1
|
Wang B, Bi D, Wang J, Qiao H, Zhang Y, Shen Z. La 3+@BC500-S 2O 82- system for removal of sulfonamide antibiotics in water. J Environ Sci (China) 2024; 146:140-148. [PMID: 38969442 DOI: 10.1016/j.jes.2023.06.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 06/19/2023] [Accepted: 06/22/2023] [Indexed: 07/07/2024]
Abstract
Sulfonamide antibiotics (SAs) widely used have potentially negative effects on human beings and ecosystems. Adsorption and advanced oxidation methods have been extensively applied in SAs wastewater treatment. In this study, compared with Al3+@BC500 and Fe3+@BC500, La3+@BC500 for activating persulfate (S2O82-) had the best effect removal performance of sulfadiazine (SDZ) and sulfamethoxazole (SMX). Morphology, acidity, oxygen-containing functional groups, and loading of La3+@BC500 were analyzed by techniques, including EA, BET, XRD, XPS, FT-IR. XRD results show that with the increase of La3+ loading, the surface characteristics of biochar gradually changed from CaCO3 to LaCO3OH. Through EPR technology, it is proved that LaCO3OH on the surface of La3+@BC500 can not only activate S2O82- to generate SO4-•, but also to produce •OH. In the optimization experiment, the optimal dosage of La3+ is between 0.05 and 0.2 (mol/L)/g. SDZ had a good removal effect at pH (5-9), but SMX had a good removal effect only at pH=3. Zeta potential also proves that the material is more stable under acidic conditions. The removal process of SDZ is more in accord with pseudo-first-order kinetics (R2=0.9869), while SMX is more in line with pseudo-second order kinetics (R2=0.9926).
Collapse
Affiliation(s)
- Bing Wang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | - Dongsu Bi
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | - Juan Wang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | - Hengbo Qiao
- State Key Laboratory of Pollution Control and Resources Reuse, Key Laboratory of Yangtze River Water Environment of MOE, National Engineering Research Center of Protected Agriculture, Shanghai Engineering Research Center of Protected Agriculture, Tongji University, Shanghai 200092, China
| | - Yalei Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, Key Laboratory of Yangtze River Water Environment of MOE, National Engineering Research Center of Protected Agriculture, Shanghai Engineering Research Center of Protected Agriculture, Tongji University, Shanghai 200092, China
| | - Zheng Shen
- State Key Laboratory of Pollution Control and Resources Reuse, Key Laboratory of Yangtze River Water Environment of MOE, National Engineering Research Center of Protected Agriculture, Shanghai Engineering Research Center of Protected Agriculture, Tongji University, Shanghai 200092, China.
| |
Collapse
|
2
|
Zhang Y, Wang J, Liu F, Wang L, Gao G. Preparation of cylindrical Chitosan/β-Cyclodextrin/MIL-68(Al) foam column for solid-phase extraction of sulfonamides in water, urine, and milk. J Chromatogr A 2024; 1730:465130. [PMID: 38955130 DOI: 10.1016/j.chroma.2024.465130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/25/2024] [Accepted: 06/28/2024] [Indexed: 07/04/2024]
Abstract
This study describes the preparation of a cylindrical polymer foam column termed Chitosan/β-Cyclodextrin/MIL-68(Al) (CS/β-CD/MIL-68(Al)). An ice template-freeze drying technique was employed to prepare the CS/β-CD/MIL-68(Al) foam column by embedding MIL-68(Al) in a polymer matrix comprising cross-linked chitosan (CS) and β-cyclodextrin (β-CD). The cylindrical CS/β-CD/MIL-68(Al) foam was subsequently inserted into a syringe to develop a solid phase extraction (SPE) device. Without the requirement for an external force, the sample solution passed easily through the SPE column thanks to the porous structure of the CS/β-CD/MIL-68(Al) foam column. Moreover, the CS/β-CD/MIL-68(Al) foam column was thought to be a superior absorbent for SPE since it included the adsorptive benefits of CS, β-CD, and MIL-68(Al). The SPE was utilized in conjunction with high-performance liquid chromatography to analyze six sulfonamides found in milk, urine, and water. With matrix effects ranging from 80.49 % to 104.9 % with RSD values of 0.4-14.0 %, the method showed high recoveries ranging from 80.6 to 107.4 % for water samples, 93.4-105.2 % for urine, and 87.4-100.9 % for milk. It also demonstrated good linearity in the range of 10-258 ng·mL-1 with the limits of detection ranging from 1.88 to 2.58 ng·mL-1. The cylindrical CS/β-CD/MIL-68(Al) foam column prepared in this work offered several advantages, including its simple fabrication, excellent water stability, absence of pollutants, biodegradability, and reusability. It is particularly well-suited for SPE. Furthermore, the developed SPE method, employing CS/β-CD/MIL-68(Al) foam column, is straightforward and precise, and its benefits, including affordability, ease of preparation, lack of specialized equipment, and solvent economy, underline its broad applicability for the pretreatment of aqueous samples.
Collapse
Affiliation(s)
- Yong Zhang
- School of Pharmacy, Jining Medical University, No. 669, Xueyuan Road, Donggang District, Rizhao, Shandong Province, 276826, PR China
| | - Jing Wang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, No. 4655, University Road, University Science Park, Changqing District, Jinan, Shandong Province, PR China
| | - Fubin Liu
- School of Pharmacy, Jining Medical University, No. 669, Xueyuan Road, Donggang District, Rizhao, Shandong Province, 276826, PR China
| | - Litao Wang
- School of Pharmacy, Jining Medical University, No. 669, Xueyuan Road, Donggang District, Rizhao, Shandong Province, 276826, PR China.
| | - Guihua Gao
- School of Pharmacy, Jining Medical University, No. 669, Xueyuan Road, Donggang District, Rizhao, Shandong Province, 276826, PR China.
| |
Collapse
|
3
|
Eram S, Nabavi SR, Chaichi MJ, Alizadeh N. A liter scale synthesis of hierarchically mesoporous UiO-66 for removal of large antibiotics from wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:52485-52500. [PMID: 39150667 DOI: 10.1007/s11356-024-34687-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 08/07/2024] [Indexed: 08/17/2024]
Abstract
The presence of antibiotics in water sources is a significant concern due to their potential environmental impact and the risks to human health. In the present research, hierarchically mesoporous UiO-66 (HP-UiO-66) with a high surface area (1011 m2/g) and large pore volume was synthesized using the reflux method on the liter scale. The successful synthesis was confirmed by FT-IR, XRD, FESEM/EDS, N2-adsorption/desorption, and zeta potential techniques. The HP-UiO-66 was utilized to remove two large structure antibiotics, chlortetracycline hydrochloride (CTC), and oxytetracycline (OTC). Box Behnken design was used to investigate the factors affecting the removal process and the interactions between them. The maximum adsorption capacities for OTC and CTC antibiotics were 252.9 mg/g and 234.2 mg/g at 35 °C, respectively. The sum of the normalized error method was applied to the analysis of various error functions in the nonlinear fitting of equilibrium and kinetic data. The CTC and OTC adsorption kinetic followed a fractal-like pseudo-second-order model. The Langmuir isotherm fitted well to adsorption data. The results demonstrate that HP-UiO-66 can be used as a recyclable and efficient adsorbent for large molecule antibiotics removal.
Collapse
Affiliation(s)
- Sorour Eram
- Department of Chemistry, Faculty of Science, University of Guilan, Rasht, Iran
| | - Seyed Reza Nabavi
- Department of Applied Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran.
| | - Mohammad Javad Chaichi
- Department of Analytical Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran
| | - Nina Alizadeh
- Department of Chemistry, Faculty of Science, University of Guilan, Rasht, Iran
| |
Collapse
|
4
|
Essam A, Eldek SI, Shehata N. Management of caffeine in wastewater using MOF and perovskite materials: optimization, kinetics, and adsorption isotherm modelling. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2024; 22:345-360. [PMID: 38887765 PMCID: PMC11180072 DOI: 10.1007/s40201-024-00904-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 04/21/2024] [Indexed: 06/20/2024]
Abstract
Pharmaceuticals and personal care products (PPCPs) have been increasingly used all over the world and they have been reported on water cycle and cause contamination. Among these pharmaceuticals is caffeine (CAF). In this work, CAF removal from aqueous samples by metal-organic framework (UIO-66) and perovskite (La0.7Sr0.3FeO3) was achieved. Detailed studies on the preparation of MOFs and perovskite oxides compounds have been presented. Extensive characterizations such as X-Ray diffraction (XRD), field emission scanning electron microscope (FESEM), Fourier transform infrared spectra (FT-IR), N2 adsorption-desorption isotherms were also carried out to assure proper formation and to better understand the physico-chemical behavior of the synthesized samples before and after adsorption. Batch experiments of CAF adsorption onto both MOFs and perovskite were performed to compare the effectiveness of both materials on the removal competence of the CAF residue at different conditions including the effect of pH, initial concentration, and contact time. It was observed that the adsorption capacity of CAF by MOF increased with increasing acidity. On the other hand, the adsorption capacity of perovskite is stable in pH 4-10. The maximum adsorption capacities of UiO-66 and perovskite toward CAF are high as 62.5 mg g-1 and 35.25 mg g-1, respectively. Equilibrium isotherms were investigated by numerous models: Langmuir, Freundlich, Temkin, Redlich-Peterson, Sips, Langmuir-Freundlich, Toth, Kahn, Baudu, and Fritz Schlunder. Moreover, the kinetics of the CAF@MOF and CAF@Perovskite systems have been studied by five kinetic models (Pseudo-1st -order (PFO), Pseudo-2nd -order (PSO), Mixed 1st, 2nd-order, Intraparticle diffusion and Avrami). The best model described the adsorption of CAF onto both of MOF and perovskite was the mixed 1st, 2nd-order model. The metal-organic framework and perovskite were applied to quickly extract CAF from water samples successfully. The maximum removal percentage obtained for MOF and perovskite was 0.89% and 0.94% respectively within 30 min contact time which suggests that these materials are considered as promising adsorbents for CAF.
Collapse
Affiliation(s)
- Amira Essam
- Environmental Science and Industrial Development Department, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni-Suef, Egypt
| | - Samaa Imam Eldek
- Materials science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni-Suef, Egypt
| | - Nabila Shehata
- Environmental Science and Industrial Development Department, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
5
|
Zhao J, Mao X, Zhang Q, Xiao W, Yan A, Hu J, Jiang S, Li H, Wang Y. A convenient and effective method for determining organophosphorus pesticides in citrus fruits based on a novel dispersive solid phase extraction using UiO-66/Alg bead as the sorbent. Food Chem 2024; 438:137991. [PMID: 37980869 DOI: 10.1016/j.foodchem.2023.137991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/06/2023] [Accepted: 11/11/2023] [Indexed: 11/21/2023]
Abstract
This work presents a novel, convenient and effective method for assaying organophosphorus pesticides (OPPs) in the pulp and peel of citrus fruits. In this method, shaped UiO-66/alginate (UiO-66/Alg) beads were employed to replace the powder sorbents used in traditional dispersive solid phase extraction (d-SPE) methods. The UiO-66/Alg beads can be easily separated by only using a tweezer within 1 min, which effectively simplifies the sample pretreatment and overcomes the shortages brought by the incomplete separation of powder sorbents. Moreover, the matrix compounds can be effectively excluded by UiO-66/Alg beads, and the UiO-66/Alg beads can be reused at least 8 times. The d-SPE conditions were optimized by a single factor test. The method shows satisfactory sensitivity, accuracy and precision. Furthermore, ATR-FTIR and UV-Vis-DRS were employed to investigate the adsorption mechanism. Finally, the developed method was applied to monitor the OPPs in ten different citrus fruits.
Collapse
Affiliation(s)
- Jiexue Zhao
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China; College of Food Science, Nanchang University, Nanchang 330047, China
| | - Xuejin Mao
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China.
| | - Qingqing Zhang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China; College of Food Science, Nanchang University, Nanchang 330047, China
| | - Weiming Xiao
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Aiping Yan
- Center of Analysis and Testing, Nanchang University, Nanchang 330047, China
| | - Jiateng Hu
- College of Food Science, Nanchang University, Nanchang 330047, China
| | - Songlin Jiang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China; College of Food Science, Nanchang University, Nanchang 330047, China
| | - Haijun Li
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China; College of Food Science, Nanchang University, Nanchang 330047, China
| | - Yuanxing Wang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China; College of Food Science, Nanchang University, Nanchang 330047, China
| |
Collapse
|
6
|
Li J, Jin Y, Yang YY, Song XQ. A Multifunctional Ca II-Eu III Heterometallic Organic Framework with Sensing and Selective Adsorption in Water. Inorg Chem 2024; 63:6871-6882. [PMID: 38557029 DOI: 10.1021/acs.inorgchem.4c00320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
With increasing global industrialization, it is urgent and challenging to develop multifunctional species for detection and adsorption in the environment. For this purpose, a novel anionic heterometallic organic framework, [(CH3)2NH2][CaEu(CAM)2(H2O)2]·4H2O·4DMF (CaEuCAM), is hydrothermally synthesized based on chelidamic acid (H3CAM). Single crystal analysis shows that CaEuCAM features two different oxygen-rich channels along the c-axis in which one CAM3- bridges two sextuple-coordinated Ca2+ and two octuple-coordinated Eu3+ with a μ4-η1: η1: η1: η1: η1: η1 new chelating and bridging mode. The characteristic bright red emission and superior hydrostability of CaEuCAM under harsh acidic and basic conditions benefit it by acting as a highly sensitive sensor for Fe3+ and 3-nitrophenol (3-NP) with extremely low LODs through remarkable quenching. The combination of experiments and theoretical calculations for sensing mechanisms shows that the competitive absorption and interaction are responsible for Fe3+-induced selective emission quenching, while that for 3-NP is the result of the synergism of host-guest chemistry and the inner filter effect. Meanwhile, the assimilation of negative charge plus channels renders CaEuCAM a highly selective adsorbent for methylene blue (MB) due to a synergy of electrostatic affinity, ion-dipole interaction, and size matching. Of note is the reusability of CaEuCAM toward Fe3+/3-NP sensing and MB adsorption besides its fast response. These findings could be very useful in guiding the development of multifunctional Ln-MOFs for sensing and adsorption applications in water media.
Collapse
Affiliation(s)
- Juan Li
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Yan Jin
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Yi-Yi Yang
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Xue-Qin Song
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| |
Collapse
|
7
|
Zango ZU, Khoo KS, Garba A, Lawal MA, Abidin AZ, Wadi IA, Eisa MH, Aldaghri O, Ibnaouf KH, Lim JW, Da Oh W. A review on carbon-based biowaste and organic polymer materials for sustainable treatment of sulfonamides from pharmaceutical wastewater. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:145. [PMID: 38568460 DOI: 10.1007/s10653-024-01936-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 02/22/2024] [Indexed: 04/05/2024]
Abstract
Frequent detection of sulfonamides (SAs) pharmaceuticals in wastewater has necessitated the discovery of suitable technology for their sustainable remediation. Adsorption has been widely investigated due to its effectiveness, simplicity, and availability of various adsorbent materials from natural and artificial sources. This review highlighted the potentials of carbon-based adsorbents derived from agricultural wastes such as lignocellulose, biochar, activated carbon, carbon nanotubes graphene materials as well as organic polymers such as chitosan, molecularly imprinted polymers, metal, and covalent frameworks for SAs removal from wastewater. The promising features of these materials including higher porosity, rich carbon-content, robustness, good stability as well as ease of modification have been emphasized. Thus, the materials have demonstrated excellent performance towards the SAs removal, attributed to their porous nature that provided sufficient active sites for the adsorption of SAs molecules. The modification of physico-chemical features of the materials have been discussed as efficient means for enhancing their adsorption and reusable performance. The article also proposed various interactive mechanisms for the SAs adsorption. Lastly, the prospects and challenges have been highlighted to expand the knowledge gap on the application of the materials for the sustainable removal of the SAs.
Collapse
Affiliation(s)
- Zakariyya Uba Zango
- Department of Chemistry, College of Natural and Applied Science, Al-Qalam University Katsina, Katsina City, 2137, Katsina, Nigeria.
- Institute of Semi-Arid Zone Studies, Al-Qalam University Katsina, Katsina CityKatsina, 2137, Nigeria.
| | - Kuan Shiong Khoo
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan
- Centre for Herbal Pharmacology and Environmental Sustainability, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Tamil Nadu, 603103, India
| | - Abdurrahman Garba
- Department of Chemistry, College of Natural and Applied Science, Al-Qalam University Katsina, Katsina City, 2137, Katsina, Nigeria
| | | | - Asmaa' Zainal Abidin
- Department of Chemistry and Biology, Centre for Defense Foundation Studies, Universiti Pertahanan Nasional Malaysia, Kem Perdana Sungai Besi, 57000, Kuala Lumpur, Malaysia
| | - Ismael A Wadi
- Basic Science Unit, Prince Sattam Bin Abdulaziz University, 16278, Alkharj, Alkharj, Saudi Arabia
| | - M H Eisa
- Department of Physics, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), 13318, Riyadh, Riyadh, Saudi Arabia
| | - Osamah Aldaghri
- Department of Physics, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), 13318, Riyadh, Riyadh, Saudi Arabia
| | - Khalid Hassan Ibnaouf
- Department of Physics, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), 13318, Riyadh, Riyadh, Saudi Arabia.
| | - Jun Wei Lim
- HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Perak Darul Ridzuan, Malaysia
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Wen Da Oh
- School of Chemical Sciences, Universiti Sains Malaysia, 11800, Gelugor, Penang, Malaysia
| |
Collapse
|
8
|
Nie Y, Zhang T, Xu Y, Du Y, Ai J, Xue N. Study on mechanism of removal of sudden Tetracycline by compound modified biological sand filtration process. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 356:120709. [PMID: 38537460 DOI: 10.1016/j.jenvman.2024.120709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 03/05/2024] [Accepted: 03/19/2024] [Indexed: 04/07/2024]
Abstract
The removal of tetracycline from the sewage plant effluents through advanced treatment methods is key to controlling tetracycline levels in the water environment. In this study, modified quartz sands (QS) were used in a biological sand filter to remove tetracycline. The modified QS, with different surface characteristics, were prepared using glass etching technology combined with subsequent chemical modification methods, including hydroxylation treatment, metal ion modification, and amino modification. The adsorption efficiency of hydroxylated QS was higher than that of metal ion modified and amino modified QS, with adsorption efficiencies of 20.4331 mg/kg, 12.8736 mg/kg, and 10.1737 mg/kg, respectively. Results indicated that QS primarily reduce tetracycline through adsorption. Adsorption on ordinary QS fit the pseudo-first-order kinetic model, while adsorption on other modified QS and biofilm-coated QS fit the pseudo-second-order kinetics model. Biodegradation was identified as another mechanism for tetracycline reduction, which fit the zero-order kinetic model. Pseudomonas alcaligenes and unclassified Pseudomonas accounted for 96.6% of the total tetracycline-degrading bacteria. This study elucidates the effectiveness and mechanisms of five types of QS in treating tetracycline from sewage plant effluents. It provides a novel method for tetracycline reduction in real-world wastewater scenarios.
Collapse
Affiliation(s)
- Yudong Nie
- Research Center for Eco-Environmental Science, Chinese Academy of Science, Beijing 100085, China; College of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China.
| | - Tao Zhang
- Research Center for Eco-Environmental Science, Chinese Academy of Science, Beijing 100085, China.
| | - Yufeng Xu
- Research Center for Eco-Environmental Science, Chinese Academy of Science, Beijing 100085, China; Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541006, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin 541006, China.
| | - Yunfei Du
- School of Foreign Languages, Chongqing University of Technology, Chongqing 400054, China.
| | - Junjie Ai
- College of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China.
| | - Na Xue
- College of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China.
| |
Collapse
|
9
|
Cevallos-Mendoza JE, Cedeño-Muñoz JS, Navia-Mendoza JM, Figueira F, Amorim CG, Rodríguez-Díaz JM, Montenegro MCBSM. Development of hybrid MIL-53(Al)@CBS for ternary adsorption of tetracyclines antibiotics in water: Physical interpretation of the adsorption mechanism. BIORESOURCE TECHNOLOGY 2024; 396:130453. [PMID: 38360217 DOI: 10.1016/j.biortech.2024.130453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/05/2024] [Accepted: 02/11/2024] [Indexed: 02/17/2024]
Abstract
In this study, a hybrid material, MIL-53(Al)@CBS, was synthesized via the solvothermal method, involving the growth of MIL-53(Al) crystals on cocoa bean shell residues (CBS). Physicochemical characterization techniques, including TGA, BET, FTIR, XRD, and SEM, confirmed successful hybridization. MIL-53(Al)@CBS was employed as an adsorbent for antibiotics (oxytetracycline, tetracycline, chlortetracycline) separation from aqueous solutions. Parameters like pH, adsorbent dose, concentration, time, and temperature were systematically evaluated. FTIR revealed π-π interactions and hydrogen bonds between tetracyclines and the adsorbent. MIL-53(Al)@CBS exhibited adsorption, with removal rates up to 98.92%, 99.04%, and 98.24% for OTC, TC, and CTC, respectively. Kinetics suggested adsorption depends on active site availability, with TC adsorbing fastest. Microscopic models showed adsorption on three distinct active site types with different affinities without competition or adherence to the Langmuir hypothesis. Importantly, MIL-53(Al)@CBS maintained high adsorption capacity even after ten washing cycles, highlighting its potential for water treatment.
Collapse
Affiliation(s)
- Jaime E Cevallos-Mendoza
- LAQV-REQUIMTE/Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal; Departamento de Procesos Químicos, Facultad de Ciencias Matemáticas, Físicas y Químicas, Universidad Técnica de Manabí, Portoviejo, Ecuador; Laboratorio de Análisis Químicos y Biotecnológicos, Instituto de Investigación, Universidad Técnica de Manabí, Portoviejo, Ecuador
| | - Jeffrey Saúl Cedeño-Muñoz
- Departamento de Procesos Químicos, Facultad de Ciencias Matemáticas, Físicas y Químicas, Universidad Técnica de Manabí, Portoviejo, Ecuador
| | - Jennifer Maria Navia-Mendoza
- Laboratorio de Análisis Químicos y Biotecnológicos, Instituto de Investigación, Universidad Técnica de Manabí, Portoviejo, Ecuador; Departamento de Química Orgánica, Universidad de Córdoba, Edificio Marie Curie (C-3), Campus de Rabanales, Ctra. Nnal. IV-A, Km 396, E14014 Córdoba, Spain
| | - Flávio Figueira
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal
| | - Célia G Amorim
- LAQV-REQUIMTE/Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal.
| | - Joan Manuel Rodríguez-Díaz
- Departamento de Procesos Químicos, Facultad de Ciencias Matemáticas, Físicas y Químicas, Universidad Técnica de Manabí, Portoviejo, Ecuador; Laboratorio de Análisis Químicos y Biotecnológicos, Instituto de Investigación, Universidad Técnica de Manabí, Portoviejo, Ecuador.
| | - Maria C B S M Montenegro
- LAQV-REQUIMTE/Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| |
Collapse
|
10
|
Zango ZU, Lawal MA, Usman F, Sulieman A, Akhdar H, Eisa MH, Aldaghri O, Ibnaouf KH, Lim JW, Khoo KS, Cheng YW. Promoting the suitability of graphitic carbon nitride and metal oxide nanoparticles: A review of sulfonamides photocatalytic degradation. CHEMOSPHERE 2024; 351:141218. [PMID: 38266876 DOI: 10.1016/j.chemosphere.2024.141218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/24/2023] [Accepted: 01/12/2024] [Indexed: 01/26/2024]
Abstract
The widespread consumption of pharmaceutical drugs and their incomplete breakdown in organisms has led to their extensive presence in aquatic environments. The indiscriminate use of antibiotics, such as sulfonamides, has contributed to the development of drug-resistant bacteria and the persistent pollution of water bodies, posing a threat to human health and the safety of the environment. Thus, it is paramount to explore remediation technologies aimed at decomposing and complete elimination of the toxic contaminants from pharmaceutical wastewater. The review aims to explore the utilization of metal-oxide nanoparticles (MONPs) and graphitic carbon nitrides (g-C3N4) in photocatalytic degradation of sulfonamides from wastewater. Recent advances in oxidation techniques such as photocatalytic degradation are being exploited in the elimination of the sulfonamides from wastewater. MONP and g-C3N4 are commonly evolved nano substances with intrinsic properties. They possessed nano-scale structure, considerable porosity semi-conducting properties, responsible for decomposing wide range of water pollutants. They are widely applied for photocatalytic degradation of organic and inorganic substances which continue to evolve due to the low-cost, efficiency, less toxicity, and more environmentally friendliness of the materials. The review focuses on the current advances in the application of these materials, their efficiencies, degradation mechanisms, and recyclability in the context of sulfonamides photocatalytic degradation.
Collapse
Affiliation(s)
- Zakariyya Uba Zango
- Department of Chemistry, College of Natural and Applied Science, Al-Qalam University Katsina, 2137, Katsina, Nigeria; Institute of Semi-Arid Zone Studies, Al-Qalam University Katsina, 2137, Katsina, Nigeria
| | | | - Fahad Usman
- Engineering Unit, Department of Mathematics, Connecticut State Community College Norwalk, Connecticut State Colleges and Universities (CSCU), United States
| | - Abdelmoneim Sulieman
- Department of Radiology and Medical Imaging, Prince Sattam bin Abdulaziz University, PO Box 422, Alkharj, 11942, Kingdom of Saudi Arabia
| | - Hanan Akhdar
- Department of Physics, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, 13318, Saudi Arabia.
| | - M H Eisa
- Department of Physics, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, 13318, Saudi Arabia
| | - Osamah Aldaghri
- Department of Physics, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, 13318, Saudi Arabia
| | - Khalid Hassan Ibnaouf
- Department of Physics, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, 13318, Saudi Arabia
| | - Jun Wei Lim
- HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Perak Darul Ridzuan, Malaysia; Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
| | - Kuan Shiong Khoo
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan; Centre for Herbal Pharmacology and Environmental Sustainability, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, 603103, Tamil Nadu, India.
| | - Yoke Wang Cheng
- NUS Environmental Research Institute, National University of Singapore, 1 Create Way, Create Tower, #15-02, 138602, Singapore, Singapore; Energy and Environmental Sustainability Solutions for Megacities (E2S2), Campus for Research Excellence and Technological Enterprise (CREATE), 138602, Singapore, Singapore
| |
Collapse
|
11
|
Georgin J, Franco DSP, Meili L, Bonilla-Petriciolet A, Kurniawan TA, Imanova G, Demir E, Ali I. Environmental remediation of the norfloxacin in water by adsorption: Advances, current status and prospects. Adv Colloid Interface Sci 2024; 324:103096. [PMID: 38309035 DOI: 10.1016/j.cis.2024.103096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/13/2024] [Accepted: 01/28/2024] [Indexed: 02/05/2024]
Abstract
Antibiotics are considered as the new generation water pollutants as these disturb endocrine systems if water contaminated with antibiotics is consumed. Among many antibiotics norfloxacin is present in various natural water bodies globally. This antibiotic is considered an emerging pollutant due to its low degradation in aquatic animals. Besides, it has many side effects on human vital organs. Therefore, the present article discusses the recent advances in the removal of norfloxacin by adsorption. This article describes the presence of norfloxacin in natural water, consumption, toxicity, various adsorbents for norfloxacin removal, optimization factors for norfloxacin removal, kinetics, thermodynamics, modeling, adsorption mechanism and regeneration of the adsorbents. Adsorption takes place in a monolayer following the Langmuir model. The Pseudo-second order model represents the kinetic data. The adsorption capacity ranged from 0.924 to 1282 mg g-1. In this sense, the parameters such as the NFX concentration added to the adsorbent textural properties exerted a great influence. Besides, the fixed bed-based removal at a large scale is also included. In addition to this, the simulation studies were also discussed to describe the adsorption mechanism. Finally, the research challenges and future perspectives have also been highlighted. This article will be highly useful for academicians, researchers, industry persons, and government authorities for designing future advanced experiments.
Collapse
Affiliation(s)
- Jordana Georgin
- Department of Civil and Environmental, Universidad de la Costa, CUC, Calle 58 # 55-66, Barranquilla, Atlántico, Colombia; Instituto Tecnológico de Aguascalientes, Aguascalientes 20256, Mexico
| | - Dison Stracke Pfingsten Franco
- Department of Civil and Environmental, Universidad de la Costa, CUC, Calle 58 # 55-66, Barranquilla, Atlántico, Colombia.
| | - Lucas Meili
- Laboratory of Processes, Center of Technology, Federal University of Alagoas, Maceió 57072-900, AL, Brazil
| | | | | | - Gunel Imanova
- Institute of Radiation Problems, Ministry of Science and Education Republic of Azerbaijan, 9 B. Vahabzade str., Baku AZ1143, Azerbaijan; UNEC Research Center for Sustainable Development and Green Economy named after Nizami Ganjavi, Azerbaijan State University of Economics (UNEC), 6 Istiglaliyyat Str., Baku 1001, Azerbaijan; Department of Physics and Electronics, Khazar University, 41 Mahsati Str., Baku AZ1096, Azerbaijan
| | - Ersin Demir
- Afyonkarahisar Health Sciences University, Faculty of Pharmacy, Department of Analytical Chemistry, Afyonkarahisar 03030, Turkey
| | - Imran Ali
- Department of Chemistry, Jamia Millia Islamia, New Delhi, India.
| |
Collapse
|
12
|
Bin HS, Hu H, Wang J, Lu L, Muddassir M, Srivastava D, Chauhan R, Wu Y, Wang X, Kumar A. New 5,5-(1,4-Phenylenebis(methyleneoxy)diisophthalic Acid Appended Zn(II) and Cd(II) MOFs as Potent Photocatalysts for Nitrophenols. Molecules 2023; 28:7180. [PMID: 37894661 PMCID: PMC10608887 DOI: 10.3390/molecules28207180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/11/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
Metal-organic frameworks (MOFs) are peculiar multimodal materials that find photocatalytic applications for the decomposition of lethal molecules present in the wastewater. In this investigation, two new d10-configuration-based MOFs, [Zn2(L)(H2O)(bbi)] (1) and [Cd2(L)(bbi)] (2) (5,5-(1,4-phenylenebis(methyleneoxy)diisophthalic acid (H2L) and 1,1'-(1,4-butanediyl)bis(imidazole) (bbi)), have been synthesized and characterized. The MOF 1 displayed a (4,6)-connected (3.43.52)(32.44.52.66.7) network topology, while 2 had a (3,10)-connected network with a Schläfli symbol of (410.511.622.72)(43)2. These MOFs have been employed as photocatalysts to photodegrade nitrophenolic compounds, especially p-nitrophenol (PNP). The photocatalysis studies reveal that 1 displayed relatively better photocatalytic performance than 2. Further, the photocatalytic efficacy of 1 has been assessed by altering the initial PNP concentration and photocatalyst dosage, which suggest that at 80 ppm PNP concentration and at its 50 mg concentration the MOF 1 can photo-decompose around 90.01% of PNP in 50 min. Further, radical scavenging experiments reveal that holes present over 1 and ·OH radicals collectively catalyze the photodecomposition of PNP. In addition, utilizing density of states (DOS) calculations and Hirshfeld surface analyses, a plausible photocatalysis mechanism for nitrophenol degradation has been postulated.
Collapse
Affiliation(s)
- Hui-Shi Bin
- School of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Zigong 643000, China (L.L.)
| | - Hai Hu
- School of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Zigong 643000, China (L.L.)
| | - Jun Wang
- School of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Zigong 643000, China (L.L.)
| | - Lu Lu
- School of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Zigong 643000, China (L.L.)
| | - Mohd Muddassir
- Department of Chemistry, College of Sciences, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Devyani Srivastava
- Department of Chemistry, Faculty of Science, University of Lucknow, Lucknow 226007, India;
| | - Ratna Chauhan
- Department of Environmental Science, Savitribai Phule Pune University, Pune 411007, India
| | - Yu Wu
- School of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Zigong 643000, China (L.L.)
| | - Xiaoxiong Wang
- School of Materials and Environmental Engineering, Shenzhen Polytechnic University, Shenzhen 518055, China
| | - Abhinav Kumar
- Department of Chemistry, Faculty of Science, University of Lucknow, Lucknow 226007, India;
| |
Collapse
|
13
|
Hu G, Wang Z, Zhang W, He H, Zhang Y, Deng X, Li W. MIL-161 Metal-Organic Framework for Efficient Au(III) Recovery from Secondary Resources: Performance, Mechanism, and DFT Calculations. Molecules 2023; 28:5459. [PMID: 37513331 PMCID: PMC10384270 DOI: 10.3390/molecules28145459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/06/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
The recovery of precious metals from secondary resources is significant economically and environmentally. However, their separation is still challenging because they often occur in complex metal ion mixtures. The poor selectivity of adsorbents for gold in complicated solutions prevents further application of adsorption technology. In this study, a Zr-based MOF adsorbent, MIL-161, was synthesized using s-tetrazine dicarboxylic acid (H2STz) as an organic ligand. MIL-161 demonstrated a high adsorption capacity of up to 446.49 mg/g and outstanding selectivity for gold(III) in a simulated electronic waste solution as a result of the presence of sulfur- and nitrogen-containing groups. In addition, the MIL-161 adsorbents were characterized using Fourier transform infrared (FT-IR), field emission scanning electron microscopy (FESEM), thermogravimetric analysis (TG), Brunner-Emment-Teller (BET), and X-ray photoelectron spectroscopy (XPS). Additionally, the adsorption kinetics, isotherms, and thermodynamics of the MOF adsorbents were also thoroughly examined. More importantly, the experimental results and DFT calculations indicate that chelation and electrostatic interactions are the main adsorption mechanisms.
Collapse
Affiliation(s)
- Guangyuan Hu
- Department of Chemical Science and Technology, Kunming University, Kunming 650214, China
| | - Zhiwei Wang
- Department of Chemical Science and Technology, Kunming University, Kunming 650214, China
| | - Weiye Zhang
- Department of Chemical Science and Technology, Kunming University, Kunming 650214, China
| | - Hongxing He
- Department of Chemical Science and Technology, Kunming University, Kunming 650214, China
| | - Yi Zhang
- Department of Chemical Science and Technology, Kunming University, Kunming 650214, China
| | - Xiujun Deng
- Department of Chemical Science and Technology, Kunming University, Kunming 650214, China
| | - Weili Li
- Department of Chemical Science and Technology, Kunming University, Kunming 650214, China
| |
Collapse
|
14
|
Preparation of metal organic frameworks modified chitosan composite with high capacity for Hg(II) adsorption. Int J Biol Macromol 2023; 232:123329. [PMID: 36669630 DOI: 10.1016/j.ijbiomac.2023.123329] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 12/26/2022] [Accepted: 01/15/2023] [Indexed: 01/19/2023]
Abstract
In this study, a novel modified chitosan composite adsorbent (UNCS) was prepared by crosslinking between chitosan and metal organic frameworks (MOFs) material UiO-66-NH2 using epichlorohydrin as crosslinker. The influence of the prepared conditions was investigated. The structure and morphology of the composite were characterized by FT-IR, XRD, SEM, TGA, BET and zeta potential analysis. Effects of different variables for adsorption of Hg(II) on this adsorbent were explored. The kinetic studies indicated that the adsorption process followed the pseudo-second-order kinetic model and the adsorption equilibrium could be reached within 2 h. The adsorption was mainly controlled by chemical process. Adsorption isothermal studies illustrated that the adsorption fitted Langmuir isotherm model, implying the homogeneous adsorption on the surface of the adsorbent. The adsorbent exhibited high uptake and the maximum capacity from Langmuir model could reach 896.8 mg g-1 at pH 6. Thermodynamic studies showed the spontaneous nature and exothermic nature of the adsorption process. Additionally, the removal of Hg(II) on UNCS could achieve over 90 %. The adsorption-desorption cycled experiments indicated the appropriate reusability of the adsorbent. Hence, this adsorbent would be promising for the removal of Hg(II) from wastewater.
Collapse
|
15
|
Cheng L, Ji C, Ren H, Guo Q, Li W. CuCo Nanoparticle, Pd(II), and l-Proline Trifunctionalized UiO-67 Catalyst for Three-Step Sequential Asymmetric Reactions. Inorg Chem 2023; 62:5435-5446. [PMID: 36996329 DOI: 10.1021/acs.inorgchem.2c04334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2023]
Abstract
Metal-organic frameworks (MOFs) have become a promising support for different active sites to construct multifunctional and heterogeneous catalysts. However, the related investigation mainly focuses on introducing one or two active sites into MOFs and trifunctional catalysts have been very rarely reported. Herein, non-noble CuCo alloy nanoparticles, Pd2+, and l-proline, as encapsulated active species, functional organic linkers, and active metal nodes, respectively, were successfully decorated to UiO-67 to construct a chiral trifunctional catalyst by the one-step method, which was further applied to asymmetric three-step sequential oxidation of aromatic alcohols/Suzuki coupling/asymmetric aldol reactions with excellent oxidation and coupling performance (yields up to 95 and 96%, respectively), as well as good enantioselectivities (eeanti value up to 73%) in asymmetric aldol reactions. The heterogeneous catalyst can be reused at least five times without obvious deactivation due to the strong interaction between the MOFs and the active sites. This work provides an effective strategy to construct multifunctional catalysts via the introduction and combination of three or more of active sites, including encapsulated active species, functional organic linkers, and active metal nodes, into stable MOFs.
Collapse
Affiliation(s)
- Lin Cheng
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China
| | - Chunyan Ji
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China
| | - Hao Ren
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China
| | - Qiaoqiao Guo
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China
| | - Wenjing Li
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China
| |
Collapse
|
16
|
Wang S, Zhang L, Yang H, Li C, Wang Z, Xiong J, Xv Y, Wang Z, Shen J, Jiang H. The effects of UiO-66 ultrafine particles on the rapid detection of sulfonamides in milk: Adsorption performance and mechanism. Food Chem 2023; 417:135878. [PMID: 36917905 DOI: 10.1016/j.foodchem.2023.135878] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 02/20/2023] [Accepted: 03/03/2023] [Indexed: 03/09/2023]
Abstract
Nanoscale MOFs particles possess both excellent adsorption and dispersion properties. In this study, ultrafine particles UiO-66 (UP/UiO-66) with a particle size below 50 nm were synthesised by a template-controlled method. UP/UiO-66 was able to achieve a maximum adsorption capacity of 139.64 mg/g for 5 methoxylated sulfonamides. Adsorption studies showed that UP/UiO-66 adsorption of sulfonamides can be classified as a pseudo-secondary kinetic adsorption model for single molecular layer adsorption. ELISA (validated by Raman and molecular docking) showed that the sulfonamide molecule was still immunoreactive with antibodies after adsorption by UP/UiO-66. In 15 min, UP/UiO-66 could be used directly in the ELISA test for sulfonamides in milk without elution and separation. The LOQ (IC20) of UP/UiO-66-ELISA for sulfonamides in milk was 0.21-2.05 ng/mL. The ultrafine particle strategy of UiO-66 is expected to be applied to other MOFs and used as a general pretreatment material for residue monitoring in complex matrices.
Collapse
Affiliation(s)
- Sihan Wang
- Department of Veterinary Pharmacology and Toxicology, National Key Laboratory of Veterinary Public Health Security, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, People's Republic of China
| | - Liang Zhang
- Department of Veterinary Pharmacology and Toxicology, National Key Laboratory of Veterinary Public Health Security, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, People's Republic of China
| | - Huijuan Yang
- Department of Veterinary Pharmacology and Toxicology, National Key Laboratory of Veterinary Public Health Security, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, People's Republic of China
| | - Chenglong Li
- Department of Veterinary Pharmacology and Toxicology, National Key Laboratory of Veterinary Public Health Security, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, People's Republic of China
| | - Zile Wang
- Department of Veterinary Pharmacology and Toxicology, National Key Laboratory of Veterinary Public Health Security, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, People's Republic of China
| | - Jincheng Xiong
- Department of Veterinary Pharmacology and Toxicology, National Key Laboratory of Veterinary Public Health Security, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, People's Republic of China
| | - Yuliang Xv
- Department of Veterinary Pharmacology and Toxicology, National Key Laboratory of Veterinary Public Health Security, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, People's Republic of China
| | - Zhanhui Wang
- Department of Veterinary Pharmacology and Toxicology, National Key Laboratory of Veterinary Public Health Security, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, People's Republic of China
| | - Jianzhong Shen
- Department of Veterinary Pharmacology and Toxicology, National Key Laboratory of Veterinary Public Health Security, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, People's Republic of China
| | - Haiyang Jiang
- Department of Veterinary Pharmacology and Toxicology, National Key Laboratory of Veterinary Public Health Security, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, People's Republic of China.
| |
Collapse
|
17
|
Hu Y, Liu S, Qiu M, Zheng X, Peng X, Dai H, Hu F, Xu L, Xu G, Zhu Y, Guo R. Lysine-functionalized layered double hydroxides for the antibiotics’ efficient removal: Controllable fabrication via BBD model and removing mechanism. Chem Phys 2023. [DOI: 10.1016/j.chemphys.2023.111909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
|
18
|
One-Step Synthesis of Al-Doped UiO-66 Nanoparticle for Enhanced Removal of Organic Dyes from Wastewater. Molecules 2023; 28:molecules28052182. [PMID: 36903428 PMCID: PMC10004798 DOI: 10.3390/molecules28052182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/19/2023] [Accepted: 02/23/2023] [Indexed: 03/03/2023] Open
Abstract
In this study, a series of Al-doped metal-organic frameworks (AlxZr(1-x)-UiO-66) were synthesized through a one-step solvothermal method. Various characterization techniques, including X-ray diffraction, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, and N2 sorption measurement, suggested that the Al doping was uniform and barely influenced the crystallinity, chemical stability, and thermal stability of the materials. Two cationic dyes, safranine T (ST) and methylene blue (MB), were selected for investigating the adsorption performances of Al-doped UiO-66 materials. Al0.3Zr0.7-UiO-66 exhibited 9.63 and 5.54 times higher adsorption capacities than UiO-66, 498 mg/g and 251 mg/g for ST and MB, respectively. The improved adsorption performance can be attributed to π-π interaction, hydrogen bond, and the coordination between the dye and Al-doped MOF. The pseudo-second-order and Langmuir models explained the adsorption process well, which indicated that the dye adsorption on Al0.3Zr0.7-UiO-66 mostly occurred through chemisorption on homogeneous surfaces. A thermodynamic study indicated the adsorption process was spontaneous and endothermic. The adsorption capacity did not decrease significantly after four cycles.
Collapse
|
19
|
Lin Z, Wu Y, Jin X, Liang D, Jin Y, Huang S, Wang Z, Liu H, Chen P, Lv W, Liu G. Facile synthesis of direct Z-scheme UiO-66-NH 2/PhC 2Cu heterojunction with ultrahigh redox potential for enhanced photocatalytic Cr(VI) reduction and NOR degradation. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130195. [PMID: 36367468 DOI: 10.1016/j.jhazmat.2022.130195] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/29/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
Z-scheme heterojunction-based photocatalysts typically have robust removal efficiencies for water contaminants. Herein, we employed p-type PhC2Cu and n-type UiO-66-NH2 to develop a direct Z-scheme UiO-66-NH2/PhC2Cu photocatalyst with an ultrahigh redox potential for Cr(VI) photoreduction and norfloxacin (NOR) photodegradation. Moreover, UV-vis diffuse reflectance, photoelectrochemical measurements, photoluminescence (PL) spectra and electron spin resonance (ESR) technique revealed that the UiO-66-NH2/PhC2Cu composite boosted light capturing capacities to promote photocatalytic efficiencies. Strikingly, the optimized UiO-66-NH2/PhC2Cu50 wt% rapidly reduced Cr(VI) (96.2%, 15 min) and degraded NOR (97.9%, 60 min) under low-power blue LED light. In addition, the UiO-66-NH2/PhC2Cu photocatalyst also exhibited favorable mineralization capacity (78.4%, 120 min). Benefitting from the enhanced interfacial electron transfer and ultrahigh redox potential of the Z-scheme heterojunction, the UiO-66-NH2/PhC2Cu photocatalyst greatly enhanced the separation efficacies of photogenerated carriers. This resulting abundance of active species (e.g., e-, h+, O2•-, and •OH) were generated to photo-reduce Cr(VI) and photo-oxidize NOR. Base on the identified intermediates, four degradation pathways of NOR were proposed. Finally, the Z-scheme mechanism were systematically confirmed through X-ray photoelectron spectroscopy (XPS), ESR, cyclic voltammetry (CV) tests, and photodeposition techniques.
Collapse
Affiliation(s)
- Zili Lin
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Yuliang Wu
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China; Shenzhen Key Laboratory of Organic Pollution Prevention and Control, Environmental Science and Engineering Research Center, Harbin Institute of Technology, Shenzhen, Guangdong 518055, China
| | - Xiaoyu Jin
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Danluo Liang
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Yuhan Jin
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Shoubin Huang
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhongquan Wang
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Haijin Liu
- Key Laboratory for Yellow River and Huaihe River Water Environment and Pollution Control, School of Environment, Henan Normal University, Xinxiang 453007, China
| | - Ping Chen
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Wenying Lv
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| | - Guoguang Liu
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| |
Collapse
|
20
|
Negro C, Martínez Pérez-Cejuela H, Simó-Alfonso EF, Iqbal W, Herrero-Martínez JM, Armentano D, Ferrando-Soria J, Pardo E. (Multivariate)-Metal-Organic Framework for Highly Efficient Antibiotic Capture from Aquatic Environmental Matrices. ACS APPLIED MATERIALS & INTERFACES 2023; 15:3069-3076. [PMID: 36598170 DOI: 10.1021/acsami.2c20458] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Contamination of aquatic environments by pharmaceuticals used by modern societies has become a serious threat to human beings. Among them, antibiotics are of particular concern due to the risk of creating drug-resistant bacteria and, thus, developing efficient protocols for the capture of this particular type of drug is mandatory. Herein, we report a family of three isoreticular MOFs, derived from natural amino acids, that exhibit high efficiency in the removal of a mixture of four distinct families of antibiotics, such as fluoroquinolones, penicillins, lincomycins, and cephalosporins, as solid-phase extraction (SPE) sorbents. In particular, a multivariate (MTV)-MOF, prepared using equal percentages of amino acids l-serine and l-methionine, also exhibits outstanding recyclability, surpassing the benchmark material activated carbon. The good removal performance of the MTV-MOF was rationalized by means of single-crystal X-ray diffraction. These results highlight the situation of MOFs as a real and promising alternative for the capture of antibiotics from environmental matrices, especially wastewater streams.
Collapse
Affiliation(s)
- Cristina Negro
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia, 46980 Valencia, Spain
| | | | | | - Waseem Iqbal
- Dipartimento di Chimica e Tecnologie Chimiche (CTC), Università della Calabria, Rende 87036, Italy
| | | | - Donatella Armentano
- Dipartimento di Chimica e Tecnologie Chimiche (CTC), Università della Calabria, Rende 87036, Italy
| | - Jesús Ferrando-Soria
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia, 46980 Valencia, Spain
| | - Emilio Pardo
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia, 46980 Valencia, Spain
| |
Collapse
|
21
|
Ohale PE, Igwegbe CA, Iwuozor KO, Emenike EC, Obi CC, Białowiec A. A review of the adsorption method for norfloxacin reduction from aqueous media. MethodsX 2023; 10:102180. [PMID: 37122364 PMCID: PMC10133760 DOI: 10.1016/j.mex.2023.102180] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 04/10/2023] [Indexed: 05/02/2023] Open
Abstract
Norfloxacin (NRFX) is one of a class of antibiotics known as broad-spectrum fluoroquinolone antibiotic that is frequently used to treat infectious disorders in both animals and humans. NRFX is considered an emergent pharmaceutical contaminate. This review's objective is to evaluate empirical data on NRFX's removal from aqueous medium. The environmental danger of NRFX in the aquatic environment was validated by an initial ecotoxicological study. Graphene oxide/Metal Organic Framework (MOF) based composite, followed by Magnesium oxide/Chitosan/Graphene oxide composite gave the highest NRFX adsorption capacities (Qmax) of 1114.8 and 1000 mg/g, respectively. The main adsorption mechanisms for NRFX uptake include electrostatic interactions, H-bonds, π-π interactions, electron donor-acceptor interactions, hydrophobic interactions, and pore diffusion. The adsorptive uptake of NRFX were most suitably described by Langmuir isotherm and pseudo-second order implying adsorbate-to-adsorbent electron transfer on a monolayer surface. The thermodynamics of NRFX uptake is heavily dependent on the makeup of the adsorbent, and the selection of the eluent for desorption from the solid phase is equally important. There were detected knowledge gaps in column studies and adsorbent disposal method. There's great interest in scale-up and industrial applications of research results that will aid in management of water resources for sustainability.
Collapse
Affiliation(s)
| | - Chinenye Adaobi Igwegbe
- Department of Chemical Engineering, Nnamdi Azikiwe University, P. M. B. 5025, Awka, Nigeria
- Department of Applied Bioeconomy, Wroclaw University of Environmental and Life Sciences, Poland
- Corresponding authors. @chinenyeigwegbe
| | - Kingsley O. Iwuozor
- Department of Pure and Industrial Chemistry, Nnamdi Azikiwe University, P. M. B. 5025, Awka, Nigeria
- Nigeria Sugar Institute, Ilorin, Nigeria
- Corresponding authors. @chinenyeigwegbe
| | - Ebuka Chizitere Emenike
- Department of Pure and Industrial Chemistry, Nnamdi Azikiwe University, P. M. B. 5025, Awka, Nigeria
| | - Christopher Chiedozie Obi
- Department of Chemical Engineering, Nnamdi Azikiwe University, P. M. B. 5025, Awka, Nigeria
- Department of Polymer Engineering, Nnamdi Azikiwe University, P.M.B. 5025, Awka 420218, Nigeria
| | - Andrzej Białowiec
- Department of Applied Bioeconomy, Wroclaw University of Environmental and Life Sciences, Poland
| |
Collapse
|
22
|
rGO-WO3 Heterostructure: Synthesis, Characterization and Utilization as an Efficient Adsorbent for the Removal of Fluoroquinolone Antibiotic Levofloxacin in an Aqueous Phase. Molecules 2022; 27:molecules27206956. [PMID: 36296547 PMCID: PMC9610797 DOI: 10.3390/molecules27206956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 10/07/2022] [Accepted: 10/14/2022] [Indexed: 11/16/2022] Open
Abstract
Herein, the heterostructure rGO-WO3 was hydrothermally synthesized and characterized by HRTEM (high-resolution transmission electron microscopy), FESEM (field emission scanning electron microscopy), XRD (X-ray diffraction), FT-IR (Fourier transform infrared spectroscopy), XPS (X-ray photoelectron microscopy), nitrogen physisorption isotherm, Raman, TGA (thermogravimetric analysis) and zeta potential techniques. The HRTEM and FESEM images of the synthesized nanostructure revealed the successful loading of WO3 nanorods on the surface of rGO nanosheets. The prepared heterostructure was utilized as an efficient adsorbent for the removal of a third-generation fluoroquinolone antibiotic, i.e., levofloxacin (LVX), from water. The adsorption equilibrium data were appropriately described by a Langmuir isotherm model. The prepared rGO-WO3 heterostructure exhibited a Langmuir adsorption capacity of 73.05 mg/g. The kinetics of LVX adsorption followed a pseudo-second-order kinetic model. The adsorption of LVX onto the rGO-WO3 heterostructure was spontaneous and exothermic in nature. Electrostatic interactions were found to have played a significant role in the adsorption of LVX onto the rGO-WO3 heterostructure. Thus, the prepared rGO-WO3 heterostructure is a highly promising material for the removal of emerging contaminants from aqueous solution.
Collapse
|
23
|
Yu H, Zheng K, Xu X, Liu X, Zhao B, Ding H, Yu Z, Deng C. Preparation of β-cyclodextrin/dopamine hydrochloride-graphene oxide and its adsorption properties for sulfonamide antibiotics. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:70192-70201. [PMID: 35583764 DOI: 10.1007/s11356-022-20828-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 05/10/2022] [Indexed: 05/27/2023]
Abstract
To develop high-efficiency antibiotic adsorbents, β-cyclodextrin and dopamine hydrochloride were used to modify graphene oxide to prepare a new type of ternary composite material (β-cyclodextrin/dopamine hydrochloride-graphene oxide, CD-DGO). The material was characterized using scanning electron microscopy, Fourier infrared spectrometry, transmission electron microscopy, and specific surface area optical analysis. Two typical sulfonamides antibiotics (sulfamethoxazole, sulfadiazine) adsorption capacity were evaluated in terms of the dosage of composite materials, the ratio of each component, and the pH of the solution. We analyzed the adsorption characteristics via adsorption kinetics and adsorption isotherms, and then investigated the stability of the adsorbent through desorption and regeneration of the adsorbent. The results show that the adsorption effect of sulfonamides antibiotics is best at pH = 2; the adsorption kinetics conform to the pseudo-second-order kinetic model, and the adsorption equilibrium follows the Langmuir adsorption isotherm; the maximum adsorption capacity of CD-DGO for sulfamethoxazole and sulfadiazine is 144 mg·g-1 and 152 mg·g-1, respectively. The material has good reusability, and the dominant force in the adsorption process is the π-π electron conjugation effect with hydrogen bonding. This offers a theoretical basis for the treatment of sulfonamides antibiotics water pollution.
Collapse
Affiliation(s)
- Hongxia Yu
- School of Biology, Food, and Environment, Hefei University, No. 99 Jinxiu Road, Hefei, 230601, China
- International (Sino-German) Joint Research Center for Biomass of Anhui Province, Hefei, 230601, China
| | - Kun Zheng
- School of Biology, Food, and Environment, Hefei University, No. 99 Jinxiu Road, Hefei, 230601, China
- International (Sino-German) Joint Research Center for Biomass of Anhui Province, Hefei, 230601, China
| | - Xiaoying Xu
- School of Biology, Food, and Environment, Hefei University, No. 99 Jinxiu Road, Hefei, 230601, China
- International (Sino-German) Joint Research Center for Biomass of Anhui Province, Hefei, 230601, China
| | - Xiaowei Liu
- School of Biology, Food, and Environment, Hefei University, No. 99 Jinxiu Road, Hefei, 230601, China
- International (Sino-German) Joint Research Center for Biomass of Anhui Province, Hefei, 230601, China
| | - Bin Zhao
- Department of Ecology and Environment of Anhui Province (Anhui Heavy Pollution Weather Forecast and Early Warning Center), Hefei, 230061, China
| | - Haitao Ding
- School of Biology, Food, and Environment, Hefei University, No. 99 Jinxiu Road, Hefei, 230601, China
- International (Sino-German) Joint Research Center for Biomass of Anhui Province, Hefei, 230601, China
| | - Zhimin Yu
- School of Biology, Food, and Environment, Hefei University, No. 99 Jinxiu Road, Hefei, 230601, China
- International (Sino-German) Joint Research Center for Biomass of Anhui Province, Hefei, 230601, China
| | - Chengxun Deng
- School of Biology, Food, and Environment, Hefei University, No. 99 Jinxiu Road, Hefei, 230601, China.
- International (Sino-German) Joint Research Center for Biomass of Anhui Province, Hefei, 230601, China.
| |
Collapse
|
24
|
Darabdhara J, Ahmaruzzaman M. Recent developments in MOF and MOF based composite as potential adsorbents for removal of aqueous environmental contaminants. CHEMOSPHERE 2022; 304:135261. [PMID: 35697109 DOI: 10.1016/j.chemosphere.2022.135261] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 05/25/2022] [Accepted: 06/04/2022] [Indexed: 06/15/2023]
Abstract
With the growth of globalization which has been the primary cause of water pollution, it is utmost necessary for us living being to have access to clean water for the purpose of drinking, washing and various other useful applications. With the purpose of future security and to restore our ecological balance, it is essential to give much significance towards the removal of unwanted toxic contaminants from our water resources. In this regard adsorptive removal of toxic pollutants from wastewater with porous adsorbent is regarded as one of the most promising way for water decontamination process. Metal organic frameworks (MOFs) comprising of uniformly arranged pores, abundant active sites and containing an easily tunable structure has aroused as a promising material for adsorbent to remove the unwanted contaminants from water sources. The adsorption of pollutants by the different MOFs surface are driven by various interactions including π-π, acid-base, electrostatic and H-bonding etc. On the other hand, the removal of various contaminants by MOFs is influenced by various factors including pH, temperature and initial concentration. In this review we will specifically discuss the adsorptive removal of different organic and inorganic pollutants present in our water systems with the use of MOFs as adsorbent along with the various factors and interaction mechanism manipulating the adsorption behaviour.
Collapse
Affiliation(s)
- Jnyanashree Darabdhara
- Department of Chemistry, National Institute of Technology, Silchar, 788010, Assam, India
| | - Md Ahmaruzzaman
- Department of Chemistry, National Institute of Technology, Silchar, 788010, Assam, India.
| |
Collapse
|
25
|
Jin X, Zhao L, Zhang X, Wang Z, Hao M, Li Y. Ligand as Buffer for Improving Chemical Stability of Coordination Polymers. ACS APPLIED MATERIALS & INTERFACES 2022; 14:42267-42276. [PMID: 36075001 DOI: 10.1021/acsami.2c14071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Chemical stability is one of the key concerns in coordination polymers (CPs). However, technologies to protect CPs against acidic or alkaline aqueous environments have yet to be implemented. Herein we demonstrate an approach for improving the pH stability by utilizing the ligand salt as buffering site to modify the unsaturated coordination sites of CPs. For the selective one-dimensional CP Eu-d-DBTA (d-H2DBTA = d-O,O'-dibenzoyltartaric acid) with a pH stability range of 6-8, the introduction of the ligand salt Na-d-DBTA extends the pH stability interval from 3 to 11. Crystallographic structure data reveal the formation of a Eu/Na-d-DBTA dynamic structure with Na-d-DBTA buffer sites on the Eu-O cluster of the Eu-d-DBTA skeleton. Benefiting from the dynamic single-crystal-to-single-crystal transformation, the buffer sites protect the skeleton from the impact of the acidic or alkaline aqueous environment. In addition, Eu/Na-d-DBTA produces stable photoluminescence properties and selective responses toward l-tryptophan (l-Trp) and further toward l-lysine (l-Lys) over the whole buffer capacity range of 3-11. Noticeably, other Ln/Na-d-DBTA CPs and star metal-organic frameworks also exhibit pH stability improvement when the ligand-as-buffer technology is used, which is significant for developing advanced inorganic-organic hybrid materials with superior functionality.
Collapse
Affiliation(s)
- Xiaomeng Jin
- School of Chemistry and Material Science, Heilongjiang University, Harbin 150080, P. R. China
| | - Lina Zhao
- School of Chemistry and Material Science, Heilongjiang University, Harbin 150080, P. R. China
| | - Xiaojun Zhang
- School of Chemistry and Material Science, Heilongjiang University, Harbin 150080, P. R. China
| | - Zicheng Wang
- School of Chemistry and Material Science, Heilongjiang University, Harbin 150080, P. R. China
| | - Ming Hao
- School of Chemistry and Material Science, Heilongjiang University, Harbin 150080, P. R. China
| | - Yuxin Li
- School of Chemistry and Material Science, Heilongjiang University, Harbin 150080, P. R. China
| |
Collapse
|
26
|
Khosroshahi N, Goudarzi MD, Gilvan ME, Safarifard V. Collocation of MnFe2O4 and UiO-66-NH2: An efficient and reusable nanocatalyst for achieving high-performance in hexavalent chromium reduction. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132994] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
27
|
Fan S, Guo H, Wang Y, Liu J. Selective adsorption of the cationic dye rhodamine-6G from aqueous solution by phosphotungstic acid@MOF-199 composites. J INDIAN CHEM SOC 2022. [DOI: 10.1016/j.jics.2022.100579] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
28
|
İlyasoglu G, Kose-Mutlu B, Mutlu-Salmanli O, Koyuncu I. Removal of organic micropollutans by adsorptive membrane. CHEMOSPHERE 2022; 302:134775. [PMID: 35537632 DOI: 10.1016/j.chemosphere.2022.134775] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 04/22/2022] [Accepted: 04/26/2022] [Indexed: 06/14/2023]
Abstract
Various emerging organic micropollutants, such as pharmaceuticals, have attracted the interest of the water industry during the last two decades due to their insufficient removal during conventional water and wastewater treatment methods and increasing demand for pharmaceuticals projected to climate change-related impacts and COVID-19, nanosorbents such as carbon nanotubes (CNTs), graphene oxides (GOs), and metallic organic frameworks (MOFs) have recently been extensively explored regarding their potential environmental applications. Due to their unique physicochemical features, the use of these nanoadsorbents for organic micropollutans in water and wastewater treatment processes has been a rapidly growing topic of research in recent literature. Adsorptive membranes, which include these nanosorbents, combine the benefits of adsorption with membrane separation, allowing for high flow rates and faster adsorption/desorption rates, and have received a lot of publicity in recent years. The most recent advances in the fabrication of adsorptive membranes (including homogeneous membranes, mixed matrix membranes, and composite membranes), as well as their basic principles and applications in water and wastewater treatment, are discussed in this review. This paper covers ten years, from 2011 to 2021, and examines over 100 published studies, highlighting that micropollutans can pose a serious threat to surface water environments and that adsorptive membranes are promising, particularly in the adsorption of trace substances with fast kinetics. Membrane fouling, on the other hand, should be given more attention in future studies due to the high costs and restricted reusability.
Collapse
Affiliation(s)
- Gülmire İlyasoglu
- National Research Center on Membrane Technologies, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey
| | - Borte Kose-Mutlu
- National Research Center on Membrane Technologies, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey; Environmental Engineering Department, Istanbul Technical University, Maslak, Istanbul, 34469, Turkey
| | - Oyku Mutlu-Salmanli
- National Research Center on Membrane Technologies, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey; Environmental Engineering Department, Istanbul Technical University, Maslak, Istanbul, 34469, Turkey
| | - Ismail Koyuncu
- National Research Center on Membrane Technologies, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey; Environmental Engineering Department, Istanbul Technical University, Maslak, Istanbul, 34469, Turkey.
| |
Collapse
|
29
|
Tao Y, Fang F, Lv Q, Qin W, He X, Zhang Y, Zhou Y, Li X, Li J. Highly efficient removal of glyphosate from water by hierarchical-pore UiO-66: Selectivity and effects of natural water particles. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 316:115301. [PMID: 35594825 DOI: 10.1016/j.jenvman.2022.115301] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 04/18/2022] [Accepted: 05/10/2022] [Indexed: 06/15/2023]
Abstract
The selective removal of glyphosate (GP) from aqueous environments is crucial for ensuring human health and environmental sustainability. The preparation of hierarchical-pore MOFs and the reasonable regulation of the pore size are effective strategies for achieving selective removal. In this study, we applied hierarchical-pore UiO-66 analogues (HUiO-66s) synthesized by the template technique through a mild method for the removal of GP from water. The results showed that the maximum adsorption capacity of HUiO-66s was as high as 400 mg/g, which is higher than that of most reported adsorbents. Notably, HUiO-66s showed the highest adsorption rate and distribution coefficient for GP in a multivariate system containing different organophosphorus pesticides and antibiotics, exhibiting suitable selective adsorption performance for GP. Furthermore, GP adsorption onto HUiO-66-2 (prepared from 2 mL of MOF-5 template) did not affect the presence of competing anions and humic acids. Naturally occurring particles in the water body had an enhanced (i.e., Al2O3, sepiolite, and montmorillonite), reduced (i.e., illite and SiO2), or insignificant (i.e., kaolin) effect on the GP adsorption rate of HUiO-66-2. Further analysis based on the bulk adsorption results and microscopic characterisation indicated that the pore structure synergistically occurred with metal-ligand bonding, hydrogen bonding, and electrostatic interactions, which together determined the GP adsorption. Overall, the high adsorption and apparent adsorption selectivity of HUiO-66s facilitated the rapid separation and removal of GP in complex aqueous environments. Our findings provide insights into the transport and fate of MOFs and contaminants in natural aquatic systems.
Collapse
Affiliation(s)
- Yue Tao
- School of Resources and Environment, Anhui Agricultural University, Hefei, 230036, PR China; Hefei Scientific Observing and Experimental Station of Agro-Environment, Ministry of Agriculture, PR China
| | - Fei Fang
- School of Resources and Environment, Anhui Agricultural University, Hefei, 230036, PR China; Hefei Scientific Observing and Experimental Station of Agro-Environment, Ministry of Agriculture, PR China
| | - Quankun Lv
- School of Resources and Environment, Anhui Agricultural University, Hefei, 230036, PR China; Hefei Scientific Observing and Experimental Station of Agro-Environment, Ministry of Agriculture, PR China
| | - Wenkai Qin
- School of Resources and Environment, Anhui Agricultural University, Hefei, 230036, PR China; Hefei Scientific Observing and Experimental Station of Agro-Environment, Ministry of Agriculture, PR China
| | - Xiudan He
- School of Resources and Environment, Anhui Agricultural University, Hefei, 230036, PR China; Hefei Scientific Observing and Experimental Station of Agro-Environment, Ministry of Agriculture, PR China
| | - Yan Zhang
- School of Resources and Environment, Anhui Agricultural University, Hefei, 230036, PR China; Hefei Scientific Observing and Experimental Station of Agro-Environment, Ministry of Agriculture, PR China
| | - Yi Zhou
- School of Resources and Environment, Anhui Agricultural University, Hefei, 230036, PR China; Hefei Scientific Observing and Experimental Station of Agro-Environment, Ministry of Agriculture, PR China
| | - Xuede Li
- School of Resources and Environment, Anhui Agricultural University, Hefei, 230036, PR China; Hefei Scientific Observing and Experimental Station of Agro-Environment, Ministry of Agriculture, PR China.
| | - Jie Li
- School of Resources and Environment, Anhui Agricultural University, Hefei, 230036, PR China; Hefei Scientific Observing and Experimental Station of Agro-Environment, Ministry of Agriculture, PR China.
| |
Collapse
|
30
|
Zheng M, Xu L, Chen C, Labiadh L, Yuan B, Fu ML. MOFs and GO-based composites as deliberated materials for the adsorption of various water contaminants. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121187] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
31
|
Vinayagam V, Murugan S, Kumaresan R, Narayanan M, Sillanpää M, Viet N Vo D, Kushwaha OS, Jenis P, Potdar P, Gadiya S. Sustainable adsorbents for the removal of pharmaceuticals from wastewater: A review. CHEMOSPHERE 2022; 300:134597. [PMID: 35439481 DOI: 10.1016/j.chemosphere.2022.134597] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/22/2022] [Accepted: 04/09/2022] [Indexed: 06/14/2023]
Abstract
Over the previous three decades, the worldwide use of pharmaceuticals has surged by more than 2.5 times. Although being considered essential to save many lives, pharmaceuticals have also emerged as a large source of complex environmental contaminants in recent decades. Consequently, the pharmaceuticals and their breakdown products are ending up into the water bodies thus progressively contaminating them and the surrounding environments. Based on recent studies concentrations in water sources are typically >0.1 μg/l and the concentration in treated water is typically >0.05 μg/l. These pharma drugs are removed from aquatic systems by processes such as oxidation, Ultraviolet degradation, reverse osmosis and nano-filtration. However, hazardous sludge creation, incomplete removal, expensive capital and operating costs, and the need for professional operating and maintenance personnel have all limited the economic sustainability of these systems. As a result, the presence of pharmaceuticals in water necessitates even more advanced technologies of purification to harvest clean water, yet present approaches are constrained by their high costs, low reusability, and disposal issues. Here, we review sustainable adsorbents for the removal of pharmaceuticals from wastewater. In this comprehensive review, an evaluation of water contamination caused by pharmaceutical compounds is discussed. An overview of current research on the employment of sustainable adsorbents for the removal of the major pharmaceuticals prevalent in water sources. Numerous aspects of high adsorption efficiencies of these pharmaceutical compounds with such sustainable adsorbents were observed; however, other factors, such as adsorbent regeneration and cost evaluation, must be taken into account in order to assess the true applicability of adsorbents.
Collapse
Affiliation(s)
- Vignesh Vinayagam
- Department of Chemical Engineering, Sri Venkateswara College of Engineering, Chennai, Tamil Nadu, 602117, India
| | - Shrima Murugan
- Department of Chemical Engineering, Sri Venkateswara College of Engineering, Chennai, Tamil Nadu, 602117, India
| | - Rishikeswaran Kumaresan
- Department of Chemical Engineering, Sri Venkateswara College of Engineering, Chennai, Tamil Nadu, 602117, India
| | - Meyyappan Narayanan
- Department of Chemical Engineering, Sri Venkateswara College of Engineering, Chennai, Tamil Nadu, 602117, India
| | - Mika Sillanpää
- Department of Chemical Engineering, School of Mining, Metallurgy and Chemical Engineering, University of Johannesburg, P. O. Box 17011, Doornfontein, 2028, South Africa; Chemistry Department, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia; Department of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia; Zhejiang Rongsheng Environmental Protection Paper Co. Ltd, No. 588 East Zhennan Road, Pinghu Economic Development Zone, Zhejiang, 314213, PR China
| | - Dai Viet N Vo
- Institute of Environmental Sciences, Nguyen Tat Thanh University, Ho Chi Minh City, 755414, Viet Nam.
| | - Omkar Singh Kushwaha
- Department of Chemical Engineering, Indian Institute of Technology, Madras, Chennai, Tamil Nadu, 600036, India.
| | - Ponraj Jenis
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 119077
| | - Pratik Potdar
- Department of Chemical Engineering, Columbia University, New York, 10027, United States
| | - Shreyans Gadiya
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, 14853, United States
| |
Collapse
|
32
|
Duan J, Chen L, Ji H, Li P, Li F, Liu W. Activation of peracetic acid by metal-organic frameworks (ZIF-67) for efficient degradation of sulfachloropyridazine. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.11.072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
33
|
Synthesis and characterization of novel M@ZnO/UiO-66 (M = Ni, Pt, Pd and mixed Pt&Pd) as an efficient photocatalyst under solar light. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132580] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
34
|
Yin L, Wang D, Li X, He Y, Liu X, Xu Y, Chen H. One-pot synthesis of oxygen-vacancy-rich Cu-doped UiO-66 for collaborative adsorption and photocatalytic degradation of ciprofloxacin. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 815:151962. [PMID: 34843770 DOI: 10.1016/j.scitotenv.2021.151962] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/21/2021] [Accepted: 11/21/2021] [Indexed: 06/13/2023]
Abstract
UiO-66, as one of the most stable metal-organic frameworks (MOFs), has attracted a lot of attention in the field of adsorption and photocatalysis. However, this application of UiO-66 is still limited due to either the low accessibility of micropores or the poor electron-hole charge separation capability. This study aims to promote UiO-66 accessibility of micropores and charge separation through the construction of oxygen vacancies (OVs) and mesopore defects as well as copper incorporation. Herein, mesopore Cu doped UiO-66 with rich OVs was synthesized by a one-pot method and demonstrated high efficiency for the removal of ciprofloxacin (CIP) from the aquatic system. First of all, denatured mesopore defects were produced in Cu doped UiO-66 which possessed a 58% increase in specific surface area compared to UiO-66, facilitating the adsorption of molecular oxygen. Secondly, e- was preferentially trapped by OVs under light irradiation. Electron (e-) reacted rapidly with the surface adsorbed oxygen to generate superoxide radical (O2-). Meanwhile, copper incorporation increased the photocurrent and reduced the interfacial charge transfer resistance, thereby improving the charge separation efficiency. As a result, the adsorption efficiency and photocatalytic performance of mesopore Cu doped UiO-66 with OVs were 8.1 and 3.7 times higher than those of UiO-66, respectively. This study paved a way for the one-step synthesis of MOFs containing OVs and broadened the possibilities of practical applications for photo-induced removal of antibiotics from effluent.
Collapse
Affiliation(s)
- Linmiao Yin
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| | - Dongbo Wang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| | - Xiaopei Li
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Yanying He
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Xiaoqing Liu
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Yiyi Xu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Hong Chen
- Key Laboratory of Water-Sediment Sciences and Water Disaster Prevention of Hunan Province, School of Hydraulic Engineering, Changsha University of Science & Technology, Changsha 410004, PR China
| |
Collapse
|
35
|
Khudozhitkov AE, Arzumanov SS, Kolokolov DI, Stepanov AG. Butane isomers mobility and framework dynamics in UiO-66 (Zr) MOF: Impact of the hydroxyl groups in zirconia cluster. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2022; 118:101784. [PMID: 35247850 DOI: 10.1016/j.ssnmr.2022.101784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 02/18/2022] [Accepted: 02/18/2022] [Indexed: 06/14/2023]
Abstract
UiO-66 (Zr) is a metal-organic framework (MOF) known for its thermal and chemical stability and wide range of adsorption-based applications. This MOF exhibits high separation selectivity for butane isomers. It has been earlier inferred that the separation performance of the material depends on the hydroxylation state of the zirconia cluster. In this contribution, we apply 2H solid-state NMR to characterize the dynamics of both the MOF organic framework itself and butane isomers in hydroxylated and dehydroxylated forms of UiO-66. It is established that the rate of π-flipping and the amplitude of the phenylene ring plane librations in the framework are higher for the dehydroxylated form. Self-diffusion coefficients of butane isomers have been estimated for both forms of UiO-66. The diffusivity is higher for n-butane in the dehydroxylated form, whereas the diffusion of isobutane is not affected by the presence of OH groups in the zirconia cluster of the MOF. Higher diffusivity of n-butane in dehydroxylated form is accounted for by the larger effective diameter of the window between the adjacent cages in this form, which arises from faster rotation and larger amplitude of framework linker libration. This rationalizes the higher efficiency of the dehydroxylated form of UiO-66(Zr) material for butane isomers separation.
Collapse
Affiliation(s)
- Alexander E Khudozhitkov
- Boreskov Institute of Catalysis, Siberian Branch of Russian Academy of Sciences, Prospekt Akademika Lavrentieva 5, Novosibirsk, 630090, Russia; Novosibirsk State University, Pirogova Street 2, Novosibirsk, 630090, Russia
| | - Sergei S Arzumanov
- Boreskov Institute of Catalysis, Siberian Branch of Russian Academy of Sciences, Prospekt Akademika Lavrentieva 5, Novosibirsk, 630090, Russia
| | - Daniil I Kolokolov
- Boreskov Institute of Catalysis, Siberian Branch of Russian Academy of Sciences, Prospekt Akademika Lavrentieva 5, Novosibirsk, 630090, Russia.
| | - Alexander G Stepanov
- Boreskov Institute of Catalysis, Siberian Branch of Russian Academy of Sciences, Prospekt Akademika Lavrentieva 5, Novosibirsk, 630090, Russia.
| |
Collapse
|
36
|
Sun W, Hu X, Xiang Y, Ye N. Adsorption behavior and mechanism of sulfonamides on controllably synthesized covalent organic frameworks. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:18680-18688. [PMID: 34697714 DOI: 10.1007/s11356-021-17169-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 10/19/2021] [Indexed: 06/13/2023]
Abstract
In this work, four kinds of covalent organic framework (COF) materials (TpPa-1, TpBD, TpDT, and TFBBD) with different pore sizes or functional groups were synthesized by an ultrasonic method for the adsorption of five sulfonamides. Optimization experiments regarding the adsorption time, vortex speed, and pH were carried out to improve adsorption efficiency. In addition, kinetic and thermodynamic experiments were conducted to explore the adsorption mechanism of the sulfonamides on the different COFs. The adsorption processes of the five sulfonamides on the four COFs fit the pseudo-second-order kinetic model and Langmuir adsorption isotherm model. Additionally, pore filling, hydrogen bond interactions, and electrostatic attraction were found to be the main adsorption mechanisms.
Collapse
Affiliation(s)
- Wenjing Sun
- Department of Chemistry, Capital Normal University, Beijing, 100048, People's Republic of China
| | - Xiaoyu Hu
- Department of Chemistry, Capital Normal University, Beijing, 100048, People's Republic of China
| | - Yuhong Xiang
- Department of Chemistry, Capital Normal University, Beijing, 100048, People's Republic of China.
| | - Nengsheng Ye
- Department of Chemistry, Capital Normal University, Beijing, 100048, People's Republic of China.
| |
Collapse
|
37
|
Sun Y, Zheng L, Zheng X, Xiao D, Yang Y, Zhang Z, Ai B, Sheng Z. Adsorption of Sulfonamides in Aqueous Solution on Reusable Coconut-Shell Biochar Modified by Alkaline Activation and Magnetization. Front Chem 2022; 9:814647. [PMID: 35127654 PMCID: PMC8813774 DOI: 10.3389/fchem.2021.814647] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 12/30/2021] [Indexed: 11/30/2022] Open
Abstract
Biochar is a low-cost adsorbent for sorptive removal of antibiotics from wastewater, but the adsorption efficiency needs to be improved. In this study, coconut-shell biochar was activated with KOH to improve the adsorption efficiency and magnetically modified with FeCl3 to enable recycling. The amount of KOH and the concentration of FeCl3 were optimized to reduce the pollution and production cost. The KOH-activated and FeCl3-magnetized biochar gave good sulfonamide antibiotic (SA) removal. The maximum adsorption capacities for sulfadiazine, sulfamethazine and sulfamethoxazole were 294.12, 400.00 and 454.55 mg g-1, respectively, i.e., five to seven times higher than those achieved with raw biochar. More than 80% of the adsorption capacity was retained after three consecutive adsorption-desorption cycles. A combination of scanning electron microscopy, Brunauer-Emmett-Teller analysis, X-ray diffraction, Fourier-transform infrared and Raman spectroscopies, and magnetic hysteresis analysis showed that KOH activation increased the specific surface area, porosity, and number of oxygen-rich functional groups. Iron oxide particles, which were formed by FeCl3 magnetization, covered the biochar surface. The SAs were adsorbed on the modified biochar via hydrogen bonds between SA molecules and -OH/-COOH groups in the biochar. Investigation of the adsorption kinetics and isotherms showed that the adsorption process follows a pseudo-second-order kinetic model and a monolayer adsorption mechanism. The adsorption capacity at low pH was relatively high because of a combination of π+-π electron-donor-acceptor, charge-assisted hydrogen-bonding, electrostatic, and Lewis acid-base interactions, pore filling, van der Waals forces and hydrophobic interactions. The results of this study show that magnetically modified biochar has potential applications as an effective, recyclable adsorbent for antibiotic removal during wastewater treatment.
Collapse
Affiliation(s)
- Ying Sun
- Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- College of Food Science and Engineering, Hainan University, Haikou, China
| | - Lili Zheng
- Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Haikou Key Laboratory of Banana Biology, Haikou, China
| | - Xiaoyan Zheng
- Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Haikou Key Laboratory of Banana Biology, Haikou, China
| | - Dao Xiao
- Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Haikou Key Laboratory of Banana Biology, Haikou, China
| | - Yang Yang
- Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Haikou Key Laboratory of Banana Biology, Haikou, China
| | - Zhengke Zhang
- College of Food Science and Engineering, Hainan University, Haikou, China
| | - Binling Ai
- Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Haikou Key Laboratory of Banana Biology, Haikou, China
| | - Zhanwu Sheng
- Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Haikou Key Laboratory of Banana Biology, Haikou, China
| |
Collapse
|
38
|
Liu ZY, Tong RM, Chen X, Zhang YT. Amino-functionalized zr-based metal-organic tetrahedron for adsorptive removal of sulfonamide antibiotic in aqueous phase. Polyhedron 2022. [DOI: 10.1016/j.poly.2021.115546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
39
|
Khosroshahi N, Darabi Goudarzi M, Safarifard V. Fabrication of a novel heteroepitaxial structure from an MOF-on-MOF architecture as a photocatalyst for highly efficient Cr( vi) reduction. NEW J CHEM 2022. [DOI: 10.1039/d1nj05440f] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Ce-on-Zr-MOF-808, a novel MOF-on-MOF hybrid used for efficient chromium reduction under visible-light irradiation.
Collapse
Affiliation(s)
- Negin Khosroshahi
- Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Moein Darabi Goudarzi
- Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Vahid Safarifard
- Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| |
Collapse
|
40
|
Hooriabad Saboor F, Nasirpour N, Shahsavari S, Kazemian H. The Effectiveness of MOFs for the Removal of Pharmaceuticals from Aquatic Environments: A Review Focused on Antibiotics Removal. Chem Asian J 2021; 17:e202101105. [PMID: 34941022 DOI: 10.1002/asia.202101105] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 12/09/2021] [Indexed: 11/06/2022]
Abstract
There is an increasing level of various pollutants and their persistence in aquatic environments. The improper use of antibiotics and their inefficient metabolism in organisms result in their release into aquatic environments. Antibiotic abuse has led to hazardous effects on human health. Thereby, efficient removal of pharmaceuticals, particularly antibiotics, from wastewater and contaminated water bodies is greatly interested in international research communities. Metal-organic framework (MOF) materials, as a hybrid group of material containing metallic center and organic linkers, offer a porous structure that is highly efficient for removing different pollutants from contaminated water and wastewater streams. This article aims to review the recent advancement in using MOF-based adsorbents and catalysts for the removal of pharmaceuticals, especially antibiotics, from polluted water. Applying MOFs-based structures for removing antibiotics using photocatalytic removal and adsorptive removal techniques will be discussed and evaluated in this review paper. Various MOF-based materials such as functionalized MOFs, MOF-based composites, magnetic MOF-based composites, MOFs templated-metal oxide catalysts for removing pharmaceuticals, personal care products, and antibiotics from contaminated aqueous media are discussed. Furthermore, effective operational parameters on the adsorption, adsorption mechanisms, adsorption isotherms, and thermodynamic parameters are explained and discussed. Finally, in the concluding remarks, the challenges and future outlooks of using MOFs-based adsorbents and catalysts for removing antibiotics are summarized.
Collapse
Affiliation(s)
- Fahimeh Hooriabad Saboor
- University of Mohaghegh Ardabili, Department of Chemical Engineering, Universtiy Street, 1313156199, Ardabil, IRAN (ISLAMIC REPUBLIC OF)
| | - Niloofar Nasirpour
- University of Mohaghegh Ardabili Faculty of Engineering, Chemical Engineering, IRAN (ISLAMIC REPUBLIC OF)
| | - Shadab Shahsavari
- Islamic Azad University Varamin-Pishva Branch, chemical Engineering, IRAN (ISLAMIC REPUBLIC OF)
| | - Hossein Kazemian
- UNBC: University of Northern British Columbia, Northern Analytical Lab Service, CANADA
| |
Collapse
|
41
|
Selective adsorption of dyes and pharmaceuticals from water by UiO metal–organic frameworks: A comprehensive review. Polyhedron 2021. [DOI: 10.1016/j.poly.2021.115515] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
42
|
Tchinsa A, Hossain MF, Wang T, Zhou Y. Removal of organic pollutants from aqueous solution using metal organic frameworks (MOFs)-based adsorbents: A review. CHEMOSPHERE 2021; 284:131393. [PMID: 34323783 DOI: 10.1016/j.chemosphere.2021.131393] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/26/2021] [Accepted: 06/28/2021] [Indexed: 06/13/2023]
Abstract
The development of metal organic frameworks (MOFs) has recently drawn a lot of scientific interest in water treatment due to the unique properties such as tunable porosities, large pore volumes, hierarchical structures, excellent adsorption and regeneration performances. MOFs represent an eco-friendly alternative to conventional adsorbents especially for the adsorptive removal of noxious organic pollutants from aqueous solution. Advanced MOFs' performances are justified by the introduction of functional groups, magnetic moieties, and specific foreign materials onto MOFs. This however leads to increase in the manufacturing costs of MOFs and consequently possess a huge challenge in large-scale applications. This review hence critically discusses the recent progresses in the development of MOFs-based adsorbents for the removal of selected organic pollutants (e.g., dyes, antibiotics and pesticides) from aqueous solution. Furthermore, major interaction mechanisms between MOFs and organic pollutants in response to numerous experimental conditions, such as pH, temperature, coexisting ions are put forward. Finally, some recommendations in support for designing MOFs with improved adsorption performances are also highlighted.
Collapse
Affiliation(s)
- Audrey Tchinsa
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, No. 130 Meilong Road, Shanghai, 200237, China
| | - Md Faysal Hossain
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, No. 130 Meilong Road, Shanghai, 200237, China
| | - Tong Wang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, No. 130 Meilong Road, Shanghai, 200237, China
| | - Yanbo Zhou
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, No. 130 Meilong Road, Shanghai, 200237, China; National Engineering Laboratory for Industrial Wastewater Treatment, East China University of Science and Technology, No. 130 Meilong Road, Shanghai, 200237, China.
| |
Collapse
|
43
|
|
44
|
Ahmadijokani F, Tajahmadi S, Haris MH, Bahi A, Rezakazemi M, Molavi H, Ko F, Arjmand M. Fe 3O 4@PAA@UiO-66-NH 2 magnetic nanocomposite for selective adsorption of Quercetin. CHEMOSPHERE 2021; 275:130087. [PMID: 33676279 DOI: 10.1016/j.chemosphere.2021.130087] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 02/10/2021] [Accepted: 02/21/2021] [Indexed: 05/16/2023]
Abstract
In the present study, a magnetic core-shell metal-organic framework (Fe3O4@PAA@UiO-66-NH2) nanocomposite was synthesized by a facile step-by-step self-assembly technique and used for selective adsorption of the anti-cancer Quercetin (QCT) drug. The synthesized nanocomposite was well characterized using FTIR, XRD, BET, FESEM, and TEM techniques. The adsorption kinetics and isotherms of the magnetic nanocomposites for QCT were investigated in detail at different initial concentrations and temperatures. It was found that the experimental adsorption kinetic and isotherm data were precisely explained by the pseudo-second-order kinetic and Langmuir isotherm models. Moreover, the selective adsorption ability of the synthesized nanocomposite against various drugs in the single, binary, and ternary solutions containing QCT, Curcumin (CUR), and Methotrexate (MTX) drugs was also studied. The synthesized adsorbent showed good adsorption selectivity for QCT against CUR and MTX. The adsorption mechanism of QCT on the nanocomposite might be related to the hydrogen bonding and hydrophobic-hydrophobic interactions via π-π stacking interactions between the benzene ring skeleton of QCT and the aromatic structure of the adsorbent nanoparticles. The regeneration and reusability studies demonstrated that the developed adsorbent sustained good structural stability and adequate adsorption capacity for QCT after ten consecutive adsorption-desorption cycles.
Collapse
Affiliation(s)
- Farhad Ahmadijokani
- Nanomaterials and Polymer Nanocomposites Laboratory, School of Engineering, University of British Columbia, Kelowna, BC, V1V 1V7, Canada; Department of Materials Engineering, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Shima Tajahmadi
- Institute for Nanoscience and Nanotechnology (INST), Sharif University of Technology, Tehran, Iran
| | - Mahdi Heidarian Haris
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Addie Bahi
- Department of Materials Engineering, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Mashallah Rezakazemi
- Faculty of Chemical and Materials Engineering, Shahrood University of Technology, Shahrood, Iran
| | - Hossein Molavi
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran.
| | - Frank Ko
- Department of Materials Engineering, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Mohammad Arjmand
- Nanomaterials and Polymer Nanocomposites Laboratory, School of Engineering, University of British Columbia, Kelowna, BC, V1V 1V7, Canada.
| |
Collapse
|
45
|
Efficacy of Different Waste and By-Products from Forest and Food Industries in the Removal/Retention of the Antibiotic Cefuroxime. Processes (Basel) 2021. [DOI: 10.3390/pr9071151] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Environmental pollution due to antibiotics is a serious problem. In this work, the adsorption and desorption of the antibiotic cefuroxime (CFX) were studied in four by-products/residues from the forestry and food industries. For this, batch-type experiments were carried out, adding increasing concentrations of CFX (from 0 to 50 µmol L−1) to 0.5 g of adsorbent. The materials with a pH higher than 9 (mussel shell and wood ash) were those that presented the highest adsorption percentages, from 71.2% (23.1 µmol kg−1) to 98.6% (928.0 µmol kg−1). For the rest of the adsorbents, the adsorption was also around 100% when the lowest concentrations of CFX were added, but the percentage dropped sharply when the highest dose of the antibiotic was incorporated. Adsorption data fitted well to the Langmuir and Freundlich models, with R2 greater than 0.9. Regarding desorption, the materials that presented the lowest values when the highest concentration of CFX was added were wood ash (0%) and mussel shell (2.1%), while pine bark and eucalyptus leaves presented the highest desorption (26.6% and 28.6%, respectively). Therefore, wood ash and mussel shell could be considered adsorbents with a high potential to be used in problems of environmental contamination by CFX.
Collapse
|
46
|
Box–Behnken design, kinetic, and isotherm models for oxytetracycline adsorption onto Co-based ZIF-67. APPLIED NANOSCIENCE 2021. [DOI: 10.1007/s13204-021-01954-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
47
|
Barbhuiya NH, Singh SP, Makovitzki A, Narkhede P, Oren Z, Adar Y, Lupu E, Cherry L, Monash A, Arnusch CJ. Virus Inactivation in Water Using Laser-Induced Graphene Filters. MATERIALS (BASEL, SWITZERLAND) 2021; 14. [PMID: 34207716 DOI: 10.26434/chemrxiv.13489398.v1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/24/2021] [Accepted: 05/31/2021] [Indexed: 05/18/2023]
Abstract
Interest in the pathogenesis, detection, and prevention of viral infections has increased broadly in many fields of research over the past year. The development of water treatment technology to combat viral infection by inactivation or disinfection might play a key role in infection prevention in places where drinking water sources are biologically contaminated. Laser-induced graphene (LIG) has antimicrobial and antifouling surface effects mainly because of its electrochemical properties and texture, and LIG-based water filters have been used for the inactivation of bacteria. However, the antiviral activity of LIG-based filters has not yet been explored. Here we show that LIG filters also have antiviral effects by applying electrical potential during filtration of the model prototypic poxvirus Vaccinia lister. This antiviral activity of the LIG filters was compared with its antibacterial activity, which showed that higher voltages were required for the inactivation of viruses compared to that of bacteria. The generation of reactive oxygen species, along with surface electrical effects, played a role in the mechanism of virus inactivation. This new property of LIG highlights its potential for use in water and wastewater treatment for the electrochemical disinfection of various pathogenic microorganisms, including bacteria and viruses.
Collapse
Affiliation(s)
- Najmul Haque Barbhuiya
- Environmental Science and Engineering Department (ESED), Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Swatantra P Singh
- Environmental Science and Engineering Department (ESED), Indian Institute of Technology Bombay, Mumbai 400076, India
- Centre for Research in Nanotechnology & Science (CRNTS), Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Arik Makovitzki
- Department of Biotechnology, Israel Institute for Biological Research, Ness Tiona 7410001, Israel
| | - Pradnya Narkhede
- Albert Katz International School for Desert Studies, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede-Boqer Campus 8499000, Israel
- Department of Desalination and Water Treatment, The Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus 8499000, Israel
| | - Ziv Oren
- Department of Biotechnology, Israel Institute for Biological Research, Ness Tiona 7410001, Israel
| | - Yaakov Adar
- Department of Biotechnology, Israel Institute for Biological Research, Ness Tiona 7410001, Israel
| | - Edith Lupu
- Department of Biotechnology, Israel Institute for Biological Research, Ness Tiona 7410001, Israel
| | - Lilach Cherry
- Department of Biotechnology, Israel Institute for Biological Research, Ness Tiona 7410001, Israel
| | - Arik Monash
- Department of Biotechnology, Israel Institute for Biological Research, Ness Tiona 7410001, Israel
| | - Christopher J Arnusch
- Department of Desalination and Water Treatment, The Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus 8499000, Israel
| |
Collapse
|
48
|
Barbhuiya NH, Singh SP, Makovitzki A, Narkhede P, Oren Z, Adar Y, Lupu E, Cherry L, Monash A, Arnusch CJ. Virus Inactivation in Water Using Laser-Induced Graphene Filters. MATERIALS (BASEL, SWITZERLAND) 2021; 14:3179. [PMID: 34207716 PMCID: PMC8226673 DOI: 10.3390/ma14123179] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/24/2021] [Accepted: 05/31/2021] [Indexed: 11/22/2022]
Abstract
Interest in the pathogenesis, detection, and prevention of viral infections has increased broadly in many fields of research over the past year. The development of water treatment technology to combat viral infection by inactivation or disinfection might play a key role in infection prevention in places where drinking water sources are biologically contaminated. Laser-induced graphene (LIG) has antimicrobial and antifouling surface effects mainly because of its electrochemical properties and texture, and LIG-based water filters have been used for the inactivation of bacteria. However, the antiviral activity of LIG-based filters has not yet been explored. Here we show that LIG filters also have antiviral effects by applying electrical potential during filtration of the model prototypic poxvirus Vaccinia lister. This antiviral activity of the LIG filters was compared with its antibacterial activity, which showed that higher voltages were required for the inactivation of viruses compared to that of bacteria. The generation of reactive oxygen species, along with surface electrical effects, played a role in the mechanism of virus inactivation. This new property of LIG highlights its potential for use in water and wastewater treatment for the electrochemical disinfection of various pathogenic microorganisms, including bacteria and viruses.
Collapse
Affiliation(s)
- Najmul Haque Barbhuiya
- Environmental Science and Engineering Department (ESED), Indian Institute of Technology Bombay, Mumbai 400076, India;
| | - Swatantra P. Singh
- Environmental Science and Engineering Department (ESED), Indian Institute of Technology Bombay, Mumbai 400076, India;
- Centre for Research in Nanotechnology & Science (CRNTS), Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Arik Makovitzki
- Department of Biotechnology, Israel Institute for Biological Research, Ness Tiona 7410001, Israel; (A.M.); (Z.O.); (Y.A.); (E.L.); (L.C.); (A.M.)
| | - Pradnya Narkhede
- Albert Katz International School for Desert Studies, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede-Boqer Campus 8499000, Israel;
- Department of Desalination and Water Treatment, The Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus 8499000, Israel
| | - Ziv Oren
- Department of Biotechnology, Israel Institute for Biological Research, Ness Tiona 7410001, Israel; (A.M.); (Z.O.); (Y.A.); (E.L.); (L.C.); (A.M.)
| | - Yaakov Adar
- Department of Biotechnology, Israel Institute for Biological Research, Ness Tiona 7410001, Israel; (A.M.); (Z.O.); (Y.A.); (E.L.); (L.C.); (A.M.)
| | - Edith Lupu
- Department of Biotechnology, Israel Institute for Biological Research, Ness Tiona 7410001, Israel; (A.M.); (Z.O.); (Y.A.); (E.L.); (L.C.); (A.M.)
| | - Lilach Cherry
- Department of Biotechnology, Israel Institute for Biological Research, Ness Tiona 7410001, Israel; (A.M.); (Z.O.); (Y.A.); (E.L.); (L.C.); (A.M.)
| | - Arik Monash
- Department of Biotechnology, Israel Institute for Biological Research, Ness Tiona 7410001, Israel; (A.M.); (Z.O.); (Y.A.); (E.L.); (L.C.); (A.M.)
| | - Christopher J. Arnusch
- Department of Desalination and Water Treatment, The Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus 8499000, Israel
| |
Collapse
|
49
|
Saya L, Malik V, Singh A, Singh S, Gambhir G, Singh WR, Chandra R, Hooda S. Guar gum based nanocomposites: Role in water purification through efficient removal of dyes and metal ions. Carbohydr Polym 2021; 261:117851. [PMID: 33766347 DOI: 10.1016/j.carbpol.2021.117851] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 02/20/2021] [Accepted: 02/20/2021] [Indexed: 12/26/2022]
Abstract
Researchers nowadays are relentlessly on a race exploring sustainable materials and techniques for the sequestration of toxic dyes and metal ions from water bodies. Biopolymers such as guar gum, owing to its high abundance, low cost and non-toxicity, are potential candidates in this field. Plenty of hydroxyl groups in the polymer backbone enable guar gum to be functionalised or grafted in a versatile manner proving itself as an excellent starting substance for fabricating upgraded materials meant for diverse applications. This review offers a comprehensive coverage of the role of guar gum-based nanocomposites in removal of dyes and heavy metal ions from waste water through adsorption and photo-catalytic degradation. Isotherm and kinetics models, fabrication routes, characterisation techniques, swelling properties and reusability as well as adsorption and degradation mechanisms are outlined. A detailed analysis with convincing results suggests a good future perspective of implementation of these materials in real-time wastewater treatment technology.
Collapse
Affiliation(s)
- Laishram Saya
- Department of Chemistry, Sri Venkateshwara College (University of Delhi), Dhaula Kuan, New Delhi, 110021, India; Department of Chemistry, Manipur University, Canchipur, Imphal, 795003, Manipur, India
| | - Vipin Malik
- Department of Chemistry, Acharya Narendra Dev College (University of Delhi), Govindpuri, Kalkaji, New Delhi, 110019, India
| | - Aarushi Singh
- Drug Discovery and Development Laboratory, Department of Chemistry (University of Delhi), Delhi, 110007, India; Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Snigdha Singh
- Drug Discovery and Development Laboratory, Department of Chemistry (University of Delhi), Delhi, 110007, India; Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Geetu Gambhir
- Department of Chemistry, Acharya Narendra Dev College (University of Delhi), Govindpuri, Kalkaji, New Delhi, 110019, India
| | - W Rameshwor Singh
- Department of Chemistry, Manipur University, Canchipur, Imphal, 795003, Manipur, India
| | - Ramesh Chandra
- Drug Discovery and Development Laboratory, Department of Chemistry (University of Delhi), Delhi, 110007, India
| | - Sunita Hooda
- Department of Chemistry, Acharya Narendra Dev College (University of Delhi), Govindpuri, Kalkaji, New Delhi, 110019, India.
| |
Collapse
|
50
|
Immobilization of cellulase on monolith supported with Zr(IV)-based metal-organic framework as chiral stationary phase for enantioseparation of five basic drugs in capillary electrochromatography. Mikrochim Acta 2021; 188:186. [PMID: 33978843 DOI: 10.1007/s00604-021-04840-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 05/02/2021] [Indexed: 01/07/2023]
Abstract
Metal-organic framework (UiO-66-NH2)-incorporated organic polymer monolith was prepared by thermal polymerization. By virtue of the superior physical and chemical properties, the UiO-66-NH2-modified organic monolith was then functionalized by chiral selector cellulase via the condensation reaction between the primary amino groups and aldehyde groups. The synthesized materials were characterized by Fourier transform infrared spectroscopy, high-resolution transmission electron microscopy, scanning electron microscopy, X-ray photoelectron spectrometry, thermogravimetric analysis, and nitrogen sorption isotherm. The cellulase@poly(glycidyl methacrylate-UiO-66-NH2-ethylene glycol dimethacrylate) (cellulase@poly(GMA-UiO-66-NH2-EDMA)) monolith was applied to enantiomerically separate the basic racemic forms of metoprolol, atenolol, esmolol, bisoprolol, and propranolol. In contrast to the cellulase@poly(GMA-co-EDMA) monolith without UiO-66-NH2, the cellulase@poly(GMA-UiO-66-NH2-EDMA) monolith reveals significantly improved enantiodiscrimination performance for metoprolol (Rs: 0 → 1.67), atenolol (Rs: 0 → 1.50), esmolol (Rs: 0 → 1.52), bisoprolol (Rs: 0 → 0.36), and propranolol (Rs: 0 → 0.44). The immobilization pH of cellulase, buffer pH, UiO-66-NH2 concentration, and the proportion of organic modifier were evaluated in detail with enantiomerically separating chiral molecules. The intra-day, inter-day, column-to-column, and inter-batch precision have been discussed, the result was preferable, and the relative standard deviation (RSD) of separation parameters was <4.3%. Schematic representation of the preparation of a UiO-66-NH2-modified organic polymer monolith for enantioseparating five racemic β-blockers. UiO-66-NH2 was synthesized and converted into a monolith as the stationary phase. Then, the modified monolith containing cellulase as the chiral selector was applied in a capillary electrochromatography system for enantioseparating chiral drugs.
Collapse
|