1
|
Coerver E, Schoof L, Hogenboom L, Wessels M, van Ruyven P, van Samkar A, Mostert J, van Kempen Z, van Oosten BW, Wokke BH, Tallantyre E, Myhr KM, Torkildsen O, Killestein J, Smets I, Strijbis E. The recurrence of disease activity after ocrelizumab discontinuation in multiple sclerosis. Mult Scler Relat Disord 2024; 91:105900. [PMID: 39369631 DOI: 10.1016/j.msard.2024.105900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/10/2024] [Accepted: 09/18/2024] [Indexed: 10/08/2024]
Abstract
INTRODUCTION Ocrelizumab (OCR) is a highly effective treatment of multiple sclerosis (MS), and B cell repopulation profiles suggest that it might be used as an immune reconstitution therapy. However, data on disease recurrence after stopping treatment with OCR are scarce. Our objective was to evaluate the recurrence of disease activity after OCR discontinuation. METHODS In this multicenter retrospective cohort study, we included MS patients who discontinued OCR, without switching to another treatment, for twelve months or more, after having received at least one full dosage of 600 mg. We defined focal inflammation as the occurrence of a clinical relapse or significant MRI activity (≥3 new T2 lesions or ≥2 contrast-enhancing lesions). RESULTS We included 53 MS patients; 41 relapsing remitting (RRMS), 5 secondary progressive (SPMS) and 7 primary progressive (PPMS) patients. Median follow-up period after OCR discontinuation was 16 months. We only observed focal inflammation after discontinuation in RRMS patients; 2.4 % (1/41) patients presented with significant MRI activity and matching clinical symptoms, and 7.3 % (3/41) patients presented with a suspected clinical relapse without radiological activity: a total of 9.8 % (4/41) at a median time of 17 months after the last infusion. DISCUSSION We found focal inflammation after discontinuation of OCR in 4 (9.8 %) of the RRMS patients, of which 1 was radiologically confirmed. Our observations highlight that recurrence of focal inflammation seems low but discontinuation may not be appropriate for everyone. Further larger studies are important to determine the immune reconstitution therapy potential of OCR.
Collapse
Affiliation(s)
- E Coerver
- MS Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC location VUmc, Amsterdam, Netherlands
| | - L Schoof
- MS Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC location VUmc, Amsterdam, Netherlands.
| | - L Hogenboom
- MS Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC location VUmc, Amsterdam, Netherlands
| | - M Wessels
- MS Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC location VUmc, Amsterdam, Netherlands
| | - P van Ruyven
- MS Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC location VUmc, Amsterdam, Netherlands
| | - A van Samkar
- Department of Neurology, Canisius Wilhelmina Hospital, Nijmegen, the Netherlands
| | - J Mostert
- Department of Neurology, Rijnstate Hospital, Arnhem, the Netherlands
| | - Z van Kempen
- MS Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC location VUmc, Amsterdam, Netherlands
| | - B W van Oosten
- MS Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC location VUmc, Amsterdam, Netherlands
| | - B H Wokke
- MS Center ErasMS, Department of Neurology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - E Tallantyre
- Division of Psychological Medicine and Clinical Neuroscience, Department of Neurology, Cardiff University, University Hospital of Wales, Heath Park, Cardiff, CF14 4XN, UK
| | - K M Myhr
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, Bergen N-5021, Norway; Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - O Torkildsen
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, Bergen N-5021, Norway; Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - J Killestein
- MS Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC location VUmc, Amsterdam, Netherlands
| | - I Smets
- MS Center ErasMS, Department of Neurology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - E Strijbis
- MS Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC location VUmc, Amsterdam, Netherlands
| |
Collapse
|
2
|
Ammoscato F, Wafa M, Skonieczna J, Bestwick J, Monero R, Andrews M, De Trane S, Holden D, Adams A, Bianchi L, Turner B, Marta M, Schmierer K, Baker D, Giovannoni G, Gnanapavan S. Cladribine tablets in relapsing-remitting multiple sclerosis preferentially target B-cells. Clin Immunol 2024; 269:110380. [PMID: 39428028 DOI: 10.1016/j.clim.2024.110380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/05/2024] [Accepted: 10/16/2024] [Indexed: 10/22/2024]
Abstract
Recent studies demonstrate the efficacy of B cell-targeting therapies in managing multiple sclerosis (MS) activity, emphasizing the critical role of B cells in MS pathogenesis. CladB study aimed to quantify the temporal changes in peripheral immune cells and their activity over 96 weeks of Cladribine tablets (CladT) treatment in relapsing-remitting MS (RRMS). Ten participants (3 males, 7 females) had blood samples collected at multiple intervals (Day 0, 1, 5, then weekly for 8 weeks, biweekly for up to 24 weeks, and monthly for up to 96 weeks) for immune cell analysis, compared to a historical alemtuzumab-treated cohort. Paired cerebrospinal fluid (CSF) was also taken for various analyses, alongside clinical and brain imaging assessments. CladT depleted memory B cells, while alemtuzumab rapidly depleted T and B cells. The кFLC index decreased from 164.5 ± 227.1 to 71.3 ± 84.7 at 48 weeks (p = 0.002) and to 64.4 ± 67.3 at 96 weeks (p = 0.01). The IgG index dropped from 1.1 ± 0.5 at baseline to 0.8 ± 0.4 at 48 weeks (p = 0.014) and to 0.8 ± 0.3 at 96 weeks (p = 0.02). CSF CXCL-13 decreased from 88.6 ± 68.4 pg/mL to 39.4 ± 35.2 pg/mL at 48 weeks (p = 0.037) and 19.1 ± 11.7 pg/mL at 96 weeks (p = 0.027). CSF NfL levels were reduced at 48 weeks (p = 0.01). CladT primarily depletes memory B cells and antibody-secreting cell precursors in RRMS, leading to sustained effects on intrathecal antibody production and total IgG, and a reduction in CSF CXCL-13.
Collapse
Affiliation(s)
- Francesca Ammoscato
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK.
| | - Mohammad Wafa
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK; The Royal London Hospital, Barts Health NHS Trust, London, UK
| | - Justyna Skonieczna
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Jonathan Bestwick
- Preventive Neurology Unit, Wolfson Institute of Population Health, Queen Mary University of London, UK
| | - Rosemary Monero
- Department of Neuroimmunology, Institute of Neurology, Queen Square, London, UK
| | - Michael Andrews
- The Royal London Hospital, Barts Health NHS Trust, London, UK
| | - Stefania De Trane
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - David Holden
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Ashok Adams
- The Royal London Hospital, Barts Health NHS Trust, London, UK
| | - Lucia Bianchi
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Ben Turner
- The Royal London Hospital, Barts Health NHS Trust, London, UK
| | - Monica Marta
- The Royal London Hospital, Barts Health NHS Trust, London, UK
| | - Klaus Schmierer
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK; The Royal London Hospital, Barts Health NHS Trust, London, UK
| | - David Baker
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Gavin Giovannoni
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK; The Royal London Hospital, Barts Health NHS Trust, London, UK
| | | |
Collapse
|
3
|
Wu HC, Gombolay GY, Yang JH, Graves JS, Christy A, Xiang XM. B-cell Depletion Therapy in Pediatric Neuroinflammatory Disease. Curr Neurol Neurosci Rep 2024; 24:479-494. [PMID: 39259430 DOI: 10.1007/s11910-024-01366-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/15/2024] [Indexed: 09/13/2024]
Abstract
PURPOSE OF REVIEW B-cell depletion therapy, including anti-CD20 and anti-CD19 therapies, is increasingly used for a variety of autoimmune and conditions, including those affecting the central nervous system. However, B-cell depletion therapy use can be complicated by adverse effects associated with administration and immunosuppression. This review aims to summarize the application of anti-CD20 and anti-CD19 therapies for the pediatric neurologist and neuroimmunologist. RECENT FINDINGS Most existing literature come from clinical trials with adult patients, although more recent studies are now capturing the effects of these therapies in children. The most common side effects include infusion related reactions and increased infection risk from immunosuppression. Several strategies can mitigate infusion related reactions. Increased infections due to persistent hypogammaglobulinemia can benefit from replacement immunoglobulin. B-cell depletion therapies can be safe and effective in pediatric patients. Anticipation and mitigation of common adverse effects through primary prevention strategies, close monitoring, and appropriate symptomatic management can improve safety and tolerability.
Collapse
Affiliation(s)
- Helen C Wu
- Department of Neurology, Oregon Health & Science University, Portland, OR, USA.
| | - Grace Y Gombolay
- Department of Pediatrics, Division of Pediatric Neurology, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA, USA
| | - Jennifer H Yang
- Department of Neurosciences, University of California San Diego, Rady Children's Hospital San Diego, San Diego, CA, USA
| | - Jennifer S Graves
- Department of Neurosciences, University of California San Diego, Rady Children's Hospital San Diego, San Diego, CA, USA
| | - Alison Christy
- Pediatric Neurology, Providence Health & Services, Portland, OR, USA
| | - Xinran M Xiang
- Department of Neurology, Oregon Health & Science University, Portland, OR, USA
- Pediatric Neurology, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
4
|
Raja P, Dhamija K, Samim MM, Saini J, Manjappaiah MG, Kandavel T, M N. A Real-World Experience of Rituximab: A Panacea in Therapy of Multiple Sclerosis in Low- and Middle-Income Setting. Clin Neuropharmacol 2024:00002826-990000000-00096. [PMID: 39258542 DOI: 10.1097/wnf.0000000000000612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
BACKGROUND Anti-CD20 monoclonal antibodies have received increasing attention in the past few years in the treatment of multiple sclerosis (MS). OBJECTIVES This study describes the (i) efficacy and safety of rituximab in people living with MS and (ii) assesses clinical and imaging outcomes following rituximab in MS. METHOD This is a chart review from the MS registry maintained at the institute from a University Hospital in South India. RESULT Eighty-three (M:F, 26:57) people living with MS received rituximab as immunomodulation between 2007 and 2022 with a median follow-up duration of 18 months. Fifty-nine (71%) were classified as relapsing-remitting MS, 16 (19%) were secondary progressive MS, and 8 (10%) were primary progressive MS. Seventy-two (87%) MS patients did not experience any relapse after receiving rituximab. In relapsing-remitting MS patients, the mean annualized recurrence rate dropped from 1.24 ± 1.19 to 0.16 ± 0.37. Infusion-related reaction occurred in 5 (6% of adverse events), urinary infections in 7 (8.4%), systemic infections in 3 (3%), Pneumocystis carinii pneumonia occurred in 1 (1%), and herpes zoster infection in 1 (1%) patient. Mortality was observed in 3 (3.5%) patients. While being on rituximab, 18 (22%) patients had mild COVID-19 illness and they all made complete recovery without any sequalae. CONCLUSIONS Rituximab is a safe, well-tolerated, easily accessible, inexpensive, and effective therapeutic option for people with MS. Rituximab showed both clinical and radiological improvement after a median follow-up of 1.5 years. None of our patients showed any severe COVID infection nor side effects after receiving COVID vaccination.
Collapse
Affiliation(s)
- Pritam Raja
- Department of Neurology, National Institute of Mental Health & Neurosciences, Bangalore, India
| | - Kamakshi Dhamija
- Department of Neurology, National Institute of Mental Health & Neurosciences, Bangalore, India
| | - M M Samim
- Department of Neurology, National Institute of Mental Health & Neurosciences, Bangalore, India
| | - Jitender Saini
- Department of Neuroimaging & Interventional Neuroradiology (NIIR), National Institute of Mental Health & Neurosciences, Bangalore, India, and
| | | | - Thennarasu Kandavel
- Department of Biostatistics National Institute of Mental Health & Neurosciences, Bangalore, India
| | - Netravathi M
- Department of Neurology, National Institute of Mental Health & Neurosciences, Bangalore, India
| |
Collapse
|
5
|
Wang L, He Y, Wang P, Lou H, Liu H, Sha W. Single-cell transcriptome sequencing reveals altered peripheral blood immune cells in patients with severe tuberculosis. Eur J Med Res 2024; 29:434. [PMID: 39198909 PMCID: PMC11360321 DOI: 10.1186/s40001-024-01991-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 07/19/2024] [Indexed: 09/01/2024] Open
Abstract
Tuberculosis is a serious global health burden, resulting in millions of deaths each year. Several circulating cell subsets in the peripheral blood are known to modulate the host immune response to Mycobacterium tuberculosis (Mtb) infection in different ways. However, the characteristics and functions of these subsets to varying stages of tuberculosis infection have not been well elucidated. Peripheral blood immune cells (PBICs) were isolated from healthy donors (HD group), individuals with mild tuberculosis (MI group), and individuals with severe tuberculosis (SE group). CD4+ naive T cells and CD8+ T cells were decreased in the SE and MI groups, while CD14+ monocytes were increased in the SE group. Further analysis revealed increased activated CD4+ T cells, transitional CD8+ T cells, memory-like NK cells, and IGHG3highTTNhighFCRL5high B cells were increased in all patients with tuberculosis (SE and MI group). In contrast, Th17 cells, cytotoxic NK cells, and cytotoxic CD4+ T cells were decreased. Moreover, the increase of CD14+CD16+ monocytes correlated with severe tuberculosis, and the GBP5highRSAD2high neutrophils were unique to patients with severe tuberculosis. Cellular communication analysis revealed that CD8+ T cells exhibited the highest incoming interaction strength in the SE group. The increased CD8+ T cell incoming interactions are associated with the MHC-I and LCK pathways, with HLA-(A-E)-CD8A, HLA-(A-E)-CD8B, and LCK-(CD8A+CD8B) being ligand-receptor pairs. Patients with tuberculosis, especially severe tuberculosis, have profound changes in peripheral blood immune cell profiles. CD8+ T cells showed the highest incoming interaction strength in patients with severe tuberculosis, with the main signals being MHC-I and LCK pathways.
Collapse
Affiliation(s)
- Li Wang
- Clinic and Research Center of Tuberculosis, School of Medicine, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
- Department of Tuberculosis, School of Medicine, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| | - Ya He
- Clinic and Research Center of Tuberculosis, School of Medicine, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
- Department of Tuberculosis, School of Medicine, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| | - Peng Wang
- Clinic and Research Center of Tuberculosis, School of Medicine, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
- Department of Tuberculosis, School of Medicine, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| | - Hai Lou
- Clinic and Research Center of Tuberculosis, School of Medicine, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
- Department of Tuberculosis, School of Medicine, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| | - Haipeng Liu
- Central Laboratory, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China.
| | - Wei Sha
- Clinic and Research Center of Tuberculosis, School of Medicine, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China.
- Department of Tuberculosis, School of Medicine, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China.
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China.
| |
Collapse
|
6
|
Giovannoni G, Hawkes CH, Lechner-Scott J, Levy M, Yeh EA, Pepper G, Schmierer K. Can placebo-controlled phase 2 disease-modifying therapy trials in MS still be justified? Mult Scler Relat Disord 2024; 87:105698. [PMID: 38850685 DOI: 10.1016/j.msard.2024.105698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2024]
Affiliation(s)
- Gavin Giovannoni
- The Blizard Institute, Centre for Neuroscience, Surgery & Trauma, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK; Clinical Board Medicine (Neuroscience), The Royal London Hospital, Barts Health NHS Trust, London, UK.
| | - Christopher H Hawkes
- The Blizard Institute, Centre for Neuroscience, Surgery & Trauma, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | | | - Michael Levy
- Massachusetts General Hospital and Harvard Medical School, Massachusetts, USA
| | - E Ann Yeh
- Department of Paediatrics, Dalla Lana School of Public Health, University of Toronto
| | - George Pepper
- Shift.ms, Platform, New Station Street, LS1 4JB, United Kingdom
| | - Klaus Schmierer
- The Blizard Institute, Centre for Neuroscience, Surgery & Trauma, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK; Clinical Board Medicine (Neuroscience), The Royal London Hospital, Barts Health NHS Trust, London, UK
| |
Collapse
|
7
|
Kelleher P, Greathead L, Whitby L, Brando B, Barnett D, Bloxham D, deTute R, Dunlop A, Farren T, Francis S, Payne D, Scott S, Snowden JA, Sorour Y, Stansfield E, Virgo P, Whitby A. European flow cytometry quality assurance guidelines for the diagnosis of primary immune deficiencies and assessment of immune reconstitution following B cell depletion therapies and transplantation. CYTOMETRY. PART B, CLINICAL CYTOMETRY 2024. [PMID: 38940298 DOI: 10.1002/cyto.b.22195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 06/06/2024] [Accepted: 06/17/2024] [Indexed: 06/29/2024]
Abstract
Over the last 15 years activity of diagnostic flow cytometry services have evolved from monitoring of CD4 T cell subsets in HIV-1 infection to screening for primary and secondary immune deficiencies syndromes and assessment of immune constitution following B cell depleting therapy and transplantation. Changes in laboratory activity in high income countries have been driven by initiation of anti-retroviral therapy (ART) in HIV-1 regardless of CD4 T cell counts, increasing recognition of primary immune deficiency syndromes and the wider application of B cell depleting therapy and transplantation in clinical practice. Laboratories should use their experience in standardization and quality assurance of CD4 T cell counting in HIV-1 infection to provide immune monitoring services to patients with primary and secondary immune deficiencies. Assessment of immune reconstitution post B cell depleting agents and transplantation can also draw on the expertise acquired by flow cytometry laboratories for detection of CD34 stem cell and assessment of MRD in hematological malignancies. This guideline provides recommendations for clinical laboratories on providing flow cytometry services in screening for immune deficiencies and its emerging role immune reconstitution after B cell targeting therapies and transplantation.
Collapse
Affiliation(s)
- Peter Kelleher
- Immunology of Infection, Department of Infectious Disease, Imperial College London, London, UK
- Department of Infection and Immunity Sciences, North West London Pathology, London, UK
| | - Louise Greathead
- Department of Infection and Immunity Sciences, North West London Pathology, London, UK
| | - Liam Whitby
- UK NEQAS for Leucocyte Immunophenotyping, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Bruno Brando
- Hematology Laboratory and Transfusion Center, New Hospital of Legnano: Ospedale Nuovo di Legnano, Milan, Italy
| | - David Barnett
- UK NEQAS for Leucocyte Immunophenotyping, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - David Bloxham
- Haematopathology and Oncology Diagnostic Service, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Ruth deTute
- Haematological Malignancy Diagnostic Service, St James's University Hospital, Leeds, UK
| | - Alan Dunlop
- Department of Haemato-Oncology, Royal Marsden Hospital, London, UK
| | - Timothy Farren
- Division of Haemato-Oncology, St Bartholomew's Hospital, Barts Health NHS Trust, London, UK
- Pathology Group, Blizard Institute, Queen Mary University of London, London, UK
| | - Sebastian Francis
- Department of Haematology, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Daniel Payne
- Tees Valley Pathology Service, James Cook University Hospital, Middlesbrough, UK
| | - Stuart Scott
- UK NEQAS for Leucocyte Immunophenotyping, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - John A Snowden
- Department of Haematology, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Youssef Sorour
- Haematology, Doncaster and Bassetlaw Teaching Hospitals NHS Trust, Doncaster, UK
| | - Emma Stansfield
- Greater Manchester Immunology Service, Manchester University NHS Foundation Trust, Manchester, UK
| | - Paul Virgo
- Department of Immunology and Immunogenetics, North Bristol NHS Trust, Bristol, UK
| | - Alison Whitby
- UK NEQAS for Leucocyte Immunophenotyping, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| |
Collapse
|
8
|
Giovannoni G. Targeting Epstein-Barr virus in multiple sclerosis: when and how? Curr Opin Neurol 2024; 37:228-236. [PMID: 38511407 DOI: 10.1097/wco.0000000000001266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
PURPOSE OF REVIEW Epidemiological evidence implicates Epstein-Barr virus (EBV) as the cause of multiple sclerosis (MS). However, its biological role in the pathogenesis of MS is uncertain. The article provides an overview of the role of EBV in the pathogenesis of MS and makes a case for targeting EBV as a treatment strategy for MS. RECENT FINDINGS EBV potentially triggers autoimmunity via molecular mimicry or immune dysregulation. Another hypothesis, supported by immunological and virological data, indicates that active EBV infection via latent-lytic infection cycling within the central nervous system or periphery drives MS disease activity. This supports testing small molecule anti-EBV agents targeting both latent and lytic infection, central nervous system-penetrant B-cell therapies and EBV-targeted immunotherapies in MS. Immunotherapies may include EBV-specific cytotoxic or chimeric antigen receptors T-cells, therapeutic EBV vaccines and immune reconstitution therapies to boost endogenous EBV-targeted cytotoxic T-cell responses. SUMMARY EBV is the probable cause of MS and is likely to be driving MS disease activity via latent-lytic infection cycling. There is evidence that all licensed MS disease-modifying therapies target EBV, and there is a compelling case for testing other anti-EBV strategies as potential treatments for MS.
Collapse
Affiliation(s)
- Gavin Giovannoni
- Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
9
|
Meng D, Sacco R, Disanto G, Widmer F, Jacober SLS, Gobbi C, Zecca C. Memory B cell-guided extended interval dosing of ocrelizumab in multiple sclerosis. Mult Scler 2024; 30:857-867. [PMID: 38767224 DOI: 10.1177/13524585241250199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
BACKGROUND Ocrelizumab (OCR) is an anti-CD20 monoclonal antibody approved for the treatment of relapsing-remitting and primary-progressive multiple sclerosis (MS). We aimed to evaluate the effectiveness of an individualized OCR extended interval dosing (EID), after switching from standard interval dosing (SID). METHODS This was a retrospective, observational, single-centre study including MS patients regularly followed at the Neurocenter of Southern Switzerland. After a cumulative OCR dose ⩾1200 mg, stable patients were switched to EID (OCR infusions following CD19+ 27+ memory B cell repopulation). RESULTS A total of 128 patients were included in the study, and 113 (88.3%) were switched to EID with a median interval of 9.9 (8.8-11.8) months between infusions. No clinical relapses occurred; 2 (1.8%) patients experienced disability worsening. Three (2.7%) and 2 (1.8%) patients experienced new T2 brain and spinal lesions, respectively. There was a mild decrease in IgG and IgM concentrations during both SID and EID OCR regimens (β = -0.23, p = 0.001 and β = -0.07, p < 0.001, respectively). CONCLUSION Switch to personalized dosing of OCR based on CD19+ 27+ memory B cell repopulation led to a great extension of the interval between infusions, with maintained clinical and radiological efficacy. Given the potential advantages in terms of safety and health costs, EID OCR regimens should be further investigated.
Collapse
Affiliation(s)
- Delania Meng
- Multiple Sclerosis Center (MSC), Department of Neurology, Neurocenter of Southern Switzerland (NSI), Lugano, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland
| | - Rosaria Sacco
- Multiple Sclerosis Center (MSC), Department of Neurology, Neurocenter of Southern Switzerland (NSI), Lugano, Switzerland
| | - Giulio Disanto
- Multiple Sclerosis Center (MSC), Department of Neurology, Neurocenter of Southern Switzerland (NSI), Lugano, Switzerland
| | - Fausto Widmer
- Multiple Sclerosis Center (MSC), Department of Neurology, Neurocenter of Southern Switzerland (NSI), Lugano, Switzerland
| | - Sarah Lena Susanna Jacober
- Multiple Sclerosis Center (MSC), Department of Neurology, Neurocenter of Southern Switzerland (NSI), Lugano, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland
| | - Claudio Gobbi
- Multiple Sclerosis Center (MSC), Department of Neurology, Neurocenter of Southern Switzerland (NSI), Lugano, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland
| | - Chiara Zecca
- Multiple Sclerosis Center (MSC), Department of Neurology, Neurocenter of Southern Switzerland (NSI), Lugano, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland
| |
Collapse
|
10
|
Carlson AK, Amin M, Cohen JA. Drugs Targeting CD20 in Multiple Sclerosis: Pharmacology, Efficacy, Safety, and Tolerability. Drugs 2024; 84:285-304. [PMID: 38480630 PMCID: PMC10982103 DOI: 10.1007/s40265-024-02011-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/14/2024] [Indexed: 04/02/2024]
Abstract
Currently, there are four monoclonal antibodies (mAbs) that target the cluster of differentiation (CD) 20 receptor available to treat multiple sclerosis (MS): rituximab, ocrelizumab, ofatumumab, and ublituximab. B-cell depletion therapy has changed the therapeutic landscape of MS through robust efficacy on clinical manifestations and MRI lesion activity, and the currently available anti-CD20 mAb therapies for use in MS are a cornerstone of highly effective disease-modifying treatment. Ocrelizumab is currently the only therapy with regulatory approval for primary progressive MS. There are currently few data regarding the relative efficacy of these therapies, though several clinical trials are ongoing. Safety concerns applicable to this class of therapeutics relate primarily to immunogenicity and mechanism of action, and include infusion-related or injection-related reactions, development of hypogammaglobulinemia (leading to increased infection and malignancy risk), and decreased vaccine response. Exploration of alternative dose/dosing schedules might be an effective strategy for mitigating these risks. Future development of biosimilar medications might make these therapies more readily available. Although anti-CD20 mAb therapies have led to significant improvements in disease outcomes, CNS-penetrant therapies are still needed to more effectively address the compartmentalized inflammation thought to play an important role in disability progression.
Collapse
Affiliation(s)
- Alise K Carlson
- Mellen Center, Neurologic Institute, Cleveland Clinic, 9500 Euclid Ave U10, Cleveland, OH, 44195, USA
| | - Moein Amin
- Mellen Center, Neurologic Institute, Cleveland Clinic, 9500 Euclid Ave U10, Cleveland, OH, 44195, USA
| | - Jeffrey A Cohen
- Mellen Center, Neurologic Institute, Cleveland Clinic, 9500 Euclid Ave U10, Cleveland, OH, 44195, USA.
| |
Collapse
|
11
|
Holm Hansen R, von Essen MR, Reith Mahler M, Cobanovic S, Sellebjerg F. Sustained effects on immune cell subsets and autoreactivity in multiple sclerosis patients treated with oral cladribine. Front Immunol 2024; 15:1327672. [PMID: 38433828 PMCID: PMC10904620 DOI: 10.3389/fimmu.2024.1327672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 01/22/2024] [Indexed: 03/05/2024] Open
Abstract
Introduction Cladribine tablet therapy is an efficacious treatment for multiple sclerosis (MS). Recently, we showed that one year after the initiation of cladribine treatment, T and B cell crosstalk was impaired, reducing potentially pathogenic effector functions along with a specific reduction of autoreactivity to RAS guanyl releasing protein 2 (RASGRP2). In the present study we conducted a longitudinal analysis of the effect of cladribine treatment in patients with RRMS, focusing on the extent to which the effects observed on T and B cell subsets and autoreactivity after one year of treatment are maintained, modulated, or amplified during the second year of treatment. Methods In this case-control exploratory study, frequencies and absolute counts of peripheral T and B cell subsets and B cell cytokine production from untreated patients with relapsing-remitting MS (RRMS) and patients treated with cladribine for 52 (W52), 60 (W60), 72 (W72) and 96 (W96) weeks, were measured using flow cytometry. Autoreactivity was assessed using a FluoroSpot assay. Results We found a substantial reduction in circulating memory B cells and proinflammatory B cell responses. Furthermore, we observed reduced T cell responses to autoantigens possibly presented by B cells (RASGRP2 and a-B crystallin (CRYAB)) at W52 and W96 and a further reduction in responses to the myelin antigens myelin basic protein (MBP) and myelin oligodendrocyte glycoprotein (MOG) after 96 weeks. Conclusion We conclude that the effects of cladribine observed after year one are maintained and, for some effects, even increased two years after the initiation of a full course of treatment with cladribine tablets.
Collapse
Affiliation(s)
- Rikke Holm Hansen
- Danish Multiple Sclerosis Center, Department of Neurology, Copenhagen University Hospital - Rigshospitalet, Glostrup, Denmark
| | - Marina Rode von Essen
- Danish Multiple Sclerosis Center, Department of Neurology, Copenhagen University Hospital - Rigshospitalet, Glostrup, Denmark
| | - Mie Reith Mahler
- Danish Multiple Sclerosis Center, Department of Neurology, Copenhagen University Hospital - Rigshospitalet, Glostrup, Denmark
| | - Stefan Cobanovic
- Danish Multiple Sclerosis Center, Department of Neurology, Copenhagen University Hospital - Rigshospitalet, Glostrup, Denmark
| | - Finn Sellebjerg
- Danish Multiple Sclerosis Center, Department of Neurology, Copenhagen University Hospital - Rigshospitalet, Glostrup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
12
|
Tieck MP, Vasilenko N, Ruschil C, Kowarik MC. Peripheral memory B cells in multiple sclerosis vs. double negative B cells in neuromyelitis optica spectrum disorder: disease driving B cell subsets during CNS inflammation. Front Cell Neurosci 2024; 18:1337339. [PMID: 38385147 PMCID: PMC10879280 DOI: 10.3389/fncel.2024.1337339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 01/16/2024] [Indexed: 02/23/2024] Open
Abstract
B cells are fundamental players in the pathophysiology of autoimmune diseases of the central nervous system, such as multiple sclerosis (MS) and neuromyelitis optica spectrum disorder (NMOSD). A deeper understanding of disease-specific B cell functions has led to the differentiation of both diseases and the development of different treatment strategies. While NMOSD is strongly associated with pathogenic anti-AQP4 IgG antibodies and proinflammatory cytokine pathways, no valid autoantibodies have been identified in MS yet, apart from certain antigen targets that require further evaluation. Although both diseases can be effectively treated with B cell depleting therapies, there are distinct differences in the peripheral B cell subsets that influence CNS inflammation. An increased peripheral blood double negative B cells (DN B cells) and plasmablast populations has been demonstrated in NMOSD, but not consistently in MS patients. Furthermore, DN B cells are also elevated in rheumatic diseases and other autoimmune entities such as myasthenia gravis and Guillain-Barré syndrome, providing indirect evidence for a possible involvement of DN B cells in other autoantibody-mediated diseases. In MS, the peripheral memory B cell pool is affected by many treatments, providing indirect evidence for the involvement of memory B cells in MS pathophysiology. Moreover, it must be considered that an important effector function of B cells in MS may be the presentation of antigens to peripheral immune cells, including T cells, since B cells have been shown to be able to recirculate in the periphery after encountering CNS antigens. In conclusion, there are clear differences in the composition of B cell populations in MS and NMOSD and treatment strategies differ, with the exception of broad B cell depletion. This review provides a detailed overview of the role of different B cell subsets in MS and NMOSD and their implications for treatment options. Specifically targeting DN B cells and plasmablasts in NMOSD as opposed to memory B cells in MS may result in more precise B cell therapies for both diseases.
Collapse
Affiliation(s)
| | | | | | - M. C. Kowarik
- Department of Neurology and Stroke, Center for Neurology, and Hertie-Institute for Clinical Brain Research Eberhard-Karls University of Tübingen, Tübingen, Germany
| |
Collapse
|
13
|
Feige J, Moser T, Akgün K, Schwenker K, Hitzl W, Haschke‐Becher E, Ziemssen T, Sellner J. Repeated iv anti-CD20 treatment in multiple sclerosis: Long-term effects on peripheral immune cell subsets. Ann Clin Transl Neurol 2024; 11:450-465. [PMID: 38204286 PMCID: PMC10863910 DOI: 10.1002/acn3.51965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/15/2023] [Accepted: 11/26/2023] [Indexed: 01/12/2024] Open
Abstract
OBJECTIVE Repeated intravenous administration of anti-CD20 depleting monoclonal antibodies 6 months apart is among the highly effective treatment options in multiple sclerosis (MS). Here, we aimed to investigate peripheral immune cell subset depletion kinetics following either rituximab (RTX) or ocrelizumab (OCR) infusions in people with MS (pwMS). METHODS We studied pwMS treated de-novo with either RTX (n = 7) or OCR (n = 8). The examinations were scheduled before the initiation of anti-CD20 therapy and every 12 weeks for up to 15 months. Immunophenotyping of immune cell subsets in peripheral blood was performed by multiparametric fluorescence cytometry. RESULTS A significant, persistent decrease of CD19+ B cells was observed already with the first anti-CD20 infusion (p < 0.0001). A significant proportional reduction of memory B cells within the B-cell pool was achieved only after two treatment cycles (p = 0.005). We observed a proportional increase of immature (p = 0.04) and naive B cells (p = 0.004), again only after the second treatment cycle. As for the peripheral T-cell pool, we observed a continuous proportional increase of memory T helper (TH) cells/central memory TH cells (p = 0.02/p = 0.008), while the number of regulatory T cells (Treg) decreased (p = 0.007). The percentage of B-cell dependent TH17.1 central memory cells dropped after the second treatment cycle (p = 0.02). No significant differences in the depletion kinetics between RTX and OCR were found. INTERPRETATION Peripheral immune cell profiling revealed more differentiated insights into the prompt and delayed immunological effects of repeated intravenous anti-CD20 treatment. The observation of proportional changes of some pathogenetically relevant immune cell subsets only after two infusion cycles deserves further attention.
Collapse
Affiliation(s)
- Julia Feige
- Department of NeurologyChristian Doppler University Hospital, Paracelsus Medical UniversitySalzburgAustria
| | - Tobias Moser
- Department of NeurologyChristian Doppler University Hospital, Paracelsus Medical UniversitySalzburgAustria
| | - Katja Akgün
- Department of NeurologyMultiple Sclerosis Center, Center of Clinical Neuroscience, Carl Gustav Carus University Hospital, Technical University DresdenDresdenGermany
| | - Kerstin Schwenker
- Department of NeurologyChristian Doppler University Hospital, Paracelsus Medical UniversitySalzburgAustria
| | - Wolfgang Hitzl
- Research Management (RM): Biostatistics and Publication of Clinical Studies TeamParacelsus Medical UniversitySalzburgAustria
- Department of Ophthalmology and OptometryParacelsus Medical UniversitySalzburgAustria
- Research Program Experimental Ophthalmology and Glaucoma ResearchParacelsus Medical UniversitySalzburgAustria
| | | | - Tjalf Ziemssen
- Department of NeurologyMultiple Sclerosis Center, Center of Clinical Neuroscience, Carl Gustav Carus University Hospital, Technical University DresdenDresdenGermany
| | - Johann Sellner
- Department of NeurologyChristian Doppler University Hospital, Paracelsus Medical UniversitySalzburgAustria
- Department of Neurology, School of Medicine, Klinikum rechts der IsarTechnische Universität MünchenMünchenGermany
- Department of NeurologyLandesklinikum Mistelbach‐GänserndorfMistelbachAustria
| |
Collapse
|
14
|
Gandelman S, Lenzi KA, Markowitz C, Berger JR. A Proposed Approach to Screening and Surveillance Labs for Patients With Multiple Sclerosis on Anti-CD20 Therapy. Neurol Clin Pract 2024; 14:e200241. [PMID: 38204588 PMCID: PMC10775160 DOI: 10.1212/cpj.0000000000200241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 12/01/2023] [Indexed: 01/12/2024]
Abstract
Background Anti-CD20 therapies have proven to be highly effective and safe therapies for multiple sclerosis (MS) and have had rapid uptake in the MS community. However, no clear consensus has arisen regarding an approach to screening or surveillance lab monitoring. Recent Findings Based on current evidence, for screening labs before anti-CD20 initiation, we propose checking liver function test (LFT), complete blood count with differential (CBC), absolute B-cell count, quantitative immunoglobulins, hepatitis B virus serologies, varicella zoster virus IgG, John Cunningham virus (JCV) status, and age-appropriate vaccination history. For surveillance monitoring in an otherwise asymptomatic individual, we propose biannual LFTs and CBC, quantitative immunoglobulins annually after year 3, absolute B-cell count at month 6 and in the setting of relapse, and JCV only if clinical or radiographic features of progressive multifocal leukoencephalopathy arise. For ublituximab, pregnancy testing is additionally recommended before each infusion. Implications for Practice We propose evidence-based screening and safety surveillance labs which take into account likelihood of changing management in an otherwise stable or asymptomatic individual.
Collapse
Affiliation(s)
- Stephanie Gandelman
- Department of Neurology (SG, CM, JRB), University of Pennsylvania Perelman School of Medicine, Philadelphia; Department of Neurology (SG), New York Medical College, Valhalla; and Department of Pharmacy (KAL), Hospital of the University of Pennsylvania, Philadelphia
| | - Kerry A Lenzi
- Department of Neurology (SG, CM, JRB), University of Pennsylvania Perelman School of Medicine, Philadelphia; Department of Neurology (SG), New York Medical College, Valhalla; and Department of Pharmacy (KAL), Hospital of the University of Pennsylvania, Philadelphia
| | - Clyde Markowitz
- Department of Neurology (SG, CM, JRB), University of Pennsylvania Perelman School of Medicine, Philadelphia; Department of Neurology (SG), New York Medical College, Valhalla; and Department of Pharmacy (KAL), Hospital of the University of Pennsylvania, Philadelphia
| | - Joseph R Berger
- Department of Neurology (SG, CM, JRB), University of Pennsylvania Perelman School of Medicine, Philadelphia; Department of Neurology (SG), New York Medical College, Valhalla; and Department of Pharmacy (KAL), Hospital of the University of Pennsylvania, Philadelphia
| |
Collapse
|
15
|
Aspden JW, Murphy MA, Kashlan RD, Xiong Y, Poznansky MC, Sîrbulescu RF. Intruders or protectors - the multifaceted role of B cells in CNS disorders. Front Cell Neurosci 2024; 17:1329823. [PMID: 38269112 PMCID: PMC10806081 DOI: 10.3389/fncel.2023.1329823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 12/20/2023] [Indexed: 01/26/2024] Open
Abstract
B lymphocytes are immune cells studied predominantly in the context of peripheral humoral immune responses against pathogens. Evidence has been accumulating in recent years on the diversity of immunomodulatory functions that B cells undertake, with particular relevance for pathologies of the central nervous system (CNS). This review summarizes current knowledge on B cell populations, localization, infiltration mechanisms, and function in the CNS and associated tissues. Acute and chronic neurodegenerative pathologies are examined in order to explore the complex, and sometimes conflicting, effects that B cells can have in each context, with implications for disease progression and treatment outcomes. Additional factors such as aging modulate the proportions and function of B cell subpopulations over time and are also discussed in the context of neuroinflammatory response and disease susceptibility. A better understanding of the multifactorial role of B cell populations in the CNS may ultimately lead to innovative therapeutic strategies for a variety of neurological conditions.
Collapse
Affiliation(s)
- James W. Aspden
- Vaccine and Immunotherapy Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Matthew A. Murphy
- Vaccine and Immunotherapy Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Rommi D. Kashlan
- Vaccine and Immunotherapy Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Yueyue Xiong
- Vaccine and Immunotherapy Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Mark C. Poznansky
- Vaccine and Immunotherapy Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Ruxandra F. Sîrbulescu
- Vaccine and Immunotherapy Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| |
Collapse
|
16
|
Sarkar SK, Willson AML, Jordan MA. The Plasticity of Immune Cell Response Complicates Dissecting the Underlying Pathology of Multiple Sclerosis. J Immunol Res 2024; 2024:5383099. [PMID: 38213874 PMCID: PMC10783990 DOI: 10.1155/2024/5383099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 12/05/2023] [Accepted: 12/11/2023] [Indexed: 01/13/2024] Open
Abstract
Multiple sclerosis (MS) is a neurodegenerative autoimmune disease characterized by the destruction of the myelin sheath of the neuronal axon in the central nervous system. Many risk factors, including environmental, epigenetic, genetic, and lifestyle factors, are responsible for the development of MS. It has long been thought that only adaptive immune cells, especially autoreactive T cells, are responsible for the pathophysiology; however, recent evidence has indicated that innate immune cells are also highly involved in disease initiation and progression. Here, we compile the available data regarding the role immune cells play in MS, drawn from both human and animal research. While T and B lymphocytes, chiefly enhance MS pathology, regulatory T cells (Tregs) may serve a more protective role, as can B cells, depending on context and location. Cells chiefly involved in innate immunity, including macrophages, microglia, astrocytes, dendritic cells, natural killer (NK) cells, eosinophils, and mast cells, play varied roles. In addition, there is evidence regarding the involvement of innate-like immune cells, such as γδ T cells, NKT cells, MAIT cells, and innate-like B cells as crucial contributors to MS pathophysiology. It is unclear which of these cell subsets are involved in the onset or progression of disease or in protective mechanisms due to their plastic nature, which can change their properties and functions depending on microenvironmental exposure and the response of neural networks in damage control. This highlights the need for a multipronged approach, combining stringently designed clinical data with carefully controlled in vitro and in vivo research findings, to identify the underlying mechanisms so that more effective therapeutics can be developed.
Collapse
Affiliation(s)
- Sujan Kumar Sarkar
- Department of Anatomy, Histology and Physiology, Faculty of Animal Science and Veterinary Medicine, Sher-e-Bangla Agricultural University, Dhaka, Bangladesh
| | - Annie M. L. Willson
- Biomedical Sciences and Molecular Biology, CPHMVS, James Cook University, Townsville, Queensland 4811, Australia
| | - Margaret A. Jordan
- Biomedical Sciences and Molecular Biology, CPHMVS, James Cook University, Townsville, Queensland 4811, Australia
| |
Collapse
|
17
|
Asplund Högelin K, Isac B, Khademi M, Al Nimer F. B cell activating factor levels are linked to distinct B cell markers in multiple sclerosis and following B cell depletion and repopulation. Clin Immunol 2024; 258:109870. [PMID: 38101497 DOI: 10.1016/j.clim.2023.109870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/07/2023] [Accepted: 11/17/2023] [Indexed: 12/17/2023]
Abstract
Recent studies have highlighted the important role of B cells in the pathogenesis of multiple sclerosis (MS). B cell activating factor (BAFF) and A proliferation inducing ligand (APRIL) play a major role in B cell survival and homeostasis. Here, we studied the association of BAFF and APRIL with B cell immune markers in MS and following B cell depletion and repopulation. We found that BAFF but not APRIL was significantly higher in plasma in untreated MS compared to controls. BAFF increased after rituximab treatment and decreased again during repopulation displaying an inverse correlation with B cell numbers, and more specifically switched memory B cell numbers. Cerebrospinal fluid BAFF inversely correlated with IgG index. BAFF displayed an inverse association to anti-EBV-CA antibodies. In summary, our study identified immune cells and factors that might regulate or be regulated by BAFF and APRIL levels in MS, and during B cell depletion and repopulation.
Collapse
Affiliation(s)
- Klara Asplund Högelin
- Neuroimmunology Unit, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| | - Beshoy Isac
- Biomedical Laboratory Science, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Mohsen Khademi
- Neuroimmunology Unit, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Faiez Al Nimer
- Neuroimmunology Unit, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
18
|
Morales-Núñez JJ, Muñoz-Valle JF, García-Chagollán M, Cerpa-Cruz S, Martínez-Bonilla GE, Medina-Rosales VM, Díaz-Pérez SA, Nicoletti F, Hernández-Bello J. Aberrant B-cell activation and B-cell subpopulations in rheumatoid arthritis: analysis by clinical activity, autoantibody seropositivity, and treatment. Clin Exp Immunol 2023; 214:314-327. [PMID: 37464892 PMCID: PMC10719220 DOI: 10.1093/cei/uxad076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 06/13/2023] [Accepted: 07/17/2023] [Indexed: 07/20/2023] Open
Abstract
Few studies analyze the role of B-cell subpopulations in rheumatoid arthritis (RA) pathophysiology. Therefore, this study aimed to analyze the differences in B-cell subpopulations and B-cell activation according to disease activity, RA subtype, and absence of disease-modifying antirheumatic drugs (DMARDs) therapy. These subgroups were compared with control subjects (CS). One hundred and thirty-nine subjects were included, of which 114 were RA patients, and 25 were controls. Patients were divided into 99 with seropositive RA, 6 with seronegative RA, and 9 without DMARDs. The patients with seropositive RA were subclassified based on the DAS28 index. A seven-color multicolor flow cytometry panel was used to identify B-cell immunophenotypes and cell activation markers. There were no changes in total B-cell frequencies between RA patients and controls. However, a lower frequency of memory B cells and pre-plasmablasts was observed in seropositive RA compared to controls (P < 0.0001; P = 0.0043, respectively). In contrast, a higher frequency of mature B cells was observed in RA than in controls (P = 0.0002). Among patients with RA, those with moderate activity had a higher percentage of B cells (P = 0.0021). The CD69+ marker was increased (P < 0.0001) in RA compared to controls, while the CD40+ frequency was decreased in patients (P < 0.0001). Transitional, naïve, and double-negative B-cell subpopulations were higher in seronegative RA than in seropositive (P < 0.01). In conclusion, in seropositive and seronegative RA patients, there are alterations in B-cell activation and B-cell subpopulations, independently of clinical activity and DMARDs therapy.
Collapse
Affiliation(s)
- José Javier Morales-Núñez
- Centro Universitario de Ciencias de la Salud, Doctorado en Ciencias Biomédicas, Universidad de Guadalajara, Jalisco, Mexico
- Centro Universitario de Ciencias de la Salud, Instituto de Investigación en Ciencias Biomédicas (IICB), Universidad de Guadalajara, Jalisco, Mexico
| | - José Francisco Muñoz-Valle
- Centro Universitario de Ciencias de la Salud, Instituto de Investigación en Ciencias Biomédicas (IICB), Universidad de Guadalajara, Jalisco, Mexico
| | - Mariel García-Chagollán
- Centro Universitario de Ciencias de la Salud, Doctorado en Ciencias Biomédicas, Universidad de Guadalajara, Jalisco, Mexico
- Centro Universitario de Ciencias de la Salud, Instituto de Investigación en Ciencias Biomédicas (IICB), Universidad de Guadalajara, Jalisco, Mexico
| | - Sergio Cerpa-Cruz
- Hospital Civil de Guadalajara “Fray Antonio Alcalde”, Servicio de Reumatología, Jalisco, Mexico
| | | | - Vianey Monserrat Medina-Rosales
- Centro Universitario de Ciencias de la Salud, Licenciatura en Médico, Cirujano y Partero, Universidad de Guadalajara, Jalisco, Mexico
| | - Saúl Alberto Díaz-Pérez
- Centro Universitario de Ciencias de la Salud, Doctorado en Ciencias Biomédicas, Universidad de Guadalajara, Jalisco, Mexico
- Centro Universitario de Ciencias de la Salud, Instituto de Investigación en Ciencias Biomédicas (IICB), Universidad de Guadalajara, Jalisco, Mexico
| | - Ferdinando Nicoletti
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Jorge Hernández-Bello
- Centro Universitario de Ciencias de la Salud, Instituto de Investigación en Ciencias Biomédicas (IICB), Universidad de Guadalajara, Jalisco, Mexico
| |
Collapse
|
19
|
Vakrakou AG, Brinia ME, Alexaki A, Koumasopoulos E, Stathopoulos P, Evangelopoulos ME, Stefanis L, Stadelmann-Nessler C, Kilidireas C. Multiple faces of multiple sclerosis in the era of highly efficient treatment modalities: Lymphopenia and switching treatment options challenges daily practice. Int Immunopharmacol 2023; 125:111192. [PMID: 37951198 DOI: 10.1016/j.intimp.2023.111192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/25/2023] [Accepted: 11/03/2023] [Indexed: 11/13/2023]
Abstract
The expanded treatment landscape in relapsing-remitting multiple sclerosis (MS) has resulted in highly effective treatment options and complexity in managing disease- or drug-related events during disease progression. Proper decision-making requires thorough knowledge of the immunobiology of MS itself and an understanding of the main principles behind the mechanisms that lead to secondary autoimmunity affecting organs other than the central nervous system as well as opportunistic infections. The immune system is highly adapted to both environmental and disease-modifying agents. Immune reconstitution following cell depletion or cell entrapment therapies eliminates pathogenic aspects of the disease but can also lead to distorted immune responses with harmful effects. Atypical relapses occur with second-line treatments or after their discontinuation and require appropriate clinical decisions. Lymphopenia is a result of the mechanism of action of many drugs used to treat MS. However, persistent lymphopenia and cell-specific lymphopenia could result in disease exacerbation, secondary autoimmunity, or the emergence of opportunistic infections. Clinicians treating patients with MS should be aware of the multiple faces of MS under novel, efficient treatment modalities and understand the intricate brain-immune cell interactions in the context of an altered immune system. MS relapses and disease progression still occur despite the current treatment modalities and are mediated either by failure to control effector mechanisms inherent to MS pathophysiology or by new drug-related mechanisms. The multiple faces of MS due to the highly adapted immune system of patients impose the need for appropriate switching therapies that safeguard disease remission and further clinical improvement.
Collapse
Affiliation(s)
- Aigli G Vakrakou
- Demyelinating Diseases Unit, 1st Department of Neurology, School of Medicine, Aiginition Hospital, National and Kapodistrian University of Athens, Athens, Greece; Department of Neuropathology, University of Göttingen Medical Center, Göttingen, Germany.
| | - Maria-Evgenia Brinia
- Demyelinating Diseases Unit, 1st Department of Neurology, School of Medicine, Aiginition Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Anastasia Alexaki
- Demyelinating Diseases Unit, 1st Department of Neurology, School of Medicine, Aiginition Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Evangelos Koumasopoulos
- Demyelinating Diseases Unit, 1st Department of Neurology, School of Medicine, Aiginition Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Panos Stathopoulos
- Demyelinating Diseases Unit, 1st Department of Neurology, School of Medicine, Aiginition Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria-Eleftheria Evangelopoulos
- Demyelinating Diseases Unit, 1st Department of Neurology, School of Medicine, Aiginition Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Leonidas Stefanis
- Demyelinating Diseases Unit, 1st Department of Neurology, School of Medicine, Aiginition Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Constantinos Kilidireas
- Demyelinating Diseases Unit, 1st Department of Neurology, School of Medicine, Aiginition Hospital, National and Kapodistrian University of Athens, Athens, Greece; Department of Neurology, Henry Dunant Hospital Center, Athens, Greece
| |
Collapse
|
20
|
Allen-Philbey K, De Trane S, MacDougall A, Adams A, Bianchi L, Campion T, Giovannoni G, Gnanapavan S, Holden DW, Marta M, Mathews J, Turner BP, Baker D, Schmierer K. Disease activity 4.5 years after starting cladribine: experience in 264 patients with multiple sclerosis. Ther Adv Neurol Disord 2023; 16:17562864231200627. [PMID: 37954917 PMCID: PMC10638874 DOI: 10.1177/17562864231200627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 08/15/2023] [Indexed: 11/14/2023] Open
Abstract
Background Cladribine is an effective immunotherapy for people with multiple sclerosis (pwMS). Whilst most pwMS do not require re-treatment following standard dosing (two treatment courses), disease activity re-emerges in others. The characteristics of pwMS developing re-emerging disease activity remain incompletely understood. Objectives To explore whether clinical and/or paraclinical baseline characteristics, including the degree of lymphocyte reduction, drug dose and lesions on magnetic resonance imaging (MRI) are associated with re-emerging disease activity. Design Service evaluation in pwMS undergoing subcutaneous cladribine (SClad) treatment. Methods Demographics, clinical, laboratory and MRI data of pwMS receiving two courses of SClad were extracted from health records. To assess associations of predictor variables with re-emerging disease activity, a series of Cox proportional hazards models was fitted (one for each predictor variable). Results Of n = 264 pwMS 236 received two courses of SClad and were included in the analysis. Median follow-up was 4.5 years (3.9, 5.3) from the first, and 3.5 years (2.9, 4.3) from the last SClad administration. Re-emerging disease activity occurred in 57/236 pwMS (24%); 22/236 received further cladribine doses (SClad or cladribine tablets) at 36.7 months [median; interquartile range (IQR): 31.7, 42.1], and 22/236 other immunotherapies 18.9 months (13.0, 30.2) after their second course of SClad, respectively. Eligibility was based on MRI activity in 29, relapse in 5, both in 13, elevated cerebrospinal fluid neurofilament light chain level in 3, deterioration unrelated to relapse in 4 and other in 3. Only 36/57 of those eligible for additional immunotherapy had received a reduced dose of SClad for their second treatment course. Association was detected between re-emerging disease activity and (i) high baseline MRI activity and (ii) low second dose of SClad. Conclusion Re-emerging disease activity was associated with baseline MRI activity and low dose second course of SClad.
Collapse
Affiliation(s)
- Kimberley Allen-Philbey
- Clinical Board Medicine (Neuroscience), The Royal London Hospital, Barts Health NHS Trust, London, UK
- Centre for Neuroscience, Surgery and Trauma, Faculty of Medicine and Dentistry, The Blizard Institute, Queen Mary University of London, London, UK
| | - Stefania De Trane
- Clinical Board Medicine (Neuroscience), The Royal London Hospital, Barts Health NHS Trust, London, UK
- Centre for Neuroscience, Surgery and Trauma, Faculty of Medicine and Dentistry, The Blizard Institute, Queen Mary University of London, London, UK
- Neurological Rehabilitation and Spinal Unit, Istituti Clinici Scientifici Maugeri, IRCCS Bari, Italy
| | - Amy MacDougall
- Department of Medical Statistics, London School of Hygiene and Tropical Medicine, London, UK
| | - Ashok Adams
- Department of Neuroradiology, The Royal London Hospital, Barts Health NHS Trust, London, UK
| | - Lucia Bianchi
- Clinical Board Medicine (Neuroscience), The Royal London Hospital, Barts Health NHS Trust, London, UK
- Centre for Neuroscience, Surgery and Trauma, Faculty of Medicine and Dentistry, The Blizard Institute, Queen Mary University of London, London, UK
| | - Thomas Campion
- Department of Neuroradiology, The Royal London Hospital, Barts Health NHS Trust, London, UK
| | - Gavin Giovannoni
- Clinical Board Medicine (Neuroscience), The Royal London Hospital, Barts Health NHS Trust, London, UK
- Centre for Neuroscience, Surgery and Trauma, Faculty of Medicine and Dentistry, The Blizard Institute, Queen Mary University of London, London, UK
- Preventive Neurology Unit, Wolfson Institute of Preventive Medicine, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Sharmilee Gnanapavan
- Clinical Board Medicine (Neuroscience), The Royal London Hospital, Barts Health NHS Trust, London, UK
- Centre for Neuroscience, Surgery and Trauma, Faculty of Medicine and Dentistry, The Blizard Institute, Queen Mary University of London, London, UK
| | - David W. Holden
- Clinical Board Medicine (Neuroscience), The Royal London Hospital, Barts Health NHS Trust, London, UK
- Centre for Neuroscience, Surgery and Trauma, Faculty of Medicine and Dentistry, The Blizard Institute, Queen Mary University of London, London, UK
| | - Monica Marta
- Clinical Board Medicine (Neuroscience), The Royal London Hospital, Barts Health NHS Trust, London, UK
- Centre for Neuroscience, Surgery and Trauma, Faculty of Medicine and Dentistry, The Blizard Institute, Queen Mary University of London, London, UK
| | - Joela Mathews
- Clinical Board Medicine (Neuroscience), The Royal London Hospital, Barts Health NHS Trust, London, UK
| | - Benjamin P. Turner
- Clinical Board Medicine (Neuroscience), The Royal London Hospital, Barts Health NHS Trust, London, UK
- Centre for Neuroscience, Surgery and Trauma, Faculty of Medicine and Dentistry, The Blizard Institute, Queen Mary University of London, London, UK
| | - David Baker
- Centre for Neuroscience, Surgery and Trauma, Faculty of Medicine and Dentistry, The Blizard Institute, Queen Mary University of London, London, UK
| | | |
Collapse
|
21
|
Bar-Or A, Aburashed R, Chinea AR, Hendin BA, Lucassen E, Meng X, Stankiewicz J, Tullman MJ, Cross AH. Humoral immune response to COVID-19 mRNA vaccines in patients with relapsing multiple sclerosis treated with ofatumumab. Mult Scler Relat Disord 2023; 79:104967. [PMID: 37769429 DOI: 10.1016/j.msard.2023.104967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 08/03/2023] [Accepted: 08/28/2023] [Indexed: 09/30/2023]
Abstract
BACKGROUND There are limited data available regarding the impact of ofatumumab, an anti-CD20 B-cell-depleting monoclonal antibody for relapsing multiple sclerosis (RMS), on vaccination response. The study objective was to assess humoral immune response (HIR) to non-live coronavirus disease 2019 (COVID-19) messenger RNA (mRNA) vaccination in patients with RMS treated with ofatumumab. METHODS This was an open-label, single-arm, multicenter, prospective pilot study of patients with RMS aged 18-55 years who received 2 or 3 doses of a COVID-19 mRNA vaccine after ≥1 month of subcutaneous ofatumumab (20 mg/month) treatment. The primary endpoint was the proportion of patients achieving HIR, as defined by local laboratory severe acute respiratory syndrome coronavirus-2 qualitative immunoglobulin G assays. Assay No. 1 was ≥14 days after the second or third vaccine dose. Assay No. 2 was 90 days thereafter. RESULTS Of the 26 patients enrolled (median [range] age: 42 [27-54] years; median [range] ofatumumab treatment duration: 237 [50-364] days), HIR was achieved by 53.9% (14/26; 95% CI: 33.4 - 73.4%) at Assay No. 1 and 50.0% (13/26; 95% CI: 29.9 - 70.1%) at Assay No. 2. Patients who received 3 vaccine doses had higher HIR rates (Assay No. 1: 70.0% [7/10]; Assay No. 2: 77.8% [7/9]) than those who received 2 doses (Assay No. 1: 46.7% [7/15]; Assay No. 2: 42.9% [6/14]). Of patients aged <40 years without previous anti-CD20 therapy, HIR was achieved by 90.0% (9/10) at Assay No. 1 and 75.0% (6/8) at Assay No. 2. No serious adverse events were reported. CONCLUSION Patients with RMS treated with ofatumumab can mount HIRs following COVID-19 vaccination. A plain language summary, infographic and a short video summarizing the key results are provided in supplementary material. CLINICAL TRIAL REGISTRATION ClinicalTrials.gov: NCT04847596 (https://clinicaltrials.gov/ct2/show/NCT04847596).
Collapse
Affiliation(s)
- Amit Bar-Or
- Department of Neurology, and Center for Neuroinflammation and Experimental Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States.
| | - Rany Aburashed
- Insight Chicago Hospital and Medical Center, Chicago, IL, United States
| | | | - Barry A Hendin
- Center for Neurology and Spine, Phoenix, AZ, United States
| | | | - Xiangyi Meng
- Novartis Pharmaceuticals Corporation, East Hanover, NJ, United States
| | - James Stankiewicz
- Novartis Pharmaceuticals Corporation, East Hanover, NJ, United States
| | | | - Anne H Cross
- Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
22
|
Rodriguez-Mogeda C, van Lierop ZYGJ, van der Pol SMA, Coenen L, Hogenboom L, Kamermans A, Rodriguez E, van Horssen J, van Kempen ZLE, Uitdehaag BMJ, Teunissen CE, Witte ME, Killestein J, de Vries HE. Extended interval dosing of ocrelizumab modifies the repopulation of B cells without altering the clinical efficacy in multiple sclerosis. J Neuroinflammation 2023; 20:215. [PMID: 37752582 PMCID: PMC10521424 DOI: 10.1186/s12974-023-02900-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 09/19/2023] [Indexed: 09/28/2023] Open
Abstract
BACKGROUND Recent studies suggest that extended interval dosing of ocrelizumab, an anti-B cell therapy, does not affect its clinical effectiveness in most patients with multiple sclerosis (MS). However, it remains to be established whether certain B cell subsets are differentially repopulated after different dosing intervals and whether these subsets relate to clinical efficacy. METHODS We performed high-dimensional single-cell characterization of the peripheral immune landscape of patients with MS after standard (SID; n = 43) or extended interval dosing (EID; n = 37) of ocrelizumab and in non-ocrelizumab-treated (control group, CG; n = 28) patients with MS, using mass cytometry by time of flight (CyTOF). RESULTS The first B cells that repopulate after both ocrelizumab dosing schemes were immature, transitional and regulatory CD1d+ CD5+ B cells. In addition, we observed a higher percentage of transitional, naïve and regulatory B cells after EID in comparison with SID, but not of memory B cells or plasmablasts. The majority of repopulated B cell subsets showed an increased migratory phenotype, characterized by higher expression of CD49d, CD11a, CD54 and CD162. Interestingly, after EID, repopulated B cells expressed increased CD20 levels compared to B cells in CG and after SID, which was associated with a delayed repopulation of B cells after a subsequent ocrelizumab infusion. Finally, the number of/changes in B cell subsets after both dosing schemes did not correlate with any relapses nor progression of the disease. CONCLUSIONS Taken together, our data highlight that extending the dosing interval of ocrelizumab does not lead to increased repopulation of effector B cells. We show that the increase of CD20 expression on B cell subsets in EID might lead to longer depletion or less repopulation of B cells after the next infusion of ocrelizumab. Lastly, even though extending the ocrelizumab interval dosing alters B cell repopulation, it does not affect the clinical efficacy of ocrelizumab in our cohort of patients with MS.
Collapse
Affiliation(s)
- Carla Rodriguez-Mogeda
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
- Amsterdam Neuroscience, Amsterdam, The Netherlands.
- MS Center Amsterdam, Amsterdam UMC Location Vrije Universiteit, Amsterdam, The Netherlands.
| | - Zoë Y G J van Lierop
- Amsterdam Neuroscience, Amsterdam, The Netherlands
- MS Center Amsterdam, Amsterdam UMC Location Vrije Universiteit, Amsterdam, The Netherlands
- Department of Neurology, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Susanne M A van der Pol
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Amsterdam, The Netherlands
- MS Center Amsterdam, Amsterdam UMC Location Vrije Universiteit, Amsterdam, The Netherlands
| | - Loet Coenen
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Amsterdam, The Netherlands
- Department of Neurobiology and Aging, Biomedical Primate Research Centre, Rijswijk, The Netherlands
| | - Laura Hogenboom
- Amsterdam Neuroscience, Amsterdam, The Netherlands
- MS Center Amsterdam, Amsterdam UMC Location Vrije Universiteit, Amsterdam, The Netherlands
- Department of Neurology, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Alwin Kamermans
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Amsterdam, The Netherlands
- MS Center Amsterdam, Amsterdam UMC Location Vrije Universiteit, Amsterdam, The Netherlands
| | - Ernesto Rodriguez
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Amsterdam, The Netherlands
- Amsterdam Infection and Immunity Institute, Amsterdam, The Netherlands
| | - Jack van Horssen
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Amsterdam, The Netherlands
- MS Center Amsterdam, Amsterdam UMC Location Vrije Universiteit, Amsterdam, The Netherlands
| | - Zoé L E van Kempen
- Amsterdam Neuroscience, Amsterdam, The Netherlands
- MS Center Amsterdam, Amsterdam UMC Location Vrije Universiteit, Amsterdam, The Netherlands
- Department of Neurology, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Bernard M J Uitdehaag
- Amsterdam Neuroscience, Amsterdam, The Netherlands
- MS Center Amsterdam, Amsterdam UMC Location Vrije Universiteit, Amsterdam, The Netherlands
- Department of Neurology, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Charlotte E Teunissen
- Amsterdam Neuroscience, Amsterdam, The Netherlands
- Department of Clinical Chemistry, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Alzheimer Center Amsterdam, Amsterdam, The Netherlands
| | - Maarten E Witte
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Amsterdam, The Netherlands
- MS Center Amsterdam, Amsterdam UMC Location Vrije Universiteit, Amsterdam, The Netherlands
- Amsterdam Infection and Immunity Institute, Amsterdam, The Netherlands
| | - Joep Killestein
- Amsterdam Neuroscience, Amsterdam, The Netherlands
- MS Center Amsterdam, Amsterdam UMC Location Vrije Universiteit, Amsterdam, The Netherlands
- Department of Neurology, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Helga E de Vries
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Amsterdam, The Netherlands
- MS Center Amsterdam, Amsterdam UMC Location Vrije Universiteit, Amsterdam, The Netherlands
| |
Collapse
|
23
|
Vasileiou ES, Fitzgerald KC. Multiple Sclerosis Pathogenesis and Updates in Targeted Therapeutic Approaches. Curr Allergy Asthma Rep 2023; 23:481-496. [PMID: 37402064 DOI: 10.1007/s11882-023-01102-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/06/2023] [Indexed: 07/05/2023]
Abstract
PURPOSE OF REVIEW In this review, we provide a comprehensive update on current scientific advances and emerging therapeutic approaches in the field of multiple sclerosis. RECENT FINDINGS Multiple sclerosis (MS) is a common disorder characterized by inflammation and degeneration within the central nervous system (CNS). MS is the leading cause of non-traumatic disability in the young adult population. Through ongoing research, an improved understanding of the disease underlying mechanisms and contributing factors has been achieved. As a result, therapeutic advancements and interventions have been developed specifically targeting the inflammatory components that influence disease outcome. Recently, a new type of immunomodulatory treatment, known as Bruton tyrosine kinase (BTK) inhibitors, has surfaced as a promising tool to combat disease outcomes. Additionally, there is a renewed interested in Epstein-Barr virus (EBV) as a major potentiator of MS. Current research efforts are focused on addressing the gaps in our understanding of the pathogenesis of MS, particularly with respect to non-inflammatory drivers. Significant and compelling evidence suggests that the pathogenesis of MS is complex and requires a comprehensive, multilevel intervention strategy. This review aims to provide an overview of MS pathophysiology and highlights the most recent advances in disease-modifying therapies and other therapeutic interventions.
Collapse
Affiliation(s)
- Eleni S Vasileiou
- Department of Neurology, Johns Hopkins University, Baltimore, MD, USA
| | - Kathryn C Fitzgerald
- Department of Neurology, Johns Hopkins University, Baltimore, MD, USA.
- Department of Epidemiology, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
24
|
Pukoli D, Vécsei L. Smouldering Lesion in MS: Microglia, Lymphocytes and Pathobiochemical Mechanisms. Int J Mol Sci 2023; 24:12631. [PMID: 37628811 PMCID: PMC10454160 DOI: 10.3390/ijms241612631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/05/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
Multiple sclerosis (MS) is an immune-mediated, chronic inflammatory, demyelinating, and neurodegenerative disease of the central nervous system (CNS). Immune cell infiltration can lead to permanent activation of macrophages and microglia in the parenchyma, resulting in demyelination and neurodegeneration. Thus, neurodegeneration that begins with acute lymphocytic inflammation may progress to chronic inflammation. This chronic inflammation is thought to underlie the development of so-called smouldering lesions. These lesions evolve from acute inflammatory lesions and are associated with continuous low-grade demyelination and neurodegeneration over many years. Their presence is associated with poor disease prognosis and promotes the transition to progressive MS, which may later manifest clinically as progressive MS when neurodegeneration exceeds the upper limit of functional compensation. In smouldering lesions, in the presence of only moderate inflammatory activity, a toxic environment is clearly identifiable and contributes to the progressive degeneration of neurons, axons, and oligodendrocytes and, thus, to clinical disease progression. In addition to the cells of the immune system, the development of oxidative stress in MS lesions, mitochondrial damage, and hypoxia caused by the resulting energy deficit and iron accumulation are thought to play a role in this process. In addition to classical immune mediators, this chronic toxic environment contains high concentrations of oxidants and iron ions, as well as the excitatory neurotransmitter glutamate. In this review, we will discuss how these pathobiochemical markers and mechanisms, alone or in combination, lead to neuronal, axonal, and glial cell death and ultimately to the process of neuroinflammation and neurodegeneration, and then discuss the concepts and conclusions that emerge from these findings. Understanding the role of these pathobiochemical markers would be important to gain a better insight into the relationship between the clinical classification and the pathomechanism of MS.
Collapse
Affiliation(s)
- Dániel Pukoli
- Department of Neurology, Esztergomi Vaszary Kolos Hospital, 2500 Esztergom, Hungary;
| | - László Vécsei
- Department of Neurology, Faculty of Medicine, University of Szeged, Semmelweis u. 6., H-6725 Szeged, Hungary
- Danube Neuroscience Research Laboratory, ELKH-SZTE Neuroscience Research Group, Eötvös Loránd Research Network, University of Szeged (ELKH-SZTE), Tisza Lajos krt. 113, H-6725 Szeged, Hungary
| |
Collapse
|
25
|
Hecker M, Fitzner B, Boxberger N, Putscher E, Engelmann R, Bergmann W, Müller M, Ludwig-Portugall I, Schwartz M, Meister S, Dudesek A, Winkelmann A, Koczan D, Zettl UK. Transcriptome alterations in peripheral blood B cells of patients with multiple sclerosis receiving immune reconstitution therapy. J Neuroinflammation 2023; 20:181. [PMID: 37533036 PMCID: PMC10394872 DOI: 10.1186/s12974-023-02859-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 07/25/2023] [Indexed: 08/04/2023] Open
Abstract
BACKGROUND Multiple sclerosis (MS) is a chronic, inflammatory and neurodegenerative disease that leads to irreversible damage to the brain and spinal cord. The goal of so-called "immune reconstitution therapies" (IRTs) is to achieve long-term disease remission by eliminating a pathogenic immune repertoire through intense short-term immune cell depletion. B cells are major targets for effective immunotherapy in MS. OBJECTIVES The aim of this study was to analyze the gene expression pattern of B cells before and during IRT (i.e., before B-cell depletion and after B-cell repopulation) to better understand the therapeutic effects and to identify biomarker candidates of the clinical response to therapy. METHODS B cells were obtained from blood samples of patients with relapsing-remitting MS (n = 50), patients with primary progressive MS (n = 13) as well as healthy controls (n = 28). The patients with relapsing MS received either monthly infusions of natalizumab (n = 29) or a pulsed IRT with alemtuzumab (n = 15) or cladribine (n = 6). B-cell subpopulation frequencies were determined by flow cytometry, and transcriptome profiling was performed using Clariom D arrays. Differentially expressed genes (DEGs) between the patient groups and controls were examined with regard to their functions and interactions. We also tested for differences in gene expression between patients with and without relapse following alemtuzumab administration. RESULTS Patients treated with alemtuzumab or cladribine showed on average a > 20% lower proportion of memory B cells as compared to before IRT. This was paralleled by profound transcriptome shifts, with > 6000 significant DEGs after adjustment for multiple comparisons. The top DEGs were found to regulate apoptosis, cell adhesion and RNA processing, and the most highly connected nodes in the network of encoded proteins were ESR2, PHB and RC3H1. Higher mRNA levels of BCL2, IL13RA1 and SLC38A11 were seen in patients with relapse despite IRT, though these differences did not pass the false discovery rate correction. CONCLUSIONS We show that B cells circulating in the blood of patients with MS undergoing IRT present a distinct gene expression signature, and we delineated the associated biological processes and gene interactions. Moreover, we identified genes whose expression may be an indicator of relapse risk, but further studies are needed to verify their potential value as biomarkers.
Collapse
Affiliation(s)
- Michael Hecker
- Division of Neuroimmunology, Department of Neurology, Rostock University Medical Center, Gehlsheimer Str. 20, 18147, Rostock, Germany.
| | - Brit Fitzner
- Division of Neuroimmunology, Department of Neurology, Rostock University Medical Center, Gehlsheimer Str. 20, 18147, Rostock, Germany
| | - Nina Boxberger
- Division of Neuroimmunology, Department of Neurology, Rostock University Medical Center, Gehlsheimer Str. 20, 18147, Rostock, Germany
| | - Elena Putscher
- Division of Neuroimmunology, Department of Neurology, Rostock University Medical Center, Gehlsheimer Str. 20, 18147, Rostock, Germany
| | - Robby Engelmann
- Clinic III (Hematology, Oncology and Palliative Medicine), Special Hematology Laboratory, Rostock University Medical Center, Ernst-Heydemann-Str. 6, 18057, Rostock, Germany
| | - Wendy Bergmann
- Core Facility for Cell Sorting and Cell Analysis, Rostock University Medical Center, Schillingallee 70, 18057, Rostock, Germany
| | - Michael Müller
- Core Facility for Cell Sorting and Cell Analysis, Rostock University Medical Center, Schillingallee 70, 18057, Rostock, Germany
| | | | - Margit Schwartz
- Division of Neuroimmunology, Department of Neurology, Rostock University Medical Center, Gehlsheimer Str. 20, 18147, Rostock, Germany
| | - Stefanie Meister
- Division of Neuroimmunology, Department of Neurology, Rostock University Medical Center, Gehlsheimer Str. 20, 18147, Rostock, Germany
| | - Ales Dudesek
- Division of Neuroimmunology, Department of Neurology, Rostock University Medical Center, Gehlsheimer Str. 20, 18147, Rostock, Germany
| | - Alexander Winkelmann
- Division of Neuroimmunology, Department of Neurology, Rostock University Medical Center, Gehlsheimer Str. 20, 18147, Rostock, Germany
| | - Dirk Koczan
- Institute of Immunology, Rostock University Medical Center, Schillingallee 70, 18057, Rostock, Germany
| | - Uwe Klaus Zettl
- Division of Neuroimmunology, Department of Neurology, Rostock University Medical Center, Gehlsheimer Str. 20, 18147, Rostock, Germany
| |
Collapse
|
26
|
Londoño AC, Mora CA. Continued dysregulation of the B cell lineage promotes multiple sclerosis activity despite disease modifying therapies. F1000Res 2023; 10:1305. [PMID: 37655229 PMCID: PMC10467621 DOI: 10.12688/f1000research.74506.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/27/2023] [Indexed: 09/02/2023] Open
Abstract
A clear understanding of the origin and role of the different subtypes of the B cell lineage involved in the activity or remission of multiple sclerosis (MS) is important for the treatment and follow-up of patients living with this disease. B cells, however, are dynamic and can play an anti-inflammatory or pro-inflammatory role, depending on their milieu. Depletion of B cells has been effective in controlling the progression of MS, but it can have adverse side effects. A better understanding of the role of the B cell subtypes, through the use of surface biomarkers of cellular activity with special attention to the function of memory and other regulatory B cells (Bregs), will be necessary in order to offer specific treatments without inducing undesirable effects.
Collapse
Affiliation(s)
- Ana C. Londoño
- Neurologia y Neuroimagen, Instituto Neurologico de Colombia (INDEC), Medellin, Antioquia, Colombia
| | - Carlos A. Mora
- Spine & Brain Institute, Ascension St. Vincent's Riverside Hospital, Jacksonville, FL, 32204, USA
| |
Collapse
|
27
|
Maroto-García J, Martínez-Escribano A, Delgado-Gil V, Mañez M, Mugueta C, Varo N, García de la Torre Á, Ruiz-Galdón M. Biochemical biomarkers for multiple sclerosis. Clin Chim Acta 2023; 548:117471. [PMID: 37419300 DOI: 10.1016/j.cca.2023.117471] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 07/04/2023] [Accepted: 07/04/2023] [Indexed: 07/09/2023]
Abstract
INTRODUCTION Multiple sclerosis (MS) is the most frequent demyelinating disease of the central nervous system. Although there is currently no definite cure for MS, new therapies have recently been developed based on a continuous search for new biomarkers. DEVELOPMENT MS diagnosis relies on the integration of clinical, imaging and laboratory findings as there is still no singlepathognomonicclinical feature or diagnostic laboratory biomarker. The most commonly laboratory test used is the presence of immunoglobulin G oligoclonal bands (OCB) in cerebrospinal fluid of MS patients. This test is now included in the 2017 McDonald criteria as a biomarker of dissemination in time. Nevertheless, there are other biomarkers currently in use such as kappa free light chain, which has shown higher sensitivity and specificity for MS diagnosis than OCB. In addition, other potential laboratory tests involved in neuronal damage, demyelination and/or inflammation could be used for detecting MS. CONCLUSIONS CSF and serum biomarkers have been reviewed for their use in MS diagnosis and prognosis to stablish an accurate and prompt MS diagnosis, crucial to implement an adequate treatment and to optimize clinical outcomes over time.
Collapse
Affiliation(s)
- Julia Maroto-García
- Biochemistry Department, Clínica Universidad de Navarra, Spain; Department of Biochemistry and Molecular Biology. Faculty of Medicine. University of Malaga, Spain.
| | - Ana Martínez-Escribano
- Department of Biochemistry and Molecular Biology. Faculty of Medicine. University of Malaga, Spain; Laboratory Medicine, Hospital Clínico Universitario Virgen de la Arrixaca, IMIB-ARRIXACA, Murcia, Spain
| | - Virginia Delgado-Gil
- Neurology Department, Hospital Universitario Virgen de la Victoria, Malaga, Spain
| | - Minerva Mañez
- Neurology Department, Hospital Universitario Virgen de la Victoria, Malaga, Spain
| | - Carmen Mugueta
- Biochemistry Department, Clínica Universidad de Navarra, Spain
| | - Nerea Varo
- Biochemistry Department, Clínica Universidad de Navarra, Spain
| | - Ángela García de la Torre
- Clinical Analysis Service, Hospital Universitario Virgen de la Victoria, Malaga, Spain; The Biomedical Research Institute of Malaga (IBIMA), Malaga, Spain
| | - Maximiliano Ruiz-Galdón
- Department of Biochemistry and Molecular Biology. Faculty of Medicine. University of Malaga, Spain; Clinical Analysis Service, Hospital Universitario Virgen de la Victoria, Malaga, Spain; The Biomedical Research Institute of Malaga (IBIMA), Malaga, Spain
| |
Collapse
|
28
|
Centonze D, Amato MP, Brescia Morra V, Cocco E, De Stefano N, Gasperini C, Gallo P, Pozzilli C, Trojano M, Filippi M. Multiple sclerosis patients treated with cladribine tablets: expert opinion on practical management after year 4. Ther Adv Neurol Disord 2023; 16:17562864231183221. [PMID: 37434878 PMCID: PMC10331342 DOI: 10.1177/17562864231183221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 06/04/2023] [Indexed: 07/13/2023] Open
Abstract
Multiple sclerosis (MS) is a chronic, progressive neurological disease involving neuroinflammation, neurodegeneration, and demyelination. Cladribine tablets are approved for immune reconstitution therapy in patients with highly active relapsing-remitting MS based on favorable efficacy and tolerability results from the CLARITY study that have been confirmed in long-term extension studies. The approved 4-year dosing regimen foresees a cumulative dose of 3.5 mg/kg administered in two cycles administered 1 year apart, followed by 2 years of observation. Evidence on managing patients beyond year 4 is scarce; therefore, a group of 10 neurologists has assessed the available evidence and formulated an expert opinion on management of the growing population of patients now completing the approved 4-year regimen. We propose five patient categories based on response to treatment during the first 4-year regimen, and corresponding management pathways that envision close monitoring with clinical visits, magnetic resonance imaging (MRI) and/or biomarkers. At the first sign of clinical or radiological disease activity, patients should receive a highly effective disease-modifying therapy, comprising either a full cladribine regimen as described in regulatory documents (cumulative dose 7.0 mg/kg) or a comparably effective treatment. Re-treatment decisions should be based on the intensity and timing of onset of disease activity, clinical and radiological assessments, as well as patient eligibility for treatment and treatment preference.
Collapse
Affiliation(s)
- Diego Centonze
- Department of Systems Medicine, Tor Vergata University, Via Montpellier, 1, 00133 Rome, Italy
- IRCCS Neuromed, Pozzilli, Italy
| | - Maria Pia Amato
- Department NEUROFARBA, University of Florence, Florence, Italy
- IRCCS Fondazione Don Carlo Gnocchi, Florence, Italy
| | - Vincenzo Brescia Morra
- Multiple Sclerosis Clinical Care and Research Center and Department of Neuroscience (NSRO), Federico II University, Naples, Italy
| | - Eleonora Cocco
- Department of Medical Science and Public Health and Centro Sclerosi Multipla, University of Cagliari, Cagliari, Italy
| | - Nicola De Stefano
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Claudio Gasperini
- Department of Neurosciences, S Camillo Forlanini Hospital Rome, Rome, Italy
| | - Paolo Gallo
- Department of Neuroscience, University of Padova, Padua, Italy
| | - Carlo Pozzilli
- Department of Human Neuroscience, Sapienza University, Rome, Italy
| | | | - Massimo Filippi
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milano, Italy
| |
Collapse
|
29
|
Zettl UK, Rommer PS, Aktas O, Wagner T, Richter J, Oschmann P, Cepek L, Elias-Hamp B, Gehring K, Chan A, Hecker M. Interferon beta-1a sc at 25 years: a mainstay in the treatment of multiple sclerosis over the period of one generation. Expert Rev Clin Immunol 2023; 19:1343-1359. [PMID: 37694381 DOI: 10.1080/1744666x.2023.2248391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/10/2023] [Indexed: 09/12/2023]
Abstract
INTRODUCTION Interferon beta (IFN beta) preparations are an established group of drugs used for immunomodulation in patients with multiple sclerosis (MS). Subcutaneously (sc) applied interferon beta-1a (IFN beta-1a sc) has been in continuous clinical use for 25 years as a disease-modifying treatment. AREAS COVERED Based on data published since 2018, we discuss recent insights from analyses of the pivotal trial PRISMS and its long-term extension as well as from newer randomized studies with IFN beta-1a sc as the reference treatment, the use of IFN beta-1a sc across the patient life span and as a bridging therapy, recent data regarding the mechanisms of action, and potential benefits of IFN beta-1a sc regarding vaccine responses. EXPERT OPINION IFN beta-1a sc paved the way to effective immunomodulatory treatment of MS, enabled meaningful insights into the disease process, and remains a valid therapeutic option in selected vulnerable MS patient groups.
Collapse
Affiliation(s)
- Uwe Klaus Zettl
- Department of Neurology, Rostock University Medical Center, Rostock, Germany
| | - Paulus Stefan Rommer
- Department of Neurology, Rostock University Medical Center, Rostock, Germany
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Orhan Aktas
- Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | | | | | | | | | | | | | - Andrew Chan
- Department of Neurology, Inselspital Bern, University Hospital Bern, Bern, Switzerland
| | - Michael Hecker
- Department of Neurology, Rostock University Medical Center, Rostock, Germany
| |
Collapse
|
30
|
Costa GD, Comi G. A safety review of current monoclonal antibodies used to treat multiple sclerosis. Expert Opin Drug Saf 2023; 22:1011-1024. [PMID: 37314699 DOI: 10.1080/14740338.2023.2224556] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 06/08/2023] [Indexed: 06/15/2023]
Abstract
INTRODUCTION Multiple sclerosis (MS) is an autoimmune disease affecting the central nervous system. Monoclonal antibodies (mAbs) have shown efficacy in reducing MS relapse rates, disease progression, and brain lesion activity. AREAS COVERED This article reviews the literature on the use of mAbs for the treatment of MS, including their mechanisms of action, clinical trial data, safety profiles, and long-term outcomes. The review focuses on the three main categories of mAbs used in MS: alemtuzumab, natalizumab, and anti-CD20 drugs. A literature search was conducted using relevant keywords and guidelines and reports from regulatory agencies were reviewed. The search covered studies published from inception to 31 December 202231 December 2022. The article also discusses the potential risks and benefits of these therapies, including their effects on infection rates, malignancies, and vaccination efficacy. EXPERT OPINION Monoclonal antibodies have revolutionized the treatment of MS, but safety concerns must be considered, particularly with regards to infection rates, malignancy risk, and vaccination efficacy. Clinicians must weigh the potential benefits and risks of mAbs on an individual patient basis, taking into account factors such as age, disease severity, and comorbidities. Ongoing monitoring and surveillance are essential to ensure the long-term safety and effectiveness of monoclonal antibody therapies in MS.
Collapse
Affiliation(s)
| | - Giancarlo Comi
- Vita-Salute San Raffaele University, Milan, Italy
- Multiple Sclerosis Center, Casa di Cura Igea, Milan, Italy
| |
Collapse
|
31
|
Gambles MT, Yang J, Kopeček J. Multi-targeted immunotherapeutics to treat B cell malignancies. J Control Release 2023; 358:232-258. [PMID: 37121515 PMCID: PMC10330463 DOI: 10.1016/j.jconrel.2023.04.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 04/20/2023] [Accepted: 04/27/2023] [Indexed: 05/02/2023]
Abstract
The concept of multi-targeted immunotherapeutic systems has propelled the field of cancer immunotherapy into an exciting new era. Multi-effector molecules can be designed to engage with, and alter, the patient's immune system in a plethora of ways. The outcomes can vary from effector cell recruitment and activation upon recognition of a cancer cell, to a multipronged immune checkpoint blockade strategy disallowing evasion of the cancer cells by immune cells, or to direct cancer cell death upon engaging multiple cell surface receptors simultaneously. Here, we review the field of multi-specific immunotherapeutics implemented to treat B cell malignancies. The mechanistically diverse strategies are outlined and discussed; common B cell receptor antigen targeting strategies are outlined and summarized; and the challenges of the field are presented along with optimistic insights for the future.
Collapse
Affiliation(s)
- M Tommy Gambles
- Center for Controlled Chemical Delivery, University of Utah, Salt Lake City, UT 84112, USA; Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT 84112, USA
| | - Jiyuan Yang
- Center for Controlled Chemical Delivery, University of Utah, Salt Lake City, UT 84112, USA; Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT 84112, USA.
| | - Jindřich Kopeček
- Center for Controlled Chemical Delivery, University of Utah, Salt Lake City, UT 84112, USA; Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT 84112, USA; Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
32
|
Foettinger F, Pilz G, Wipfler P, Harrer A, Kern JM, Trinka E, Moser T. Immunomodulatory Aspects of Therapeutic Plasma Exchange in Neurological Disorders—A Pilot Study. Int J Mol Sci 2023; 24:ijms24076552. [PMID: 37047524 PMCID: PMC10095570 DOI: 10.3390/ijms24076552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/26/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023] Open
Abstract
Therapeutic plasma exchange (TPE) is used for drug-resistant neuroimmunological disorders, but its mechanism of action remains poorly understood. We therefore prospectively explored changes in soluble, humoral, and cellular immune components associated with TPE. We included ten patients with neurological autoimmune disorders that underwent TPE and assessed a panel of clinically relevant pathogen-specific antibodies, total serum immunoglobulin (Ig) levels, interleukin-6 (IL-6, pg/mL), C-reactive protein (CRP, mg/dL), procalcitonin (PCT, µg/L) and major lymphocyte subpopulations (cells/µL). Blood was collected prior to TPE (pre-TPE, baseline), immediately after TPE (post-TPE), as well as five weeks (follow-up1) and 130 days (follow-up2) following TPE. Pathogen-specific antibody levels were reduced by −86% (p < 0.05) post-TPE and recovered to 55% (follow-up1) and 101% (follow-up2). Ig subclasses were reduced by −70–89% (p < 0.0001) post-TPE with subsequent complete (IgM/IgA) and incomplete (IgG) recovery throughout the follow-ups. Mean IL-6 and CRP concentrations increased by a factor of 3–4 at post-TPE (p > 0.05) while PCT remained unaffected. We found no alterations in B- and T-cell populations. No adverse events related to TPE occurred. TPE induced a profound but transient reduction in circulating antibodies, while the investigated soluble immune components were not washed out. Future studies should explore the effects of TPE on particular cytokines and assess inflammatory lymphocyte lineages to illuminate the mode of action of TPE beyond autoantibody removal.
Collapse
|
33
|
Dyer Z, Tscharke D, Sutton I, Massey J. From bedside to bench: how existing therapies inform the relationship between Epstein-Barr virus and multiple sclerosis. Clin Transl Immunology 2023; 12:e1437. [PMID: 36844913 PMCID: PMC9947628 DOI: 10.1002/cti2.1437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/19/2023] [Accepted: 01/20/2023] [Indexed: 02/25/2023] Open
Abstract
Therapy for relapsing-remitting multiple sclerosis (MS) has advanced dramatically despite incomplete understanding of the cause of the condition. Current treatment involves inducing broad effects on immune cell populations with consequent off-target side effects, and no treatment can completely prevent disability progression. Further therapeutic advancement will require a better understanding of the pathobiology of MS. Interest in the role of Epstein-Barr virus (EBV) in multiple sclerosis has intensified based on strong epidemiological evidence of an association between EBV seroprevalence and MS. Hypotheses proposed to explain the biological relationship between EBV and MS include molecular mimicry, EBV immortalised autoreactive B cells and infection of glial cells by EBV. Examining the interaction between EBV and immunotherapies that have demonstrated efficacy in MS offers clues to the validity of these hypotheses. The efficacy of B cell depleting therapies could be consistent with a hypothesis that EBV-infected B cells drive MS; however, loss of T cell control of B cells does not exacerbate MS. A number of MS therapies invoke change in EBV-specific T cell populations, but pathogenic EBV-specific T cells with cross-reactivity to CNS antigen have not been identified. Immune reconstitution therapies induce EBV viraemia and expansion of EBV-specific T cell clones, but this does not correlate with relapse. Much remains unknown regarding the role of EBV in MS pathogenesis. We discuss future translational research that could fill important knowledge gaps.
Collapse
Affiliation(s)
- Zoe Dyer
- Blood Stem Cell and Cancer Research Group, St Vincent's Centre for Applied Medical ResearchDarlinghurstNSWAustralia,St. Vincent's Clinical School, Faculty of MedicineUniversity of New South Wales (UNSW)DarlinghurstNSWAustralia
| | - David Tscharke
- John Curtin School of Medical ResearchAustralian National UniversityCanberraACTAustralia
| | - Ian Sutton
- St. Vincent's Clinical School, Faculty of MedicineUniversity of New South Wales (UNSW)DarlinghurstNSWAustralia,Department of NeurologySt Vincent's ClinicDarlinghurstNSWAustralia
| | - Jennifer Massey
- Blood Stem Cell and Cancer Research Group, St Vincent's Centre for Applied Medical ResearchDarlinghurstNSWAustralia,St. Vincent's Clinical School, Faculty of MedicineUniversity of New South Wales (UNSW)DarlinghurstNSWAustralia,Department of NeurologySt Vincent's ClinicDarlinghurstNSWAustralia,Department of NeurologySt Vincent's HospitalDarlinghurstNSWAustralia
| |
Collapse
|
34
|
Serum Neurofilament Light Chain as Biomarker for Cladribine-Treated Multiple Sclerosis Patients in a Real-World Setting. Int J Mol Sci 2023; 24:ijms24044067. [PMID: 36835478 PMCID: PMC9961994 DOI: 10.3390/ijms24044067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/20/2023] [Accepted: 01/23/2023] [Indexed: 02/22/2023] Open
Abstract
Serum neurofilament light chain (sNfL) is an intensely investigated biomarker in multiple sclerosis (MS). The aim of this study was to explore the impact of cladribine (CLAD) on sNfL and the potential of sNfL as a predictor of long-term treatment response. Data were gathered from a prospective, real-world CLAD cohort. We measured sNfL at baseline (BL-sNfL) and 12 months (12Mo-sNfL) after CLAD start by SIMOA. Clinical and radiological assessments determined fulfilment of "no evidence of disease activity" (NEDA-3). We evaluated BL-sNfL, 12M-sNfL and BL/12M sNfL ratio (sNfL-ratio) as predictors for treatment response. We followed 14 patients for a median of 41.5 months (range 24.0-50.0). NEDA-3 was fulfilled by 71%, 57% and 36% for a period of 12, 24 and 36 months, respectively. We observed clinical relapses in four (29%), MRI activity in six (43%) and EDSS progression in five (36%) patients. CLAD significantly reduced sNfL (BL-sNfL: mean 24.7 pg/mL (SD ± 23.8); 12Mo-sNfL: mean 8.8 pg/mL (SD ± 6.2); p = 0.0008). We found no correlation between BL-sNfL, 12Mo-sNfL and ratio-sNfL and the time until loss of NEDA-3, the occurrence of relapses, MRI activity, EDSS progression, treatment switch or sustained NEDA-3. We corroborate that CLAD decreases neuroaxonal damage in MS patients as determined by sNfL. However, sNfL at baseline and at 12 months failed to predict clinical and radiological treatment response in our real-world cohort. Long-term sNfL assessments in larger studies are essential to explore the predictive utility of sNfL in patients treated with immune reconstitution therapies.
Collapse
|
35
|
Disanto G, Galante A, Cantu' M, Sacco R, Mele F, Eisler JJ, Keller F, Bernasconi E, Sallusto F, Zecca C, Gobbi C. Longitudinal Postvaccine SARS-CoV-2 Immunoglobulin G Titers, Memory B-Cell Responses, and Risk of COVID-19 in Multiple Sclerosis Over 1 Year. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2023; 10:e200043. [PMID: 36396447 PMCID: PMC9747147 DOI: 10.1212/nxi.0000000000200043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 08/29/2022] [Indexed: 11/19/2022]
Abstract
BACKGROUND AND OBJECTIVES Some disease-modifying treatments impair response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines in multiple sclerosis (MS), potentially increasing the risk of breakthrough infections. We aimed to investigate longitudinal SARS-CoV-2 antibody dynamics and memory B cells after 2 and 3 messenger RNA (mRNA) vaccine doses and their association with the risk of COVID-19 in patients with MS on different treatments over 1 year. METHODS Prospective observational cohort study in patients with MS undergoing SARS-CoV-2 mRNA vaccinations. Antispike (anti-S) immunoglobulin G (IgG) titers were measured by chemiluminescence microparticle immunoassay. Frequencies of spike-specific memory B cells were measured on polyclonal stimulation of peripheral blood mononuclear cells and screening of secreted antibodies by ELISA. RESULTS We recruited 120 patients with MS (58 on anti-CD20 antibodies, 9 on sphingosine 1-phosphate (S1P) receptor modulators, 15 on cladribine, 24 on teriflunomide (TFL), and 14 untreated) and collected 392 samples up to 10.8 months after 2 vaccine doses. When compared with untreated patients, anti-CD20 antibodies (β = -2.07, p < 0.001) and S1P modulators (β = -2.02, p < 0.001) were associated with lower anti-S IgG, while TFL and cladribine were not. Anti-S IgG decreased with months since vaccine (β = -0.14, p < 0.001), independently of treatments. Within anti-CD20 patients, anti-S IgG remained higher in those with greater baseline B-cell counts and were not influenced by postvaccine anti-CD20 infusions. Anti-S IgG increase after a 3rd vaccine was mild on anti-CD20 and S1P modulators. Spike-specific memory B-cell responses were weaker on S1P modulators and anti-CD20 than on TFL and influenced by postvaccine anti-CD20 infusions. The frequency of breakthrough infections was comparable between DMTs, but the risk of COVID-19 was predicted by the last measured anti-S IgG titer before infection (OR = 0.56, 95% CI = 0.37-0.86, p = 0.008). DISCUSSION Postvaccine anti-S IgG titers decrease over time regardless of MS treatment and are associated with breakthrough COVID-19. Both humoral and specific memory B-cell responses are diminished on S1P modulators. Within anti-CD20-treated patients, B-cell count at first vaccine determines anti-S IgG production, whereas postvaccine anti-CD20 infusions negatively affect spike-specific memory B cells.
Collapse
Affiliation(s)
- Giulio Disanto
- From the Multiple Sclerosis Center (G.D., R.S., J.J.E., C.Z., C.G.), Neurocenter of Southern Switzerland, Ente Ospedaliero Cantonale, Lugano; Institute for Research in Biomedicine (A.G., F.M., F.S.), Università Della Svizzera Italiana, Bellinzona; Institute of Laboratory Medicine (M.C., F.K.), Ente Ospedaliero Cantonale, Bellinzona; Department of Medicine (E.B.), Ente Ospedaliero Cantonale, Lugano; Faculty of Biomedical Sciences (E.B., F.S., C.Z., C.G.), Università Della Svizzera Italiana, Lugano; and Institute of Microbiology (F.S.), ETH Zurich, Switzerland
| | - Alice Galante
- From the Multiple Sclerosis Center (G.D., R.S., J.J.E., C.Z., C.G.), Neurocenter of Southern Switzerland, Ente Ospedaliero Cantonale, Lugano; Institute for Research in Biomedicine (A.G., F.M., F.S.), Università Della Svizzera Italiana, Bellinzona; Institute of Laboratory Medicine (M.C., F.K.), Ente Ospedaliero Cantonale, Bellinzona; Department of Medicine (E.B.), Ente Ospedaliero Cantonale, Lugano; Faculty of Biomedical Sciences (E.B., F.S., C.Z., C.G.), Università Della Svizzera Italiana, Lugano; and Institute of Microbiology (F.S.), ETH Zurich, Switzerland
| | - Marco Cantu'
- From the Multiple Sclerosis Center (G.D., R.S., J.J.E., C.Z., C.G.), Neurocenter of Southern Switzerland, Ente Ospedaliero Cantonale, Lugano; Institute for Research in Biomedicine (A.G., F.M., F.S.), Università Della Svizzera Italiana, Bellinzona; Institute of Laboratory Medicine (M.C., F.K.), Ente Ospedaliero Cantonale, Bellinzona; Department of Medicine (E.B.), Ente Ospedaliero Cantonale, Lugano; Faculty of Biomedical Sciences (E.B., F.S., C.Z., C.G.), Università Della Svizzera Italiana, Lugano; and Institute of Microbiology (F.S.), ETH Zurich, Switzerland
| | - Rosaria Sacco
- From the Multiple Sclerosis Center (G.D., R.S., J.J.E., C.Z., C.G.), Neurocenter of Southern Switzerland, Ente Ospedaliero Cantonale, Lugano; Institute for Research in Biomedicine (A.G., F.M., F.S.), Università Della Svizzera Italiana, Bellinzona; Institute of Laboratory Medicine (M.C., F.K.), Ente Ospedaliero Cantonale, Bellinzona; Department of Medicine (E.B.), Ente Ospedaliero Cantonale, Lugano; Faculty of Biomedical Sciences (E.B., F.S., C.Z., C.G.), Università Della Svizzera Italiana, Lugano; and Institute of Microbiology (F.S.), ETH Zurich, Switzerland
| | - Federico Mele
- From the Multiple Sclerosis Center (G.D., R.S., J.J.E., C.Z., C.G.), Neurocenter of Southern Switzerland, Ente Ospedaliero Cantonale, Lugano; Institute for Research in Biomedicine (A.G., F.M., F.S.), Università Della Svizzera Italiana, Bellinzona; Institute of Laboratory Medicine (M.C., F.K.), Ente Ospedaliero Cantonale, Bellinzona; Department of Medicine (E.B.), Ente Ospedaliero Cantonale, Lugano; Faculty of Biomedical Sciences (E.B., F.S., C.Z., C.G.), Università Della Svizzera Italiana, Lugano; and Institute of Microbiology (F.S.), ETH Zurich, Switzerland
| | - Jennifer Jessica Eisler
- From the Multiple Sclerosis Center (G.D., R.S., J.J.E., C.Z., C.G.), Neurocenter of Southern Switzerland, Ente Ospedaliero Cantonale, Lugano; Institute for Research in Biomedicine (A.G., F.M., F.S.), Università Della Svizzera Italiana, Bellinzona; Institute of Laboratory Medicine (M.C., F.K.), Ente Ospedaliero Cantonale, Bellinzona; Department of Medicine (E.B.), Ente Ospedaliero Cantonale, Lugano; Faculty of Biomedical Sciences (E.B., F.S., C.Z., C.G.), Università Della Svizzera Italiana, Lugano; and Institute of Microbiology (F.S.), ETH Zurich, Switzerland
| | - Franco Keller
- From the Multiple Sclerosis Center (G.D., R.S., J.J.E., C.Z., C.G.), Neurocenter of Southern Switzerland, Ente Ospedaliero Cantonale, Lugano; Institute for Research in Biomedicine (A.G., F.M., F.S.), Università Della Svizzera Italiana, Bellinzona; Institute of Laboratory Medicine (M.C., F.K.), Ente Ospedaliero Cantonale, Bellinzona; Department of Medicine (E.B.), Ente Ospedaliero Cantonale, Lugano; Faculty of Biomedical Sciences (E.B., F.S., C.Z., C.G.), Università Della Svizzera Italiana, Lugano; and Institute of Microbiology (F.S.), ETH Zurich, Switzerland
| | - Enos Bernasconi
- From the Multiple Sclerosis Center (G.D., R.S., J.J.E., C.Z., C.G.), Neurocenter of Southern Switzerland, Ente Ospedaliero Cantonale, Lugano; Institute for Research in Biomedicine (A.G., F.M., F.S.), Università Della Svizzera Italiana, Bellinzona; Institute of Laboratory Medicine (M.C., F.K.), Ente Ospedaliero Cantonale, Bellinzona; Department of Medicine (E.B.), Ente Ospedaliero Cantonale, Lugano; Faculty of Biomedical Sciences (E.B., F.S., C.Z., C.G.), Università Della Svizzera Italiana, Lugano; and Institute of Microbiology (F.S.), ETH Zurich, Switzerland
| | - Federica Sallusto
- From the Multiple Sclerosis Center (G.D., R.S., J.J.E., C.Z., C.G.), Neurocenter of Southern Switzerland, Ente Ospedaliero Cantonale, Lugano; Institute for Research in Biomedicine (A.G., F.M., F.S.), Università Della Svizzera Italiana, Bellinzona; Institute of Laboratory Medicine (M.C., F.K.), Ente Ospedaliero Cantonale, Bellinzona; Department of Medicine (E.B.), Ente Ospedaliero Cantonale, Lugano; Faculty of Biomedical Sciences (E.B., F.S., C.Z., C.G.), Università Della Svizzera Italiana, Lugano; and Institute of Microbiology (F.S.), ETH Zurich, Switzerland
| | - Chiara Zecca
- From the Multiple Sclerosis Center (G.D., R.S., J.J.E., C.Z., C.G.), Neurocenter of Southern Switzerland, Ente Ospedaliero Cantonale, Lugano; Institute for Research in Biomedicine (A.G., F.M., F.S.), Università Della Svizzera Italiana, Bellinzona; Institute of Laboratory Medicine (M.C., F.K.), Ente Ospedaliero Cantonale, Bellinzona; Department of Medicine (E.B.), Ente Ospedaliero Cantonale, Lugano; Faculty of Biomedical Sciences (E.B., F.S., C.Z., C.G.), Università Della Svizzera Italiana, Lugano; and Institute of Microbiology (F.S.), ETH Zurich, Switzerland
| | - Claudio Gobbi
- From the Multiple Sclerosis Center (G.D., R.S., J.J.E., C.Z., C.G.), Neurocenter of Southern Switzerland, Ente Ospedaliero Cantonale, Lugano; Institute for Research in Biomedicine (A.G., F.M., F.S.), Università Della Svizzera Italiana, Bellinzona; Institute of Laboratory Medicine (M.C., F.K.), Ente Ospedaliero Cantonale, Bellinzona; Department of Medicine (E.B.), Ente Ospedaliero Cantonale, Lugano; Faculty of Biomedical Sciences (E.B., F.S., C.Z., C.G.), Università Della Svizzera Italiana, Lugano; and Institute of Microbiology (F.S.), ETH Zurich, Switzerland.
| |
Collapse
|
36
|
Abstract
Epstein-Barr virus (EBV) is a ubiquitous human lymphotropic herpesvirus with a well-established causal role in several cancers. Recent studies have provided compelling epidemiological and mechanistic evidence for a causal role of EBV in multiple sclerosis (MS). MS is the most prevalent chronic inflammatory and neurodegenerative disease of the central nervous system and is thought to be triggered in genetically predisposed individuals by an infectious agent, with EBV as the lead candidate. How a ubiquitous virus that typically leads to benign latent infections can promote cancer and autoimmune disease in at-risk populations is not fully understood. Here we review the evidence that EBV is a causal agent for MS and how various risk factors may affect EBV infection and immune control. We focus on EBV contributing to MS through reprogramming of latently infected B lymphocytes and the chronic presentation of viral antigens as a potential source of autoreactivity through molecular mimicry. We consider how knowledge of EBV-associated cancers may be instructive for understanding the role of EBV in MS and discuss the potential for therapies that target EBV to treat MS.
Collapse
Affiliation(s)
- Samantha S. Soldan
- grid.251075.40000 0001 1956 6678The Wistar Institute, Philadelphia, PA USA
| | - Paul M. Lieberman
- grid.251075.40000 0001 1956 6678The Wistar Institute, Philadelphia, PA USA
| |
Collapse
|
37
|
Ruschil C, Gabernet G, Kemmerer CL, Jarboui MA, Klose F, Poli S, Ziemann U, Nahnsen S, Kowarik MC. Cladribine treatment specifically affects peripheral blood memory B cell clones and clonal expansion in multiple sclerosis patients. Front Immunol 2023; 14:1133967. [PMID: 36960053 PMCID: PMC10028280 DOI: 10.3389/fimmu.2023.1133967] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 02/13/2023] [Indexed: 03/09/2023] Open
Abstract
Introduction B cells are acknowledged as crucial players in the pathogenesis of multiple sclerosis (MS). Several disease modifying drugs including cladribine have been shown to exert differential effects on peripheral blood B cell subsets. However, little is known regarding functional changes within the peripheral B cell populations. In this study, we obtained a detailed picture of B cell repertoire changes under cladribine treatment on a combined immunoglobulin (Ig) transcriptome and proteome level. Methods We performed next-generation sequencing of Ig heavy chain (IGH) transcripts and Ig mass spectrometry in cladribine-treated patients with relapsing-remitting multiple sclerosis (n = 8) at baseline and after 6 and 12 months of treatment in order to generate Ig transcriptome and Ig peptide libraries. Ig peptides were overlapped with the corresponding IGH transcriptome in order to analyze B cell clones on a combined transcriptome and proteome level. Results The analysis of peripheral blood B cell percentages pointed towards a significant decrease of memory B cells and an increase of naive B cells following cladribine therapy. While basic IGH repertoire parameters (e.g. variable heavy chain family usage and Ig subclasses) were only slightly affected by cladribine treatment, a significantly decreased number of clones and significantly lower diversity in the memory subset was noticeable at 6 months following treatment which was sustained at 12 months. When looking at B-cell clones comprising sequences from the different time-points, clones spanning between all three time-points were significantly more frequent than clones including sequences from two time-points. Furthermore, Ig proteome analyses showed that Ig transcriptome specific peptides could mostly be equally aligned to all three time-points pointing towards a proportion of B-cell clones that are maintained during treatment. Discussion Our findings suggest that peripheral B cell related treatment effects of cladribine tablets might be exerted through a reduction of possibly disease relevant clones in the memory B cell subset without disrupting the overall clonal composition of B cells. Our results -at least partially- might explain the relatively mild side effects regarding infections and the sustained immune response after vaccinations during treatment. However, exact disease driving B cell subsets and their effects remain unknown and should be addressed in future studies.
Collapse
Affiliation(s)
- Christoph Ruschil
- Department of Neurology and Stroke, Center for Neurology, Eberhard Karls University of Tübingen, Tübingen, Germany
- Hertie-Institute for Clinical Brain Research, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Gisela Gabernet
- Quantitative Biology Center (QBiC), Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Constanze Louisa Kemmerer
- Hertie-Institute for Clinical Brain Research, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Mohamed Ali Jarboui
- Core Facility for Medical Bioanalytics (CFMB), Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Franziska Klose
- Core Facility for Medical Bioanalytics (CFMB), Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Sven Poli
- Department of Neurology and Stroke, Center for Neurology, Eberhard Karls University of Tübingen, Tübingen, Germany
- Hertie-Institute for Clinical Brain Research, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Ulf Ziemann
- Department of Neurology and Stroke, Center for Neurology, Eberhard Karls University of Tübingen, Tübingen, Germany
- Hertie-Institute for Clinical Brain Research, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Sven Nahnsen
- Quantitative Biology Center (QBiC), Eberhard Karls University of Tübingen, Tübingen, Germany
- Biomedical Data Science, Department of Computer Science, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Markus Christian Kowarik
- Department of Neurology and Stroke, Center for Neurology, Eberhard Karls University of Tübingen, Tübingen, Germany
- Hertie-Institute for Clinical Brain Research, Eberhard Karls University of Tübingen, Tübingen, Germany
- *Correspondence: Markus Christian Kowarik,
| |
Collapse
|
38
|
Baker D, Forte E, Pryce G, Kang AS, James LK, Giovannoni G, Schmierer K. The impact of sphingosine-1-phosphate receptor modulators on COVID-19 and SARS-CoV-2 vaccination. Mult Scler Relat Disord 2023; 69:104425. [PMID: 36470168 PMCID: PMC9678390 DOI: 10.1016/j.msard.2022.104425] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 11/15/2022] [Accepted: 11/20/2022] [Indexed: 11/23/2022]
Abstract
BACKGROUND Sphingosine-one phosphate receptor (S1PR) modulation inhibits S1PR1-mediated lymphocyte migration, lesion formation and positively-impacts on active multiple sclerosis (MS). These S1PR modulatory drugs have different: European Union use restrictions, pharmacokinetics, metabolic profiles and S1PR receptor affinities that may impact MS-management. Importantly, these confer useful properties in dealing with COVID-19, anti-viral drug responses and generating SARS-CoV-2 vaccine responses. OBJECTIVE To examine the biology and emerging data that potentially underpins immunity to the SARS-CoV-2 virus following natural infection and vaccination and determine how this impinges on the use of current sphingosine-one-phosphate modulators used in the treatment of MS. METHODS A literature review was performed, and data on infection, vaccination responses; S1PR distribution and functional activity was extracted from regulatory and academic information within the public domain. OBSERVATIONS Most COVID-19 related information relates to the use of fingolimod. This indicates that continuous S1PR1, S1PR3, S1PR4 and S1PR5 modulation is not associated with a worse prognosis following SARS-CoV-2 infection. Whilst fingolimod use is associated with blunted seroconversion and reduced peripheral T-cell vaccine responses, it appears that people on siponimod, ozanimod and ponesimod exhibit stronger vaccine-responses, which could be related notably to a limited impact on S1PR4 activity. Whilst it is thought that S1PR3 controls B cell function in addition to actions by S1PR1 and S1PR2, this may be species-related effect in rodents that is not yet substantiated in humans, as seen with bradycardia issues. Blunted antibody responses can be related to actions on B and T-cell subsets, germinal centre function and innate-immune biology. Although S1P1R-related functions are seeming central to control of MS and the generation of a fully functional vaccination response; the relative lack of influence on S1PR4-mediated actions on dendritic cells may increase the rate of vaccine-induced seroconversion with the newer generation of S1PR modulators and improve the risk-benefit balance IMPLICATIONS: Although fingolimod is a useful asset in controlling MS, recently-approved S1PR modulators may have beneficial biology related to pharmacokinetics, metabolism and more-restricted targeting that make it easier to generate infection-control and effective anti-viral responses to SARS-COV-2 and other pathogens. Further studies are warranted.
Collapse
Affiliation(s)
- David Baker
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom.
| | - Eugenia Forte
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom
| | - Gareth Pryce
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom
| | - Angray S Kang
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom; Centre for Oral Immunobiology and Regenerative Medicine, Dental Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Louisa K James
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom
| | - Gavin Giovannoni
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom; Clinical Board Medicine (Neuroscience), The Royal London Hospital, Barts Health NHS Trust, London, United Kingdom
| | - Klaus Schmierer
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom; Clinical Board Medicine (Neuroscience), The Royal London Hospital, Barts Health NHS Trust, London, United Kingdom
| |
Collapse
|
39
|
Giovannoni G, Hawkes CH, Lechner-Scott J, Levy M, Yeh EA. What are T-cells telling us about how EBV causes MS? Mult Scler Relat Disord 2022; 68:104434. [PMID: 36544308 DOI: 10.1016/j.msard.2022.104434] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Gavin Giovannoni
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK.
| | - Christopher H Hawkes
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Jeannette Lechner-Scott
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Michael Levy
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - E Ann Yeh
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
40
|
Paolicelli D, Ruggieri M, Manni A, Gargano CD, Carleo G, Palazzo C, Iaffaldano A, Bollo L, Guerra T, Saracino A, Frigeri A, Iaffaldano P, Trojano M. Real-Life Experience of the Effects of Cladribine Tablets on Lymphocyte Subsets and Serum Neurofilament Light Chain Levels in Relapsing Multiple Sclerosis Patients. Brain Sci 2022; 12:brainsci12121595. [PMID: 36552055 PMCID: PMC9776379 DOI: 10.3390/brainsci12121595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/14/2022] [Accepted: 11/21/2022] [Indexed: 11/24/2022] Open
Abstract
Although cladribine induces sustained reductions in peripheral T and B lymphocytes, little is known about its effect on axonal damage reduction in multiple sclerosis (MS), which could be demonstrated by assessing the serum neurofilament light chain (sNfL) levels. We investigated the reduction/reconstitution of different lymphocyte subsets (LS) by verifying the correlation with no evidence of disease activity (NEDA) and the variation in sNfL levels during cladribine treatment. We analysed 33 highly active relapsing MS patients and followed them up for 12 ± 3.3 months; blood samples were collected at treatment start (W0) and after 8, 24 and 48 weeks. Seventeen patients (60.7%) showed NEDA during the first treatment. At week 8, we observed a significant decrease in B memory cells, B regulatory 1 CD19+/CD38+ and B regulatory 2 CD19+/CD25+, a significant increase in T regulatory CD4+/CD25+, a slight increase in T cytotoxic CD3+/CD8+ and a non-significant decrease in T helper CD3+/CD4+. Starting from week 24, the B subsets recovered; however, at week 48, CD19+/CD38+ and CD19+/CD25+ reached values near the baseline, while the Bmem were significantly lower. The T cell subsets remained unchanged except for CD4+/CD25+, which increased compared to W0. The LS changes were not predictive of NEDA achievement. The sNfL levels were significantly lower at week 24 (p = 0.046) vs. baseline. These results could demonstrate how cladribine, by inflammatory activity depletion, can also reduce axonal damage, according to the sNfL levels.
Collapse
Affiliation(s)
- Damiano Paolicelli
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari “Aldo Moro”, 70124 Bari, Italy
- Correspondence: ; Tel.: +39-080-5593604
| | - Maddalena Ruggieri
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Alessia Manni
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Concetta D. Gargano
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Graziana Carleo
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Claudia Palazzo
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Antonio Iaffaldano
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Luca Bollo
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Tommaso Guerra
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Annalisa Saracino
- Department of Biomedical Sciences and Human Oncology, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Antonio Frigeri
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Pietro Iaffaldano
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Maria Trojano
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari “Aldo Moro”, 70124 Bari, Italy
| |
Collapse
|
41
|
Wiendl H, Schmierer K, Hodgkinson S, Derfuss T, Chan A, Sellebjerg F, Achiron A, Montalban X, Prat A, De Stefano N, Barkhof F, Leocani L, Vermersch P, Chudecka A, Mwape C, Holmberg KH, Boschert U, Roy S. Specific Patterns of Immune Cell Dynamics May Explain the Early Onset and Prolonged Efficacy of Cladribine Tablets: A MAGNIFY-MS Substudy. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2022; 10:10/1/e200048. [PMID: 36411081 PMCID: PMC9679889 DOI: 10.1212/nxi.0000000000200048] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 09/06/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND AND OBJECTIVES Cladribine tablets cause a reduction in lymphocytes with a predominant effect on B-cell and T-cell counts. The MAGNIFY-MS substudy reports the dynamic changes on multiple peripheral blood mononuclear cell (PBMC) subtypes and immunoglobulin (Ig) levels over 12 months after the first course of cladribine tablets in patients with highly active relapsing multiple sclerosis (MS). METHODS Immunophenotyping was performed at baseline (predose) and at the end of months 1, 2, 3, 6, and 12 after initiating treatment with cladribine tablets. Assessments included lymphocyte subtype counts of CD19+ B cells, CD4+ and CD8+ T cells, CD16+ natural killer cells, plasmablasts, and Igs. Immune cell subtypes were analyzed by flow cytometry, and serum IgG and IgM were analyzed by nephelometric assay. Absolute cell counts and percentage change from baseline were assessed. RESULTS The full analysis set included 57 patients. Rapid reductions in median CD19+, CD20+, memory, activated, and naive B-cell counts were detected, reaching nadir by month 2. Thereafter, total CD19+, CD20+, and naive B-cell counts subsequently reconstituted, but memory B cells remained reduced by 93%-87% for the remainder of the study. The decrease in plasmablasts was slower, reaching nadir at month 3. Decrease in T-cell subtypes was also slower and more moderate compared with B-cell subtypes, reaching nadir between months 3 and 6. IgG and IgM levels remained within the normal range over the 12-month study period. DISCUSSION Cladribine tablets induce a specific pattern of early and sustained PBMC subtype dynamics in the absence of relevant Ig changes: While total B cells were reduced dramatically, T cells were affected significantly less. Naive B cells recovered toward baseline, naive CD4 and CD8 T cells did not, and memory B cells remained reduced. The results help to explain the unique immune depletion and repopulation architecture regarding onset of action and durability of effects of cladribine tablets while largely maintaining immune competence. TRIAL REGISTRATION INFORMATION ClinicalTrials.gov Identifier: NCT03364036. Date registered: December 06, 2017.
Collapse
Affiliation(s)
- Heinz Wiendl
- From the Department of Neurology with Institute of Translational Neurology (H.W.), University of Münster, Germany and Brain and Mind Center, University of Sydney, Australia; The Blizard Institute (K.S.), Centre for Neuroscience, Surgery & Trauma, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, UK; Clinical Board Medicine (Neuroscience) (K.S.), The Royal London Hospital, Barts Health NHS Trust, UK; Ingham Institute for Applied Medical Research (S.H.), University of New South Wales Medicine, Sydney, Australia; Department of Neurology (T.D.), University Hospital Basel, Switzerland; Department of Neurology (Andrew Chan), Inselspital, Bern University Hospital, University of Bern, Switzerland; Danish MS Center (F.S.), Department of Neurology, Copenhagen University Hospital-Rigshospitalet, Glostrup, Denmark; Department of Clinical Medicine (F.S.), University of Copenhagen, Denmark; Multiple Sclerosis Center (A.A.), Sheba Academic Medical Center, Ramat Gan, Israel; Sackler School of Medicine (A.A.), Tel-Aviv University, Israel; Department of Neurology-Neuroimmunology (X.M.), Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Hospital Universitari Vall d'Hebron, Universitat Autonoma de Barcelona, Spain; Department of Neurosciences and CRCHUM (A.P.), Université de Montréal, QC, Canada; Department of Neurological and Behavioural Sciences (N.D.S.), University of Siena, Italy; Department of Radiology (F.B.), VU University Medical Center, Amsterdam, The Netherlands; UCL Institute of Neurology (F.B.), London, UK; Experimental Neurophysiology Unit (L.L.), Vita-Salute San Raffaele University, Milan, Italy; Univ. Lille (P.V.), Inserm U1172 LilNCog, CHU Lille, FHU Precise, France; Cytel Inc (Anita Chudecka), Geneva, Switzerland; InScience Communications (C.M.), Springer Healthcare Ltd, Chester, UK; EMD Serono (K.H.H.), Billerica, MA; and Ares Trading SA (U.B., S.R.), Eysins, Switzerland, an affiliate of Merck KGaA, Darmstadt, Germany.
| | - Klaus Schmierer
- From the Department of Neurology with Institute of Translational Neurology (H.W.), University of Münster, Germany and Brain and Mind Center, University of Sydney, Australia; The Blizard Institute (K.S.), Centre for Neuroscience, Surgery & Trauma, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, UK; Clinical Board Medicine (Neuroscience) (K.S.), The Royal London Hospital, Barts Health NHS Trust, UK; Ingham Institute for Applied Medical Research (S.H.), University of New South Wales Medicine, Sydney, Australia; Department of Neurology (T.D.), University Hospital Basel, Switzerland; Department of Neurology (Andrew Chan), Inselspital, Bern University Hospital, University of Bern, Switzerland; Danish MS Center (F.S.), Department of Neurology, Copenhagen University Hospital-Rigshospitalet, Glostrup, Denmark; Department of Clinical Medicine (F.S.), University of Copenhagen, Denmark; Multiple Sclerosis Center (A.A.), Sheba Academic Medical Center, Ramat Gan, Israel; Sackler School of Medicine (A.A.), Tel-Aviv University, Israel; Department of Neurology-Neuroimmunology (X.M.), Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Hospital Universitari Vall d'Hebron, Universitat Autonoma de Barcelona, Spain; Department of Neurosciences and CRCHUM (A.P.), Université de Montréal, QC, Canada; Department of Neurological and Behavioural Sciences (N.D.S.), University of Siena, Italy; Department of Radiology (F.B.), VU University Medical Center, Amsterdam, The Netherlands; UCL Institute of Neurology (F.B.), London, UK; Experimental Neurophysiology Unit (L.L.), Vita-Salute San Raffaele University, Milan, Italy; Univ. Lille (P.V.), Inserm U1172 LilNCog, CHU Lille, FHU Precise, France; Cytel Inc (Anita Chudecka), Geneva, Switzerland; InScience Communications (C.M.), Springer Healthcare Ltd, Chester, UK; EMD Serono (K.H.H.), Billerica, MA; and Ares Trading SA (U.B., S.R.), Eysins, Switzerland, an affiliate of Merck KGaA, Darmstadt, Germany
| | - Suzanne Hodgkinson
- From the Department of Neurology with Institute of Translational Neurology (H.W.), University of Münster, Germany and Brain and Mind Center, University of Sydney, Australia; The Blizard Institute (K.S.), Centre for Neuroscience, Surgery & Trauma, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, UK; Clinical Board Medicine (Neuroscience) (K.S.), The Royal London Hospital, Barts Health NHS Trust, UK; Ingham Institute for Applied Medical Research (S.H.), University of New South Wales Medicine, Sydney, Australia; Department of Neurology (T.D.), University Hospital Basel, Switzerland; Department of Neurology (Andrew Chan), Inselspital, Bern University Hospital, University of Bern, Switzerland; Danish MS Center (F.S.), Department of Neurology, Copenhagen University Hospital-Rigshospitalet, Glostrup, Denmark; Department of Clinical Medicine (F.S.), University of Copenhagen, Denmark; Multiple Sclerosis Center (A.A.), Sheba Academic Medical Center, Ramat Gan, Israel; Sackler School of Medicine (A.A.), Tel-Aviv University, Israel; Department of Neurology-Neuroimmunology (X.M.), Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Hospital Universitari Vall d'Hebron, Universitat Autonoma de Barcelona, Spain; Department of Neurosciences and CRCHUM (A.P.), Université de Montréal, QC, Canada; Department of Neurological and Behavioural Sciences (N.D.S.), University of Siena, Italy; Department of Radiology (F.B.), VU University Medical Center, Amsterdam, The Netherlands; UCL Institute of Neurology (F.B.), London, UK; Experimental Neurophysiology Unit (L.L.), Vita-Salute San Raffaele University, Milan, Italy; Univ. Lille (P.V.), Inserm U1172 LilNCog, CHU Lille, FHU Precise, France; Cytel Inc (Anita Chudecka), Geneva, Switzerland; InScience Communications (C.M.), Springer Healthcare Ltd, Chester, UK; EMD Serono (K.H.H.), Billerica, MA; and Ares Trading SA (U.B., S.R.), Eysins, Switzerland, an affiliate of Merck KGaA, Darmstadt, Germany
| | - Tobias Derfuss
- From the Department of Neurology with Institute of Translational Neurology (H.W.), University of Münster, Germany and Brain and Mind Center, University of Sydney, Australia; The Blizard Institute (K.S.), Centre for Neuroscience, Surgery & Trauma, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, UK; Clinical Board Medicine (Neuroscience) (K.S.), The Royal London Hospital, Barts Health NHS Trust, UK; Ingham Institute for Applied Medical Research (S.H.), University of New South Wales Medicine, Sydney, Australia; Department of Neurology (T.D.), University Hospital Basel, Switzerland; Department of Neurology (Andrew Chan), Inselspital, Bern University Hospital, University of Bern, Switzerland; Danish MS Center (F.S.), Department of Neurology, Copenhagen University Hospital-Rigshospitalet, Glostrup, Denmark; Department of Clinical Medicine (F.S.), University of Copenhagen, Denmark; Multiple Sclerosis Center (A.A.), Sheba Academic Medical Center, Ramat Gan, Israel; Sackler School of Medicine (A.A.), Tel-Aviv University, Israel; Department of Neurology-Neuroimmunology (X.M.), Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Hospital Universitari Vall d'Hebron, Universitat Autonoma de Barcelona, Spain; Department of Neurosciences and CRCHUM (A.P.), Université de Montréal, QC, Canada; Department of Neurological and Behavioural Sciences (N.D.S.), University of Siena, Italy; Department of Radiology (F.B.), VU University Medical Center, Amsterdam, The Netherlands; UCL Institute of Neurology (F.B.), London, UK; Experimental Neurophysiology Unit (L.L.), Vita-Salute San Raffaele University, Milan, Italy; Univ. Lille (P.V.), Inserm U1172 LilNCog, CHU Lille, FHU Precise, France; Cytel Inc (Anita Chudecka), Geneva, Switzerland; InScience Communications (C.M.), Springer Healthcare Ltd, Chester, UK; EMD Serono (K.H.H.), Billerica, MA; and Ares Trading SA (U.B., S.R.), Eysins, Switzerland, an affiliate of Merck KGaA, Darmstadt, Germany
| | - Andrew Chan
- From the Department of Neurology with Institute of Translational Neurology (H.W.), University of Münster, Germany and Brain and Mind Center, University of Sydney, Australia; The Blizard Institute (K.S.), Centre for Neuroscience, Surgery & Trauma, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, UK; Clinical Board Medicine (Neuroscience) (K.S.), The Royal London Hospital, Barts Health NHS Trust, UK; Ingham Institute for Applied Medical Research (S.H.), University of New South Wales Medicine, Sydney, Australia; Department of Neurology (T.D.), University Hospital Basel, Switzerland; Department of Neurology (Andrew Chan), Inselspital, Bern University Hospital, University of Bern, Switzerland; Danish MS Center (F.S.), Department of Neurology, Copenhagen University Hospital-Rigshospitalet, Glostrup, Denmark; Department of Clinical Medicine (F.S.), University of Copenhagen, Denmark; Multiple Sclerosis Center (A.A.), Sheba Academic Medical Center, Ramat Gan, Israel; Sackler School of Medicine (A.A.), Tel-Aviv University, Israel; Department of Neurology-Neuroimmunology (X.M.), Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Hospital Universitari Vall d'Hebron, Universitat Autonoma de Barcelona, Spain; Department of Neurosciences and CRCHUM (A.P.), Université de Montréal, QC, Canada; Department of Neurological and Behavioural Sciences (N.D.S.), University of Siena, Italy; Department of Radiology (F.B.), VU University Medical Center, Amsterdam, The Netherlands; UCL Institute of Neurology (F.B.), London, UK; Experimental Neurophysiology Unit (L.L.), Vita-Salute San Raffaele University, Milan, Italy; Univ. Lille (P.V.), Inserm U1172 LilNCog, CHU Lille, FHU Precise, France; Cytel Inc (Anita Chudecka), Geneva, Switzerland; InScience Communications (C.M.), Springer Healthcare Ltd, Chester, UK; EMD Serono (K.H.H.), Billerica, MA; and Ares Trading SA (U.B., S.R.), Eysins, Switzerland, an affiliate of Merck KGaA, Darmstadt, Germany
| | - Finn Sellebjerg
- From the Department of Neurology with Institute of Translational Neurology (H.W.), University of Münster, Germany and Brain and Mind Center, University of Sydney, Australia; The Blizard Institute (K.S.), Centre for Neuroscience, Surgery & Trauma, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, UK; Clinical Board Medicine (Neuroscience) (K.S.), The Royal London Hospital, Barts Health NHS Trust, UK; Ingham Institute for Applied Medical Research (S.H.), University of New South Wales Medicine, Sydney, Australia; Department of Neurology (T.D.), University Hospital Basel, Switzerland; Department of Neurology (Andrew Chan), Inselspital, Bern University Hospital, University of Bern, Switzerland; Danish MS Center (F.S.), Department of Neurology, Copenhagen University Hospital-Rigshospitalet, Glostrup, Denmark; Department of Clinical Medicine (F.S.), University of Copenhagen, Denmark; Multiple Sclerosis Center (A.A.), Sheba Academic Medical Center, Ramat Gan, Israel; Sackler School of Medicine (A.A.), Tel-Aviv University, Israel; Department of Neurology-Neuroimmunology (X.M.), Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Hospital Universitari Vall d'Hebron, Universitat Autonoma de Barcelona, Spain; Department of Neurosciences and CRCHUM (A.P.), Université de Montréal, QC, Canada; Department of Neurological and Behavioural Sciences (N.D.S.), University of Siena, Italy; Department of Radiology (F.B.), VU University Medical Center, Amsterdam, The Netherlands; UCL Institute of Neurology (F.B.), London, UK; Experimental Neurophysiology Unit (L.L.), Vita-Salute San Raffaele University, Milan, Italy; Univ. Lille (P.V.), Inserm U1172 LilNCog, CHU Lille, FHU Precise, France; Cytel Inc (Anita Chudecka), Geneva, Switzerland; InScience Communications (C.M.), Springer Healthcare Ltd, Chester, UK; EMD Serono (K.H.H.), Billerica, MA; and Ares Trading SA (U.B., S.R.), Eysins, Switzerland, an affiliate of Merck KGaA, Darmstadt, Germany
| | - Anat Achiron
- From the Department of Neurology with Institute of Translational Neurology (H.W.), University of Münster, Germany and Brain and Mind Center, University of Sydney, Australia; The Blizard Institute (K.S.), Centre for Neuroscience, Surgery & Trauma, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, UK; Clinical Board Medicine (Neuroscience) (K.S.), The Royal London Hospital, Barts Health NHS Trust, UK; Ingham Institute for Applied Medical Research (S.H.), University of New South Wales Medicine, Sydney, Australia; Department of Neurology (T.D.), University Hospital Basel, Switzerland; Department of Neurology (Andrew Chan), Inselspital, Bern University Hospital, University of Bern, Switzerland; Danish MS Center (F.S.), Department of Neurology, Copenhagen University Hospital-Rigshospitalet, Glostrup, Denmark; Department of Clinical Medicine (F.S.), University of Copenhagen, Denmark; Multiple Sclerosis Center (A.A.), Sheba Academic Medical Center, Ramat Gan, Israel; Sackler School of Medicine (A.A.), Tel-Aviv University, Israel; Department of Neurology-Neuroimmunology (X.M.), Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Hospital Universitari Vall d'Hebron, Universitat Autonoma de Barcelona, Spain; Department of Neurosciences and CRCHUM (A.P.), Université de Montréal, QC, Canada; Department of Neurological and Behavioural Sciences (N.D.S.), University of Siena, Italy; Department of Radiology (F.B.), VU University Medical Center, Amsterdam, The Netherlands; UCL Institute of Neurology (F.B.), London, UK; Experimental Neurophysiology Unit (L.L.), Vita-Salute San Raffaele University, Milan, Italy; Univ. Lille (P.V.), Inserm U1172 LilNCog, CHU Lille, FHU Precise, France; Cytel Inc (Anita Chudecka), Geneva, Switzerland; InScience Communications (C.M.), Springer Healthcare Ltd, Chester, UK; EMD Serono (K.H.H.), Billerica, MA; and Ares Trading SA (U.B., S.R.), Eysins, Switzerland, an affiliate of Merck KGaA, Darmstadt, Germany
| | - Xavier Montalban
- From the Department of Neurology with Institute of Translational Neurology (H.W.), University of Münster, Germany and Brain and Mind Center, University of Sydney, Australia; The Blizard Institute (K.S.), Centre for Neuroscience, Surgery & Trauma, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, UK; Clinical Board Medicine (Neuroscience) (K.S.), The Royal London Hospital, Barts Health NHS Trust, UK; Ingham Institute for Applied Medical Research (S.H.), University of New South Wales Medicine, Sydney, Australia; Department of Neurology (T.D.), University Hospital Basel, Switzerland; Department of Neurology (Andrew Chan), Inselspital, Bern University Hospital, University of Bern, Switzerland; Danish MS Center (F.S.), Department of Neurology, Copenhagen University Hospital-Rigshospitalet, Glostrup, Denmark; Department of Clinical Medicine (F.S.), University of Copenhagen, Denmark; Multiple Sclerosis Center (A.A.), Sheba Academic Medical Center, Ramat Gan, Israel; Sackler School of Medicine (A.A.), Tel-Aviv University, Israel; Department of Neurology-Neuroimmunology (X.M.), Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Hospital Universitari Vall d'Hebron, Universitat Autonoma de Barcelona, Spain; Department of Neurosciences and CRCHUM (A.P.), Université de Montréal, QC, Canada; Department of Neurological and Behavioural Sciences (N.D.S.), University of Siena, Italy; Department of Radiology (F.B.), VU University Medical Center, Amsterdam, The Netherlands; UCL Institute of Neurology (F.B.), London, UK; Experimental Neurophysiology Unit (L.L.), Vita-Salute San Raffaele University, Milan, Italy; Univ. Lille (P.V.), Inserm U1172 LilNCog, CHU Lille, FHU Precise, France; Cytel Inc (Anita Chudecka), Geneva, Switzerland; InScience Communications (C.M.), Springer Healthcare Ltd, Chester, UK; EMD Serono (K.H.H.), Billerica, MA; and Ares Trading SA (U.B., S.R.), Eysins, Switzerland, an affiliate of Merck KGaA, Darmstadt, Germany
| | - Alexandre Prat
- From the Department of Neurology with Institute of Translational Neurology (H.W.), University of Münster, Germany and Brain and Mind Center, University of Sydney, Australia; The Blizard Institute (K.S.), Centre for Neuroscience, Surgery & Trauma, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, UK; Clinical Board Medicine (Neuroscience) (K.S.), The Royal London Hospital, Barts Health NHS Trust, UK; Ingham Institute for Applied Medical Research (S.H.), University of New South Wales Medicine, Sydney, Australia; Department of Neurology (T.D.), University Hospital Basel, Switzerland; Department of Neurology (Andrew Chan), Inselspital, Bern University Hospital, University of Bern, Switzerland; Danish MS Center (F.S.), Department of Neurology, Copenhagen University Hospital-Rigshospitalet, Glostrup, Denmark; Department of Clinical Medicine (F.S.), University of Copenhagen, Denmark; Multiple Sclerosis Center (A.A.), Sheba Academic Medical Center, Ramat Gan, Israel; Sackler School of Medicine (A.A.), Tel-Aviv University, Israel; Department of Neurology-Neuroimmunology (X.M.), Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Hospital Universitari Vall d'Hebron, Universitat Autonoma de Barcelona, Spain; Department of Neurosciences and CRCHUM (A.P.), Université de Montréal, QC, Canada; Department of Neurological and Behavioural Sciences (N.D.S.), University of Siena, Italy; Department of Radiology (F.B.), VU University Medical Center, Amsterdam, The Netherlands; UCL Institute of Neurology (F.B.), London, UK; Experimental Neurophysiology Unit (L.L.), Vita-Salute San Raffaele University, Milan, Italy; Univ. Lille (P.V.), Inserm U1172 LilNCog, CHU Lille, FHU Precise, France; Cytel Inc (Anita Chudecka), Geneva, Switzerland; InScience Communications (C.M.), Springer Healthcare Ltd, Chester, UK; EMD Serono (K.H.H.), Billerica, MA; and Ares Trading SA (U.B., S.R.), Eysins, Switzerland, an affiliate of Merck KGaA, Darmstadt, Germany
| | - Nicola De Stefano
- From the Department of Neurology with Institute of Translational Neurology (H.W.), University of Münster, Germany and Brain and Mind Center, University of Sydney, Australia; The Blizard Institute (K.S.), Centre for Neuroscience, Surgery & Trauma, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, UK; Clinical Board Medicine (Neuroscience) (K.S.), The Royal London Hospital, Barts Health NHS Trust, UK; Ingham Institute for Applied Medical Research (S.H.), University of New South Wales Medicine, Sydney, Australia; Department of Neurology (T.D.), University Hospital Basel, Switzerland; Department of Neurology (Andrew Chan), Inselspital, Bern University Hospital, University of Bern, Switzerland; Danish MS Center (F.S.), Department of Neurology, Copenhagen University Hospital-Rigshospitalet, Glostrup, Denmark; Department of Clinical Medicine (F.S.), University of Copenhagen, Denmark; Multiple Sclerosis Center (A.A.), Sheba Academic Medical Center, Ramat Gan, Israel; Sackler School of Medicine (A.A.), Tel-Aviv University, Israel; Department of Neurology-Neuroimmunology (X.M.), Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Hospital Universitari Vall d'Hebron, Universitat Autonoma de Barcelona, Spain; Department of Neurosciences and CRCHUM (A.P.), Université de Montréal, QC, Canada; Department of Neurological and Behavioural Sciences (N.D.S.), University of Siena, Italy; Department of Radiology (F.B.), VU University Medical Center, Amsterdam, The Netherlands; UCL Institute of Neurology (F.B.), London, UK; Experimental Neurophysiology Unit (L.L.), Vita-Salute San Raffaele University, Milan, Italy; Univ. Lille (P.V.), Inserm U1172 LilNCog, CHU Lille, FHU Precise, France; Cytel Inc (Anita Chudecka), Geneva, Switzerland; InScience Communications (C.M.), Springer Healthcare Ltd, Chester, UK; EMD Serono (K.H.H.), Billerica, MA; and Ares Trading SA (U.B., S.R.), Eysins, Switzerland, an affiliate of Merck KGaA, Darmstadt, Germany
| | - Frederik Barkhof
- From the Department of Neurology with Institute of Translational Neurology (H.W.), University of Münster, Germany and Brain and Mind Center, University of Sydney, Australia; The Blizard Institute (K.S.), Centre for Neuroscience, Surgery & Trauma, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, UK; Clinical Board Medicine (Neuroscience) (K.S.), The Royal London Hospital, Barts Health NHS Trust, UK; Ingham Institute for Applied Medical Research (S.H.), University of New South Wales Medicine, Sydney, Australia; Department of Neurology (T.D.), University Hospital Basel, Switzerland; Department of Neurology (Andrew Chan), Inselspital, Bern University Hospital, University of Bern, Switzerland; Danish MS Center (F.S.), Department of Neurology, Copenhagen University Hospital-Rigshospitalet, Glostrup, Denmark; Department of Clinical Medicine (F.S.), University of Copenhagen, Denmark; Multiple Sclerosis Center (A.A.), Sheba Academic Medical Center, Ramat Gan, Israel; Sackler School of Medicine (A.A.), Tel-Aviv University, Israel; Department of Neurology-Neuroimmunology (X.M.), Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Hospital Universitari Vall d'Hebron, Universitat Autonoma de Barcelona, Spain; Department of Neurosciences and CRCHUM (A.P.), Université de Montréal, QC, Canada; Department of Neurological and Behavioural Sciences (N.D.S.), University of Siena, Italy; Department of Radiology (F.B.), VU University Medical Center, Amsterdam, The Netherlands; UCL Institute of Neurology (F.B.), London, UK; Experimental Neurophysiology Unit (L.L.), Vita-Salute San Raffaele University, Milan, Italy; Univ. Lille (P.V.), Inserm U1172 LilNCog, CHU Lille, FHU Precise, France; Cytel Inc (Anita Chudecka), Geneva, Switzerland; InScience Communications (C.M.), Springer Healthcare Ltd, Chester, UK; EMD Serono (K.H.H.), Billerica, MA; and Ares Trading SA (U.B., S.R.), Eysins, Switzerland, an affiliate of Merck KGaA, Darmstadt, Germany
| | - Letizia Leocani
- From the Department of Neurology with Institute of Translational Neurology (H.W.), University of Münster, Germany and Brain and Mind Center, University of Sydney, Australia; The Blizard Institute (K.S.), Centre for Neuroscience, Surgery & Trauma, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, UK; Clinical Board Medicine (Neuroscience) (K.S.), The Royal London Hospital, Barts Health NHS Trust, UK; Ingham Institute for Applied Medical Research (S.H.), University of New South Wales Medicine, Sydney, Australia; Department of Neurology (T.D.), University Hospital Basel, Switzerland; Department of Neurology (Andrew Chan), Inselspital, Bern University Hospital, University of Bern, Switzerland; Danish MS Center (F.S.), Department of Neurology, Copenhagen University Hospital-Rigshospitalet, Glostrup, Denmark; Department of Clinical Medicine (F.S.), University of Copenhagen, Denmark; Multiple Sclerosis Center (A.A.), Sheba Academic Medical Center, Ramat Gan, Israel; Sackler School of Medicine (A.A.), Tel-Aviv University, Israel; Department of Neurology-Neuroimmunology (X.M.), Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Hospital Universitari Vall d'Hebron, Universitat Autonoma de Barcelona, Spain; Department of Neurosciences and CRCHUM (A.P.), Université de Montréal, QC, Canada; Department of Neurological and Behavioural Sciences (N.D.S.), University of Siena, Italy; Department of Radiology (F.B.), VU University Medical Center, Amsterdam, The Netherlands; UCL Institute of Neurology (F.B.), London, UK; Experimental Neurophysiology Unit (L.L.), Vita-Salute San Raffaele University, Milan, Italy; Univ. Lille (P.V.), Inserm U1172 LilNCog, CHU Lille, FHU Precise, France; Cytel Inc (Anita Chudecka), Geneva, Switzerland; InScience Communications (C.M.), Springer Healthcare Ltd, Chester, UK; EMD Serono (K.H.H.), Billerica, MA; and Ares Trading SA (U.B., S.R.), Eysins, Switzerland, an affiliate of Merck KGaA, Darmstadt, Germany
| | - Patrick Vermersch
- From the Department of Neurology with Institute of Translational Neurology (H.W.), University of Münster, Germany and Brain and Mind Center, University of Sydney, Australia; The Blizard Institute (K.S.), Centre for Neuroscience, Surgery & Trauma, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, UK; Clinical Board Medicine (Neuroscience) (K.S.), The Royal London Hospital, Barts Health NHS Trust, UK; Ingham Institute for Applied Medical Research (S.H.), University of New South Wales Medicine, Sydney, Australia; Department of Neurology (T.D.), University Hospital Basel, Switzerland; Department of Neurology (Andrew Chan), Inselspital, Bern University Hospital, University of Bern, Switzerland; Danish MS Center (F.S.), Department of Neurology, Copenhagen University Hospital-Rigshospitalet, Glostrup, Denmark; Department of Clinical Medicine (F.S.), University of Copenhagen, Denmark; Multiple Sclerosis Center (A.A.), Sheba Academic Medical Center, Ramat Gan, Israel; Sackler School of Medicine (A.A.), Tel-Aviv University, Israel; Department of Neurology-Neuroimmunology (X.M.), Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Hospital Universitari Vall d'Hebron, Universitat Autonoma de Barcelona, Spain; Department of Neurosciences and CRCHUM (A.P.), Université de Montréal, QC, Canada; Department of Neurological and Behavioural Sciences (N.D.S.), University of Siena, Italy; Department of Radiology (F.B.), VU University Medical Center, Amsterdam, The Netherlands; UCL Institute of Neurology (F.B.), London, UK; Experimental Neurophysiology Unit (L.L.), Vita-Salute San Raffaele University, Milan, Italy; Univ. Lille (P.V.), Inserm U1172 LilNCog, CHU Lille, FHU Precise, France; Cytel Inc (Anita Chudecka), Geneva, Switzerland; InScience Communications (C.M.), Springer Healthcare Ltd, Chester, UK; EMD Serono (K.H.H.), Billerica, MA; and Ares Trading SA (U.B., S.R.), Eysins, Switzerland, an affiliate of Merck KGaA, Darmstadt, Germany
| | - Anita Chudecka
- From the Department of Neurology with Institute of Translational Neurology (H.W.), University of Münster, Germany and Brain and Mind Center, University of Sydney, Australia; The Blizard Institute (K.S.), Centre for Neuroscience, Surgery & Trauma, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, UK; Clinical Board Medicine (Neuroscience) (K.S.), The Royal London Hospital, Barts Health NHS Trust, UK; Ingham Institute for Applied Medical Research (S.H.), University of New South Wales Medicine, Sydney, Australia; Department of Neurology (T.D.), University Hospital Basel, Switzerland; Department of Neurology (Andrew Chan), Inselspital, Bern University Hospital, University of Bern, Switzerland; Danish MS Center (F.S.), Department of Neurology, Copenhagen University Hospital-Rigshospitalet, Glostrup, Denmark; Department of Clinical Medicine (F.S.), University of Copenhagen, Denmark; Multiple Sclerosis Center (A.A.), Sheba Academic Medical Center, Ramat Gan, Israel; Sackler School of Medicine (A.A.), Tel-Aviv University, Israel; Department of Neurology-Neuroimmunology (X.M.), Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Hospital Universitari Vall d'Hebron, Universitat Autonoma de Barcelona, Spain; Department of Neurosciences and CRCHUM (A.P.), Université de Montréal, QC, Canada; Department of Neurological and Behavioural Sciences (N.D.S.), University of Siena, Italy; Department of Radiology (F.B.), VU University Medical Center, Amsterdam, The Netherlands; UCL Institute of Neurology (F.B.), London, UK; Experimental Neurophysiology Unit (L.L.), Vita-Salute San Raffaele University, Milan, Italy; Univ. Lille (P.V.), Inserm U1172 LilNCog, CHU Lille, FHU Precise, France; Cytel Inc (Anita Chudecka), Geneva, Switzerland; InScience Communications (C.M.), Springer Healthcare Ltd, Chester, UK; EMD Serono (K.H.H.), Billerica, MA; and Ares Trading SA (U.B., S.R.), Eysins, Switzerland, an affiliate of Merck KGaA, Darmstadt, Germany
| | - Claire Mwape
- From the Department of Neurology with Institute of Translational Neurology (H.W.), University of Münster, Germany and Brain and Mind Center, University of Sydney, Australia; The Blizard Institute (K.S.), Centre for Neuroscience, Surgery & Trauma, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, UK; Clinical Board Medicine (Neuroscience) (K.S.), The Royal London Hospital, Barts Health NHS Trust, UK; Ingham Institute for Applied Medical Research (S.H.), University of New South Wales Medicine, Sydney, Australia; Department of Neurology (T.D.), University Hospital Basel, Switzerland; Department of Neurology (Andrew Chan), Inselspital, Bern University Hospital, University of Bern, Switzerland; Danish MS Center (F.S.), Department of Neurology, Copenhagen University Hospital-Rigshospitalet, Glostrup, Denmark; Department of Clinical Medicine (F.S.), University of Copenhagen, Denmark; Multiple Sclerosis Center (A.A.), Sheba Academic Medical Center, Ramat Gan, Israel; Sackler School of Medicine (A.A.), Tel-Aviv University, Israel; Department of Neurology-Neuroimmunology (X.M.), Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Hospital Universitari Vall d'Hebron, Universitat Autonoma de Barcelona, Spain; Department of Neurosciences and CRCHUM (A.P.), Université de Montréal, QC, Canada; Department of Neurological and Behavioural Sciences (N.D.S.), University of Siena, Italy; Department of Radiology (F.B.), VU University Medical Center, Amsterdam, The Netherlands; UCL Institute of Neurology (F.B.), London, UK; Experimental Neurophysiology Unit (L.L.), Vita-Salute San Raffaele University, Milan, Italy; Univ. Lille (P.V.), Inserm U1172 LilNCog, CHU Lille, FHU Precise, France; Cytel Inc (Anita Chudecka), Geneva, Switzerland; InScience Communications (C.M.), Springer Healthcare Ltd, Chester, UK; EMD Serono (K.H.H.), Billerica, MA; and Ares Trading SA (U.B., S.R.), Eysins, Switzerland, an affiliate of Merck KGaA, Darmstadt, Germany
| | - Kristina H Holmberg
- From the Department of Neurology with Institute of Translational Neurology (H.W.), University of Münster, Germany and Brain and Mind Center, University of Sydney, Australia; The Blizard Institute (K.S.), Centre for Neuroscience, Surgery & Trauma, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, UK; Clinical Board Medicine (Neuroscience) (K.S.), The Royal London Hospital, Barts Health NHS Trust, UK; Ingham Institute for Applied Medical Research (S.H.), University of New South Wales Medicine, Sydney, Australia; Department of Neurology (T.D.), University Hospital Basel, Switzerland; Department of Neurology (Andrew Chan), Inselspital, Bern University Hospital, University of Bern, Switzerland; Danish MS Center (F.S.), Department of Neurology, Copenhagen University Hospital-Rigshospitalet, Glostrup, Denmark; Department of Clinical Medicine (F.S.), University of Copenhagen, Denmark; Multiple Sclerosis Center (A.A.), Sheba Academic Medical Center, Ramat Gan, Israel; Sackler School of Medicine (A.A.), Tel-Aviv University, Israel; Department of Neurology-Neuroimmunology (X.M.), Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Hospital Universitari Vall d'Hebron, Universitat Autonoma de Barcelona, Spain; Department of Neurosciences and CRCHUM (A.P.), Université de Montréal, QC, Canada; Department of Neurological and Behavioural Sciences (N.D.S.), University of Siena, Italy; Department of Radiology (F.B.), VU University Medical Center, Amsterdam, The Netherlands; UCL Institute of Neurology (F.B.), London, UK; Experimental Neurophysiology Unit (L.L.), Vita-Salute San Raffaele University, Milan, Italy; Univ. Lille (P.V.), Inserm U1172 LilNCog, CHU Lille, FHU Precise, France; Cytel Inc (Anita Chudecka), Geneva, Switzerland; InScience Communications (C.M.), Springer Healthcare Ltd, Chester, UK; EMD Serono (K.H.H.), Billerica, MA; and Ares Trading SA (U.B., S.R.), Eysins, Switzerland, an affiliate of Merck KGaA, Darmstadt, Germany
| | - Ursula Boschert
- From the Department of Neurology with Institute of Translational Neurology (H.W.), University of Münster, Germany and Brain and Mind Center, University of Sydney, Australia; The Blizard Institute (K.S.), Centre for Neuroscience, Surgery & Trauma, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, UK; Clinical Board Medicine (Neuroscience) (K.S.), The Royal London Hospital, Barts Health NHS Trust, UK; Ingham Institute for Applied Medical Research (S.H.), University of New South Wales Medicine, Sydney, Australia; Department of Neurology (T.D.), University Hospital Basel, Switzerland; Department of Neurology (Andrew Chan), Inselspital, Bern University Hospital, University of Bern, Switzerland; Danish MS Center (F.S.), Department of Neurology, Copenhagen University Hospital-Rigshospitalet, Glostrup, Denmark; Department of Clinical Medicine (F.S.), University of Copenhagen, Denmark; Multiple Sclerosis Center (A.A.), Sheba Academic Medical Center, Ramat Gan, Israel; Sackler School of Medicine (A.A.), Tel-Aviv University, Israel; Department of Neurology-Neuroimmunology (X.M.), Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Hospital Universitari Vall d'Hebron, Universitat Autonoma de Barcelona, Spain; Department of Neurosciences and CRCHUM (A.P.), Université de Montréal, QC, Canada; Department of Neurological and Behavioural Sciences (N.D.S.), University of Siena, Italy; Department of Radiology (F.B.), VU University Medical Center, Amsterdam, The Netherlands; UCL Institute of Neurology (F.B.), London, UK; Experimental Neurophysiology Unit (L.L.), Vita-Salute San Raffaele University, Milan, Italy; Univ. Lille (P.V.), Inserm U1172 LilNCog, CHU Lille, FHU Precise, France; Cytel Inc (Anita Chudecka), Geneva, Switzerland; InScience Communications (C.M.), Springer Healthcare Ltd, Chester, UK; EMD Serono (K.H.H.), Billerica, MA; and Ares Trading SA (U.B., S.R.), Eysins, Switzerland, an affiliate of Merck KGaA, Darmstadt, Germany
| | | |
Collapse
|
42
|
Giovannoni G, Vanderdonckt P, Hartung HP, Lassmann H, Comi G. EBV and multiple sclerosis: Setting the research agenda. Mult Scler Relat Disord 2022; 67:104158. [PMID: 36116382 DOI: 10.1016/j.msard.2022.104158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 09/04/2022] [Indexed: 01/21/2023]
Affiliation(s)
- Gavin Giovannoni
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK.
| | | | - Hans-Peter Hartung
- Hans-Peter Hartung, Klinik für Neurologie, Heinrich-Heine Universität Düsseldorf, Germany
| | - Hans Lassmann
- Hans Lassmann, Center for Brain Research, Medical University of Vienna, A-1090 Wien, Austria
| | - Giancarlo Comi
- Giancarlo Comi, Multiple Sclerosis Centres of Gallarate, and Casa di Cura del Policlinico, Milan, Italy
| |
Collapse
|
43
|
Leffler J, Trend S, Hart PH, French MA. Epstein-Barr virus infection, B-cell dysfunction and other risk factors converge in gut-associated lymphoid tissue to drive the immunopathogenesis of multiple sclerosis: a hypothesis. Clin Transl Immunology 2022; 11:e1418. [PMID: 36325491 PMCID: PMC9621333 DOI: 10.1002/cti2.1418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 11/10/2022] Open
Abstract
Multiple sclerosis is associated with Epstein-Barr virus (EBV) infection, B-cell dysfunction, gut dysbiosis, and environmental and genetic risk factors, including female sex. A disease model incorporating all these factors remains elusive. Here, we hypothesise that EBV-infected memory B cells (MBCs) migrate to gut-associated lymphoid tissue (GALT) through EBV-induced expression of LPAM-1, where they are subsequently activated by gut microbes and/or their products resulting in EBV reactivation and compartmentalised anti-EBV immune responses. These responses involve marginal zone (MZ) B cells that activate CD4+ T-cell responses, via HLA-DRB1, which promote downstream B-cell differentiation towards CD11c+/T-bet+ MBCs, as well as conventional MBCs. Intrinsic expression of low-affinity B-cell receptors (BCRs) by MZ B cells and CD11c+/T-bet+ MBCs promotes polyreactive BCR/antibody responses against EBV proteins (e.g. EBNA-1) that cross-react with central nervous system (CNS) autoantigens (e.g. GlialCAM). EBV protein/autoantigen-specific CD11c+/T-bet+ MBCs migrate to the meningeal immune system and CNS, facilitated by their expression of CXCR3, and induce cytotoxic CD8+ T-cell responses against CNS autoantigens amplified by BAFF, released from EBV-infected MBCs. An increased abundance of circulating IgA+ MBCs, observed in MS patients, might also reflect GALT-derived immune responses, including disease-enhancing IgA antibody responses against EBV and gut microbiota-specific regulatory IgA+ plasma cells. Female sex increases MZ B-cell and CD11c+/T-bet+ MBC activity while environmental risk factors affect gut dysbiosis. Thus, EBV infection, B-cell dysfunction and other risk factors converge in GALT to generate aberrant B-cell responses that drive pathogenic T-cell responses in the CNS.
Collapse
Affiliation(s)
- Jonatan Leffler
- Telethon Kids InstituteUniversity of Western AustraliaPerthWAAustralia
| | - Stephanie Trend
- Telethon Kids InstituteUniversity of Western AustraliaPerthWAAustralia,Perron Institute for Neurological and Translational ScienceUniversity of Western AustraliaPerthWAAustralia
| | - Prue H Hart
- Telethon Kids InstituteUniversity of Western AustraliaPerthWAAustralia
| | - Martyn A French
- School of Biomedical SciencesUniversity of Western AustraliaPerthWAAustralia,Immunology DivisionPathWest Laboratory MedicinePerthWAAustralia
| |
Collapse
|
44
|
Chunder R, Schropp V, Jabari S, Marzin M, Amor S, Kuerten S. Identification of a novel role for matrix metalloproteinase-3 in the modulation of B cell responses in multiple sclerosis. Front Immunol 2022; 13:1025377. [PMID: 36389698 PMCID: PMC9644161 DOI: 10.3389/fimmu.2022.1025377] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 09/26/2022] [Indexed: 07/30/2023] Open
Abstract
There has been a growing interest in the presence and role of B cell aggregates within the central nervous system of multiple sclerosis patients. However, very little is known about the expression profile of molecules associated with these aggregates and how they might be influencing aggregate development or persistence in the brain. The current study focuses on the effect of matrix metalloproteinase-3, which is associated with B cell aggregates in autopsied multiple sclerosis brain tissue, on B cells. Autopsied brain sections from multiple sclerosis cases and controls were screened for the presence of CD20+ B cell aggregates and expression of matrix metalloproteinase-3. Using flow cytometry, enzyme-linked immunosorbent assay and gene array as methods, in vitro studies were conducted using peripheral blood of healthy volunteers to demonstrate the effect of matrix metalloproteinase-3 on B cells. Autopsied brain sections from multiple sclerosis patients containing aggregates of B cells expressed a significantly higher amount of matrix metalloproteinase-3 compared to controls. In vitro experiments demonstrated that matrix metalloproteinase-3 dampened the overall activation status of B cells by downregulating CD69, CD80 and CD86. Furthermore, matrix metalloproteinase-3-treated B cells produced significantly lower amounts of interleukin-6. Gene array data confirmed that matrix metalloproteinase-3 altered the proliferation and survival profiles of B cells. Taken together, out data indicate a role for B cell modulatory properties of matrix metalloproteinase-3.
Collapse
Affiliation(s)
- Rittika Chunder
- Institute of Neuroanatomy, Medical Faculty, University of Bonn, Bonn, Germany
- Institute of Anatomy and Cell Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Verena Schropp
- Institute of Neuroanatomy, Medical Faculty, University of Bonn, Bonn, Germany
- Institute of Anatomy and Cell Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Samir Jabari
- Institute of Neuropathology, University Hospitals Erlangen, Erlangen, Germany
| | - Manuel Marzin
- Department of Pathology, Amsterdam University Medical Center, Amsterdam, Netherlands
| | - Sandra Amor
- Department of Pathology, Amsterdam University Medical Center, Amsterdam, Netherlands
| | - Stefanie Kuerten
- Institute of Neuroanatomy, Medical Faculty, University of Bonn, Bonn, Germany
- Institute of Anatomy and Cell Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| |
Collapse
|
45
|
Etemadifar M, Nouri H, Pitzalis M, Idda ML, Salari M, Baratian M, Mahdavi S, Abhari AP, Sedaghat N. Multiple sclerosis disease-modifying therapies and COVID-19 vaccines: a practical review and meta-analysis. J Neurol Neurosurg Psychiatry 2022; 93:986-994. [PMID: 35688629 DOI: 10.1136/jnnp-2022-329123] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 05/10/2022] [Indexed: 12/19/2022]
Abstract
Studies among people with multiple sclerosis (pwMS) receiving disease-modifying therapies (DMTs) have provided adequate evidence for an appraisal of COVID-19 vaccination policies among them. To synthesise the available evidence addressing the effect of MS DMTs on COVID-19 vaccines' immunogenicity and effectiveness, following the Cochrane guidelines, we systematically reviewed all observational studies available in MEDLINE, Scopus, Web of Science, MedRxiv and Google Scholar from January 2021 to January 2022 and extracted their relevant data. Immunogenicity data were then synthesised in a quantitative, and other data in a qualitative manner. Evidence from 28 studies suggests extensively lower B-cell responses in sphingosine-1-phosphate receptor modulator (S1PRM) treated and anti-CD20 (aCD20) treated, and lower T-cell responses in interferon-treated, S1PRM-treated and cladribine-treated pwMS-although most T cell evidence currently comprises of low or very low certainty. With every 10-week increase in aCD20-to-vaccine period, a 1.94-fold (95% CI 1.57 to 2.41, p<0.00001) increase in the odds of seroconversion was observed. Furthermore, the evidence points out that B-cell-depleting therapies may accelerate postvaccination humoral waning, and boosters' immunogenicity is predictable with the same factors affecting the initial vaccination cycle. Four real-world studies further indicate that the comparative incidence/severity of breakthrough COVID-19 has been higher among the pwMS treated with S1PRM and aCD20-unlike the ones treated with other DMTs. S1PRM and aCD20 therapies were the only DMTs reducing the real-world effectiveness of COVID-19 vaccination among pwMS. Hence, it could be concluded that optimisation of humoral immunogenicity and ensuring its durability are the necessities of an effective COVID-19 vaccination policy among pwMS who receive DMTs.
Collapse
Affiliation(s)
- Masoud Etemadifar
- Neurosurgery Research Department, Alzahra University Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hosein Nouri
- Neurosurgery Research Department, Alzahra University Hospital, Isfahan University of Medical Sciences, Isfahan, Iran.,Network of Immunity in Infection, Malignancy, and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Isfahan, Iran
| | - Maristella Pitzalis
- Institute of Genetic and Biomedical Research (IRGB) of the National Research Council (CNR), Cagliari, Italy
| | - Maria Laura Idda
- Institute of Genetic and Biomedical Research (IRGB) of the National Research Council (CNR), Cagliari, Italy
| | - Mehri Salari
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahshid Baratian
- Clinical Research Developement Center, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| | - Sepide Mahdavi
- Clinical Research Developement Center, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| | - Amir Parsa Abhari
- Neurosurgery Research Department, Alzahra University Hospital, Isfahan University of Medical Sciences, Isfahan, Iran.,Network of Immunity in Infection, Malignancy, and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Isfahan, Iran
| | - Nahad Sedaghat
- Neurosurgery Research Department, Alzahra University Hospital, Isfahan University of Medical Sciences, Isfahan, Iran .,Network of Immunity in Infection, Malignancy, and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Isfahan, Iran
| |
Collapse
|
46
|
Sgarlata E, Chisari CG, Toscano S, Finocchiaro C, Lo Fermo S, Millefiorini E, Patti F. Changes in John Cunningham Virus Index in Multiple Sclerosis Patients Treated with Different Disease-Modifying Therapies. Curr Neuropharmacol 2022; 20:1978-1987. [PMID: 34766895 PMCID: PMC9886813 DOI: 10.2174/1570159x19666211111123202] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 09/17/2021] [Accepted: 09/20/2021] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Progressive Multifocal Leukoencephalopathy (PML) is an opportunistic infection caused by John Cunningham virus (JCV) reactivation, potentially associated with natalizumab (NTZ) treatment for Multiple Sclerosis (MS). The anti-JCV antibodies titre (JCV index) increases during NTZ treatment; however, the effects of other disease-modifying therapies (DMTs) on the JCV index have not been fully explored. OBJECTIVE The aim of the study was to evaluate changes in the JCV index during treatment with several DMTs. METHODS This longitudinal study evaluated the JCV index before starting DMT (T0) and during treatment with DMT (T1). RESULTS A total of 260 participants (65.4 % females, mean age 43 ± 11.3 ) were enrolled: 68 (26.2 %) treated with fingolimod (FTY), 65 (25 %) rituximab or ocrelizumab (RTX/OCR), 37 (14.2 %) dimethyl-fumarate (DMF), 29 (11.2 %) cladribine (CLD), 23 (8.8 %) teriflunomide (TFM), 20 (7.7 %) interferon or glatiramer acetate (IFN/GA), and 18 (6.9 %) alemtuzumab (ALM). At T1, the percentage of patients with JCV index <0.90 was found to be significantly increased in the ALM group (16.7 % versus 66.7 %, p = 0.05), while the percentage of patients with JCV index >1.51 was found to be significantly reduced in the RTX/OCR group (51.6 % versus 37.5 %, p = 0.04). In the FTY group, a significant reduction in the percentage of patients with JCV index <0.90 was also found (23.5 % versus 1.4 %, p = 0.0006). The mean JCV index was reduced in the RTX/OCR and ALM groups, while a significant increase was observed in the FTY group. CONCLUSION DMTs with a T and/or B depleting mechanism of action induced a significant reduction in the JCV index. These results may suggest new possible sequencing strategies potentially maximizing disease control while reducing the PML risk.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Francesco Patti
- Address correspondence to this author at the Department of Medical and Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, Section of Neurosciences, University of Catania, Catania, Italy; Tel: 0953782783; E-mail:
| |
Collapse
|
47
|
MINI-review of Epstein-Barr virus involvement in multiple sclerosis etiology and pathogenesis. J Neuroimmunol 2022; 371:577935. [DOI: 10.1016/j.jneuroim.2022.577935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/11/2022] [Accepted: 07/24/2022] [Indexed: 11/18/2022]
|
48
|
Marsh‐Wakefield F, Juillard P, Ashhurst TM, Juillard A, Shinko D, Putri GH, Read MN, McGuire HM, Byrne SN, Hawke S, Grau GE. Peripheral B-cell dysregulation is associated with relapse after long-term quiescence in patients with multiple sclerosis. Immunol Cell Biol 2022; 100:453-467. [PMID: 35416319 PMCID: PMC9322415 DOI: 10.1111/imcb.12552] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/07/2022] [Accepted: 04/11/2022] [Indexed: 12/17/2022]
Abstract
B cells play a major role in multiple sclerosis (MS), with many successful therapeutics capable of removing them from circulation. One such therapy, alemtuzumab, is thought to reset the immune system without the need for ongoing therapy in a proportion of patients. The exact cells contributing to disease pathogenesis and quiescence remain to be identified. We utilized mass cytometry to analyze B cells from the blood of patients with relapse-remitting MS (RRMS) before and after alemtuzumab treatment, and during relapse. A complementary RRMS cohort was analyzed by single-cell RNA sequencing. The R package "Spectre" was used to analyze these data, incorporating FlowSOM clustering, sparse partial least squares-discriminant analysis and permutational multivariate analysis of variance. Immunoglobulin (Ig)A+ and IgG1 + B-cell numbers were altered, including higher IgG1 + B cells during relapse. B-cell linker protein (BLNK), CD40 and CD210 expression by B cells was lower in patients with RRMS compared with non-MS controls, with similar results at the transcriptomic level. Finally, alemtuzumab restored BLNK, CD40 and CD210 expression by IgA+ and IgG1 + B cells, which was altered again during relapse. These data suggest that impairment of IgA+ and IgG1 + B cells may contribute to MS pathogenesis, which can be restored by alemtuzumab.
Collapse
Affiliation(s)
- Felix Marsh‐Wakefield
- Vascular Immunology Unit, School of Medical Sciences, Faculty of Medicine and HealthThe University of SydneySydneyNSWAustralia
- Liver Injury and Cancer ProgramCentenary InstituteSydneyNSWAustralia
- Human Cancer and Viral Immunology LaboratoryThe University of SydneySydneyNSWAustralia
| | - Pierre Juillard
- Vascular Immunology Unit, School of Medical Sciences, Faculty of Medicine and HealthThe University of SydneySydneyNSWAustralia
| | - Thomas M Ashhurst
- Sydney Cytometry Core Research FacilityThe University of SydneySydneyNSWAustralia
- School of Medical Sciences, Faculty of Medicine and HealthThe University of SydneySydneyNSWAustralia
| | - Annette Juillard
- Vascular Immunology Unit, School of Medical Sciences, Faculty of Medicine and HealthThe University of SydneySydneyNSWAustralia
| | - Diana Shinko
- Sydney Cytometry Core Research FacilityThe University of SydneySydneyNSWAustralia
- Ramaciotti Facility for Human Systems BiologyThe University of SydneySydneyNSWAustralia
| | - Givanna H Putri
- School of Computer ScienceThe University of SydneySydneyNSWAustralia
| | - Mark N Read
- School of Computer ScienceThe University of SydneySydneyNSWAustralia
| | - Helen M McGuire
- Ramaciotti Facility for Human Systems BiologyThe University of SydneySydneyNSWAustralia
- Translational Immunology Group, School of Medical Sciences, Faculty of Medicine and HealthThe University of SydneySydneyNSWAustralia
| | - Scott N Byrne
- School of Medical Sciences, Faculty of Medicine and HealthThe University of SydneySydneyNSWAustralia
- Centre for Immunology and Allergy ResearchThe Westmead Institute for Medical ResearchWestmeadNSWAustralia
| | - Simon Hawke
- Vascular Immunology Unit, School of Medical Sciences, Faculty of Medicine and HealthThe University of SydneySydneyNSWAustralia
- Central West Neurology and NeurosurgeryOrangeNSWAustralia
| | - Georges E Grau
- Vascular Immunology Unit, School of Medical Sciences, Faculty of Medicine and HealthThe University of SydneySydneyNSWAustralia
| |
Collapse
|
49
|
Karimi B, Dehghani Firoozabadi A, Peymani M, Ghaedi K. Circulating long noncoding RNAs as novel bio-tools: Focus on autoimmune diseases. Hum Immunol 2022; 83:618-627. [PMID: 35717260 DOI: 10.1016/j.humimm.2022.06.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 06/04/2022] [Accepted: 06/07/2022] [Indexed: 11/04/2022]
Abstract
Long non-coding RNAs (lncRNAs) are an emerging class of non-coding RNAs that do not encode proteins. These RNAs have various essential regulatory functions. Irregular expression of lncRNAs has been related to the pathological process of varied diseases, and are considered promising diagnostic biomarkers. LncRNAs can release into the circulation and be stable in body fluids as circulating lncRNAs. A subset of circulating lncRNAs that exist in exosomes are referred to as exosomal lncRNA molecules. These lncRNAs are highly stable and resist RNases. Exosomes have captured a great deal of attention due to their involvement in regulating communications between cells. In conditions of autoimmune disease, exosomes play critical roles in the pathological processes. In this context, circulating lncRNAs have been shown to modulate the immune response and indicated as prognosis and diagnostic biomarkers for autoimmune diseases. This review highlights the role of circulating lncRNAs (particularly exosomal) as diagnostic biomarkers for autoimmune diseases such as rheumatoid arthritis, systemic lupus erythematosus, multiple sclerosis, psoriasis, and Sjögren's syndrome.
Collapse
Affiliation(s)
- Bahareh Karimi
- Department of Cellular and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | | | - Maryam Peymani
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Kamran Ghaedi
- Department of Cellular and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran.
| |
Collapse
|
50
|
Yang JH, Rempe T, Whitmire N, Dunn-Pirio A, Graves JS. Therapeutic Advances in Multiple Sclerosis. Front Neurol 2022; 13:824926. [PMID: 35720070 PMCID: PMC9205455 DOI: 10.3389/fneur.2022.824926] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 05/09/2022] [Indexed: 11/13/2022] Open
Abstract
Multiple sclerosis (MS) is an autoimmune disease affecting the central nervous system that causes significant disability and healthcare burden. The treatment of MS has evolved over the past three decades with development of new, high efficacy disease modifying therapies targeting various mechanisms including immune modulation, immune cell suppression or depletion and enhanced immune cell sequestration. Emerging therapies include CNS-penetrant Bruton's tyrosine kinase inhibitors and autologous hematopoietic stem cell transplantation as well as therapies aimed at remyelination or neuroprotection. Therapy development for progressive MS has been more challenging with limited efficacy of current approved agents for inactive disease and older patients with MS. The aim of this review is to provide a broad overview of the current therapeutic landscape for MS.
Collapse
Affiliation(s)
- Jennifer H. Yang
- Department of Neurosciences, University of California San Diego, San Diego, CA, United States
- *Correspondence: Jennifer H. Yang
| | - Torge Rempe
- Department of Neurology, University of Florida, Gainesville, FL, United States
| | - Natalie Whitmire
- Department of Neurosciences, University of California San Diego, San Diego, CA, United States
| | - Anastasie Dunn-Pirio
- Department of Neurosciences, University of California San Diego, San Diego, CA, United States
| | - Jennifer S. Graves
- Department of Neurosciences, University of California San Diego, San Diego, CA, United States
| |
Collapse
|