1
|
Yoelin S, Hooper D. New and Future Developments in Neurotoxins. Dermatol Surg 2024; 50:S112-S116. [PMID: 39196844 DOI: 10.1097/dss.0000000000004346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2024]
Abstract
BACKGROUND There are 7 known serotypes of botulinum neurotoxins (A through G). Currently, commercially available toxins are those in serotypes A and B. This paper will discuss new toxins on the horizon, developments in prolonging and shortening the duration of outcomes, and novel therapeutic indications on the horizon. OBJECTIVE To provide insight into new toxins and new therapeutic modalities surrounding toxins on the horizon. METHODS The authors have reviewed the relevant literature and shared their insights and opinions as to future developments in toxin research and potential clinical applications. CONCLUSION Botulinum neurotoxin type E's faster onset and shorter duration of effect represent true clinical differentiators. Future development of botulinum neurotoxin type E for aesthetic and therapeutic uses will be in areas where fast onset and short duration of effect are desirable. Current challenges with neuromodulators include the need for frequent treatments and lack of reversal agents. Agents to address both challenges and novel indications, including inhibition of melanogenesis, are being developed.
Collapse
Affiliation(s)
- Steve Yoelin
- Medical Associates, Inc., Newport Beach, California
| | | |
Collapse
|
2
|
Rasetti-Escargueil C, Palea S. Embracing the Versatility of Botulinum Neurotoxins in Conventional and New Therapeutic Applications. Toxins (Basel) 2024; 16:261. [PMID: 38922155 PMCID: PMC11209287 DOI: 10.3390/toxins16060261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/26/2024] [Accepted: 05/27/2024] [Indexed: 06/27/2024] Open
Abstract
Botulinum neurotoxins (BoNTs) have been used for almost half a century in the treatment of excessive muscle contractility. BoNTs are routinely used to treat movement disorders such as cervical dystonia, spastic conditions, blepharospasm, and hyperhidrosis, as well as for cosmetic purposes. In addition to the conventional indications, the use of BoNTs to reduce pain has gained increased recognition, giving rise to an increasing number of indications in disorders associated with chronic pain. Furthermore, BoNT-derived formulations are benefiting a much wider range of patients suffering from overactive bladder, erectile dysfunction, arthropathy, neuropathic pain, and cancer. BoNTs are categorised into seven toxinotypes, two of which are in clinical use, and each toxinotype is divided into multiple subtypes. With the development of bioinformatic tools, new BoNT-like toxins have been identified in non-Clostridial organisms. In addition to the expanding indications of existing formulations, the rich variety of toxinotypes or subtypes in the wild-type BoNTs associated with new BoNT-like toxins expand the BoNT superfamily, forming the basis on which to develop new BoNT-based therapeutics as well as research tools. An overview of the diversity of the BoNT family along with their conventional therapeutic uses is presented in this review followed by the engineering and formulation opportunities opening avenues in therapy.
Collapse
Affiliation(s)
| | - Stefano Palea
- Humana Biosciences-Prologue Biotech, 516 Rue Pierre et Marie Curie, 31670 Labège, France;
| |
Collapse
|
3
|
Leka O, Wu Y, Zanetti G, Furler S, Reinberg T, Marinho J, Schaefer JV, Plückthun A, Li X, Pirazzini M, Kammerer RA. A DARPin promotes faster onset of botulinum neurotoxin A1 action. Nat Commun 2023; 14:8317. [PMID: 38110403 PMCID: PMC10728214 DOI: 10.1038/s41467-023-44102-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 11/30/2023] [Indexed: 12/20/2023] Open
Abstract
In this study, we characterize Designed Ankyrin Repeat Proteins (DARPins) as investigative tools to probe botulinum neurotoxin A1 (BoNT/A1) structure and function. We identify DARPin-F5 that completely blocks SNAP25 substrate cleavage by BoNT/A1 in vitro. X-ray crystallography reveals that DARPin-F5 inhibits BoNT/A1 activity by interacting with a substrate-binding region between the α- and β-exosite. This DARPin does not block substrate cleavage of BoNT/A3, indicating that DARPin-F5 is a subtype-specific inhibitor. BoNT/A1 Glu-171 plays a critical role in the interaction with DARPin-F5 and its mutation to Asp, the residue found in BoNT/A3, results in a loss of inhibition of substrate cleavage. In contrast to the in vitro results, DARPin-F5 promotes faster substrate cleavage of BoNT/A1 in primary neurons and muscle tissue by increasing toxin translocation. Our findings could have important implications for the application of BoNT/A1 in therapeutic areas requiring faster onset of toxin action combined with long persistence.
Collapse
Affiliation(s)
- Oneda Leka
- Laboratory of Biomolecular Research, Division of Biology, Paul Scherrer Institut, 5232, Villigen PSI, Switzerland
| | - Yufan Wu
- Laboratory of Biomolecular Research, Division of Biology, Paul Scherrer Institut, 5232, Villigen PSI, Switzerland
| | - Giulia Zanetti
- Department of Biomedical Sciences, University of Padova, 35121, Padova, Italy
| | - Sven Furler
- Department of Biochemistry, University of Zurich, 8057, Zurich, Switzerland
| | - Thomas Reinberg
- Department of Biochemistry, University of Zurich, 8057, Zurich, Switzerland
| | - Joana Marinho
- Department of Biochemistry, University of Zurich, 8057, Zurich, Switzerland
| | - Jonas V Schaefer
- Department of Biochemistry, University of Zurich, 8057, Zurich, Switzerland
| | - Andreas Plückthun
- Department of Biochemistry, University of Zurich, 8057, Zurich, Switzerland
| | - Xiaodan Li
- Laboratory of Biomolecular Research, Division of Biology, Paul Scherrer Institut, 5232, Villigen PSI, Switzerland
| | - Marco Pirazzini
- Department of Biomedical Sciences, University of Padova, 35121, Padova, Italy
| | - Richard A Kammerer
- Laboratory of Biomolecular Research, Division of Biology, Paul Scherrer Institut, 5232, Villigen PSI, Switzerland.
| |
Collapse
|
4
|
Trombley S, Powell J, Guttipatti P, Matamoros A, Lin X, O'Harrow T, Steinschaden T, Miles L, Wang Q, Wang S, Qiu J, Li Q, Li F, Song Y. Glia instruct axon regeneration via a ternary modulation of neuronal calcium channels in Drosophila. Nat Commun 2023; 14:6490. [PMID: 37838791 PMCID: PMC10576831 DOI: 10.1038/s41467-023-42306-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 10/04/2023] [Indexed: 10/16/2023] Open
Abstract
A neuron's regenerative capacity is governed by its intrinsic and extrinsic environment. Both peripheral and central neurons exhibit cell-type-dependent axon regeneration, but the underlying mechanism is unclear. Glia provide a milieu essential for regeneration. However, the routes of glia-neuron signaling remain underexplored. Here, we show that regeneration specificity is determined by the axotomy-induced Ca2+ transients only in the fly regenerative neurons, which is mediated by L-type calcium channels, constituting the core intrinsic machinery. Peripheral glia regulate axon regeneration via a three-layered and balanced modulation. Glia-derived tumor necrosis factor acts through its neuronal receptor to maintain calcium channel expression after injury. Glia sustain calcium channel opening by enhancing membrane hyperpolarization via the inwardly-rectifying potassium channel (Irk1). Glia also release adenosine which signals through neuronal adenosine receptor (AdoR) to activate HCN channels (Ih) and dampen Ca2+ transients. Together, we identify a multifaceted glia-neuron coupling which can be hijacked to promote neural repair.
Collapse
Affiliation(s)
- Shannon Trombley
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Jackson Powell
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Pavithran Guttipatti
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Andrew Matamoros
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Xiaohui Lin
- Department of Neurosurgery, Zhongshan Hospital, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institute for Translational Brain Research, Fudan University, 200032, Shanghai, China
| | - Tristan O'Harrow
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Tobias Steinschaden
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Leann Miles
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Qin Wang
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Shuchao Wang
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Jingyun Qiu
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Qingyang Li
- Department of Neurosurgery, Zhongshan Hospital, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institute for Translational Brain Research, Fudan University, 200032, Shanghai, China
| | - Feng Li
- Department of Neurosurgery, Zhongshan Hospital, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institute for Translational Brain Research, Fudan University, 200032, Shanghai, China.
| | - Yuanquan Song
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA.
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
5
|
Kaji R. A look at the future-new BoNTs and delivery systems in development: What it could mean in the clinic. Toxicon 2023; 234:107264. [PMID: 37657515 DOI: 10.1016/j.toxicon.2023.107264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/07/2023] [Accepted: 08/22/2023] [Indexed: 09/03/2023]
Abstract
Despite the expanding clinical utility of botulinum neurotoxins, there remain problems to be solved for attaining the best outcome. The efficacy and safety need to be reconsidered for commercially available preparations all derived from subtype A1 or B1. Emerging new toxins include A2 or A6 subtypes or engineered toxins with less spread, more potency, longer durations of action, less antigenicity and better safety profile than currently used preparations. Non-toxic BoNTs with a few amino acid replacements of the light chain (LC) may have a role as a drug-delivery system if the toxicity is abolished entirely. At present, efficacy of these BoNTs in animal botulism was demonstrated.
Collapse
Affiliation(s)
- Ryuji Kaji
- Tokushima University, Department of Clinical Neuroscience, 2-50-1 Kuramoto-cho, Tokushima, 770-8503, Japan.
| |
Collapse
|
6
|
A Pilot Study of A2NTX, a Novel Low-Molecular-Weight Neurotoxin Derived from Subtype A2 for Post-Stroke Lower Limb Spasticity: Comparison with OnabotulinumtoxinA. Toxins (Basel) 2022; 14:toxins14110739. [PMID: 36355989 PMCID: PMC9697926 DOI: 10.3390/toxins14110739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/15/2022] [Accepted: 10/20/2022] [Indexed: 01/26/2023] Open
Abstract
All the currently used type A botulinum neurotoxins for clinical uses are of subtype A1. We compared the efficacy and safety for the first time head-to-head between a novel botulinum toxin A2NTX prepared from subtype A2 and onabotulinumtoxinA (BOTOX) derived from A1 for post-stroke spasticity. We assessed the modified Ashworth scale (MAS) of the ankle joint, the mobility scores of Functional Independence Measure (FIM), and the grip power of the unaffected hand before and after injecting 300 units of BOTOX or A2NTX into calf muscles. The procedure was done in a blinded manner for the patient, the injecting physician, and the examiner. Stroke patients with chronic spastic hemiparesis (15 for A2NTX and 16 for BOTOX) were enrolled, and 11 for A2NTX and 13 for BOTOX (MAS of ankle; > or = 2) were entered for the MAS study. Area-under-curves of changes in MAS (primary outcome) were greater for A2NTX by day 30 (p = 0.044), and were similar by day 60. FIM was significantly improved in the A2NTX group (p = 0.005), but not in the BOTOX group by day 60. The hand grip of the unaffected limb was significantly decreased in the BOTOX-injected group (p = 0.002), but was unaffected in the A2NTX-injected group by day 60, suggesting there was less spread of A2NTX to the upper limb than there was with BOTOX. Being a small-sized pilot investigation with an imbalance in the gender of the subjects, the present study suggested superior efficacy and safety of A2NTX, and warrants a larger scale clinical trial of A2NTX to confirm these preliminary results.
Collapse
|
7
|
Crystal Structures of the Clostridium botulinum Neurotoxin A6 Cell Binding Domain Alone and in Complex with GD1a Reveal Significant Conformational Flexibility. Int J Mol Sci 2022; 23:ijms23179620. [PMID: 36077016 PMCID: PMC9456117 DOI: 10.3390/ijms23179620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/22/2022] [Accepted: 08/24/2022] [Indexed: 11/26/2022] Open
Abstract
Clostridium botulinum neurotoxin A (BoNT/A) targets the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex, by cleaving synaptosomal-associated protein of 25 kDa size (SNAP-25). Cleavage of SNAP-25 results in flaccid paralysis due to repression of synaptic transmission at the neuromuscular junction. This activity has been exploited to treat a range of diseases associated with hypersecretion of neurotransmitters, with formulations of BoNT/A commercially available as therapeutics. Generally, BoNT activity is facilitated by three essential domains within the molecule, the cell binding domain (HC), the translocation domain (HN), and the catalytic domain (LC). The HC, which consists of an N-terminal (HCN) and a C-terminal (HCC) subdomain, is responsible for BoNT’s high target specificity where it forms a dual-receptor complex with synaptic vesicle protein 2 (SV2) and a ganglioside receptor on the surface of motor neurons. In this study, we have determined the crystal structure of botulinum neurotoxin A6 cell binding domain (HC/A6) in complex with GD1a and describe the interactions involved in ganglioside binding. We also present a new crystal form of wild type HC/A6 (crystal form II) where a large ‘hinge motion’ between the HCN and HCC subdomains is observed. These structures, along with a comparison to the previously determined wild type crystal structure of HC/A6 (crystal form I), reveals the degree of conformational flexibility exhibited by HC/A6.
Collapse
|
8
|
Fabris F, Šoštarić P, Matak I, Binz T, Toffan A, Simonato M, Montecucco C, Pirazzini M, Rossetto O. Detection of VAMP Proteolysis by Tetanus and Botulinum Neurotoxin Type B In Vivo with a Cleavage-Specific Antibody. Int J Mol Sci 2022; 23:ijms23084355. [PMID: 35457172 PMCID: PMC9024618 DOI: 10.3390/ijms23084355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/08/2022] [Accepted: 04/12/2022] [Indexed: 11/17/2022] Open
Abstract
Tetanus and Botulinum type B neurotoxins are bacterial metalloproteases that specifically cleave the vesicle-associated membrane protein VAMP at an identical peptide bond, resulting in inhibition of neuroexocytosis. The minute amounts of these neurotoxins commonly used in experimental animals are not detectable, nor is detection of their VAMP substrate sensitive enough. The immune detection of the cleaved substrate is much more sensitive, as we have previously shown for botulinum neurotoxin type A. Here, we describe the production in rabbit of a polyclonal antibody raised versus a peptide encompassing the 13 residues C-terminal with respect to the neurotoxin cleavage site. The antibody was affinity purified and found to recognize, with high specificity and selectivity, the novel N-terminus of VAMP that becomes exposed after cleavage by tetanus toxin and botulinum toxin type B. This antibody recognizes the neoepitope not only in native and denatured VAMP but also in cultured neurons and in neurons in vivo in neurotoxin-treated mice or rats, suggesting the great potential of this novel tool to elucidate tetanus and botulinum B toxin activity in vivo.
Collapse
Affiliation(s)
- Federico Fabris
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy; (F.F.); (C.M.)
| | - Petra Šoštarić
- Department of Pharmacology, School of Medicine, University of Zagreb, Šalata 11, 10000 Zagreb, Croatia; (P.Š.); (I.M.)
| | - Ivica Matak
- Department of Pharmacology, School of Medicine, University of Zagreb, Šalata 11, 10000 Zagreb, Croatia; (P.Š.); (I.M.)
| | - Thomas Binz
- Institute of Cellular Biochemistry, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany;
| | - Anna Toffan
- Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell’Università 10, 35020 Legnaro, Italy;
| | - Morena Simonato
- Institute of Neuroscience, Italian Research Council, University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy;
| | - Cesare Montecucco
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy; (F.F.); (C.M.)
- Institute of Neuroscience, Italian Research Council, University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy;
| | - Marco Pirazzini
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy; (F.F.); (C.M.)
- Interdepartmental Research Center of Myology CIR-Myo, University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy
- Correspondence: (M.P.); (O.R.)
| | - Ornella Rossetto
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy; (F.F.); (C.M.)
- Institute of Neuroscience, Italian Research Council, University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy;
- Interdepartmental Research Center of Myology CIR-Myo, University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy
- Correspondence: (M.P.); (O.R.)
| |
Collapse
|
9
|
Takeuchi T, Okuno T, Miyashiro A, Kohda T, Miyamoto R, Izumi Y, Kozaki S, Kaji R. Clinical Safety and Tolerability of A2NTX, a Novel Low-Molecular-Weight Neurotoxin Derived from Botulinum Neurotoxin Subtype A2, in Comparison with Subtype A1 Toxins. Toxins (Basel) 2021; 13:824. [PMID: 34822610 PMCID: PMC8623066 DOI: 10.3390/toxins13110824] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/11/2021] [Accepted: 11/16/2021] [Indexed: 11/29/2022] Open
Abstract
All the botulinum type A neurotoxins available for clinical use are of the A1 subtype. We developed a subtype A2 low-molecular-weight (150 kD (kilo Dalton)) neurotoxin (A2NTX) with less spread and faster entry into the motor nerve terminal than A1 in vitro and in vivo. Preliminary clinical studies showed that its efficacy is superior to A1 toxins. We conducted an open study exploring its safety and tolerability profile in comparison with A1LL (LL type A1 toxin, or onabotulinumtoxinA) and a low-molecular-weight (150 kD) A1 neurotoxin (A1NTX). Those who had been using A1LL (n = 90; 50-360 mouse LD50 units) or A1NTX (n = 30; 50-580 units) were switched to A2NTX (n = 120; 25-600 units) from 2010 to 2018 (number of sessions ~27, cumulative doses ~11,640 units per patient). The adverse events for A2NTX included weakness (n = 1, ascribed to alcoholic polyneuropathy), dysphagia (1), local weakness (4), and spread to other muscles (1), whereas those for A1LL or A1NTX comprised weakness (n = 2, A1NTX), dysphagia (8), ptosis (6), local weakness (7), and spread to other muscles (15). After injections, 89 out of 120 patients preferred A2NTX to A1 for the successive sessions. The present study demonstrated that A2NTX had clinical safety up to the dose of 500 units and was well tolerated compared to A1 toxins.
Collapse
Affiliation(s)
- Toshiaki Takeuchi
- Department of Clinical Neuroscience, Graduate School of Medicine, Tokushima University, Tokushima 770-8503, Japan; (T.T.); (T.O.); (A.M.); (R.M.); (Y.I.)
| | - Tsuyoshi Okuno
- Department of Clinical Neuroscience, Graduate School of Medicine, Tokushima University, Tokushima 770-8503, Japan; (T.T.); (T.O.); (A.M.); (R.M.); (Y.I.)
| | - Ai Miyashiro
- Department of Clinical Neuroscience, Graduate School of Medicine, Tokushima University, Tokushima 770-8503, Japan; (T.T.); (T.O.); (A.M.); (R.M.); (Y.I.)
| | - Tomoko Kohda
- Department of Veterinary Sciences, School of Life and Environmental Sciences, Osaka Prefecture University, Osaka 598-8531, Japan; (T.K.); (S.K.)
| | - Ryosuke Miyamoto
- Department of Clinical Neuroscience, Graduate School of Medicine, Tokushima University, Tokushima 770-8503, Japan; (T.T.); (T.O.); (A.M.); (R.M.); (Y.I.)
| | - Yuishin Izumi
- Department of Clinical Neuroscience, Graduate School of Medicine, Tokushima University, Tokushima 770-8503, Japan; (T.T.); (T.O.); (A.M.); (R.M.); (Y.I.)
| | - Shunji Kozaki
- Department of Veterinary Sciences, School of Life and Environmental Sciences, Osaka Prefecture University, Osaka 598-8531, Japan; (T.K.); (S.K.)
| | - Ryuji Kaji
- Department of Clinical Neuroscience, Graduate School of Medicine, Tokushima University, Tokushima 770-8503, Japan; (T.T.); (T.O.); (A.M.); (R.M.); (Y.I.)
| |
Collapse
|
10
|
Abrahão Cunha TC, Gontijo Couto AC, Januzzi E, Rosa Ferraz Gonçalves RT, Silva G, Silva CR. Analgesic potential of different available commercial brands of botulinum neurotoxin-A in formalin-induced orofacial pain in mice. Toxicon X 2021; 12:100083. [PMID: 34527897 PMCID: PMC8429966 DOI: 10.1016/j.toxcx.2021.100083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 03/29/2021] [Accepted: 08/26/2021] [Indexed: 11/29/2022] Open
Abstract
The use of botulinum neurotoxin-A (BoNT-A) is an alternative for the management of orofacial pain disorders. Although only Botox has labeled, there are other commercial brands available for use, among them: Dysport, Botulift, Prosigne, and Xeomin. The objective of the present study was to evaluate the possible differences in the antinociceptive effect evoked by different commercially available formulations of BoNT-A in an animal model of inflammatory orofacial pain induced by formalin injection. Male C57/BL6 mice (20–25 g) were submitted to the pre-treatment with five different commercial brands of BoNT-A (Botox, Botulift, Xeomin, Dysport, or Prosigne; with doses between 0.02 and 0.2 Units of Botulinum Toxin, in 20 μL of 0.9% saline) three days prior the 2% formalin injection. All injections were made subcutaneously into the right perinasal area. After formalin injections, nociceptive behaviors like rubbing the place of injection were quantified during the neurogenic (0–5 min) and inflammatory (15–30 min) phases. The treatment using Botox, Botulift, and Xeomin were able to induce antinociceptive effects in both phases of the formalin-induced pain animal model, however, Dysport and Prosigne reduced the response in neither of them. Our data suggest that the treatment using different formulations of BoNT-A is not similar in efficacy as analgesics when evaluated in formalin-induced orofacial pain in mice. Botulinum neurotoxin-a reduced formalin-induced orofacial pain in mice. There are differences in the analgesic potential of different available commercial brands of botulinum neurotoxin-A. Botox, Botulift, Xeomin demonstrated analgesic effect when evaluated in formalin-induced orofacial pain in mice.
Collapse
Affiliation(s)
- Thays Crosara Abrahão Cunha
- Post-Graduated Program Genetics and Biochemistry, Institute of Biotechnology, Federal University of Uberlândia, Uberlândia, MG, Brazil
| | - Ana Claudia Gontijo Couto
- Post-Graduated Program Genetics and Biochemistry, Institute of Biotechnology, Federal University of Uberlândia, Uberlândia, MG, Brazil
| | - Eduardo Januzzi
- Post-Graduated Program Orofacial Pain, CIODONTO, Belo Horizonte, MG, Brazil.,Orofacial Pain Department, MaterDei Hospital, Belo Horizonte, MG, Brazil
| | - Rafael Tardin Rosa Ferraz Gonçalves
- Post-Graduated Program Orofacial Pain, CIODONTO, Belo Horizonte, MG, Brazil.,Orofacial Pain Department, MaterDei Hospital, Belo Horizonte, MG, Brazil
| | - Graziella Silva
- Post-Graduated Program Orofacial Pain, CIODONTO, Belo Horizonte, MG, Brazil.,Orofacial Pain Department, MaterDei Hospital, Belo Horizonte, MG, Brazil
| | - Cassia Regina Silva
- Post-Graduated Program Genetics and Biochemistry, Institute of Biotechnology, Federal University of Uberlândia, Uberlândia, MG, Brazil
| |
Collapse
|
11
|
Duchesne de Lamotte J, Perrier A, Martinat C, Nicoleau C. Emerging Opportunities in Human Pluripotent Stem-Cells Based Assays to Explore the Diversity of Botulinum Neurotoxins as Future Therapeutics. Int J Mol Sci 2021; 22:7524. [PMID: 34299143 PMCID: PMC8308099 DOI: 10.3390/ijms22147524] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/02/2021] [Accepted: 07/07/2021] [Indexed: 02/07/2023] Open
Abstract
Botulinum neurotoxins (BoNTs) are produced by Clostridium botulinum and are responsible for botulism, a fatal disorder of the nervous system mostly induced by food poisoning. Despite being one of the most potent families of poisonous substances, BoNTs are used for both aesthetic and therapeutic indications from cosmetic reduction of wrinkles to treatment of movement disorders. The increasing understanding of the biology of BoNTs and the availability of distinct toxin serotypes and subtypes offer the prospect of expanding the range of indications for these toxins. Engineering of BoNTs is considered to provide a new avenue for improving safety and clinical benefit from these neurotoxins. Robust, high-throughput, and cost-effective assays for BoNTs activity, yet highly relevant to the human physiology, have become indispensable for a successful translation of engineered BoNTs to the clinic. This review presents an emerging family of cell-based assays that take advantage of newly developed human pluripotent stem cells and neuronal function analyses technologies.
Collapse
Affiliation(s)
- Juliette Duchesne de Lamotte
- IPSEN Innovation, 91940 Les Ulis, France;
- I-STEM, INSERM UMR861, Université Evry-Paris Saclay, 91100 Corbeil-Essonne, France
| | - Anselme Perrier
- I-STEM, INSERM UMR861, Université Evry-Paris Saclay, 91100 Corbeil-Essonne, France
- Laboratoire des Maladies Neurodégénératives: Mécanismes, Thérapies, Imagerie, CEA/CNRS UMR9199, Université Paris Saclay, 92265 Fontenay-aux-Roses, France
| | - Cécile Martinat
- I-STEM, INSERM UMR861, Université Evry-Paris Saclay, 91100 Corbeil-Essonne, France
| | | |
Collapse
|
12
|
Leka O, Wu Y, Li X, Kammerer RA. Crystal structure of the catalytic domain of botulinum neurotoxin subtype A3. J Biol Chem 2021; 296:100684. [PMID: 33891946 PMCID: PMC8135040 DOI: 10.1016/j.jbc.2021.100684] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 04/08/2021] [Accepted: 04/19/2021] [Indexed: 10/28/2022] Open
Abstract
Botulinum neurotoxins (BoNTs) are among the most widely used therapeutic proteins; however, only two subtypes within the seven serotypes, BoNT/A1 and BoNT/B1, are currently used for medical and cosmetic applications. Distinct catalytic properties, substrate specificities, and duration of enzymatic activities potentially make other subtypes very attractive candidates to outperform conventional BoNTs in particular therapeutic applications. For example, BoNT/A3 has a significantly shorter duration of action than other BoNT/A subtypes. Notably, BoNT/A3 is the subtype with the least conserved catalytic domain among BoNT/A subtypes. This suggests that the sequence differences, many of which concern the α-exosite, contribute to the observed functional differences in toxin persistence by affecting the binding of the substrate SNAP-25 and/or the stability of the catalytic domain fold. To identify the molecular determinants accounting for the differences in the persistence observed for BoNT/A subtypes, we determined the crystal structure of the catalytic domain of BoNT/A3 (LC/A3). The structure of LC/A3 was found to be very similar to that of LC/A1, suggesting that the overall mode of SNAP-25 binding is common between these two proteins. However, circular dichroism (CD) thermal unfolding experiments demonstrated that LC/A3 is significantly less stable than LC/A1, implying that this might contribute to the reduced toxin persistence of BoNT/A3. These findings could be of interest in developing next-generation therapeutic toxins.
Collapse
Affiliation(s)
- Oneda Leka
- The Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institute, Villigen PSI, Switzerland
| | - Yufan Wu
- The Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institute, Villigen PSI, Switzerland
| | - Xiaodan Li
- The Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institute, Villigen PSI, Switzerland
| | - Richard A Kammerer
- The Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institute, Villigen PSI, Switzerland.
| |
Collapse
|
13
|
Rasetti-Escargueil C, Popoff MR. Engineering Botulinum Neurotoxins for Enhanced Therapeutic Applications and Vaccine Development. Toxins (Basel) 2020; 13:1. [PMID: 33374954 PMCID: PMC7821915 DOI: 10.3390/toxins13010001] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/16/2020] [Accepted: 12/17/2020] [Indexed: 02/07/2023] Open
Abstract
Botulinum neurotoxins (BoNTs) show increasing therapeutic applications ranging from treatment of locally paralyzed muscles to cosmetic benefits. At first, in the 1970s, BoNT was used for the treatment of strabismus, however, nowadays, BoNT has multiple medical applications including the treatment of muscle hyperactivity such as strabismus, dystonia, movement disorders, hemifacial spasm, essential tremor, tics, cervical dystonia, cerebral palsy, as well as secretory disorders (hyperhidrosis, sialorrhea) and pain syndromes such as chronic migraine. This review summarizes current knowledge related to engineering of botulinum toxins, with particular emphasis on their potential therapeutic applications for pain management and for retargeting to non-neuronal tissues. Advances in molecular biology have resulted in generating modified BoNTs with the potential to act in a variety of disorders, however, in addition to the modifications of well characterized toxinotypes, the diversity of the wild type BoNT toxinotypes or subtypes, provides the basis for innovative BoNT-based therapeutics and research tools. This expanding BoNT superfamily forms the foundation for new toxins candidates in a wider range of therapeutic options.
Collapse
|
14
|
Packard A, Arciniegas AA, Smotherman C. Effectiveness of preventive onabotulinumtoxin A injections for migraine headaches is dependent on the circadian time of administration. Chronobiol Int 2020; 38:576-583. [PMID: 33307854 DOI: 10.1080/07420528.2020.1856128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
We have previously shown that quarterly preventive onabotulinumtoxin A (BTA) injections administered to diurnally active patients for chronic migraines (CM) associate with increased discomfort when performed in the morning. The purpose of this study was to further examine if the effectiveness of preventive BTA injections depends on the procedure's circadian timing. A total of 90 diurnally active patients with a medical history of CM and undergoing BTA injection therapy were enrolled in the study. One hundred and fifty-five units of BTA were administered according to the standardized PREEMPT protocol, either during the course of morning (AM) or afternoon (PM) clinic hours. Patients were asked to keep headache diaries, which were reviewed at the time of their follow-up BTA injections 3 months later. The number of headache days experienced during the first, second, and third month following BTA injection, and the number of headache days during the last 7 days prior to follow-up was collected, as was the self-rating of the effectiveness of BTA treatment. Fifty-five (61%) patients were injected during the AM clinic and 35 (39%) during the PM clinic. There was no difference in gender, race, and age variables between the AM and PM patients. The average total number of headache days during 3 months following injection was significantly higher for the AM-treated compared to the PM-treated patients (22.37 ± 18.85 vs. 10.54 ± 7.5, p =.0007). AM patients also reported a higher number of headache days during each of the 3 months following BTA injection. In contrast, PM patients reported higher effectiveness of preventive BTA treatment. The average number of headache days during the week prior to the follow up, as well as the presence of headache on the day of the follow-up was not significantly different between the AM and PM groups. Scheduling diurnally active CM patients with stable circadian sleep/wake routine for afternoon BTA injections appear to improve the effectiveness of BTA therapy as well as patients' satisfaction with the treatment.
Collapse
Affiliation(s)
| | | | - Carmen Smotherman
- Center for Health Equity and Quality Research (CHEQR), University of Florida College of Medicine, Jacksonville, FL
| |
Collapse
|
15
|
|
16
|
Kohda T, Tsukamoto K, Torii Y, Kozaki S, Mukamoto M. Translocation domain of botulinum neurotoxin A subtype 2 potently induces entry into neuronal cells. Microbiol Immunol 2020; 64:502-511. [PMID: 32301520 DOI: 10.1111/1348-0421.12796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 04/10/2020] [Accepted: 04/14/2020] [Indexed: 11/27/2022]
Abstract
Botulinum neurotoxin (BoNT) is the causative agent of botulism in humans and animals. Only BoNT serotype A subtype 1 (BoNT/A1) is used clinically because of its high potency and long duration of action. BoNT/A1 and BoNT/A subtype 2 (BoNT/A2) have a high degree of amino acid sequence similarity in the light chain (LC) (96%), whereas their N-and C-terminal heavy chain (HN and HC ) differ by 13%. The LC acts as a zinc-dependent endopeptidase, HN as the translocation domain, and HC as the receptor-binding domain. BoNT/A2 and BoNT/A1 had similar potency in the mouse bioassay, but BoNT/A2 entered faster and more efficiently into neuronal cells. To identify the domains responsible for these characteristics, HN of BoNT/A1 and BoNT/A2 was exchanged to construct chimeric BoNT/A121 and BoNT/A212. After expression in Escherichia coli, chimeric and wild-type BoNT/As were purified as single-chain proteins and activated by conversion to disulfide-linked dichains. The toxicities of recombinant wild-type and chimeric BoNT/As were similar, but dropped to 60% compared with the values of native BoNT/As. The relative orders of SNAP-25 cleavage activity in neuronal cells and toxicity differed. BoNT/A121 and recombinant BoNT/A2 have similar SNAP-25 cleavage activity. BoNT/A2 HN is possibly responsible for the higher potency of BoNT/A2 than BoNT/A1.
Collapse
Affiliation(s)
- Tomoko Kohda
- Department of Veterinary Science, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Izumisano, Osaka, Japan
| | - Kentaro Tsukamoto
- Department of Microbiology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | - Yasushi Torii
- Department of Animal Science, Tokyo University of Agriculture, Atsugi, Kanagawa, Japan
| | - Shunji Kozaki
- Department of Veterinary Science, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Izumisano, Osaka, Japan
| | - Masafumi Mukamoto
- Department of Veterinary Science, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Izumisano, Osaka, Japan
| |
Collapse
|
17
|
Gregory KS, Liu SM, Acharya KR. Crystal structure of botulinum neurotoxin subtype A3 cell binding domain in complex with GD1a co-receptor ganglioside. FEBS Open Bio 2020; 10:298-305. [PMID: 31945264 PMCID: PMC7050238 DOI: 10.1002/2211-5463.12790] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/07/2020] [Accepted: 01/10/2020] [Indexed: 01/20/2023] Open
Abstract
Botulinum neurotoxins (BoNTs) are one of the most toxic proteins known to humans. Their molecular structure is comprised of three essential domains—a cell binding domain (HC), translocation domain and catalytic domain (light chain) . The HC domain facilitates the highly specific binding of BoNTs to the neuronal membrane via a dual‐receptor complex involving a protein receptor and a ganglioside. Variation in activity/toxicity across subtypes of serotype A has been attributed to changes in protein and ganglioside interactions, and their implications are important in the design of novel BoNT‐based therapeutics. Here, we present the structure of BoNT/A3 cell binding domain (HC/A3) in complex with the ganglioside GD1a at 1.75 Å resolution. The structure revealed that six residues interact with the three outermost monosaccharides of GD1a through several key hydrogen bonding interactions. A detailed comparison of structures of HC/A3 with HC/A1 revealed subtle conformational differences at the ganglioside binding site upon carbohydrate binding.
Collapse
Affiliation(s)
- Kyle S Gregory
- Department of Biology and Biochemistry, Claverton Down, University of Bath, UK
| | | | - K Ravi Acharya
- Department of Biology and Biochemistry, Claverton Down, University of Bath, UK
| |
Collapse
|
18
|
Pellett S, Tepp WH, Johnson EA. Critical Analysis of Neuronal Cell and the Mouse Bioassay for Detection of Botulinum Neurotoxins. Toxins (Basel) 2019; 11:E713. [PMID: 31817843 PMCID: PMC6950160 DOI: 10.3390/toxins11120713] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 11/12/2019] [Accepted: 11/22/2019] [Indexed: 12/14/2022] Open
Abstract
Botulinum Neurotoxins (BoNTs) are a large protein family that includes the most potent neurotoxins known to humankind. BoNTs delivered locally in humans at low doses are widely used pharmaceuticals. Reliable and quantitative detection of BoNTs is of paramount importance for the clinical diagnosis of botulism, basic research, drug development, potency determination, and detection in clinical, environmental, and food samples. Ideally, a definitive assay for BoNT should reflect the activity of each of the four steps in nerve intoxication. The in vivo mouse bioassay (MBA) is the 'gold standard' for the detection of BoNTs. The MBA is sensitive, robust, semi-quantitative, and reliable within its sensitivity limits. Potential drawbacks with the MBA include assay-to-assay potency variations, especially between laboratories, and false positives or negatives. These limitations can be largely avoided by careful planning and performance. Another detection method that has gained importance in recent years for research and potency determination of pharmaceutical BoNTs is cell-based assays, as these assays can be highly sensitive, quantitative, human-specific, and detect fully functional holotoxins at physiologically relevant concentrations. A myriad of other in vitro BoNT detection methods exist. This review focuses on critical factors and assay limitations of the mouse bioassay and cell-based assays for BoNT detection.
Collapse
Affiliation(s)
| | | | - Eric A. Johnson
- Department of Bacteriology, University of Wisconsin-Madison, 1550 Linden Dr, Madison, WI 53706, USA; (S.P.); (W.H.T.)
| |
Collapse
|
19
|
Structural insights into the interaction of botulinum neurotoxin a with its neuronal receptor SV2C. Toxicon 2019; 175:36-43. [PMID: 31783045 DOI: 10.1016/j.toxicon.2019.11.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 11/08/2019] [Accepted: 11/25/2019] [Indexed: 11/23/2022]
Abstract
A dual-receptor interaction with a polysialoganglioside and synaptic vesicle glycoprotein 2 (SV2) is required for botulinum neurotoxin A (BoNT) toxicity. Here, we review what is currently known about the BoNT/A-SV2 interaction based on structural studies. Currently, five crystal structures of the receptor-binding domain (Hc) of BoNT subtypes A1 and A2 complexed to the large luminal domain (LD4) of SV2C have been determined. On the basis of the available structures, we will discuss the importance of protein-protein and protein-carbohydrate interactions for BoNT/A toxicity as well as the high plasticity of BoNT/A for receptor recognition by tolerating a variety of side-chain interactions at the interface. A plausible explanation how receptor-binding specificity of BoNT/A may be achieved without an extensive and conserved side chain-side chain interaction network will be provided.
Collapse
|
20
|
Tables of Toxicity of Botulinum and Tetanus Neurotoxins. Toxins (Basel) 2019; 11:toxins11120686. [PMID: 31771110 PMCID: PMC6950492 DOI: 10.3390/toxins11120686] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/18/2019] [Accepted: 11/19/2019] [Indexed: 11/17/2022] Open
Abstract
Tetanus and botulinum neurotoxins are the most poisonous substances known, so much so as to be considered for a possible terrorist use. At the same time, botulinum neurotoxin type A1 is successfully used to treat a variety of human syndromes characterized by hyperactive cholinergic nerve terminals. The extreme toxicity of these neurotoxins is due to their neurospecificity and to their metalloprotease activity, which results in the deadly paralysis of tetanus and botulism. Recently, many novel botulinum neurotoxins and some botulinum-like toxins have been discovered. This large number of toxins differs in terms of toxicity and biological activity, providing a potential goldmine for novel therapeutics and for new molecular tools to dissect vesicular trafficking, fusion, and exocytosis. The scattered data on toxicity present in the literature require a systematic organization to be usable by scientists and clinicians. We have assembled here the data available in the literature on the toxicity of these toxins in different animal species. The internal comparison of these data provides insights on the biological activity of these toxins.
Collapse
|
21
|
Moritz MS, Tepp WH, Inzalaco HN, Johnson EA, Pellett S. Comparative functional analysis of mice after local injection with botulinum neurotoxin A1, A2, A6, and B1 by catwalk analysis. Toxicon 2019; 167:20-28. [PMID: 31181297 PMCID: PMC6688953 DOI: 10.1016/j.toxicon.2019.06.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/20/2019] [Accepted: 06/03/2019] [Indexed: 01/10/2023]
Abstract
Botulinum neurotoxins (BoNTs) are potent neurotoxins and are the causative agent of botulism, as well as valuable pharmaceuticals. BoNTs are divided into seven serotypes that comprise over 40 reported subtypes. BoNT/A1 and BoNT/B1 are currently the only subtypes approved for pharmaceutical use in the USA. While several other BoNT subtypes including BoNT/A2 and/A6 have been proposed as promising pharmaceuticals, detailed characterization using in vivo assays are essential to determine their pharmaceutical characteristics compared to the currently used BoNT/A1 and/B1. Several methods for studying BoNTs in mice are being used, but no objective and quantitative assay for assessment of functional outcomes after injection has been described. Here we describe the use of CatWalk XT as a new analytical tool for the objective and quantitative analysis of the paralytic effect after local intramuscular injection of BoNT subtypes A1, A2, A6, and B1. Catwalk is a sophisticated gait and locomotion analysis system that quantitatively analyzes a rodent's paw print dimensions and footfall patterns while traversing a glass plate during unforced walk. Significant changes were observed in several gait parameters in mice after local intramuscular injection of all tested BoNT subtypes, however, no changes were observed in mice injected intraperitoneally with the same BoNTs. While a clear difference in time to peak paralysis was observed between BoNT/A1 and/B1, injection of all four toxins resulted in a deficit in the injected limb with the other limbs functionally compensating and with no qualitative differences between the four BoNT subtypes. The presented data demonstrate the utility of CatWalk as a tool for functional outcomes after local BoNT injection through its ability to collect large amounts of quantitative data and objectively analyze sensitive changes in static and dynamic gait parameters.
Collapse
Affiliation(s)
- Molly S Moritz
- University of Wisconsin-Madison, Dept. of Bacteriology, USA
| | - William H Tepp
- University of Wisconsin-Madison, Dept. of Bacteriology, USA
| | | | - Eric A Johnson
- University of Wisconsin-Madison, Dept. of Bacteriology, USA
| | - Sabine Pellett
- University of Wisconsin-Madison, Dept. of Bacteriology, USA.
| |
Collapse
|
22
|
Abstract
Botulinum neurotoxins (BoNTs) are a family of bacterial protein toxins produced by various Clostridium species. They are traditionally classified into seven major serotypes (BoNT/A-G). Recent progress in sequencing microbial genomes has led to an ever-growing number of subtypes, chimeric toxins, BoNT-like toxins, and remotely related BoNT homologs, constituting an expanding BoNT superfamily. Recent structural studies of BoNTs, BoNT progenitor toxin complexes, tetanus neurotoxin (TeNT), toxin-receptor complexes, and toxin-substrate complexes have provided mechanistic understandings of toxin functions and the molecular basis for their variations. The growing BoNT superfamily of toxins present a natural repertoire that can be explored to develop novel therapeutic toxins, and the structural understanding of their variations provides a knowledge basis for engineering toxins to improve therapeutic efficacy and expand their clinical applications.
Collapse
Affiliation(s)
- Min Dong
- Department of Urology, Boston Children's Hospital, Boston, MA, USA.
- Department of Microbiology, Harvard Medical School, Boston, MA, USA.
- Department of Surgery, Harvard Medical School, Boston, MA, USA.
| | - Pål Stenmark
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden.
- Department of Experimental Medical Science, Lund University, Lund, Sweden.
| |
Collapse
|
23
|
Abstract
Botulinum neurotoxins (BoNTs) have proved to be an effective treatment for a large number of neuropathic conditions. BoNTs comprise a large family of zinc metalloproteases, but BoNT/A1 is used nearly exclusively for pharmaceutical purposes. The genetic inactivation of a second BoNT gene in the native strain enabled expression and isolation of a single BoNT/A6 from cultures. Its characterization indicated that BoNT/A subtype A6 has a long duration of action comparable to A1, while it enters neurons faster and more efficiently and remains more localized after intramuscular injection. These characteristics of BoNT/A6 are of interest for potential use of BoNT/A6 as a novel BoNT-based therapeutic that is effective and has a fast onset, an improved safety profile, and a long duration of action. Use of BoNT/A6 as a pharmaceutical also has the potential to reveal novel treatment motifs compared to currently used treatments. Botulinum neurotoxins (BoNTs), the most potent toxins known to humans and the causative agent of botulism, exert their effect by entering motor neurons and cleaving and inactivating SNARE proteins, which are essential for neurotransmitter release. BoNTs are proven, valuable pharmaceuticals used to treat more than 200 neuronal disorders. BoNTs comprise 7 serotypes and more than 40 isoforms (subtypes). BoNT/A1 is the only A-subtype used clinically due to its high potency and long duration of action. While other BoNT/A subtypes have been purified and described, only BoNT/A2 is being investigated as an alternative to BoNT/A1. Here we describe subtype BoNT/A6 with improved pharmacological properties compared to BoNT/A1. It was isolated from Clostridium botulinum CDC41370, which produces both BoNT/B2 and BoNT/A6. The gene encoding BoNT/B2 was genetically inactivated, and A6 was isolated to greater than 95% purity. A6 was highly potent in cultured primary rodent neuronal cultures and in human induced pluripotent stem cell-derived neurons, requiring 20-fold less toxin to cause 50% SNAP-25 cleavage than A1. Second, A6 entered hiPSCs faster and more efficiently than A1 and yet had a long duration of action similar to BoNT/A1. Third, BoNT/A6 had similar LD50 as BoNT/A1 after intraperitoneal injection in mice; however, local intramuscular injection resulted in less systemic toxicity than BoNT/A1 and a higher (i.m.) LD50, indicating its potential as a safer pharmaceutical. These data suggest novel characteristics of BoNT/A6 and its potential as an improved pharmaceutical due to more efficient neuronal cell entry, greater ability to remain localized at the injection site, and a long duration. IMPORTANCE Botulinum neurotoxins (BoNTs) have proved to be an effective treatment for a large number of neuropathic conditions. BoNTs comprise a large family of zinc metalloproteases, but BoNT/A1 is used nearly exclusively for pharmaceutical purposes. The genetic inactivation of a second BoNT gene in the native strain enabled expression and isolation of a single BoNT/A6 from cultures. Its characterization indicated that BoNT/A subtype A6 has a long duration of action comparable to A1, while it enters neurons faster and more efficiently and remains more localized after intramuscular injection. These characteristics of BoNT/A6 are of interest for potential use of BoNT/A6 as a novel BoNT-based therapeutic that is effective and has a fast onset, an improved safety profile, and a long duration of action. Use of BoNT/A6 as a pharmaceutical also has the potential to reveal novel treatment motifs compared to currently used treatments.
Collapse
|
24
|
Davies JR, Liu SM, Acharya KR. Variations in the Botulinum Neurotoxin Binding Domain and the Potential for Novel Therapeutics. Toxins (Basel) 2018; 10:toxins10100421. [PMID: 30347838 PMCID: PMC6215321 DOI: 10.3390/toxins10100421] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 10/11/2018] [Accepted: 10/18/2018] [Indexed: 01/23/2023] Open
Abstract
Botulinum neurotoxins (BoNTs) are categorised into immunologically distinct serotypes BoNT/A to /G). Each serotype can also be further divided into subtypes based on differences in amino acid sequence. BoNTs are ~150 kDa proteins comprised of three major functional domains: an N-terminal zinc metalloprotease light chain (LC), a translocation domain (HN), and a binding domain (HC). The HC is responsible for targeting the BoNT to the neuronal cell membrane, and each serotype has evolved to bind via different mechanisms to different target receptors. Most structural characterisations to date have focussed on the first identified subtype within each serotype (e.g., BoNT/A1). Subtype differences within BoNT serotypes can affect intoxication, displaying different botulism symptoms in vivo, and less emphasis has been placed on investigating these variants. This review outlines the receptors for each BoNT serotype and describes the basis for the highly specific targeting of neuronal cell membranes. Understanding receptor binding is of vital importance, not only for the generation of novel therapeutics but also for understanding how best to protect from intoxication.
Collapse
Affiliation(s)
- Jonathan R Davies
- Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, UK.
| | - Sai Man Liu
- Ipsen Bioinnovation Limited, Abingdon OX14 4RY, UK.
| | - K Ravi Acharya
- Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, UK.
| |
Collapse
|
25
|
Torii Y, Sasaki M, Shin MC, Akaike N, Kaji R. Comparison of efficacy and toxicity between botulinum toxin subtypes A1 and A2 in cynomolgus macaques. Toxicon 2018; 153:114-119. [PMID: 30193802 DOI: 10.1016/j.toxicon.2018.08.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 08/15/2018] [Accepted: 08/30/2018] [Indexed: 11/18/2022]
Abstract
Botulinum toxin type A (subtype A1) is used as therapeutic agent for some neurological disorders causing spasticity. The toxin products have an upper dosage limit, and their adverse events, such as side effects of diffusion following high-dose administration, have become serious issues. Therefore, a preparation with greater therapeutic efficacy at lower dosages and less diffusion in the body is desired. We have attempted to produce neurotoxin derived from subtype A2 (A2NTX), which has a different amino acid sequence from that of neurotoxin derived from subtype A1. In this study, to investigate whether A2NTX is applicable for treatment, we compared the muscle relaxation effects and the toxicity between A1LL and A2NTX in adult cynomolgus macaques. In the isometric muscle contraction test elicited by 30 Hz tetanus stimulation, the contractions observed in the 0.4 U/site A1LL-treated group were similar in value to those in the 0.13 U/site A2NTX-treated group. In the toxicity test, the 12 and 24 U/kg A1LL- and A2NTX-treated groups all exhibited similar signs of toxicity regarding symptoms, rate of weight loss, and decrease in the length of the right lower leg perimeter. Thus, A2NTX demonstrated approximately 3.0-times higher muscle relaxation activity than A1LL, and their toxicity was equivalent. This study suggested that A2NTX products are more suitable for the treatment of neurological disorders.
Collapse
Affiliation(s)
- Yasushi Torii
- Department of Animal Science, Tokyo University of Agriculture, Kanagawa, 243-0034, Japan.
| | | | - Min-Chul Shin
- Research Division for Life Science, Kumamoto Health Science University, Kumamoto, 861-5598, Japan
| | - Norio Akaike
- Research Division for Life Science, Kumamoto Health Science University, Kumamoto, 861-5598, Japan; Research Division for Clinical Pharmacology, Kumamoto Kinoh Hospital, Kumamoto, 860-8518, Japan
| | - Ryuji Kaji
- Graduate School of Medicine, University of Tokushima, Tokushima, 770-8503, Japan
| |
Collapse
|
26
|
Kohda T, Nakamura K, Hosomi K, Torii Y, Kozaki S, Mukamoto M. Characterization of the functional activity of botulinum neurotoxin subtype B6. Microbiol Immunol 2018; 61:482-489. [PMID: 28898517 DOI: 10.1111/1348-0421.12540] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 08/30/2017] [Accepted: 09/07/2017] [Indexed: 12/01/2022]
Abstract
Clostridium botulinum produces the highly potent neurotoxin, botulinum neurotoxin (BoNT), which is classified into seven serotypes (A-G); the subtype classification is confirmed by the diversity of amino acid sequences among the serotypes. BoNT from the Osaka05 strain is associated with type B infant botulism and has been classified as BoNT/B subtype B6 (BoNT/B6) by phylogenetic analysis and the antigenicity of its C-terminal heavy chain (HC ) domain. However, the molecular bases for its properties, including its potency, are poorly understood. In this study, BoNT/B6 holotoxin was purified and the biological activity and receptor binding activity of BoNT/B6 compared with those of the previously-characterized BoNT/B1 and BoNT/B2 subtypes. The derivative BoNT/B6 was found to be already nicked and in an activated form, indicating that endogenous protease production may be higher in this strain than in the other two strains. BoNT/B1 exhibited the greatest lethal activity in mice, followed by BoNT/B6, which is consistent with the sensitivity of PC12 cells. No significant differences were seen in the enzymatic activities of the BoNT/Bs against their substrate. HC /B1 and HC /B6 exhibited similar binding affinities to synaptotagmin II (SytII), which is a specific protein receptor for BoNT/B. Binding to the SytII/ganglioside complex is functionally related to the toxic action; however, the receptor recognition sites are conserved. These results suggest that the distinct characteristics and differences in biological sensitivity of BoNT/B6 may be attributable to the function of its Hc .domain.
Collapse
Affiliation(s)
- Tomoko Kohda
- Department of Veterinary Science, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Rinkuouraikita, Izumisano, 598-8531 Osaka, Japan
| | - Keiji Nakamura
- Department of Veterinary Science, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Rinkuouraikita, Izumisano, 598-8531 Osaka, Japan
| | - Koji Hosomi
- Department of Veterinary Science, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Rinkuouraikita, Izumisano, 598-8531 Osaka, Japan
| | - Yasushi Torii
- Department of Animal Science, Tokyo University of Agriculture, Funako, Atsugi, 243-0034 Kanagawa, Japan
| | - Shunji Kozaki
- Department of Veterinary Science, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Rinkuouraikita, Izumisano, 598-8531 Osaka, Japan
| | - Masafumi Mukamoto
- Department of Veterinary Science, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Rinkuouraikita, Izumisano, 598-8531 Osaka, Japan
| |
Collapse
|
27
|
Fonfria E, Maignel J, Lezmi S, Martin V, Splevins A, Shubber S, Kalinichev M, Foster K, Picaut P, Krupp J. The Expanding Therapeutic Utility of Botulinum Neurotoxins. Toxins (Basel) 2018; 10:E208. [PMID: 29783676 PMCID: PMC5983264 DOI: 10.3390/toxins10050208] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 05/15/2018] [Accepted: 05/16/2018] [Indexed: 12/11/2022] Open
Abstract
Botulinum neurotoxin (BoNT) is a major therapeutic agent that is licensed in neurological indications, such as dystonia and spasticity. The BoNT family, which is produced in nature by clostridial bacteria, comprises several pharmacologically distinct proteins with distinct properties. In this review, we present an overview of the current therapeutic landscape and explore the diversity of BoNT proteins as future therapeutics. In recent years, novel indications have emerged in the fields of pain, migraine, overactive bladder, osteoarthritis, and wound healing. The study of biological effects distal to the injection site could provide future opportunities for disease-tailored BoNT therapies. However, there are some challenges in the pharmaceutical development of BoNTs, such as liquid and slow-release BoNT formulations; and, transdermal, transurothelial, and transepithelial delivery. Innovative approaches in the areas of formulation and delivery, together with highly sensitive analytical tools, will be key for the success of next generation BoNT clinical products.
Collapse
Affiliation(s)
- Elena Fonfria
- Ipsen Bioinnovation, 102 Park Drive, Milton Park, Abingdon, Oxfordshire OX14 4RY, UK.
| | - Jacquie Maignel
- Ipsen Innovation, 5 Avenue du Canada, 91940 Les Ulis, France.
| | - Stephane Lezmi
- Ipsen Innovation, 5 Avenue du Canada, 91940 Les Ulis, France.
| | - Vincent Martin
- Ipsen Innovation, 5 Avenue du Canada, 91940 Les Ulis, France.
| | - Andrew Splevins
- Ipsen Bioinnovation, 102 Park Drive, Milton Park, Abingdon, Oxfordshire OX14 4RY, UK.
| | - Saif Shubber
- Ipsen Biopharm Ltd., Wrexham Industrial Estate, 9 Ash Road, Wrexham LL13 9UF, UK.
| | | | - Keith Foster
- Ipsen Bioinnovation, 102 Park Drive, Milton Park, Abingdon, Oxfordshire OX14 4RY, UK.
| | - Philippe Picaut
- Ipsen Bioscience, 650 Kendall Street, Cambridge, MA 02142, USA.
| | - Johannes Krupp
- Ipsen Innovation, 5 Avenue du Canada, 91940 Les Ulis, France.
| |
Collapse
|
28
|
Tehran DA, Pirazzini M. Novel Botulinum Neurotoxins: Exploring Underneath the Iceberg Tip. Toxins (Basel) 2018; 10:toxins10050190. [PMID: 29748471 PMCID: PMC5983246 DOI: 10.3390/toxins10050190] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 05/05/2018] [Accepted: 05/08/2018] [Indexed: 12/26/2022] Open
Abstract
Botulinum neurotoxins (BoNTs), the etiological agents of botulism, are the deadliest toxins known to humans. Yet, thanks to their biological and toxicological features, BoNTs have become sophisticated tools to study neuronal physiology and valuable therapeutics for an increasing number of human disorders. BoNTs are produced by multiple bacteria of the genus Clostridium and, on the basis of their different immunological properties, were classified as seven distinct types of toxin. BoNT classification remained stagnant for the last 50 years until, via bioinformatics and high-throughput sequencing techniques, dozens of BoNT variants, novel serotypes as well as BoNT-like toxins within non-clostridial species have been discovered. Here, we discuss how the now “booming field” of botulinum neurotoxin may shed light on their evolutionary origin and open exciting avenues for future therapeutic applications.
Collapse
Affiliation(s)
- Domenico Azarnia Tehran
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy.
| | - Marco Pirazzini
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy.
| |
Collapse
|
29
|
Pellett S, Tepp WH, Lin G, Johnson EA. Substrate cleavage and duration of action of botulinum neurotoxin type FA ("H, HA"). Toxicon 2017; 147:38-46. [PMID: 29273248 PMCID: PMC5911199 DOI: 10.1016/j.toxicon.2017.12.048] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 12/15/2017] [Accepted: 12/18/2017] [Indexed: 12/12/2022]
Abstract
Botulinum neurotoxin (BoNT) type FA is the only known naturally occurring chimeric BoNT of domains of BoNT/A and BoNT/F. BoNT/FA consists of an F5-like light chain (LC), a unique heavy chain (HC) translocation domain, and a HC receptor binding domain similar to BoNT/A1. Previous analyses of purified BoNT/FA have indicated a 5-10-fold greater potency in cultured human or rat neurons as compared to BoNT/A1 and a 400-500-fold greater potency compared to BoNT/B1. However, in vivo potency in mice was about 5-fold lower than BoNT/A1 or/B1. In this report, species specificity was examined by cell-based assays using primary neurons from mice and examining VAMP1 and 2 cleavage. The data indicated similar potency of BoNT/FA in primary mouse spinal cord neurons as previously observed in primary rat and human induced pluripotent stem cell (hiPSC) derived neuronal cell models, and equal enzymatic cleavage of mouse VAMP1 and 2 isoforms. Since the duration of action of BoNTs is due to continuous enzymatic activity of the LC in the neuronal cytosol, BoNT/FA was expected to have a short duration of action due to its F-type LC. In this report the duration of action of BoNT/FA was compared to that of BoNT/F1,/F5, and/B1 in both hiPSC derived neurons and in the in vivo mouse model. The data indicate a duration of action of BoNT/FA similar to BoNT/B1, while BoNT/F5 had a short duration of action similar to BoNT/F1.
Collapse
Affiliation(s)
- Sabine Pellett
- Department of Bacteriology, University of Wisconsin, 1550 Linden Dr., Madison, WI 53706, USA.
| | - William H Tepp
- Department of Bacteriology, University of Wisconsin, 1550 Linden Dr., Madison, WI 53706, USA.
| | - Guangyun Lin
- Department of Bacteriology, University of Wisconsin, 1550 Linden Dr., Madison, WI 53706, USA.
| | - Eric A Johnson
- Department of Bacteriology, University of Wisconsin, 1550 Linden Dr., Madison, WI 53706, USA.
| |
Collapse
|
30
|
Pirazzini M, Rossetto O, Eleopra R, Montecucco C. Botulinum Neurotoxins: Biology, Pharmacology, and Toxicology. Pharmacol Rev 2017; 69:200-235. [PMID: 28356439 PMCID: PMC5394922 DOI: 10.1124/pr.116.012658] [Citation(s) in RCA: 410] [Impact Index Per Article: 58.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The study of botulinum neurotoxins (BoNT) is rapidly progressing in many aspects.
Novel BoNTs are being discovered owing to next generation sequencing, but their
biologic and pharmacological properties remain largely unknown. The molecular
structure of the large protein complexes that the toxin forms with accessory
proteins, which are included in some BoNT type A1 and B1 pharmacological
preparations, have been determined. By far the largest effort has been dedicated to
the testing and validation of BoNTs as therapeutic agents in an ever increasing
number of applications, including pain therapy. BoNT type A1 has been also exploited
in a variety of cosmetic treatments, alone or in combination with other agents, and
this specific market has reached the size of the one dedicated to the treatment of
medical syndromes. The pharmacological properties and mode of action of BoNTs have
shed light on general principles of neuronal transport and protein-protein
interactions and are stimulating basic science studies. Moreover, the wide array of
BoNTs discovered and to be discovered and the production of recombinant BoNTs endowed
with specific properties suggest novel uses in therapeutics with increasing
disease/symptom specifity. These recent developments are reviewed here to provide an
updated picture of the biologic mechanism of action of BoNTs, of their increasing use
in pharmacology and in cosmetics, and of their toxicology.
Collapse
Affiliation(s)
- Marco Pirazzini
- Department of Biomedical Sciences, University of Padova, Italy (M.P., O.R., C.M.); Neurologic Department, University-Hospital S. Maria della Misericordia, Udine, Italy (R.E.); and Consiglio Nazionale delle Ricerche, Institute of Neuroscience, University of Padova, Italy (C.M.)
| | - Ornella Rossetto
- Department of Biomedical Sciences, University of Padova, Italy (M.P., O.R., C.M.); Neurologic Department, University-Hospital S. Maria della Misericordia, Udine, Italy (R.E.); and Consiglio Nazionale delle Ricerche, Institute of Neuroscience, University of Padova, Italy (C.M.)
| | - Roberto Eleopra
- Department of Biomedical Sciences, University of Padova, Italy (M.P., O.R., C.M.); Neurologic Department, University-Hospital S. Maria della Misericordia, Udine, Italy (R.E.); and Consiglio Nazionale delle Ricerche, Institute of Neuroscience, University of Padova, Italy (C.M.)
| | - Cesare Montecucco
- Department of Biomedical Sciences, University of Padova, Italy (M.P., O.R., C.M.); Neurologic Department, University-Hospital S. Maria della Misericordia, Udine, Italy (R.E.); and Consiglio Nazionale delle Ricerche, Institute of Neuroscience, University of Padova, Italy (C.M.)
| |
Collapse
|
31
|
Burns JR, Lambert GS, Baldwin MR. Insights into the Mechanisms by Which Clostridial Neurotoxins Discriminate between Gangliosides. Biochemistry 2017; 56:2571-2583. [DOI: 10.1021/acs.biochem.6b01246] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Joshua R. Burns
- Department of Molecular Microbiology
and Immunology, University of Missouri School of Medicine, Columbia, Missouri 65212, United States
| | - Gregory S. Lambert
- Department of Molecular Microbiology
and Immunology, University of Missouri School of Medicine, Columbia, Missouri 65212, United States
| | - Michael R. Baldwin
- Department of Molecular Microbiology
and Immunology, University of Missouri School of Medicine, Columbia, Missouri 65212, United States
| |
Collapse
|
32
|
Benoit RM, Schärer MA, Wieser MM, Li X, Frey D, Kammerer RA. Crystal structure of the BoNT/A2 receptor-binding domain in complex with the luminal domain of its neuronal receptor SV2C. Sci Rep 2017; 7:43588. [PMID: 28252640 PMCID: PMC5333631 DOI: 10.1038/srep43588] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 01/25/2017] [Indexed: 11/09/2022] Open
Abstract
A detailed molecular understanding of botulinum neurotoxin (BoNT)/host-cell-receptor interactions is fundamental both for developing strategies against botulism and for generating improved BoNT variants for medical applications. The X-ray crystal structure of the receptor-binding domain (HC) of BoNT/A1 in complex with the luminal domain (LD) of its neuronal receptor SV2C revealed only few specific side-chain - side-chain interactions that are important for binding. Notably, two BoNT/A1 residues, Arg 1156 and Arg 1294, that are crucial for the interaction with SV2, are not conserved among subtypes. Because it has been suggested that differential receptor binding of subtypes might explain their differences in biological activity, we determined the crystal structure of BoNT/A2-HC in complex with SV2C-LD. Although only few side-chain interactions are conserved between the two BoNT/A subtypes, the overall binding mode of subtypes A1 and A2 is virtually identical. In the BoNT/A2-HC - SV2C complex structure, a missing cation-π stacking is compensated for by an additional salt bridge and an anion-π stacking interaction, which explains why the binding of BoNT/A subtypes to SV2C tolerates variable side chains. These findings suggest that motif extensions and a shallow binding cleft in BoNT/A-HC contribute to binding specificity.
Collapse
Affiliation(s)
- Roger M Benoit
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland
| | - Martin A Schärer
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland
| | - Mara M Wieser
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland
| | - Xiaodan Li
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland
| | - Daniel Frey
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland
| | - Richard A Kammerer
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland
| |
Collapse
|
33
|
Peck MW, Smith TJ, Anniballi F, Austin JW, Bano L, Bradshaw M, Cuervo P, Cheng LW, Derman Y, Dorner BG, Fisher A, Hill KK, Kalb SR, Korkeala H, Lindström M, Lista F, Lúquez C, Mazuet C, Pirazzini M, Popoff MR, Rossetto O, Rummel A, Sesardic D, Singh BR, Stringer SC. Historical Perspectives and Guidelines for Botulinum Neurotoxin Subtype Nomenclature. Toxins (Basel) 2017; 9:toxins9010038. [PMID: 28106761 PMCID: PMC5308270 DOI: 10.3390/toxins9010038] [Citation(s) in RCA: 196] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 01/04/2017] [Accepted: 01/07/2017] [Indexed: 11/26/2022] Open
Abstract
Botulinum neurotoxins are diverse proteins. They are currently represented by at least seven serotypes and more than 40 subtypes. New clostridial strains that produce novel neurotoxin variants are being identified with increasing frequency, which presents challenges when organizing the nomenclature surrounding these neurotoxins. Worldwide, researchers are faced with the possibility that toxins having identical sequences may be given different designations or novel toxins having unique sequences may be given the same designations on publication. In order to minimize these problems, an ad hoc committee consisting of over 20 researchers in the field of botulinum neurotoxin research was convened to discuss the clarification of the issues involved in botulinum neurotoxin nomenclature. This publication presents a historical overview of the issues and provides guidelines for botulinum neurotoxin subtype nomenclature in the future.
Collapse
Affiliation(s)
| | - Theresa J Smith
- Molecular and Translational Sciences Division, United States Army Medical Institute of Infectious Diseases, Fort Detrick, MD 21702, USA.
| | - Fabrizio Anniballi
- National Reference Centre for Botulism, Istituto Superiore di Sanita, Rome 299-00161, Italy.
| | - John W Austin
- Bureau of Microbial Hazards, Health Canada, Ottawa, ON K1A 0K9, Canada.
| | - Luca Bano
- Istituto Zooprofilattico Sperimentale delle Venezie, Treviso 31020, Italy.
| | - Marite Bradshaw
- Department of Bacteriology, University of Wisconsin, Madison, WI 53706, USA.
| | - Paula Cuervo
- Área de Microbiología, Departamento de Patología, Universidad Nacional de Cuyo, Mendoza 450001, Argentina.
| | - Luisa W Cheng
- Foodborne Toxin Detection and Prevention Research Unit, Western Regional Research Center, U.S. Department of Agriculture, Albany, CA 94710, USA.
| | - Yagmur Derman
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki 00014, Finland.
| | | | - Audrey Fisher
- Applied Physics Laboratory, Johns Hopkins University, Baltimore, MD 21218, USA.
| | - Karen K Hill
- Los Alamos National Laboratories, Los Alamos, NM 87545, USA.
| | - Suzanne R Kalb
- National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA 30341, USA.
| | - Hannu Korkeala
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki 00014, Finland.
| | - Miia Lindström
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki 00014, Finland.
| | - Florigio Lista
- Army Medical and Veterinary Research Center, Rome 00184, Italy.
| | - Carolina Lúquez
- National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA.
| | - Christelle Mazuet
- Institut Pasteur, Bactéries anaérobies et Toxines, Paris 75015, France.
| | - Marco Pirazzini
- Biomedical Sciences Department, University of Padova, Padova 35131, Italy.
| | - Michel R Popoff
- Institut Pasteur, Bactéries anaérobies et Toxines, Paris 75015, France.
| | - Ornella Rossetto
- Biomedical Sciences Department, University of Padova, Padova 35131, Italy.
| | - Andreas Rummel
- Institut für Toxikologie, Medizinische Hochschule Hannover, Hannover 30623, Germany.
| | - Dorothea Sesardic
- National Institute for Biological Standards and Control, a Centre of Medicines and Healthcare Products Regulatory Agency, Hertfordshire EN6 3QG, UK.
| | - Bal Ram Singh
- Botulinum Research Center, Institute of Advanced Sciences, Dartmouth, MA 02747, USA.
| | | |
Collapse
|
34
|
Connan C, Popoff MR. Uptake of Clostridial Neurotoxins into Cells and Dissemination. Curr Top Microbiol Immunol 2017; 406:39-78. [PMID: 28879524 DOI: 10.1007/82_2017_50] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Clostridial neurotoxins, botulinum neurotoxins (BoNT) and tetanus neurotoxin (TeNT), are potent toxins, which are responsible for severe neurological diseases in man and animals. BoNTs induce a flaccid paralysis (botulism) by inhibiting acetylcholine release at the neuromuscular junctions, whereas TeNT causes a spastic paralysis (tetanus) by blocking the neurotransmitter release (glycine, GABA) in inhibitory interneurons within the central nervous system. Clostridial neurotoxins recognize specific receptor(s) on the target neuronal cells and enter via a receptor-mediated endocytosis. They transit through an acidic compartment which allows the translocation of the catalytic chain into the cytosol, a prerequisite step for the intracellular activity of the neurotoxins. TeNT migrates to the central nervous system by using a motor neuron as transport cell. TeNT enters a neutral pH compartment and undergoes a retrograde axonal transport to the spinal cord or brain, where the whole undissociated toxin is delivered and interacts with target neurons. Botulism most often results from ingestion of food contaminated with BoNT. Thus, BoNT passes through the intestinal epithelial barrier mainly via a transcytotic mechanism and then diffuses or is transported to the neuromuscular junctions by the lymph or blood circulation. Indeed, clostridial neurotoxins are specific neurotoxins which transit through a transport cell to gain access to the target neuron, and use distinct trafficking pathways in both cell types.
Collapse
Affiliation(s)
- Chloé Connan
- Unité Des Bactéries Anaérobies et Toxines, Institut Pasteur, 25 Rue Du Dr Roux, 75724, Paris Cedex 15, France
| | - Michel R Popoff
- Unité Des Bactéries Anaérobies et Toxines, Institut Pasteur, 25 Rue Du Dr Roux, 75724, Paris Cedex 15, France.
| |
Collapse
|
35
|
Entry of Botulinum Neurotoxin Subtypes A1 and A2 into Neurons. Infect Immun 2016; 85:IAI.00795-16. [PMID: 27795365 DOI: 10.1128/iai.00795-16] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 10/05/2016] [Indexed: 11/20/2022] Open
Abstract
Botulinum neurotoxins (BoNTs) are the most toxic proteins for humans but also are common therapies for neurological diseases. BoNTs are dichain toxins, comprising an N-terminal catalytic domain (LC) disulfide bond linked to a C-terminal heavy chain (HC) which includes a translocation domain (HN) and a receptor binding domain (HC). Recently, the BoNT serotype A (BoNT/A) subtypes A1 and A2 were reported to possess similar potencies but different rates of cellular intoxication and pathology in a mouse model of botulism. The current study measured HCA1 and HCA2 entry into rat primary neurons and cultured Neuro2A cells. We found that there were two sequential steps during the association of BoNT/A with neurons. The initial step was ganglioside dependent, while the subsequent step involved association with synaptic vesicles. HCA1 and HCA2 entered the same population of synaptic vesicles and entered cells at similar rates. The primary difference was that HCA2 had a higher degree of receptor occupancy for cells and neurons than HcA1. Thus, HCA2 and HCA1 share receptors and entry pathway but differ in their affinity for receptor. The initial interaction of HCA1 and HCA2 with neurons may contribute to the unique pathologies of BoNT/A1 and BoNT/A2 in mouse models.
Collapse
|
36
|
Neurotoxins from Clostridium botulinum (serotype A) isolated from the soil of Mendoza (Argentina) differ from the A-Hall archetype and from that causing infant botulism. Toxicon 2016; 121:30-35. [PMID: 27527271 DOI: 10.1016/j.toxicon.2016.08.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 08/10/2016] [Accepted: 08/11/2016] [Indexed: 11/22/2022]
Abstract
The type A of neurotoxin produced by Clostridium botulinum is the prevalent serotype in strains of Mendoza. The soil is the main reservoir for C.botulinum and is possibly one of the infection sources in infant botulism. In this study, we characterized and compared autochthonous C. botulinum strains and their neurotoxins. Bacterial samples were obtained from the soil and from fecal samples collected from children with infant botulism. We first observed differences in the appearance of the colonies between strains from each source and with the A Hall control strain. In addition, purified neurotoxins of both strains were found to be enriched in a band of 300 kDa, whereas the A-Hall strain was mainly made up of a band of ∼600 kDa. This finding is in line with the lack of hemagglutinating activity of the neurotoxins under study. Moreover, the proteolytic activity of C. botulinum neurotoxins was evaluated against SNARE (soluble N-ethylmaleimide-sensitive factor-attachment protein receptor) proteins from rat brain. It was observed that both, SNAP 25 (synaptosomal-associated protein 25) and VAMP 2 (vesicle-associated membrane protein) were cleaved by the neurotoxins isolated from the soil strains, whereas the neurotoxins from infant botulism strains only induced a partial cleavage of VAMP 2. On the other hand, the neurotoxin from the A-Hall strain was able to cleave both proteins, though at a lesser extent. Our data indicate that the C.botulinum strain isolated from the soil, and its BoNT, exhibit different properties compared to the strain obtained from infant botulism patients, and from the A-Hall archetype.
Collapse
|
37
|
Mazuet C, Legeay C, Sautereau J, Ma L, Bouchier C, Bouvet P, Popoff MR. Diversity of Group I and II Clostridium botulinum Strains from France Including Recently Identified Subtypes. Genome Biol Evol 2016; 8:1643-60. [PMID: 27189984 PMCID: PMC4943176 DOI: 10.1093/gbe/evw101] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/04/2016] [Indexed: 01/31/2023] Open
Abstract
In France, human botulism is mainly food-borne intoxication, whereas infant botulism is rare. A total of 99 group I and II Clostridium botulinum strains including 59 type A (12 historical isolates [1947-1961], 43 from France [1986-2013], 3 from other countries, and 1 collection strain), 31 type B (3 historical, 23 recent isolates, 4 from other countries, and 1 collection strain), and 9 type E (5 historical, 3 isolates, and 1 collection strain) were investigated by botulinum locus gene sequencing and multilocus sequence typing analysis. Historical C. botulinum A strains mainly belonged to subtype A1 and sequence type (ST) 1, whereas recent strains exhibited a wide genetic diversity: subtype A1 in orfX or ha locus, A1(B), A1(F), A2, A2b2, A5(B2') A5(B3'), as well as the recently identified A7 and A8 subtypes, and were distributed into 25 STs. Clostridium botulinum A1(B) was the most frequent subtype from food-borne botulism and food. Group I C. botulinum type B in France were mainly subtype B2 (14 out of 20 historical and recent strains) and were divided into 19 STs. Food-borne botulism resulting from ham consumption during the recent period was due to group II C. botulinum B4. Type E botulism is rare in France, 5 historical and 1 recent strains were subtype E3. A subtype E12 was recently identified from an unusual ham contamination. Clostridium botulinum strains from human botulism in France showed a wide genetic diversity and seems to result not from a single evolutionary lineage but from multiple and independent genetic rearrangements.
Collapse
Affiliation(s)
| | - Christine Legeay
- Bactéries Anaérobies et Toxines, Institut Pasteur, Paris, France
| | - Jean Sautereau
- Bactéries Anaérobies et Toxines, Institut Pasteur, Paris, France
| | - Laurence Ma
- Plateforme Genomique-Pôle Biomics, Institut Pasteur, Paris, France
| | | | - Philippe Bouvet
- Bactéries Anaérobies et Toxines, Institut Pasteur, Paris, France
| | - Michel R Popoff
- Bactéries Anaérobies et Toxines, Institut Pasteur, Paris, France
| |
Collapse
|
38
|
Zeuner KE, Deuschl G. Pharmacokinetics and pharmacodynamics of incobotulinumtoxinA influencing the clinical efficacy in post-stroke spasticity. Expert Opin Drug Metab Toxicol 2016; 12:457-66. [DOI: 10.1517/17425255.2016.1152262] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
39
|
Current status and future directions of botulinum neurotoxins for targeting pain processing. Toxins (Basel) 2015; 7:4519-63. [PMID: 26556371 PMCID: PMC4663519 DOI: 10.3390/toxins7114519] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 09/29/2015] [Accepted: 10/19/2015] [Indexed: 12/20/2022] Open
Abstract
Current evidence suggests that botulinum neurotoxins (BoNTs) A1 and B1, given locally into peripheral tissues such as skin, muscles, and joints, alter nociceptive processing otherwise initiated by inflammation or nerve injury in animal models and humans. Recent data indicate that such locally delivered BoNTs exert not only local action on sensory afferent terminals but undergo transport to central afferent cell bodies (dorsal root ganglia) and spinal dorsal horn terminals, where they cleave SNAREs and block transmitter release. Increasing evidence supports the possibility of a trans-synaptic movement to alter postsynaptic function in neuronal and possibly non-neuronal (glial) cells. The vast majority of these studies have been conducted on BoNT/A1 and BoNT/B1, the only two pharmaceutically developed variants. However, now over 40 different subtypes of botulinum neurotoxins (BoNTs) have been identified. By combining our existing and rapidly growing understanding of BoNT/A1 and /B1 in altering nociceptive processing with explorations of the specific characteristics of the various toxins from this family, we may be able to discover or design novel, effective, and long-lasting pain therapeutics. This review will focus on our current understanding of the molecular mechanisms whereby BoNTs alter pain processing, and future directions in the development of these agents as pain therapeutics.
Collapse
|
40
|
Kaji R. Clinical differences between A1 and A2 botulinum toxin subtypes. Toxicon 2015; 107:85-8. [PMID: 26394198 DOI: 10.1016/j.toxicon.2015.09.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 09/14/2015] [Accepted: 09/17/2015] [Indexed: 10/23/2022]
Abstract
All the type A botulinum toxins that have been clinically used are of subtype A1. We have developed low-molecular weight (150 k Dal) subtype A2 preparation (A2NTX) for clinical use. In the first-in-man study, the clinical efficacy of A2NTX was 1.5 times that of onabotulinumtoxinA (subtype A1) with similar time course and less spread of its action to a neighboring muscle. We have recently performed a comparative study of A1LL (onabotulinumtoxinA) and A2NTX toxins for post-stroke spasticity (Study of a New Generation Botulinum Toxin A2NTX to Treat Spasticity After Stroke; NCT01910363 at ClinicalTrials.gov). This double blinded randomized controlled study used 300u of each subtype. In this study, A2NTX showed significantly higher efficacy 30 days after injection (Fig. 2), and less spread of the effect as measured by the hand grip of the unaffected side than A1LL. Functional independence measure (FIM) was also significantly improved for A2NTX, but not for A1LL. Additional large-scale clinical trials are warranted to further evaluate this promising new treatment.
Collapse
Affiliation(s)
- Ryuji Kaji
- Department of Neurology, Institute of Health-Bioscience, Tokushima University, 2-50-1 Kuramoto-cho, Tokushima 770-8503, Japan.
| |
Collapse
|
41
|
Benoit RM, Frey D, Wieser MM, Thieltges KM, Jaussi R, Capitani G, Kammerer RA. Structure of the BoNT/A1--receptor complex. Toxicon 2015; 107:25-31. [PMID: 26260692 DOI: 10.1016/j.toxicon.2015.08.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 08/04/2015] [Indexed: 11/16/2022]
Abstract
Botulinum neurotoxin A causes botulism but is also used for medical and cosmetic applications. A detailed molecular understanding of BoNT/A--host receptor interactions is therefore fundamental for improving current clinical applications and for developing new medical strategies targeting human disorders. Towards this end, we recently solved an X-ray crystal structure of BoNT/A1 in complex with its neuronal protein receptor SV2C. Based on our findings, we discuss the potential implications for BoNT/A function.
Collapse
Affiliation(s)
- Roger M Benoit
- Laboratory of Biomolecular Research, Department of Biology and Chemistry, Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland
| | - Daniel Frey
- Laboratory of Biomolecular Research, Department of Biology and Chemistry, Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland
| | - Mara M Wieser
- Laboratory of Biomolecular Research, Department of Biology and Chemistry, Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland
| | - Katherine M Thieltges
- Laboratory of Biomolecular Research, Department of Biology and Chemistry, Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland
| | - Rolf Jaussi
- Laboratory of Biomolecular Research, Department of Biology and Chemistry, Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland
| | - Guido Capitani
- Laboratory of Biomolecular Research, Department of Biology and Chemistry, Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland
| | - Richard A Kammerer
- Laboratory of Biomolecular Research, Department of Biology and Chemistry, Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland.
| |
Collapse
|
42
|
Pellett S, Tepp WH, Whitemarsh RCM, Bradshaw M, Johnson EA. In vivo onset and duration of action varies for botulinum neurotoxin A subtypes 1-5. Toxicon 2015; 107:37-42. [PMID: 26130522 DOI: 10.1016/j.toxicon.2015.06.021] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 06/23/2015] [Indexed: 01/26/2023]
Abstract
To date, over 40 subtypes of botulinum neurotoxins (BoNTs) have been identified. BoNTs are classified into 7 serotypes distinguished primarily by their antigenic properties, but also characterized by their unique SNARE targets and cleavage sites, host specificity, and duration of action. Sequencing efforts in the last decade have identified several subtypes within the serotypes. Subtypes are currently defined as distinct based solely on amino acid sequence comparison, with a similarity cut-off of 2.5% difference. Ten subtypes have been identified for BoNT/A, which is the serotype associated with the most severe human botulism and also the most commonly used serotype for clinical purposes. Analyses of several of these subtypes have revealed distinct characteristics, ranging from differences in cell entry and enzyme kinetics to differences in potency in mice and cell-model specific potency. A long-term activity study in cultured primary neurons has indicated that BoNT/A1, 2, 4, and 5 have a similar duration of action, whereas BoNT/A3 has a significantly shorter duration of action. This report describes an in vivo mouse study, showing that after local injection BoNT/A2 resulted in faster onset of local paralysis than BoNT/A1, 3, 4, and 5, whereas BoNT/A3 resulted in significantly faster recovery of motor-neuron deficiency.
Collapse
Affiliation(s)
- Sabine Pellett
- Department of Bacteriology, University of Wisconsin - Madison, Madison, WI, USA.
| | - William H Tepp
- Department of Bacteriology, University of Wisconsin - Madison, Madison, WI, USA
| | | | - Marite Bradshaw
- Department of Bacteriology, University of Wisconsin - Madison, Madison, WI, USA
| | - Eric A Johnson
- Department of Bacteriology, University of Wisconsin - Madison, Madison, WI, USA
| |
Collapse
|
43
|
Morineaux V, Mazuet C, Hilaire D, Enche J, Popoff MR. Characterization of botulinum neurotoxin type A subtypes by immunocapture enrichment and liquid chromatography–tandem mass spectrometry. Anal Bioanal Chem 2015; 407:5559-70. [DOI: 10.1007/s00216-015-8707-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 03/31/2015] [Accepted: 04/14/2015] [Indexed: 12/21/2022]
|
44
|
Kull S, Schulz KM, Strotmeier JWN, Kirchner S, Schreiber T, Bollenbach A, Dabrowski PW, Nitsche A, Kalb SR, Dorner MB, Barr JR, Rummel A, Dorner BG. Isolation and functional characterization of the novel Clostridium botulinum neurotoxin A8 subtype. PLoS One 2015; 10:e0116381. [PMID: 25658638 PMCID: PMC4320087 DOI: 10.1371/journal.pone.0116381] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 12/06/2014] [Indexed: 12/31/2022] Open
Abstract
Botulism is a severe neurological disease caused by the complex family of botulinum neurotoxins (BoNT). Based on the different serotypes known today, a classification of serotype variants termed subtypes has been proposed according to sequence diversity and immunological properties. However, the relevance of BoNT subtypes is currently not well understood. Here we describe the isolation of a novel Clostridium botulinum strain from a food-borne botulism outbreak near Chemnitz, Germany. Comparison of its botulinum neurotoxin gene sequence with published sequences identified it to be a novel subtype within the BoNT/A serotype designated BoNT/A8. The neurotoxin gene is located within an ha-orfX+ cluster and showed highest homology to BoNT/A1, A2, A5, and A6. Unexpectedly, we found an arginine insertion located in the HC domain of the heavy chain, which is unique compared to all other BoNT/A subtypes known so far. Functional characterization revealed that the binding characteristics to its main neuronal protein receptor SV2C seemed unaffected, whereas binding to membrane-incorporated gangliosides was reduced in comparison to BoNT/A1. Moreover, we found significantly lower enzymatic activity of the natural, full-length neurotoxin and the recombinant light chain of BoNT/A8 compared to BoNT/A1 in different endopeptidase assays. Both reduced ganglioside binding and enzymatic activity may contribute to the considerably lower biological activity of BoNT/A8 as measured in a mouse phrenic nerve hemidiaphragm assay. Despite its reduced activity the novel BoNT/A8 subtype caused severe botulism in a 63-year-old male. To our knowledge, this is the first description and a comprehensive characterization of a novel BoNT/A subtype which combines genetic information on the neurotoxin gene cluster with an in-depth functional analysis using different technical approaches. Our results show that subtyping of BoNT is highly relevant and that understanding of the detailed toxin function might pave the way for the development of novel therapeutics and tailor-made antitoxins.
Collapse
Affiliation(s)
- Skadi Kull
- Biological Toxins (ZBS3), Centre for Biological Threats and Special Pathogens, Robert Koch-Institut, Berlin, Germany
| | - K. Melanie Schulz
- Biological Toxins (ZBS3), Centre for Biological Threats and Special Pathogens, Robert Koch-Institut, Berlin, Germany
| | | | - Sebastian Kirchner
- Biological Toxins (ZBS3), Centre for Biological Threats and Special Pathogens, Robert Koch-Institut, Berlin, Germany
| | - Tanja Schreiber
- Biological Toxins (ZBS3), Centre for Biological Threats and Special Pathogens, Robert Koch-Institut, Berlin, Germany
| | | | - P. Wojtek Dabrowski
- Highly Pathogenic Viruses (ZBS1), Centre for Biological Threats and Special Pathogens, Robert Koch-Institut, Berlin, Germany
| | - Andreas Nitsche
- Highly Pathogenic Viruses (ZBS1), Centre for Biological Threats and Special Pathogens, Robert Koch-Institut, Berlin, Germany
| | - Suzanne R. Kalb
- Centers for Disease Control and Prevention, National Center for Environmental Health, Division of Laboratory Sciences, Atlanta, Georgia, United States of America
| | - Martin B. Dorner
- Biological Toxins (ZBS3), Centre for Biological Threats and Special Pathogens, Robert Koch-Institut, Berlin, Germany
| | - John R. Barr
- Centers for Disease Control and Prevention, National Center for Environmental Health, Division of Laboratory Sciences, Atlanta, Georgia, United States of America
| | - Andreas Rummel
- Institut für Toxikologie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Brigitte G. Dorner
- Biological Toxins (ZBS3), Centre for Biological Threats and Special Pathogens, Robert Koch-Institut, Berlin, Germany
- * E-mail:
| |
Collapse
|
45
|
Abstract
The rapidly growing number of botulinum neurotoxin sequences poses the problem of the possible evolutionary significance of the variability of these superpotent neurotoxins for toxin-producing Clostridium species. To progress in the understanding of this remarkable phenomenon, we suggest that researchers should (i) abandon an anthropocentric view of these neurotoxins as human botulism-causing agents or as human therapeutics, (ii) begin to investigate in depth the role of botulinum neurotoxins in animal botulism in the wilderness, and (iii) devote large efforts to next-generation sequencing of soil samples to identify novel botulinum neurotoxins. In order to compare the fitness of the different toxins, we suggest that assays of all the steps from toxin production to animal death should be performed.
Collapse
|
46
|
Kammerer RA, Benoit RM. Botulinum neurotoxins: new questions arising from structural biology. Trends Biochem Sci 2014; 39:517-26. [PMID: 25282537 DOI: 10.1016/j.tibs.2014.08.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 08/18/2014] [Accepted: 08/21/2014] [Indexed: 11/29/2022]
Abstract
Botulinum neurotoxins (BoNTs) are the most toxic substances known and cause botulism in vertebrates. They have also emerged as effective and powerful reagents for cosmetic and medical applications. One important prerequisite for understanding BoNT function in disease, and the further development of the toxins for cosmetic and medical applications, is a detailed knowledge of BoNT interactions with non-toxic neurotoxin-associated proteins and cell surface receptors. Based on the substantial recent progress in obtaining high-resolution crystal structures of key BoNT complexes, we summarize the major advances in understanding BoNT interactions and discuss the resulting potential implications, in particular those relating to BoNT serotype A.
Collapse
Affiliation(s)
- Richard A Kammerer
- Laboratory of Biomolecular Research, Department of Biology and Chemistry, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland.
| | - Roger M Benoit
- Laboratory of Biomolecular Research, Department of Biology and Chemistry, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| |
Collapse
|
47
|
Holotoxin Activity of Botulinum Neurotoxin Subtype A4 Originating from a Nontoxigenic Clostridium botulinum Expression System. Appl Environ Microbiol 2014; 80:7415-22. [PMID: 25239905 DOI: 10.1128/aem.01795-14] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 09/17/2014] [Indexed: 12/14/2022] Open
Abstract
Clostridium botulinum subtype A4 neurotoxin (BoNT/A4) is naturally expressed in the dual-toxin-producing C. botulinum strain 657Ba at 100× lower titers than BoNT/B. In this study, we describe purification of recombinant BoNT/A4 (rBoNT/A4) expressed in a nonsporulating and nontoxigenic C. botulinum expression host strain. The rBoNT/A4 copurified with nontoxic toxin complex components provided in trans by the expression host and was proteolytically cleaved to the active dichain form. Activity of the recombinant BoNT/A4 in mice and in human neuronal cells was about 1,000-fold lower than that of BoNT/A1, and the recombinant BoNT/A4 was effectively neutralized by botulism heptavalent antitoxin. A previous report using recombinant truncated BoNT/A4 light chain (LC) expressed in Escherichia coli has indicated reduced stability and activity of BoNT/A4 LC compared to BoNT/A1 LC, which was surmounted by introduction of a single-amino-acid substitution, I264R. In order to determine whether this mutation would also affect the holotoxin activity of BoNT/A4, a recombinant full-length BoNT/A4 carrying this mutation as well as a second mutation predicted to increase solubility (L260F) was produced in the clostridial expression system. Comparative analyses of the in vitro, cellular, and in vivo activities of rBoNT/A4 and rBoNT/A4-L260F I264R showed 1,000-fold-lower activity than BoNT/A1 in both the mutated and nonmutated BoNT/A4. This indicates that these mutations do not alter the activity of BoNT/A4 holotoxin. In summary, a recombinant BoNT from a dual-toxin-producing strain was expressed and purified in an endogenous clostridial expression system, allowing analysis of this toxin.
Collapse
|
48
|
Itakura M, Kohda T, Kubo T, Semi Y, Nishiyama K, Azuma YT, Nakajima H, Kozaki S, Takeuchi T. Botulinum neurotoxin type A subtype 2 confers greater safety than subtype 1 in a rat Parkinson's disease model. J Vet Med Sci 2014; 76:1189-93. [PMID: 24849052 PMCID: PMC4155206 DOI: 10.1292/jvms.14-0184] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Botulinum neurotoxin type A (BoNT/A) cleaves SNAP-25 and interrupts the release of acetylcholine. We previously reported that BoNT/A subtype 2 (BoNT/A2) ameliorates pathologic behavior more effectively than subtype 1 (BoNT/A1) in a rat Parkinson's disease model. Here, we further show BoNT/A2 has fewer adverse effects than BoNT/A1. We first confirmed that intrastriatal treatments of both BoNT/As had no-effect on dopaminergic terminals in the striatum. SNAP-25 cleaved by BoNT/A2 was strictly localized to the striatum on the injected side; however, SNAP-25 cleaved by BoNT/A1 diffused contralaterally. Furthermore, treatment with BoNT/A1 caused a significant reduction in body weight, while BoNT/A2 treatment did not. These results suggest that BoNT/A2 is more beneficial for clinical application against Parkinson's disease than BoNT/A1.
Collapse
Affiliation(s)
- Masanori Itakura
- Laboratory of Veterinary Pharmacology, Graduate School of Life and Environmental Science, Osaka Prefecture University, 1-58 Rinku Ourai Kita, Izumisano-shi, Osaka 598-8531, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Itakura M, Kohda T, Kubo T, Semi Y, Azuma YT, Nakajima H, Kozaki S, Takeuchi T. Botulinum neurotoxin A subtype 2 reduces pathological behaviors more effectively than subtype 1 in a rat Parkinson's disease model. Biochem Biophys Res Commun 2014; 447:311-4. [PMID: 24713302 DOI: 10.1016/j.bbrc.2014.03.146] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 03/28/2014] [Indexed: 10/25/2022]
Abstract
Recent reports indicate that interruption of acetylcholine release by intrastriatal injection of botulinum neurotoxin type A (BoNT/A) in a rat Parkinson's disease model reduces pathogenic behavior without adverse side effects such as memory dysfunction. Current knowledge suggests that BoNT/A subtype 1 (BoNT/A1) and BoNT/A subtype 2 (BoNT/A2) exert different effects. In the present study, we compared the effects of BoNT/A1 and BoNT/A2 on rotation behavior and in vivo cleavage of presynaptic protein SNAP-25 in a rat unilateral 6-hydroxydopamine-induced Parkinson's disease model. BoNT/A2 more effectively reduced pathogenic behavior by efficiently cleaving SNAP-25 in the striatum compared with that of BoNT/A1. Our results suggest that BoNT/A2 has greater clinical therapeutic value for treating subjects with Parkinson's disease compared to that of BoNT/A1.
Collapse
Affiliation(s)
- Masanori Itakura
- Laboratory of Veterinary Pharmacology, Graduate School of Life and Environmental Science, Osaka Prefecture University, 1-58 Rinku Ourai Kita, Izumisano-shi, Osaka 5988531, Japan
| | - Tomoko Kohda
- Laboratory of Veterinary Epidemiology, Graduate School of Life and Environmental Science, Osaka Prefecture University, 1-58 Rinku Ourai Kita, Izumisano-shi, Osaka 5988531, Japan
| | - Takeya Kubo
- Laboratory of Veterinary Pharmacology, Graduate School of Life and Environmental Science, Osaka Prefecture University, 1-58 Rinku Ourai Kita, Izumisano-shi, Osaka 5988531, Japan
| | - Yuko Semi
- Laboratory of Veterinary Pharmacology, Graduate School of Life and Environmental Science, Osaka Prefecture University, 1-58 Rinku Ourai Kita, Izumisano-shi, Osaka 5988531, Japan
| | - Yasu-Taka Azuma
- Laboratory of Veterinary Pharmacology, Graduate School of Life and Environmental Science, Osaka Prefecture University, 1-58 Rinku Ourai Kita, Izumisano-shi, Osaka 5988531, Japan
| | - Hidemitsu Nakajima
- Laboratory of Veterinary Pharmacology, Graduate School of Life and Environmental Science, Osaka Prefecture University, 1-58 Rinku Ourai Kita, Izumisano-shi, Osaka 5988531, Japan.
| | - Shunji Kozaki
- Laboratory of Veterinary Epidemiology, Graduate School of Life and Environmental Science, Osaka Prefecture University, 1-58 Rinku Ourai Kita, Izumisano-shi, Osaka 5988531, Japan
| | - Tadayoshi Takeuchi
- Laboratory of Veterinary Pharmacology, Graduate School of Life and Environmental Science, Osaka Prefecture University, 1-58 Rinku Ourai Kita, Izumisano-shi, Osaka 5988531, Japan
| |
Collapse
|
50
|
Whitemarsh RCM, Tepp WH, Johnson EA, Pellett S. Persistence of botulinum neurotoxin a subtypes 1-5 in primary rat spinal cord cells. PLoS One 2014; 9:e90252. [PMID: 24587301 PMCID: PMC3937374 DOI: 10.1371/journal.pone.0090252] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 01/30/2014] [Indexed: 12/20/2022] Open
Abstract
Botulinum neurotoxins (BoNTs) are the most poisonous substances known and cause the severe disease botulism. BoNTs have also been remarkably effective as therapeutics in treating many neuronal and neuromuscular disorders. One of the hallmarks of BoNTs, particularly serotype A, is its long persistence of 2-6 months in patients at concentrations as low as fM or pM. The mechanisms for this persistence are currently unclear. In this study we determined the persistence of the BoNT/A subtypes 1 through 5 in primary rat spinal neurons. Remarkably, the duration of intracellular enzymatic activity of BoNT/A1, /A2, /A4 and /A5 was shown to be at least 10 months. Conversely, the effects of BoNT/A3 were observed for up to ∼5 months. An intermittent dosing with BoNT/E showed intracellular activity of the shorter acting BoNT/E for 2–3 weeks, followed by reoccurrence and persistence of BoNT/A-induced SNAP-25 cleavage products.
Collapse
Affiliation(s)
| | - William Howard Tepp
- Department of Bacteriology, University of Wisconsin – Madison, Madison, Wisconsin, United States of America
| | - Eric Arthur Johnson
- Department of Bacteriology, University of Wisconsin – Madison, Madison, Wisconsin, United States of America
| | - Sabine Pellett
- Department of Bacteriology, University of Wisconsin – Madison, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|