1
|
Wu Y, Ji X, Yang Y, Wu B. Discovery of a fully human antibody to the proximal membrane terminus of MUC1 based on a B-cell high-throughput screening technique. Int Immunopharmacol 2024; 142:113204. [PMID: 39317052 DOI: 10.1016/j.intimp.2024.113204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/14/2024] [Accepted: 09/16/2024] [Indexed: 09/26/2024]
Abstract
Mucin 1 plays an important role in tumor signaling and is overexpressed in adenocarcinoma and the digestive system. Many antibodies have been developed against MUC1 targets. Previously developed antibodies were mainly directed against distal membrane-terminal MUC1-N, but distal membrane-terminal MUC1-N is shed during cell growth and therefore binds to antibodies developed against tandem repeat sequences and becomes ineffective. Here, we provide a simple and rapid method for preparing antibodies targeting the proximal membrane end of MUC1. Immunological target antigens were designed based on Biocytogen Renlite KO mice. With the help of B-cell high-throughput screening technology, we rapidly screened and prepared fully human antibodies with human-macaque cross-reactivity, high affinity, high specificity, and endocytosis. Using this method, we screened 40 antibodies with human-monkey cross-reactivity, which specifically recognized breast cancer cell lines with human and monkey affinities ranging from (1.04E-07-2.91E-09). Of these, the antibodies with germline genes IGHV4-59*01 and IGHV3-30*03 had nanomolar affinities, with high endocytosis effects in breast cancer cells. Ab.07 (IGHV3-30*03) coupled with monomethyl auristatin E (MMAE) showed good anti-tumor activity in different tumor cells. In summary, we describe a method for designing and producing excellent antibodies that can be assembled into antibody-drug conjugates and bispecific antibodies by proximal-membrane-end immunization and B-cell high-throughput screening that can rapidly generate high-quality antibodies.
Collapse
Affiliation(s)
- Yilin Wu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; Institute of Antibody and Drug Research, Biocytogen (Beijing) Pharmaceutical Technology Co., Ltd, Beijing 102609, China; Yangtze Delta Drug Advanced Research Institute, Nantong 226133, China
| | - Xin Ji
- Institute of Antibody and Drug Research, Biocytogen (Beijing) Pharmaceutical Technology Co., Ltd, Beijing 102609, China.
| | - Yi Yang
- Institute of Antibody and Drug Research, Biocytogen (Beijing) Pharmaceutical Technology Co., Ltd, Beijing 102609, China; Yangtze Delta Drug Advanced Research Institute, Nantong 226133, China.
| | - Bo Wu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China.
| |
Collapse
|
2
|
Sánchez-Fernández D, Eguibar A, López C, Cuesta ÁM, Albiñana V, Rogers-Ezewuike S, Gómez-Rivas JA, Saldaña L, Botella LM, Ferrer M. Effect of 5β-dihydrotestosterone on vasodilator function and on cell proliferation. PLoS One 2024; 19:e0312080. [PMID: 39441776 PMCID: PMC11498709 DOI: 10.1371/journal.pone.0312080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 09/30/2024] [Indexed: 10/25/2024] Open
Abstract
Aging is one of the main factors associated with cardiovascular diseases. Androgens exert beneficial effects on the cardiovascular system and testosterone (TES) replacement therapy improves cardiometabolic risk factors. However, TES is contraindicated in patients with prostate cancer due to its proliferative effects on prostatic tumor cells. Additionally, TES and its reduced metabolites 5α- and 5β-dihydrotestosterone (5α-DHT and 5β-DHT) exert vasodilatory effects. Since androgen levels decrease during aging and 5β-DHT lacks genomic effects, this study is focused on analyzing its effect on vasodilator function and the proliferation rate of prostatic tumor and vascular smooth muscle cells. To study the vascular function, mesenteric arteries from aged-orchidectomized Sprague-Dawley rats were used. Mesenteric segments were divided into one control (without treatment) and three groups with the androgens (10 nM, 30 min) to analyze: acetylcholine- and sodium nitroprusside-induced responses and nitric oxide and superoxide anion production. To analyze cell proliferation, the effect of androgens on cell viability was determined. The results showed that 5β-DHT improves vasodilator function in arteries from aged-orchidectomized rats and induces antioxidant action, while the proliferation rate of the androgen-dependent prostatic tumor cells remains unaltered. These results make 5β-DHT a promising therapeutic agent for the treatment of cardiovascular pathologies.
Collapse
Affiliation(s)
- David Sánchez-Fernández
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | - Aritz Eguibar
- Servicio de Urología, Hospital Quirón Salud, Marbella, Spain
| | - Cristina López
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | - Ángel M. Cuesta
- Departamento de Biomedicina Molecular, Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, Unidad 707, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Virginia Albiñana
- Departamento de Biomedicina Molecular, Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, Unidad 707, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Soline Rogers-Ezewuike
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | - Juan A. Gómez-Rivas
- Servicio de Urología, Hospital Clínico San Carlos, Madrid, Spain
- Departamento de Cirugía, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| | - Laura Saldaña
- Grupo de Fisiopatología Ósea y Biomateriales, Hospital Universitario La Paz-IdiPAZ, Madrid, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, CIBER- BBN, Madrid, Spain
| | - Luisa M. Botella
- Departamento de Biomedicina Molecular, Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, Unidad 707, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Mercedes Ferrer
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
3
|
Shao IH, Chang TH, Chang YH, Hsieh YH, Sheng TW, Wang LJ, Chien YH, Huang LK, Chu YC, Kan HC, Lin PH, Yu KJ, Hsieh ML, Chuang CK, Wu CT, Hsieh CH, Pang ST. Periprostatic adipose tissue inhibits tumor progression by secreting apoptotic factors: A natural barrier induced by the immune response during the early stages of prostate cancer. Oncol Lett 2024; 28:485. [PMID: 39170882 PMCID: PMC11338243 DOI: 10.3892/ol.2024.14617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 06/27/2024] [Indexed: 08/23/2024] Open
Abstract
Prostate cancer (PCa) is the second most prevalent malignancy in men worldwide. The risk factors for PCa include obesity, age and family history. Increased visceral fat has been associated with high PCa risk, which has prompted previous researchers to investigate the influence of body composition and fat distribution on PCa prognosis. However, there is a lack of studies focusing on the mechanisms and interactions between periprostatic adipose tissue (PPAT) and PCa cells. The present study investigated the association between the composition of pelvic adipose tissue and PCa aggressiveness to understand the role played by this tissue in PCa progression. Moreover, PPAT-conditioned medium (CM) was prepared to assess the influence of the PPAT secretome on the pathophysiology of PCa. The present study included 50 patients with localized PCa who received robot-assisted radical prostatectomy. Medical records were collected, magnetic resonance imaging scans were analyzed and body compositions were calculated to identify the associations between adipose tissue volume and clinical PCa aggressiveness. In addition, CM was prepared from PPAT and perivesical adipose tissue (PVAT) collected from 25 patients during surgery, and its effects on the PCa cell lines C4-2 and LNCaP, and the prostate epithelial cell line PZ-HPV-7, were investigated using a cell proliferation assay and RNA sequencing (RNA-seq). The results revealed that the initial prostate-specific antigen level was significantly correlated with pelvic and periprostatic adipose tissue volumes. In addition, PPAT volume was significantly higher in patients with extracapsular tumor extension. PCa cell proliferation was significantly reduced when the cells were cultured in PPAT-CM compared with when they were cultured in control- and PVAT-CM. RNA-seq revealed that immune responses, and the cell death and apoptosis pathways were enriched in PPAT-CM-cultured cells indicating that the cytokines or other factors secreted from PPAT-CM induced PCa cell apoptosis. These findings revealed that the PPAT secretome may inhibit PCa cell proliferation by activating immune responses and promoting cancer cell apoptosis. This mechanism may act as a first-line defense during the early stages of PCa.
Collapse
Affiliation(s)
- I-Hung Shao
- Division of Urology, Department of Surgery, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 333423, Taiwan, R.O.C
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan, R.O.C
- Graduate Institute of Clinical Medical Science, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan, R.O.C
| | - Tzu-Hsuan Chang
- Division of Urology, Department of Surgery, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 333423, Taiwan, R.O.C
| | - Ying-Hsu Chang
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan, R.O.C
- Division of Urology, Department of Surgery, New Taipei Municipal Tucheng Hospital, New Taipei 236017, Taiwan, R.O.C
| | - Yu-Hsin Hsieh
- Division of Urology, Department of Surgery, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 333423, Taiwan, R.O.C
| | - Ting-Wen Sheng
- Department of Medical Imaging and Intervention, New Taipei Municipal Tucheng Hospital, New Taipei 236017, Taiwan, R.O.C
| | - Li-Jen Wang
- Department of Medical Imaging and Intervention, New Taipei Municipal Tucheng Hospital, New Taipei 236017, Taiwan, R.O.C
| | - Yu-Hsuan Chien
- Division of Urology, Department of Surgery, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 333423, Taiwan, R.O.C
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan, R.O.C
| | - Liang-Kang Huang
- Division of Urology, Department of Surgery, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 333423, Taiwan, R.O.C
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan, R.O.C
| | - Yuan-Cheng Chu
- Division of Urology, Department of Surgery, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 333423, Taiwan, R.O.C
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan, R.O.C
| | - Hung-Cheng Kan
- Division of Urology, Department of Surgery, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 333423, Taiwan, R.O.C
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan, R.O.C
| | - Po-Hung Lin
- Division of Urology, Department of Surgery, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 333423, Taiwan, R.O.C
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan, R.O.C
| | - Kai-Jie Yu
- Division of Urology, Department of Surgery, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 333423, Taiwan, R.O.C
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan, R.O.C
| | - Ming-Li Hsieh
- Division of Urology, Department of Surgery, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 333423, Taiwan, R.O.C
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan, R.O.C
| | - Cheng-Keng Chuang
- Division of Urology, Department of Surgery, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 333423, Taiwan, R.O.C
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan, R.O.C
| | - Chun-Te Wu
- Division of Urology, Department of Surgery, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 333423, Taiwan, R.O.C
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan, R.O.C
| | - Chin-Hsuan Hsieh
- Division of Urology, Department of Surgery, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 333423, Taiwan, R.O.C
| | - See-Tong Pang
- Division of Urology, Department of Surgery, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 333423, Taiwan, R.O.C
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan, R.O.C
| |
Collapse
|
4
|
Gilloteaux J, Jamison JM, Summers JL, Taper HS. Reactivation of nucleases with peroxidation damages induced by a menadione: ascorbate combination devastates human prostate carcinomas: ultrastructural aspects. Ultrastruct Pathol 2024; 48:378-421. [PMID: 39105605 DOI: 10.1080/01913123.2024.2379300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/27/2024] [Accepted: 07/09/2024] [Indexed: 08/07/2024]
Abstract
INTRODUCTION Xenografts of androgen-independent human DU145 prostate metastatic carcinomas implanted in nu/nu male mice have revealed a significant survival after a prooxidant anticancer treatment consisting of a combination of menadione bisulfite and sodium ascorbate (VK3:VC). METHODS Implanted samples of diaphragm carcinomas from longest survived mice from either oral, intraperitoneal (IP), or both oral and IP treatment groups were assessed with light, scanning, and transmission electron microscopy to analyze morphologic damages. RESULTS Compared with previous fine structure data of in vitro untreated carcinomas, the changes induced by oral, IP, and oral with IP VK3:VC treatment dismantled those xenografts with autoschizis, and necrotic atrophy was accomplished by cell's oxidative stress whose injuries were consequent to reactivated deoxyribonucleases and ribonucleases. Tumor destructions resulted from irreversible damages of nucleus components, endoplasmic reticulum, and mitochondria there. Other alterations included those of the cytoskeleton that resulted in characteristic self-excisions named " autoschizis." All these injuries lead resilient cancer cells to necrotic cell death. CONCLUSION The fine structure damages caused by VK3:VC prooxidant combination in the human DU145 prostate xenografts confirmed those shown in vitro and of other cell lines with histochemistry and biomolecular investigations. These devastations incurred without damage to normal tissues; thus, our data brought support for the above combination to assist in the treatment of prostate cancers and other cancers.
Collapse
Affiliation(s)
- Jacques Gilloteaux
- Department of Anatomical Sciences, St Georges' University International School of Medicine, Newcastle upon Tyne, UK
- Department of Anatomical Sciences, NEOMed (NEOUCOM), Rootstown, Ohio, USA
- Department of Medicine, Unit of Research in Molecular Physiology (URPhyM), NARILIS, Université de Namur, Namur, Belgium
| | - James M Jamison
- Department of Urology, Summa Health System, Akron, Ohio, USA
- St Thomas Hospital, The Apatone Development Center, Summa Research Fondation, Akron Ohio, USA
| | - Jack L Summers
- Department of Urology, Summa Health System, Akron, Ohio, USA
- St Thomas Hospital, The Apatone Development Center, Summa Research Fondation, Akron Ohio, USA
| | - Henryk S Taper
- Département des Sciences Pharmaceutiques, Unité de Pharmacocinétique, Métabolisme, Nutrition et Toxicologie, Université Catholique de Louvain, Brussels, Belgium
| |
Collapse
|
5
|
Yuan H, Cai R, Chen B, Wang Q, Wang M, An J, An W, Tao Y, Yu J, Jiang B, Zhang Y, Xu M. Acetylated KHSRP impairs DNA-damage-response-related mRNA decay and facilitates prostate cancer tumorigenesis. Mol Oncol 2024; 18:2314-2330. [PMID: 38501452 PMCID: PMC11467790 DOI: 10.1002/1878-0261.13634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 01/28/2024] [Accepted: 03/08/2024] [Indexed: 03/20/2024] Open
Abstract
Androgen-regulated DNA damage response (DDR) is one of the essential mechanisms in prostate cancer (PCa), a hormone-sensitive disease. The heterogeneous nuclear ribonucleoprotein K (hnRNPK)-homology splicing regulatory protein known as far upstream element-binding protein 2 (KHSRP) is an RNA-binding protein that can attach to AU-rich elements in the 3' untranslated region (3'-UTR) of messenger RNAs (mRNAs) to mediate mRNA decay and emerges as a critical regulator in the DDR to preserve genome integrity. Nevertheless, how KHSRP responds to androgen-regulated DDR in PCa development remains unclear. This study found that androgen can significantly induce acetylation of KHSRP, which intrinsically drives tumor growth in xenografted mice. Moreover, enhanced KHSRP acetylation upon androgen stimuli impedes KHSRP-regulated DDR gene expression, as seen by analyzing RNA sequencing (RNA-seq) and Gene Set Enrichment Analysis (GSEA) datasets. Additionally, NAD-dependent protein deacetylase sirtuin-7 (SIRT7) is a promising deacetylase of KHSRP, and androgen stimuli impairs its interaction with KHSRP to sustain the increased KHSRP acetylation level in PCa. We first report the acetylation of KHSRP induced by androgen, which interrupts the KHSRP-regulated mRNA decay of the DDR-related genes to promote the tumorigenesis of PCa. This study provides insight into KHSRP biology and potential therapeutic strategies for PCa treatment, particularly that of castration-resistant PCa.
Collapse
Affiliation(s)
- Haihua Yuan
- Department of Oncology, Shanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineChina
- Shanghai Institute of Precision Medicine, Shanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineChina
| | - Renjie Cai
- Department of Oncology, Shanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineChina
- Shanghai Institute of Precision Medicine, Shanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineChina
| | - Biying Chen
- Department of Oncology, Shanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineChina
- Shanghai Institute of Precision Medicine, Shanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineChina
| | - Qian Wang
- Department of Oncology, Shanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineChina
- Shanghai Institute of Precision Medicine, Shanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineChina
| | - Mengting Wang
- Department of Oncology, Shanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineChina
| | - Junyi An
- Department of Oncology, Shanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineChina
| | - Weishu An
- Department of Oncology, Shanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineChina
| | - Ye Tao
- Department of Oncology, Shanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineChina
- Shanghai Institute of Precision Medicine, Shanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineChina
| | - Jianxiu Yu
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and InflammationShanghai Jiao Tong University School of MedicineChina
| | - Bin Jiang
- Department of Oncology, Shanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineChina
| | - Yanjie Zhang
- Department of Oncology, Shanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineChina
- Shanghai Institute of Precision Medicine, Shanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineChina
| | - Ming Xu
- Department of Oncology, Shanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineChina
- Shanghai Institute of Precision Medicine, Shanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineChina
| |
Collapse
|
6
|
Mabuchi M, Tsujikawa K, Tanaka A. Synergistic combination effect of the PCA-1/ALKBH3 inhibitor HUHS015 on prostate cancer drugs in vitro and in vivo. Anticancer Drugs 2024:00001813-990000000-00323. [PMID: 39259581 DOI: 10.1097/cad.0000000000001656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Prostate cancer antigen-1/ALKBH3, a DNA/RNA demethylase of 3-methylcytosine, 1-methyladenine (1-meA), and 6-meA, was found in prostate cancer as an important prognostic factor. Additionally, 1-meA has been associated with other cancers. The ALKBH3 inhibitor HUHS015 was found to be effective against prostate cancer both in vitro and in vivo. Herein, we investigated the effect of HUHS015 in combination with drugs for prostate cancer approved in Japan (including bicalutamide, cisplatin, mitoxantrone, prednisolone, ifosfamide, tegafur/uracil, docetaxel, dacarbazine, and estramustine) by treating DU145 cells with around IC50 value concentrations of these drugs for 3 days. Additionally, the cells were observed for additional 9 days after drug removal. Combination treatment with dacarbazine, estramustine, tegafur/uracil, and HUHS015 showed a slight additive effect after 3 days. After drug washout of them and mitoxantrone, the combined effects and levels were enhanced and sustained, although the effects of each treatment alone declined. HUHS015 combined with cisplatin or docetaxel elicited synergistic and sustained effects. In vivo, combining HUHS015 and docetaxel, the first chemotherapeutic agent for castration-resistant prostate cancer, showed notable effects in the DU145 xenograft model. In conclusion, HUHS015 exhibited a synergistic effect with docetaxel and drugs acting on DNA in vitro, even after drug removal. Since cancer chemotherapy is typically administered during rest periods due to its high toxicity, combining it with an ALKBH3 inhibitor could be a promising strategy for enhancing cancer treatment, as it can elicit an additive effect during treatment, allowing dosage reduction, and synergistically sustain the effect after drug washout during rest periods.
Collapse
Affiliation(s)
- Miyuki Mabuchi
- Darpartment of Pharmacy, Laboratory of Chemical Biology, Advanced Medicinal Research Center, Hyogo Medical University, Kobe
| | - Kazutake Tsujikawa
- Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan
| | - Akito Tanaka
- Darpartment of Pharmacy, Laboratory of Chemical Biology, Advanced Medicinal Research Center, Hyogo Medical University, Kobe
| |
Collapse
|
7
|
Kim JH, Seo H, Kim S, Rahim MA, Jo S, Barman I, Tajdozian H, Sarafraz F, Song HY, Song YS. Different Prostatic Tissue Microbiomes between High- and Low-Grade Prostate Cancer Pathogenesis. Int J Mol Sci 2024; 25:8943. [PMID: 39201629 PMCID: PMC11354394 DOI: 10.3390/ijms25168943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/10/2024] [Accepted: 08/14/2024] [Indexed: 09/02/2024] Open
Abstract
Numerous human pathologies, such as neoplasia, are related to particular bacteria and changes in microbiome constituents. To investigate the association between an imbalance of bacteria and prostate carcinoma, the microbiome and gene functionality from tissues of patients with high-grade prostate tumor (HGT) and low-grade prostate tumor (LGT) were compared utilizing next-generation sequencing (NGS) technology. The results showed abnormalities in the bacterial profiles between the HGT and LGT specimens, indicating alterations in the make-up of bacterial populations and gene functionalities. The HGT specimens showed higher frequencies of Cutibacterium, Pelomonas, and Corynebacterium genera than the LGT specimens. Cell proliferation and cytokine assays also showed a significant proliferation of prostate cancer cells and elevated cytokine levels in the cells treated with Cutibacterium, respectively, supporting earlier findings. In summary, the HGT and LGT specimens showed differences in bacterial populations, suggesting that different bacterial populations might characterize high-grade and low-grade prostate malignancies.
Collapse
Affiliation(s)
- Jae Heon Kim
- Department of Urology, Soonchunhyang University School of Medicine, Seoul 04401, Republic of Korea
- Department of Microbiology and Immunology, School of Medicine, Soonchunhyang University, Asan 31151, Republic of Korea
| | - Hoonhee Seo
- Human Microbiome Medical Research Center (HM-MRC), Soonchunhyang University, Asan 31538, Republic of Korea
| | - Sukyung Kim
- Human Microbiome Medical Research Center (HM-MRC), Soonchunhyang University, Asan 31538, Republic of Korea
| | - Md Abdur Rahim
- Department of Microbiology and Immunology, School of Medicine, Soonchunhyang University, Asan 31151, Republic of Korea
- Human Microbiome Medical Research Center (HM-MRC), Soonchunhyang University, Asan 31538, Republic of Korea
| | - Sujin Jo
- Department of Microbiology and Immunology, School of Medicine, Soonchunhyang University, Asan 31151, Republic of Korea
- Human Microbiome Medical Research Center (HM-MRC), Soonchunhyang University, Asan 31538, Republic of Korea
| | - Indrajeet Barman
- Department of Microbiology and Immunology, School of Medicine, Soonchunhyang University, Asan 31151, Republic of Korea
- Human Microbiome Medical Research Center (HM-MRC), Soonchunhyang University, Asan 31538, Republic of Korea
| | - Hanieh Tajdozian
- Department of Microbiology and Immunology, School of Medicine, Soonchunhyang University, Asan 31151, Republic of Korea
- Human Microbiome Medical Research Center (HM-MRC), Soonchunhyang University, Asan 31538, Republic of Korea
| | - Faezeh Sarafraz
- Department of Microbiology and Immunology, School of Medicine, Soonchunhyang University, Asan 31151, Republic of Korea
- Human Microbiome Medical Research Center (HM-MRC), Soonchunhyang University, Asan 31538, Republic of Korea
| | - Ho-Yeon Song
- Department of Microbiology and Immunology, School of Medicine, Soonchunhyang University, Asan 31151, Republic of Korea
- Human Microbiome Medical Research Center (HM-MRC), Soonchunhyang University, Asan 31538, Republic of Korea
| | - Yun Seob Song
- Department of Urology, Soonchunhyang University School of Medicine, Seoul 04401, Republic of Korea
| |
Collapse
|
8
|
Fonseca-Alves CE, Leis-Filho AF, Lacerda ZA, de Faria Lainetti P, Amorim RL, Rogatto SR. Lapatinib antitumor effect is associated with PI3K and MAPK pathway: An analysis in human and canine prostate cancer cells. PLoS One 2024; 19:e0297043. [PMID: 38564578 PMCID: PMC10986952 DOI: 10.1371/journal.pone.0297043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 12/26/2023] [Indexed: 04/04/2024] Open
Abstract
The aberrant activation of HER2 has a pivotal role in bone metastasis implantation and progression in several tumor types, including prostate cancer (PC). Trastuzumab and other anti-HER2 therapies, such as lapatinib, have been used in human breast cancer HER2 positive. Although HER2 overexpression has been reported in PC, anti-HER2 therapy response has revealed conflicting results. We investigated the potential of lapatinib in inhibiting cell migration and inducing apoptosis in two human (LNCaP and PC3) and two canine PC cell lines (PC1 and PC2). Cell migration and apoptosis were evaluated by Annexin V/PI analysis after lapatinib treatment. The transcriptome analysis of all cell lines before and after treatment with lapatinib was also performed. We found increased apoptosis and migration inhibition in LNCaP cells (androgen-sensitive cell line), while PC1, PC2, and PC3 cells showed no alterations after the treatment. The transcriptome analysis of LNCaP and PC3 cell lines showed 158 dysregulated transcripts in common, while PC1 and PC2 cell lines presented 82. At the doses of lapatinib used, we observed transcriptional modifications in all cell lines. PI3K/AKT/mTOR pathway were enriched in human PC cells, while canine PC cells showed enrichment of tyrosine kinase antitumor response and HER2-related pathways. In canine PC cells, the apoptosis failed after lapatinib treatment, possibly due to the downregulation of MAPK genes. Prostate cancer cells insensitive to androgens may be resistant to lapatinib through PI3K gene dysregulation. The association of lapatinib with PI3K inhibitors may provide a more effective antitumor response and clinical benefits to PC patients.
Collapse
Affiliation(s)
- Carlos Eduardo Fonseca-Alves
- Department of Veterinary Surgery and Animal Reproduction, São Paulo State University–UNESP, Botucatu-SP, Brazil
- Institute of Health Sciences, Paulista University–UNIP, Bauru-SP, 17048–290, Brazil
| | - Antonio Fernando Leis-Filho
- Department of Veterinary Surgery and Animal Reproduction, São Paulo State University–UNESP, Botucatu-SP, Brazil
| | - Zara Alves Lacerda
- Department of Veterinary Surgery and Animal Reproduction, São Paulo State University–UNESP, Botucatu-SP, Brazil
| | - Patricia de Faria Lainetti
- Department of Veterinary Surgery and Animal Reproduction, São Paulo State University–UNESP, Botucatu-SP, Brazil
| | - Renee Laufer Amorim
- Department of Veterinary Clinic, São Paulo State University–UNESP, Botucatu-SP, 18618–681, Brazil
| | - Silvia Regina Rogatto
- Department of Clinical Genetics, University Hospital of Southern Denmark, Vejle, Denmark
- Institute of Regional Health Research, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
9
|
Rapuano R, Riccio A, Mercuri A, Madera JR, Dallavalle S, Moricca S, Lupo A. Proliferation and migration of PC-3 prostate cancer cells is counteracted by PPARγ-cladosporol binding-mediated apoptosis and a decreased lipid biosynthesis and accumulation. Biochem Pharmacol 2024; 222:116097. [PMID: 38428827 DOI: 10.1016/j.bcp.2024.116097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/15/2024] [Accepted: 02/26/2024] [Indexed: 03/03/2024]
Abstract
OBJECTIVES Chemoprevention, consisting of the administration of natural and/or synthetic compounds, appears to be an alternative way to common therapeutical approaches to preventing the occurrence of various cancers. Cladosporols, secondary metabolites from Cladosporium tenuissimum, showed a powerful ability in controlling human colon cancer cell proliferation through a peroxisome proliferator-activated receptor gamma (PPARγ)-mediated modulation of gene expression. Hence, we carried out experiments to verify the anticancer properties of cladosporols in human prostate cancer cells. Prostate cancer represents one of the most widespread tumors in which several risk factors play a role in determining its high mortality rate in men. MATERIALS AND METHODS We assessed, by viability assays, PPARγ silencing and overexpression experiments and western blotting analysis, the anticancer properties of cladosporols in cancer prostate cell lines. RESULTS Cladosporols A and B selectively inhibited the proliferation of human prostate PNT-1A, LNCaP and PC-3 cells and their most impactful antiproliferative ability towards PC-3 prostate cancer cells, was mediated by PPARγ modulation. Moreover, the anticancer ability of cladosporols implied a sustained apoptosis. Finally, cladosporols negatively regulated the expression of enzymes involved in the biosynthesis of fatty acids and cholesterol, thus enforcing the relationship between prostate cancer development and lipid metabolism dysregulation. CONCLUSION This is the first work, to our knowledge, in which the role of cladosporols A and B was disclosed in prostate cancer cells. Importantly, the present study highlighted the potential of cladosporols as new therapeutical tools, which, interfering with cell proliferation and lipid pathway dysregulation, may control prostate cancer initiation and progression.
Collapse
Affiliation(s)
- Roberta Rapuano
- Dipartimento di Scienze e Tecnologie, Università del Sannio, Via dei Mulini, 42, 82100 Benevento, Italy
| | - Alessio Riccio
- Dipartimento di Scienze e Tecnologie, Università del Sannio, Via dei Mulini, 42, 82100 Benevento, Italy
| | - Antonella Mercuri
- Dipartimento di Scienze e Tecnologie, Università del Sannio, Via dei Mulini, 42, 82100 Benevento, Italy
| | - Jessica Raffaella Madera
- Dipartimento di Scienze e Tecnologie, Università del Sannio, Via dei Mulini, 42, 82100 Benevento, Italy
| | - Sabrina Dallavalle
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l'Ambiente, Università degli Studi di Milano, via Celoria 2, 20133 Milano, Italy
| | - Salvatore Moricca
- Dipartimento di Scienze e Tecnologie Agrarie, Alimentari, Ambientali e Forestali (DAGRI), Università degli Studi di Firenze, Piazzale delle Cascine 28, 50144 Firenze, Italy
| | - Angelo Lupo
- Dipartimento di Scienze e Tecnologie, Università del Sannio, Via dei Mulini, 42, 82100 Benevento, Italy.
| |
Collapse
|
10
|
Park Y, Lee HJ, Sim DY, Park JE, Ahn CH, Park SY, Lee YC, Shim BS, Kim B, Kim SH. Inhibition of glycolysis and SIRT1/GLUT1 signaling ameliorates the apoptotic effect of Leptosidin in prostate cancer cells. Phytother Res 2024; 38:1235-1244. [PMID: 38176954 DOI: 10.1002/ptr.8115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 11/19/2023] [Accepted: 12/18/2023] [Indexed: 01/06/2024]
Abstract
Since the silent information regulation 2 homolog-1 (sirtuin, SIRT1) and glucose transporter 1 (GLUT1) are known to modulate cancer cell metabolism and proliferation, the role of SIRT1/GLUT1 signaling was investigated in the apoptotic effect of Leptosidin from Coreopsis grandiflora in DU145 and PC3 human prostate cancer (PCa) cells. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, cell cycle analysis, Western blotting, cBioportal correlation analysis, and co-immunoprecipitation were used in this work. Leptosidin showed cytotoxicity, augmented sub-G1 population, and abrogated the expression of pro-poly (ADP-ribose) polymerase (pro-PARP) and pro-cysteine aspartyl-specific protease (pro-caspase3) in DU145 and PC3 cells. Also, Leptosidin inhibited the expression of SIRT1, GLUT1, pyruvate kinase isozymes M2 (PKM2), Hexokinase 2 (HK2), and lactate dehydrogenase A (LDHA) in DU145 and PC3 cells along with disrupted binding of SIRT1 and GLUT1. Consistently, Leptosidin curtailed lactate, glucose, and ATP in DU145 and PC3 cells. Furthermore, SIRT1 depletion enhanced the decrease of GLUT1, LDHA, and pro-Cas3 by Leptosidin in treated DU145 cells, while pyruvate suppressed the ability of Leptosidin in DU145 cells. These findings suggest that Leptosidin induces apoptosis via inhibition of glycolysis and SIRT1/GLUT1 signaling axis in PCa cells.
Collapse
Affiliation(s)
- Youngsang Park
- College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Hyo-Jung Lee
- College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Deok Yong Sim
- College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Ji Eon Park
- College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Chi-Hoon Ahn
- College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Su-Yeon Park
- College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Yu-Chan Lee
- College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Bum-Sang Shim
- College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Bonglee Kim
- College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Sung-Hoon Kim
- College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| |
Collapse
|
11
|
Elsanhoury R, Alasmari A, Parupathi P, Jumaa M, Al-Fayoumi S, Kumar A, Khashan R, Nazzal S, Fayyad AA. AI & experimental-based discovery and preclinical IND-enabling studies of selective BMX inhibitors for development of cancer therapeutics. Int J Pharm 2023; 645:123384. [PMID: 37678472 DOI: 10.1016/j.ijpharm.2023.123384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/14/2023] [Accepted: 09/04/2023] [Indexed: 09/09/2023]
Abstract
The current work aims to design and provide a preliminary IND-enabling study of selective BMX inhibitors for cancer therapeutics development. BMX is an emerging target, more notably in oncological and immunological diseases. In this work, we have employed a predictive AI-based platform to design the selective inhibitors considering the novelty, IP prior protection, and drug-likeness properties. Furthermore, selected top candidates from the initial iteration of the design were synthesized and chemically characterized utilizing 1H NMR and LC-MS. Employing a panel of biochemical (enzymatic) and cancer cell lines, the selected molecules were tested against these assays. In addition, we used artificial intelligence to predict and evaluate several critical IND-focused physicochemical and pharmacokinetics values of the selected molecules. A secondary objective of the current work was also to validate the sole role of BMX in animal models known to be mediated by BMX. More than 50 molecules were designed in the present study employing five novel discovered scaffolds. Two molecules were nominated for further IND-focused studies. Compound II showed promising in-vitro activity against BMX in both enzymatic assays compared to other kinases and in cancer cell lines with known BMX overexpression. Interestingly, compound II showed very favorable physicochemical and pharmacokinetics properties as predicted by the used platforms. The animal study further confirmed the sole role of BMX in the disease model. The current work provides promising data on a selective BMX inhibitor as a potential lead for therapeutics development, and the asset is currently in the optimization stage. Notably, the current study shows a framework for a combined approach employing both AI and experimentation that can be used by academic labs in their research programs to more streamline programs into IND-focused to be bridged easily for further clinical development with industrial partners.
Collapse
Affiliation(s)
- Rwan Elsanhoury
- Division of Pharmaceutical Sciences, Arnold and Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, NY, USA
| | - Abdulaziz Alasmari
- Division of Pharmaceutical Sciences, Arnold and Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, NY, USA
| | - Prashanth Parupathi
- Division of Pharmaceutical Sciences, Arnold and Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, NY, USA
| | | | | | - Avinash Kumar
- Division of Pharmaceutical Sciences, Arnold and Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, NY, USA
| | - Raed Khashan
- Division of Pharmaceutical Sciences, Arnold and Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, NY, USA
| | - Sami Nazzal
- College of Pharmacy, Texas Tech University Health Sciences Center, Dallas, TX, USA
| | - Ahmed Abu Fayyad
- Division of Pharmaceutical Sciences, Arnold and Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, NY, USA.
| |
Collapse
|
12
|
Martín-Faivre L, Gaudaire D, Laugier C, Bouraïma-Lelong H, Zientara S, Hans A. Development of a chronic focal equine arteritis virus infection of a male reproductive tract cell line. J Virol Methods 2023; 319:114756. [PMID: 37268046 DOI: 10.1016/j.jviromet.2023.114756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/08/2023] [Accepted: 05/27/2023] [Indexed: 06/04/2023]
Abstract
Equine arteritis virus (EAV) is an Alphaarterivirus (family Arteriviridae, order Nidovirales) that frequently causes an influenza-like illness in adult horses, but can also cause the abortions in mares and death of newborn foals. Once primary infection has been established, EAV can persist in the reproductive tract of some stallions. However, the mechanisms enabling this persistence, which depends on testosterone, remain largely unknown. We aimed to establish an in vitro model of non-cytopathic EAV infection to study viral persistence. In this work, we infected several cell lines originating from the male reproductive tract of different species. EAV infection was fully cytopathic for 92BR (donkey cells) and DDT1 MF-2 (hamster cells) cells, and less cytopathic for PC-3 cells (human cells); ST cells (porcine cells) seemed to eliminate the virus; LNCaP (human cells) and GC-1 spg (murine cells) cells were not permissive to EAV infection; finally, TM3 cells (murine cells) were permissive to EAV infection without any overt cytopathic effects. Infected TM3 cells can be maintained at least 7 days in culture without any subculture. They can also be subcultured over 39 days (subculturing them at 1:2 the first time at 5 dpi and then every 2-3 days), but in this case, the percentage of infected cells remains low. Infected TM3 cells may therefore provide a new model to study the host-pathogen interactions and to help determine the mechanisms involved in EAV persistence in stallion reproductive tract.
Collapse
Affiliation(s)
- Lydie Martín-Faivre
- ANSES Laboratory for Animal Health, Normandy site. PhEED Unit, Goustranville, France.
| | - Delphine Gaudaire
- ANSES Laboratory for Animal Health, Normandy site. PhEED Unit, Goustranville, France
| | - Claire Laugier
- ANSES Laboratory for Animal Health, Normandy site. PhEED Unit, Goustranville, France
| | | | - Stéphan Zientara
- Université Paris-Est, ANSES, Maisons-Alfort Laboratory for Animal Health, UMR Virology ANSES, INRAE, ENVA, Maisons-Alfort, France
| | - Aymeric Hans
- ANSES Laboratory for Animal Health, Normandy site. PhEED Unit, Goustranville, France
| |
Collapse
|
13
|
Mbeje M, Kandhavelu J, Penny C, Kgoebane-Maseko M, Dlamini Z, Marima R. In Silico Bioinformatics Analysis on the Role of Long Non-Coding RNAs as Drivers and Gatekeepers of Androgen-Independent Prostate Cancer Using LNCaP and PC-3 Cells. Curr Issues Mol Biol 2023; 45:7257-7274. [PMID: 37754243 PMCID: PMC10528188 DOI: 10.3390/cimb45090459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/19/2023] [Accepted: 08/28/2023] [Indexed: 09/28/2023] Open
Abstract
Prostate cancer (PCa) is the leading cancer in men globally. The association between PCa and long non-coding RNAs (lncRNAs) has been reported. Aberrantly expressed lncRNAs have been documented in each of the cancer "hallmarks". Androgen signaling plays an important role in PCa progression. This study aimed to profile the aberrantly expressed lncRNAs in androgen-dependent (LNCaP) PCa compared to androgen-independent (PC-3) PCa cells. This was achieved by using a 384-well plate of PCa lncRNA gene panel. Differential expression of ±2 up or downregulation was determined using the CFX Maestro software v2.1. LncSEA and DIANA-miRPath were used to identify the enriched pathways. Telomerase RNA component (TERC) lncRNA was illustrated to participate in various tumourigenic classes by in silico bioinformatics analysis and was thus selected for validation using RT-qPCR. Further bioinformatics analysis revealed the involvement of differentially expressed lncRNAs in oncogenic pathways. Some lncRNAs undergo hypermethylation, others are encapsulated by exosomes, while others interact with several microRNAs (miRNAs), favouring tumourigenic pathways. Notably, TERC lncRNA was shown to interact with tumour-suppressor miRNAs hsa-miR-4429 and hsa-miR-320b. This interaction in turn activates TGF-β-signaling and ECM-receptor interaction pathways, favouring the progression of PCa. Understanding lncRNAs as competitive endogenous RNA molecules and their interactions with miRNAs may aid in the identification of novel prognostic PCa biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Mandisa Mbeje
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChI Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria, Hatfield 0028, South Africa; (M.M.); (M.K.-M.)
- Department of Medical Oncology, Faculty of Health Sciences, Steve Biko Academic Hospital, University of Pretoria, Hatfield 0028, South Africa
| | - Jeyalakshmi Kandhavelu
- Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University Medical Center, Washington, DC 20057, USA;
| | - Clement Penny
- Department of Internal Medicine, Faculty of Health Sciences, School of Clinical Medicine, University of the Witwatersrand, Parktown 2193, South Africa;
| | - Mmamoletla Kgoebane-Maseko
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChI Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria, Hatfield 0028, South Africa; (M.M.); (M.K.-M.)
- Department of Anatomical Pathology, Faculty of Health Sciences, University of Pretoria, Hatfield 0028, South Africa
| | - Zodwa Dlamini
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChI Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria, Hatfield 0028, South Africa; (M.M.); (M.K.-M.)
| | - Rahaba Marima
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChI Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria, Hatfield 0028, South Africa; (M.M.); (M.K.-M.)
| |
Collapse
|
14
|
Garcia PJB, Huang SKH, De Castro-Cruz KA, Leron RB, Tsai PW. An In Vitro Evaluation and Network Pharmacology Analysis of Prospective Anti-Prostate Cancer Activity from Perilla frutescens. PLANTS (BASEL, SWITZERLAND) 2023; 12:3006. [PMID: 37631218 PMCID: PMC10457999 DOI: 10.3390/plants12163006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/12/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023]
Abstract
Perilla frutescens (L.) Britt. is extensively cultivated in East Asia as a dietary vegetable, and nutraceuticals are reportedly rich in bioactive compounds, especially with anticancer activities. This study explored the in vitro cytotoxic effects of P. frutescens parts' (stems, leaves, and seeds) extracts on prostate cancer cells (DU-145) and possible interactions of putative metabolites to related prostate cancer targets in silico. The ethanol extract of P. frutescens leaves was the most cytotoxic for the prostate cancer cells. From high-performance liquid chromatography analysis, rosmarinic acid was identified as the major metabolite in the leaf extracts. Network analysis revealed interactions from multiple affected targets and pathways of the metabolites. From gene ontology enrichment analysis, P. frutescens leaf metabolites could significantly affect 14 molecular functions and 12 biological processes in five cellular components. Four (4) KEGG pathways, including for prostate cancer, and six (6) Reactome pathways were shown to be significantly affected. The molecular simulation confirmed the interactions of relevant protein targets with key metabolites, including rosmarinic acid. This study could potentially lead to further exploration of P. frutescens leaves or their metabolites for prostate cancer treatment and prevention.
Collapse
Affiliation(s)
- Patrick Jay B. Garcia
- School of Chemical, Biological, and Materials Engineering and Sciences, Mapúa University, Intramuros, Manila 1002, Philippines; (P.J.B.G.); (K.A.D.C.-C.); (R.B.L.)
- School of Graduate Studies, Mapúa University, Intramuros, Manila 1002, Philippines
| | - Steven Kuan-Hua Huang
- Department of Medical Science Industries, College of Health Sciences, Chang Jung Christian University, Tainan 711, Taiwan;
- Division of Urology, Department of Surgery, Chi Mei Medical Center, Tainan 711, Taiwan
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Kathlia A. De Castro-Cruz
- School of Chemical, Biological, and Materials Engineering and Sciences, Mapúa University, Intramuros, Manila 1002, Philippines; (P.J.B.G.); (K.A.D.C.-C.); (R.B.L.)
| | - Rhoda B. Leron
- School of Chemical, Biological, and Materials Engineering and Sciences, Mapúa University, Intramuros, Manila 1002, Philippines; (P.J.B.G.); (K.A.D.C.-C.); (R.B.L.)
| | - Po-Wei Tsai
- Department of Medical Science Industries, College of Health Sciences, Chang Jung Christian University, Tainan 711, Taiwan;
| |
Collapse
|
15
|
Hogh-Binder SA, Klein D, Wolfsperger F, Huber SM, Hennenlotter J, Stenzl A, Rudner J. Protein Levels of Anti-Apoptotic Mcl-1 and the Deubiquitinase USP9x Are Cooperatively Upregulated during Prostate Cancer Progression and Limit Response of Prostate Cancer Cells to Radiotherapy. Cancers (Basel) 2023; 15:cancers15092496. [PMID: 37173959 PMCID: PMC10177233 DOI: 10.3390/cancers15092496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/21/2023] [Accepted: 04/22/2023] [Indexed: 05/15/2023] Open
Abstract
BACKGROUND Radiotherapy constitutes an important therapeutic option for prostate cancer. However, prostate cancer cells often acquire resistance during cancer progression, limiting the cytotoxic effects of radiotherapy. Among factors regulating sensitivity to radiotherapy are members of the Bcl-2 protein family, known to regulate apoptosis at the mitochondrial level. Here, we analyzed the role of anti-apoptotic Mcl-1 and USP9x, a deubiquitinase stabilizing Mcl-1 protein levels, in prostate cancer progression and response to radiotherapy. METHODS Changes in Mcl-1 and USP9x levels during prostate cancer progression were determined by immunohistochemistry. Neutralization of Mcl-1 and USP9x was achieved by siRNA-mediated knockdown. We analyzed Mcl-1 stability after translational inhibition by cycloheximide. Cell death was determined by flow cytometry using an exclusion assay of mitochondrial membrane potential-sensitive dye. Changes in the clonogenic potential were examined by colony formation assay. RESULTS Protein levels of Mcl-1 and USP9x increased during prostate cancer progression, and high protein levels correlated with advanced prostate cancer stages. The stability of Mcl-1 reflected Mcl-1 protein levels in LNCaP and PC3 prostate cancer cells. Moreover, radiotherapy itself affected Mcl-1 protein turnover in prostate cancer cells. Particularly in LNCaP cells, the knockdown of USP9x expression reduced Mcl-1 protein levels and increased sensitivity to radiotherapy. CONCLUSION Posttranslational regulation of protein stability was often responsible for high protein levels of Mcl-1. Moreover, we demonstrated that deubiquitinase USP9x as a factor regulating Mcl-1 levels in prostate cancer cells, thus limiting cytotoxic response to radiotherapy.
Collapse
Affiliation(s)
- Sophia A Hogh-Binder
- Department of Radiation Oncology, University Hospital Tuebingen, Hoppe-Seyler-Str. 3, 72076 Tuebingen, Germany
| | - Diana Klein
- Institute for Cell Biology (Cancer Research), University Hospital Essen, University of Duisburg-Essen, Virchowstr. 173, 45147 Essen, Germany
| | - Frederik Wolfsperger
- Department of Radiation Oncology, University Hospital Tuebingen, Hoppe-Seyler-Str. 3, 72076 Tuebingen, Germany
| | - Stephan M Huber
- Department of Radiation Oncology, University Hospital Tuebingen, Hoppe-Seyler-Str. 3, 72076 Tuebingen, Germany
| | - Jörg Hennenlotter
- Department of Urology, University Hospital Tuebingen, Hoppe-Seyler-Str. 3, 72076 Tuebingen, Germany
| | - Arnulf Stenzl
- Department of Urology, University Hospital Tuebingen, Hoppe-Seyler-Str. 3, 72076 Tuebingen, Germany
| | - Justine Rudner
- Institute for Cell Biology (Cancer Research), University Hospital Essen, University of Duisburg-Essen, Virchowstr. 173, 45147 Essen, Germany
| |
Collapse
|
16
|
Nicolescu RCB, Maylin ZR, Pérez‐Areales FJ, Iegre J, Pandha HS, Asim M, Spring DR. Hybrid Androgen Receptor Inhibitors Outperform Enzalutamide and EPI-001 in in vitro Models of Prostate Cancer Drug Resistance. ChemMedChem 2023; 18:e202200548. [PMID: 36300876 PMCID: PMC10098645 DOI: 10.1002/cmdc.202200548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 10/26/2022] [Indexed: 01/20/2023]
Abstract
Androgen receptor targeted therapies for prostate cancer have serious limitations in advanced stages of the disease. While resistance to the FDA-approved enzalutamide is extensively documented, novel therapies based on epichlorohydrin scaffolds (EPI) are currently in clinical trials, but display suboptimal pharmacokinetics. Herein, we report the synthesis and biological characterisation of a novel class of compounds designed through covalently linking enzalutamide and EPI-001 through various triazole based linkers. The compounds display an 18 to 53 fold improvement in the cell killing potency towards C4-2b prostate cancer (PCa) cells compared to the gold standards of therapy, enzalutamide and EPI-001. The most promising compounds were proven to exhibit their toxicity exclusively through androgen receptor (AR) mediated pathways. This work sets the basis for the first class of hybrid AR inhibitors which successfully combine two drug moieties - EPI-001 and enzalutamide - into the same molecule.
Collapse
Affiliation(s)
| | - Zoe R. Maylin
- Department of Clinical and Experimental MedicineUniversity of SurreyGuildfordGU2 TXHUK
| | | | - Jessica Iegre
- Yusuf Hamied Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
| | - Hardev S. Pandha
- Department of Clinical and Experimental MedicineUniversity of SurreyGuildfordGU2 TXHUK
| | - Mohammad Asim
- Department of Clinical and Experimental MedicineUniversity of SurreyGuildfordGU2 TXHUK
| | - David R. Spring
- Yusuf Hamied Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
| |
Collapse
|
17
|
van Santen VJB, Zandieh Doulabi B, Semeins CM, Hogervorst JMA, Bratengeier C, Bakker AD. Compressed Prostate Cancer Cells Decrease Osteoclast Activity While Enhancing Osteoblast Activity In Vitro. Int J Mol Sci 2023; 24:ijms24010759. [PMID: 36614201 PMCID: PMC9821660 DOI: 10.3390/ijms24010759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/21/2022] [Accepted: 12/29/2022] [Indexed: 01/04/2023] Open
Abstract
Once prostate cancer cells metastasize to bone, they perceive approximately 2 kPa compression. We hypothesize that 2 kPa compression stimulates the epithelial-to-mesenchymal transition (EMT) of prostate cancer cells and alters their production of paracrine signals to affect osteoclast and osteoblast behavior. Human DU145 prostate cancer cells were subjected to 2 kPa compression for 2 days. Compression decreased expression of 2 epithelial genes, 5 out of 13 mesenchymal genes, and increased 2 mesenchymal genes by DU145 cells, as quantified by qPCR. Conditioned medium (CM) of DU145 cells was added to human monocytes that were stimulated to differentiate into osteoclasts for 21 days. CM from compressed DU145 cells decreased osteoclast resorptive activity by 38% but did not affect osteoclast size and number compared to CM from non-compressed cells. CM was also added to human adipose stromal cells, grown in osteogenic medium. CM of compressed DU145 cells increased bone nodule production (Alizarin Red) by osteoblasts from four out of six donors. Compression did not affect IL6 or TNF-α production by PC DU145 cells. Our data suggest that compression affects EMT-related gene expression in DU145 cells, and alters their production of paracrine signals to decrease osteoclast resorptive activity while increasing mineralization by osteoblasts is donor dependent. This observation gives further insight in the altered behavior of PC cells upon mechanical stimuli, which could provide novel leads for therapies, preventing bone metastases.
Collapse
Affiliation(s)
- Victor J. B. van Santen
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, 1081 LA Amsterdam, The Netherlands
| | - Behrouz Zandieh Doulabi
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, 1081 LA Amsterdam, The Netherlands
| | - Cornelis M. Semeins
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, 1081 LA Amsterdam, The Netherlands
| | - Jolanda M. A. Hogervorst
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, 1081 LA Amsterdam, The Netherlands
| | - Cornelia Bratengeier
- Division of Cell Biology, Department of Clinical and Experimental Medicine, Linköping University, SE-581 83 Linköping, Sweden
| | - Astrid D. Bakker
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, 1081 LA Amsterdam, The Netherlands
- Correspondence: ; Tel.: +31-(0)20-5980224
| |
Collapse
|
18
|
Šestić TL, Ajduković JJ, Marinović MA, Petri ET, Savić MP. In silico ADMET analysis of the A-, B- and D-modified androstane derivatives with potential anticancer effects. Steroids 2023; 189:109147. [PMID: 36410412 DOI: 10.1016/j.steroids.2022.109147] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 11/10/2022] [Accepted: 11/14/2022] [Indexed: 11/19/2022]
Abstract
The major challenge in the fight against cancer is to design new drugs that will be more selective for cancer cells, with fewer side effects. Synthetic steroids such as cyproterone, fulvestrant, exemestane and abiraterone are approved powerful drugs for the treatment of hormone-dependent diseases such as breast and prostate cancers. Therefore, androstane derivatives in 17-substituted, 17a-homo lactone and 16,17-seco series, with potent anticancer activity, were selected for pharmacokinetic and druglike predictions from the absorption, distribution, metabolism and excretion (ADME) models. In silico determination of physico-chemical and ADMET properties was performed using SwissADME and ProTox-II web tools. The possibility of gastrointestinal absorption and brain penetration was analyzed using the BOILED-Egg model, while the in silico evaluation of the similarities between selected steroid derivatives and FDA-approved drugs was carried out using the SwissSimilarity tool. Of all tested, two compounds that showed good in silico ADMET results, in addition to promising cytotoxicity and molecular docking results, could potentially be evaluated in in vivo tests.
Collapse
Affiliation(s)
- Tijana Lj Šestić
- Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia
| | - Jovana J Ajduković
- Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia.
| | - Maja A Marinović
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 2, 21000 Novi Sad, Serbia
| | - Edward T Petri
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 2, 21000 Novi Sad, Serbia
| | - Marina P Savić
- Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia
| |
Collapse
|
19
|
Betulinic acid and its ionic derivatives impaired growth of prostate cancer cells without induction of GRP78 and CHOP. CURRENT ISSUES IN PHARMACY AND MEDICAL SCIENCES 2022. [DOI: 10.2478/cipms-2022-0030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Abstract
Prostate cancer (PCa) is the most common invasive malignancy for men in the USA. The incidence and mortality rates of PCa are significantly higher among African American men, as compared to those in Caucasian men. Betulinic acid (BA) is a penta-cyclic triterpenoid that is often found in the bark of several species of plants. It possesses a variety of biological activities, including anti-cancer activities. We examined the cytotoxic effects and endoplasmic reticulum (ER) stress induced by BA and its ionic derivatives with PCa cells derived from African Americans and Caucasian men. The viability of all PCa cells was reduced by the BA compounds, and the cytotoxicity of these BA compounds was independent of ethnicity and androgen dependency. The BA compounds induced modest effects on ER stress proteins when compared with ER stress inducers, tunicamycin and thapsigargin. The induction of glucose regulated protein 78 (GRP78) was largely correlated with the expression of C/EBP homologous protein (CHOP) and cleaved poly [ADP-ribose] polymerase (PARP)/caspase-3 in the PCa cells. In summary, our data demonstrated that BA compounds impaired the growth of PCa cells regardless of ethnicity – through GRP78- and CHOP-independent pathways.
Collapse
|
20
|
La Manna S, Florio D, Di Natale C, Marasco D. Modulation of hydrogel networks by metal ions. J Pept Sci 2022:e3474. [PMID: 36579727 DOI: 10.1002/psc.3474] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 12/30/2022]
Abstract
Self-assembling hydrogels are receiving great attention for both biomedical and technological applications. Self-assembly of protein/peptides as well as organic molecules is commonly induced in response to external triggers such as changes of temperature, concentration, or pH. An interesting strategy to modulate the morphology and mechanical properties of the gels implies the use of metal ions, where coordination bonds regulate the dynamic cross-linking in the construction of hydrogels, and coordination geometries, catalytic, and redox properties of metal ions play crucial roles. This review aims to discuss recent insights into the supramolecular assembly of hydrogels involving metal ions, with a focus on self-assembling peptides, as well as applications of metallogels in biomedical fields including tissue engineering, sensing, wound healing, and drug delivery.
Collapse
Affiliation(s)
- Sara La Manna
- Department of Pharmacy, University of Naples "Federico II", Naples, Italy
| | - Daniele Florio
- Department of Pharmacy, University of Naples "Federico II", Naples, Italy
| | - Concetta Di Natale
- Department of Chemical, Materials and Production Engineering, University of Naples "Federico II", Naples, Italy.,Center for Advanced Biomaterials for Healthcare@CRIB, Istituto Italiano di Tecnologia (IIT), Naples, Italy
| | - Daniela Marasco
- Department of Pharmacy, University of Naples "Federico II", Naples, Italy
| |
Collapse
|
21
|
Molecular and metabolic alterations of 2,3-dihydroquinazolin-4(1H)-one derivatives in prostate cancer cell lines. Sci Rep 2022; 12:21599. [PMID: 36517571 PMCID: PMC9751122 DOI: 10.1038/s41598-022-26148-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
Prostate cancer (PC) is the second most common tumor in males worldwide. The lack of effective medication and the development of multidrug resistance towards current chemotherapeutic agents urge the need to discover novel compounds and therapeutic targets for PC. Herein, seven synthesized 2,3-dihydroquinazolin-4(1H)-one analogues were evaluated for their anticancer activity against PC3 and DU145 cancer cell lines using MTT, scratch-wound healing, adhesion and invasion assays. Besides, a liquid chromatography mass spectrometry (LC-MS)-based metabolomics approach was followed to identify the biochemical pathways altered in DU145 cancer cells upon exposure to dihydroquinazolin derivatives. The seven compounds showed sufficient cytotoxicity and significantly suppressed DU145 and PC3 migration after 48 and 72 h. C2 and C5 had the most potent effect with IC50 < 15 µM and significantly inhibited PC cell adhesion and invasion. Metabolomics revealed that C5 disturbed the level of metabolites involved in essential processes for cancer cell proliferation, progression and growth including energy production, redox homeostasis, amino acids and polyamine metabolisms and choline phospholipid metabolism. The data presented herein highlighted the importance of these compounds as potential anticancer agents particularly C5, and pointed to the promising role of metabolomics as a new analytical approach to investigate the antiproliferative activity of synthesized compounds and identify new therapeutic targets.
Collapse
|
22
|
Arglabin, an EGFR receptor tyrosine kinase inhibitor, suppresses proliferation and induces apoptosis in prostate cancer cells. Biomed Pharmacother 2022; 156:113873. [DOI: 10.1016/j.biopha.2022.113873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/10/2022] [Accepted: 10/13/2022] [Indexed: 12/09/2022] Open
|
23
|
Antrodia salmonea Extracts Regulate p53-AR Signaling and Apoptosis in Human Prostate Cancer LNCaP Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:7033127. [DOI: 10.1155/2022/7033127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 11/16/2022] [Accepted: 11/18/2022] [Indexed: 11/30/2022]
Abstract
Antrodia salmonea (AS) is a genus of Antrodia, an epiphyte of Cunninghamia konishii in Taiwan. AS has been reported to have potential therapeutic effects on different diseases, including diarrhea, abdominal pain, and hypertension. AS has been reported to have anticancer effects on numerous cancer types, such as ovarian carcinoma and triple-negative breast cancer. Our previous studies demonstrated that antrocins and triterpenoids are possibly bioactive compositions. However, the effects of AS on prostate cancer remain unknown. Therefore, we investigated the role of AS in prostate cancer growth, apoptosis, and cell cycle regulation. The results showed that AS extracts significantly inhibited the proliferation of prostate cancer LNCaP cells in a dose-dependent manner and increased the levels of apoptotic markers (cleaved PARP and cleaved caspase 3/8/9). In addition, the cell cycle-related proteins CDK1, CDK2, CDK4, and their respective specific regulators Cyclin B1, Cyclin A, and Cyclin D were also affected. Besides, AS treatment increased p53 protein levels and slowed its degradation in LNCaP cells. Interestingly, we found that AS treatment reduced both total protein and Ser-81 phosphorylation levels of the androgen receptor (AR). Notably, the increase of nuclear p53 was accompanied by the down-regulation of AR, suggesting a reverse regulation between p53 and AR in LNCaP cells was triggered by AS treatment. These findings suggest that AS extracts trigger the apoptosis of prostate cancer cells through the reverse regulation of p53 and AR and elucidate that AS extracts might be a potential treatment for androgen-dependent prostate cancer in the near future.
Collapse
|
24
|
Anticancer Effects of Propolis Extracts Obtained with the Cold Separation Method on PC-3 and DU-145 Prostate Cancer Cell Lines. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238245. [PMID: 36500338 PMCID: PMC9736172 DOI: 10.3390/molecules27238245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/18/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022]
Abstract
Plant extracts are increasingly tested for their biological activity and interactions with neoplastic cells. One of such sources of biologically active substances is propolis. This product has been known for thousands of years and is widely used in alternative, folk medicine. Articles describing its effects on the metabolism and cell signaling pathways of neoplastic cells derived from different organs are also published more and more frequently. The purpose of our study was to evaluate the biological activity of propolis extract produced with the cold separation method into hormone-dependent and hormone-independent prostate cancer cell lines. In our study, the propolis extracts showed at least an inhibitory effect on the growth of PC-3 and DU-145 neoplastic cells. Our results suggest that propolis extracts obtained with the cold separation method may be considered as promising compounds for the production of health-promoting supplements.
Collapse
|
25
|
Chemical Profiling, Antiproliferative and Antimigratory Capacity of Haberlea rhodopensis Extracts in an In Vitro Platform of Various Human Cancer Cell Lines. Antioxidants (Basel) 2022; 11:antiox11122305. [PMID: 36552514 PMCID: PMC9774357 DOI: 10.3390/antiox11122305] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 11/16/2022] [Indexed: 11/23/2022] Open
Abstract
Haberlea rhodopensis is a Balkan endemic plant that belongs to the Gesneriaceae family, and is believed to have medicinal use and health-promoting properties. This study aimed to (i) prepare aqueous (HAE) and ethanolic (HEE) extracts from the leaves of H. rhodopensis from in vitro propagated plants, (ii) screen for their potential antiproliferative and antimigratory activities, and (iii) chemically characterize both HAE and HEE by identifying compounds which may contribute to their observed bioactivity thereby further supporting their potential use in biomedical applications. The antiproliferative activity of both extracts was assessed against six human cancer cell lines by employing the sulforhodamine-B (SRB) assay. HEE was found to be more potent in inhibiting cancer cell growth as compared to HAE. Therefore, HEE's antimigratory effects were further studied in hepatocellular carcinoma (HepG2) and non-small cell lung adenocarcinoma (A459) cell lines as they were among the most sensitive ones to its antiproliferative activity. HEE was found to exert significant antimigratory concentration-dependent effects in both cell lines assessed with the wound healing assay. Chemical characterization by UPLC-MS/MS analysis identified that HEE contains higher levels of flavonoids, phenolic compounds, pigments (chlorophyll-/-b, lycopene, and β-carotene), monoterpenoids, and condensed tannins compared to HAE, while HAE, contains higher levels of soluble protein and sugars. Furthermore, HEE demonstrated remarkable antioxidant activity evaluated by the 2,2-diphenyl-1-picrylhydrazyl (DPPH●), 2,2-azinobis (3-ethyl-benzothiazoline-6-sulfonic acid) (ABTS●+) and ferric reducing/antioxidant power (FRAP) assays. We have obtained comprehensive results highlighting the potential of HEE as a source of bioactive compounds with anticancer properties. Future studies should aim at identifying the chemical constituents responsible for the bioactivities observed, and focus on investigating HEE's effects, in in vivo preclinical cancer models.
Collapse
|
26
|
De Gaetano F, Cristiano MC, Paolino D, Celesti C, Iannazzo D, Pistarà V, Iraci N, Ventura CA. Bicalutamide Anticancer Activity Enhancement by Formulation of Soluble Inclusion Complexes with Cyclodextrins. Biomolecules 2022; 12:1716. [PMID: 36421730 PMCID: PMC9687945 DOI: 10.3390/biom12111716] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 08/27/2023] Open
Abstract
Bicalutamide (BCL) is a nonsteroidal antiandrogen drug that represents an alternative to castration in the treatment of prostate cancer, due to its relatively long half-life and tolerable side effects. However, it possesses a very low water solubility that can affect its oral bioavailability. In this work, we developed inclusion complexes of BCL with the highly soluble hydroxypropyl-β-cyclodextrin (HP-β-CyD) and sulfobutylether-β-cyclodextrin (SBE-β-CyD) to increase the water solubility and anticancer activity of BCL. The inclusion complexes were prepared using the freeze-drying method and were then characterized in a solid state via differential scanning calorimetry and X-ray analysis and in solution via phase-solubility studies and UV-vis and NMR spectroscopy. The BCL/HP-β-CyD and BCL/SBE-β-CyD inclusion complexes were amorphous and rapidly dissolved in water. Both the 1H-NMR spectra and molecular modeling studies confirmed the penetration of the 2-(trifluoromethyl)benzonitrile ring of BCL within the cavity of both cyclodextrins (CyDs). Due to the consistent improvement of the water solubility of BCL, the inclusion complexes showed higher antiproliferative activity toward the human prostate androgen-independent cell lines, DU-145 and PC-3, with respect to free BCL. These results demonstrate the ability of HP-β-CyD and SBE-β-CyD to complex BCL, permitting the realization of liquid formulations with potentially high oral bioavailability and/or possible parenteral administration.
Collapse
Affiliation(s)
- Federica De Gaetano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, I-98166 Messina, Italy
| | - Maria Chiara Cristiano
- Department of Clinical and Experimental Medicine, University ‘Magna Græcia’ of Catanzaro, I-88100 Catanzaro, Italy
| | - Donatella Paolino
- Department of Clinical and Experimental Medicine, University ‘Magna Græcia’ of Catanzaro, I-88100 Catanzaro, Italy
| | - Consuelo Celesti
- Department of Engineering, University of Messina, Contrada Di Dio, I-98166 Messina, Italy
- Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria, I-98125 Messina, Italy
| | - Daniela Iannazzo
- Department of Engineering, University of Messina, Contrada Di Dio, I-98166 Messina, Italy
| | - Venerando Pistarà
- Department of Pharmaceutical and Health Sciences, University of Catania, Viale Andrea Doria 6, I-95125 Catania, Italy
| | - Nunzio Iraci
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, I-98166 Messina, Italy
| | - Cinzia Anna Ventura
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, I-98166 Messina, Italy
| |
Collapse
|
27
|
Miranda A, Lopez-Blanco R, Lopes-Nunes J, Melo AM, Campello MPC, Paulo A, Oliveira MC, Mergny JL, Oliveira PA, Fernandez-Megia E, Cruz C. Gallic Acid-Triethylene Glycol Aptadendrimers Synthesis, Biophysical Characterization and Cellular Evaluation. Pharmaceutics 2022; 14:pharmaceutics14112456. [PMID: 36432647 PMCID: PMC9696068 DOI: 10.3390/pharmaceutics14112456] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/04/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022] Open
Abstract
Herein, we describe the synthesis of an aptadendrimer by covalent bioconjugation of a gallic acid-triethylene glycol (GATG) dendrimer with the G-quadruplex (G4) AT11 aptamer (a modified version of AS1411) at the surface. We evaluated the loading and interaction of an acridine orange ligand, termed C8, that acts as an anticancer drug and binder/stabilizer of the G4 structure of AT11. Dynamic light scattering experiments demonstrated that the aptadendrimer was approximately 3.1 nm in diameter. Both steady-state and time-resolved fluorescence anisotropy evidenced the interaction between the aptadendrimer and C8. Additionally, we demonstrated that the iodine atom of the C8 ligand acts as an effective intramolecular quencher in solution, while upon complexation with the aptadendrimer, it adopts a more extended conformation. Docking studies support this conclusion. Release experiments show a delivery of C8 after 4 h. The aptadendrimers tend to localize in the cytoplasm of various cell lines studied as demonstrated by confocal microscopy. The internalization of the aptadendrimers is not nucleolin-mediated or by passive diffusion, but via endocytosis. MTT studies with prostate cancer cells and non-malignant cells evidenced high cytotoxicity mainly due to the C8 ligand. The rapid internalization of the aptadendrimers and the fluorescence properties make them attractive for the development of potential nanocarriers.
Collapse
Affiliation(s)
- André Miranda
- CICS-UBI—Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, 6201-506 Covilhã, Portugal
| | - Roi Lopez-Blanco
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, Jenaro de la Fuente s/n, 15782 Santiago de Compostela, Spain
| | - Jéssica Lopes-Nunes
- CICS-UBI—Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, 6201-506 Covilhã, Portugal
| | - Ana M. Melo
- iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Maria Paula Cabral Campello
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10 (km 139.7), 2695-066 Bobadela, Portugal
- Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10 (km 139.7), 2695-066 Bobadela, Portugal
| | - António Paulo
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10 (km 139.7), 2695-066 Bobadela, Portugal
- Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10 (km 139.7), 2695-066 Bobadela, Portugal
| | - Maria Cristina Oliveira
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10 (km 139.7), 2695-066 Bobadela, Portugal
- Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10 (km 139.7), 2695-066 Bobadela, Portugal
| | - Jean-Louis Mergny
- Laboratoire d’Optique et Biosciences, Ecole Polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, 91128 Palaiseau, France
| | - Paula A. Oliveira
- Centre for Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Inov4Agro, University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal
| | - Eduardo Fernandez-Megia
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, Jenaro de la Fuente s/n, 15782 Santiago de Compostela, Spain
- Correspondence: (E.F.-M.); (C.C.)
| | - Carla Cruz
- CICS-UBI—Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, 6201-506 Covilhã, Portugal
- Departamento de Química, Universidade da Beira Interior, Rua Marquês de Ávila e Bolama, 6201-001 Covilhã, Portugal
- Correspondence: (E.F.-M.); (C.C.)
| |
Collapse
|
28
|
Gilloteaux DJ, Jamison JM, Summers JL, Taper HS. Xenografts on nude mouse diaphragm of human DU145 prostate carcinoma cells: mesothelium removal by outgrowths and angiogenesis. Ultrastruct Pathol 2022; 46:413-438. [PMID: 36165802 DOI: 10.1080/01913123.2022.2115596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Human prostate carcinoma DU145 cells, androgen-independent malignant cells, implanted in the athymic nu/nu male mouse, developed numerous tumors on peritoneal and retro-peritoneal organs whose growth aspects and vascular supply have yet to be investigated with fine structure techniques. A series of necropsies from moribund implanted mice diaphragms were examined with light, scanning, and transmission electron microscopy. DU145 xenografts installations, far away from the implanted site, were described as the smallest installation to large diaphragm outgrowths in moribund mice. Carcinomas did not show extracellular matrix and, reaching more than 0.15 mm in thickness, they revealed new structures in these outgrowths. Voids to be gland-like structures with mediocre secretion and, unexpectedly, intercellular spaces connected with fascicles of elongated DU145 cells that merged with a vascular supply originated from either the tumor cells and/or some perimysium vessels. In the largest carcinomas, most important vascular invasions coincidently accompanied the mouse lethality, similarly to human cancers. This androgen-independent model would be useful to study tumor outgrowth's changes related to testing anticancer strategy, including anti-angiogenic therapies involving toxicity, simultaneously with those of other vital organs with combined biomolecular and fine structure techniques.
Collapse
Affiliation(s)
- Dr Jacques Gilloteaux
- Department of Anatomical Sciences, St Georges' University International School of Medicine, KB Taylor Global Scholar's Program, Newcastle upon Tyne, UK, NE1 8JG.,Unit of Research in Molecular Physiology (URPhyM), NARILIS, Université de Namur, Namur, Belgium, 5000.,Department of Anatomical Sciences, Ohio Medical University (NEOMed/Northeastern Ohio Universities College of Medicine, Rootstown, OH, USA, 44272
| | - James M Jamison
- Department of Urology, Ohio Medical University (NEOMed/Northeastern Ohio Universities College of Medicine, Rootstown, OH, USA, 44272.,St Thomas Hospital, The Apatone Development Center, Summa Research Foundation, Akron, OH, USA, 44310
| | - Jack L Summers
- Department of Urology, Ohio Medical University (NEOMed/Northeastern Ohio Universities College of Medicine, Rootstown, OH, USA, 44272.,St Thomas Hospital, The Apatone Development Center, Summa Research Foundation, Akron, OH, USA, 44310
| | - Henryk S Taper
- Laboratoire de Pharmacologie Toxicologique et Cancérologique, School of Pharmacy, Université Catholique de Louvain, Brussels, Belgium, 1200
| |
Collapse
|
29
|
Ahmadi-Balootaki S, Doosti A, Jafarinia M, Goodarzi HR. Targeting the MALAT1 gene with the CRISPR/Cas9 technique in prostate cancer. Genes Environ 2022; 44:22. [PMID: 36163080 PMCID: PMC9511773 DOI: 10.1186/s41021-022-00252-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 08/17/2022] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND The MALAT1 lncRNA acts as an oncogene in Prostate cancer (PC); thus, it can be severe as a cancer biomarker. METHODS Using bioinformatics datasets including (HTSeq-Counts, GDC, and TCGA) 5501 gene expression profiling specimens were gathered. Then, expression profiles and sample survival of lncRNA were investigated using COX regression analyses, ROC curve analysis. The Database for Annotation, Visualization, and Integrated Discovery was used to conduct GO and KEGG studies on the lncRNA-related PCGs. After MALAT1 Knockout via CRISPR/Cas9 technique, the MALAT1 expression was assessed in DU-145 cells. The deletion of the target fragment was examined by polymerase chain reaction (PCR). Also, the expression of apoptosis genes was investigated by qRT-PCR. The viability and cell proliferation were measured using the MTT assay. Cell migration capability was determined using the cell scratch assay. The results of qRT-PCR were assessed by the ΔΔCt method, and finally, statistical analysis was performed in SPSS software. RESULTS A maximum of 451 lncRNAs were discovered to reflect different expressions between PC and non-carcinoma tissue samples, with 307 being upregulated and 144 being down-regulated. Thirty-six lncRNAs related to OS were carefully selected, which were then subjected to stepwise multivariate Cox regression analysis, with 2 lncRNAs (MALAT1, HOXB-AS3). MALAT1 is highly expressed in PC cells. MALAT1 Knockout in DU-145 cells increases apoptosis and prevents proliferation and migration, and DU-145 transfected cells were unable to migrate based on the scratch recovery test. Overall, data suggest that MALAT1 overexpression in PC helps metastasis and tumorigenesis. Also, MALAT1 knockout can be considered a therapeutic and diagnostic target in PC. CONCLUSION Targeting MALAT1 by CRISPR/Cas9 technique inhibit the cell proliferation and migration, and in addition induce apoptosis. Thus, MALAT1 can act as a tumor biomarker and therapeutic target.
Collapse
Affiliation(s)
| | - Abbas Doosti
- Biotechnology Research Center, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran.
| | - Mojtaba Jafarinia
- Department of Biology, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran
| | - Hamed Reza Goodarzi
- Department of Genetic, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran
| |
Collapse
|
30
|
Gan J, Liu S, Zhang Y, He L, Bai L, Liao R, Zhao J, Guo M, Jiang W, Li J, Li Q, Mu G, Wu Y, Wang X, Zhang X, Zhou D, Lv H, Wang Z, Zhang Y, Qian C, Feng M, Chen H, Meng Q, Huang X. MicroRNA-375 is a therapeutic target for castration-resistant prostate cancer through the PTPN4/STAT3 axis. Exp Mol Med 2022; 54:1290-1305. [PMID: 36042375 PMCID: PMC9440249 DOI: 10.1038/s12276-022-00837-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 05/31/2022] [Accepted: 06/27/2022] [Indexed: 04/08/2023] Open
Abstract
The functional role of microRNA-375 (miR-375) in the development of prostate cancer (PCa) remains controversial. Previously, we found that plasma exosomal miR-375 is significantly elevated in castration-resistant PCa (CRPC) patients compared with castration-sensitive PCa patients. Here, we aimed to determine how miR-375 modulates CRPC progression and thereafter to evaluate the therapeutic potential of human umbilical cord mesenchymal stem cell (hucMSC)-derived exosomes loaded with miR-375 antisense oligonucleotides (e-375i). We used miRNA in situ hybridization technique to evaluate miR-375 expression in PCa tissues, gain- and loss-of-function experiments to determine miR-375 function, and bioinformatic methods, dual-luciferase reporter assay, qPCR, IHC and western blotting to determine and validate the target as well as the effects of miR-375 at the molecular level. Then, e-375i complexes were assessed for their antagonizing effects against miR-375. We found that the expression of miR-375 was elevated in PCa tissues and cancer exosomes, correlating with the Gleason score. Forced expression of miR-375 enhanced the expression of EMT markers and AR but suppressed apoptosis markers, leading to enhanced proliferation, migration, invasion, and enzalutamide resistance and decreased apoptosis of PCa cells. These effects could be reversed by miR-375 silencing. Mechanistically, miR-375 directly interfered with the expression of phosphatase nonreceptor type 4 (PTPN4), which in turn stabilized phosphorylated STAT3. Application of e-375i could inhibit miR-375, upregulate PTPN4 and downregulate p-STAT3, eventually repressing the growth of PCa. Collectively, we identified a novel miR-375 target, PTPN4, that functions upstream of STAT3, and targeting miR-375 may be an alternative therapeutic for PCa, especially for CRPC with high AR levels.
Collapse
Affiliation(s)
- Junqing Gan
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, 150081, China
| | - Shan Liu
- Biotherapy Center, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, 150081, China
| | - Yu Zhang
- Biotherapy Center, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, 150081, China
| | - Liangzi He
- Department of Anesthesiology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, 150081, China
| | - Lu Bai
- Biotherapy Center, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, 150081, China
| | - Ran Liao
- Biotherapy Center, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, 150081, China
| | - Juan Zhao
- Biotherapy Center, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, 150081, China
| | - Madi Guo
- Biotherapy Center, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, 150081, China
| | - Wei Jiang
- Biotherapy Center, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, 150081, China
| | - Jiade Li
- Biotherapy Center, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, 150081, China
| | - Qi Li
- Biotherapy Center, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, 150081, China
| | - Guannan Mu
- Biotherapy Center, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, 150081, China
| | - Yangjiazi Wu
- Biotherapy Center, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, 150081, China
| | - Xinling Wang
- Biotherapy Center, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, 150081, China
| | - Xingli Zhang
- Biotherapy Center, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, 150081, China
| | - Dan Zhou
- Biotherapy Center, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, 150081, China
| | - Huimin Lv
- Biotherapy Center, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, 150081, China
| | - Zhengfeng Wang
- Department of Neurosurgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Yanqiao Zhang
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, 150081, China
| | - Cheng Qian
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, 150081, China
| | - MeiYan Feng
- Department of Pathology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, 150081, China
| | - Hui Chen
- Department of Urologic Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, 150081, China
| | - Qingwei Meng
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, 150081, China
| | - Xiaoyi Huang
- Biotherapy Center, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, 150081, China.
- NHC Key Laboratory of Cell Transplantation, Harbin Medical University, Harbin, Heilongjiang, 150081, China.
| |
Collapse
|
31
|
Milan KL, Jayasuriya R, Harithpriya K, Anuradha M, Sarada DVL, Siti Rahayu N, Ramkumar KM. Vitamin D resistant genes - promising therapeutic targets of chronic diseases. Food Funct 2022; 13:7984-7998. [PMID: 35856462 DOI: 10.1039/d2fo00822j] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Vitamin D is an essential vitamin indispensable for calcium and phosphate metabolism, and its deficiency has been implicated in several extra-skeletal pathologies, including cancer and chronic kidney disease. Synthesized endogenously in the layers of the skin by the action of UV-B radiation, the vitamin maintains the integrity of the bones, teeth, and muscles and is involved in cell proliferation, differentiation, and immunity. The deficiency of Vit-D is increasing at an alarming rate, with nearly 32% of children and adults being either deficient or having insufficient levels. This has been attributed to Vit-D resistant genes that cause a reduction in circulatory Vit-D levels through a set of signaling pathways. CYP24A1, SMRT, and SNAIL are three genes responsible for Vit-D resistance as their activity either lowers the circulatory levels of Vit-D or reduces its availability in target tissues. The hydroxylase CYP24A1 inactivates analogs and prohormonal and/or hormonal forms of calcitriol. Elevation of the expression of CYP24A1 is the major cause of exacerbation of several diseases. CYP24A1 is rate-limiting, and its induction has been correlated with increased prognosis of diseases, while loss of function mutations cause hypersensitivity to Vit-D. The silencing mediator of retinoic acid and thyroid hormone receptor (SMRT) and its corepressor are involved in the transcriptional repression of VDR-target genes. SNAIL1 (SNAIL), SNAIL2 (Slug), and SNAIL3 (Smuc) are involved in transcriptional repression and binding to histone deacetylases and methyltransferases in addition to recruiting polycomb repressive complexes to the target gene promoters. An inverse relationship between the levels of calcitriol and the epithelial-to-mesenchymal transition is reported. Studies have demonstrated a strong association between Vit-D deficiency and chronic diseases, including cardiovascular diseases, diabetes, cancers, autoimmune diseases, infectious diseases, etc. Vit-D resistant genes associated with the aforementioned chronic diseases could serve as potential therapeutic targets. This review focuses on the basic structures and mechanisms of the repression of Vit-D regulated genes and highlights the role of Vit-D resistant genes in chronic diseases.
Collapse
Affiliation(s)
- Kunnath Lakshmanan Milan
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India.
| | - Ravichandran Jayasuriya
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India.
| | - Kannan Harithpriya
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India.
| | - Murugesan Anuradha
- Department of Obstetrics & Gynaecology, SRM Medical College Hospital and Research Centre, Kattankulathur 603 203, Tamil Nadu, India
| | - Dronamraju V L Sarada
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India.
| | - Nadhiroh Siti Rahayu
- Department of Nutrition, Faculty of Public Health, Universitas Airlangga, Indonesia
| | - Kunka Mohanram Ramkumar
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India.
| |
Collapse
|
32
|
Nishat ZS, Hossain T, Islam MN, Phan HP, Wahab MA, Moni MA, Salomon C, Amin MA, Sina AAI, Hossain MSA, Kaneti YV, Yamauchi Y, Masud MK. Hydrogel Nanoarchitectonics: An Evolving Paradigm for Ultrasensitive Biosensing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2107571. [PMID: 35620959 DOI: 10.1002/smll.202107571] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 03/02/2022] [Indexed: 06/15/2023]
Abstract
The integration of nanoarchitectonics and hydrogel into conventional biosensing platforms offers the opportunities to design physically and chemically controlled and optimized soft structures with superior biocompatibility, better immobilization of biomolecules, and specific and sensitive biosensor design. The physical and chemical properties of 3D hydrogel structures can be modified by integrating with nanostructures. Such modifications can enhance their responsiveness to mechanical, optical, thermal, magnetic, and electric stimuli, which in turn can enhance the practicality of biosensors in clinical settings. This review describes the synthesis and kinetics of gel networks and exploitation of nanostructure-integrated hydrogels in biosensing. With an emphasis on different integration strategies of hydrogel with nanostructures, this review highlights the importance of hydrogel nanostructures as one of the most favorable candidates for developing ultrasensitive biosensors. Moreover, hydrogel nanoarchitectonics are also portrayed as a promising candidate for fabricating next-generation robust biosensors.
Collapse
Affiliation(s)
- Zakia Sultana Nishat
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh
| | - Tanvir Hossain
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Md Nazmul Islam
- School of Health and Life Sciences, Teesside University, Tees Valley, Middlesbrough, TS1 3BA, UK
| | - Hoang-Phuong Phan
- Queensland Micro and Nanotechnology Centre, Griffith University, Nathan, QLD, 4111, Australia
| | - Md A Wahab
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Mohammad Ali Moni
- School of Health and Rehabilitation Sciences, Faculty of Health and Behavioural Sciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Carlos Salomon
- Exosome Biology Laboratory, Centre for Clinical Diagnostics, University of Queensland Centre for Clinical Research, Royal Brisbane and Women's Hospital Faculty of Medicine, The University of Queensland, Herston, Brisbane City, QLD, 4029, Australia
- Departamento de Investigación, Postgrado y Educación Continua (DIPEC), Facultad de Ciencias de la Salud, Universidad del Alba, Santiago, 8320000, Chile
| | - Mohammed A Amin
- Department of Chemistry, College of Science, Taif University, P. O. Box 11099, Taif, 21944, Saudi Arabia
| | - Abu Ali Ibn Sina
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard University, Boston, MA, 02115, USA
| | - Md Shahriar A Hossain
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, 4072, Australia
- School of Mechanical and Mining Engineering, Faculty of Engineering, Architecture and Information Technology (EAIT), The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Yusuf Valentino Kaneti
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Yusuke Yamauchi
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, 4072, Australia
- School of Chemical Engineering, Faculty of Engineering, Architecture and Information Technology (EAIT), The University of Queensland, Brisbane, QLD, 4072, Australia
- JST-ERATO Yamauchi Materials Space-Tectonics Project and International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science, Tsukuba, Ibaraki, 305-0044, Japan
| | - Mostafa Kamal Masud
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, 4072, Australia
- JST-ERATO Yamauchi Materials Space-Tectonics Project and International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science, Tsukuba, Ibaraki, 305-0044, Japan
| |
Collapse
|
33
|
Zhang Y, Andrade R, Hanna AA, Pflum MKH. Evidence that HDAC7 acts as an epigenetic "reader" of AR acetylation through NCoR-HDAC3 dissociation. Cell Chem Biol 2022; 29:1162-1173.e5. [PMID: 35709754 DOI: 10.1016/j.chembiol.2022.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 11/30/2021] [Accepted: 05/23/2022] [Indexed: 11/03/2022]
Abstract
Histone deacetylase (HDAC) proteins are epigenetic regulators that govern a wide variety of cellular events. With a role in cancer formation, HDAC inhibitors have emerged as anti-cancer therapeutics. Among the eleven metal-dependent class I, II, and IV HDAC proteins targeted by inhibitor drugs, class IIa HDAC4, -5, -7, and -9 harbor low deacetylase activity and are hypothesized to be "reader" proteins, which bind to post-translationally acetylated lysine. However, evidence linking acetyllysine binding to a downstream functional event is lacking. Here, we report for the first time that HDAC4, -5, and -7 dissociated from corepressor NCoR in the presence of an acetyllysine-containing peptide, consistent with reader function. Documenting the biological consequences of this possible reader function, mutation of a critical acetylation site regulated androgen receptor (AR) transcriptional activation function through HDAC7-NCoR-HDAC3 dissociation. The data document the first evidence consistent with epigenetic-reader functions of class IIa HDAC proteins.
Collapse
Affiliation(s)
- Yuchen Zhang
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI 48202, USA
| | - Rafael Andrade
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI 48202, USA
| | - Anthony A Hanna
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI 48202, USA
| | - Mary Kay H Pflum
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI 48202, USA.
| |
Collapse
|
34
|
Kim T, Jeong K, Kim E, Yoon K, Choi J, Park JH, Kim JH, Kim HS, Youn HD, Cho EJ. Menin Enhances Androgen Receptor-Independent Proliferation and Migration of Prostate Cancer Cells. Mol Cells 2022; 45:202-215. [PMID: 35014621 PMCID: PMC9001152 DOI: 10.14348/molcells.2021.0206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 11/19/2021] [Accepted: 12/07/2021] [Indexed: 11/27/2022] Open
Abstract
The androgen receptor (AR) is an important therapeutic target for treating prostate cancer (PCa). Moreover, there is an increasing need for understanding the AR-independent progression of tumor cells such as neuroendocrine prostate cancer (NEPC). Menin, which is encoded by multiple endocrine neoplasia type 1 (MEN1), serves as a direct link between AR and the mixed-lineage leukemia (MLL) complex in PCa development by activating AR target genes through histone H3 lysine 4 methylation. Although menin is a critical component of AR signaling, its tumorigenic role in AR-independent PCa cells remains unknown. Here, we compared the role of menin in AR-positive and AR-negative PCa cells via RNAi-mediated or pharmacological inhibition of menin. We demonstrated that menin was involved in tumor cell growth and metastasis in PCa cells with low or deficient levels of AR. The inhibition of menin significantly diminished the growth of PCa cells and induced apoptosis, regardless of the presence of AR. Additionally, transcriptome analysis showed that the expression of many metastasis-associated genes was perturbed by menin inhibition in AR-negative DU145 cells. Furthermore, wound-healing assay results showed that menin promoted cell migration in AR-independent cellular contexts. Overall, these findings suggest a critical function of menin in tumorigenesis and provide a rationale for drug development against menin toward targeting high-risk metastatic PCa, especially those independent of AR.
Collapse
Affiliation(s)
- Taewan Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea
| | - Kwanyoung Jeong
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea
| | - Eunji Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea
| | - Kwanghyun Yoon
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea
| | - Jinmi Choi
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea
| | - Jae Hyeon Park
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea
| | - Jae-Hwan Kim
- NineBiopharm, Co., Ltd., Cheongju 28161, Korea
- National Creative Research Center for Epigenome Reprogramming Network, Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Hyung Sik Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea
| | - Hong-Duk Youn
- National Creative Research Center for Epigenome Reprogramming Network, Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Eun-Jung Cho
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea
| |
Collapse
|
35
|
Antagonizing RARγ Drives Necroptosis of Cancer Stem Cells. Int J Mol Sci 2022; 23:ijms23094814. [PMID: 35563205 PMCID: PMC9105400 DOI: 10.3390/ijms23094814] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 04/25/2022] [Accepted: 04/25/2022] [Indexed: 12/23/2022] Open
Abstract
There is a need for agents that eliminate cancer stem cells, which sustain cancer and are also largely responsible for disease relapse and metastasis. Conventional chemotherapeutics and radiotherapy are often highly effective against the bulk of cancer cells, which are proliferating, but spare cancer stem cells. Therapeutics that target cancer stem cells may also provide a bona fide cure for cancer. There are two rationales for targeting the retinoic acid receptor (RAR)γ. First, RARγ is expressed selectively within primitive cells. Second, RARγ is a putative oncogene for a number of human cancers, including cases of acute myeloid leukemia, cholangiocarcinoma, and colorectal, renal and hepatocellular carcinomas. Prostate cancer cells depend on active RARγ for their survival. Antagonizing all RARs caused necroptosis of prostate and breast cancer stem cell-like cells, and the cancer stem cells that gave rise to neurospheres from pediatric patients’ primitive neuroectodermal tumors and an astrocytoma. As tested for prostate cancer, antagonizing RARγ was sufficient to drive necroptosis. Achieving cancer-selectively is a longstanding paradigm for developing new treatments. The normal prostate epithelium was less sensitive to the RARγ antagonist and pan-RAR antagonist than prostate cancer cells, and fibroblasts and blood mononuclear cells were insensitive. The RARγ antagonist and pan-RAR antagonist are promising new cancer therapeutics.
Collapse
|
36
|
Phytochemical analysis of Daphne pontica L. stems with their pro-apoptotic properties against DU-145 and LNCaP prostate cancer cells. Daru 2022; 30:85-101. [PMID: 35195873 PMCID: PMC9114221 DOI: 10.1007/s40199-022-00434-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 01/16/2022] [Indexed: 10/19/2022] Open
Abstract
BACKGROUND Daphne pontica is an endemic plant grown wild in the North part of Iran, with anticancer activities. OBJECTIVES This study aims to analyze the phytochemistry and screen the cytotoxic activity of new bioactive compounds against a panel of cancer cells, in addition to proapototic properties against prostate cancer cells. METHOD Purification procedure was done using repeated column chromatographies by MPLC and HPLC systems. The structures were elucidated by the NMR and exact mass spectroscopy, stereochemistry by NOESY, and absolute configuration by electronic circular dichroism (ECD) spectra. Cytotoxicity was done against DU 145, LNCaP, HeLa, MCF-7, and MDA-MB 231 cells by standard MTT assay. An annexin V/PI assay was performed to measure the type of death following treatment with these compounds for 48 h, followed by the caspase-3 activity test. RESULTS In this study, one new dilignan named lignopontin A (9), in addition to 13 known compounds including two phenolic acids (3, 5), one flavanone (6), one bis flavonoid (1), one cumarin glycoside (2), one mono (4) and two dicumarins (10, 11), two lignans (7, 8), and three daphnane diterpenoids (12-14) were isolated for the first time from D. pontica stems. Complete spectral data of compound 12, named as 6,7α-epoxy-5β-hydroxy-9,13,14-ortho-(4,2E)-pentadeca-2,4-diene-1-yl)-resiniferonol, and compound 14, named as 6,7α-epoxy-5β-hydroxy-9,3,14-ortho-(2,4E)-pentadeca-2,4-di-1-yl)-resiniferonol-12β-yl-acetate are reported for the first time. In the MTT assay of newly described compounds against a panel of cancer cells, compounds 9, 12, and 14 possessed moderate to potent cytotoxicity against prostate, breast, and cervical cancer cells in a dose-dependent manner. Flow cytometry analysis against prostate cancer cells indicated that the cytotoxicity of compounds 12 and 14 was due to their ability to induce apoptosis. In the case of compound 9, in Du 145 cells, cell death was mainly through apoptosis. In contrast, LNCaP cells showed both apoptosis and necrotic cell death, predominated by necrosis at the higher concentrations. Caspase-3 activity confirmed apoptosis observed in these compounds through the caspase pathway in prostate cancer cells. CONCLUSION D. pontica is a new source of dimeric phenolic compounds, including bisflavonoids, phenylpropanoid-cumarin adduct, and dilignans, as well as daphnane diterpenoids with resiniferonol core with long-chain orthoester moieties. In cytotoxicity screening, compounds 9, 12, and 14 inhibited the growth of DU-145 and LNCaP cells in a dose-dependent manner with IC50 varied from 0.9 - 27.3 and 25.2 - 87.4 μM, respectively. Among them, 9 exhibited selective growth inhibition against DU 145 treated cells. LNCaP cells demonstrated the highest sensitivity to treatment with compound 12.
Collapse
|
37
|
Souza MF, Cólus IMS, Fonseca AS, Antunes VC, Kumar D, Cavalli LR. MiR-182-5p Modulates Prostate Cancer Aggressive Phenotypes by Targeting EMT Associated Pathways. Biomolecules 2022; 12:187. [PMID: 35204688 PMCID: PMC8961520 DOI: 10.3390/biom12020187] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/27/2021] [Accepted: 01/01/2022] [Indexed: 12/15/2022] Open
Abstract
Prostate cancer (PCa) is a clinically heterogeneous disease, where deregulation of epigenetic events, such as miRNA expression alterations, are determinants for its development and progression. MiR-182-5p, a member of the miR-183 family, when overexpressed has been associated with PCa tumor progression and decreased patients' survival rates. In this study, we determined the regulatory role of miR-182-5p in modulating aggressive tumor phenotypes in androgen-refractory PCa cell lines (PC3 and DU-145). The transient transfection of the cell lines with miR-182-5p inhibitor and mimic systems, significantly affected cell proliferation, adhesion, migration, and the viability of the cells to the chemotherapeutic agents, docetaxel, and abiraterone. It also affected the protein expression levels of the tumor progression marker pAKT. These changes, however, were differentially observed in the cell lines studied. A comprehensive biological and functional enrichment analysis and miRNA/mRNA interaction revealed its strong involvement in the epithelial-mesenchymal transition (EMT) process; expression analysis of EMT markers in the PCa transfected cells directly or indirectly modulated the analyzed tumor phenotypes. In conclusion, miR-182-5p differentially impacts tumorigenesis in androgen-refractory PCa cells, in a compatible oncomiR mode of action by targeting EMT-associated pathways.
Collapse
Affiliation(s)
- Marilesia Ferreira Souza
- General Biology Department, State University of Londrina, Londrina, PR 86057-970, Brazil; (M.F.S.); (I.M.S.C.)
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20007, USA
| | - Ilce Mara Syllos Cólus
- General Biology Department, State University of Londrina, Londrina, PR 86057-970, Brazil; (M.F.S.); (I.M.S.C.)
| | - Aline Simoneti Fonseca
- Research Institute Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba, PR 80240-020, Brazil; (A.S.F.); (V.C.A.)
| | - Valquíria Casanova Antunes
- Research Institute Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba, PR 80240-020, Brazil; (A.S.F.); (V.C.A.)
| | - Deepak Kumar
- Department of Pharmaceutical Sciences, North Carolina Central University, Durham, NC 27707, USA;
| | - Luciane Regina Cavalli
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20007, USA
- Research Institute Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba, PR 80240-020, Brazil; (A.S.F.); (V.C.A.)
| |
Collapse
|
38
|
Personalized 3-Gene Panel for Prostate Cancer Target Therapy. Curr Issues Mol Biol 2022; 44:360-382. [PMID: 35723406 PMCID: PMC8929157 DOI: 10.3390/cimb44010027] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/05/2022] [Accepted: 01/11/2022] [Indexed: 11/17/2022] Open
Abstract
Many years and billions spent for research did not yet produce an effective answer to prostate cancer (PCa). Not only each human, but even each cancer nodule in the same tumor, has unique transcriptome topology. The differences go beyond the expression level to the expression control and networking of individual genes. The unrepeatable heterogeneous transcriptomic organization among men makes the quest for universal biomarkers and “fit-for-all” treatments unrealistic. We present a bioinformatics procedure to identify each patient’s unique triplet of PCa Gene Master Regulators (GMRs) and predict consequences of their experimental manipulation. The procedure is based on the Genomic Fabric Paradigm (GFP), which characterizes each individual gene by the independent expression level, expression variability and expression coordination with each other gene. GFP can identify the GMRs whose controlled alteration would selectively kill the cancer cells with little consequence on the normal tissue. The method was applied to microarray data on surgically removed prostates from two men with metastatic PCas (each with three distinct cancer nodules), and DU145 and LNCaP PCa cell lines. The applications verified that each PCa case is unique and predicted the consequences of the GMRs’ manipulation. The predictions are theoretical and need further experimental validation.
Collapse
|
39
|
Dicitore A, Bacalini MG, Saronni D, Gaudenzi G, Cantone MC, Gelmini G, Grassi ES, Gentilini D, Borghi MO, Di Blasio AM, Persani L, Garagnani P, Franceschi C, Vitale G. Role of Epigenetic Therapy in the Modulation of Tumor Growth and Migration in Human Castration-Resistant Prostate Cancer Cells with Neuroendocrine Differentiation. Neuroendocrinology 2022; 112:580-594. [PMID: 34348348 DOI: 10.1159/000518801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 07/29/2021] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Neuroendocrine transdifferentiation (NED) of prostate cancer (PC) cells is associated with the development of resistance to antiandrogen therapy and poor prognosis in patients with castration-resistant PC (CRPC). Many of the molecular events, involved in NED, appear to be mediated by epigenetic mechanisms. In this study, we evaluated the antitumor activity and epigenetic modulation of 2 epigenetic drugs, such as the demethylating agent 5-aza-2'-deoxycytidine (AZA) and the methyl donor S-adenosylmethionine (SAM), in 2 human CRPC cell lines with NED (DU-145 and PC-3). METHODS The effects of AZA and SAM on cell viability, cell cycle, apoptosis, migration, and genome-wide DNA methylation profiling have been evaluated. RESULTS Both drugs showed a prominent antitumor activity in DU-145 and PC-3 cells, through perturbation of cell cycle progression, induction of apoptosis, and inhibition of cell migration. AZA and SAM reversed NED in DU-145 and PC-3, respectively. Moreover, AZA treatment modified DNA methylation pattern in DU-145 cells, sustaining a pervasive hypomethylation of the genome, with a relevant effect on several pathways involved in the regulation of cell proliferation, apoptosis, and cell migration, in particular Wnt/β-catenin. CONCLUSIONS A relevant antitumor activity of these epigenetic drugs on CRPC cell lines with NED opens a new scenario in the therapy of this lethal variant of PC.
Collapse
Affiliation(s)
- Alessandra Dicitore
- Istituto Auxologico Italiano, IRCCS, Laboratory of Geriatric and Oncologic Neuroendocrinology Research, Milan, Italy
| | | | - Davide Saronni
- Department of Medical Biotechnology and Translational Medicine (BIOMETRA), University of Milan, Milan, Italy
| | - Germano Gaudenzi
- Istituto Auxologico Italiano, IRCCS, Laboratory of Geriatric and Oncologic Neuroendocrinology Research, Milan, Italy
| | - Maria Celeste Cantone
- Department of Medical Biotechnology and Translational Medicine (BIOMETRA), University of Milan, Milan, Italy
| | - Giulia Gelmini
- Laboratory of Endocrine and Metabolic Research, Istituto Auxologico Italiano IRCCS, Milan, Italy
| | - Elisa Stellaria Grassi
- Department of Medical Biotechnology and Translational Medicine (BIOMETRA), University of Milan, Milan, Italy
| | - Davide Gentilini
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- Istituto Auxologico Italiano IRCCS, Bioinformatics and Statistical Genomics Unit, Milan, Italy
| | - Maria Orietta Borghi
- Istituto Auxologico Italiano, IRCCS, Experimental Laboratory of Immuno-rheumatology, Milan, Italy
- Department of Clinical Sciences and Community Health (DISCCO), University of Milan, Milan, Italy
| | | | - Luca Persani
- Department of Medical Biotechnology and Translational Medicine (BIOMETRA), University of Milan, Milan, Italy
- Laboratory of Endocrine and Metabolic Research, Istituto Auxologico Italiano IRCCS, Milan, Italy
| | - Paolo Garagnani
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Claudio Franceschi
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
- Department of Applied Mathematics, Institute of Information Technology, Mathematics and Mechanics, Lobachevsky State University of Nizhny Novgorod-National Research University, Nizhny Novgorod, Russian Federation
| | - Giovanni Vitale
- Istituto Auxologico Italiano, IRCCS, Laboratory of Geriatric and Oncologic Neuroendocrinology Research, Milan, Italy
- Department of Medical Biotechnology and Translational Medicine (BIOMETRA), University of Milan, Milan, Italy
| |
Collapse
|
40
|
Li X, Buckley B, Stoletov K, Jing Y, Ranson M, Lewis JD, Kelso M, Fliegel L. Roles of the Na +/H + Exchanger Isoform 1 and Urokinase in Prostate Cancer Cell Migration and Invasion. Int J Mol Sci 2021; 22:ijms222413263. [PMID: 34948058 PMCID: PMC8705693 DOI: 10.3390/ijms222413263] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/02/2021] [Accepted: 12/06/2021] [Indexed: 01/06/2023] Open
Abstract
Prostate cancer is a leading cause of cancer-associated deaths in men over 60 years of age. Most patients are killed by tumor metastasis. Recent evidence has implicated a role of the tumor microenvironment and urokinase plasminogen activator (uPA) in cancer cell migration, invasion, and metastasis. Here, we examine the role of the Na+/H+ exchanger isoform 1 (NHE1) and uPA in DU 145 prostate cancer cell migration and colony formation. Knockout of NHE1 reduced cell migration. The effects of a series of novel NHE1/uPA hexamethylene-amiloride-based inhibitors with varying efficacy towards NHE1 and uPA were examined on prostate cancer cells. Inhibition of NHE1-alone, or with inhibitors combining NHE1 or uPA inhibition-generally did not prevent prostate cancer cell migration. However, uPA inhibition-but not NHE1 inhibition-prevented anchorage-dependent colony formation. Application of inhibitors at concentrations that only saturate uPA inhibition decreased tumor invasion in vivo. The results suggest that while knockout of NHE1 affects cell migration, these effects are not due to NHE1-dependent proton translocation. Additionally, while neither NHE1 nor uPA activity was critical in cell migration, only uPA activity appeared to be critical in anchorage-dependent colony formation of DU 145 prostate cancer cells and invasion in vivo.
Collapse
Affiliation(s)
- Xiuju Li
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada; (X.L.); (Y.J.)
| | - Benjamin Buckley
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia; (B.B.); (M.R.); (M.K.)
- School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
- Molecular Horizons, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Konstantin Stoletov
- Department of Oncology, University of Alberta, Edmonton, AB T6G 2H7, Canada; (K.S.); (J.D.L.)
| | - Yang Jing
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada; (X.L.); (Y.J.)
| | - Marie Ranson
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia; (B.B.); (M.R.); (M.K.)
- School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
- Molecular Horizons, University of Wollongong, Wollongong, NSW 2522, Australia
| | - John D. Lewis
- Department of Oncology, University of Alberta, Edmonton, AB T6G 2H7, Canada; (K.S.); (J.D.L.)
| | - Mike Kelso
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia; (B.B.); (M.R.); (M.K.)
- School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
- Molecular Horizons, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Larry Fliegel
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada; (X.L.); (Y.J.)
- Correspondence: ; Tel.: +1-780-492-1848
| |
Collapse
|
41
|
Xu G, Meng Y, Wang L, Dong B, Peng F, Liu S, Li S, Liu T. miRNA-214-5p inhibits prostate cancer cell proliferation by targeting SOX4. World J Surg Oncol 2021; 19:338. [PMID: 34863188 PMCID: PMC8642955 DOI: 10.1186/s12957-021-02449-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 11/13/2021] [Indexed: 12/24/2022] Open
Abstract
Background Prostate cancer is the most common malignant tumor in men. Due to the lack of theoretical research on its pathogenic mechanism, the current cure rate is still low. miRNAs play an important role in the pathogenesis of various cancers. miRNA-214-5p plays an important role in the development of a variety of cancers. This study aims to explore the expression level of miR-214-5p in prostate cancer and make a preliminary study of its molecular mechanism in the development of prostate cancer to provide effective new strategies for the treatment of prostate cancer. Methods The target genes of miRNA-214-5p were predicted with bioinformatics technology, and the target relationship between miRNA-214-5p and its target genes was verified with dual luciferase reporter assay. RT-qPCR and Western blot were used to detect the expression levels of miRNA-214-5p and target genes in 50 clinical samples and two common prostate continuous cell lines, respectively. The targeting relationship between miRNA-214-5p and its target genes was verified with clinical data. miRNA-214-5p and miRNA-214-5p inhibitor was over-expressed in DU-145 cell lines to verify the effect of miRNA-214-5p on prostate cancer cell proliferation and SOX4 gene expression. And the mechanism of miRNA-214-5p inhibiting the proliferation of prostate cancer cells were analyzed by detecting the expression difference of downstream factors of SOX4 pathway. Bioinformatics analysis showed that miRNA-214-5p combined with SOX4 3′UTR region, and dual luciferase reporter assay further verified the reliability of the predicted results. The low expression of miRNA-214-5p was observed in prostate cancer tissues and cells, while high expression of SOX4 was observed in prostate cancer tissues and cells. Results Overexpression of miRNA-214-5p to prostate cancer cells significantly inhibited the proliferation of cancer cells, and the expression of SOX4 was inhibited in the transfected cell line. After transfection of miRNA-214-5p inhibitor into prostate cancer cells, the cell proliferation rate further increased. Meanwhile, overexpression of miRNA-214-5p effectively inhibited the expression of SOX4 downstream factors, including c-Myc, eIF4E, and CDK4. However, the specific knockdown of SOX4 through SOX4 shRNA significantly reduced the proliferation of prostate cancer cell lines. Conclusions miRNA-214-5 can inhibit the proliferation of prostate cancer cells by specifically targeting S0X4 and inhibiting the expression of growth factors downstream of this pathway. 1. Low expression of miRNA-214-5p is observed in prostate cancer cells. 2. miRNA-214-5p inhibits the proliferation of prostate cancer cells in vitro by targeting SOX4.
Collapse
Affiliation(s)
- Guangchi Xu
- Department of Urological Surgery, The Second Affiliated Hospital of Qiqihar Medical University, No. 37 Zhonghua West Road, Jianhua District, Qiqihar, 161000, Heilongjiang Province, China
| | - Yin Meng
- Department of Urological Surgery, The Second Affiliated Hospital of Qiqihar Medical University, No. 37 Zhonghua West Road, Jianhua District, Qiqihar, 161000, Heilongjiang Province, China
| | - Lihe Wang
- Department of Urological Surgery, The Second Affiliated Hospital of Qiqihar Medical University, No. 37 Zhonghua West Road, Jianhua District, Qiqihar, 161000, Heilongjiang Province, China
| | - Bo Dong
- Department of Urological Surgery, The Second Affiliated Hospital of Qiqihar Medical University, No. 37 Zhonghua West Road, Jianhua District, Qiqihar, 161000, Heilongjiang Province, China
| | - Feifei Peng
- Department of Urological Surgery, The Second Affiliated Hospital of Qiqihar Medical University, No. 37 Zhonghua West Road, Jianhua District, Qiqihar, 161000, Heilongjiang Province, China
| | - Songtao Liu
- Department of Urological Surgery, The Second Affiliated Hospital of Qiqihar Medical University, No. 37 Zhonghua West Road, Jianhua District, Qiqihar, 161000, Heilongjiang Province, China
| | - Shukui Li
- Department of Urological Surgery, The Second Affiliated Hospital of Qiqihar Medical University, No. 37 Zhonghua West Road, Jianhua District, Qiqihar, 161000, Heilongjiang Province, China
| | - Tao Liu
- Department of Urological Surgery, The Second Affiliated Hospital of Qiqihar Medical University, No. 37 Zhonghua West Road, Jianhua District, Qiqihar, 161000, Heilongjiang Province, China.
| |
Collapse
|
42
|
AFP peptide (AFPep) as a potential growth factor for prostate cancer. Med Oncol 2021; 39:2. [PMID: 34739644 DOI: 10.1007/s12032-021-01598-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 10/12/2021] [Indexed: 10/19/2022]
Abstract
Prostate cancer is the most common cancer among men in the USA. A peptide derived from the active site of alpha-fetoprotein (AFP), known as AFPep, has been shown to be efficacious in inhibiting breast cancer growth. The role of this derived peptide AFPep in the development of prostate cancer has yet to be studied. To investigate the role of AFPep on prostate cancer, we used the PC-3 and DU-145 cell lines. We found that through key anti-apoptosis and pro-proliferation molecules, AFPep enhances the proliferation of DU-145 prostate cancer cells. The anti-proliferative molecules p18, p21, and p27, along with the pro-apoptotic molecules Fas and Bax, were all down-regulated in DU-145 cell lines treated with AFPep. Conversely, AFPep was not found to have a proliferative effect on the PC-3 prostate cancer cell line. This finding suggests the effects of AFPep to be cell line-specific in prostate cancer. Further investigation into the effects of AFPep could lead to new areas of treating prostate cancer.
Collapse
|
43
|
In Vitro Effects of Papaverine on Cell Proliferation, Reactive Oxygen Species, and Cell Cycle Progression in Cancer Cells. Molecules 2021; 26:molecules26216388. [PMID: 34770797 PMCID: PMC8587410 DOI: 10.3390/molecules26216388] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/15/2021] [Accepted: 10/18/2021] [Indexed: 11/23/2022] Open
Abstract
Papaverine (PPV) is an alkaloid isolated from the Papaver somniferum. Research has shown that PPV inhibits proliferation. However, several questions remain regarding the effects of PPV in tumorigenic cells. In this study, the influence of PPV was investigated on the proliferation (spectrophotometry), morphology (light microscopy), oxidative stress (fluorescent microscopy), and cell cycle progression (flow cytometry) in MDA-MB-231, A549, and DU145 cell lines. Exposure to 150 μM PPV resulted in time- and dose-dependent antiproliferative activity with reduced cell growth to 56%, 53%, and 64% in the MDA-MB-231, A549, and DU145 cell lines, respectively. Light microscopy revealed that PPV exposure increased cellular protrusions in MDA-MB-231 and A549 cells to 34% and 23%. Hydrogen peroxide production increased to 1.04-, 1.02-, and 1.44-fold in PPV-treated MDA-MB-231, A549, and DU145 cells, respectively, compared to cells propagated in growth medium. Furthermore, exposure to PPV resulted in an increase of cells in the sub-G1 phase by 46% and endoreduplication by 10% compared to cells propagated in growth medium that presented with 2.8% cells in the sub-G1 phase and less than 1% in endoreduplication. The results of this study contribute to understanding of effects of PPV on cancer cell lines.
Collapse
|
44
|
Zhong S, Jeong JH, Huang C, Chen X, Dickinson SI, Dhillon J, Yang L, Luo JL. Targeting INMT and interrupting its methylation pathway for the treatment of castration resistant prostate cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:307. [PMID: 34587977 PMCID: PMC8482636 DOI: 10.1186/s13046-021-02109-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 09/19/2021] [Indexed: 02/07/2023]
Abstract
Background Castration-resistant prostate cancer (CRPC) is associated with a very poor prognosis, and the treatment of which remains a serious clinical challenge. Methods RNA-seq, qPCR, western blot and immunohistochemistry were employed to identify and confirm the high expression of indolethylamine N-methyltransferase (INMT) in CRPC and the clinical relevance. Chip assay was used to identify Histone-Lysine N-Methyltransferase (SMYD3) as a major epigenetic regulator of INMT. LC-MS/MS were used to identify new substrates of INMT methylation in CRPC tissues. Gene knockdown/overexpression, MTT and mouse cancer models were used to examine the role of INMT as well as the anticancer efficacy of INMT inhibitor N,N-dimethyltryptamine (DMT), the SMYD3 inhibitor BCl-12, the selenium compounds methaneseleninic acid (MSA) and Se-(Methyl)selenocysteine hydrochloride (MSC), and the newly identified endogenous INMT substrate Bis(7)-tacrine. Results We found that the expression of INMT was highly increased in CRPC and was correlated with poor prognosis of clinical prostate cancer (PCa). INMT promoted PCa castration resistance via detoxification of anticancer metabolites. Knockdown of INMT or treatment with INMT inhibitor N,N-dimethyltryptamine (DMT) significantly suppressed CRPC development. Histone-Lysine N-Methyltransferase SMYD3 was a major epigenetic regulator of INMT expression, treatment with SMYD3 inhibitor BCl-121 suppressed INMT expression and inhibits CRPC development. Importantly, INMT knockdown significantly increased the anticancer effect of the exogenous selenium compounds methaneseleninic acid (MSA) and Se-(Methyl)selenocysteine hydrochloride (MSC) as well as the endogenous metabolite Bis(7)-tacrine. Conclusions Our study suggests that INMT drives PCa castration resistance through detoxification of anticancer metabolites, targeting INMT or its regulator SMYD3 or/and its methylation metabolites represents an effective therapeutic avenue for CRPC treatment. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-021-02109-z.
Collapse
Affiliation(s)
- Shangwei Zhong
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL, 33458, USA
| | - Ji-Hak Jeong
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL, 33458, USA.,College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Changhao Huang
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL, 33458, USA
| | - Xueyan Chen
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL, 33458, USA
| | | | - Jasreman Dhillon
- Department of Pathology, Moffitt Cancer Center, 2902 Magnolia Drive, Tampa, FL, 33612, USA
| | - Li Yang
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL, 33458, USA. .,Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, People's Republic of China.
| | - Jun-Li Luo
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL, 33458, USA.
| |
Collapse
|
45
|
Quan Y, Zhang X, Butler W, Du Z, Wang M, Liu Y, Ping H. The role of N-cadherin/c-Jun/NDRG1 axis in the progression of prostate cancer. Int J Biol Sci 2021; 17:3288-3304. [PMID: 34512147 PMCID: PMC8416735 DOI: 10.7150/ijbs.63300] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 07/06/2021] [Indexed: 02/03/2023] Open
Abstract
The dysregulation of androgen receptor (AR) signaling is a critical event in the progression of prostate cancer (PCa) and hormone therapy consisting of androgen deprivation (ADT) or AR inhibition is therefore used to treat advanced cases. It is known that N-cadherin becomes upregulated following ADT and can directly induce PCa transformation to the castration-resistant stage (CRPC). However, the relationship between AR and N-cadherin is unclear and may promote better understanding of CRPC pathogenesis and progression. Here, we demonstrate a new axis of N-cadherin/c-Jun/N-myc downstream regulated gene 1 (NDRG1) that N-cadherin promotes c-Jun expression and suppresses NDRG1 to promote invasion and migration of PCa cells through epithelial to mesenchymal transition (EMT). Targeting N-cadherin in combination with enzalutamide (ENZ) treatment synergistically suppressed PC3 cell proliferation in vivo and in vitro. Further studies showed that compared to lower Gleason score (GS) (GS < 7) cases, high GS (GS > 7) cases exhibited elevated N-cadherin expression and reduced NDRG1 expression, corroborating our in vitro observations. We further demonstrate that c-Jun, AR, and DNA methyltransferase-1 (DNMT1) form a complex in the 12-O-tetradecanoyl phorbol-13-acetate (TPA) response elements (TREs) region of the NDRG1 promoter, which suppresses NDRG1 transcription through DNA hypermethylation. In conclusion, we demonstrate an underlying mechanism for how N-cadherin collaborates with AR and NDRG1 to promote CRPC progression. Controlling N-cadherin/c-Jun/NDRG1 axis may help to overcome resistance to commonly used hormone therapy to improve long-term patient outcomes.
Collapse
Affiliation(s)
- Yongjun Quan
- Department of Urology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Xiaodong Zhang
- Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - William Butler
- Department of Pathology, Duke University School of Medicine, Durham NC 27710, USA
| | - Zhen Du
- Department of Urology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Mingdong Wang
- Department of Urology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Yuexin Liu
- Department of Urology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Hao Ping
- Department of Urology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| |
Collapse
|
46
|
SILAC-based quantitative MS approach reveals Withaferin A regulated proteins in prostate cancer. J Proteomics 2021; 247:104334. [PMID: 34298187 DOI: 10.1016/j.jprot.2021.104334] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 06/30/2021] [Accepted: 07/16/2021] [Indexed: 01/06/2023]
Abstract
Withaferin A (WA) is a steroidal lactone extracted from Withania somnifera, commonly known as Ashwagandha. WA has several therapeutic benefits. The current study aims to identify proteins that are potentially regulated by WA in prostate cancer (PCA) cells. We used a SILAC-based proteomic approach to analyze the expression of proteins in response to WA treatment at 4 h and 24 h time points in three PCA cell lines: 22Rv1, DU-145, and LNCaP. Ontology analysis suggested that prolonged treatment with WA upregulated the expression of proteins involved in stress-response pathways. Treatment with WA increased oxidative stress, reduced global mRNA translation, and elevated the expression of cytoprotective stress granule (SG) protein G3BP1. WA treatment also enhanced the formation of SGs. The elevated expression of G3BP1 and the formation of SGs might constitute a mechanism of cytoprotection in PCA cells. Knockdown of G3BP1 blocked SG formation and enhanced the efficacy of WA to reduce PCA cell survival. SIGNIFICANCE: Withaferin A, a steroidal lactone, extracted from Withania somnifera is a promising anti-cancer drug. Using a SILAC-based quantitative proteomic approach, we identified proteins changed by WA-treatment at 4 h and 24 h in three prostate cancer (PCA) cell lines. WA-treatment induced the expression of proteins involved in apoptosis and reduced the expression of proteins involved in cell growth at 4 h. WA-treatment for 24 h enhanced the expression of proteins involved in stress response pathways. WA-treated cells exhibited increased oxidative stress, reduced mRNA translation and enhanced SG formation. PCA is characterized by higher metabolic rate and increased oxidative stress. PCA with a higher stress tolerance can effectively adapt to anti-cancer treatment stress, leading to drug resistance and cellular protection. Enhancing the level of oxidative stress along with inhibition of corresponding cytoprotective stress response pathways is a feasible option to prevent PCA from getting adapted to treatment stress. WA-treatment induced oxidative stress, in combination with blocking SGs by G3BP1 targeting, offers a therapeutic strategy to reduce PCA cell survival.
Collapse
|
47
|
Torres MJ, López-Moncada F, Herrera D, Indo S, Lefian A, Llanos P, Tapia J, Castellón EA, Contreras HR. Endothelin-1 induces changes in the expression levels of steroidogenic enzymes and increases androgen receptor and testosterone production in the PC3 prostate cancer cell line. Oncol Rep 2021; 46:171. [PMID: 34165174 PMCID: PMC8261198 DOI: 10.3892/or.2021.8122] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 05/05/2021] [Indexed: 12/28/2022] Open
Abstract
Endothelin-1 (ET-1) is involved in the regulation of steroidogenesis. Additionally, patients with castration-resistant prostate cancer (PCa) have a higher ET-1 plasma concentration than those with localized PCa and healthy individuals. The aim of the present study was to evaluate the effect of ET-1 on steroidogenesis enzymes, androgen receptor (AR) and testosterone (T) production in PCa cells. The expression levels of endothelin receptors in prostate tissue from patients with localized PCa by immunohistochemistry, and those in LNCaP and PC3 cells were determined reverse transcription-quantitative PCR (RT-qPCR) and western blotting. Furthermore, the expression levels of ET-1 were determined in LNCaP and PC3 cells by RT-qPCR and western blotting. The ET-1 receptor activation was evaluated by intracellular calcium measurement, the expression levels of AR and enzymes participating in steroidogenesis [cytochrome P450 family 11 subfamily A member 1 (CyP11A1), cytochrome P450 family 17 subfamily A member 1, aldo-keto reductase family member C2 and 3β-hydroxysteroid dehydrogenase/isomerase 2 (3β HSD2)] were determined by western blotting and T concentration was determined by ELISA using PC3 cells. The present results revealed higher expression levels of endothelin A receptor (ETAR) in tissues obtained from samples of patients with PCa with a low Gleason Score. No changes were identified for endothelin B receptor (ETBR). PC3 cells expressed higher levels of ET-1 and ETAR, while LNCaP cells exhibited higher expression levels of ETBR. Blocking of ETAR and endothelin B receptor decreased the expression levels of CyP11A1 and 3β HSD2 enzymes and AR in PC3 cells, as well as T secretion. These findings suggested that ET-1 has a potential role in modulating the intratumoral steroidogenesis pathway and might have relevance as a possible therapeutic target.
Collapse
Affiliation(s)
- María José Torres
- Department of Basic and Clinical Oncology, Faculty of Medicine, University of Chile, Santiago 8380453, Chile
| | - Fernanda López-Moncada
- Laboratory of Endocrinology and Reproductive Biology, University of Chile Clinical Hospital, Faculty of Medicine, University of Chile, Santiago 838 0000, Chile
| | - Daniela Herrera
- Department of Basic and Clinical Oncology, Faculty of Medicine, University of Chile, Santiago 8380453, Chile
| | - Sebastián Indo
- Department of Medical Technology, Faculty of Medicine, University of Chile, Santiago 8380453, Chile
| | - Alejandro Lefian
- Department of Basic and Clinical Oncology, Faculty of Medicine, University of Chile, Santiago 8380453, Chile
| | - Paola Llanos
- Institute for Research in Dental Sciences, Faculty of Dentistry, University of Chile, Santiago 8380544, Chile
| | - Julio Tapia
- Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago 8380453, Chile
| | - Enrique A Castellón
- Department of Basic and Clinical Oncology, Faculty of Medicine, University of Chile, Santiago 8380453, Chile
| | - Héctor R Contreras
- Department of Basic and Clinical Oncology, Faculty of Medicine, University of Chile, Santiago 8380453, Chile
| |
Collapse
|
48
|
Chemical constituents from basidiomycete Basidioradulum radula culture medium and their cytotoxic effect on human prostate cancer DU-145 cells. Bioorg Chem 2021; 114:105064. [PMID: 34134032 DOI: 10.1016/j.bioorg.2021.105064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 05/12/2021] [Accepted: 06/02/2021] [Indexed: 11/21/2022]
Abstract
Eight new naphtho[1,2-c]furan derivatives (1-8) along with six known analogues (9-14) were isolated from culture medium of the basidiomycete Basidioradulum radula. The structures of these compounds were identified using spectroscopic analysis, and their absolute configurations were resolved using X-ray diffraction, ECD, and VCD. Compounds 7 and 14 inhibited the cell viability of human prostate cancer DU-145 cells with IC50 values of 7.54 ± 0.03 μM and 5.04 ± 0.03 μM, respectively. At 8 μM, compounds 7 and 14 increased the percentage of apoptotic cells and upregulated the protein expression related to the apoptosis caspase pathways in DU-145 cells. Furthermore, the hallmarks of cells undergoing apoptosis, such as chromatin condensation, were also observed at this concentration. However, compound 7 and 14 showed no effect on the proliferation of splenocytes isolated from cyclophosphamide-induce immunosuppressed mice.
Collapse
|
49
|
Novohradsky V, Markova L, Kostrhunova H, Kasparkova J, Ruiz J, Marchán V, Brabec V. A Cyclometalated Ir III Complex Conjugated to a Coumarin Derivative Is a Potent Photodynamic Agent against Prostate Differentiated and Tumorigenic Cancer Stem Cells. Chemistry 2021; 27:8547-8556. [PMID: 33835526 DOI: 10.1002/chem.202100568] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Indexed: 12/14/2022]
Abstract
A cyclometalated IrIII complex conjugated to a far-red-emitting coumarin, IrIII -COUPY (3), was recently shown as a very promising photosensitizer suitable for photodynamic therapy of cancer. Therefore, the primary goal of this work was to deepen knowledge on the mechanism of its photoactivated antitumor action so that this information could be used to propose a new class of compounds as drug candidates for curing very hardly treatable human tumors, such as androgen resistant prostatic tumors of metastatic origin. Conventional anticancer chemotherapies exhibit several disadvantages, such as limited efficiency to target cancer stem cells (CSCs), which are considered the main reason for chemotherapy resistance, relapse, and metastasis. Herein, we show, using DU145 tumor cells, taken as the model of hormone-refractory and aggressive prostate cancer cells resistant to conventional antineoplastic drugs, that the photoactivated conjugate 3 very efficiently eliminates both prostate bulk (differentiated) and prostate hardly treatable CSCs simultaneously and with a similar efficiency. Notably, the very low toxicity of IrIII -COUPY conjugate in the prostate DU145 cells in the dark and its pronounced selectivity for tumor cells compared with noncancerous cells could result in low side effects and reduced damage of healthy cells during the photoactivated therapy by this agent. Moreover, the experiments performed with the 3D spheroids formed from DU145 CSCs showed that conjugate 3 can penetrate the inner layers of tumor spheres, which might markedly increase its therapeutic effect. Also interestingly, this conjugate induces apoptotic cell death in prostate cancer DU145 cells associated with calcium signaling flux in these cells and autophagy. To the best of our knowledge, this is the first study demonstrating that a photoactivatable metal-based compound is an efficient agent capable of killing even hardly treatable CSCs.
Collapse
Affiliation(s)
- Vojtech Novohradsky
- Czech Academy of Sciences, Institute of Biophysics, Kralovopolska 135, 61265, Brno, Czech Republic
| | - Lenka Markova
- Czech Academy of Sciences, Institute of Biophysics, Kralovopolska 135, 61265, Brno, Czech Republic
| | - Hana Kostrhunova
- Czech Academy of Sciences, Institute of Biophysics, Kralovopolska 135, 61265, Brno, Czech Republic
| | - Jana Kasparkova
- Czech Academy of Sciences, Institute of Biophysics, Kralovopolska 135, 61265, Brno, Czech Republic
| | - José Ruiz
- Departamento de Química Inorgánica, Universidad de Murcia, and Biomedical Research Institute of Murcia (IMIB-Arrixaca), 30071, Murcia, Spain
| | - Vicente Marchán
- Departament de Química Inorgànica i Orgànica, Secció de Química Orgànica, IBUB, Universitat de Barcelona, Martí i Franqués 1-11, 08028, Barcelona, Spain
| | - Viktor Brabec
- Czech Academy of Sciences, Institute of Biophysics, Kralovopolska 135, 61265, Brno, Czech Republic
| |
Collapse
|
50
|
Dulińska-Litewka J, Sharoni Y, Hałubiec P, Łazarczyk A, Szafrański O, McCubrey JA, Gąsiorkiewicz B, Laidler P, Bohn T. Recent Progress in Discovering the Role of Carotenoids and Their Metabolites in Prostatic Physiology and Pathology with a Focus on Prostate Cancer-A Review-Part I: Molecular Mechanisms of Carotenoid Action. Antioxidants (Basel) 2021; 10:antiox10040585. [PMID: 33920256 PMCID: PMC8069951 DOI: 10.3390/antiox10040585] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/05/2021] [Accepted: 04/07/2021] [Indexed: 12/13/2022] Open
Abstract
Among the vast variety of plant-derived phytochemicals, the group of carotenoids has continuously been investigated in order to optimize their potential application in the area of dietary intervention and medicine. One organ which has been especially targeted in many of these studies and clinical trials is the human prostate. Without doubt, carotenoids (and their endogenous derivatives—retinoids and other apo-carotenoids) are involved in intra- and intercellular signaling, cell growth and differentiation of prostate tissue. Due to the accumulation of new data on the role of different carotenoids such as lycopene (LC) and β-carotene (BC) in prostatic physiology and pathology, the present review aims to cover the past ten years of research in this area. Data from experimental studies are presented in the first part of the review, while epidemiological studies are disclosed and discussed in the second part. The objective of this compilation is to emphasize the present state of knowledge regarding the most potent molecular targets of carotenoids and their main metabolites, as well as to propose promising carotenoid agents for the prevention and treatment of prostatic diseases.
Collapse
Affiliation(s)
- Joanna Dulińska-Litewka
- Medical Biochemistry Medical College, Jagiellonian University, 31-034 Cracow, Poland; (P.H.); (A.Ł.); (O.S.); (B.G.); (P.L.)
- Correspondence: ; Tel.: +48-12-422-3272
| | - Yoav Sharoni
- Department of Clinical Biochemistry, Faculty of Health Sciences, Ben-Gurion University of the Negev, P.O. Box 653 Beer Sheva, Israel;
| | - Przemysław Hałubiec
- Medical Biochemistry Medical College, Jagiellonian University, 31-034 Cracow, Poland; (P.H.); (A.Ł.); (O.S.); (B.G.); (P.L.)
| | - Agnieszka Łazarczyk
- Medical Biochemistry Medical College, Jagiellonian University, 31-034 Cracow, Poland; (P.H.); (A.Ł.); (O.S.); (B.G.); (P.L.)
| | - Oskar Szafrański
- Medical Biochemistry Medical College, Jagiellonian University, 31-034 Cracow, Poland; (P.H.); (A.Ł.); (O.S.); (B.G.); (P.L.)
| | - James A. McCubrey
- Department of Microbiology and Immunology, Brody Medical Sciences Building, East Carolina University, Greenville, NC 27834, USA;
| | - Bartosz Gąsiorkiewicz
- Medical Biochemistry Medical College, Jagiellonian University, 31-034 Cracow, Poland; (P.H.); (A.Ł.); (O.S.); (B.G.); (P.L.)
| | - Piotr Laidler
- Medical Biochemistry Medical College, Jagiellonian University, 31-034 Cracow, Poland; (P.H.); (A.Ł.); (O.S.); (B.G.); (P.L.)
| | - Torsten Bohn
- Nutrition and Health Research Group, Department of Population Health, Luxembourg Institute of Health, 1 A-B, rue Thomas Edison, L-23 1445 Strassen, Luxembourg;
| |
Collapse
|