1
|
Lee YJ, Cao D, Subhadra B, De Castro C, Speciale I, Inzana TJ. Relationship between capsule production and biofilm formation by Mannheimia haemolytica, and establishment of a poly-species biofilm with other Pasteurellaceae. Biofilm 2024; 8:100223. [PMID: 39492819 PMCID: PMC11530854 DOI: 10.1016/j.bioflm.2024.100223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 09/19/2024] [Indexed: 11/05/2024] Open
Abstract
Mannheimia haemolytica is one of the bacterial agents responsible for bovine respiratory disease (BRD). The capability of M. haemolytica to form a biofilm may contribute to the development of chronic BRD infection by making the bacteria more resistant to host innate immunity and antibiotics. To improve therapy and prevent BRD, a greater understanding of the association between M. haemolytica surface components and biofilm formation is needed. M. haemolytica strain 619 (wild-type) made a poorly adherent, low-biomass biofilm. To examine the relationship between capsule and biofilm formation, a capsule-deficient mutant of wild-type M. haemolytica was obtained following mutagenesis with ethyl methanesulfonate to obtain mutant E09. Loss of capsular polysaccharide (CPS) in mutant E09 was supported by transmission electron microscopy and Maneval's staining. Mutant E09 attached to polyvinyl chloride plates more effectively, and produced a significantly denser and more uniform biofilm than the wild-type, as determined by crystal violet staining, scanning electron microscopy, and confocal laser scanning microscopy with COMSTAT analysis. The biofilm matrix of E09 contained predominately protein and significantly more eDNA than the wild-type, but not a distinct exopolysaccharide. Furthermore, treatment with DNase I significantly reduced the biofilm content of both the wild-type and E09 mutant. DNA sequencing of E09 showed that a point mutation occurred in the capsule biosynthesis gene wecB. The complementation of wecB in trans in mutant E09 successfully restored CPS production and reduced bacterial attachment/biofilm to levels similar to that of the wild-type. Fluorescence in-situ hybridization microscopy showed that M. haemolytica formed a poly-microbial biofilm with Histophilus somni and Pasteurella multocida. Overall, CPS production by M. haemolytica was inversely correlated with biofilm formation, the integrity of which required eDNA. A poly-microbial biofilm was readily formed between M. haemolytica, H. somni, and P. multocida, suggesting a mutualistic or synergistic interaction that may benefit bacterial colonization of the bovine respiratory tract.
Collapse
Affiliation(s)
- Yue-Jia Lee
- Department of Veterinary Biomedical Sciences, College of Veterinary Medicine, Long Island University, 720 Northern Boulevard, Brookville, NY, 11548, USA
- Institute of Food Science and Technology, National Taiwan University, No. 1, Section 4, Roosevelt Rd., Taipei, 10617, Taiwan, ROC
| | - Dianjun Cao
- Department of Veterinary Biomedical Sciences, College of Veterinary Medicine, Long Island University, 720 Northern Boulevard, Brookville, NY, 11548, USA
| | - Bindu Subhadra
- Department of Veterinary Biomedical Sciences, College of Veterinary Medicine, Long Island University, 720 Northern Boulevard, Brookville, NY, 11548, USA
| | - Cristina De Castro
- Department of Chemical Sciences, Università di Napoli FedericoII, Naples, Italy
| | | | - Thomas J. Inzana
- Department of Veterinary Biomedical Sciences, College of Veterinary Medicine, Long Island University, 720 Northern Boulevard, Brookville, NY, 11548, USA
| |
Collapse
|
2
|
Zheng J, Liu X, Xiong Y, Meng Q, Li P, Zhang F, Liu X, Lin Z, Deng Q, Wen Z, Yu Z. AMXT-1501 targets membrane phospholipids against Gram-positive and -negative multidrug-resistant bacteria. Emerg Microbes Infect 2024; 13:2321981. [PMID: 38422452 PMCID: PMC10906134 DOI: 10.1080/22221751.2024.2321981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 02/16/2024] [Indexed: 03/02/2024]
Abstract
The rapid proliferation of multidrug-resistant (MDR) bacterial pathogens poses a serious threat to healthcare worldwide. Carbapenem-resistant (CR) Enterobacteriaceae, which have near-universal resistance to available antimicrobials, represent a particularly concerning issue. Herein, we report the identification of AMXT-1501, a polyamine transport system inhibitor with antibacterial activity against Gram-positive and -negative MDR bacteria. We observed minimum inhibitory concentration (MIC)50/MIC90 values for AMXT-1501 in the range of 3.13-12.5 μM (2.24-8.93 μg /mL), including for methicillin-resistant Staphylococcus aureus (MRSA), CR Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa. AMXT-1501 was more effective against MRSA and CR E. coli than vancomycin and tigecycline, respectively. Subinhibitory concentrations of AMXT-1501 reduced the biofilm formation of S. aureus and Enterococcus faecalis. Mechanistically, AMXT-1501 exposure damaged microbial membranes and increased membrane permeability and membrane potential by binding to cardiolipin (CL) and phosphatidylglycerol (PG). Importantly, AMXT-1501 pressure did not induce resistance readily in the tested pathogens.
Collapse
Affiliation(s)
- Jinxin Zheng
- Department of Infectious Diseases and Shenzhen Key Lab of Endogenous Infection, Shenzhen Nanshan People’s Hospital and the 6th Affiliated Hospital of Shenzhen University Medical School, Shenzhen, People’s Republic of China
| | - Xiaoju Liu
- Department of Infectious Diseases and Shenzhen Key Lab of Endogenous Infection, Shenzhen Nanshan People’s Hospital and the 6th Affiliated Hospital of Shenzhen University Medical School, Shenzhen, People’s Republic of China
| | - Yanpeng Xiong
- Department of Infectious Diseases and Shenzhen Key Lab of Endogenous Infection, Shenzhen Nanshan People’s Hospital and the 6th Affiliated Hospital of Shenzhen University Medical School, Shenzhen, People’s Republic of China
| | - Qingyin Meng
- Department of Infectious Diseases and Shenzhen Key Lab of Endogenous Infection, Shenzhen Nanshan People’s Hospital and the 6th Affiliated Hospital of Shenzhen University Medical School, Shenzhen, People’s Republic of China
| | - Peiyu Li
- Department of Infectious Diseases and Shenzhen Key Lab of Endogenous Infection, Shenzhen Nanshan People’s Hospital and the 6th Affiliated Hospital of Shenzhen University Medical School, Shenzhen, People’s Republic of China
| | - Fan Zhang
- Department of Infectious Diseases and Shenzhen Key Lab of Endogenous Infection, Shenzhen Nanshan People’s Hospital and the 6th Affiliated Hospital of Shenzhen University Medical School, Shenzhen, People’s Republic of China
- Department of Tuberculosis, Shenzhen Nanshan Center for Chronic Disease Control, Shenzhen, People’s Republic of China
| | - Xiaoming Liu
- Department of Gastroenterology, Shenzhen Qianhai Shekou Free Trade Zone Hospital, Shenzhen, People’s Republic of China
| | - Zhiwei Lin
- Department of Infectious Diseases and Shenzhen Key Lab of Endogenous Infection, Shenzhen Nanshan People’s Hospital and the 6th Affiliated Hospital of Shenzhen University Medical School, Shenzhen, People’s Republic of China
| | - Qiwen Deng
- Department of Infectious Diseases and Shenzhen Key Lab of Endogenous Infection, Shenzhen Nanshan People’s Hospital and the 6th Affiliated Hospital of Shenzhen University Medical School, Shenzhen, People’s Republic of China
| | - Zewen Wen
- Department of Infectious Diseases and Shenzhen Key Lab of Endogenous Infection, Shenzhen Nanshan People’s Hospital and the 6th Affiliated Hospital of Shenzhen University Medical School, Shenzhen, People’s Republic of China
| | - Zhijian Yu
- Department of Infectious Diseases and Shenzhen Key Lab of Endogenous Infection, Shenzhen Nanshan People’s Hospital and the 6th Affiliated Hospital of Shenzhen University Medical School, Shenzhen, People’s Republic of China
| |
Collapse
|
3
|
Ribeiro TAN, Dos Santos GA, Dos Santos CT, Soares DCF, Saraiva MF, Leal DHS, Sachs D. Eugenol as a promising antibiofilm and anti-quorum sensing agent: A systematic review. Microb Pathog 2024; 196:106937. [PMID: 39293727 DOI: 10.1016/j.micpath.2024.106937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 08/16/2024] [Accepted: 09/10/2024] [Indexed: 09/20/2024]
Abstract
The spread of bacterial resistance has become a significant public health concern, resulting in increased healthcare costs, mortality, and morbidity. Phytochemicals such as Eugenol, the major component of Indian clove and cinnamon essential oils, have attracted attention due to their antimicrobial potential. Thus, this systematic review aims to analyze the existing literature on the antibacterial potential of Eugenol concerning its activity against biofilms, bacterial communication systems (quorum sensing - QS), and associated virulence factors. For this, four databases were systematically searched to retrieve articles published between 2010 and 2023. Fourteen articles were selected based on eligibility criteria and the evaluation of antibacterial activity through minimum inhibitory concentration (MIC) assays, biofilm studies, and assessment of virulence factors. The results revealed that Eugenol has the potential to act as an antimicrobial, antibiofilm, anti-virulence, and anti-QS agent against a variety of bacterial strains associated with chronic, dental, and foodborne infections, including resistant strains, particularly those in the ESKAPE group (Enterococcus spp., Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp.) and clinical isolates. Furthermore, Eugenol effectively targets key genes involved in bacterial virulence regulation, biofilm, and QS, as supported by data from multiple assays and research techniques. This review suggests Eugenol's antibacterial activity against biofilm and virulence factors likely stems from its influence on different QS systems. Finally, Eugenol holds promise as a potential candidate for combating resistant bacterial infections, serving as an anti-biofilm agent in medical devices and hospital surfaces, as well as in the food industry, as a toothpaste additive, and as a molecule for the development of new therapeutic agents with the potential to inhibit bacterial virulence, QS systems and avoiding bacterial resistance.
Collapse
Affiliation(s)
| | | | | | | | - Maurício Frota Saraiva
- Department of Physics and Chemistry, Federal University of Itajuba, Itajubá, Minas Gerais, Brazil
| | | | - Daniela Sachs
- Department of Physics and Chemistry, Federal University of Itajuba, Itajubá, Minas Gerais, Brazil
| |
Collapse
|
4
|
Joshi S, Barman P, Maan M, Goyal H, Sharma S, Kumar R, Verma G, Saini A. Development of a two-dimensional peptide functionalized-reduced graphene oxide biomaterial for wound care applications. NANOSCALE 2024. [PMID: 39463433 DOI: 10.1039/d4nr02233e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Increased incidences of antibiotic resistance have necessitated the development of novel wound disinfection strategies with minimal risk of resistance development. This study aimed at developing a biocompatible wound dressing biomaterial with the potential to treat acute and chronic wounds infected with multidrug-resistant Pseudomonas aeruginosa. A multifunctional antibacterial nanoconjugate was synthesized by covalently coupling a synthetically designed peptide (DP1, i.e., RFGRFLRKILRFLKK) with reduced graphene oxide (rGO). The conjugate displayed antibacterial and antibiofilm activities against multidrug-resistant Pseudomonas aeruginosa. In vitro studies demonstrated 94% hemocompatibility of the nanoconjugate even at concentrations as high as 512 μg mL-1. Cytotoxicity studies on 3T3-L1 cells showed 95% cell viability, signifying biocompatibility. Owing to these properties, the biomedical applicability of the nanoconjugate was assessed as an antibacterial wound dressing agent. rGO-DP1-loaded wound dressing exhibited enhanced reduction in bacterial bioburden (6 log 10 CFU) with potential for wound re-epithelization (77.3%) compared to the uncoated bandage. Moreover, an improvement in the material properties of the bandage was observed in terms of enhanced tensile strength and decreased elongation at break (%). Collectively, these findings suggest that rGO-DP1 is an effective biomaterial that, when loaded on wound dressings, has the potential to be used as a facile, sustainable and progressive agent for bacterial wound disinfection as well as healing.
Collapse
Affiliation(s)
- Shubhi Joshi
- Department of Biophysics, Panjab University, Chandigarh, U.T., 160014, India.
- Energy Research Centre, Panjab University, Chandigarh, U.T., 160014, India
| | - Panchali Barman
- Institute of Forensic Science & Criminology, Panjab University, Chandigarh, U.T., 160014, India
| | - Mayank Maan
- Department of Biophysics, Panjab University, Chandigarh, U.T., 160014, India.
| | - Hemant Goyal
- Department of Biophysics, Panjab University, Chandigarh, U.T., 160014, India.
| | - Sheetal Sharma
- Department of Biophysics, Panjab University, Chandigarh, U.T., 160014, India.
| | - Rajesh Kumar
- Department of Physics, Panjab University, Chandigarh, U.T., 160014, India
| | - Gaurav Verma
- Dr Shanti Swarup Bhatnagar University Institute of Chemical Engineering & Technology, Panjab University, Chandigarh, U.T., 160014, India
- Centre for Nanoscience & Nanotechnology (U.I.E.A.S.T), Panjab University, Chandigarh, U.T., 160014, India
| | - Avneet Saini
- Department of Biophysics, Panjab University, Chandigarh, U.T., 160014, India.
| |
Collapse
|
5
|
Lima EMF, Bueris V, Germano LG, Sircili MP, Pinto UM. Synergistic effect of the combination of phenolic compounds and tobramycin on the inhibition of Pseudomonas aeruginosa biofilm. Microb Pathog 2024; 197:107079. [PMID: 39454803 DOI: 10.1016/j.micpath.2024.107079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/16/2024] [Accepted: 10/22/2024] [Indexed: 10/28/2024]
Abstract
Bacteria coordinate gene expression in a cell density-dependent manner using a communication process called quorum sensing (QS). The expression of virulence factors, biofilm formation and enzyme production are examples of QS-regulated phenotypes that can interfere with food quality and safety. Due to the importance of these phenotypes, the inhibition of bacterial communication as an anti-virulence strategy is of great interest. This work aimed to evaluate the effect of phenolic compounds on the inhibition of biofilm formation by Pseudomonas aeruginosa PAO1, using concentrations that do not interfere in bacterial growth. The synergistic effect of rosmarinic acid, baicalein, curcumin and resveratrol with tobramycin and between the phenolics themselves was evaluated. The tested combinations proved to be a good strategy for reducing the dose of antibiotics used in treatments and obtaining satisfactory results against P. aeruginosa biofilms. The combination of the four compounds at the highest concentration (500 μM) completely inhibited biofilm formation. The obtained results contribute to understanding the effect of phenolic compounds on QS inhibition, which may help to define the mechanism of inhibition, in addition to expanding the biotechnological potential of these compounds for future applications in the food, pharmaceutical and medical fields.
Collapse
Affiliation(s)
- Emília Maria França Lima
- Food Research Center (FoRC), Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo (USP), São Paulo, SP, Brazil
| | - Vanessa Bueris
- Microbiology Department, Institute of Biological Sciences, University of São Paulo (USP), São Paulo, SP, Brazil
| | | | | | - Uelinton Manoel Pinto
- Food Research Center (FoRC), Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo (USP), São Paulo, SP, Brazil.
| |
Collapse
|
6
|
Zhang B, Hu X, Zhao D, Wang Y, Qu J, Tao Y, Kang Z, Yu H, Zhang J, Zhang Y. Harnessing microbial biofilms in soil ecosystems: Enhancing nutrient cycling, stress resilience, and sustainable agriculture. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122973. [PMID: 39437688 DOI: 10.1016/j.jenvman.2024.122973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/03/2024] [Accepted: 10/16/2024] [Indexed: 10/25/2024]
Abstract
Soil ecosystems are complex networks of microorganisms that play pivotal roles in nutrient cycling, stress resilience, and the provision of ecosystem services. Among these microbial communities, soil biofilms, and complex aggregations of microorganisms embedded within extracellular polymeric substances (EPS) exert significant influence on soil health and function. This review delves into the dynamics of soil biofilms, highlighting their structural intricacies and the mechanisms by which they facilitate nutrient cycling, and discusses how biofilms enhance the degradation of pollutants through the action of extracellular enzymes and horizontal gene transfer, contributing to soil detoxification and fertility. Furthermore, the role of soil biofilms in stress resilience is underscored, as they form symbiotic relationships with plants, bolstering their growth and resistance to environmental stressors. The review also explores the ecological functions of biofilms in enhancing soil structure stability by promoting aggregate formation, which is crucial for water retention and aeration. By integrating these insights, we aim to provide a comprehensive understanding of the multifaceted benefits of biofilms in soil ecosystems. This knowledge is essential for developing strategies to manipulate soil biofilms to improve agricultural productivity and ecological sustainability. This review also identifies research gaps and emphasizes the need for practical applications of biofilms in sustainable agriculture.
Collapse
Affiliation(s)
- Bo Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Xiaoying Hu
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Donglin Zhao
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Yuping Wang
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Jianhua Qu
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Yue Tao
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Zhonghui Kang
- Longjiang Environmental Protection Group Co.,Ltd., Harbin, 150050, PR China
| | - Hongqi Yu
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Jingyi Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Ying Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China.
| |
Collapse
|
7
|
De Plano LM, Caratozzolo M, Conoci S, Guglielmino SPP, Franco D. Impact of Nutrient Starvation on Biofilm Formation in Pseudomonas aeruginosa: An Analysis of Growth, Adhesion, and Spatial Distribution. Antibiotics (Basel) 2024; 13:987. [PMID: 39452253 PMCID: PMC11504098 DOI: 10.3390/antibiotics13100987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/09/2024] [Accepted: 10/17/2024] [Indexed: 10/26/2024] Open
Abstract
Objectives: This study investigates the impact of nutrient availability on the growth, adhesion, and biofilm formation of Pseudomonas aeruginosa ATCC 27853 under static conditions. Methods: Bacterial behaviour was evaluated in nutrient-rich Luria-Bertani (LB) broth and nutrient-limited M9 media, specifically lacking carbon (M9-C), nitrogen (M9-N), or phosphorus (M9-P). Bacterial adhesion was analysed microscopically during the transition from reversible to irreversible attachment (up to 120 min) and during biofilm production/maturation stages (up to 72 h). Results: Results demonstrated that LB and M9 media supported bacterial growth, whereas nutrient-starved conditions halted growth, with M9-C and M9-N inducing stationary phases and M9-P leading to cell death. Fractal analysis was employed to characterise the spatial distribution and complexity of bacterial adhesion patterns, revealing that nutrient-limited conditions affected both adhesion density and biofilm architecture, particularly in M9-C. In addition, live/dead staining confirmed a higher proportion of dead cells in M9-P over time (at 48 and 72 h). Conclusions: This study highlights how nutrient starvation influences biofilm formation and bacterial dispersion, offering insights into the survival strategies of P. aeruginosa in resource-limited environments. These findings should contribute to a better understanding of biofilm dynamics, with implications for managing biofilm-related infections and industrial biofouling.
Collapse
Affiliation(s)
- Laura Maria De Plano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (ChiBioFarAm), University of Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy
| | - Manuela Caratozzolo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (ChiBioFarAm), University of Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy
| | - Sabrina Conoci
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (ChiBioFarAm), University of Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy
- Department of Chemistry “Giacomo Ciamician”, Alma Mater Studiorum—University of Bologna, 40126 Bologna, Italy
- LAB Sense Beyond Nano—URT Department of Sciences Physics and Technologies of Matter (DSFTM) CNR, 98166 Messina, Italy
| | - Salvatore P. P. Guglielmino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (ChiBioFarAm), University of Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy
| | - Domenico Franco
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (ChiBioFarAm), University of Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy
| |
Collapse
|
8
|
Dias-Souza MV, Alves AL, Pagnin S, Veiga AA, Haq IU, Alonazi WB, Dos Santos VL. The activity of hydrolytic enzymes and antibiotics against biofilms of bacteria isolated from industrial-scale cooling towers. Microb Cell Fact 2024; 23:282. [PMID: 39415191 PMCID: PMC11484388 DOI: 10.1186/s12934-024-02502-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 08/07/2024] [Indexed: 10/18/2024] Open
Abstract
BACKGROUND Cooling towers (CTs) are crucial to myriad industrial processes, supporting thermal exchange between fluids in heat exchangers using water from lakes and rivers as coolant. However, CT water can sometimes introduce microbial contaminants that adhere to and colonize various surfaces within the CT system. These microorganisms can form biofilms, significantly hindering the system's thermal exchange efficiency. Current treatment strategies employ oxidizing biocides to prevent microbial growth. However, despite their affordability, they do not eliminate biofilms effectively and can lead to corrosive damage within the system. Herein, we aim to devise an anti-biofilm strategy utilizing hydrolytic enzymes (such as α-amylase, glucoamylase, pectin-lyase, cellulase, protease, and DNase) alongside antibiotics (including meropenem, ciprofloxacin, gentamicin, erythromycin, chloramphenicol, and ceftriaxone) to combat microbial growth and biofilm formation in cooling systems. RESULTS All enzymes reduced the development of the biofilms significantly compared to controls (p < 0.05). The polysaccharidases exhibited biomass reduction of 90%, except for pectin-lyase (80%), followed by DNAse and protease at 43% and 49%, respectively. The antibiotics reduced the biofilms of 70% of isolates in concentration of > 2 mg/mL. The minimal biofilm eradication concentration (MBEC) lower than 1 mg/mL was detected for some 7-day-old sessile isolates. The enzymes and antibiotics were also used in combination against biofilms using the modified Chequerboard method. We found six synergistic combinations, with Fractional inhibitory concentrations (FIC) < 0.5, out of the ten tested. In the presence of the enzymatic mixture, MBECs presented a significant decrease (p < 0.05), at least 4-fold for antibiotics and 32-fold for enzymes. Moreover, we characterized high molecular weight (> 12 kDa) exopolysaccharides (EPS) from biofilms of ten isolates, and glycosyl composition analysis indicated a high frequency of glucose, mannose, erythrose, arabinose, and idose across isolates EPS contrasting with rhamnose, allose, and those carbohydrates, which were detected in only one isolate. CONCLUSION The synergistic approach of combining enzymes with antibiotics emerges as a highly effective and innovative strategy for anti-biofilm intervention, highlighting its potential to enhance biofilm management practices.
Collapse
Affiliation(s)
- Marcus Vinícius Dias-Souza
- Applied Microbiology Laboratory, Microbiology Department, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, C.P. 486, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Andrea Lima Alves
- Applied Microbiology Laboratory, Microbiology Department, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, C.P. 486, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Sérgio Pagnin
- Research and Development Center (CENPES), Petróleo Brasileiro S.A., Rio de Janeiro, Brazil
| | - Andrea Azevedo Veiga
- Research and Development Center (CENPES), Petróleo Brasileiro S.A., Rio de Janeiro, Brazil
| | - Ihtisham Ul Haq
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, M. Strzody 9, Gliwice, 44-100, Poland
- Joint Doctoral School, Silesian University of Technology, Akademicka 2A, Gliwice, 44-100, Poland
- Programa de Pós-graduação em Inovação Tecnológica, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Wadi B Alonazi
- Health Administration Department, College of Business Administration, King Saud University, Riyadh, Saudi Arabia
| | - Vera Lúcia Dos Santos
- Applied Microbiology Laboratory, Microbiology Department, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, C.P. 486, Belo Horizonte, Minas Gerais, 31270-901, Brazil.
| |
Collapse
|
9
|
García-Ferrús M, González A, Ferrús MA. Detection, isolation and virulence characterization of Helicobacter suis from pork products aimed to human consumption. Int J Food Microbiol 2024; 427:110936. [PMID: 39437682 DOI: 10.1016/j.ijfoodmicro.2024.110936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 10/06/2024] [Accepted: 10/10/2024] [Indexed: 10/25/2024]
Abstract
Helicobacter suis is the most common non-Helicobacter pylori gastric Helicobacter species found in humans. Infection is associated with gastritis, peptic ulcer, gastric MALT lymphoma and neurodegenerative disorders, particularly Parkinson's disease. However, the pathogenicity of this species is still a matter of research, and results of virulence studies and antibiotic susceptibility tests tend to vary between strains. Cholesterol α-glucosyltransferase (αCgT), a known H. pylori virulence factor, appears to be present in most clinical H. suis isolates. The ability to form biofilms also plays a crucial role in the pathogenesis of H. pylori. However, no reports have been published on this ability in H. suis. H. suis is considered an emerging zoonotic pathogen, with pigs being the main source of human infection. However, there is very little information on its presence in pork, mainly due to the difficulties of its culture. Therefore, our aim was to determine the prevalence of H. suis in pork products from our geographical area by PCR and Fluorescence in situ Hybridization (FISH), as well as to isolate the bacteria and determine the antibiotic susceptibility patterns, the presence of the αCgT gene and the ability of the isolates to form biofilms. Overall, H. suis was detected in 20 of the 70 (28.6 %) samples analyzed. In 3 of them, H. suis was isolated. The αCgT gene was detected in all isolates and two of them showed a multiresistance pattern. The H. suis reference strain and two of the isolates showed "strong" to "moderate" in vitro biofilm formation ability under optimal growth conditions. Our results seem to indicate that H. suis is significantly prevalent in pork products. The combination of culture with FISH and/or mPCR proved to be a rapid and specific method for the detection, identification and direct visualization of cultivable H. suis cells from pork food products.
Collapse
Affiliation(s)
- Miguel García-Ferrús
- Centro Avanzado de Microbiología Aplicada, Universitat Politècnica de València, Camino de Vera s/n, 46022 València, Spain.
| | - Ana González
- Centro Avanzado de Microbiología Aplicada, Universitat Politècnica de València, Camino de Vera s/n, 46022 València, Spain.
| | - María A Ferrús
- Centro Avanzado de Microbiología Aplicada, Universitat Politècnica de València, Camino de Vera s/n, 46022 València, Spain.
| |
Collapse
|
10
|
Muñoz P, Guembe M, Pérez-Granda MJ, Del Pozo JL, López-Cortés LE, Pittiruti M, Martín-Delgado MC, Bouza E. Vascular catheter-related infections: an endemic disease in healthcare institutions. An opinion paper of the Spanish Society of Cardiovascular Infections (SEICAV). REVISTA ESPANOLA DE QUIMIOTERAPIA : PUBLICACION OFICIAL DE LA SOCIEDAD ESPANOLA DE QUIMIOTERAPIA 2024; 37:387-400. [PMID: 38916720 PMCID: PMC11462325 DOI: 10.37201/req/051.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 05/28/2024] [Accepted: 06/07/2024] [Indexed: 06/26/2024]
Abstract
Catheter-related infections (CRI) are a serious healthcare problem due to their potential to cause serious complications, including bacteraemia or infective endocarditis, and to increase patient morbidity and mortality. In addition, these in fections significantly prolong hospital stay and cost. Preventing CRI is crucial and is considered a criterion for quality and safety in healthcare. For these reasons, the Spanish Society of Cardiovascular Infections (SEICAV) has considered it pertinent to review this topic, with experts in different areas including clinical microbiologists, infectious disease specialists, surgeons and nurses. The data were presented at a session held at the Ramón Areces Foundation, which was organised in the form of specific questions grouped into three round tables. The first panel analysed the scale of the problem including epidemiological, clinical and diagnostic aspects; the second panel addressed advances in the treatment of CRI; and the third panel reviewed developments in the prevention of CRI. The recorded session is available on the Areces Foundation website and we believe it maybe of interest not only to health professionals, but also to any non-expert citizen interested in the subject.
Collapse
Affiliation(s)
- P Muñoz
- Patricia Muñoz, MD, PhD, Clinical Microbiology and Infectious Diseases Department, Hospital General Universitario Gregorio Marañón. Dr. Esquerdo, 46 28007 Madrid, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Abouhagger A, Celiešiūtė-Germanienė R, Bakute N, Stirke A, Melo WCMA. Electrochemical biosensors on microfluidic chips as promising tools to study microbial biofilms: a review. Front Cell Infect Microbiol 2024; 14:1419570. [PMID: 39386171 PMCID: PMC11462992 DOI: 10.3389/fcimb.2024.1419570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 09/05/2024] [Indexed: 10/12/2024] Open
Abstract
Microbial biofilms play a pivotal role in microbial infections and antibiotic resistance due to their unique properties, driving the urgent need for advanced methodologies to study their behavior comprehensively across varied environmental contexts. While electrochemical biosensors have demonstrated success in understanding the dynamics of biofilms, scientists are now synergistically merging these biosensors with microfluidic technology. This combined approach offers heightened precision, sensitivity, and real-time monitoring capabilities, promising a more comprehensive understanding of biofilm behavior and its implications. Our review delves into recent advancements in electrochemical biosensors on microfluidic chips, specifically tailored for investigating biofilm dynamics, virulence, and properties. Through a critical examination of these advantages, properties and applications of these devices, the review highlights the transformative potential of this technology in advancing our understanding of microbial biofilms in different settings.
Collapse
Affiliation(s)
| | | | | | | | - Wanessa C. M. A. Melo
- Department of Functional Materials and Electronics, State Research Institute Centre for Physical Sciences and Technology (FTMC), Vilnius, Lithuania
| |
Collapse
|
12
|
Shrestha S, Wang B, Dutta PK. Commercial Silver-Based Dressings: In Vitro and Clinical Studies in Treatment of Chronic and Burn Wounds. Antibiotics (Basel) 2024; 13:910. [PMID: 39335083 PMCID: PMC11429284 DOI: 10.3390/antibiotics13090910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/17/2024] [Accepted: 09/20/2024] [Indexed: 09/30/2024] Open
Abstract
Chronic wounds are a major health problem because of delayed healing, causing hardships for the patient. The infection present in these wounds plays a role in delayed wound healing. Silver wound dressings have been used for decades, beginning in the 1960s with silver sulfadiazine for infection prevention for burn wounds. Since that time, there has been a large number of commercial silver dressings that have obtained FDA clearance. In this review, we examine the literature involving in vitro and in vivo (both animal and human clinical) studies with commercial silver dressings and attempt to glean the important characteristics of these dressings in treating infected wounds. The primary presentation of the literature is in the form of detailed tables. The narrative part of the review focuses on the different types of silver dressings, including the supporting matrix, the release characteristics of the silver into the surroundings, and their toxicity. Though there are many clinical studies of chronic and burn wounds using silver dressings that we discuss, it is difficult to compare the performances of the dressings directly because of the differences in the study protocols. We conclude that silver dressings can assist in wound healing, although it is difficult to provide general treatment guidelines. From a wound dressing point of view, future studies will need to focus on new delivery systems for silver, as well as the type of matrix in which the silver is deposited. Clearly, adding other actives to enhance the antimicrobial activity, including the disruption of mature biofilms is of interest. From a clinical point of view, the focus needs to be on the wound healing characteristics, and thus randomized control trials will provide more confidence in the results. The application of different wound dressings for specific wounds needs to be clarified, along with the application protocols. It is most likely that no single silver-based dressing can be used for all wounds.
Collapse
Affiliation(s)
| | - Bo Wang
- ZeoVation Inc., Columbus, OH 43212, USA; (S.S.); (B.W.)
| | - Prabir K. Dutta
- ZeoVation Inc., Columbus, OH 43212, USA; (S.S.); (B.W.)
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
13
|
Hantus CE, Moppel IJ, Frizzell JK, Francis AE, Nagashima K, Ryno LM. L-Rhamnose Globally Changes the Transcriptome of Planktonic and Biofilm Escherichia coli Cells and Modulates Biofilm Growth. Microorganisms 2024; 12:1911. [PMID: 39338585 PMCID: PMC11434101 DOI: 10.3390/microorganisms12091911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/16/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024] Open
Abstract
L-rhamnose, a naturally abundant sugar, plays diverse biological roles in bacteria, influencing biofilm formation and pathogenesis. This study investigates the global impact of L-rhamnose on the transcriptome and biofilm formation of PHL628 E. coli under various experimental conditions. We compared growth in planktonic and biofilm states in rich (LB) and minimal (M9) media at 28 °C and 37 °C, with varying concentrations of L-rhamnose or D-glucose as a control. Our results reveal that L-rhamnose significantly affects growth kinetics and biofilm formation, particularly reducing biofilm growth in rich media at 37 °C. Transcriptomic analysis through RNA-seq showed that L-rhamnose modulates gene expression differently depending on the temperature and media conditions, promoting a planktonic state by upregulating genes involved in rhamnose transport and metabolism and downregulating genes related to adhesion and biofilm formation. These findings highlight the nuanced role of L-rhamnose in bacterial adaptation and survival, providing insight into potential applications in controlling biofilm-associated infections and industrial biofilm management.
Collapse
Affiliation(s)
| | | | | | | | | | - Lisa M. Ryno
- Department of Chemistry and Biochemistry, Oberlin College, Oberlin, OH 44074, USA
| |
Collapse
|
14
|
Niboucha N, Jubinville É, Péloquin L, Clop A, Labrie S, Goetz C, Fliss I, Jean J. Reuterin Enhances the Efficacy of Peracetic Acid Against Multi-species Dairy Biofilm. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10351-y. [PMID: 39264555 DOI: 10.1007/s12602-024-10351-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/19/2024] [Indexed: 09/13/2024]
Abstract
Biofilms may contain pathogenic and spoilage bacteria and can become a recurring problem in the dairy sector, with a negative impact on product quality and consumer health. Peracetic acid (PAA) is one of the disinfectants most frequently used to control biofilm formation and persistence. Though effective, it cannot be used at high concentrations due to its corrosive effect on certain materials and because of toxicity concerns. The aim of this study was to test the possibility of PAA remaining bactericidal at lower concentrations by using it in conjunction with reuterin (3-hydroxypropionaldehyde). We evaluated the efficacy of PAA in pure form or as BioDestroy®, a PAA-based commercial disinfectant, on three-species biofilms formed by dairy-derived bacteria, namely Pseudomonas azotoformans PFlA1, Serratia liquefaciens Sl-LJJ01, and Bacillus licheniformis Bl-LJJ01. Minimum inhibitory concentrations of the three agents were determined for each bacterial species and the fractional inhibitory concentrations were then calculated using the checkerboard assay. The minimal biofilm eradication concentration (MBEC) of each antibacterial combination was then calculated against mixed-species biofilm. PAA, BioDestroy®, and reuterin showed antibiofilm activity against all bacteria within the mixed biofilm at respectively 760 ppm, 450 ppm, and 95.6 mM. The MBEC was lowered significantly to 456 ppm, 337.5 ppm, and 71.7 mM, when exposed to reuterin for 16 h followed by contact with disinfectant. Combining reuterin with chemical disinfection shows promise in controlling biofilm on food contact surfaces, especially for harsh or extended treatments. Furthermore, systems with reuterin encapsulation and nanotechnologies could be developed for sustainable antimicrobial efficacy without manufacturing disruptions.
Collapse
Affiliation(s)
- Nissa Niboucha
- Département Des Sciences Des Aliments, Université Laval, Québec, QC, G1V 0A6, Canada
- Institut Sur La Nutrition Et Les Aliments Fonctionnels (INAF), Québec, QC, G1V 0A6, Canada
| | - Éric Jubinville
- Département Des Sciences Des Aliments, Université Laval, Québec, QC, G1V 0A6, Canada
- Institut Sur La Nutrition Et Les Aliments Fonctionnels (INAF), Québec, QC, G1V 0A6, Canada
| | - Laurence Péloquin
- Département Des Sciences Des Aliments, Université Laval, Québec, QC, G1V 0A6, Canada
- Institut Sur La Nutrition Et Les Aliments Fonctionnels (INAF), Québec, QC, G1V 0A6, Canada
| | - Amandine Clop
- Département Des Sciences Des Aliments, Université Laval, Québec, QC, G1V 0A6, Canada
- Institut Sur La Nutrition Et Les Aliments Fonctionnels (INAF), Québec, QC, G1V 0A6, Canada
| | - Steve Labrie
- Département Des Sciences Des Aliments, Université Laval, Québec, QC, G1V 0A6, Canada
- Institut Sur La Nutrition Et Les Aliments Fonctionnels (INAF), Québec, QC, G1V 0A6, Canada
| | - Coralie Goetz
- Département Des Sciences Des Aliments, Université Laval, Québec, QC, G1V 0A6, Canada
- Institut Sur La Nutrition Et Les Aliments Fonctionnels (INAF), Québec, QC, G1V 0A6, Canada
| | - Ismaïl Fliss
- Département Des Sciences Des Aliments, Université Laval, Québec, QC, G1V 0A6, Canada
- Institut Sur La Nutrition Et Les Aliments Fonctionnels (INAF), Québec, QC, G1V 0A6, Canada
| | - Julie Jean
- Département Des Sciences Des Aliments, Université Laval, Québec, QC, G1V 0A6, Canada.
- Institut Sur La Nutrition Et Les Aliments Fonctionnels (INAF), Québec, QC, G1V 0A6, Canada.
| |
Collapse
|
15
|
Mart'yanov SV, Gannesen AV, Plakunov VK. A New Method for Obtaining Monospecies and Binary Cultures of Staphylococcus spp. in Alginate Gel and the Study of the Action of Active Compounds on These Cultures on the Example of Catecholamines. Bull Exp Biol Med 2024:10.1007/s10517-024-06217-6. [PMID: 39266918 DOI: 10.1007/s10517-024-06217-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Indexed: 09/14/2024]
Abstract
A simple and efficient method for obtaining monospecies and binary Staphylococcus aureus and Staphylococcus epidermidis cultures in sodium alginate gel matrix mimicking the natural microenvironment of the nasal cavity was proposed. The cultures were used for studying the effect of norepinephrine on monospecies and binary communities of two types of bacteria, S. aureus (invasive strain) and S. epidermis (commensal strain). After 24-h incubation, S. aureus predominated in the binary community, but later it was replaced by S. epidermis. Norepinephrine at higher concentrations accelerated this process without principally changing it. The model can be used to develop more effective complex antimicrobial drugs.
Collapse
Affiliation(s)
- S V Mart'yanov
- Federal Research Centre Fundamentals of Biotechnology, Russian Academy of Sciences, Moscow, Russia.
| | - A V Gannesen
- Federal Research Centre Fundamentals of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - V K Plakunov
- Federal Research Centre Fundamentals of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
16
|
Cometta S, Hutmacher DW, Chai L. In vitro models for studying implant-associated biofilms - A review from the perspective of bioengineering 3D microenvironments. Biomaterials 2024; 309:122578. [PMID: 38692146 DOI: 10.1016/j.biomaterials.2024.122578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/01/2024] [Accepted: 04/13/2024] [Indexed: 05/03/2024]
Abstract
Biofilm research has grown exponentially over the last decades, arguably due to their contribution to hospital acquired infections when they form on foreign body surfaces such as catheters and implants. Yet, translation of the knowledge acquired in the laboratory to the clinic has been slow and/or often it is not attempted by research teams to walk the talk of what is defined as 'bench to bedside'. We therefore reviewed the biofilm literature to better understand this gap. Our search revealed substantial development with respect to adapting surfaces and media used in models to mimic the clinical settings, however many of the in vitro models were too simplistic, often discounting the composition and properties of the host microenvironment and overlooking the biofilm-implant-host interactions. Failure to capture the physiological growth conditions of biofilms in vivo results in major differences between lab-grown- and clinically-relevant biofilms, particularly with respect to phenotypic profiles, virulence, and antimicrobial resistance, and they essentially impede bench-to-bedside translatability. In this review, we describe the complexity of the biological processes at the biofilm-implant-host interfaces, discuss the prerequisite for the development and characterization of biofilm models that better mimic the clinical scenario, and propose an interdisciplinary outlook of how to bioengineer biofilms in vitro by converging tissue engineering concepts and tools.
Collapse
Affiliation(s)
- Silvia Cometta
- Max Planck Queensland Centre, Queensland University of Technology, Brisbane, QLD 4000, Australia; Faculty of Engineering, School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD 4000, Australia; Australian Research Council (ARC) Training Centre for Multiscale 3D Imaging, Modelling, and Manufacturing (M3D Innovation), Queensland University of Technology, Brisbane, QLD 4000, Australia.
| | - Dietmar W Hutmacher
- Max Planck Queensland Centre, Queensland University of Technology, Brisbane, QLD 4000, Australia; Faculty of Engineering, School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD 4000, Australia; Australian Research Council (ARC) Training Centre for Multiscale 3D Imaging, Modelling, and Manufacturing (M3D Innovation), Queensland University of Technology, Brisbane, QLD 4000, Australia; Australian Research Council Training Centre for Cell and Tissue Engineering Technologies, Queensland University of Technology, Brisbane, QLD 4059, Australia.
| | - Liraz Chai
- Max Planck Queensland Centre, Queensland University of Technology, Brisbane, QLD 4000, Australia; The Hebrew University of Jerusalem, Institute of Chemistry, Jerusalem, 91904, Israel; The Harvey M. Krueger Family Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel.
| |
Collapse
|
17
|
Manuschai J, Sotozono M, Takenaka S, Kornsombut N, Takahashi R, Saito R, Nagata R, Ida T, Noiri Y. In Vitro Inhibitory Effect of Silver Diamine Fluoride Combined with Potassium Iodide against Mixed-Species Biofilm Formation on Human Root Dentin. Antibiotics (Basel) 2024; 13:743. [PMID: 39200043 PMCID: PMC11350696 DOI: 10.3390/antibiotics13080743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/01/2024] [Accepted: 08/05/2024] [Indexed: 09/01/2024] Open
Abstract
Applying a saturated potassium iodide (KI) solution immediately after silver diamine fluoride (SDF) application may affect the inhibitory effects of SDF on biofilm formation. This study compared the efficacy of 38% SDF with and without KI on preventing mixed-species biofilm formation on human root dentin surfaces and assessed ion incorporation into root dentin. The biofilms, composed of Streptococcus mutans, Lactobacillus rhamnosus, and Actinomyces naeslundii, were grown on specimen surfaces treated with either SDF or SDF + KI. After 24 h, the biofilms were evaluated using scanning electron microscopy, live/dead staining, adenosine triphosphate (ATP) assays, colony-forming unit (CFU) counts, and quantitative polymerase chain reaction. A Mann-Whitney U test was used to compare the results between the groups. Ion incorporation was assessed using an electron probe microanalyzer. The relative ATP content in the SDF + KI group was significantly higher than that in the SDF group (p < 0.05). However, biofilm morphology and the logarithmic reduction in CFUs and bacterial DNA were comparable across the groups. The SDF + KI treatment resulted in less silver and fluoride ion incorporation than that yielded by SDF alone. The inhibitory effects of SDF and SDF + KI on mixed-species biofilm formation were almost equivalent, although KI application affected the ion incorporation.
Collapse
Affiliation(s)
- Jutharat Manuschai
- Division of Cariology, Operative Dentistry and Endodontics, Faculty of Dentistry, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan; (J.M.)
- Department of Conservative Dentistry, Faculty of Dentistry, Prince of Songkla University, Hat Yai 90112, Songkhla, Thailand
| | - Maki Sotozono
- Division of Cariology, Operative Dentistry and Endodontics, Faculty of Dentistry, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan; (J.M.)
| | - Shoji Takenaka
- Division of Cariology, Operative Dentistry and Endodontics, Faculty of Dentistry, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan; (J.M.)
| | - Niraya Kornsombut
- Division of Cariology, Operative Dentistry and Endodontics, Faculty of Dentistry, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan; (J.M.)
| | - Ryouhei Takahashi
- Division of Cariology, Operative Dentistry and Endodontics, Faculty of Dentistry, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan; (J.M.)
| | - Rui Saito
- Division of Cariology, Operative Dentistry and Endodontics, Faculty of Dentistry, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan; (J.M.)
| | - Ryoko Nagata
- Division of Cariology, Operative Dentistry and Endodontics, Faculty of Dentistry, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan; (J.M.)
| | - Takako Ida
- Division of Cariology, Operative Dentistry and Endodontics, Faculty of Dentistry, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan; (J.M.)
| | - Yuichiro Noiri
- Division of Cariology, Operative Dentistry and Endodontics, Faculty of Dentistry, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan; (J.M.)
| |
Collapse
|
18
|
David A, Tahrioui A, Tareau AS, Forge A, Gonzalez M, Bouffartigues E, Lesouhaitier O, Chevalier S. Pseudomonas aeruginosa Biofilm Lifecycle: Involvement of Mechanical Constraints and Timeline of Matrix Production. Antibiotics (Basel) 2024; 13:688. [PMID: 39199987 PMCID: PMC11350761 DOI: 10.3390/antibiotics13080688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 09/01/2024] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen causing acute and chronic infections, especially in immunocompromised patients. Its remarkable adaptability and resistance to various antimicrobial treatments make it difficult to eradicate. Its persistence is enabled by its ability to form a biofilm. Biofilm is a community of sessile micro-organisms in a self-produced extracellular matrix, which forms a scaffold facilitating cohesion, cell attachment, and micro- and macro-colony formation. This lifestyle provides protection against environmental stresses, the immune system, and antimicrobial treatments, and confers the capacity for colonization and long-term persistence, often characterizing chronic infections. In this review, we retrace the events of the life cycle of P. aeruginosa biofilm, from surface perception/contact to cell spreading. We focus on the importance of extracellular appendages, mechanical constraints, and the kinetics of matrix component production in each step of the biofilm life cycle.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Sylvie Chevalier
- Univ Rouen Normandie, Univ Caen Normandie, Normandie Univ, CBSA UR 4312, F-76000 Rouen, France
| |
Collapse
|
19
|
Jiang G, Wang C, Wang Y, Wang J, Xue Y, Lin Y, Hu X, Lv Y. Exogenous putrescine plays a switch-like influence on the pH stress adaptability of biofilm-based activated sludge. Appl Environ Microbiol 2024; 90:e0056924. [PMID: 38916292 PMCID: PMC11267902 DOI: 10.1128/aem.00569-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 06/04/2024] [Indexed: 06/26/2024] Open
Abstract
Microbial community adaptability to pH stress plays a crucial role in biofilm formation. This study aims to investigate the regulatory mechanisms of exogenous putrescine on pH stress, as well as enhance understanding and application for the technical measures and molecular mechanisms of biofilm regulation. Findings demonstrated that exogenous putrescine acted as a switch-like distributor affecting microorganism pH stress, thus promoting biofilm formation under acid conditions while inhibiting it under alkaline conditions. As pH decreases, the protonation degree of putrescine increases, making putrescine more readily adsorbed. Protonated exogenous putrescine could increase cell membrane permeability, facilitating its entry into the cell. Subsequently, putrescine consumed intracellular H+ by enhancing the glutamate-based acid resistance strategy and the γ-aminobutyric acid metabolic pathway to reduce acid stress on cells. Furthermore, putrescine stimulated ATPase expression, allowing for better utilization of energy in H+ transmembrane transport and enhancing oxidative phosphorylation activity. However, putrescine protonation was limited under alkaline conditions, and the intracellular H+ consumption further exacerbated alkali stress and inhibits cellular metabolic activity. Exogenous putrescine promoted the proportion of fungi and acidophilic bacteria under acidic stress and alkaliphilic bacteria under alkali stress while having a limited impact on fungi in alkaline biofilms. Increasing Bdellovibrio under alkali conditions with putrescine further aggravated the biofilm decomposition. This research shed light on the unclear relationship between exogenous putrescine, environmental pH, and pH stress adaptability of biofilm. By judiciously employing putrescine, biofilm formation could be controlled to meet the needs of engineering applications with different characteristics.IMPORTANCEThe objective of this study is to unravel the regulatory mechanism by which exogenous putrescine influences biofilm pH stress adaptability and understand the role of environmental pH in this intricate process. Our findings revealed that exogenous putrescine functioned as a switch-like distributor affecting the pH stress adaptability of biofilm-based activated sludge, which promoted energy utilization for growth and reproduction processes under acidic conditions while limiting biofilm development to conserve energy under alkaline conditions. This study not only clarified the previously ambiguous relationship between exogenous putrescine, environmental pH, and biofilm pH stress adaptability but also offered fresh insights into enhancing biofilm stability within extreme environments. Through the modulation of energy utilization, exerting control over biofilm growth and achieving more effective engineering goals could be possible.
Collapse
Affiliation(s)
- Guanyu Jiang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, China
- Tianjin Key Lab of Indoor Air Environmental Quality Control, Tianjin, China
| | - Can Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, China
- Tianjin Key Lab of Indoor Air Environmental Quality Control, Tianjin, China
| | - Yongchao Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, China
- Tianjin Key Lab of Indoor Air Environmental Quality Control, Tianjin, China
| | - Jiayi Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, China
- Tianjin Key Lab of Indoor Air Environmental Quality Control, Tianjin, China
| | - Yimei Xue
- School of Environmental Science and Engineering, Tianjin University, Tianjin, China
- Tianjin Key Lab of Indoor Air Environmental Quality Control, Tianjin, China
| | - Yuting Lin
- School of Environmental Science and Engineering, Tianjin University, Tianjin, China
- Tianjin Key Lab of Indoor Air Environmental Quality Control, Tianjin, China
| | - Xurui Hu
- School of Environmental Science and Engineering, Tianjin University, Tianjin, China
- Tianjin Key Lab of Indoor Air Environmental Quality Control, Tianjin, China
| | - Yahui Lv
- School of Environmental Science and Engineering, Tianjin University, Tianjin, China
- Tianjin Key Lab of Indoor Air Environmental Quality Control, Tianjin, China
| |
Collapse
|
20
|
Won DS, Lee H, Park Y, Chae M, Kim YC, Lim B, Kang MH, Ok MR, Jung HD, Park JH. Dual-Layer Nanoengineered Urinary Catheters for Enhanced Antimicrobial Efficacy and Reduced Cytotoxicity. Adv Healthc Mater 2024:e2401700. [PMID: 39036863 DOI: 10.1002/adhm.202401700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/11/2024] [Indexed: 07/23/2024]
Abstract
Catheter-associated urinary tract infection (CAUTI) is the most common healthcare-associated infection; however, current therapeutic strategies remain insufficient for standard clinical application. A novel urinary catheter featuring a dual-layer nanoengineering approach using zinc (Zn) and silver nanoparticles (AgNPs) is successfully fabricated. This design targets microbial resistance, minimizes cytotoxicity, and maintains long-term efficacy. The inner AgNPs layer provides immediate antibacterial effects against the UTI pathogens, while the outer porous Zn layer controls zero-order Ag release and generates reactive oxygen species, thus enhancing long-term bactericidal performance. Enhanced antibacterial properties of Zn/AgNPs-coated catheters are observed, resulting in 99.9% of E. coli and 99.7% of S. aureus reduction, respectively. The Zn/AgNPs-coated catheter significantly suppresses biofilm with sludge formation compared to AgNP-coated and uncoated catheters (all, p < 0.05). The Zn/AgNP-coated catheter in a rabbit model demonstrated a durable, effective barrier against bacterial colonization, maintaining antimicrobial properties during the catheter indwelling period with significantly reduced inflammation and epithelial disruption compared with AgNP and uncoated groups. This innovation has the potential to revolutionize the design of antimicrobial medical devices, particularly for applications requiring long-term implantation. Although further preclinical studies are required to verify its efficacy and safety, this strategy seems to be a promising approach to preventing CAUTI-related complications.
Collapse
Affiliation(s)
- Dong-Sung Won
- Biomedical Engineering Research Center, Asan Institute for Life Sciences, Asan Medical Center, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Hyun Lee
- Department of Biomedical-Chemical Engineering, The Catholic University of Korea, Bucheon, Gyeonggi-do, 14662, Republic of Korea
- Department of Biotechnology, The Catholic University of Korea, Bucheon, 14662, Republic of Korea
| | - Yubeen Park
- Biomedical Engineering Research Center, Asan Institute for Life Sciences, Asan Medical Center, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
- Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Minjung Chae
- Biomaterials Research Center, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- Department of Materials Science and Engineering, Seoul National University (SNU), Seoul, 08826, Republic of Korea
| | - Yu-Chan Kim
- Biomaterials Research Center, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- Division of Bio-Medical Science and Technology KIST School, Korea University of Science and Technology, Seoul, 02792, Republic of Korea
| | - Bumjin Lim
- Department of Urology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Min-Ho Kang
- Department of Biomedical-Chemical Engineering, The Catholic University of Korea, Bucheon, Gyeonggi-do, 14662, Republic of Korea
- Department of Biotechnology, The Catholic University of Korea, Bucheon, 14662, Republic of Korea
| | - Myoung-Ryul Ok
- Biomaterials Research Center, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- Division of Bio-Medical Science and Technology KIST School, Korea University of Science and Technology, Seoul, 02792, Republic of Korea
| | - Hyun-Do Jung
- Division of Materials Science and Engineering, Hanyang University, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Jung-Hoon Park
- Biomedical Engineering Research Center, Asan Institute for Life Sciences, Asan Medical Center, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
- Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
| |
Collapse
|
21
|
Grassi L, Crabbé A. Recreating chronic respiratory infections in vitro using physiologically relevant models. Eur Respir Rev 2024; 33:240062. [PMID: 39142711 PMCID: PMC11322828 DOI: 10.1183/16000617.0062-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 06/18/2024] [Indexed: 08/16/2024] Open
Abstract
Despite the need for effective treatments against chronic respiratory infections (often caused by pathogenic biofilms), only a few new antimicrobials have been introduced to the market in recent decades. Although different factors impede the successful advancement of antimicrobial candidates from the bench to the clinic, a major driver is the use of poorly predictive model systems in preclinical research. To bridge this translational gap, significant efforts have been made to develop physiologically relevant models capable of recapitulating the key aspects of the airway microenvironment that are known to influence infection dynamics and antimicrobial activity in vivo In this review, we provide an overview of state-of-the-art cell culture platforms and ex vivo models that have been used to model chronic (biofilm-associated) airway infections, including air-liquid interfaces, three-dimensional cultures obtained with rotating-wall vessel bioreactors, lung-on-a-chips and ex vivo pig lungs. Our focus is on highlighting the advantages of these infection models over standard (abiotic) biofilm methods by describing studies that have benefited from these platforms to investigate chronic bacterial infections and explore novel antibiofilm strategies. Furthermore, we discuss the challenges that still need to be overcome to ensure the widespread application of in vivo-like infection models in antimicrobial drug development, suggesting possible directions for future research. Bearing in mind that no single model is able to faithfully capture the full complexity of the (infected) airways, we emphasise the importance of informed model selection in order to generate clinically relevant experimental data.
Collapse
Affiliation(s)
- Lucia Grassi
- Laboratory of Pharmaceutical Microbiology, Ghent University, Belgium
| | - Aurélie Crabbé
- Laboratory of Pharmaceutical Microbiology, Ghent University, Belgium
| |
Collapse
|
22
|
Huang TT, Cao YX, Cao L. Novel therapeutic regimens against Helicobacter pylori: an updated systematic review. Front Microbiol 2024; 15:1418129. [PMID: 38912349 PMCID: PMC11190606 DOI: 10.3389/fmicb.2024.1418129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 05/27/2024] [Indexed: 06/25/2024] Open
Abstract
Helicobacter pylori (H. pylori) is a strict microaerophilic bacterial species that exists in the stomach, and H. pylori infection is one of the most common chronic bacterial infections affecting humans. Eradicating H. pylori is the preferred method for the long-term prevention of complications such as chronic gastritis, peptic ulcers, gastric mucosa-associated lymphoid tissue lymphoma, and gastric cancer. However, first-line treatment with triple therapy and quadruple therapy has been unable to cope with increasing antibacterial resistance. To provide an updated review of H. pylori infections and antibacterial resistance, as well as related treatment options, we searched PubMed for articles published until March 2024. The key search terms were "H. pylori", "H. pylori infection", "H. pylori diseases", "H. pylori eradication", and "H. pylori antibacterial resistance." Despite the use of antimicrobial agents, the annual decline in the eradication rate of H. pylori continues. Emerging eradication therapies, such as the development of the new strong acid blocker vonoprazan, probiotic adjuvant therapy, and H. pylori vaccine therapy, are exciting. However, the effectiveness of these treatments needs to be further evaluated. It is worth mentioning that the idea of altering the oxygen environment in gastric juice for H. pylori to not be able to survive is a hot topic that should be considered in new eradication plans. Various strategies for eradicating H. pylori, including antibacterials, vaccines, probiotics, and biomaterials, are continuously evolving. A novel approach involving the alteration of the oxygen concentration within the growth environment of H. pylori has emerged as a promising eradication strategy.
Collapse
Affiliation(s)
- Ting-Ting Huang
- Department of Pharmacology, School of Basic Medical Science, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| | - Yong-Xiao Cao
- Department of Pharmacology, School of Basic Medical Science, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| | - Lei Cao
- Precision Medical Institute, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| |
Collapse
|
23
|
Rafiee Z, Rezaie M, Choi S. Combined electrical-electrochemical phenotypic profiling of antibiotic susceptibility of in vitro biofilm models. Analyst 2024; 149:3224-3235. [PMID: 38686667 DOI: 10.1039/d4an00393d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
More than 65% of bacterial infections are caused by biofilms. However, standard biofilm susceptibility tests are not available for clinical use. All conventional biofilm models suffer from a long formation time and fail to mimic in vivo microbial biofilm conditions. Moreover, biofilms make it difficult to monitor the effectiveness of antibiotics. This work creates a powerful yet simple method to form a target biofilm and develops an innovative approach to monitoring the antibiotic's efficacy against a biofilm-associated infection. A paper-based culture platform can provide a new strategy for rapid microbial biofilm formation through capillary action. A combined electrical-electrochemical technique monitors bacterial metabolism rapidly and reliably by measuring microbial extracellular electron transfer (EET) and using electrochemical impedance spectroscopy (EIS) across a microbe-electrode interface. Three representative pathogens, Pseudomonas aeruginosa, Escherichia coli, and Staphylococcus aureus, form their biofilms controllably within an hour. Within another hour their susceptibilities to three frontline antibiotics with different action modes (gentamicin, ciprofloxacin, and ceftazidime) are examined. Our antibiotic susceptibility testing (AST) technique provides a quantifiable minimum inhibitory concentration (MIC) of those antibiotics against the in vitro biofilm models and characterizes their action mechanisms. The results will have an important positive effect because they provide immediately actionable healthcare information at a reduced cost, revolutionizing public healthcare.
Collapse
Affiliation(s)
- Zahra Rafiee
- Bioelectronics & Microsystems Laboratory, Department of Electrical & Computer Engineering, State University of New York at Binghamton, Binghamton, New York, 13902, USA.
| | - Maryam Rezaie
- Bioelectronics & Microsystems Laboratory, Department of Electrical & Computer Engineering, State University of New York at Binghamton, Binghamton, New York, 13902, USA.
| | - Seokheun Choi
- Bioelectronics & Microsystems Laboratory, Department of Electrical & Computer Engineering, State University of New York at Binghamton, Binghamton, New York, 13902, USA.
- Center for Research in Advanced Sensing Technologies & Environmental Sustainability, State University of New York at Binghamton, Binghamton, New York, 13902, USA
| |
Collapse
|
24
|
Vestweber PK, Wächter J, Planz V, Jung N, Windbergs M. The interplay of Pseudomonas aeruginosa and Staphylococcus aureus in dual-species biofilms impacts development, antibiotic resistance and virulence of biofilms in in vitro wound infection models. PLoS One 2024; 19:e0304491. [PMID: 38805522 PMCID: PMC11132468 DOI: 10.1371/journal.pone.0304491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 05/14/2024] [Indexed: 05/30/2024] Open
Abstract
Due to high tolerance to antibiotics and pronounced virulence, bacterial biofilms are considered a key factor and major clinical challenge in persistent wound infections. They are typically composed of multiple species, whose interactions determine the biofilm's structural development, functional properties and thus the progression of wound infections. However, most attempts to study bacterial biofilms in vitro solely rely on mono-species populations, since cultivating multi-species biofilms, especially for prolonged periods of time, poses significant challenges. To address this, the present study examined the influence of bacterial composition on structural biofilm development, morphology and spatial organization, as well as antibiotic tolerance and virulence on human skin cells in the context of persistent wound infections. By creating a wound-mimetic microenvironment, the successful cultivation of dual-species biofilms of two of the most prevalent wound pathogens, Pseudomonas aeruginosa and Staphylococcus aureus, was realized over a period of 72 h. Combining quantitative analysis with electron microscopy and label-free imaging enabled a comprehensive evaluation of the dynamics of biofilm formation and matrix secretion, revealing a twofold increased maturation of dual-species biofilms. Antibiotic tolerance was comparable for both mono-species cultures, however, dual-species communities showed a 50% increase in tolerance, mediated by a significantly reduced penetration of the applied antibiotic into the biofilm matrix. Further synergistic effects were observed, where dual-species biofilms exacerbated wound healing beyond the effects observed from either Pseudomonas or Staphylococcus. Consequently, predicting biofilm development, antimicrobial tolerance and virulence for multi-species biofilms based solely on the results from mono-species biofilms is unreliable. This study underscores the substantial impact of a multi-species composition on biofilm functional properties and emphasizes the need to tailor future studies reflecting the bacterial composition of the respective in vivo situation, leading to a more comprehensive understanding of microbial communities in the context of basic microbiology and the development of effective treatments.
Collapse
Affiliation(s)
- Pia Katharina Vestweber
- Institute of Pharmaceutical Technology, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Jana Wächter
- Institute of Pharmaceutical Technology, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Viktoria Planz
- Institute of Pharmaceutical Technology, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Nathalie Jung
- Institute of Pharmaceutical Technology, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Maike Windbergs
- Institute of Pharmaceutical Technology, Goethe University Frankfurt, Frankfurt am Main, Germany
| |
Collapse
|
25
|
Pires ACMDS, Carvalho AR, Vaso CO, Mendes-Giannini MJS, Singulani JDL, Fusco-Almeida AM. Influence of Zinc on Histoplasma capsulatum Planktonic and Biofilm Cells. J Fungi (Basel) 2024; 10:361. [PMID: 38786716 PMCID: PMC11122510 DOI: 10.3390/jof10050361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/03/2023] [Accepted: 10/09/2023] [Indexed: 05/25/2024] Open
Abstract
Histoplasma capsulatum causes a fungal respiratory disease. Some studies suggest that the fungus requires zinc to consolidate the infection. This study aimed to investigate the influence of zinc and the metal chelator TPEN on the growth of Histoplasma in planktonic and biofilm forms. The results showed that zinc increased the metabolic activity, cell density, and cell viability of planktonic growth. Similarly, there was an increase in biofilm metabolic activity but no increase in biomass or extracellular matrix production. N'-N,N,N,N-tetrakis-2-pyridylmethylethane-1,2 diamine (TPEN) dramatically reduced the same parameters in the planktonic form and resulted in a decrease in metabolic activity, biomass, and extracellular matrix production for the biofilm form. Therefore, the unprecedented observations in this study highlight the importance of zinc ions for the growth, development, and proliferation of H. capsulatum cells and provide new insights into the role of metal ions for biofilm formation in the dimorphic fungus Histoplasma, which could be a potential therapeutic strategy.
Collapse
Affiliation(s)
- Ana Carolina Moreira da Silva Pires
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, SP, Brazil; (A.R.C.); (C.O.V.); (M.J.S.M.-G.); (J.d.L.S.)
| | - Angélica Romão Carvalho
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, SP, Brazil; (A.R.C.); (C.O.V.); (M.J.S.M.-G.); (J.d.L.S.)
| | - Carolina Orlando Vaso
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, SP, Brazil; (A.R.C.); (C.O.V.); (M.J.S.M.-G.); (J.d.L.S.)
| | - Maria José Soares Mendes-Giannini
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, SP, Brazil; (A.R.C.); (C.O.V.); (M.J.S.M.-G.); (J.d.L.S.)
| | - Junya de Lacorte Singulani
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, SP, Brazil; (A.R.C.); (C.O.V.); (M.J.S.M.-G.); (J.d.L.S.)
- Department of Microbiology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Ana Marisa Fusco-Almeida
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, SP, Brazil; (A.R.C.); (C.O.V.); (M.J.S.M.-G.); (J.d.L.S.)
| |
Collapse
|
26
|
Bouhrour N, Nibbering PH, Bendali F. Medical Device-Associated Biofilm Infections and Multidrug-Resistant Pathogens. Pathogens 2024; 13:393. [PMID: 38787246 PMCID: PMC11124157 DOI: 10.3390/pathogens13050393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/29/2024] [Accepted: 05/04/2024] [Indexed: 05/25/2024] Open
Abstract
Medical devices such as venous catheters (VCs) and urinary catheters (UCs) are widely used in the hospital setting. However, the implantation of these devices is often accompanied by complications. About 60 to 70% of nosocomial infections (NIs) are linked to biofilms. The main complication is the ability of microorganisms to adhere to surfaces and form biofilms which protect them and help them to persist in the host. Indeed, by crossing the skin barrier, the insertion of VC inevitably allows skin flora or accidental environmental contaminants to access the underlying tissues and cause fatal complications like bloodstream infections (BSIs). In fact, 80,000 central venous catheters-BSIs (CVC-BSIs)-mainly occur in intensive care units (ICUs) with a death rate of 12 to 25%. Similarly, catheter-associated urinary tract infections (CA-UTIs) are the most commonlyhospital-acquired infections (HAIs) worldwide.These infections represent up to 40% of NIs.In this review, we present a summary of biofilm formation steps. We provide an overview of two main and important infections in clinical settings linked to medical devices, namely the catheter-asociated bloodstream infections (CA-BSIs) and catheter-associated urinary tract infections (CA-UTIs), and highlight also the most multidrug resistant bacteria implicated in these infections. Furthermore, we draw attention toseveral useful prevention strategies, and advanced antimicrobial and antifouling approaches developed to reduce bacterial colonization on catheter surfaces and the incidence of the catheter-related infections.
Collapse
Affiliation(s)
- Nesrine Bouhrour
- Laboratoire de Microbiologie Appliquée, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia 06000, Algeria;
| | - Peter H. Nibbering
- Department of Infectious Diseases, Leiden University Medical Center, 2300 RC Leiden, The Netherlands;
| | - Farida Bendali
- Laboratoire de Microbiologie Appliquée, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia 06000, Algeria;
| |
Collapse
|
27
|
Pérez ME, Durantini JE, Martínez SR, Durantini AM, Milanesio ME, Durantini EN. Porphyrin-BODIPY Dyad: Enhancing Photodynamic Inactivation via Antenna Effect. Chembiochem 2024; 25:e202400138. [PMID: 38478375 DOI: 10.1002/cbic.202400138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/12/2024] [Indexed: 04/04/2024]
Abstract
A porphyrin-BODIPY dyad (P-BDP) was obtained through covalent bonding, featuring a two-segment design comprising a light-harvesting antenna system connected to an energy acceptor unit. The absorption spectrum of P-BDP resulted from an overlap of the individual spectra of its constituent parts, with the fluorescence emission of the BODIPY unit experiencing significant quenching (96 %) due to the presence of the porphyrin unit. Spectroscopic, computational, and redox investigations revealed a competition between photoinduced energy and electron transfer processes. The dyad demonstrated the capability to sensitize both singlet molecular oxygen and superoxide radical anions. Additionally, P-BDP effectively induced the photooxidation of L-tryptophan. In suspensions of Staphylococcus aureus cells, the dyad led to a reduction of over 3.5 log (99.99 %) in cell survival following 30 min of irradiation with green light. Photodynamic inactivation caused by P-BDP was also extended to the individual bacterium level, focusing on bacterial cells adhered to a surface. This dyad successfully achieved the total elimination of the bacteria upon 20 min of irradiation. Therefore, P-BDP presents an interesting photosensitizing structure that takes advantage of the light-harvesting antenna properties of the BODIPY unit combined with porphyrin, offering potential to enhance photoinactivation of bacteria.
Collapse
Affiliation(s)
- María E Pérez
- IDAS-CONICET, Departamento de Química, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta Nacional 36 Km 601, X5804BYA, Río Cuarto, Córdoba, Argentina
| | - Javier E Durantini
- IITEMA-CONICET, Departamento de Química, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta Nacional 36 Km 601, X5804BYA, Río Cuarto, Córdoba, Argentina
| | - Sol R Martínez
- IITEMA-CONICET, Departamento de Química, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta Nacional 36 Km 601, X5804BYA, Río Cuarto, Córdoba, Argentina
| | - Andrés M Durantini
- Department of Chemistry, Southern Illinois University Edwardsville, Edwardsville, Illinois, 62026, United States
| | - María E Milanesio
- IDAS-CONICET, Departamento de Química, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta Nacional 36 Km 601, X5804BYA, Río Cuarto, Córdoba, Argentina
| | - Edgardo N Durantini
- IDAS-CONICET, Departamento de Química, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta Nacional 36 Km 601, X5804BYA, Río Cuarto, Córdoba, Argentina
| |
Collapse
|
28
|
Zhou Y, Liu Y, Li S, Yang Q. The Combination of Biochar and Bacillus subtilis Biological Agent Reduced the Relative Abundance of Pathogenic Bacteria in the Rhizosphere Soil of Panax notoginseng. Microorganisms 2024; 12:783. [PMID: 38674727 PMCID: PMC11052501 DOI: 10.3390/microorganisms12040783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 03/31/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
In the continuous cropping of Panax notoginseng, the pathogenic fungi in the rhizosphere soil increased and infected the roots of Panax notoginseng, resulting in a decrease in yield. This is an urgent problem that needs to be solved in order to effectively overcome the obstacles associated with the continuous cropping of Panax notoginseng. Previous studies have shown that Bacillus subtilis inhibits pathogenic fungi in the rhizosphere of Panax notoginseng, but the inhibitory effect was not stable. Therefore, we hope to introduce biochar to help Bacillus subtilis colonize in soil. In the experiment, fields planted with Panax notoginseng for 5 years were renovated, and biochar was mixed in at the same time. The applied amount of biochar was set to four levels (B0, 10 kg·hm-2; B1, 80 kg·hm-2; B2, 110 kg·hm-2; B3, 140 kg·hm-2), and Bacillus subtilis biological agent was set to three levels (C1, 10 kg·hm-2; C2, 15 kg·hm-2; C3, 25 kg·hm-2). The full combination experiment and a blank control group (CK) were used. The experimental results show that the overall Ascomycota decreased by 0.86%~65.68% at the phylum level. Basidiomycota increased by -73.81%~138.47%, and Mortierellomycota increased by -51.27%~403.20%. At the genus level, Mortierella increased by -10.29%~855.44%, Fusarium decreased by 35.02%~86.79%, and Ilyonectria increased by -93.60%~680.62%. Fusarium mainly causes acute bacterial wilt root rot, while Ilyonectria mainly causes yellow rot. Under different treatments, the Shannon index increased by -6.77%~62.18%, the Chao1 index increased by -12.07%~95.77%, the Simpson index increased by -7.31%~14.98%, and the ACE index increased by -11.75%~96.12%. The good_coverage indices were all above 0.99. The results of a random forest analysis indicated that Ilyonectria, Pyrenochaeta, and Xenopolyscytalum were the top three most important species in the soil, with MeanDecreaseGini values of 2.70, 2.50, and 2.45, respectively. Fusarium, the primary pathogen of Panax notoginseng, ranked fifth, and its MeanDecreaseGini value was 2.28. The experimental results showed that the B2C2 treatment had the best inhibitory effect on Fusarium, and the relative abundance of Fusarium in Panax notoginseng rhizosphere soil decreased by 86.79% under B2C2 treatment; the B1C2 treatment had the best inhibitory effect on Ilyonectria, and the relative abundance of Ilyonectria in the Panax notoginseng rhizosphere soil decreased by 93.60% under B1C2 treatment. Therefore, if we want to improve the soil with acute Ralstonia solanacearum root rot, we should use the B2C2 treatment to improve the soil environment; if we want to improve the soil with yellow rot disease, we should use the B1C2 treatment to improve the soil environment.
Collapse
Affiliation(s)
- Yingjie Zhou
- Faculty of Modern Agricultural Engineering, Kunming University of Science and Technology, Kunming 650500, China; (Y.Z.); (Y.L.); (S.L.)
- Yunnan Provincial Field Scientific Observation and Research Station on Water-Soil-Crop System in Seasonal Arid Region, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Provincial Key Laboratory of High-Efficiency Water Use and Green Production of Characteristic Crops in Universities, Kunming University of Science and Technology, Kunming 650500, China
| | - Yanwei Liu
- Faculty of Modern Agricultural Engineering, Kunming University of Science and Technology, Kunming 650500, China; (Y.Z.); (Y.L.); (S.L.)
- Yunnan Provincial Field Scientific Observation and Research Station on Water-Soil-Crop System in Seasonal Arid Region, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Provincial Key Laboratory of High-Efficiency Water Use and Green Production of Characteristic Crops in Universities, Kunming University of Science and Technology, Kunming 650500, China
| | - Siwen Li
- Faculty of Modern Agricultural Engineering, Kunming University of Science and Technology, Kunming 650500, China; (Y.Z.); (Y.L.); (S.L.)
- Yunnan Provincial Field Scientific Observation and Research Station on Water-Soil-Crop System in Seasonal Arid Region, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Provincial Key Laboratory of High-Efficiency Water Use and Green Production of Characteristic Crops in Universities, Kunming University of Science and Technology, Kunming 650500, China
| | - Qiliang Yang
- Faculty of Modern Agricultural Engineering, Kunming University of Science and Technology, Kunming 650500, China; (Y.Z.); (Y.L.); (S.L.)
- Yunnan Provincial Field Scientific Observation and Research Station on Water-Soil-Crop System in Seasonal Arid Region, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Provincial Key Laboratory of High-Efficiency Water Use and Green Production of Characteristic Crops in Universities, Kunming University of Science and Technology, Kunming 650500, China
| |
Collapse
|
29
|
Iaconis A, De Plano LM, Caccamo A, Franco D, Conoci S. Anti-Biofilm Strategies: A Focused Review on Innovative Approaches. Microorganisms 2024; 12:639. [PMID: 38674584 PMCID: PMC11052202 DOI: 10.3390/microorganisms12040639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/17/2024] [Accepted: 03/19/2024] [Indexed: 04/28/2024] Open
Abstract
Biofilm (BF) can give rise to systemic infections, prolonged hospitalization times, and, in the worst case, death. This review aims to provide an overview of recent strategies for the prevention and destruction of pathogenic BFs. First, the main phases of the life cycle of BF and maturation will be described to identify potential targets for anti-BF approaches. Then, an approach acting on bacterial adhesion, quorum sensing (QS), and the extracellular polymeric substance (EPS) matrix will be introduced and discussed. Finally, bacteriophage-mediated strategies will be presented as innovative approaches against BF inhibition/destruction.
Collapse
Affiliation(s)
- Antonella Iaconis
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (ChiBioFarAm), University of Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy; (A.I.); (L.M.D.P.); (A.C.)
| | - Laura Maria De Plano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (ChiBioFarAm), University of Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy; (A.I.); (L.M.D.P.); (A.C.)
| | - Antonella Caccamo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (ChiBioFarAm), University of Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy; (A.I.); (L.M.D.P.); (A.C.)
| | - Domenico Franco
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (ChiBioFarAm), University of Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy; (A.I.); (L.M.D.P.); (A.C.)
| | - Sabrina Conoci
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (ChiBioFarAm), University of Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy; (A.I.); (L.M.D.P.); (A.C.)
- Department of Chemistry “Giacomo Ciamician”, Alma Mater Studiorum—University of Bologna, 40126 Bologna, Italy
- URT Lab Sens Beyond Nano—CNR-DSFTM, Department of Physical Sciences and Technologies of Matter, University of Messina, Viale F. Stagno D’Alcontres 31, 98166 Messina, Italy
| |
Collapse
|
30
|
Koloh R, Balázs VL, Nagy-Radványi L, Kocsis B, Kerekes EB, Kocsis M, Farkas Á. Chestnut Honey Is Effective against Mixed Biofilms at Different Stages of Maturity. Antibiotics (Basel) 2024; 13:255. [PMID: 38534690 DOI: 10.3390/antibiotics13030255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/07/2024] [Accepted: 03/11/2024] [Indexed: 03/28/2024] Open
Abstract
The irresponsible overuse of antibiotics has increased the occurrence of resistant bacterial strains, which represents one of the biggest patient safety risks today. Due to antibiotic resistance and biofilm formation in bacteria, it is becoming increasingly difficult to suppress the bacterial strains responsible for various chronic infections. Honey was proven to inhibit bacterial growth and biofilm development, offering an alternative solution in the treatment of resistant infections and chronic wounds. Our studies included chestnut honey, valued for its high antibacterial activity, and the bacteria Pseudomonas aeruginosa, methicillin-resistant Staphylococcus aureus, and S. epidermidis, known to form multi-species biofilm communities. Minimum inhibitory concentrations (MIC) of chestnut honey were determined for each bacterial strain. Afterwards, the mixed bacterial biofilms were treated with chestnut honey at different stages of maturity (incubation times: 2, 4, 6, 12, 24 h). The extent of biofilm inhibition was measured with a crystal violet assay and demonstrated by scanning electron microscopy (SEM). As the incubation time increased and the biofilm became more mature, inhibition rates decreased gradually. The most sensitive biofilm was the combination MRSA-S. epidermidis, with a 93.5% inhibition rate after 2 h of incubation. Our results revealed that chestnut honey is suitable for suppressing the initial and moderately mature stages of mixed biofilms.
Collapse
Affiliation(s)
- Regina Koloh
- Department of Pharmacognosy, Faculty of Pharmacy, University of Pécs, 7624 Pécs, Hungary
| | - Viktória L Balázs
- Department of Pharmacognosy, Faculty of Pharmacy, University of Pécs, 7624 Pécs, Hungary
| | - Lilla Nagy-Radványi
- Department of Pharmacognosy, Faculty of Pharmacy, University of Pécs, 7624 Pécs, Hungary
| | - Béla Kocsis
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, 7624 Pécs, Hungary
| | - Erika Beáta Kerekes
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, 6726 Szeged, Hungary
| | - Marianna Kocsis
- Department of Agricultural Biology, Institute of Biology, University of Pécs, 7624 Pécs, Hungary
| | - Ágnes Farkas
- Department of Pharmacognosy, Faculty of Pharmacy, University of Pécs, 7624 Pécs, Hungary
| |
Collapse
|
31
|
Duque-Sanchez L, Qu Y, Voelcker NH, Thissen H. Tackling catheter-associated urinary tract infections with next-generation antimicrobial technologies. J Biomed Mater Res A 2024; 112:312-335. [PMID: 37881094 DOI: 10.1002/jbm.a.37630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/21/2023] [Accepted: 10/10/2023] [Indexed: 10/27/2023]
Abstract
Urinary catheters and other medical devices associated with the urinary tract such as stents are major contributors to nosocomial urinary tract infections (UTIs) as they provide an access path for pathogens to enter the bladder. Considering that catheter-associated urinary tract infections (CAUTIs) account for approximately 75% of UTIs and that UTIs represent the most common type of healthcare-associated infections, novel anti-infective device technologies are urgently required. The rapid rise of antimicrobial resistance in the context of CAUTIs further highlights the importance of such preventative strategies. In this review, the risk factors for pathogen colonization in the urinary tract are dissected, taking into account the nature and mechanistics of this unique environment. Moreover, the most promising next-generation preventative strategies are critically assessed, focusing in particular on anti-infective surface coatings. Finally, emerging approaches in this field and their likely clinical impact are examined.
Collapse
Affiliation(s)
- Lina Duque-Sanchez
- Department of Manufacturing, Commonwealth Scientific and Industrial Research Organization (CSIRO), Clayton, Victoria, Australia
- Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Yue Qu
- Infection and Immunity Program, Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Department of Infectious Diseases, The Alfred Hospital and Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Nicolas H Voelcker
- Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Materials Science and Engineering, Monash University, Clayton, Victoria, Australia
| | - Helmut Thissen
- Department of Manufacturing, Commonwealth Scientific and Industrial Research Organization (CSIRO), Clayton, Victoria, Australia
| |
Collapse
|
32
|
Škovranová G, Molčanová L, Jug B, Jug D, Klančnik A, Smole-Možina S, Treml J, Tušek Žnidarič M, Sychrová A. Perspectives on antimicrobial properties of Paulownia tomentosa Steud. fruit products in the control of Staphylococcus aureus infections. JOURNAL OF ETHNOPHARMACOLOGY 2024; 321:117461. [PMID: 37979817 DOI: 10.1016/j.jep.2023.117461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/03/2023] [Accepted: 11/14/2023] [Indexed: 11/20/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Paulownia tomentosa Steud. (P. tomentosa) is a medium-sized tree traditionally used in Chinese folk medicine for the treatment of infectious diseases. It is a rich source of prenylated phenolic compounds that have been extensively studied for their promising biological activities. AIM OF THE STUDY Due to the increasing development of antibiotic resistance, our study investigated plant-derived natural products from the fruits of P. tomentosa that could control Staphylococcus aureus infections with novel targets/modes of action and reduce antimicrobial resistance. MATERIALS AND METHODS The ethanolic extract was fractionated and detected by liquid chromatography. The antistaphylococcal effects of the plant formulations were studied in detail in vitro by various biological methods, including microdilution methods for minimum inhibitory concentration (MIC), the checkerboard titration technique for synergy assay, fluorescence measurements for membrane disruption experiments, autoinducer-2-mediated bioassay for quorum sensing inhibition, and counting of colony-forming units for relative adhesion. Morphology was examined by transmission electron microscopy. RESULTS Total ethanolic extract and chloroform fraction showed MICs of 128 and 32 μg/mL, respectively. Diplacol, diplacone, and 3'-O-methyl-5'-hydroxydiplacone inhibited S. aureus growth in the range of 8-16 μg/mL. Synergistic potential was shown in combination with mupirocin and fusidic acid. The ethanolic extract and the chloroform fraction destroyed the cell membranes by 91.61% and 79.46%, respectively, while the pure compounds were less active. The ethanolic extract and the pure compounds reduced the number of adhered cells to 47.33-10.26% compared to the untreated control. All tested plant formulations, except diplacone, inhibited quorum sensing of S. aureus. Transmission electron microscopy showed deformation of S. aureus cells. CONCLUSIONS The products from the fruit of P. tomentosa showed antimicrobial properties against S. aureus alone and in combination with antibiotics. By affecting intracellular targets, geranylated flavonoids proposed novel approaches in the control of staphylococcal infections.
Collapse
Affiliation(s)
- Gabriela Škovranová
- Department of Molecular Pharmacy, Faculty of Pharmacy, Masaryk University, 612 00, Brno, Czech Republic.
| | - Lenka Molčanová
- Department of Natural Drugs, Faculty of Pharmacy, Masaryk University, 612 00, Brno, Czech Republic
| | - Blaž Jug
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, 1000, Ljubljana, Slovenia
| | - Dina Jug
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, 1000, Ljubljana, Slovenia
| | - Anja Klančnik
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, 1000, Ljubljana, Slovenia
| | - Sonja Smole-Možina
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, 1000, Ljubljana, Slovenia
| | - Jakub Treml
- Department of Molecular Pharmacy, Faculty of Pharmacy, Masaryk University, 612 00, Brno, Czech Republic
| | - Magda Tušek Žnidarič
- Department of Biotechnology and System Biology, National Institute of Biology, 1000, Ljubljana, Slovenia
| | - Alice Sychrová
- Department of Natural Drugs, Faculty of Pharmacy, Masaryk University, 612 00, Brno, Czech Republic.
| |
Collapse
|
33
|
Wang X, Wang D, Lu H, Wang X, Wang X, Su J, Xia G. Strategies to Promote the Journey of Nanoparticles Against Biofilm-Associated Infections. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305988. [PMID: 38178276 DOI: 10.1002/smll.202305988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/08/2023] [Indexed: 01/06/2024]
Abstract
Biofilm-associated infections are one of the most challenging healthcare threats for humans, accounting for 80% of bacterial infections, leading to persistent and chronic infections. The conventional antibiotics still face their dilemma of poor therapeutic effects due to the high tolerance and resistance led by bacterial biofilm barriers. Nanotechnology-based antimicrobials, nanoparticles (NPs), are paid attention extensively and considered as promising alternative. This review focuses on the whole journey of NPs against biofilm-associated infections, and to clarify it clearly, the journey is divided into four processes in sequence as 1) Targeting biofilms, 2) Penetrating biofilm barrier, 3) Attaching to bacterial cells, and 4) Translocating through bacterial cell envelope. Through outlining the compositions and properties of biofilms and bacteria cells, recent advances and present the strategies of each process are comprehensively discussed to combat biofilm-associated infections, as well as the combined strategies against these infections with drug resistance, aiming to guide the rational design and facilitate wide application of NPs in biofilm-associated infections.
Collapse
Affiliation(s)
- Xiaobo Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, P. R. China
| | - Dan Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, P. R. China
| | - Hongwei Lu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, P. R. China
| | - Xiaowei Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, P. R. China
| | - Xuelei Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, P. R. China
| | - Jiayi Su
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, P. R. China
| | - Guimin Xia
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, P. R. China
| |
Collapse
|
34
|
Böhning J, Tarafder AK, Bharat TA. The role of filamentous matrix molecules in shaping the architecture and emergent properties of bacterial biofilms. Biochem J 2024; 481:245-263. [PMID: 38358118 PMCID: PMC10903470 DOI: 10.1042/bcj20210301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 02/16/2024]
Abstract
Numerous bacteria naturally occur within spatially organised, multicellular communities called biofilms. Moreover, most bacterial infections proceed with biofilm formation, posing major challenges to human health. Within biofilms, bacterial cells are embedded in a primarily self-produced extracellular matrix, which is a defining feature of all biofilms. The biofilm matrix is a complex, viscous mixture primarily composed of polymeric substances such as polysaccharides, filamentous protein fibres, and extracellular DNA. The structured arrangement of the matrix bestows bacteria with beneficial emergent properties that are not displayed by planktonic cells, conferring protection against physical and chemical stresses, including antibiotic treatment. However, a lack of multi-scale information at the molecular level has prevented a better understanding of this matrix and its properties. Here, we review recent progress on the molecular characterisation of filamentous biofilm matrix components and their three-dimensional spatial organisation within biofilms.
Collapse
Affiliation(s)
- Jan Böhning
- Structural Studies Division, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, U.K
| | - Abul K. Tarafder
- Structural Studies Division, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, U.K
| | - Tanmay A.M. Bharat
- Structural Studies Division, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, U.K
| |
Collapse
|
35
|
Mancuso G, Trinchera M, Midiri A, Zummo S, Vitale G, Biondo C. Novel Antimicrobial Approaches to Combat Bacterial Biofilms Associated with Urinary Tract Infections. Antibiotics (Basel) 2024; 13:154. [PMID: 38391540 PMCID: PMC10886225 DOI: 10.3390/antibiotics13020154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 01/31/2024] [Accepted: 02/02/2024] [Indexed: 02/24/2024] Open
Abstract
Urinary tract infections (UTIs) are prevalent bacterial infections in both community and healthcare settings. They account for approximately 40% of all bacterial infections and require around 15% of all antibiotic prescriptions. Although antibiotics have traditionally been used to treat UTIs for several decades, the significant increase in antibiotic resistance in recent years has made many previously effective treatments ineffective. Biofilm on medical equipment in healthcare settings creates a reservoir of pathogens that can easily be transmitted to patients. Urinary catheter infections are frequently observed in hospitals and are caused by microbes that form a biofilm after a catheter is inserted into the bladder. Managing infections caused by biofilms is challenging due to the emergence of antibiotic resistance. Biofilms enable pathogens to evade the host's innate immune defences, resulting in long-term persistence. The incidence of sepsis caused by UTIs that have spread to the bloodstream is increasing, and drug-resistant infections may be even more prevalent. While the availability of upcoming tests to identify the bacterial cause of infection and its resistance spectrum is critical, it alone will not solve the problem; innovative treatment approaches are also needed. This review analyses the main characteristics of biofilm formation and drug resistance in recurrent uropathogen-induced UTIs. The importance of innovative and alternative therapies for combatting biofilm-caused UTI is emphasised.
Collapse
Affiliation(s)
- Giuseppe Mancuso
- Department of Human Pathology, University of Messina, 98125 Messina, Italy
| | - Marilena Trinchera
- Department of Human Pathology, University of Messina, 98125 Messina, Italy
| | - Angelina Midiri
- Department of Human Pathology, University of Messina, 98125 Messina, Italy
| | - Sebastiana Zummo
- Department of Human Pathology, University of Messina, 98125 Messina, Italy
| | - Giulia Vitale
- Department of Human Pathology, University of Messina, 98125 Messina, Italy
| | - Carmelo Biondo
- Department of Human Pathology, University of Messina, 98125 Messina, Italy
| |
Collapse
|
36
|
Dsouza FP, Dinesh S, Sharma S. Understanding the intricacies of microbial biofilm formation and its endurance in chronic infections: a key to advancing biofilm-targeted therapeutic strategies. Arch Microbiol 2024; 206:85. [PMID: 38300317 DOI: 10.1007/s00203-023-03802-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/04/2023] [Accepted: 12/16/2023] [Indexed: 02/02/2024]
Abstract
Bacterial biofilms can adhere to various surfaces in the environment with human beings being no exception. Enclosed in a self-secreted matrix which contains extracellular polymeric substances, biofilms are intricate communities of bacteria that play a significant role across various sectors and raise concerns for public health, medicine and industries. These complex structures allow free-floating planktonic cells to adopt multicellular mode of growth which leads to persistent infections. This is of great concern as biofilms can withstand external attacks which include antibiotics and immune responses. A more comprehensive and innovative approach to therapy is needed in view of the increasing issue of bacterial resistance brought on by the overuse of conventional antimicrobial medications. Thus, to oppose the challenges posed by biofilm-related infections, innovative therapeutic strategies are being explored which include targeting extracellular polymeric substances, quorum sensing, and persister cells. Biofilm-responsive nanoparticles show promising results by improving drug delivery and reducing the side effects. This review comprehensively examines the factors influencing biofilm formation, host immune defence mechanisms, infections caused by biofilms, diagnostic approaches, and biofilm-targeted therapies.
Collapse
Affiliation(s)
| | - Susha Dinesh
- Department of Bioinformatics, BioNome, Bengaluru, Karnataka, 560043, India.
| | - Sameer Sharma
- Department of Bioinformatics, BioNome, Bengaluru, Karnataka, 560043, India
| |
Collapse
|
37
|
Blanco-Cabra N, Alcàcer-Almansa J, Admella J, Arévalo-Jaimes BV, Torrents E. Nanomedicine against biofilm infections: A roadmap of challenges and limitations. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1944. [PMID: 38403876 DOI: 10.1002/wnan.1944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/28/2023] [Accepted: 01/27/2024] [Indexed: 02/27/2024]
Abstract
Microbial biofilms are complex three-dimensional structures where sessile microbes are embedded in a polymeric extracellular matrix. Their resistance toward the host immune system as well as to a diverse range of antimicrobial treatments poses a serious health and development threat, being in the top 10 global public health threats declared by the World Health Organization. In an effort to combat biofilm-related microbial infections, several strategies have been developed to independently eliminate biofilms or to complement conventional antibiotic therapies. However, their limitations leave room for other treatment alternatives, where the application of nanotechnology to biofilm eradication has gained significant relevance in recent years. Their small size, penetration efficiency, and the design flexibility that they present makes them a promising alternative for biofilm infection treatment, although they also present set-backs. This review aims to describe the main possibilities and limitations of nanomedicine against biofilms, while covering the main aspects of biofilm formation and study, and the current therapies for biofilm treatment. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease Toxicology and Regulatory Issues in Nanomedicine > Toxicology of Nanomaterials Toxicology and Regulatory Issues in Nanomedicine > Regulatory and Policy Issues in Nanomedicine.
Collapse
Affiliation(s)
- Núria Blanco-Cabra
- Bacterial Infections and Antimicrobial Therapy Group (BIAT), Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Microbiology Section, Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Júlia Alcàcer-Almansa
- Bacterial Infections and Antimicrobial Therapy Group (BIAT), Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Microbiology Section, Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Joana Admella
- Bacterial Infections and Antimicrobial Therapy Group (BIAT), Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Microbiology Section, Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Betsy Verónica Arévalo-Jaimes
- Bacterial Infections and Antimicrobial Therapy Group (BIAT), Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Microbiology Section, Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Eduard Torrents
- Bacterial Infections and Antimicrobial Therapy Group (BIAT), Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Microbiology Section, Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, Spain
| |
Collapse
|
38
|
Wang W, Gao Y, Xu W, Xu Y, Zhou N, Li Y, Zhang M, Tang BZ. The One-Stop Integrated Nanoagent Based on Photothermal Therapy for Deep Infection Healing and Inflammation Inhibition. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307785. [PMID: 37857468 DOI: 10.1002/adma.202307785] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/03/2023] [Indexed: 10/21/2023]
Abstract
Chronic wounds caused by bacterial infections are a major challenge in medical fields. The hypoxia condition extremely induces reactive oxygen species (ROS) generation and upregulates the expression of hypoxia-inducible factor, both of which can increase the pro-inflammatory M1 subtype macrophages production while reducing the anti-inflammatory M2 subtype macrophages. Besides, bacteria-formed biofilms can hinder the penetration of therapeutic agents. Encouraged by natural motors automatically executing tasks, hypothesized that supplying sufficient oxygen (O2 ) would simultaneously drive therapeutic agent movement, rescue the hypoxic microenvironment, and disrupt the vicious cycle of inflammation. Here, small organic molecule-based nanoparticles (2TT-mC6B@Cu5.4 O NPs) that possess high photothermal conversion efficiency and enzymatic activities are developed, including superoxide dismutase-, catalase-, and glutathione peroxidase-like activity. 2TT-mC6B@Cu5.4 O NPs exhibit superior ROS-scavenging and O2 production abilities that synergistically relieve inflammation, alleviate hypoxia conditions, and promote their deep penetration in chronic wound tissues. Transcriptome analysis further demonstrates that 2TT-mC6B@Cu5.4O NPs inhibit biological activities inside bacteria. Furthermore, in vivo experiments prove that 2TT-mC6B@Cu5.4 O NPs-based hyperthermia can effectively eliminate bacteria in biofilms to promote wound healing.
Collapse
Affiliation(s)
- Wentao Wang
- College of Science, Nanjing Forestry University, Nanjing, 210037, China
| | - Yumeng Gao
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Wang Xu
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Yan Xu
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, 210029, China
| | - Ninglin Zhou
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Yuanyuan Li
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Ming Zhang
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, 210029, China
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China
| |
Collapse
|
39
|
Wächter J, Vestweber PK, Planz V, Windbergs M. Unravelling host-pathogen interactions by biofilm infected human wound models. Biofilm 2023; 6:100164. [PMID: 38025836 PMCID: PMC10656240 DOI: 10.1016/j.bioflm.2023.100164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/19/2023] [Accepted: 10/20/2023] [Indexed: 12/01/2023] Open
Abstract
Approximately 80 % of persistent wound infections are affected by the presence of bacterial biofilms, resulting in a severe clinical challenge associated with prolonged healing periods, increased morbidity, and high healthcare costs. Unfortunately, in vitro models for wound infection research almost exclusively focus on early infection stages with planktonic bacteria. In this study, we present a new approach to emulate biofilm-infected human wounds by three-dimensional human in vitro systems. For this purpose, a matured biofilm consisting of the clinical key wound pathogen Pseudomonas aeruginosa was pre-cultivated on electrospun scaffolds allowing for non-destructive transfer of the matured biofilm to human in vitro wound models. We infected tissue-engineered human in vitro skin models as well as ex vivo human skin explants with the biofilm and analyzed structural tissue characteristics, biofilm growth behavior, and biofilm-tissue interactions. The structural development of biofilms in close proximity to the tissue, resulting in high bacterial burden and in vivo-like morphology, confirmed a manifest wound infection on all tested wound models, validating their applicability for general investigations of biofilm growth and structure. The extent of bacterial colonization of the wound bed, as well as the subsequent changes in molecular composition of skin tissue, were inherently linked to the characteristics of the underlying wound models including their viability and origin. Notably, the immune response observed in viable ex vivo and in vitro models was consistent with previous in vivo reports. While ex vivo models offered greater complexity and closer similarity to the in vivo conditions, in vitro models consistently demonstrated higher reproducibility. As a consequence, when focusing on direct biofilm-skin interactions, the viability of the wound models as well as their advantages and limitations should be aligned to the particular research question of future studies. Altogether, the novel model allows for a systematic investigation of host-pathogen interactions of bacterial biofilms and human wound tissue, also paving the way for development and predictive testing of novel therapeutics to combat biofilm-infected wounds.
Collapse
Affiliation(s)
| | | | - Viktoria Planz
- Institute of Pharmaceutical Technology, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Maike Windbergs
- Institute of Pharmaceutical Technology, Goethe University Frankfurt, Frankfurt am Main, Germany
| |
Collapse
|
40
|
Paleczny J, Brożyna M, Dudek B, Woytoń A, Chodaczek G, Szajnik M, Junka A. Culture Shock: An Investigation into the Tolerance of Pathogenic Biofilms to Antiseptics in Environments Resembling the Chronic Wound Milieu. Int J Mol Sci 2023; 24:17242. [PMID: 38139071 PMCID: PMC10744066 DOI: 10.3390/ijms242417242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/04/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
Credible assessment methods must be applied to evaluate antiseptics' in vitro activity reliably. Studies indicate that the medium for biofilm culturing should resemble the conditions present at the site of infection. We cultured S. aureus, S. epidermidis, P. aeruginosa, C. albicans, and E. coli biofilms in IVWM (In Vitro Wound Milieu)-the medium reflecting wound milieu-and were compared to the ones cultured in the laboratory microbiological Mueller-Hinton (MH) medium. We analyzed and compared crucial biofilm characteristics and treated microbes with polyhexamethylene biguanide hydrochloride (PHMB), povidone-iodine (PVP-I), and super-oxidized solution with hypochlorites (SOHs). Biofilm biomass of S. aureus and S. epidermidis was higher in IVWM than in MH medium. Microbes cultured in IVWM exhibited greater metabolic activity and thickness than in MH medium. Biofilm of the majority of microbial species was more resistant to PHMB and PVP-I in the IVWM than in the MH medium. P. aeruginosa displayed a two-fold lower MBEC value of PHMB in the IVWM than in the MH medium. PHMB was more effective in the IVWM than in the MH medium against S. aureus biofilm cultured on a biocellulose carrier (instead of polystyrene). The applied improvement of the standard in vitro methodology allows us to predict the effects of treatment of non-healing wounds with specific antiseptics.
Collapse
Affiliation(s)
- Justyna Paleczny
- Platform for Unique Models Application, Department of Pharmaceutical Microbiology and Parasitology, Wroclaw Medical University, 50-556 Wroclaw, Poland; (J.P.); (M.B.); (B.D.); (A.W.)
| | - Malwina Brożyna
- Platform for Unique Models Application, Department of Pharmaceutical Microbiology and Parasitology, Wroclaw Medical University, 50-556 Wroclaw, Poland; (J.P.); (M.B.); (B.D.); (A.W.)
| | - Bartłomiej Dudek
- Platform for Unique Models Application, Department of Pharmaceutical Microbiology and Parasitology, Wroclaw Medical University, 50-556 Wroclaw, Poland; (J.P.); (M.B.); (B.D.); (A.W.)
| | - Aleksandra Woytoń
- Platform for Unique Models Application, Department of Pharmaceutical Microbiology and Parasitology, Wroclaw Medical University, 50-556 Wroclaw, Poland; (J.P.); (M.B.); (B.D.); (A.W.)
| | - Grzegorz Chodaczek
- Bioimaging Laboratory, Lukasiewicz Research Network—PORT Polish Center for Technology Development, 54-066 Wroclaw, Poland;
| | - Marta Szajnik
- Faculty of Medicine, Lazarski University, 02-662 Warsaw, Poland;
| | - Adam Junka
- Platform for Unique Models Application, Department of Pharmaceutical Microbiology and Parasitology, Wroclaw Medical University, 50-556 Wroclaw, Poland; (J.P.); (M.B.); (B.D.); (A.W.)
| |
Collapse
|
41
|
Li W, Yuan W, Huang S, Zou L, Zheng K, Xie D. Research progress on the mechanism of Treponema pallidum breaking through placental barrier. Microb Pathog 2023; 185:106392. [PMID: 37852552 DOI: 10.1016/j.micpath.2023.106392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/12/2023] [Accepted: 10/12/2023] [Indexed: 10/20/2023]
Abstract
Congenital syphilis, a significant cause of fetal mortality worldwide, is a congenital infectious disease instigated by the vertical transmission of Treponema pallidum during pregnancy. Clinical manifestations include preterm delivery, stillbirth, neonatal skin lesions, skeletal abnormalities, and central nervous system aberrations. The ongoing increase in the incidence of congenital syphilis, coupled with complexities in diagnosis, necessitates a detailed understanding of its pathogenesis for the development of improved diagnostic approaches, and to interrupt the route of vertical transmission. Drawing from the broader body of research associated with vertical transmission pathogens, we aim to clarify the potential mechanisms by which Treponema pallidum breaches the placental barrier to infect the fetus.
Collapse
Affiliation(s)
- Weiwei Li
- Department of Clinical Laboratory, The Second People's Hospital of Foshan, China
| | - Wei Yuan
- The Fourth Affiliated Hospital of Nanchang University, China
| | - Shaobin Huang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, Institution of Pathogenic Biology, University of South China, Hengyang, China
| | - Lin Zou
- Department of Clinical Laboratory, The Second People's Hospital of Foshan, China
| | - Kang Zheng
- Department of Clinical Laboratory, Hengyang Central Hospital, Hengyang, China.
| | - Dongde Xie
- Department of Clinical Laboratory, The Second People's Hospital of Foshan, China.
| |
Collapse
|
42
|
Xi H, Fu Y, Chen C, Feng X, Han W, Gu J, Ji Y. Aerococcus viridans Phage Lysin AVPL Had Lytic Activity against Streptococcus suis in a Mouse Bacteremia Model. Int J Mol Sci 2023; 24:16670. [PMID: 38068990 PMCID: PMC10706753 DOI: 10.3390/ijms242316670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/19/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
Streptococcus suis (S. suis) is a swine pathogen that can cause sepsis, meningitis, endocarditis, and other infectious diseases; it is also a zoonotic pathogen that has caused a global surge in fatal human infections. The widespread prevalence of multidrug-resistant S. suis strains and the decline in novel antibiotic candidates have necessitated the development of alternative antimicrobial agents. In this study, AVPL, the Aerococcus viridans (A. viridans) phage lysin, was found to exhibit efficient bactericidal activity and broad lytic activity against multiple serotypes of S. suis. A final concentration of 300 μg/mL AVPL reduced S. suis counts by 4-4.5 log10 within 1 h in vitro. Importantly, AVPL effectively inhibited 48 h S. suis biofilm formation and disrupted preformed biofilms. In a mouse model, 300 μg/mouse AVPL protected 100% of mice from infection following the administration of lethal doses of multidrug-resistant S. suis type 2 (SS2) strain SC19, reduced the bacterial load in different organs, and effectively alleviated inflammation and histopathological damage in infected mice. These data suggest that AVPL is a valuable candidate antimicrobial agent for treating S. suis infections.
Collapse
Affiliation(s)
- Hengyu Xi
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China; (H.X.); (Y.F.); (C.C.); (W.H.); (J.G.)
| | - Yao Fu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China; (H.X.); (Y.F.); (C.C.); (W.H.); (J.G.)
| | - Chong Chen
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China; (H.X.); (Y.F.); (C.C.); (W.H.); (J.G.)
| | - Xin Feng
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China; (H.X.); (Y.F.); (C.C.); (W.H.); (J.G.)
| | - Wenyu Han
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China; (H.X.); (Y.F.); (C.C.); (W.H.); (J.G.)
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Jingmin Gu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China; (H.X.); (Y.F.); (C.C.); (W.H.); (J.G.)
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Yalu Ji
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China; (H.X.); (Y.F.); (C.C.); (W.H.); (J.G.)
| |
Collapse
|
43
|
Palma F, Dell'Annunziata F, Folliero V, Foglia F, Marca RD, Zannella C, De Filippis A, Franci G, Galdiero M. Cupferron impairs the growth and virulence of Escherichia coli clinical isolates. J Appl Microbiol 2023; 134:lxad222. [PMID: 37796875 DOI: 10.1093/jambio/lxad222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/20/2023] [Accepted: 09/27/2023] [Indexed: 10/07/2023]
Abstract
AIMS Multidrug resistance is a worrying problem worldwide. The lack of readily available drugs to counter nosocomial infections requires the need for new interventional strategies. Drug repurposing represents a valid alternative to using commercial molecules as antimicrobial agents in a short time and with low costs. Contextually, the present study focused on the antibacterial potential of the ammonium salt N-nitroso-N-phenylhydroxylamine (Cupferron), evaluating the ability to inhibit microbial growth and influence the main virulence factors. METHODS AND RESULTS Cupferron cytotoxicity was checked via 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) and hemolysis assays. The antimicrobial activity was assessed through the Kirby-Bauer disk diffusion test, broth microdilution method, and time-killing kinetics. Furthermore, the impact on different stages of the biofilm life cycle, catalase, swimming, and swarming motility was estimated via MTT and crystal violet (CV) assay, H2O2 sensitivity, and motility tests, respectively. Cupferron exhibited <15% cytotoxicity at 200 µg/mL concentration. The 90% bacterial growth inhibitory concentrations (MIC90) values recorded after 24 hours of exposure were 200 and 100 µg/mL for multidrug-resistant (MDR) and sensitive strains, respectively, exerting a bacteriostatic action. Cupferron-treated bacteria showed increased susceptibility to biofilm production, oxidative stress, and impaired bacterial motility in a dose-dependent manner. CONCLUSIONS In the new antimicrobial compounds active research scenario, the results indicated that Cupferron could be an interesting candidate for tackling Escherichia coli infections.
Collapse
Affiliation(s)
- Francesca Palma
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Federica Dell'Annunziata
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, 84081 Baronissi, Italy
| | - Veronica Folliero
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, 84081 Baronissi, Italy
| | - Francesco Foglia
- Complex Operative Unity of Virology and Microbiology, University Hospital of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Roberta Della Marca
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Carla Zannella
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Anna De Filippis
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Gianluigi Franci
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, 84081 Baronissi, Italy
| | - Massimiliano Galdiero
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
- Complex Operative Unity of Virology and Microbiology, University Hospital of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| |
Collapse
|
44
|
Prinz Setter O, Jiang X, Segal E. Rising to the surface: capturing and detecting bacteria by rationally-designed surfaces. Curr Opin Biotechnol 2023; 83:102969. [PMID: 37494819 DOI: 10.1016/j.copbio.2023.102969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/27/2023] [Accepted: 06/27/2023] [Indexed: 07/28/2023]
Abstract
Analytical microbiology has made substantial progress since its conception, starting from potato slices, through selective agar media, to engineered surfaces modified with capture probes. While the latter represents the dominant approach in designing sensors for bacteria detection, the importance of sensor surface properties is frequently ignored. Herein, we highlight their significant role in the complex process of bacterial transition from planktonic to sessile, representing the first and critical step in bacteria detection. We present the main surface features and discuss their effect on the bio-solid interface and the resulting sensing capabilities for both flat and particulate systems. The concepts of rationally-designed surfaces for enhanced bacterial detection are presented with recent examples of sensors (capture probe-free) relying solely on surface cues.
Collapse
Affiliation(s)
- Ofer Prinz Setter
- Department of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Technion City, 3200003 Haifa, Israel
| | - Xin Jiang
- Department of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Technion City, 3200003 Haifa, Israel
| | - Ester Segal
- Department of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Technion City, 3200003 Haifa, Israel; The Russel Berrie Nanotechnology Institute, Technion - Israel Institute of Technology, Technion City, 3200003 Haifa, Israel.
| |
Collapse
|
45
|
Borgio JF, AlJindan R, Alghourab LH, Alquwaie R, Aldahhan R, Alhur NF, AlEraky DM, Mahmoud N, Almandil NB, AbdulAzeez S. Genomic Landscape of Multidrug Resistance and Virulence in Enterococcus faecalis IRMC827A from a Long-Term Patient. BIOLOGY 2023; 12:1296. [PMID: 37887006 PMCID: PMC10604365 DOI: 10.3390/biology12101296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/25/2023] [Accepted: 09/27/2023] [Indexed: 10/28/2023]
Abstract
We report on a highly virulent, multidrug-resistant strain of Enterococcus faecalis IRMC827A that was found colonizing a long-term male patient at a tertiary hospital in Khobar, Saudi Arabia. The E. faecalis IRMC827A strain carries several antimicrobial drug resistance genes and harbours mobile genetic elements such as Tn6009, which is an integrative conjugative element that can transfer resistance genes between bacteria and ISS1N via an insertion sequence. Whole-genome-sequencing-based antimicrobial susceptibility testing on strains from faecal samples revealed that the isolate E. faecalis IRMC827A is highly resistant to a variety of antibiotics, including tetracycline, doxycycline, minocycline, dalfopristin, virginiamycin, pristinamycin, chloramphenicol, streptomycin, clindamycin, lincomycin, trimethoprim, nalidixic acid and ciprofloxacin. The isolate IRMC827A carries several virulence factors that are significantly associated with adherence, biofilm formation, sortase-assembled pili, manganese uptake, antiphagocytosis, and spreading factor of multidrug resistance. The isolate also encompasses two mutations (G2576T and G2505A) in the 23S rRNA gene associated with linezolid resistance and three more mutations (gyrA p.S83Y, gyrA p.D759N and parC p.S80I) of the antimicrobial resistance phenotype. The findings through next-generation sequencing on the resistome, mobilome and virulome of the isolate in the study highlight the significance of monitoring multidrug-resistant E. faecalis colonization and infection in hospitalized patients. As multidrug-resistant E. faecalis is a serious pathogen, it is particularly difficult to treat and can cause fatal infections. It is important to have quick and accurate diagnostic tests for multidrug-resistant E. faecalis, to track the spread of multidrug-resistant E. faecalis in healthcare settings, and to improve targeted interventions to stop its spread. Further research is necessary to develop novel antibiotics and treatment strategies for multidrug-resistant E. faecalis infections.
Collapse
Affiliation(s)
- J. Francis Borgio
- Department of Genetic Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia; (J.F.B.); (R.A.); (N.F.A.)
| | - Reem AlJindan
- Department of Microbiology, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia;
| | - Lujeen H. Alghourab
- Summer Research Program, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia;
| | - Rahaf Alquwaie
- Master Program of Biotechnology, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia;
| | - Razan Aldahhan
- Department of Genetic Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia; (J.F.B.); (R.A.); (N.F.A.)
| | - Norah F. Alhur
- Department of Genetic Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia; (J.F.B.); (R.A.); (N.F.A.)
| | - Doaa M. AlEraky
- Department of Biomedical Dental Science, Microbiology and Immunology Division, Collage of Dentistry, Dammam 31441, Saudi Arabia
| | - Nehal Mahmoud
- Department of Microbiology, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia;
| | - Noor B. Almandil
- Department of Clinical Pharmacy Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia;
| | - Sayed AbdulAzeez
- Department of Genetic Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia; (J.F.B.); (R.A.); (N.F.A.)
| |
Collapse
|
46
|
Roberts EL, Abdollahi S, Oustadi F, Stephens ED, Badv M. Bacterial-Nanocellulose-Based Biointerfaces and Biomimetic Constructs for Blood-Contacting Medical Applications. ACS MATERIALS AU 2023; 3:418-441. [PMID: 38089096 PMCID: PMC10510515 DOI: 10.1021/acsmaterialsau.3c00021] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/08/2023] [Accepted: 06/09/2023] [Indexed: 10/12/2024]
Abstract
Understanding the interaction between biomaterials and blood is critical in the design of novel biomaterials for use in biomedical applications. Depending on the application, biomaterials can be designed to promote hemostasis, slow or stop bleeding in an internal or external wound, or prevent thrombosis for use in permanent or temporary medical implants. Bacterial nanocellulose (BNC) is a natural, biocompatible biopolymer that has recently gained interest for its potential use in blood-contacting biomedical applications (e.g., artificial vascular grafts), due to its high porosity, shapeability, and tissue-like properties. To promote hemostasis, BNC has been modified through oxidation or functionalization with various peptides, proteins, polysaccharides, and minerals that interact with the coagulation cascade. For use as an artificial vascular graft or to promote vascularization, BNC has been extensively researched, with studies investigating different modification techniques to enhance endothelialization such as functionalizing with adhesion peptides or extracellular matrix (ECM) proteins as well as tuning the structural properties of BNC such as surface roughness, pore size, and fiber size. While BNC inherently exhibits comparable mechanical characteristics to endogenous blood vessels, these mechanical properties can be enhanced through chemical functionalization or through altering the fabrication method. In this review, we provide a comprehensive overview of the various modification techniques that have been implemented to enhance the suitability of BNC for blood-contacting biomedical applications and different testing techniques that can be applied to evaluate their performance. Initially, we focused on the modification techniques that have been applied to BNC for hemostatic applications. Subsequently, we outline the different methods used for the production of BNC-based artificial vascular grafts and to generate vasculature in tissue engineered constructs. This sequential organization enables a clear and concise discussion of the various modifications of BNC for different blood-contacting biomedical applications and highlights the diverse and versatile nature of BNC as a natural biomaterial.
Collapse
Affiliation(s)
- Erin L. Roberts
- Department
of Biomedical Engineering, Schulich School of Engineering, University of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada, T2N 1N4
| | - Sorosh Abdollahi
- Department
of Biomedical Engineering, Schulich School of Engineering, University of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada, T2N 1N4
| | - Fereshteh Oustadi
- Department
of Biomedical Engineering, Schulich School of Engineering, University of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada, T2N 1N4
| | - Emma D. Stephens
- Department
of Biomedical Engineering, Schulich School of Engineering, University of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada, T2N 1N4
| | - Maryam Badv
- Department
of Biomedical Engineering, Schulich School of Engineering, University of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada, T2N 1N4
- Libin
Cardiovascular Institute, University of
Calgary, 3330 Hospital
Drive NW, Calgary, Alberta, Canada, T2N 4N1
| |
Collapse
|
47
|
Bem JSP, Lacerda NGS, Polizello ACM, Cabral H, da Rosa-Garzon NG, Aires CP. Mutanase from Trichoderma harzianum inductively Produced by Mutan: Short-Term Treatment to Degrade Mature Streptococcus mutans Biofilm. Curr Microbiol 2023; 80:312. [PMID: 37542660 DOI: 10.1007/s00284-023-03417-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 07/14/2023] [Indexed: 08/07/2023]
Abstract
This study aimed to evaluate the disruptive effect of fungal mutanase against cariogenic biofilm after short-term treatment. For that, mature Streptococcus mutans biofilms (n = 9) were exposed to active or inactivated enzymes produced by Trichoderma harzianum for 1 min, two times per day. Biofilms were analyzed by amount of matrix water-insoluble polysaccharides, bacterial viability, acidogenicity, and morphology by scanning electron microscopy (SEM). The group treated with active enzymes (AE) had a significantly lower amount of insoluble polysaccharides (893.30 ± 293.69) when compared to the negative control group (NaCl, 2192.59 ± 361.96), yet no significant difference was found when comparing to the positive control group (CHX, 436.82 ± 151.07). Also, there was no significant effect on bacteria metabolism and viability (P-value < 0.05). Data generated by the quantitative analysis were confirmed through scanning electron microscopy images. Thus, fungal mutanase degraded the biofilm after a short-term treatment without interfering with bacterial viability and metabolism. Such findings offer insight to the development of routine oral care products containing this input.
Collapse
Affiliation(s)
- Jéssica Silva Peixoto Bem
- Department of Children's Clinic, Ribeirão Preto School of Dentistry, University of São Paulo, Café Avenue s/n, Ribeirão Preto, São Paulo, 14040-904, Brazil
| | - Nayanna Gomes Silva Lacerda
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Café Avenue s/n, Ribeirão Preto, São Paulo, 14040-903, Brazil
| | - Ana Cristina Morseli Polizello
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Café Avenue s/n, Ribeirão Preto, São Paulo, 14040-903, Brazil
| | - Hamilton Cabral
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Café Avenue s/n, Ribeirão Preto, São Paulo, 14040-903, Brazil
| | - Nathalia Gonsales da Rosa-Garzon
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Café Avenue s/n, Ribeirão Preto, São Paulo, 14040-903, Brazil
| | - Carolina Patrícia Aires
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Café Avenue s/n, Ribeirão Preto, São Paulo, 14040-903, Brazil.
| |
Collapse
|
48
|
Ramachandra SS, Wright P, Han P, Abdal‐hay A, Lee RSB, Ivanovski S. Evaluating models and assessment techniques for understanding oral biofilm complexity. Microbiologyopen 2023; 12:e1377. [PMID: 37642488 PMCID: PMC10464519 DOI: 10.1002/mbo3.1377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/07/2023] [Accepted: 08/17/2023] [Indexed: 08/31/2023] Open
Abstract
Oral biofilms are three-dimensional (3D) complex entities initiating dental diseases and have been evaluated extensively in the scientific literature using several biofilm models and assessment techniques. The list of biofilm models and assessment techniques may overwhelm a novice biofilm researcher. This narrative review aims to summarize the existing literature on biofilm models and assessment techniques, providing additional information on selecting an appropriate model and corresponding assessment techniques, which may be useful as a guide to the beginner biofilm investigator and as a refresher to experienced researchers. The review addresses previously established 2D models, outlining their advantages and limitations based on the growth environment, availability of nutrients, and the number of bacterial species, while also exploring novel 3D biofilm models. The growth of biofilms on clinically relevant 3D models, particularly melt electrowritten fibrous scaffolds, is discussed with a specific focus that has not been previously reported. Relevant studies on validated oral microcosm models that have recently gaining prominence are summarized. The review analyses the advantages and limitations of biofilm assessment methods, including colony forming unit culture, crystal violet, 2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide inner salt assays, confocal microscopy, fluorescence in situ hybridization, scanning electron microscopy, quantitative polymerase chain reaction, and next-generation sequencing. The use of more complex models with advanced assessment methodologies, subject to the availability of equipment/facilities, may help in developing clinically relevant biofilms and answering appropriate research questions.
Collapse
Affiliation(s)
- Srinivas Sulugodu Ramachandra
- Centre for Orofacial Regeneration, Rehabilitation and Reconstruction (COR3), School of Dentistry, Faculty of Health and Behavioural SciencesThe University of QueenslandBrisbaneAustralia
- Preventive Dental Sciences, College of DentistryGulf Medical UniversityAjmanUnited Arab Emirates
| | - Patricia Wright
- Centre for Orofacial Regeneration, Rehabilitation and Reconstruction (COR3), School of Dentistry, Faculty of Health and Behavioural SciencesThe University of QueenslandBrisbaneAustralia
- School of Dentistry, Faculty of Health and Behavioural SciencesThe University of QueenslandBrisbaneAustralia
| | - Pingping Han
- Centre for Orofacial Regeneration, Rehabilitation and Reconstruction (COR3), School of Dentistry, Faculty of Health and Behavioural SciencesThe University of QueenslandBrisbaneAustralia
- School of Dentistry, Faculty of Health and Behavioural SciencesThe University of QueenslandBrisbaneAustralia
| | - Abdalla Abdal‐hay
- Centre for Orofacial Regeneration, Rehabilitation and Reconstruction (COR3), School of Dentistry, Faculty of Health and Behavioural SciencesThe University of QueenslandBrisbaneAustralia
- Department of Engineering Materials and Mechanical Design, Faculty of EngineeringSouth Valley UniversityQenaEgypt
- Faculty of Industry and Energy Technology, Mechatronics Technology ProgramNew Cairo Technological University, New Cairo‐Fifth SettlementCairoEgypt
| | - Ryan S. B. Lee
- Centre for Orofacial Regeneration, Rehabilitation and Reconstruction (COR3), School of Dentistry, Faculty of Health and Behavioural SciencesThe University of QueenslandBrisbaneAustralia
- School of Dentistry, Faculty of Health and Behavioural SciencesThe University of QueenslandBrisbaneAustralia
| | - Saso Ivanovski
- Centre for Orofacial Regeneration, Rehabilitation and Reconstruction (COR3), School of Dentistry, Faculty of Health and Behavioural SciencesThe University of QueenslandBrisbaneAustralia
- School of Dentistry, Faculty of Health and Behavioural SciencesThe University of QueenslandBrisbaneAustralia
| |
Collapse
|
49
|
Mahmoud M, Richter P, Lebert M, Burkovski A. Photodynamic Activity of Chlorophyllin and Polyethylenimine on Pseudomonas aeruginosa Planktonic, Biofilm and Persister Cells. Int J Mol Sci 2023; 24:12098. [PMID: 37569471 PMCID: PMC10419130 DOI: 10.3390/ijms241512098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
Antimicrobial photodynamic inactivation is considered a promising antimicrobial approach that may not develop resistance in the near future. Here, we investigate the influence of the photosensitizer chlorophyllin (CHL) and the cationic permeabilizer polyethylenimine (PEI), exposed to a red light-emitting diode, on the human pathogen Pseudomonas aeruginosa free-living planktonic cells, the sessile biofilm and persister cells. The broth microdilution checkerboard method was used to test antimicrobial susceptibility. As a substrate for biofilms, the Calgary biofilm device was used, and the quantification of the biofilm biomass was carried out using a crystal violet assay. Serine hydroxamate was used for the induction of persisters. Our findings reveal that PEI ameliorates the antimicrobial activity of CHL against P. aeruginosa planktonic and biofilm states, and the concentration required to eradicate the bacteria in the biofilm is more than fourfold that is required to eradicate planktonic cells. Interestingly, the persister cells are more susceptible to CHL/PEI (31.25/100 µg mL-1) than the growing cells by 1.7 ± 0.12 and 0.4 ± 0.1 log10 reduction, respectively, after 15 min of illumination. These data demonstrate that CHL excited with red light together with PEI is promising for the eradication of P. aeruginosa, and the susceptibility of P. aeruginosa to CHL/PEI is influenced by the concentrations and the exposure time.
Collapse
Affiliation(s)
- Mona Mahmoud
- Department of Biology, Microbiology Division, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany; (M.M.); (A.B.)
- Dairy Department, National Research Centre, Dokki, Giza 12622, Egypt
| | - Peter Richter
- Gravitational Biology Group, Department of Biology, Cell Biology Division, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany;
| | - Michael Lebert
- Gravitational Biology Group, Department of Biology, Cell Biology Division, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany;
- Space Biology Unlimited S.A.S., 33000 Bordeaux, France
| | - Andreas Burkovski
- Department of Biology, Microbiology Division, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany; (M.M.); (A.B.)
| |
Collapse
|
50
|
Patel H, Rawat S. A genetic regulatory see-saw of biofilm and virulence in MRSA pathogenesis. Front Microbiol 2023; 14:1204428. [PMID: 37434702 PMCID: PMC10332168 DOI: 10.3389/fmicb.2023.1204428] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 05/30/2023] [Indexed: 07/13/2023] Open
Abstract
Staphylococcus aureus is one of the most common opportunistic human pathogens causing several infectious diseases. Ever since the emergence of the first methicillin-resistant Staphylococcus aureus (MRSA) strain decades back, the organism has been a major cause of hospital-acquired infections (HA-MRSA). The spread of this pathogen across the community led to the emergence of a more virulent subtype of the strain, i.e., Community acquired Methicillin resistant Staphylococcus aureus (CA-MRSA). Hence, WHO has declared Staphylococcus aureus as a high-priority pathogen. MRSA pathogenesis is remarkable because of the ability of this "superbug" to form robust biofilm both in vivo and in vitro by the formation of polysaccharide intercellular adhesin (PIA), extracellular DNA (eDNA), wall teichoic acids (WTAs), and capsule (CP), which are major components that impart stability to a biofilm. On the other hand, secretion of a diverse array of virulence factors such as hemolysins, leukotoxins, enterotoxins, and Protein A regulated by agr and sae two-component systems (TCS) aids in combating host immune response. The up- and downregulation of adhesion genes involved in biofilm formation and genes responsible for synthesizing virulence factors during different stages of infection act as a genetic regulatory see-saw in the pathogenesis of MRSA. This review provides insight into the evolution and pathogenesis of MRSA infections with a focus on genetic regulation of biofilm formation and virulence factors secretion.
Collapse
Affiliation(s)
| | - Seema Rawat
- Microbiology Laboratory, School of Life Sciences, Central University of Gujarat, Gandhinagar, Gujarat, India
| |
Collapse
|