1
|
Stanciu MC, Ionita D, Tȋmpu D, Popescu I, Suflet DM, Doroftei F, Tuchilus CG. Novel Quaternary Ammonium Derivatives Based on Apple Pectin. Polymers (Basel) 2024; 16:3352. [PMID: 39684100 DOI: 10.3390/polym16233352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 11/26/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
New quaternary ammonium derivatives (quats) based on apple pectin (PA) were synthesized by the chemical modification of native polysaccharides with various quaternization mixtures containing epichlorohydrin (ECH) and a tertiary amine. Pectin derivatives (QPAs) were studied by elemental analysis, conductometric titration, Fourier-transform infrared spectroscopy (FTIR), and 13C nuclear magnetic resonance (13C NMR). Viscosity measurements enabled the evaluation of the viscosity average molar mass (Mv) for the unmodified polysaccharide, as well as its intrinsic viscosity ([η]) value. Dynamic light scattering (DLS) analysis revealed that the PA and its quats formed aggregates in an aqueous solution with either a unimodal (PA) or bimodal (QPAs) distribution. Scanning transmission electron microscopy analysis (STEM) of the PA and its derivatives demonstrated the presence of individual polymeric chains and aggregates in aqueous solution, with the smallest sizes being specific to amphiphilic polymers. Thermal stability, as well as wide-angle X-ray diffraction (WAXD) studies, generally indicated a lower thermal stability and crystallinity of the QPAs compared with those of the PA. Antipathogenic activity demonstrated that the PA and its derivatives exhibited effectiveness against S. aureus ATCC 25923 bacterium and C. albicans ATCC 10231 pathogenic yeast.
Collapse
Affiliation(s)
| | - Daniela Ionita
- "Petru Poni" Institute of Macromolecular Chemistry, 41A, Gr. Ghica-Voda Alley, 700487 Iasi, Romania
| | - Daniel Tȋmpu
- "Petru Poni" Institute of Macromolecular Chemistry, 41A, Gr. Ghica-Voda Alley, 700487 Iasi, Romania
| | - Irina Popescu
- "Petru Poni" Institute of Macromolecular Chemistry, 41A, Gr. Ghica-Voda Alley, 700487 Iasi, Romania
| | - Dana Mihaela Suflet
- "Petru Poni" Institute of Macromolecular Chemistry, 41A, Gr. Ghica-Voda Alley, 700487 Iasi, Romania
| | - Florica Doroftei
- "Petru Poni" Institute of Macromolecular Chemistry, 41A, Gr. Ghica-Voda Alley, 700487 Iasi, Romania
| | - Cristina G Tuchilus
- Faculty of Medicine, "Grigore T. Popa" University of Medicine and Pharmacy, 16, University Street, 700115 Iasi, Romania
| |
Collapse
|
2
|
Erge A, Dülger BD. A novel biodegradable film based on chicken gelatin and κ-carrageenan cross-linked with oxidized phenolic compounds. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:51211-51221. [PMID: 39106016 DOI: 10.1007/s11356-024-33988-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 06/10/2024] [Indexed: 08/07/2024]
Abstract
Natural and renewable polymers are gradually replacing petroleum-based plastics, mostly as a result of environmental concerns. Moreover, upcycling industrial food waste into new added-value products is a creative approach that is crucial for cleaner and more sustainable manufacturing. The aim of this study was to obtain an environmentally friendly biodegradable film using a combination of k-carrageenan (KCAR) and chicken gelatin (CGEL), which obtained from poultry by-products. The effects of varying concentrations of KCAR (0-2%) on the physical, permeability, textural, thermal, and microstructural properties of CGEL/KCAR composite films were evaluated. The findings demonstrated that an increase in KCAR enhanced the lightness and opacity levels of the films. Water vapor permeability (WVP) values reduced as the KCAR concentration increased. The lowest WVP value (0.0012 g.mm/h.m2.kpa) was seen in the treatment with 2% KCAR. Tensile strength (TS) values increased with increasing KCAR. The films' thermal stability was increased by the addition of KCAR. Microstructure assessments revealed a more compact and smooth structure in the KCAR-containing treatments, indicating improvements in WVP, thermal stability, and TS. Compared to the commercial cattle gelatin film, the CGEL film had higher TS and lower water solubility (WS). Overall, this study showed that the physical, mechanical, barrier and thermal and microstructural qualities of gelatin-based films may be enhanced by combining CGEL and KCAR to create an effective biodegradable film. Moreover, the comparison study between commercial cattle and chicken gelatin films revealed that cross-linked chicken gelatin films would be a suitable alternative for bovine gelatin films in the production of biodegradable film.
Collapse
Affiliation(s)
- Aydın Erge
- Faculty of Agriculture, Poultry Science Department, Gölköy Campus, Bolu Abant İzzet Baysal University, Bolu, Turkey.
| | - Berk Demir Dülger
- Faculty of Agriculture, Poultry Science Department, Gölköy Campus, Bolu Abant İzzet Baysal University, Bolu, Turkey
| |
Collapse
|
3
|
Erge A, Güler BZ, Eren Ö. Optimization and characterization of biodegradable films from chicken gelatin crosslinked with oxidized phenolic compounds. Food Chem 2024; 438:137923. [PMID: 37980872 DOI: 10.1016/j.foodchem.2023.137923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/20/2023] [Accepted: 10/31/2023] [Indexed: 11/21/2023]
Abstract
Chicken gelatin derived from poultry by-product was combined with caffeic acid (CA), rutin (RUT) and glycerol (GLY) to obtain biodegradable films. Optimum cross-linking conditions were investigated using Response Surface Methodology (RSM). The results showed that cross-linking led to lower L* value and higher b*, and the higher opacity values in the films. Water solubility (WS) decreased up to 50% after the incorporation of 1.25% CA compared to the commercial gelatin (cattle and pig based) films. Crosslinking improved the thermal stability and the tensile strength (TS) of films. Optimized cross-linking combination was determined as 0.96-1.56% CA, 0-1.25% RUT, and 29.5-30.5% GLY. Overall, this study demonstrated that crosslinking by CA and RUT can be used to improve the physical and barrier properties of gelatin films having excellent potential for the development of biodegradable films for packaging uses. These films may also result in an improvement and added value in poultry by-products.
Collapse
Affiliation(s)
- Aydın Erge
- Bolu Abant İzzet Baysal University, Faculty of Agriculture, Poultry Science Department, Gölköy Campus, Bolu, Turkey.
| | - Büşra Zeynep Güler
- Bolu Abant İzzet Baysal University, Faculty of Agriculture, Poultry Science Department, Gölköy Campus, Bolu, Turkey.
| | - Ömer Eren
- Bolu Abant İzzet Baysal University, Faculty of Engineering, Food Engineering Department, Gölköy Campus, Bolu, Turkey.
| |
Collapse
|
4
|
Kapoor DU, Garg R, Gaur M, Pareek A, Prajapati BG, Castro GR, Suttiruengwong S, Sriamornsak P. Pectin hydrogels for controlled drug release: Recent developments and future prospects. Saudi Pharm J 2024; 32:102002. [PMID: 38439951 PMCID: PMC10910345 DOI: 10.1016/j.jsps.2024.102002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 02/21/2024] [Indexed: 03/06/2024] Open
Abstract
Pectin hydrogels have emerged as a highly promising medium for the controlled release of pharmaceuticals in the dynamic field of drug delivery. The present review sheds light on the broad range of applications and potential of pectin-based hydrogels in pharmaceutical formulations. Pectin, as a biopolymer, is a versatile candidate for various drug delivery systems because of its wide range of properties and characteristics. The information provided on formulation strategies and crosslinking techniques provides researchers with tools to improve drug entrapment and controlled release. Furthermore, this review provides a more in-depth understanding of the complex factors influencing drug release from pectin hydrogels, such as the impact of environmental conditions and drug-specific characteristics. Pectin hydrogels demonstrate adaptability across diverse domains, ranging from applications in oral and transdermal drug delivery to contributions in wound healing, tissue engineering, and ongoing clinical trials. While standardization and regulatory compliance remain significant challenges, the future of pectin hydrogels appears to be bright, opening up new possibilities for advanced drug delivery systems.
Collapse
Affiliation(s)
- Devesh U. Kapoor
- Dr. Dayaram Patel Pharmacy College, Bardoli, Gujarat 394601, India
| | - Rahul Garg
- Department of Pharmacy, Asian College of Pharmacy, Udaipur, Rajasthan 313001, India
| | - Mansi Gaur
- Rajasthan Pharmacy College, Rajasthan University of Health Sciences, Jaipur 302020, India
| | - Ashutosh Pareek
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, Rajasthan 304022, India
| | - Bhupendra G. Prajapati
- Department of Pharmaceutics and Pharmaceutical Technology, Shree S.K. Patel College of Pharmaceutical Education and Research, Ganpat University, Mehsana, Gujarat 384012, India
| | - Guillermo R. Castro
- Nanomedicine Research Unit, Center for Natural and Human Sciences, Federal University of ABC, Santo André, Sao Paulo 09210-580, Brazil
| | - Supakij Suttiruengwong
- Department of Materials Science and Engineering, Faculty of Engineering and Industrial Technology, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Pornsak Sriamornsak
- Department of Industrial Pharmacy, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
- Academy of Science, The Royal Society of Thailand, Bangkok 10300, Thailand
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu 602105, India
| |
Collapse
|
5
|
Song J, Hu S, Liu Z, Wang Y, Lei L, Zhao G, Zhou Y. Oscillatory rheometry for elucidating the influence of non-network biopolymer aggregation on pectin-gelatin composite gels. Int J Biol Macromol 2024; 257:128543. [PMID: 38061530 DOI: 10.1016/j.ijbiomac.2023.128543] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/15/2023] [Accepted: 11/30/2023] [Indexed: 01/26/2024]
Abstract
Gel networks formed from biopolymers have intrigued rheological interest, especially in the food industry. Despite ubiquitous non-network biopolymer aggregation in real gel food systems, its fundamental rheological implications remain less understood. This study addresses this by preparing pectin-gelatin composite gels with dispersed or aggregated biopolymers and comparatively analyzing viscoelastic responses using rheometry. Subtle discrepancies in non-network biopolymer states were revealed through oscillatory shearing at different frequencies and amplitudes. Biopolymer aggregation in the network notably influenced loss tangent frequency dependency, particularly at high frequencies, elevating I3/I1 values and sensitizing the yield point. Non-network biopolymers weakened Payne effects and gel non-linearity. A combination of strain stiffening and shear thinning nonlinear responses characterized prepared gel systems. Aggregation of pectin and gelatin enhanced shear thinning, while strain stiffening was notable in highly aggregated pectin cases. This study enhances understanding of the link between non-network structural complexity and viscoelastic properties in oscillatory rheometry of food gels.
Collapse
Affiliation(s)
- Jiaxin Song
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, College of Food Science, Southwest University, Chongqing 400715, China
| | - Sen Hu
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, College of Food Science, Southwest University, Chongqing 400715, China
| | - Zhenjun Liu
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, College of Food Science, Southwest University, Chongqing 400715, China
| | - Yimin Wang
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, College of Food Science, Southwest University, Chongqing 400715, China
| | - Lin Lei
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, College of Food Science, Southwest University, Chongqing 400715, China
| | - Guohua Zhao
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, College of Food Science, Southwest University, Chongqing 400715, China
| | - Yun Zhou
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, College of Food Science, Southwest University, Chongqing 400715, China.
| |
Collapse
|
6
|
Günter EA, Melekhin AK, Belozerov VS, Martinson EA, Litvinets SG. Preparation, physicochemical characterization and swelling properties of composite hydrogel microparticles based on gelatin and pectins with different structure. Int J Biol Macromol 2024; 258:128935. [PMID: 38143057 DOI: 10.1016/j.ijbiomac.2023.128935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/05/2023] [Accepted: 12/19/2023] [Indexed: 12/26/2023]
Abstract
Composite hydrogel microparticles based on pectins with different structures (callus culture pectin (SVC) and apple pectin (AU)) and gelatin were developed. Hydrogel microparticles were formed by the ionotropic gelation and electrostatic interaction of COO- groups of pectin and NH3+ groups of gelatin, which was confirmed by FTIR spectroscopy. The addition of gelatin to pectin-based gel formulations resulted in a decrease in gel strength, whereas increasing gelatin concentration enhanced this effect. The microparticle gel strength increased in proportion to the increase in the pectin concentration. The DSC and TGA analyzes showed that pectin-gelatin gels had the higher thermal stability than individual pectins. The gel strength, Ca2+ content and thermal stability of the microparticles based on gelatin and SVC pectin with a lower degree of methylesterification (DM) (14.8 %) were higher compared to that of microparticles based on gelatin and AU pectin with a higher DM (40 %). An increase in the SVC concentration, Ca2+ content and gel strength of SVC-gelatin microparticles led to a decrease in the swelling degree in simulated gastrointestinal fluids. The addition of 0.5 % gelatin to gels based on AU pectin resulted in increased stability of the microparticles in gastrointestinal fluids, while the microparticles from AU without gelatin were destroyed.
Collapse
Affiliation(s)
- Elena A Günter
- Institute of Physiology of Federal Research Centre "Komi Science Centre of the Urals Branch of the Russian Academy of Sciences", 50, Pervomaiskaya str., Syktyvkar 167982, Russia.
| | - Anatoliy K Melekhin
- Institute of Physiology of Federal Research Centre "Komi Science Centre of the Urals Branch of the Russian Academy of Sciences", 50, Pervomaiskaya str., Syktyvkar 167982, Russia
| | - Vladislav S Belozerov
- Institute of Physiology of Federal Research Centre "Komi Science Centre of the Urals Branch of the Russian Academy of Sciences", 50, Pervomaiskaya str., Syktyvkar 167982, Russia; Vyatka State University, 36, Moskovskaya str., Kirov 610000, Russia
| | | | | |
Collapse
|
7
|
Said NS, Olawuyi IF, Lee WY. Pectin Hydrogels: Gel-Forming Behaviors, Mechanisms, and Food Applications. Gels 2023; 9:732. [PMID: 37754413 PMCID: PMC10530747 DOI: 10.3390/gels9090732] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 09/28/2023] Open
Abstract
Pectin hydrogels have garnered significant attention in the food industry due to their remarkable versatility and promising properties. As a naturally occurring polysaccharide, pectin forms three-dimensional (3D) hydrophilic polymer networks, endowing these hydrogels with softness, flexibility, and biocompatibility. Their exceptional attributes surpass those of other biopolymer gels, exhibiting rapid gelation, higher melting points, and efficient carrier capabilities for flavoring and fat barriers. This review provides an overview of the current state of pectin gelling mechanisms and the classification of hydrogels, as well as their crosslinking types, as investigated through diverse research endeavors worldwide. The preparation of pectin hydrogels is categorized into specific gel types, including hydrogels, cryogels, aerogels, xerogels, and oleogels. Each preparation process is thoroughly discussed, shedding light on how it impacts the properties of pectin gels. Furthermore, the review delves into the various crosslinking methods used to form hydrogels, with a focus on physical, chemical, and interpenetrating polymer network (IPN) approaches. Understanding these crosslinking mechanisms is crucial to harnessing the full potential of pectin hydrogels for food-related applications. The review aims to provide valuable insights into the diverse applications of pectin hydrogels in the food industry, motivating further exploration to cater to consumer demands and advance food technology. By exploiting the unique properties of pectin hydrogels, food formulations can be enhanced with encapsulated bioactive substances, improved stability, and controlled release. Additionally, the exploration of different crosslinking methods expands the horizons of potential applications.
Collapse
Affiliation(s)
- Nurul Saadah Said
- School of Food Science and Technology, Kyungpook National University, Daegu 41566, Republic of Korea; (N.S.S.); (I.F.O.)
| | - Ibukunoluwa Fola Olawuyi
- School of Food Science and Technology, Kyungpook National University, Daegu 41566, Republic of Korea; (N.S.S.); (I.F.O.)
- Research Institute of Tailored Food Technology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Won Young Lee
- School of Food Science and Technology, Kyungpook National University, Daegu 41566, Republic of Korea; (N.S.S.); (I.F.O.)
- Research Institute of Tailored Food Technology, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
8
|
Sudheer S, Bandyopadhyay S, Bhat R. Sustainable polysaccharide and protein hydrogel-based packaging materials for food products: A review. Int J Biol Macromol 2023; 248:125845. [PMID: 37473880 DOI: 10.1016/j.ijbiomac.2023.125845] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/09/2023] [Accepted: 07/13/2023] [Indexed: 07/22/2023]
Abstract
Sustainable food packaging is a necessary element to ensure the success of a food system, the accomplishment of which is weighed in terms of quality retention and ensured products safety. Irrespective of the raised environmental concerns regarding petroleum-based packaging materials, a sustainable analysis and a lab to land assessment should be a priority to eliminate similar fates of new material. Functionalized bio-based hydrogels are one of the smartest packaging inventions that are expected to revolutionize the food packaging industry. Although in this review, the focus relies on recent developments in the sustainable bio-based hydrogel packaging materials, natural biopolymers such as proteins and polysaccharides from which hydrogels could be obtained, the challenges encountered in hydrogel-based packaging materials and the future prospects of hydrogel-based food packaging materials are also discussed. Moreover, the need for 'Life Cycle Assessment' (LCA), stress on certifications and a sustainable waste management system is also suggested which can bring both food and packaging into the same recycling bins.
Collapse
Affiliation(s)
- Surya Sudheer
- ERA-Chair for Food (By-) Products Valorisation Technologies (VALORTECH), Estonian University of Life Sciences, Fr. R. Kreutzwaldi 1, Tartu 510014, Estonia.
| | - Smarak Bandyopadhyay
- Centre of Polymeric Systems, University Institute, Tomas Bata University in Zlin, Tř. T. Bati 5678, Zlin 76001, Czech Republic
| | - Rajeev Bhat
- ERA-Chair for Food (By-) Products Valorisation Technologies (VALORTECH), Estonian University of Life Sciences, Fr. R. Kreutzwaldi 1, Tartu 510014, Estonia.
| |
Collapse
|
9
|
Liu Y, Jiang J. Preparation of β-ionone microcapsules by gelatin/pectin complex coacervation. Carbohydr Polym 2023; 312:120839. [PMID: 37059564 DOI: 10.1016/j.carbpol.2023.120839] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 02/25/2023] [Accepted: 03/19/2023] [Indexed: 04/03/2023]
Abstract
β-ionone has a unique violet odor and good biological activity, which is an essential fragrance component and potential anticancer drug. In this paper, β-ionone was encapsulated using complex coacervation of gelatin and pectin, followed by cross-linking with glutaraldehyde. The pH value, wall material concentration, core-wall ratio, homogenization conditions, and curing agent content were investigated in the single-factor experiments. For example, the encapsulation efficiency increased with the homogenization speed, which reached a relatively high value at 13000 r/min for 5 min. The gelatin/pectin ratio (3:1, w/w) and pH value (4.23) significantly affected the size, shape, and encapsulation efficiency of the microcapsule. The fluorescence microscope and SEM were used to characterize the morphology of the microcapsules, in which the microcapsule has a stable morphology, uniform size, and spherical multinuclear structure. FTIR measurements confirmed the electrostatic interactions between gelatin and pectin during complex coacervation. Thermogravimetric analysis (TGA) revealed that the microcapsules could maintain good thermal stability over 260 °C. The release rate of β-ionone microcapsule was only 20.6 % after 30 days at the low temperature of 4 °C. These findings provide an effective carrier to deliver flavors like β-ionone and could be useful in the fields of daily chemicals and textiles.
Collapse
|
10
|
Sason G, Yedidia I, Nussinovitch A, Chalegoua E, Pun M, Jurkevitch E. Self-demise of soft rot bacteria by activation of microbial predators by pectin-based carriers. Microb Biotechnol 2023. [PMID: 37209364 DOI: 10.1111/1751-7915.14271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 04/25/2023] [Indexed: 05/22/2023] Open
Abstract
Soft rot pectobacteria (SRP) are phytopathogens of the genera Pectobacterium and Dickeya that cause soft rots on a wide range of crops and ornamental plants. SRP produce plant cell wall degrading enzymes (PCWDEs), including pectinases. Bdellovibrio and like organisms are bacterial predators that can prey on a variety of Gram-negative species, including SRP. In this research, a low methoxyl pectin (LMP)-based immobilization system for B. bacteriovorus is established. It takes advantage that pectin residues induce PCWDE secretion by the pathogens, bringing upon the release of the encapsulated predators. Three commercial LMPs differing in the degree of esterification (DE) and amidation (DA) were tested as potential carriers, by examining their effect on SRP growth, enzymes secretion and substrate breakdown. A clear advantage was observed for pectin 5 CS with the lowest DE and DA content. The degradation of 5 CS pectin-based carriers was further optimized by reducing cross-linker and pectin concentration, by adding gelatin and by dehydration. This resulted in SRP-induced disintegration of the carrier within 72 h. The released encapsulated predator caused a large decrease in SRP population while its own significantly increased, demonstrating the efficiency of this system in which the pathogen brings about its own demise.
Collapse
Affiliation(s)
- Gal Sason
- Department of Plant Pathology and Microbiology, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
- Institute of Biochemistry, Food Science and Nutrition, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Iris Yedidia
- Institute of Plant Sciences, Department of Ornamental Plants and Agricultural Biotechnology, ARO, The Volcani Center, Rishon LeTsiyon, Israel
| | - Amos Nussinovitch
- Institute of Biochemistry, Food Science and Nutrition, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Errikos Chalegoua
- Institute of Biochemistry, Food Science and Nutrition, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
- Institute of Plant Sciences, Department of Ornamental Plants and Agricultural Biotechnology, ARO, The Volcani Center, Rishon LeTsiyon, Israel
| | - Manoj Pun
- Institute of Biochemistry, Food Science and Nutrition, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
- Institute of Plant Sciences, Department of Ornamental Plants and Agricultural Biotechnology, ARO, The Volcani Center, Rishon LeTsiyon, Israel
| | - Edouard Jurkevitch
- Department of Plant Pathology and Microbiology, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
11
|
Nosouhian E, Hojjatoleslamy M, Goli M, Jafari M, Kiani H. The effect of periodate oxidation of basil seed gum and its addition on protein binding. Int J Biol Macromol 2023; 240:124298. [PMID: 37059284 DOI: 10.1016/j.ijbiomac.2023.124298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 03/18/2023] [Accepted: 03/29/2023] [Indexed: 04/16/2023]
Abstract
This study attempted to determine the best point of basil seed oxidation by applying response surface methodology (RSM) with 3 factors of temperature (35-45 °C), pH (3-7) as well as time (3-7 h), at 3 levels. The produced dialdehyde basil seed gum (DBSG) was collected and its physicochemical properties were determined. Fitting of quadratic, linear polynomial equations was subsequently done by considering the insignificant lack of fit, as well as highly considerable R2, in order to probe the probable relationship existing between these considered variables as well as the obtained responses. So the considered optimal related test conditions, which included pH = 3, T = 45 °C as well as Time = 3 h, were specified to produce the highest percentage of aldehyde (DBSG32), optimal (DBSG34) and the (DBSG74) samples with the highest viscosity. The results obtained by FTIR and aldehyde content determination provided the indication that dialdehyde groups were formed in a way that was in equilibrium with the considered the hemiacetal form which was dominant. Furthermore, AFM investigation related to the considered DBSG34 sample displayed over-oxidation as well as depolymerization; this might be due to the enhanced hydrophobic qualities, as well as the decreased viscosity. While the DBSG34 sample had the most dialdehyde factor group with a particular tendency for the combination having the proteins' amino group, DBSG32 and DBSG74 samples could be desirable for industrial uses owing to no overoxidation.
Collapse
Affiliation(s)
- Elahe Nosouhian
- Department of Food Science and Technology, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Mohammad Hojjatoleslamy
- Department of Food Science and Technology, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran; Energy Research Center, Shahrekord Branch, Islamic Azad University, Shahrekord 8816765714, Iran.
| | - Mohammad Goli
- Department of Food Science and Technology, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran; Department of Food Science and Technology, Laser and Biophotonics in Biotechnologies Research Center, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
| | - Maryam Jafari
- Department of Food Science and Technology, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran; Medicinal Spicy and Aromatic Plants Research Center, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Hossein Kiani
- Department of Food Science and Technology, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran; Bioprocessing and Biodetection Lab, Department of Food Science and Technology, University of Tehran, Karaj, Iran
| |
Collapse
|
12
|
Akhila K, Ramakanth D, Rao LL, Gaikwad KK. UV-blocking biodegradable film based on flaxseed mucilage/pectin impregnated with titanium dioxide and calcium chloride for food packaging applications. Int J Biol Macromol 2023; 239:124335. [PMID: 37028623 DOI: 10.1016/j.ijbiomac.2023.124335] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/31/2023] [Accepted: 04/01/2023] [Indexed: 04/08/2023]
Abstract
A UV blocking and potentially biodegradable composite films are fabricated from flax seed mucilage and pectin with different concentrations of titanium dioxide (TiO2) and crosslinked with calcium chloride (CaCl2). This study aimed to evaluate the physical, surface, and optical properties including color, potential biodegradability, and absorption kinetics of the developed film. From the observations made, addition of 5 wt% TiO2 enhanced UV barrier property with a total color change (ΔE) of 23.441 ± 0.54 and increased its crystallinity to 54.1 % from 43.6 %. Crosslinking agent and TiO2 resulted in a prolonged period of biodegradation of >21 days when compared to neat film. Also, swelling index of crosslinked film was reduced by 3 times of non-crosslinked films. Surface of the developed films has no cracks and agglomerates as observed from scanning electron microscope. Moisture absorption kinetic study reveals that all the films have best-fit data following a pseudo-second-order kinetic model with a correlation coefficient ≥0.99 and the rate was controlled by inter-particle diffusion. The film with 1 wt% TiO2 and 5 wt% CaCl2 showed the lowest rate constants (k1) of 0.27 and (k2) of 0.029. The results suggest that this film can be potentially used in food packaging as a UV-blocking layer with potential biodegradability and good moisture resistance as compared to pure flax seed mucilage or pectin films.
Collapse
|
13
|
Yousefi-Mashouf H, Bailly L, Orgéas L, Henrich Bernardoni N. Mechanics of gelatin-based hydrogels during finite strain tension, compression and shear. Front Bioeng Biotechnol 2023; 10:1094197. [PMID: 36714620 PMCID: PMC9877534 DOI: 10.3389/fbioe.2022.1094197] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 12/26/2022] [Indexed: 01/13/2023] Open
Abstract
Introduction: Among the biopolymers used to make hydrogels, gelatin is very attractive due to its biocompatibility, biodegradability and versatile physico-chemical properties. A proper and complete characterization of the mechanical behavior of these hydrogels is critical to evaluate the relevance of one formulation over another for a targeted application, and to optimise their processing route accordingly. Methods: In this work, we manufactured neat gelatin and gelatin covalently cross-linked with glutaraldehyde at various concentrations, yielding to hydrogels with tunable mechanical properties that we characterized under finite strain, cyclic tension, compression and shear loadings. Results and Discussion: The role of both the chemical formulation and the kinematical path on the mechanical performances of the gels is highlighted. As an opening towards biomedical applications, the properties of the gels are confronted to those of native soft tissues particularly complicated to restore, the human vocal folds. A specific cross-linked hydrogel is selected to mimic vocal-fold fibrous tissues.
Collapse
Affiliation(s)
- Hamid Yousefi-Mashouf
- University Grenoble Alpes, Centre National de la Recherche Scientifique (CNRS), Grenoble INP, 3SR, Grenoble, France,University Grenoble Alpes, Centre National de la Recherche Scientifique (CNRS), Grenoble INP, GIPSA-lab, Grenoble, France
| | - Lucie Bailly
- University Grenoble Alpes, Centre National de la Recherche Scientifique (CNRS), Grenoble INP, 3SR, Grenoble, France,*Correspondence: Lucie Bailly,
| | - Laurent Orgéas
- University Grenoble Alpes, Centre National de la Recherche Scientifique (CNRS), Grenoble INP, 3SR, Grenoble, France
| | - Nathalie Henrich Bernardoni
- University Grenoble Alpes, Centre National de la Recherche Scientifique (CNRS), Grenoble INP, GIPSA-lab, Grenoble, France
| |
Collapse
|
14
|
Pereira JF, Marim BM, Simões BM, Yamashita F, Mali S. Hydrogels based on gelatin, xanthan gum, and cellulose obtained by reactive extrusion and thermopressing processes. Prep Biochem Biotechnol 2023; 53:942-953. [PMID: 36592021 DOI: 10.1080/10826068.2022.2162921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Polysaccharides and proteins are compatible macromolecules that can be used to obtain biopolymeric hydrogels through physical interactions. In this study, an environmentally friendly strategy is being proposed to produce gelatin-xanthan gum- cellulose hydrogels, without the addition of chemical synthetic crosslinkers. Xanthan gum was employed as an alternative crosslinking agent, and cellulose was used as a potential reinforcing agent in the polymeric matrix. Firstly, the biopolymers were mixed by the extrusion process, and glycerol was used as a plasticizer. Then, the polymeric mixture was molded by thermopressing to obtain hydrogels as laminated films. All hydrogels formulations resulted in films with smooth surfaces, without pores or cracks, resulting in amorphous polymeric matrices. The obtained hydrogels had a pH-dependent degree of swelling, the highest swelling values were obtained at pH 4 (5.3-7.9 g/g) after 24 h of immersion. Cellulose acted as a reinforcing agent for hydrogels, increasing thermal stability, tensile strength, and Young's modulus of films when employed at the higher level (7%). The strategy employed in this study to obtain nontoxic hydrogels without synthetic crosslinkers was effective, resulting in materials with promising properties to be used as pharmaceutical forms to deliver active compounds in cosmetic or pharmaceutical products.
Collapse
Affiliation(s)
- Jéssica F Pereira
- Department of Biochemistry and Biotechnology, CCE, State University of Londrina, Londrina, PR, Brazil
| | - Beatriz M Marim
- Department of Biochemistry and Biotechnology, CCE, State University of Londrina, Londrina, PR, Brazil
| | - Bruno M Simões
- Department of Food Science and Technology, Center for Agricultural Sciences, State University of Londrina, Londrina, PR, Brazil
| | - Fabio Yamashita
- Department of Food Science and Technology, Center for Agricultural Sciences, State University of Londrina, Londrina, PR, Brazil
| | - Suzana Mali
- Department of Biochemistry and Biotechnology, CCE, State University of Londrina, Londrina, PR, Brazil
| |
Collapse
|
15
|
Gelatin-based smart film incorporated with nano cerium oxide for rapid detection of shrimp freshness. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2022.114417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
16
|
Pectin Based Hydrogels for Drug Delivery Applications: A Mini Review. Gels 2022; 8:gels8120834. [PMID: 36547359 PMCID: PMC9778466 DOI: 10.3390/gels8120834] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Over the past few decades, hydrogel systems using natural polymers have been expansively employed in drug delivery applications. Among the various reported biopolymer-based hydrogel drug delivery systems, pectin (Pec) is an exceptional natural polymer due to its unique functionalities and excellent properties such as biocompatibility, biodegradability, low-cost, and simple gelling capability, which has received considerable interest in the drug delivery fields. Since there is an increasing need for biomaterials with unique properties for drug delivery applications, in this review, hydrogels fabricated from natural pectin polymers were thoroughly investigated. Additionally, the present mini review aims to bring collectively more concise ways such as sources, extraction, properties, and various forms of Pec based hydrogel drug delivery systems and their toxicity concerns are summarized. Finally, the potential objectives and challenges based on pectin-based hydrogel drug delivery systems are also discussed.
Collapse
|
17
|
Enzymatic Crosslinked Hydrogels of Gelatin and Poly (Vinyl Alcohol) Loaded with Probiotic Bacteria as Oral Delivery System. Pharmaceutics 2022; 14:pharmaceutics14122759. [PMID: 36559253 PMCID: PMC9784308 DOI: 10.3390/pharmaceutics14122759] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/27/2022] [Accepted: 12/02/2022] [Indexed: 12/13/2022] Open
Abstract
Probiotic bacteria are widely used to prepare pharmaceutical products and functional foods because they promote and sustain health. Nonetheless, probiotic viability is prone to decrease under gastrointestinal conditions. In this investigation, Lactiplantibacillus plantarum spp. CM-CNRG TB98 was entrapped in a gelatin−poly (vinyl alcohol) (Gel−PVA) hydrogel which was prepared by a “green” route using microbial transglutaminase (mTGase), which acts as a crosslinking agent. The hydrogel was fully characterized and its ability to entrap and protect L. plantarum from the lyophilization process and under simulated gastric and intestine conditions was explored. The Gel−PVA hydrogel showed a high probiotic loading efficiency (>90%) and survivability from the lyophilization process (91%) of the total bacteria entrapped. Under gastric conditions, no disintegration of the hydrogel was observed, keeping L. plantarum protected with a survival rate of >94%. While in the intestinal fluid the hydrogel is completely dissolved, helping to release probiotics. A Gel−PVA hydrogel is suitable for a probiotic oral administration system due to its physicochemical properties, lack of cytotoxicity, and the protection it offers L. plantarum under gastric conditions.
Collapse
|
18
|
de la Harpe KM, Marimuthu T, Kondiah PPD, Kumar P, Ubanako P, Choonara YE. Synthesis of a novel monofilament bioabsorbable suture for biomedical applications. J Biomed Mater Res B Appl Biomater 2022; 110:2189-2210. [PMID: 35373911 PMCID: PMC9546231 DOI: 10.1002/jbm.b.35069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 03/11/2022] [Accepted: 03/14/2022] [Indexed: 11/07/2022]
Abstract
In this research, a novel bioabsorbable suture that is, monofilament and capable of localized drug delivery, was developed from a combination of natural biopolymers that where not previously applied for this purpose. The optimized suture formulation comprised of sodium alginate (6% wt/vol), pectin (0.1% wt/vol), and gelatin (3% wt/vol), in the presence of glycerol (4% vol/vol) which served as a plasticizer. The monofilament bioabsorbable sutures where synthesized via in situ ionic crosslinking in a barium chloride solution (2% wt/vol). The resulting suture was characterized in terms of mechanical properties, morphology, swelling, degradation, drug release, and biocompatibility, in addition to Fourier-transform infrared (FTIR) spectroscopy, Powder X-ray Diffraction (PXRD) and Differential Scanning Calorimetry (DSC) analysis. The drug loaded and non-drug loaded sutures had a maximum breaking strength of 4.18 and 4.08 N, in the straight configuration and 2.44 N and 2.59 N in the knot configuration, respectively. FTIR spectrum of crosslinked sutures depicted Δ9 cm-1 downward shift for the carboxyl stretching band which was indicative of ionic interactions between barium ions and sodium alginate. In vitro analysis revealed continued drug release for 7 days and gradual degradation by means of surface erosion, which was completed by day 28. Biocompatibility studies revealed excellent hemocompatibility and no cytotoxicity. These results suggest that the newly developed bioabsorbable suture meets the basic requirements of a suture material and provides a viable alternative to the synthetic polymer sutures that are currently on the market.
Collapse
Affiliation(s)
- Kara M. de la Harpe
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health SciencesUniversity of the Witwatersrand, ParktownJohannesburgSouth Africa
| | - Thashree Marimuthu
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health SciencesUniversity of the Witwatersrand, ParktownJohannesburgSouth Africa
| | - Pierre P. D. Kondiah
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health SciencesUniversity of the Witwatersrand, ParktownJohannesburgSouth Africa
| | - Pradeep Kumar
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health SciencesUniversity of the Witwatersrand, ParktownJohannesburgSouth Africa
| | - Philemon Ubanako
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health SciencesUniversity of the Witwatersrand, ParktownJohannesburgSouth Africa
| | - Yahya E. Choonara
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health SciencesUniversity of the Witwatersrand, ParktownJohannesburgSouth Africa
| |
Collapse
|
19
|
Ye X, Liu R, Qi X, Wang X, Wang Y, Chen Q, Gao X. Preparation of bioactive gelatin film using semi-refined pectin reclaimed from blueberry juice pomace: Creating an oxidation and light barrier for food packaging. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107673] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
20
|
Soltanzadeh M, Peighambardoust SH, Ghanbarzadeh B, Amjadi S, Mohammadi M, Lorenzo JM, Hamishehkar H. Active gelatin/cress seed gum-based films reinforced with chitosan nanoparticles encapsulating pomegranate peel extract: Preparation and characterization. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107620] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
21
|
Eivazzadeh-Keihan R, Noruzi EB, Aliabadi HAM, Sheikhaleslami S, Akbarzadeh AR, Hashemi SM, Gorab MG, Maleki A, Cohan RA, Mahdavi M, Poodat R, Keyvanlou F, Esmaeili MS. Recent advances on biomedical applications of pectin-containing biomaterials. Int J Biol Macromol 2022; 217:1-18. [PMID: 35809676 DOI: 10.1016/j.ijbiomac.2022.07.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/13/2022] [Accepted: 07/03/2022] [Indexed: 12/15/2022]
Abstract
There is a growing demand for biomaterials developing with novel properties for biomedical applications hence, hydrogels with 3D crosslinked polymeric structures obtained from natural polymers have been deeply inspected in this field. Pectin a unique biopolymer found in the cell walls of fruits and vegetables is extensively used in the pharmaceutical, food, and textile industries due to its ability to form a thick gel-like solution. Considering biocompatibility, biodegradability, easy gelling capability, and facile manipulation of pectin-based biomaterials; they have been thoroughly investigated for various potential biomedical applications including drug delivery, wound healing, tissue engineering, creation of implantable devices, and skin-care products.
Collapse
Affiliation(s)
- Reza Eivazzadeh-Keihan
- Nanobiotechnology Department, New Technologies Research Group, Pasteur Institute of Iran, Tehran, Iran
| | - Ehsan Bahojb Noruzi
- Faculty of Chemistry, Department of Inorganic Chemistry, University of Tabriz, Tabriz, Iran
| | - Hooman Aghamirza Moghim Aliabadi
- Protein Chemistry Laboratory, Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran; Advanced Chemical Studies Lab, Department of Chemistry, K. N. Toosi University of Technology, Tehran, Iran
| | - Sahra Sheikhaleslami
- Advanced Chemical Studies Lab, Department of Chemistry, K. N. Toosi University of Technology, Tehran, Iran
| | - Ali Reza Akbarzadeh
- Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Seyed Masoud Hashemi
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Mostafa Ghafori Gorab
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Ali Maleki
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran.
| | - Reza Ahangari Cohan
- Nanobiotechnology Department, New Technologies Research Group, Pasteur Institute of Iran, Tehran, Iran
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Roksana Poodat
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Faeze Keyvanlou
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Mir Saeed Esmaeili
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| |
Collapse
|
22
|
|
23
|
Green Tea Extract Enrichment: Mechanical and Physicochemical Properties Improvement of Rice Starch-Pectin Composite Film. Polymers (Basel) 2022; 14:polym14132696. [PMID: 35808739 PMCID: PMC9268978 DOI: 10.3390/polym14132696] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/21/2022] [Accepted: 06/29/2022] [Indexed: 12/12/2022] Open
Abstract
The effects of green tea extract (GTE) at varying concentrations (0.000, 0.125, 0.250, 0.500, and 1.000%, w/v) on the properties of rice-starch-pectin (RS-P) blend films were investigated. The results showed that GTE addition enhanced (p < 0.05) the antioxidation properties (i.e., total phenolic content, DPPH radical scavenging activity, and ferric reducing antioxidant power) and thickness of the RS-P composite film. The darker appearance of the RS-T-GTE blend films was obtained in correspondence to the lower L* values. However, the a* and b* values were higher toward red and yellow as GTE increased. Though GTE did not significantly alter the film solubility, the moisture content and the water vapor permeability (WVP) of the resulting films were reduced. In addition, the GTE enrichment diminished the light transmission in the UV-Visible region (200−800 nm) and the transparency of the developed films. The inclusion of GTE also significantly (p < 0.05) lowered the tensile strength (TS) and elongation at break (EAB) of the developed film. The FT-IR spectra revealed the interactions between RS-P films and GTE with no changes in functional groups. The antimicrobial activity against Staphylococcus aureus (TISTR 764) was observed in the RS-P biocomposite film with 1% (w/v) GTE. These results suggested that the RS-P-GTE composite film has considerable potential for application as active food packaging.
Collapse
|
24
|
Soni R, Hsu Y, Asoh T, Uyama H. Cellulose nanofiber reinforced starch film with rapid disintegration in marine environments. J Appl Polym Sci 2022. [DOI: 10.1002/app.52776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Raghav Soni
- Department of Applied Chemistry, Graduate School of Engineering Osaka University Osaka Japan
| | - Yu‐I Hsu
- Department of Applied Chemistry, Graduate School of Engineering Osaka University Osaka Japan
| | - Taka‐Aki Asoh
- Department of Applied Chemistry, Graduate School of Engineering Osaka University Osaka Japan
| | - Hiroshi Uyama
- Department of Applied Chemistry, Graduate School of Engineering Osaka University Osaka Japan
| |
Collapse
|
25
|
Nazeri MT, Javanbakht S, Nabi M, Shaabani A. Copper phthalocyanine-conjugated pectin via the Ugi four-component reaction: An efficient catalyst for CO2 fixation. Carbohydr Polym 2022; 283:119144. [DOI: 10.1016/j.carbpol.2022.119144] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 01/09/2022] [Accepted: 01/11/2022] [Indexed: 11/02/2022]
|
26
|
Oh G, Choi I, Park WS, Oh CH, Heo S, Kang D, Jung W. Preparation and properties of physically cross‐linked
PVA
/pectin hydrogels blended at different ratios for wound dressings. J Appl Polym Sci 2022. [DOI: 10.1002/app.51696] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Gun‐Woo Oh
- Research Center for Marine Integrated Bionics Technology Pukyong National University Busan 48513 South Korea
| | - Il‐Whan Choi
- Department of Microbiology, College of Medicine Inje University Busan 48516 South Korea
| | - Won Sun Park
- Institute of Medical Sciences, Department of Physiology Kangwon National University School of Medicine Chuncheon 24341 South Korea
| | - Chul Hong Oh
- Jeju International Marine Science Center for Research & Education Korea Institute of Ocean Science & Technology (KIOST) Jeju 63349 South Korea
| | - Soo‐Jin Heo
- Jeju International Marine Science Center for Research & Education Korea Institute of Ocean Science & Technology (KIOST) Jeju 63349 South Korea
| | - Do‐Hyung Kang
- Jeju International Marine Science Center for Research & Education Korea Institute of Ocean Science & Technology (KIOST) Jeju 63349 South Korea
| | - Won‐Kyo Jung
- Research Center for Marine Integrated Bionics Technology Pukyong National University Busan 48513 South Korea
- Department of Biomedical Engineering and New‐senior Healthcare Innovation Center (BK21 Plus) Pukyong National University Busan 48513 South Korea
| |
Collapse
|
27
|
Effect of hydroxychloroquine sulfate on the gelation behavior, water mobility and structure of gelatin. Colloids Surf A Physicochem Eng Asp 2022; 633:127849. [PMID: 34744314 PMCID: PMC8565095 DOI: 10.1016/j.colsurfa.2021.127849] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/28/2021] [Accepted: 10/30/2021] [Indexed: 12/03/2022]
Abstract
Hydroxychloroquine sulfate (HCQ) is a well-established antimalarial drug that has received considerable attention during the COVID-19 associated pneumonia epidemic. Gelatin is a multifunctional biomacromolecule with pharmaceutical applications and can be used to deliver HCQ. The effect of HCQ on the gelation behaviors, water mobility, and structure of gelatin was investigated to understand the interaction between the drug and its delivery carrier. The gel strength, hardness, gelling (Tg) and melting (Tm) temperatures, gelation rate (kgel), and water mobility of gelatin decreased with increasing amounts of HCQ. The addition of HCQ led to hydrogen bonding that interfered with triple helix formation in gelatin. Fourier transform infrared spectroscopy (FTIR) and X-ray diffractometer (XRD) analysis further confirmed that the interaction between HCQ and gelatin is primarily through hydrogen bonding. Atomic force microscopy (AFM) revealed that higher content of HCQ resulted in more and larger aggregates in gelatin. These results provide not only an important understanding of gelatin for drug delivery design but also a basis for the studying interactions between a drug and its delivery carrier.
Collapse
|
28
|
Xiong W, Li Y, Ren C, Li J, Li B, Geng F. Thermodynamic parameters of gelatin-pectin complex coacervation. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106958] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
29
|
Huang S, Tu Z, Sha X, Hu Y, Chen N, Wang H. Fabrication and performance evaluation of pectin-fish gelatin-resveratrol preservative films. Food Chem 2021; 361:129832. [PMID: 34023688 DOI: 10.1016/j.foodchem.2021.129832] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/16/2021] [Accepted: 04/10/2021] [Indexed: 11/17/2022]
Abstract
Resveratrol-loaded fish gelatin (FG)-low methoxyl pectin (LMP) composite films with different FG:LMP mass ratios were prepared and evaluated as food packaging materials. With increasing FG contents, the water solubility of the films decreased. Moreover, the UV (315-400 nm) blocking efficiency and opacity increased with increasing LMP contents. The elongation of the films at breaking and tensile strengths were adjusted using the ratio of FG and LMP. The lowest water vapour permeability was observed at an FG:LMP mass ratio of 2:1. All films exhibited good antioxidant properties and significantly delayed oil deterioration when used for beef tallow preservation. The release behaviour of resveratrol in 95% ethanol as a food simulant was determined by film composition. The fabricated films exhibit significant potential for beef tallow preservation applications. Furthermore, LMP can improve the stability of resveratrol-FG complexes and compete with resveratrol for binding FG to accelerate resveratrol release.
Collapse
Affiliation(s)
- Sheng Huang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; National R&D Center for Freshwater Fish Processing, Jiangxi Normal University, Nanchang 330022, China
| | - Zongcai Tu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; National R&D Center for Freshwater Fish Processing, Jiangxi Normal University, Nanchang 330022, China; Engineering Research Center for Freshwater Fish High-value Utilization of Jiangxi, Jiangxi Normal University, Nanchang 330022, China.
| | - Xiaomei Sha
- National R&D Center for Freshwater Fish Processing, Jiangxi Normal University, Nanchang 330022, China; Engineering Research Center for Freshwater Fish High-value Utilization of Jiangxi, Jiangxi Normal University, Nanchang 330022, China
| | - Yueming Hu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; National R&D Center for Freshwater Fish Processing, Jiangxi Normal University, Nanchang 330022, China
| | - Ning Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; National R&D Center for Freshwater Fish Processing, Jiangxi Normal University, Nanchang 330022, China
| | - Hui Wang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; National R&D Center for Freshwater Fish Processing, Jiangxi Normal University, Nanchang 330022, China.
| |
Collapse
|
30
|
Lin D, Xiao L, Wen Y, Qin W, Wu D, Chen H, Zhang Q, Zhang Q. Comparison of apple polyphenol-gelatin binary complex and apple polyphenol-gelatin-pectin ternary complex: Antioxidant and structural characterization. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111740] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
31
|
Zhang T, de Vries R, Xu X, Xue Y, Xue C. Microstructural changes during alkali- and heat induced gelation of konjac glucomannan. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106552] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
32
|
Hanauer DC, de Souza AG, Cargnin MA, Gasparin BC, Rosa DDS, Paulino AT. Pectin-based biohydrogels reinforced with eucalyptus sawdust: Synthesis, characterization, β-D-Galactosidase immobilization and activity. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2021.02.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
33
|
Xin Y, Chai M, Chen F, Hou Y, Lai S, Yang H. Comparative study on the gel properties and nanostructures of gelatins from chicken, porcine, and tilapia skin. J Food Sci 2021; 86:1936-1945. [PMID: 33864256 DOI: 10.1111/1750-3841.15700] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 02/26/2021] [Accepted: 02/28/2021] [Indexed: 12/26/2022]
Abstract
To clarify the feasibility of replacing commercial gelatin with chicken skin gelatin, we investigated the gel properties and nanostructures of chicken skin gelatin (CG), commercial porcine skin gelatin (PG), and tilapia skin gelatin (FG). Compared with PG and FG, CG exhibited the better gel strength, hardness, chewiness, melting point, gelling temperature, and thermostability. The different physicochemical properties of CG might be caused by its higher imino acid content (25.43 residues/100 total residues), which make it more liable to form intramolecular H-bonds (lower amplitude of amide A wave number). In addition, atomic force microscopy (AFM) result was shown that CG contained larger spherical aggregates (483 nm) than PG and FG (334 and 224 nm, respectively), and the lack of chain and ring-like structure promoted the formation of a dense rigid gel. These results revealed that the intramolecular H-bond and the aggregation behavior are the fundamental explanations for the different gel properties of gelatins from three sources. PRACTICAL APPLICATION: This research provides guidance for the application of chicken skin gelatin as a replacer for commercial gelatin. And the results provide a theoretical basis for the modification of chicken skin gelatin.
Collapse
Affiliation(s)
- Ying Xin
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan, 450001, PR China
| | - Mengyang Chai
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan, 450001, PR China
| | - Fusheng Chen
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan, 450001, PR China
| | - Yucheng Hou
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan, 450001, PR China
| | - Shaojuan Lai
- College of Basic Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, 550025, PR China
| | - Hongshun Yang
- Department of Food Science & Technology, National University of Singapore, Singapore, 117542, Singapore.,National University of Singapore (Suzhou) Research Institute, Suzhou, Jiangsu, 215123, PR China
| |
Collapse
|
34
|
Hu Q, Zhang Y, Wang T, Sun W, Tong Z. pH Responsive Strong Polyion Complex Shape Memory Hydrogel with Spontaneous Shape Changing and Information Encryption. Macromol Rapid Commun 2021; 42:e2000747. [PMID: 33644938 DOI: 10.1002/marc.202000747] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 02/08/2021] [Indexed: 12/25/2022]
Abstract
Polyion complex (PIC) hydrogels attract lots of studies because of the relatively definite network and excellent mechanical strength. However, the stability of the PIC hydrogel is poor in salt solutions due to the counter-ion screening effect, which restricts their applications. Besides, novel functions of the PIC hydrogels also need to be explored. In this work, a multifunctional PIC hydrogel is prepared by polymerizing a hydrophobic monomer 2-(diethylamino)ethyl methacrylate in poly(styrene sulfonic acid) aqueous solution with the presence of counter-ion NaCl. Fourier transform infrared (FTIR) spectra, water content, and mechanical properties of the hydrogel are investigated. The introduction of hydrophobic weak electrolyte into the hydrogel brings stable excellent mechanical strength even in NaCl solutions with high concentration and pH modulated softening and strengthening. Surprisingly, the hydrogel swells but is strengthened in HCl, while it shrinks but is softened in NaOH. pH induced shape memory and unique spontaneous shape changing is thus presented benefiting from this synergistic effect. Moreover, information encryption is realized on the PIC hydrogel owing to the transmittance change and the different water absorption capability of the hydrogel at different states. This new kind of PIC hydrogel proposes a new smart material in continuously actuating soft machines and secretive information transformation.
Collapse
Affiliation(s)
- Qiqian Hu
- Research Institute of Materials Science, South China University of Technology, Guangzhou, 510640, China
| | - Yuancheng Zhang
- Research Institute of Materials Science, South China University of Technology, Guangzhou, 510640, China.,Liming Research & Design Institute of Chemical Industry Co., Ltd., Luoyang, 471000, China
| | - Tao Wang
- Research Institute of Materials Science, South China University of Technology, Guangzhou, 510640, China.,Guangdong Provincial Key Enterprise Laboratory of Novel Polyamide 6 Functional Fiber Materials Research and Application, Jiangmen, 529100, China
| | - Weixiang Sun
- Research Institute of Materials Science, South China University of Technology, Guangzhou, 510640, China.,Guangdong Provincial Key Enterprise Laboratory of Novel Polyamide 6 Functional Fiber Materials Research and Application, Jiangmen, 529100, China
| | - Zhen Tong
- Research Institute of Materials Science, South China University of Technology, Guangzhou, 510640, China
| |
Collapse
|
35
|
Liu J, Zhang L, Liu C, Zheng X, Tang K. Tuning structure and properties of gelatin edible films through pullulan dialdehyde crosslinking. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110607] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
36
|
The effects of agar addition and ultrasound treatment on thermomechanical and physical properties of smooth hound (Mustellus mustellus) skin gelatin film. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-021-00818-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
37
|
Ishwarya S P, R S, Nisha P. Advances and prospects in the food applications of pectin hydrogels. Crit Rev Food Sci Nutr 2021; 62:4393-4417. [PMID: 33511846 DOI: 10.1080/10408398.2021.1875394] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Pectin hydrogel is a soft hydrocolloid with multifaceted utilities in the food sector. Substantial knowledge acquired on the gelation mechanisms and structure-function relationship of pectin has led to interesting functions of pectin hydrogel. Food applications of pectin hydrogels can be categorized under four headings: food ingredients/additives, food packaging, bioactive delivery and health management. The cross-linked and tangly three-dimensional structure of pectin gel renders it an ideal choice of wall material for the encapsulation of biomolecules and living cells; as a fat replacer and texturizer. Likewise, pectin hydrogel is an effective satiety inducer due to its ability to swell under the simulated gastric and intestinal conditions without losing its gel structure. Coating or composites of pectin hydrogel with proteins and other polysaccharides augment its functionality as an encapsulant, satiety-inducer and food packaging material. Low-methoxyl pectin gel is an appropriate food ink for 3D printing applications due to its viscoelastic properties, adaptable microstructure and texture properties. This review aims at explaining all the applications of pectin hydrogels, as mentioned above. A comprehensive discussion is presented on the approaches by which pectin hydrogel can be transformed as a resourceful material by controlling its dimensions, state, and rheology. The final sections of this article emphasize the recent research trends in this discipline, such as the development of smart hydrogels, injectable gels, aerogels, xerogels and oleogels from pectin.
Collapse
Affiliation(s)
- Padma Ishwarya S
- Agro Processing and Technology Division, CSIR - National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram, Kerala, India
| | - Sandhya R
- Agro Processing and Technology Division, CSIR - National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram, Kerala, India
| | - P Nisha
- Agro Processing and Technology Division, CSIR - National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram, Kerala, India.,Academy of Scientific and Innovative Research (AcSIR), CSIR-NIIST Campus, Ghaziabad, Uttar Pradesh, India
| |
Collapse
|
38
|
Evaluation of Interactions Between Carboxymethylcellulose and Soy Protein Isolate and their Effects on the Preparation and Characterization of Composite Edible Films. FOOD BIOPHYS 2021. [DOI: 10.1007/s11483-020-09659-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
39
|
Wen Y, Xu Z, Liu Y, Corke H, Sui Z. Investigation of food microstructure and texture using atomic force microscopy: A review. Compr Rev Food Sci Food Saf 2020; 19:2357-2379. [PMID: 33336971 DOI: 10.1111/1541-4337.12605] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 06/14/2020] [Accepted: 06/17/2020] [Indexed: 12/12/2022]
Abstract
We review recent applications of atomic force microscopy (AFM) to characterize microstructural and textural properties of food materials. Based on interaction between probe and sample, AFM can image in three dimensions with nanoscale resolution especially in the vertical orientation. When the scanning probe is used as an indenter, mechanical features such as stiffness and elasticity can be analyzed. The linkage between structure and texture can thus be elucidated, providing the basis for many further future applications of AFM. Microstructure of simple systems such as polysaccharides, proteins, or lipids separately, as characterized by AFM, is discussed. Interaction of component mixtures gives rise to novel properties in complex food systems due to development of structure. AFM has been used to explore the morphological characteristics of such complexes and to investigate the effect of such characteristics on properties. Based on insights from such investigations, development of food products and manufacturing can be facilitated. Mechanical analysis is often carried out to evaluate the suitability of natural or artificial materials in food formulations. The textural properties of cellular tissues, food colloids, and biodegradable films can all be explored at nanometer scale, leading to the potential to connect texture to this fine structural level. More profound understanding of natural food materials will enable new classes of fabricated food products to be developed.
Collapse
Affiliation(s)
- Yadi Wen
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Zekun Xu
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Yi Liu
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Harold Corke
- Biotechnology and Food Engineering Program, Guangdong Technion-Israel Institute of Technology, Shantou, Guangdong, 515063, China.,Faculty of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - Zhongquan Sui
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
40
|
Ahmadian M, Khoshfetrat AB, Khatami N, Morshedloo F, Rahbarghazi R, Hassani A, Kiani S. Influence of gelatin and collagen incorporation on peroxidase-mediated injectable pectin-based hydrogel and bioactivity of fibroblasts. J Biomater Appl 2020; 36:179-190. [PMID: 33302758 DOI: 10.1177/0885328220977601] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Pectin has recently attracted increasing attention for biomedical and pharmaceutical applications. Due to the lack of adhesion molecules in polysaccharides, phenolic hydroxyl conjugated gelatin was added to enzymatically-gellable peroxidase-modified pectin derivative and compared with phenolic hydroxyl -pectin/collagen. Both pectin and gelatin were modified by tyramine hydrochloride in the presence of EDC/NHS. The phenolic hydroxyl -pectin/phenolic hydroxyl -gelatin, phenolic hydroxyl-pectin/collagen, and phenolic hydroxyl -pectin hydrogels were prepared using horseradish peroxidase and hydrogen peroxide. The hydrogels were characterized by gelation time analysis. Morphology, enzymatic biodegradation, mechanical and swelling properties as well as water vapor transmission rate were also evaluated. Fibroblasts were cultured for 7 days, and the survival rate was evaluated using conventional MTT assay. Hydrogels composed of Ph-pectin/Ph-gelatin showed decreased biodegradation rate, and WVTR and further improved mechanical performance in comparison with other groups. Both phenolic hydroxyl -pectin/collagen and phenolic hydroxyl -pectin/phenolic hydroxyl -gelatin hydrogels exhibited porous structures. The hydrogels composed of collagen promoted cell survival rate 1.4 and 3.5 times compared to phenolic hydroxyl -gelatin and phenolic hydroxyl -pectin based hydrogels at the end of 7 days, respectively (p < 0.001). The study demonstrated the potential of enzymatically-gellable pectin-based hydrogels as cost-effective frameworks for use in tissue engineering applications.
Collapse
Affiliation(s)
- Mehri Ahmadian
- Sahand University of Technology, Tabriz, Islamic Republic of Iran
| | | | - Neda Khatami
- Sahand University of Technology, Tabriz, Islamic Republic of Iran
| | | | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Islamic Republic of Iran *These authors contributed equally to this work
| | - Ayla Hassani
- Sahand University of Technology, Tabriz, Islamic Republic of Iran
| | - Sahar Kiani
- Sahand University of Technology, Tabriz, Islamic Republic of Iran
| |
Collapse
|
41
|
Optimizing the properties of Zodo gum and examining its potential for amino acid binding by periodate oxidation. Int J Biol Macromol 2020; 167:1517-1526. [PMID: 33217461 DOI: 10.1016/j.ijbiomac.2020.11.106] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 11/12/2020] [Accepted: 11/15/2020] [Indexed: 11/21/2022]
Abstract
In this study, the Zodo gum exudated by Amygdalus scoparia spach underwent the periodate oxidation process for chemical modification and the formation of dialdehyde groups. Modification of the Zodo gum properties was done using the periodate oxidation method, response surface methodology (RSM) and central composite design (CCD), with 4 factors of sodium periodate volume (6.4-19.2 mL), temperature (35-55 °C), pH (3-5) and time (2-4 h). Dialdehyde Zodo gum (DZG) was produced by controlling test variables and measuring some responses including dialdehyde content and efficacy, in addition to evaluating the rheological parameters. Quadratic, linear polynomial equations were then fitted with the insignificant Lack of fit and high R2 to address the relationship between the mentioned variables and responses. Optimal test conditions, including pH = 3.9, T = 43 °C and Time = 3.5 h, were also determined for the production of DZG10, DZG20 and DZG30 samples. The results of 1H-13C NMR, FTIR and determination of the aldehyde content indicated the formation of dialdehyde groups in equilibrium with the dominant hemiacetal form. The AFM study of the DZG30 sample also showed over-oxidation and depolymerization, which could be associated with increased hydrophobic properties and the reduced viscosity. Although the DZG30 sample had the highest amount of the dialdehyde factor group with the tendency to combine with the amino group of proteins, DZG10 and DZG20 samples could be recommended for industrial applications due to the nonoccurrence of overoxidation.
Collapse
|
42
|
|
43
|
Zhang Z, Bai G, Xu D, Cao Y. Effects of ultrasound on the kinetics and thermodynamics properties of papain entrapped in modified gelatin. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.105757] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
44
|
Mahato KK, Sabbarwal S, Misra N, Kumar M. Fabrication of polyvinyl alcohol/chitosan oligosaccharide hydrogel: physicochemical characterizations and in vitro drug release study. INTERNATIONAL JOURNAL OF POLYMER ANALYSIS AND CHARACTERIZATION 2020. [DOI: 10.1080/1023666x.2020.1789382] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Kaushal Kumar Mahato
- School of Biomedical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, India
| | - Shivesh Sabbarwal
- Department of Chemical Engineering and Technology, Nano and Microsystem Fabrication and Design Lab, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, India
| | - Nira Misra
- School of Biomedical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, India
| | - Manoj Kumar
- School of Biomedical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, India
- Department of Chemical Engineering and Technology, Nano and Microsystem Fabrication and Design Lab, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, India
| |
Collapse
|
45
|
Tügen A, Ocak B, Özdestan-Ocak Ö. Development of gelatin/chitosan film incorporated with lemon essential oil with antioxidant properties. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2020. [DOI: 10.1007/s11694-020-00547-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
46
|
Yeddes W, Djebali K, Aidi Wannes W, Horchani-Naifer K, Hammami M, Younes I, Saidani Tounsi M. Gelatin-chitosan-pectin films incorporated with rosemary essential oil: Optimized formulation using mixture design and response surface methodology. Int J Biol Macromol 2020; 154:92-103. [DOI: 10.1016/j.ijbiomac.2020.03.092] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 03/06/2020] [Accepted: 03/11/2020] [Indexed: 10/24/2022]
|
47
|
Heat sealable soluble soybean polysaccharide/gelatin blend edible films for food packaging applications. Food Packag Shelf Life 2020. [DOI: 10.1016/j.fpsl.2020.100485] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
48
|
Physicochemical, antioxidant and antibacterial properties of fish gelatin-based edible films enriched with orange peel pectin: Wrapping application. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.105688] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
49
|
Geyik G, Işıklan N. Synthesis, characterization and swelling performance of a temperature/pH-sensitive κ-carrageenan graft copolymer. Int J Biol Macromol 2020; 152:359-370. [DOI: 10.1016/j.ijbiomac.2020.02.129] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 02/06/2020] [Accepted: 02/12/2020] [Indexed: 11/27/2022]
|
50
|
Aitboulahsen M, El Galiou O, Laglaoui A, Bakkali M, Hassani Zerrouk M. Effect of plasticizer type and essential oils on mechanical, physicochemical, and antimicrobial characteristics of gelatin, starch, and pectin‐based films. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.14480] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Mohamed Aitboulahsen
- Department of Biology Polydisciplinary Faculty of Larache Abdelmalek Essaâdi University Larache Morocco
| | - Ouiam El Galiou
- Department of Biology Faculty of Science and Technology Abdelmalek Essaâdi University Tangier Morocco
| | - Amin Laglaoui
- Department of Biology Faculty of Science and Technology Abdelmalek Essaâdi University Tangier Morocco
| | - Mohammed Bakkali
- Department of Biology Faculty of Science and Technology Abdelmalek Essaâdi University Tangier Morocco
| | - Mounir Hassani Zerrouk
- Department of Biology Polydisciplinary Faculty of Larache Abdelmalek Essaâdi University Larache Morocco
| |
Collapse
|