkins
- Abdus Salam International Centre for Theoretical Physics, Trieste, Italy
| | - Henrik Sjödin
- Department of Public Health and Clinical Medicine, Section of Sustainable Health, Umeå University, Umeå, Sweden
| | - Alejandro Casallas
- Abdus Salam International Centre for Theoretical Physics, Trieste, Italy
| | - Joacim Rocklöv
- Department of Public Health and Clinical Medicine, Section of Sustainable Health, Umeå University, Umeå, Sweden; Heidelberg Institute of Global Health, University of Heidelberg, Heidelberg, Germany
| | - Cyril Caminade
- Department of Livestock and one Health, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Rachel Lowe
- Centre for the Mathematical Modelling of Infectious Diseases, London School of Hygiene & Tropical Medicine, London, UK; Centre on Climate Change and Planetary Health, London School of Hygiene & Tropical Medicine, London, UK
| |
Collapse
|
46
|
Petrić M, Ducheyne E, Gossner CM, Marsboom C, Nicolas G, Venail R, Hendrickx G, Schaffner F. Seasonality and timing of peak abundance of <em>Aedes albopictus</em> in Europe: Implications to public and animal health. GEOSPATIAL HEALTH 2021; 16. [PMID: 34000791 DOI: 10.4081/gh.2021.996] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 04/14/2021] [Indexed: 06/12/2023]
Abstract
Aedes albopictus is a known vector of dengue and chikungunya. Understanding the population dynamics characteristics of vector species is of pivotal importance to optimise surveillance and control activities, to estimate risk for pathogen-transmission, and thus to enhance support of public health decisions. In this paper we used a seasonal activity model to simulate the start (spring hatching) and end (autumn diapause) of the vector season. In parallel, the peak abundance of the species was assessed using both VectorNet field survey data complemented with field studies obtained from literature across the Mediterranean Basin. Our results suggest that spring hatching of eggs in the current distribution area can start at the beginning of March in southern Europe and in April in western Europe. In northern Europe, where the species is not (yet) present, spring hatching would occur from late April to late May. Aedes albopictus can remain active up to 41 weeks in southern Europe whilst the climatic conditions in northern Europe are limiting its potential activity to a maximum of 23 weeks. The peak of egg density is found during summer months from end of July until end of September. During these two months the climatic conditions for species development are optimal, which implies a higher risk for arbovirus transmission by Ae. albopictus and occurrence of epidemics.
Collapse
|
47
|
Gorji S, Gorji A. COVID-19 pandemic: the possible influence of the long-term ignorance about climate change. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:15575-15579. [PMID: 33403640 PMCID: PMC7785327 DOI: 10.1007/s11356-020-12167-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 12/18/2020] [Indexed: 04/12/2023]
Abstract
In addressing the current COVID-19 pandemic and evaluating the measures taken by global leaders so far, it is crucial to trace back the circumstances influencing the emergence of the crisis that the world is presently facing. Could it be that the failure to act in a timely manner dates way back to when first concerns about climate change and its inevitable threat to human health came up? Multiple lines of evidence suggest that the large-scale and rapid environmental changes in the last few decades may be implicated in the emergence of COVID-19 pandemic by increasing the potential risk of the occurrence and the spread of zoonotic diseases, worsening food security, and weakening the human immune system. As we are facing progressive climatic change, a failure to act accordingly could inevitably lead to further, more frequent confrontations with newly emerging diseases.
Collapse
Affiliation(s)
- Shaghayegh Gorji
- Epilepsy Research Center, Westfälische Wilhelms-Universität Münster, Domagkstr. 11, Münster, 48149, Germany
| | - Ali Gorji
- Epilepsy Research Center, Westfälische Wilhelms-Universität Münster, Domagkstr. 11, Münster, 48149, Germany.
- Department of Neurosurgery, Westfälische Wilhelms-Universität Münster, Münster, Germany.
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran.
- Neuroscience research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Neurology with Institute of Translational Neurology, Westfälische Wilhelms-Universität Münster, Münster, Germany.
| |
Collapse
|
48
|
A Bibliometric Analysis on Dengue Outbreaks in Tropical and Sub-Tropical Climates Worldwide Since 1950. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18063197. [PMID: 33808795 PMCID: PMC8003706 DOI: 10.3390/ijerph18063197] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/17/2021] [Accepted: 03/17/2021] [Indexed: 01/19/2023]
Abstract
Severe dengue outbreaks (DOs) affect the majority of Asian and Latin American countries. Whether all DOs always occurred in sub-tropical and tropical areas (STTA) has not been verified. We downloaded abstracts by searching keywords “dengue (MeSH Major Topic)” from Pubmed Central since 1950, including three collections: country names in abstracts (CNA), no abstracts (WA), and no country names in abstracts (Non-CNA). Visualizations were created to present the DOs across countries/areas in STTA. The percentages of mentioned country names and authors’ countries in STTA were computed on the CNA and Non-CNA bases. The social network analysis was applied to highlight the most cited articles and countries. We found that (1) three collections are 3427 (25.48%), 3137 (23.33%), and 6884 (51.19%) in CNA, WA, and Non-CNA, respectively; (2) the percentages of 94.3% and 79.9% were found in the CNA and Non-CNA groups; (3) the most mentioned country in abstracts were India, Thailand, and Brazil; (4) most authors in the Non-CNA collections were from the United States, Brazil, and China; (5) the most cited article (PMID = 23563266) authored by Bhatt et al. had 2604 citations since 2013. Our findings provide in-depth insights into the DO knowledge. The research approaches are recommended for authors in research on other infectious diseases in the future, not just limited to the DO topic.
Collapse
|
49
|
Wilder-Smith A. COVID-19 in comparison with other emerging viral diseases: risk of geographic spread via travel. Trop Dis Travel Med Vaccines 2021; 7:3. [PMID: 33517914 PMCID: PMC7847598 DOI: 10.1186/s40794-020-00129-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 12/26/2020] [Indexed: 12/17/2022] Open
Abstract
PURPOSE OF REVIEW The COVID-19 pandemic poses a major global health threat. The rapid spread was facilitated by air travel although rigorous travel bans and lockdowns were able to slow down the spread. How does COVID-19 compare with other emerging viral diseases of the past two decades? RECENT FINDINGS Viral outbreaks differ in many ways, such as the individuals most at risk e.g. pregnant women for Zika and the elderly for COVID-19, their vectors of transmission, their fatality rate, and their transmissibility often measured as basic reproduction number. The risk of geographic spread via air travel differs significantly between emerging infectious diseases. COVID-19 is not associated with the highest case fatality rate compared with other emerging viral diseases such as SARS and Ebola, but the combination of a high reproduction number, superspreading events and a globally immunologically naïve population has led to the highest global number of deaths in the past 20 decade compared to any other pandemic.
Collapse
Affiliation(s)
- A Wilder-Smith
- Department of Disease Control, London School of Hygiene and Tropical Medicine, London, UK.
- Heidelberg Institute of Global Health, University of Heidelberg, Heidelberg, Germany.
| |
Collapse
|
50
|
Pedrosa MC, Borges MAZ, Eiras ÁE, Caldas S, Cecílio AB, Brito MF, Ribeiro SP. Invasion of Tropical Montane Cities by Aedes aegypti and Aedes albopictus (Diptera: Culicidae) Depends on Continuous Warm Winters and Suitable Urban Biotopes. JOURNAL OF MEDICAL ENTOMOLOGY 2021; 58:333-342. [PMID: 32785582 DOI: 10.1093/jme/tjaa135] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Indexed: 05/15/2023]
Abstract
We provide the first evidence of a recent invasion of Aedes aegypti (Linnaeus in Hasselquist, 1762) and Aedes albopictus (Skuse 1894), followed by dengue virus, in tropical montane cities in south-eastern Brazil, Mariana, and Ouro Preto, at mid and high altitudes, respectively. Long-term temperature variation, dengue public data, and sampling of immature and adult mosquitoes (ovitraps and mosquitraps) in contrasting habitats were used to explain the distribution of Aedes in what in these two cities. From 1961 to 2014, the annual temperature increased significantly due to increases in winter temperatures. In the 1990s/2000s, the winter temperature was 1.3°C warmer than in the 1960s, when it varied from 21.2 to 18.9°C. After 2007, the winter temperatures increased and ranged from 21.6 to 21.3°C. The first autochthonous dengue cases in Mariana and Ouro Preto were in 2007, followed by few occurrences until in 2012, when the mean numbers increased three-fold, and peak at 2013. The continuous 'warmer winter' may have trigged the Aedes invasion. Aedes species benefited from higher winter temperatures, which was an important driver of their invasion of the state of Minas Gerais in the 1980s and, more recently, in the remaining montane urban habitats in this region. In both 2009 and 2011, we found more Aedes in Mariana than Ouro Preto, and more Ae. albopictus in green areas and Ae. aegypti in houses, the expected pattern for well-established populations.
Collapse
Affiliation(s)
- Michelle Cristine Pedrosa
- Laboratory of Ecohealth, Canopy Insects and Natural Succession. Instituto de Ciências Exatas e Biológicas/NUPEB, Universidade Federal de Ouro Preto, Morro do Cruzeiro, Campus Universitário, Ouro Preto, MG, Brazil
| | - Magno Augusto Zazá Borges
- Laboratório de Ecologia e Controle Biológico de Insetos, Departamento de Biologia Geral, Universidade Estadual de Montes Claros, Campus Universitário Professor Darcy Ribeiro, Montes Claros, MG, Brazil
| | - Álvaro Eduardo Eiras
- Laboratório de Inovação Tecnológica e Empreendedorismo em Controle de Vetores (Lintec), Departamento de Parasitologia, ICB, Universidade Federal de Minas Gerais Federal, Belo Horizonte, MG, Brazil
| | - Sérgio Caldas
- Serviço de Biotecnologia e Saúde. Diretoria de Pesquisa e Desenvolvimento, Fundação Ezequiel Dias, Gameleira, Belo Horizonte, MG, Brazil
| | - Alzira Batista Cecílio
- Serviço de Biotecnologia e Saúde. Diretoria de Pesquisa e Desenvolvimento, Fundação Ezequiel Dias, Gameleira, Belo Horizonte, MG, Brazil
| | - Maria Fernanda Brito
- Laboratory of Ecohealth, Canopy Insects and Natural Succession. Instituto de Ciências Exatas e Biológicas/NUPEB, Universidade Federal de Ouro Preto, Morro do Cruzeiro, Campus Universitário, Ouro Preto, MG, Brazil
- Programa de Pós Graduação em Ecologia, Universidade Federal de Viçosa, Edifício Chorato Shimoya, Campus universitário, Viçosa, MG, Brazil
| | - Sérvio Pontes Ribeiro
- Laboratory of Ecohealth, Canopy Insects and Natural Succession. Instituto de Ciências Exatas e Biológicas/NUPEB, Universidade Federal de Ouro Preto, Morro do Cruzeiro, Campus Universitário, Ouro Preto, MG, Brazil
| |
Collapse
|