1
|
Yang F, Shu R, Dai W, Li B, Liu C, Yang H, Johnson HM, Yu S, Bai D, Yang W, Deng Y. H 2Se-evolving bio-heterojunctions promote cutaneous regeneration in infected wounds by inhibiting excessive cellular senescence. Biomaterials 2024; 311:122659. [PMID: 38861831 DOI: 10.1016/j.biomaterials.2024.122659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 06/04/2024] [Accepted: 06/06/2024] [Indexed: 06/13/2024]
Abstract
Pathogenic infection leads to excessive senescent cell accumulation and stagnation of wound healing. To address these issues, we devise and develop a hydrogen selenide (H2Se)-evolving bio-heterojunction (bio-HJ) composed of graphene oxide (GO) and FeSe2 to deracinate bacterial infection, suppress cellular senescence and remedy recalcitrant infected wounds. Excited by near-infrared (NIR) laser, the bio-HJ exerts desired photothermal and photodynamic effects, resulting in rapid disinfection. The crafted bio-HJ could also evolve gaseous H2Se to inhibit cellular senescence and dampen inflammation. Mechanism studies reveal the anti-senescence effects of H2Se-evolving bio-HJ are mediated by selenium pathway and glutathione peroxidase 1 (GPX1). More critically, in vivo experiments authenticate that the H2Se-evolving bio-HJ could inhibit cellular senescence and potentiate wound regeneration in rats. As envisioned, our work not only furnishes the novel gasotransmitter-delivering bio-HJ for chronic infected wounds, but also gets insight into the development of anti-senescence biomaterials.
Collapse
Affiliation(s)
- Fan Yang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, College of Biomedical Engineering, School of Chemical Engineering, Sichuan University, Chengdu, China; Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Rui Shu
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, College of Biomedical Engineering, School of Chemical Engineering, Sichuan University, Chengdu, China; Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Wenyu Dai
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, College of Biomedical Engineering, School of Chemical Engineering, Sichuan University, Chengdu, China; Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Bin Li
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, College of Biomedical Engineering, School of Chemical Engineering, Sichuan University, Chengdu, China; Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chuang Liu
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, College of Biomedical Engineering, School of Chemical Engineering, Sichuan University, Chengdu, China
| | - Hang Yang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, College of Biomedical Engineering, School of Chemical Engineering, Sichuan University, Chengdu, China
| | - Hannah M Johnson
- Department of Chemistry, Washington State University, Washington, USA
| | - Sheng Yu
- Department of Chemistry, Washington State University, Washington, USA
| | - Ding Bai
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, College of Biomedical Engineering, School of Chemical Engineering, Sichuan University, Chengdu, China; Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Weizhong Yang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, College of Biomedical Engineering, School of Chemical Engineering, Sichuan University, Chengdu, China.
| | - Yi Deng
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, College of Biomedical Engineering, School of Chemical Engineering, Sichuan University, Chengdu, China; State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, China; Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
2
|
Wu N, Li J, Li X, Wang R, Zhang L, Liu Z, Jiao T. 3D printed biopolymer/black phosphorus nanoscaffolds for bone implants: A review. Int J Biol Macromol 2024; 279:135227. [PMID: 39218178 DOI: 10.1016/j.ijbiomac.2024.135227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/20/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
Bone implantation is one of the recognized and effective means of treating bone defects, but osteoporosis and bone tumor-related bone abnormalities have a series of problems such as susceptibility to infection, difficulty in healing, and poor therapeutic effect, which poses a great challenge to clinical medicine. Three-dimensional things may be printed using 3D printing. Researchers can feed materials through the printer layer by layer to create the desired shape for a 3D structure. It is widely employed in the healing of bone defects, and it is an improved form of additive manufacturing technology with prospective future applications. This review's objective is to provide an overview of the findings reports pertaining to 3D printing biopolymers in recent years, provide an overview of biopolymer materials and their composites with black phosphorus for 3D printing bone implants, and the characterization methods of composite materials are also summarized. In addition, summarizes 3D printing methods based on ink printing and laser printing, pointing out their special features and advantages, and provide a combination strategy of photothermal therapy and bone regeneration materials for black phosphorus-based materials. Finally, the associations between bone implant materials and immune cells, the bio-environment, as well as the 3D printing bone implants prospects are outlined.
Collapse
Affiliation(s)
- Nannan Wu
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Nanobiotechnology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Yanshan University, Qinhuangdao 066004, China
| | - Jinghong Li
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Nanobiotechnology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Yanshan University, Qinhuangdao 066004, China.
| | - Xinyu Li
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Nanobiotechnology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Yanshan University, Qinhuangdao 066004, China
| | - Ran Wang
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Nanobiotechnology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Yanshan University, Qinhuangdao 066004, China
| | - Lexin Zhang
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Nanobiotechnology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Yanshan University, Qinhuangdao 066004, China
| | - Zhiwei Liu
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Nanobiotechnology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Yanshan University, Qinhuangdao 066004, China
| | - Tifeng Jiao
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Nanobiotechnology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Yanshan University, Qinhuangdao 066004, China.
| |
Collapse
|
3
|
Hu X, Shang J, Mu RX, Qi Q, Quan CS, Li J, Zhang YM. Rough Ag 2S@H-CeO 2 photonic nanocomposites for effective eradication of drug-resistant bacteria and improved healing of infected cutaneous wounds. Colloids Surf B Biointerfaces 2024; 243:114119. [PMID: 39084057 DOI: 10.1016/j.colsurfb.2024.114119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 07/04/2024] [Accepted: 07/21/2024] [Indexed: 08/02/2024]
Abstract
With the continuous increasing threat of drug-resistant bacteria induced cutaneous wound infections, there is a growing demand for novel effective antibiotics-alternative antibacterial strategies for clinical anti-infective therapy. Here, we report the fabrication and antibacterial efficacy of Ag2S@H-CeO2 photonic nanocomposites with rough surface through in-situ growth of Ag2S nanoparticles on CeO2 hollow spheres. With excellent photothermal property and peroxidase-like activity, as well as increased bacterial adhesion, the photonic nanocomposites demonstrated a broad-spectrum synergistic antibacterial effect against Gram-positive, Gram-positive bacteria and fungi as well biofilm in vitro. Significantly, the nanocomposites can effectively eradicate drug-resistant bacteria such as Gram-positive methicillin-resistant Staphylococcus aureus (MRSA) and Gram-negative extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli (ESBL E. coli). Notably, in vivo assessments validated its synergistic therapeutic potential in the treatment of MRSA-infected cutaneous wounds, all while maintaining excellent biosafety and biocompatibility. Our study offers a competitive and promising strategy for the development of a multifunctional synergistic antibacterial platform poised to effectively treat drug-resistant bacteria-infected cutaneous wounds.
Collapse
Affiliation(s)
- Xin Hu
- College of Life Science, Dalian Minzu University, Economical and Technological Development Zone, Dalian, 116600, China; Key Laboratory of Biotechnology and Bioresources Utilization (Dalian Minzu University), Ministry of Education, China
| | - Jing Shang
- College of Life Science, Dalian Minzu University, Economical and Technological Development Zone, Dalian, 116600, China; Key Laboratory of Biotechnology and Bioresources Utilization (Dalian Minzu University), Ministry of Education, China
| | - Rong-Xing Mu
- College of Life Science, Dalian Minzu University, Economical and Technological Development Zone, Dalian, 116600, China; Key Laboratory of Biotechnology and Bioresources Utilization (Dalian Minzu University), Ministry of Education, China
| | - Qi Qi
- College of Life Science, Dalian Minzu University, Economical and Technological Development Zone, Dalian, 116600, China; Key Laboratory of Biotechnology and Bioresources Utilization (Dalian Minzu University), Ministry of Education, China
| | - Chun-Shan Quan
- College of Life Science, Dalian Minzu University, Economical and Technological Development Zone, Dalian, 116600, China; Key Laboratory of Biotechnology and Bioresources Utilization (Dalian Minzu University), Ministry of Education, China
| | - Jun Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Science, P. O. Box 110, Dalian 116023, China.
| | - Yan-Mei Zhang
- College of Life Science, Dalian Minzu University, Economical and Technological Development Zone, Dalian, 116600, China; Key Laboratory of Biotechnology and Bioresources Utilization (Dalian Minzu University), Ministry of Education, China.
| |
Collapse
|
4
|
Fratila DN, Virvescu DI, Luchian I, Hancianu M, Baciu ER, Butnaru O, Budala DG. Advances and Functional Integration of Hydrogel Composites as Drug Delivery Systems in Contemporary Dentistry. Gels 2024; 10:661. [PMID: 39451314 PMCID: PMC11507597 DOI: 10.3390/gels10100661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/13/2024] [Accepted: 10/14/2024] [Indexed: 10/26/2024] Open
Abstract
This study explores the recent advances of and functional insights into hydrogel composites, materials that have gained significant attention for their versatile applications across various fields, including contemporary dentistry. Hydrogels, known for their high water content and biocompatibility, are inherently soft but often limited by mechanical fragility. Key areas of focus include the customization of hydrogel composites for biomedical applications, such as drug delivery systems, wound dressings, and tissue engineering scaffolds, where improved mechanical properties and bioactivity are critical. In dentistry, hydrogels are utilized for drug delivery systems targeting oral diseases, dental adhesives, and periodontal therapies due to their ability to adhere to the mucosa, provide localized treatment, and support tissue regeneration. Their unique properties, such as mucoadhesion, controlled drug release, and stimuli responsiveness, make them ideal candidates for treating oral conditions. This review highlights both experimental breakthroughs and theoretical insights into the structure-property relationships within hydrogel composites, aiming to guide future developments in the design and application of these multifunctional materials in dentistry. Ultimately, hydrogel composites represent a promising frontier for advancing materials science with far-reaching implications in healthcare, environmental technology, and beyond.
Collapse
Affiliation(s)
- Dragos Nicolae Fratila
- Department of Oral Diagnosis, Faculty of Dental Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Dragos Ioan Virvescu
- Department of Dental Materials, Faculty of Dental Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Ionut Luchian
- Department of Periodontology, Faculty of Dental Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
| | - Monica Hancianu
- Department of Pharmacognosy, Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania
| | - Elena Raluca Baciu
- Department of Dental Materials, Faculty of Dental Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Oana Butnaru
- Department of Biophysics, Faculty of Dental Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Dana Gabriela Budala
- Department of Prosthodontics, Faculty of Dental Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| |
Collapse
|
5
|
Wu D, Du X, Xue Q, Zhou J, Ping K, Cao Y, Liu S, Zhu Q. Supramolecular Porphyrin Photosensitizers Based on Host-Guest Recognition for In Situ Bacteria-Responsive Near-Infrared Photothermal Therapy. Adv Healthc Mater 2024:e2401662. [PMID: 39388515 DOI: 10.1002/adhm.202401662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 09/30/2024] [Indexed: 10/12/2024]
Abstract
Antibiotic resistance resulting from the overuse of antibiotics sets a high challenge for brutal antimicrobial treatment. Although photothermal therapy (PTT) overcomes the awkward situation of antibiotic resistance, it usually mistakenly kills the beneficial bacteria strains when eliminating pernicious bacteria. Specifically recognizing and damaging the target pathogens is urgently required for PTT-mediated sterilization strategy. Based on the host-guest recognition between cucurbit[10]uril (CB[10]) and porphyrins, two water-soluble supramolecular porphyrins are designed and implement selective bactericidal effect via in situ bacteria-responsive near-infrared (NIR) PTT. With the help of CB[10], the π-π stacking and hydrophobic interactions of porphyrins are efficiently inhibited, thus contributing to a good photostability and a high photothermal conversion efficiency. Attributing to the matching reduction potential between facultative anaerobic Escherichia coli (E. coli) and porphyrins, they are selectively in situ reduced into supramolecular phlorin and supramolecular chlorin by E. coli, successfully achieving a selective sterilization against E. coli. In vivo, the in situ bacteria-responsive NIR PTT systems also promote the quick recovery of E. coli-infected abscesses and trauma on mice without inducing obvious systemic toxicity, providing a new alternative to the current antibiotics and helping relieve the global public health crisis of abusive antibiotics.
Collapse
Affiliation(s)
- Dan Wu
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Xianlong Du
- Bethune First Clinical Medical College, Jilin University, Changchun, 130012, P. R. China
| | - Qiangqiang Xue
- Shanxi Provincial Department of Science and Technology, Taiyuan, 030021, P. R. China
| | - Jie Zhou
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Kunmin Ping
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Yibin Cao
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Shuang Liu
- Emergency Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, P. R. China
| | - Qing Zhu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology Hangzhou, Hangzhou, 310014, P. R. China
| |
Collapse
|
6
|
Hou A, He L, Han M, Shi S, Cheng L, Luo J, Li J, Li J, Yang J. Engineering Coatings Inspired by Cell Membrane Thermal Dynamics to Enhance Photothermal Therapy and Osteogenesis for Implant Infections. ACS APPLIED MATERIALS & INTERFACES 2024; 16:53435-53448. [PMID: 39319421 DOI: 10.1021/acsami.4c09978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Photothermal therapy (PTT) encounters challenges of rapid thermal loss and potential tissue damage. In response, we propose a Heat-Boost and Lock implant coating strategy inspired by the thermal adaptation of biological membranes, enabling precise local photothermal utilization. This coating incorporates a poly(tannic acid) (pTA) bridging layer on implants, facilitating stable layer-by-layer integration of a black phosphorus (BP) photothermal layer and a top cell membrane Heat-Boost and Lock layer. The cell membrane layer significantly curtails photothermal loss (extending the heat retention by 17.62%) and stores energy within its phospholipid bilayer, boosting photothermal effects near implants (achieving a temperature increasement of 275%). Theoretical analysis indicates that these local heat preservation properties of the cell membrane arise from its low thermal conductivity and phase-change properties. In a Staphylococcus aureus-infected bone implant model, our coating demonstrates precise antibacterial action around implants (reach an antibacterial ratio of 99.52%). The synergetic locking function of cell membrane and pTA delays BP biodegradation, ensuring favorable photothermal stability and long-term osteo-inductive performance (increasing the bone volume fraction by 53.45%). Beyond providing an endogenic biointerface, this strategy extends the application of cell membrane in local thermal management, offering possibilities for effective and safe PTT modalities.
Collapse
Affiliation(s)
- Ailin Hou
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Libang He
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Mingyue Han
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Shijie Shi
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Lei Cheng
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jun Luo
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Jianshu Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
- Med-X Center for Materials, Sichuan University, Chengdu 610065, P. R. China
| | - Jiyao Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jiaojiao Yang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| |
Collapse
|
7
|
Rai M, Ingle AP, Törős G, Prokisch J. Assessing the efficacy of carbon nanodots derived from curcumin on infectious diseases. Expert Rev Anti Infect Ther 2024:1-15. [PMID: 39317385 DOI: 10.1080/14787210.2024.2409401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 09/19/2024] [Accepted: 09/23/2024] [Indexed: 09/26/2024]
Abstract
INTRODUCTION The threat of new, emerging, and multidrug-resistant microbes is increasing which has created the necessity for new antimicrobials. In this regard, nanotechnology can be an alternative for the treatment of infectious microbes. Curcumin has been used since ancient times as antimicrobials; however, it has limitations due to its less aqueous solubility, bioavailability, and biocompatibility. This problem can be solved by curcumin-derived carbon nanodots, which are emerging antimicrobials of <10 nm size, water-soluble, biocompatible, less toxic, and fluorescent. AREAS COVERED The review discusses the application of curcumin-derived carbon nanodots against various pathogenic microbes including bacteria and dreaded viruses like SARS-CoV-2. In addition, the role of curcumin carbon nanodots in biolabelling of pathogenic microbes, mechanism of action, bioimaging, and therapy has been critically examined. EXPERT OPINION Carbon nanodots play an important role in combating pathogenic microbes by early diagnosis, bioimaging, nanocarrier for antimicrobial drugs, and therapy of infectious diseases. Curcumin carbon nanodots have already demonstrated their benefits of being water soluble, bioavailable, and biocompatible. However, more thorough research is needed to understand the efficacy and safety of curcumin carbon nanodots. In the future, curcumin-derived carbon nanodots can be used as alternative antimicrobial agents to fight microbial infections including multidrug-resistant microbes.
Collapse
Affiliation(s)
- Mahendra Rai
- Department of Biotechnology, Sant Gadge Baba Amravati University, Amravati, India
- Institute of Animal Science, Biotechnology and Nature Conservation, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Debrecen, Hungary
| | - Avinash P Ingle
- Biotechnology Centre, Department of Agricultural Botany, Dr. PDKV, Akola, India
| | - Gréta Törős
- Institute of Animal Science, Biotechnology and Nature Conservation, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Debrecen, Hungary
- School of Animal Husbandry, University of Debrecen, Debrecen, Hungary
| | - József Prokisch
- Institute of Animal Science, Biotechnology and Nature Conservation, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
8
|
Mu W, Liu J, Zhang H, Weng L, Liu T, Chen X. Intelligent Hydrogel with Physiologically Dependent Capacities of Photothermal Conversion and Nanocatalytic Medicine to Integratively Inhibit Bacteria and Inflammation for On-Demand Treatment of Infected Wound. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2405464. [PMID: 39370674 DOI: 10.1002/smll.202405464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/23/2024] [Indexed: 10/08/2024]
Abstract
Although chemodynamic therapy (CDT) and photothermal therapy (PTT) based on a variety of nanoparticles have been developed to achieve effective anti-bacterial therapy, the limited therapeutic efficiency of CDT alone, as well as the undifferentiated damage of PTT to both bacteria and surrounding healthy tissue are still challenges for their clinical application of infected wounds treatments. In addition, during the CDT and PTT-mediated antimicrobial processes, the endogenous macrophages would be easily converted to pro-inflammatory macrophages (M1 phenotype) under local ROS and hyperthermia to promote inflammation, resulting in unexpected suppression of tissue regeneration and possible wound deterioration. To address these problems, a biodegradable sodium alginate/hyaluronic acid hydrogel loaded with functional CeO2-Au nano-alloy (AO@ACP) is fabricated to not only achieve precise and efficient antibacterial activity through infection-environment dependent photothermal-chemodynamic therapy but also rapidly eliminate the excess reactive oxygens (ROS) in the M1 type macrophage at the infected area to induce their polarization to M2 type for significant inhibition of inflammation and remarkable enhancement of tissue regeneration, hopefully developing an effective strategy to treat infected wound.
Collapse
Affiliation(s)
- Wenyun Mu
- Department of Chemical Engineering, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institution of Polymer Science in Chemical Engineering, School of Chemical Engineering and Technology, Xi'an Jiao Tong University, Xi'an, 710049, China
| | - Jie Liu
- Department of Chemical Engineering, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institution of Polymer Science in Chemical Engineering, School of Chemical Engineering and Technology, Xi'an Jiao Tong University, Xi'an, 710049, China
| | - Handan Zhang
- Department of Chemical Engineering, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institution of Polymer Science in Chemical Engineering, School of Chemical Engineering and Technology, Xi'an Jiao Tong University, Xi'an, 710049, China
| | - Lin Weng
- Department of Chemical Engineering, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institution of Polymer Science in Chemical Engineering, School of Chemical Engineering and Technology, Xi'an Jiao Tong University, Xi'an, 710049, China
| | - Tao Liu
- Department of Chemical Engineering, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institution of Polymer Science in Chemical Engineering, School of Chemical Engineering and Technology, Xi'an Jiao Tong University, Xi'an, 710049, China
| | - Xin Chen
- Department of Chemical Engineering, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institution of Polymer Science in Chemical Engineering, School of Chemical Engineering and Technology, Xi'an Jiao Tong University, Xi'an, 710049, China
| |
Collapse
|
9
|
Chen X, Shi X, Liu X, Zhai X, Li W, Hong W. Eliminating Intracellular MRSA via Mannosylated Lipid-Coated Calcium Phosphate Nanoparticles. Mol Pharm 2024. [PMID: 39368111 DOI: 10.1021/acs.molpharmaceut.4c00779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2024]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) within cells proves exceptionally challenging to eradicate using conventional antimicrobials, resulting in recurring infections and heightened resistance. Herein, we reported an innovative mannosylated lipid-coated photodynamic/photothermal calcium phosphate nanoparticle (MAN-LCaP@ICG) for eradicating intracellular MRSA. The MAN-LCaP functioned as the vehicle for drug delivery, exhibiting preferential uptake by macrophages and facilitating the transport of ICG to intracellular pathogens. The MAN units integrated into MAN-LCaP@ICG could promote binding with MAN residuals on macrophage cells, as evidenced by cellular uptake assays using fluorescence microscopy and flow cytometry. Following its targeted accumulation, MAN-LCaP@ICG could enter into the cytoplasm and efficiently eradicate intracellular MRSA by a combination of the lysosome escape capability of CaP and the photodynamic and photothermal therapeutic effects of ICG. Furthermore, MAN-LCaP@ICG could kill MRSA more effectively than LCaP@ICG without MAN units or free ICG in a mouse peritoneal infection model. Therefore, MAN-LCaP@ICG provided a promising direction for human clinical application in combating intracellular infections.
Collapse
Affiliation(s)
- Xiangjun Chen
- School of Pharmacy, Shandong Engineering Research Center of New-Type Drug Loading & Releasing Technology and Preparation, Binzhou Medical University, 346 Guanhai Road, Yantai 264003, P. R. China
| | - Xiaoyi Shi
- School of Pharmacy, Shandong Engineering Research Center of New-Type Drug Loading & Releasing Technology and Preparation, Binzhou Medical University, 346 Guanhai Road, Yantai 264003, P. R. China
| | - Xiao Liu
- School of Pharmacy, Shandong Engineering Research Center of New-Type Drug Loading & Releasing Technology and Preparation, Binzhou Medical University, 346 Guanhai Road, Yantai 264003, P. R. China
| | - Xuanxiang Zhai
- School of Pharmacy, Shandong Engineering Research Center of New-Type Drug Loading & Releasing Technology and Preparation, Binzhou Medical University, 346 Guanhai Road, Yantai 264003, P. R. China
| | - Wenting Li
- School of Pharmacy, Shandong Engineering Research Center of New-Type Drug Loading & Releasing Technology and Preparation, Binzhou Medical University, 346 Guanhai Road, Yantai 264003, P. R. China
| | - Wei Hong
- School of Pharmacy, Shandong Engineering Research Center of New-Type Drug Loading & Releasing Technology and Preparation, Binzhou Medical University, 346 Guanhai Road, Yantai 264003, P. R. China
| |
Collapse
|
10
|
Luo Y, Chen M, Zhang T, Peng Q. 2D nanomaterials-based delivery systems and their potentials in anticancer synergistic photo-immunotherapy. Colloids Surf B Biointerfaces 2024; 242:114074. [PMID: 38972257 DOI: 10.1016/j.colsurfb.2024.114074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/22/2024] [Accepted: 07/03/2024] [Indexed: 07/09/2024]
Abstract
As the field of cancer therapeutics evolves, integrating two-dimensional (2D) nanomaterials with photo-immunotherapy has emerged as a promising approach with significant potential to augment cancer treatment efficacy. These 2D nanomaterials include graphene-based 2D nanomaterials, 2D MXenes, 2D layered double hydroxides, black phosphorus nanosheets, 2D metal-organic frameworks, and 2D transition metal dichalcogenides. They exhibit high load capacities, multiple functionalization pathways, optimal biocompatibility, and physiological stability. Predominantly, they function as anti-tumor delivery systems, amalgamating diverse therapeutic modalities, most notably phototherapy and immunotherapy, and the former is a recognized non-invasive treatment modality, and the latter represents the most promising anti-cancer strategy presently accessible. Thus, integrating phototherapy and immunotherapy founded on 2D nanomaterials unveils a novel paradigm in the war against cancer. This review delineates the latest developments in 2D nanomaterials as delivery systems for synergistic photo-immunotherapy in cancer treatment. We elaborate on the burgeoning realm of photo-immunotherapy, exploring the interplay between phototherapy and enhanced immune cells, immune response modulation, or immunosuppressive tumor microenvironments. Notably, the strategies to augment photo-immunotherapy have also been discussed. Finally, we discuss the challenges and future perspectives of these 2D nanomaterials in photo-immunotherapy.
Collapse
Affiliation(s)
- Yankun Luo
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Ming Chen
- West China School of Medicine, Sichuan University, Chengdu, Sichuan 610041, China
| | - Ting Zhang
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Qiang Peng
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.
| |
Collapse
|
11
|
Pourrafsanjani MH, Taghavi R, Hasanzadeh A, Rostamnia S. Green stabilization of silver nanoparticles over the surface of biocompatible Fe 3O 4@CMC for bactericidal applications. Int J Biol Macromol 2024; 277:134227. [PMID: 39074708 DOI: 10.1016/j.ijbiomac.2024.134227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 07/23/2024] [Accepted: 07/26/2024] [Indexed: 07/31/2024]
Abstract
The emergence of antimicrobial resistance in bacteria, especially in agents associated with urinary tract infections (UTIs), has initiated an exciting effort to develop biocompatible nanoparticles to confront their threat. Designing simple, cheap, biocompatible, and efficient nanomaterials as bactericidal agents seems to be a judicious response to this problem. Here, a solvothermal method was hired for the one-pot preparation of the cellulose gum (carboxymethyl cellulose, CMC) magnetic composite to prepare a cost-effective, efficient, and biocompatible support for the plant-based stabilization of the silver NPs. The green stabilization of the Ag NPs is performed using Euphorbia plant extract with high efficiency. Various characterization methods, including FT-IR, XRD, SEM, EDS, TEM, and VSM were used to study the composition and properties of Fe3O4@CMC/AgNPs. The composite shows well integrity and monodispersity with a mean diameter of <300 nm, indicating its potential for bio-related application. The CMC functionalities of the proposed material facilitated the stabilization of the Ag NPs, resulting in their monodispersity and enhanced performance. The manufactured composite was used as an antibacterial agent for the removal of UTIs agents, collected from 200 hospitalized patients with acute coronary syndrome, which showed promising results. This study showed that the concentration of the Ag NPs has a direct relationship with the antibacterial properties of the composite.
Collapse
Affiliation(s)
- Mojgan Hajahmadi Pourrafsanjani
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia 57157-89400, Iran
| | - Reza Taghavi
- Organic and Nano Group, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Amir Hasanzadeh
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia 57157-89400, Iran.
| | - Sadegh Rostamnia
- Organic and Nano Group, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran.
| |
Collapse
|
12
|
Chen Y, Li H, Liu N, Feng D, Wu W, Gu K, Wu A, Li C, Wang X. Multi-mechanism antitumor/antibacterial effects of Cu-EGCG self-assembling nanocomposite in tumor nanotherapy and drug-resistant bacterial wound infections. J Colloid Interface Sci 2024; 671:751-769. [PMID: 38824748 DOI: 10.1016/j.jcis.2024.05.080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/11/2024] [Accepted: 05/13/2024] [Indexed: 06/04/2024]
Abstract
Chemotherapy and surgery stand as primary cancer treatments, yet the unique traits of the tumor microenvironment hinder their effectiveness. The natural compound epigallocatechin gallate (EGCG) possesses potent anti-tumor and antibacterial traits. However, the tumor's adaptability to chemotherapy due to its acidic pH and elevated glutathione (GSH) levels, coupled with the challenges posed by drug-resistant bacterial infections post-surgery, impede treatment outcomes. To address these challenges, researchers strive to explore innovative treatment strategies, such as multimodal combination therapy. This study successfully synthesized Cu-EGCG, a metal-polyphenol network, and detailly characterized it by using synchrotron radiation and high-resolution mass spectrometry (HRMS). Through chemodynamic therapy (CDT), photothermal therapy (PTT), and photodynamic therapy (PDT), Cu-EGCG showed robust antitumor and antibacterial effects. Cu+ in Cu-EGCG actively participates in a Fenton-like reaction, generating hydroxyl radicals (·OH) upon exposure to hydrogen peroxide (H2O2) and converting to Cu2+. This Cu2+ interacts with GSH, weakening the oxidative stress response of bacteria and tumor cells. Density functional theory (DFT) calculations verified Cu-EGCG's efficient GSH consumption during its reaction with GSH. Additionally, Cu-EGCG exhibited outstanding photothermal conversion when exposed to 808 nm near-infrared (NIR) radiation and produced singlet oxygen (1O2) upon laser irradiation. In both mouse tumor and wound models, Cu-EGCG showcased remarkable antitumor and antibacterial properties.
Collapse
Affiliation(s)
- Yinyin Chen
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Haoran Li
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Nana Liu
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Dongju Feng
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Wei Wu
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Ke Gu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
| | - Aimin Wu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China.
| | - Chunxia Li
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, Shandong, China.
| | - Xianxiang Wang
- College of Science, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| |
Collapse
|
13
|
Chen S, Huang B, Tian J, Zhang W. Advancements of Porphyrin-Derived Nanomaterials for Antibacterial Photodynamic Therapy and Biofilm Eradication. Adv Healthc Mater 2024; 13:e2401211. [PMID: 39073000 DOI: 10.1002/adhm.202401211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/17/2024] [Indexed: 07/30/2024]
Abstract
The threat posed by antibiotic-resistant bacteria and the challenge of biofilm formation has highlighted the inadequacies of conventional antibacterial therapies, leading to increased interest in antibacterial photodynamic therapy (aPDT) in recent years. This approach offers advantages such as minimal invasiveness, low systemic toxicity, and notable effectiveness against drug-resistant bacterial strains. Porphyrins and their derivatives, known for their high molar extinction coefficients and singlet oxygen quantum yields, have emerged as crucial photosensitizers in aPDT. However, their practical application is hindered by challenges such as poor water solubility and aggregation-induced quenching. To address these limitations, extensive research has focused on the development of porphyrin-based nanomaterials for aPDT, enhancing the efficacy of photodynamic sterilization and broadening the range of antimicrobial activity. This review provides an overview of various porphyrin-based nanomaterials utilized in aPDT and biofilm eradication in recent years, including porphyrin-loaded inorganic nanoparticles, porphyrin-based polymer assemblies, supramolecular assemblies, metal-organic frameworks (MOFs), and covalent organic frameworks (COFs). Additionally, insights into the prospects of aPDT is offered, highlighting its potential for practical implementation.
Collapse
Affiliation(s)
- Suwen Chen
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Baoxuan Huang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Jia Tian
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Weian Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| |
Collapse
|
14
|
Ganeshan S, Parihar N, Chonzom D, Mohanakrishnan D, Das R, Sarma D, Gogoi D, Das MR, Upadhayula SM, Pemmaraju DB. Glycyrrhizin functionalized CuS Nanoprobes for NIR Light-based therapeutic mitigation of acne vulgaris. Drug Deliv Transl Res 2024; 14:2727-2742. [PMID: 38704496 DOI: 10.1007/s13346-024-01594-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/29/2024] [Indexed: 05/06/2024]
Abstract
Acne Vulgaris or Acne is a multifactorial bacterial infection caused by Propionibacterium acne, leading to inflammation and decreased quality of life, especially in adolescence. Currently, antibiotics and retinoids are preferred for treating acne. However, their continuous usage may lead to anti-microbial resistance and other side effects. Therefore, research on developing effective strategies to reduce antimicrobial resistance and improve acne healing is ongoing. The current work reports the synthesis and evaluation of near-infrared light-absorbing copper sulfide (CuS) nanoparticles loaded with a biomolecule, Glycyrrhizin (Ga). The photothermal efficacy studies, and in-vitro and in-vivo experiments indicated that the Ga-CuS NPs generated localized hyperthermia in acne-causing bacteria, leading to their complete growth inhibition. The results indicated that the Ga-Cus NPs possess excellent antibacterial and anti-inflammatory properties in the acne and inflammatory models. This could be from the synergistic effect of CuS NPs mediated mild Photothermal effect and inherent pharmacological properties of Ga. Further detailed studies of the formulations can pave the way for application in cosmetic clinics for the effective and minimally invasive management of Acne-like conditions.
Collapse
Affiliation(s)
- Srivathsan Ganeshan
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research, Guwahati, 781101, Assam, India
| | - Nidhi Parihar
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research, Guwahati, 781101, Assam, India
| | - Donker Chonzom
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research, Guwahati, 781101, Assam, India
| | - Dinesh Mohanakrishnan
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research, Guwahati, 781101, Assam, India
| | - Rajdeep Das
- Department of Zoology, Gauhati University, Guwahati, 781014, Assam, India
| | - Dandadhar Sarma
- Department of Zoology, Gauhati University, Guwahati, 781014, Assam, India
| | - Devipriya Gogoi
- Materials Sciences, and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, 785006, Assam, India
| | - Manash Ranjan Das
- Materials Sciences, and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, 785006, Assam, India
- Academy of Scientific and Innovative Research, Ghaziabad, 201002, India
| | - Suryanarayana Murty Upadhayula
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research, Guwahati, 781101, Assam, India
| | - Deepak Bharadwaj Pemmaraju
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research, Guwahati, 781101, Assam, India.
| |
Collapse
|
15
|
Chao M, Huang Y, Zhou P, Wu G, Ren Y, Yan H, Dong S, Yan X, Chen H, Gao F. Au/Ag@ZnS yolk-shell photocatalysts enhanced with noble metals and hyaluronic acid for efficient hydrogen production in rheumatoid arthritis therapy. Int J Biol Macromol 2024; 280:135929. [PMID: 39322151 DOI: 10.1016/j.ijbiomac.2024.135929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 09/03/2024] [Accepted: 09/20/2024] [Indexed: 09/27/2024]
Abstract
Rheumatoid arthritis, characterized by the abnormal proliferation of synovial cells and extensive macrophage infiltration, is a chronic inflammatory disease. Molecular hydrogen, known for its antioxidant properties, has shown promise in eliminating reactive oxygen species. However, the low solubility and bioavailability of hydrogen limit the effectiveness of this therapy. To overcome these issues, we developed a novel yolk-shell heterostructure, H-AAZS (Au/Ag@ZnS modified hyaluronic acid), utilizing a hydrothermal cation exchange process. Through ion doping, semiconductor hybridization, and Schottky barriers in H-AAZS, photocatalysis for hydrogen generation has been successfully implemented using 660 nm laser irradiation. Additionally, the H-AAZS demonstrate the capacity for mild photothermal therapy, inducing apoptosis in synovial cells with Au's hot electrons with 660 nm laser irradiation. This strategy not only improves the abnormal proliferation of synovial cells but also avoids the exacerbation of inflammation caused by thermal stimulation. Both in vitro and in vivo experiments validate the synergistic effects of hydrogen production mediated anti-inflammatory responses, macrophage polarization and photothermal therapy. Therefore, this work represents a significant advancement as it ingeniously harnesses photocatalysis to modulate the synovial microenvironment while mitigating the side effects associated with photothermal therapy. This nanocrystal provides new and valuable insights into the potential treatment of Rheumatoid arthritis.
Collapse
Affiliation(s)
- Minghao Chao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, XuZhou Medical University, 221004 Xuzhou, China; Department of Orthopedics, the Affiliated Hospital of Xuzhou Medical University, 221004 Xuzhou, China; Department of Orthopaedic Surgery, Lishui Central Hospital and Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, Zhejiang Province, China
| | - Yuqi Huang
- Department of Dermatology, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou 215000, Jiangsu, China
| | - Peng Zhou
- Department of Orthopedics, The Affiliated Huai'an Hospital of Xuzhou Medical University, The Second People's Hospital of Huai'an, Huai'an 223002, China
| | - Guoquan Wu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, XuZhou Medical University, 221004 Xuzhou, China; Department of Orthopedics, the Affiliated Hospital of Xuzhou Medical University, 221004 Xuzhou, China
| | - Yiping Ren
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, XuZhou Medical University, 221004 Xuzhou, China
| | - Hanrong Yan
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, XuZhou Medical University, 221004 Xuzhou, China
| | - Shuqing Dong
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, XuZhou Medical University, 221004 Xuzhou, China
| | - Xiang Yan
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, XuZhou Medical University, 221004 Xuzhou, China
| | - Hongliang Chen
- Department of Orthopedics, the Affiliated Hospital of Xuzhou Medical University, 221004 Xuzhou, China.
| | - Fenglei Gao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, XuZhou Medical University, 221004 Xuzhou, China.
| |
Collapse
|
16
|
Bai L, Yang M, Wu J, You R, Chen Q, Cheng Y, Qian Z, Yang X, Wang Y, Liu Y. An injectable adhesive hydrogel for photothermal ablation and antitumor immune activation against bacteria-associated oral squamous cell carcinoma. Acta Biomater 2024; 186:229-245. [PMID: 39038749 DOI: 10.1016/j.actbio.2024.07.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/13/2024] [Accepted: 07/17/2024] [Indexed: 07/24/2024]
Abstract
Pathogenic bacteria are closely associated with the occurrence, development and metastasis of oral squamous cell carcinoma (OSCC). Antibacterial therapy has been considered an enhancement strategy to suppress bacteria-associated tumors and promote anti-tumor immune responses. Herein, we developed an injectable adhesive hydrogel, PNIPAM/DL@TIR, for the in situ photothermal ablation and robust stimulation of antitumor immunity against OSCC colonized by Porphyromonas gingivalis (Pg), one of the major oral pathogenic bacteria. PNIPAM/DL@TIR, composed of poly(N-isopropylacrylamide), demethylated lignin, and TAT peptide-conjugated IR820, was prepared using a simple dissolve-dry-swell solvent exchange method. Upon 808 nm laser irradiation, PNIPAM/DL@TIR exerted photothermal effects to ablate Pg-colonized OSCC and generate dual tumor and bacterial antigens. Owing to its large number of catechol groups, PNIPAM/DL@TIR efficiently captured these antigens to form an in situ antigen repository, thereby eliciting robust and durable antitumor immune responses. Proteomic analysis revealed that the captured antigens comprised both tumor neoantigens and bacterial antigens. The catechol groups endowed PNIPAM/DL@TIR with antioxidant activity, which was also conducive to stimulating antitumor immunity. Altogether, this study develops an injectable adhesive hydrogel and provides a combination strategy for treating bacteria-associated OSCC. STATEMENT OF SIGNIFICANCE: In this study, we developed an injectable adhesive hydrogel, PNIPAM/DL@TIR, for in situ photothermal ablation and robust stimulation of antitumor immunity against OSCC colonized by Porphyromonas gingivalis, one of the major oral pathogenic bacteria. PNIPAM/DL@TIR, which consists of poly(N-isopropylacrylamide), demethylated lignin, and TAT peptide-conjugated IR820 exhibited outstanding photothermal performance. Owing to the presence of catechol groups, PNIPAM/DL@TIR has good bioadhesive properties and can capture protein antigens to form in situ antigen repository, thus initiating robust and long-term antitumor immune responses. In addition, PNIPAM/DL@TIR exhibited strong antioxidant activity that is favorable for promoting antitumor immunity. In the mouse model of OSCC with bacterial infection, PNIPAM/DL@TIR not only ablated the primary tumors upon NIR laser irradiation, but also induced tumor and bacterial vaccination in situ to suppress distant tumors and lung metastasis.
Collapse
Affiliation(s)
- Liya Bai
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Meng Yang
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Jiaxin Wu
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Ran You
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Qian Chen
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Yuanyuan Cheng
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Zhanyin Qian
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Xiaoying Yang
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Yinsong Wang
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin 300070, China.
| | - Yuanyuan Liu
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China.
| |
Collapse
|
17
|
Jeon K, Andoy NMO, Dufour D, Yang JYC, Lévesque CM, Sullan RMA. Cocktail Approach with Polyserotonin Nanoparticles and Peptides for Treatment of Streptococcus mutans. ACS Infect Dis 2024; 10:3176-3184. [PMID: 39158205 DOI: 10.1021/acsinfecdis.4c00107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
Dental plaque, formed by a Streptococcus mutans biofilm, is a major contributor to cavity formation. While antimicrobial strategies exist, the growing risk of antibiotic resistance necessitates alternative therapeutic solutions. Polyserotonin nanoparticles (PSeNPs), recently recognized for their photothermal property and promising biomedical applications, open up a new avenue for antimicrobial use. Here, we introduced a UV-initiated synthetic route for PSeNPs with improved yield. Using these PSeNPs, a cocktail treatment to reduce the viability of this cavity-causing bacteria was developed. This cocktail comprises an S. mutans-targeting antimicrobial peptide (GH12), an intraspecies competence-stimulating peptide that triggers altruistic cell death in S. mutans, and laser-activated heating of PSeNPs. The "peptide + PSeNP + laser" combination effectively inhibits S. mutans growth in both planktonic and biofilm states. Moreover, the cocktail approach remains effective in reducing the viability of S. mutans in a more virulent dual-species biofilm with Candida albicans. Overall, our results reinforce the utility of a multipronged therapeutic strategy to reduce cariogenic bacteria in the complex model oral biofilm.
Collapse
Affiliation(s)
- Keuna Jeon
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1065 Military Trail, Toronto, Ontario M1C 1A4, Canada
- Department of Chemistry, University of Toronto, 80 Street George Street, Toronto, Ontario M5S 3H6, Canada
| | - Nesha May O Andoy
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1065 Military Trail, Toronto, Ontario M1C 1A4, Canada
| | - Delphine Dufour
- Faculty of Dentistry, University of Toronto, 124 Edward Street, Toronto, Ontario M5G 1G6, Canada
| | - Jessica Y C Yang
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1065 Military Trail, Toronto, Ontario M1C 1A4, Canada
| | - Céline M Lévesque
- Faculty of Dentistry, University of Toronto, 124 Edward Street, Toronto, Ontario M5G 1G6, Canada
| | - Ruby May A Sullan
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1065 Military Trail, Toronto, Ontario M1C 1A4, Canada
- Department of Chemistry, University of Toronto, 80 Street George Street, Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|
18
|
Xu X, Zhao H, Ren S, He W, Zhang L, Cheng Z. Facile Surface Modification with Croconaine-Functionalized Polymer on Polypropylene for Antifouling and NIR-Light-Mediated Photothermal Sterilization. ACS APPLIED MATERIALS & INTERFACES 2024; 16:46947-46963. [PMID: 39225271 DOI: 10.1021/acsami.4c09963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Biomedical-device-associated infection (BAI) is undoubtedly a major concern and a serious challenge in modern medicine. Therefore, the development of biomedical materials that are capable of resisting or killing bacteria is of great importance. In this work, a croconaine-functionalized polymer with antifouling and near-infrared (NIR) photothermal bactericidal properties was prepared and facilely modified on polypropylene (PP) to combat medical device infections. Croconaine dye is elaborately modified as a "living" initiator, termed CR-4EBiB, for preparing amphiphilic block polymers by atom transfer radical polymerization (ATRP). In the formed polymer coating, the hydrophobic block can strongly adhere to the surface of the PP substrate, whereas the hydrophilic block is located on the outer layer by solvent-induced resistance to bacterial adhesion. Under the irradiation of an NIR laser (808 nm), the croconaine dye in the coating achieved maximum conversion of light to heat to effectively kill E. coli, S. aureus, and methicillin-resistant Staphylococcus aureus (MRSA). This work provides a facile and promising strategy for the development of implantable antibacterial biomedical materials.
Collapse
Affiliation(s)
- Xiang Xu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials; Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application; Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis; College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Haitao Zhao
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials; Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application; Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis; College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Shusu Ren
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials; Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application; Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis; College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Weiwei He
- State Key Laboratory of Radiation Medicine and Protection, School of Radiological and Interdisciplinary Sciences (RADX), Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, China
| | - Lifen Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials; Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application; Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis; College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Zhenping Cheng
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials; Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application; Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis; College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| |
Collapse
|
19
|
Ding M, Zhang Y, Li X, Li Q, Xiu W, He A, Dai Z, Dong H, Shan J, Mou Y. Simultaneous Biofilm Disruption, Bacterial Killing, and Inflammation Elimination for Wound Treatment Using Silver Embellished Polydopamine Nanoplatform. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400927. [PMID: 38726949 DOI: 10.1002/smll.202400927] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 04/05/2024] [Indexed: 10/04/2024]
Abstract
Due to the presence of spatial barriers, persistent bacteria, and excessive inflammation in bacteria biofilm-infected wounds, current nanoplatforms cannot effectively address these issues simultaneously during the therapeutic process. Herein, a novel biomimetic photothermal nanoplatform integrating silver and polydopamine nanoparticles (Ag/PDAs) that can damage biofilms, kill bacterial persisters, and reduce inflammation for wound treatment is presented. These findings reveal that Ag/PDAs exhibit a broad-spectrum antimicrobial activity through direct damage to the bacterial membrane structure. Additionally, Ag/PDAs demonstrate a potent photothermal conversion efficiency. When combined with near-infrared (NIR) irradiation, Ag/PDAs effectively disrupt the spatial structure of biofilms and synergistically eradicate the resident bacteria. Furthermore, Ag/PDAs show remarkable anti-inflammatory properties in counteracting bacterium-induced macrophage polarization. The in vivo results confirm that the topical application of Ag/PDAs significantly suppress Staphylococcus aureus biofilm-infected wounds in murine models, concurrently facilitating wound healing. This research provides a promising avenue for the eradication of bacterial biofilms and the treatment of biofilm-infected wounds.
Collapse
Affiliation(s)
- Meng Ding
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Research Institute of Stomatology, Nanjing University, 30 Zhongyang Road, Nanjing, Jiangsu, 210008, China
| | - Yu Zhang
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Research Institute of Stomatology, Nanjing University, 30 Zhongyang Road, Nanjing, Jiangsu, 210008, China
| | - Xiaoye Li
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Research Institute of Stomatology, Nanjing University, 30 Zhongyang Road, Nanjing, Jiangsu, 210008, China
| | - Qiang Li
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Research Institute of Stomatology, Nanjing University, 30 Zhongyang Road, Nanjing, Jiangsu, 210008, China
| | - Weijun Xiu
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore, 119077, Singapore
| | - Ao He
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Research Institute of Stomatology, Nanjing University, 30 Zhongyang Road, Nanjing, Jiangsu, 210008, China
| | - Zhuo Dai
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Research Institute of Stomatology, Nanjing University, 30 Zhongyang Road, Nanjing, Jiangsu, 210008, China
| | - Heng Dong
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Research Institute of Stomatology, Nanjing University, 30 Zhongyang Road, Nanjing, Jiangsu, 210008, China
| | - Jingyang Shan
- Key Laboratory for Organic Electronics and Information Displays, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials, Jiangsu National Synergetic Innovation Centre for Advanced Materials, School of Chemistry and Life Sciences, Nanjing University of Posts and Telecommunications, Nanjing, 210049, China
| | - Yongbin Mou
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Research Institute of Stomatology, Nanjing University, 30 Zhongyang Road, Nanjing, Jiangsu, 210008, China
| |
Collapse
|
20
|
Bu Q, Jiang D, Yu Y, Deng Y, Chen T, Xu L. Surface chemistry engineered selenium nanoparticles as bactericidal and immuno-modulating dual-functional agents for combating methicillin-resistant Staphylococcus aureus Infection. Drug Resist Updat 2024; 76:101102. [PMID: 38936006 DOI: 10.1016/j.drup.2024.101102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 05/26/2024] [Accepted: 06/09/2024] [Indexed: 06/29/2024]
Abstract
Because of the extremely complexed microenvironment of drug-resistant bacterial infection, nanomaterials with both bactericidal and immuno-modulating activities are undoubtedly the ideal modality for overcoming drug resistance. Herein, we precisely engineered the surface chemistry of selenium nanoparticles (SeNPs) using neutral (polyvinylpyrrolidone-PVP), anionic (letinan-LET) and cationic (chitosan-CS) surfactants. It was found that surface chemistry greatly influenced the bioactivities of functionalized SeNPs, their interactions with methicillin-resistant Staphylococcus aureus (MRSA), immune cells and metabolisms. LET-functionalized SeNPs with distinct metabolisms exhibited the best inhibitory efficacy compared to other kinds of SeNPs against MRSA through inducing robust ROS generation and damaging bacterial cell wall. Meanwhile, only LET-SeNPs could effectively activate natural kill (NK) cells, and enhance the phagocytic capability of macrophages and its killing activity against bacteria. Furthermore, in vivo studies suggested that LET-SeNPs treatment highly effectively combated MRSA infection and promoted wound healing by triggering much more mouse NK cells, CD8+ and CD4+ T lymphocytes infiltrating into the infected area at the early stage to efficiently eliminate MRSA in the mouse model. This study demonstrates that the novel functionalized SeNP with dual functions could serve as an effective antibacterial agent and could guide the development of next generation antibacterial agents.
Collapse
Affiliation(s)
- Qingyue Bu
- Department of Intensive Care Unit, The First Affiliated Hospital, Department of Chemistry, State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Viral Pathogenesis & Infection Prevention and Control, Jinan University, Guangzhou 510632, China
| | - Dan Jiang
- Department of Intensive Care Unit, The First Affiliated Hospital, Department of Chemistry, State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Viral Pathogenesis & Infection Prevention and Control, Jinan University, Guangzhou 510632, China
| | - Yangyang Yu
- Department of Intensive Care Unit, The First Affiliated Hospital, Department of Chemistry, State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Viral Pathogenesis & Infection Prevention and Control, Jinan University, Guangzhou 510632, China
| | - Yunqing Deng
- Department of Intensive Care Unit, The First Affiliated Hospital, Department of Chemistry, State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Viral Pathogenesis & Infection Prevention and Control, Jinan University, Guangzhou 510632, China
| | - Tianfeng Chen
- Department of Intensive Care Unit, The First Affiliated Hospital, Department of Chemistry, State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Viral Pathogenesis & Infection Prevention and Control, Jinan University, Guangzhou 510632, China.
| | - Ligeng Xu
- Department of Intensive Care Unit, The First Affiliated Hospital, Department of Chemistry, State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Viral Pathogenesis & Infection Prevention and Control, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
21
|
Gerile S, Shen Q, Kang J, Liu W, Dong A. Current advances in black phosphorus-based antibacterial nanoplatform for infection therpy. Colloids Surf B Biointerfaces 2024; 241:114037. [PMID: 38878660 DOI: 10.1016/j.colsurfb.2024.114037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/01/2024] [Accepted: 06/12/2024] [Indexed: 07/29/2024]
Abstract
Black phosphorus (BP) has attracted much attention due to its excellent physiochemical properties. However, due to its biodegradability and simple antibacterial mechanism, using only BP nanomaterials to combat bacterial infections caused by drug-resistant pathogens remains a significant challenge. In order to improve the antibacterial efficiency and avoid the emergence of drug resistance, BP nanomaterials have been combined with other functional materials to form black phosphorus-based antibacterial nanoplatform (BPANP), which provides unprecedented opportunities for the treatment of drug-resistant infections. This article reviews the performance of BPANP and its multiple antibacterial mechanisms while emphatically introducing its design direction and latest application progress in antibacterial fields. Moreover, this paper additionally summarizes and discusses the current challenges and inadequacies of BPANP that need to be improved in future research. We believe that this review will provide researchers with an up-to-date and multifaceted reference, and provide new ideas for designing effective strategies against drug-resistant bacteria.
Collapse
Affiliation(s)
- Saren Gerile
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot 010021, PR China
| | - Qiudi Shen
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot 010021, PR China
| | - Jing Kang
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot 010021, PR China.
| | - Wenxin Liu
- College of Chemistry and Materials Science, Inner Mongolia Minzu University, Tongliao 028000, PR China.
| | - Alideertu Dong
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot 010021, PR China.
| |
Collapse
|
22
|
Wang X, Chen C, Hu J, Liu C, Ning Y, Lu F. Current strategies for monitoring and controlling bacterial biofilm formation on medical surfaces. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 282:116709. [PMID: 39024943 DOI: 10.1016/j.ecoenv.2024.116709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/03/2024] [Accepted: 07/07/2024] [Indexed: 07/20/2024]
Abstract
Biofilms, intricate microbial communities that attach to surfaces, especially medical devices, form an exopolysaccharide matrix, which enables bacteria to resist environmental pressures and conventional antimicrobial agents, leading to the emergence of multi-drug resistance. Biofilm-related infections associated with medical devices are a significant public health threat, compromising device performance. Therefore, developing effective methods for supervising and managing biofilm growth is imperative. This in-depth review presents a systematic overview of strategies for monitoring and controlling bacterial biofilms. We first outline the biofilm creation process and its regulatory mechanisms. The discussion then progresses to advancements in biosensors for biofilm detection and diverse treatment strategies. Lastly, this review examines the obstacles and new perspectives associated with this domain to facilitate the advancement of innovative monitoring and control solutions. These advancements are vital in combating the spread of multi drug-resistant bacteria and mitigating public health risks associated with infections from biofilm formation on medical instruments.
Collapse
Affiliation(s)
- Xiaoqi Wang
- Department of integrated traditional Chinese and Western Medicine, The Medicine School of Hunan University of Chinese Medicine, Changsha, Hunan 410208, People's Republic of China
| | - Chunjing Chen
- Department of Microbiology, The Medicine School of Hunan University of Chinese Medicine, Changsha, Hunan 410208, People's Republic of China
| | - Jue Hu
- Department of Microbiology, The Medicine School of Hunan University of Chinese Medicine, Changsha, Hunan 410208, People's Republic of China
| | - Chang Liu
- Department of Microbiology, The Medicine School of Hunan University of Chinese Medicine, Changsha, Hunan 410208, People's Republic of China
| | - Yi Ning
- Department of Microbiology, The Medicine School of Hunan University of Chinese Medicine, Changsha, Hunan 410208, People's Republic of China.
| | - Fangguo Lu
- Department of Microbiology, The Medicine School of Hunan University of Chinese Medicine, Changsha, Hunan 410208, People's Republic of China.
| |
Collapse
|
23
|
Dong Y, Wang H, Zhang X, Ding Y, Zou Y, Wang J, Zhao SC, Li Z. Croconaine-based NIR-II fluorescence imaging-guided tumor photothermal therapy induces long-term antitumor immune memory. J Nanobiotechnology 2024; 22:481. [PMID: 39135072 PMCID: PMC11321165 DOI: 10.1186/s12951-024-02695-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 07/03/2024] [Indexed: 08/15/2024] Open
Abstract
Photothermal therapy (PTT) for cancers guided by optical imaging has recently shown great potential for precise diagnosis and efficient therapy. The second near-infrared window (NIR-II, 1000-1700 nm) fluorescence imaging (FLI) is highly desirable owing to its good spatial and temporal resolution, deep tissue penetration, and negligible tissue toxicity. Organic small molecules are attractive as imaging and treatment agents in biomedical research because of their low toxicity, fast clearance rate, diverse structures, ease of modification, and excellent biocompatibility. Various organic small molecules have been investigated for biomedical applications. However, there are few reports on the use of croconaine dyes (CRs), especially NIR-II emission CRs. To our knowledge, there have been no prior reports of NIR-II emissive small organic photothermal agents (SOPTAs) based on CRs. Herein, we report a croconaine dye (CR-TPE-T)-based nanoparticle (CR NP) with absorption and fluorescence emission in the NIR-I and NIR-II windows, respectively. The CR NPs exhibited intense NIR absorption, outstanding photothermal properties, and good biological compatibility. In vivo studies showed that CR NPs not only achieved real-time, noninvasive NIR-II FLI of tumors, but also induced significant tumor ablation with laser irradiation guided by imaging, without apparent side effects, and promoted the formation of antitumor immune memory in a colorectal cancer model. In addition, the CR NPs displayed efficient inhibition of breast tumor growth, improved longevity of mice and triggered efficient systemic immune responses, which further inhibited tumor metastasis to the lungs. Our study demonstrates the great potential of CRs as therapeutic agents in the NIR-II region for cancer diagnosis.
Collapse
Affiliation(s)
- Yafang Dong
- Department of Urology, Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatric, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong, 518020, P. R. China
- Department of Urology, the Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, 510500, P. R. China
| | - Huifang Wang
- Department of Urology, Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatric, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong, 518020, P. R. China
| | - Xiaodong Zhang
- Department of Urology, Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatric, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong, 518020, P. R. China
- Department of Medical Imaging, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, 510630, P. R. China
| | - Youbin Ding
- Department of Urology, Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatric, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong, 518020, P. R. China
- Department of Medical Imaging, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, 510630, P. R. China
| | - Yucheng Zou
- Department of Urology, the Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, 510500, P. R. China
| | - Jigang Wang
- Department of Urology, Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatric, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong, 518020, P. R. China.
- Department of Traditional Chinese Medicine, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, P. R. China.
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, P. R. China.
- State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, Kaifeng, 475004, China.
- Department of Oncology, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, P. R. China.
| | - Shan-Chao Zhao
- Department of Urology, Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatric, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong, 518020, P. R. China.
- Department of Urology, the Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, 510500, P. R. China.
- Department of Urology, the Fifth Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong, 510500, P. R. China.
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, P. R. China.
| | - Zhijie Li
- Department of Urology, Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatric, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong, 518020, P. R. China.
| |
Collapse
|
24
|
Zhang G, Jin W, Dong L, Wang J, Li W, Song P, Tao Y, Gui L, Zhang W, Ge F. Photothermal/photodynamic synergistic antibacterial study of MOF nanoplatform with SnFe 2O 4 as the core. Biochem Biophys Res Commun 2024; 720:150131. [PMID: 38763124 DOI: 10.1016/j.bbrc.2024.150131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/06/2024] [Accepted: 05/14/2024] [Indexed: 05/21/2024]
Abstract
Drug-resistant bacterial infections cause significant harm to public life, health, and property. Biofilm is characterized by overexpression of glutathione (GSH), hypoxia, and slight acidity, which is one of the main factors for the formation of bacterial resistance. Traditional antibiotic therapy gradually loses its efficacy against multi-drug-resistant (MDR) bacteria. Therefore, synergistic therapy, which regulates the biofilm microenvironment, is a promising strategy. A multifunctional nanoplatform, SnFe2O4-PBA/Ce6@ZIF-8 (SBC@ZIF-8), in which tin ferrite (SnFe2O4, denoted as SFO) as the core, loaded with 3-aminobenzeneboronic acid (PBA) and dihydroporphyrin e6 (Ce6), and finally coated with zeolite imidazole salt skeleton 8 (ZIF-8). The platform has a synergistic photothermal therapy (PTT)/photodynamic therapy (PDT) effect, which can effectively remove overexpressed GSH by glutathione peroxidase-like activity, reduce the antioxidant capacity of biofilm, and enhance PDT. The platform had excellent photothermal performance (photothermal conversion efficiency was 55.7 %) and photothermal stability. The inhibition rate of two MDR bacteria was more than 96 %, and the biofilm clearance rate was more than 90 % (150 μg/mL). In the animal model of MDR S. aureus infected wound, after 100 μL SBC@ZIF-8+NIR (150 μg/mL) treatment, the wound area of mice was reduced by 95 % and nearly healed. The serum biochemical indexes and H&E staining results were within the normal range, indicating that the platform could promote wound healing and had good biosafety. In this study, we designed and synthesized multifunctional nanoplatforms with good anti-drug-resistant bacteria effect and elucidated the molecular mechanism of its anti-drug-resistant bacteria. It lays a foundation for clinical application in treating wound infection and promoting wound healing.
Collapse
Affiliation(s)
- Guoliang Zhang
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui, 241000, People's Republic of China
| | - Weihao Jin
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui, 241000, People's Republic of China
| | - Linrui Dong
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui, 241000, People's Republic of China
| | - Jun Wang
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui, 241000, People's Republic of China
| | - Wanzhen Li
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui, 241000, People's Republic of China
| | - Ping Song
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui, 241000, People's Republic of China
| | - Yugui Tao
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui, 241000, People's Republic of China
| | - Lin Gui
- Department of Microbiology and Immunology, Wannan Medical College, Wuhu, Anhui, 241002, People's Republic of China
| | - Weiwei Zhang
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui, 241000, People's Republic of China.
| | - Fei Ge
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui, 241000, People's Republic of China.
| |
Collapse
|
25
|
Li X, Zhang L, Liu Z, Wang R, Jiao T. Recent progress in hydrogels combined with phototherapy for bacterial infection: A review. Int J Biol Macromol 2024; 274:133375. [PMID: 38914386 DOI: 10.1016/j.ijbiomac.2024.133375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 06/17/2024] [Accepted: 06/21/2024] [Indexed: 06/26/2024]
Abstract
Phototherapy has become one of the most effective antibacterial methods due to its associated lack of drug resistance and its good antibacterial effect. For the purpose of avoiding the aggregation and premature release of photosensitive/photothermal agents during phototherapy, they can be mixed into three-dimensional hydrogels. The combination of hydrogels and phototherapy combines the merits of both hydrogels and phototherapy, overcomes the disadvantages of traditional antibacterial methodologies, and has broad application prospects. This review presents recent advancements in phototherapeutic antibacterial hydrogels including photodynamic antibacterial hydrogels, photothermal antibacterial hydrogels, photodynamic and photothermal synergistic antibacterial hydrogels, and other synergistic antibacterial hydrogels involving phototherapy.
Collapse
Affiliation(s)
- Xinyu Li
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Nanobiotechnology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Yanshan University, Qinhuangdao 066004, PR China
| | - Lexin Zhang
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Nanobiotechnology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Yanshan University, Qinhuangdao 066004, PR China
| | - Zhiwei Liu
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Nanobiotechnology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Yanshan University, Qinhuangdao 066004, PR China.
| | - Ran Wang
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Nanobiotechnology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Yanshan University, Qinhuangdao 066004, PR China.
| | - Tifeng Jiao
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Nanobiotechnology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Yanshan University, Qinhuangdao 066004, PR China.
| |
Collapse
|
26
|
Zhou B, Dong B, Hu S, Liu W, Sun L, Xu L, Bai X, Wang L, Qi M, Song H. NIR-Triggered Multifunctional NO Nanoplatform for Conquering Thermal Resistance in Biofilms. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310706. [PMID: 38446096 DOI: 10.1002/smll.202310706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/21/2024] [Indexed: 03/07/2024]
Abstract
Photothermal treatment (PTT) has emerged as a promising avenue for biofilm elimination, yet its potential drawbacks, such as local hyperpyrexia and bacterial heat resistance, have posed challenges. To address these concerns, an innovative nanoplatform (Au@mSiO2-arg/ICG) is devised that integrates phototherapeutic and gas therapeutic functionalities. This multifaceted nanoplatform is composed of mesoporous silica-coated Au nanorods (Au@mSiO2), supplemented with l-arginine (l-arg) and indocyanine green (ICG), and is engineered for mild temperature PTT aimed at biofilm eradication. Au@mSiO2-arg/ICG nanoparticles (NPs) show excellent antibacterial effects through the generation of nitric oxide (NO) gas, heat, and reactive oxygen species (ROS) under 808 nm light irradiation. The ROS generated by ICG initiates a cascade reaction with l-arg, ultimately yielding NO gas molecules. This localized release of NO not only effectively curbs the expression of heat shock proteins 70 mitigating bacterial thermoresistance, but also reduces extracellular polymeric substance allowing better penetration of the therapeutic agents. Furthermore, this nanoplatform achieves an outstanding biofilm elimination rate of over 99% in an abscess model under 808 nm light irradiation (0.8 W·cm-2), thereby establishing its potential as a dependable strategy for NO-enhanced mild PTT and antibacterial photodynamic therapy (aPDT) in clinical settings.
Collapse
Affiliation(s)
- Bingshuai Zhou
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| | - Biao Dong
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| | - Songtao Hu
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| | - Wei Liu
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| | - Liheng Sun
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| | - Lin Xu
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| | - Xue Bai
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| | - Lin Wang
- Department of Oral Implantology, Jilin Provincial Key Laboratory of Sciences and Technology for Stomatology Nanoengineering, School and Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Manlin Qi
- Department of Oral Implantology, Jilin Provincial Key Laboratory of Sciences and Technology for Stomatology Nanoengineering, School and Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Hongwei Song
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| |
Collapse
|
27
|
Lu R, Luo Z, Zhang Y, Chen J, Zhang Y, Zhang C. A Multifunctional Tissue-Engineering Hydrogel Aimed to Regulate Bacterial Ferroptosis-Like Death and Overcoming Infection Toward Bone Remodeling. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309820. [PMID: 38896799 PMCID: PMC11321691 DOI: 10.1002/advs.202309820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 05/12/2024] [Indexed: 06/21/2024]
Abstract
Infection is the most common complication after orthopedic surgery and can result in prolonged ailments such as chronic wounds, enlarged bone defects, and osteomyelitis. Iron, which is essential for bacterial metabolism and immune cell functions, is extremely important. Bacteria harness iron from nearby cells to promote biofilm formation, ensuring their survival. Iron deficiency within the infection microenvironment (IME) consequently hampers macrophage function, enabling further dissemination of the infection and hindering macrophage polarization to the M2 phenotype. Therefore, a novel approach is proposed to regulate macrophage polarization, aiming to restore the inflammatory immune environment. A composite hydrogel derived from natural polymers is developed to address infections and manage iron metabolism in macrophages. This IME-responsive hydrogel, named FCL-ECMH, is synthesized by encapsulating vermiculite functional core layers within a decellularized extracellular matrix hydrogel. It is noteworthy that FCL-ECMH can produce reactive oxygen species within the IME. Supplementary photothermal treatment enhances bacterial iron uptake, leading to ferroptosis-like death. This process also rejuvenates the iron-enriched macrophages around the IME, thereby enhancing their antibacterial and tissue repair functions. In vivo experiments confirmed the antibacterial and repair-promoting capabilities of FCL-ECMH, indicating its potential for clinical applications.
Collapse
Affiliation(s)
- Renjie Lu
- Department of Orthopedic Surgery, Shanghai Institute of Microsurgery on ExtremitiesShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine600 Yishan RoadShanghai200233China
- Nanomedicine and Intestinal Microecology Research Center, Shanghai Tenth People's Hospital, School of MedicineTongji University301 Yanchang RoadShanghai200072China
| | - Zhiyuan Luo
- Department of Orthopedic Surgery, Shanghai Institute of Microsurgery on ExtremitiesShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine600 Yishan RoadShanghai200233China
| | - Yuanyuan Zhang
- Nanomedicine and Intestinal Microecology Research Center, Shanghai Tenth People's Hospital, School of MedicineTongji University301 Yanchang RoadShanghai200072China
| | - Jiahao Chen
- Department of Orthopedic Surgery, Shanghai Institute of Microsurgery on ExtremitiesShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine600 Yishan RoadShanghai200233China
- Nanomedicine and Intestinal Microecology Research Center, Shanghai Tenth People's Hospital, School of MedicineTongji University301 Yanchang RoadShanghai200072China
| | - Yang Zhang
- Nanomedicine and Intestinal Microecology Research Center, Shanghai Tenth People's Hospital, School of MedicineTongji University301 Yanchang RoadShanghai200072China
- Precision Medicine CenterTaizhou Central Hospital999 Donghai RoadTaizhouZhejiang318000China
| | - Chi Zhang
- Department of Orthopedic Surgery, Shanghai Institute of Microsurgery on ExtremitiesShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine600 Yishan RoadShanghai200233China
| |
Collapse
|
28
|
Si L, Zhang S, Guo H, Luo W, Feng Y, Du X, Mou F, Ma H, Guan J. Swarming Magnetic Fe 3O 4@Polydopamine-Tannic Acid Nanorobots: Integrating Antibiotic-Free Superficial Photothermal and Deep Chemical Strategies for Targeted Bacterial Elimination. RESEARCH (WASHINGTON, D.C.) 2024; 7:0438. [PMID: 39086398 PMCID: PMC11289052 DOI: 10.34133/research.0438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 07/07/2024] [Indexed: 08/02/2024]
Abstract
Micro/nanorobots (MNRs) are envisioned to provide revolutionary changes to therapies for infectious diseases as they can deliver various antibacterial agents or energies to many hard-to-reach infection sites. However, existing MNRs face substantial challenges in addressing complex infections that progress from superficial to deep tissues. Here, we develop swarming magnetic Fe3O4@polydopamine-tannic acid nanorobots (Fe3O4@PDA-TA NRs) capable of performing targeted bacteria elimination in complicated bacterial infections by integrating superficial photothermal and deep chemical strategies. The Fe3O4@PDA-TA nanoparticles (NPs), serving as building blocks of the nanorobots, are fabricated by in situ polymerization of dopamine followed by TA adhesion. When driven by alternating magnetic fields, Fe3O4@PDA-TA NPs can assemble into large energetic microswarms continuously flowing forward with tunable velocity. Thus, the swarming Fe3O4@PDA-TA NRs can be navigated to achieve rapid broad coverage of a targeted superficial area from a distance and rapidly eradicate bacteria residing there upon exposure to near-infrared (NIR) light due to their efficient photothermal conversion. Additionally, they can concentrate at deep infection sites by traversing through confined, narrow, and tortuous passages, exerting sustained antibacterial action through their surface TA-induced easy cell adhesion and subsequent membrane destruction. Therefore, the swarming Fe3O4@PDA-TA NRs show great potential for addressing complex superficial-to-deep infections. This study may inspire the development of future therapeutic microsystems for various diseases with multifunction synergies, task flexibility, and high efficiency.
Collapse
Affiliation(s)
- Luying Si
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering,
Wuhan University of Technology, Wuhan, China
| | - Shuming Zhang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering,
Wuhan University of Technology, Wuhan, China
| | - Huiru Guo
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering,
Wuhan University of Technology, Wuhan, China
| | - Wei Luo
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering,
Wuhan University of Technology, Wuhan, China
- Wuhan Institute of Photochemistry and Technology, Wuhan, China
| | - Yuqin Feng
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering,
Wuhan University of Technology, Wuhan, China
| | - Xinkang Du
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering,
Wuhan University of Technology, Wuhan, China
| | - Fangzhi Mou
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering,
Wuhan University of Technology, Wuhan, China
| | - Huiru Ma
- Wuhan Institute of Photochemistry and Technology, Wuhan, China
- School of Chemistry, Chemical Engineering and Life Science,
Wuhan University of Technology, Wuhan, China
| | - Jianguo Guan
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering,
Wuhan University of Technology, Wuhan, China
- Wuhan Institute of Photochemistry and Technology, Wuhan, China
| |
Collapse
|
29
|
Hong Q, Zhang W, Liu Z, Li B, Liu X, Wang Z, Wang R, Yang J, Nie B, Yue B. Infection microenvironment-triggered nanoparticles eradicate MRSA by thermally amplified chemodynamic therapy and M1 macrophage. J Nanobiotechnology 2024; 22:448. [PMID: 39080692 PMCID: PMC11287980 DOI: 10.1186/s12951-024-02706-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 07/05/2024] [Indexed: 08/03/2024] Open
Abstract
It is of great significance to develop a novel approach to treat bacterial infections, as the frequent misuse of antibiotics leads to the serious problem of bacterial resistance. This study proposed antibiotic-free antibacterial nanoparticles for eliminating methicillin-resistant Staphylococcus aureus (MRSA) based on a multi-model synergistic antibacterial ability of chemodynamic therapy (CDT), photothermal effect, and innate immunomodulation. Specifically, a polydopamine (PDA) layer coated and Ag nanoparticles loaded core-shell structure Fe3O4 nanoparticles (Fe3O4@PDA-Ag) is prepared. The Fe3O4 catalyzes H2O2 present in acidic microenvironment of bacterial infection into more toxic reactive oxygen species (ROS) and synergizes with the released Ag ions to exert a stronger bactericidal capacity, which can be augmented by photothermal action of PDA triggered by near-infrared light and loosen the biofilm by photothermal action to promote the penetration of ROS and Ag ion into the biofilm, result in disrupting biofilm structure along with killing encapsulated bacteria. Furthermore, Fe3O4@PDA-Ag exerts indirect antibacterial effects by promoting M1 macrophage polarizing. Animal models demonstrated that Fe3O4@PDA-Ag effectively controlled MRSA-induced infections through photothermal enhanced CDT, Ag+ releasing, and macrophage-mediated bactericidal properties. The acid-triggered antibacterial nanoparticles are expected to combat drug-resistant bacteria infection.
Collapse
Affiliation(s)
- Qimin Hong
- Department of Bone and Joint Surgery, Department of Orthopedics, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China
| | - Wei Zhang
- Department of Bone and Joint Surgery, Department of Orthopedics, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China
| | - Zhen Liu
- Department of Bone and Joint Surgery, Department of Orthopedics, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China
| | - Bo Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Xi Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Radiology, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Zhinan Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Radiology, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Rui Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Jianping Yang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China.
| | - Bin'en Nie
- Department of Bone and Joint Surgery, Department of Orthopedics, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China.
| | - Bing Yue
- Department of Bone and Joint Surgery, Department of Orthopedics, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China.
| |
Collapse
|
30
|
Miao L, Xu Z, Sui J, Meng X, Huo S, Liu S, Chen M, Zheng Z, Cai X, Zhang H. A New Nanoplatform Under NIR Released ROS Enhanced Photodynamic Therapy and Low Temperature Photothermal Therapy for Antibacterial and Wound Repair. Int J Nanomedicine 2024; 19:7509-7527. [PMID: 39071503 PMCID: PMC11283834 DOI: 10.2147/ijn.s471623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 07/17/2024] [Indexed: 07/30/2024] Open
Abstract
Purpose Skin injury, often caused by physical or medical mishaps, presents a significant challenge as wound healing is critical to restore skin integrity and tissue function. However, external factors such as infection and inflammation can hinder wound healing, highlighting the importance of developing biomaterials with antibiotic and wound healing properties to treat infections and inflammation. In this study, a novel photothermal nanomaterial (MMPI) was synthesized for infected wound healing by loading indocyanine green (ICG) on magnesium-incorporated mesoporous bioactive glass (Mg-MBG) and coating its surface with polydopamine (PDA). Results In this study, Mg-MBG and MMPI was synthesized via the sol-gel method and characterized it using various techniques such as scanning electron microscopy (SEM), the energy dispersive X-ray spectrometry (EDS) system and X-ray diffraction (XRD). The cytocompatibility of MMPI was evaluated by confocal laser scanning microscopy (CLSM), CCK8 assay, live/dead staining and F-actin staining of the cytoskeleton. The antibacterial efficiency was assessed using bacterial dead-acting staining, spread plate method (SPM) and TEM. The impact of MMPI on macrophage polarization was initially evaluated through flow cytometry, qPCR and ELISA. Additionally, an in vivo experiment was performed on a mouse model with skin excision infected. Histological analysis and RNA-seq analysis were utilized to analyze the in vivo wound healing and immunomodulation effect. Conclusion Collectively, the new photothermal and photodynamic nanomaterial (MMPI) can achieve low-temperature antibacterial activity while accelerating wound healing, holds broad application prospects.
Collapse
Affiliation(s)
- Licai Miao
- Department of Orthopedics, Changhai Hospital Affiliated to the Navy Military Medical University, Shanghai, 200433, People’s Republic of China
| | - Zihao Xu
- Department of Orthopedics, Changhai Hospital Affiliated to the Navy Military Medical University, Shanghai, 200433, People’s Republic of China
| | - Junhao Sui
- Department of Orthopedics, Changhai Hospital Affiliated to the Navy Military Medical University, Shanghai, 200433, People’s Republic of China
| | - Xiangyu Meng
- Department of Orthopedics, Changhai Hospital Affiliated to the Navy Military Medical University, Shanghai, 200433, People’s Republic of China
| | - Shicheng Huo
- Department of Orthopedic Surgery, Spine Center, Changzheng Hospital, Navy Medical University, Shanghai, 200003, People’s Republic of China
| | - Shu Liu
- Department of Orthopedics, Changhai Hospital Affiliated to the Navy Military Medical University, Shanghai, 200433, People’s Republic of China
| | - Mengchen Chen
- Department of Orthopedics, Changhai Hospital Affiliated to the Navy Military Medical University, Shanghai, 200433, People’s Republic of China
| | - Zhong Zheng
- Department of Orthopedics, Changhai Hospital Affiliated to the Navy Military Medical University, Shanghai, 200433, People’s Republic of China
| | - Xiaobin Cai
- Department of Orthopedics Shanghai Tenth People’s Hospital Tongji University School of Medicine, Shanghai, 200072, People’s Republic of China
| | - Hao Zhang
- Department of Orthopedics, Changhai Hospital Affiliated to the Navy Military Medical University, Shanghai, 200433, People’s Republic of China
| |
Collapse
|
31
|
Lu Y, Wang Y, Wang J, Liang L, Li J, Yu Y, Zeng J, He M, Wei X, Liu Z, Shi P, Li J. A comprehensive exploration of hydrogel applications in multi-stage skin wound healing. Biomater Sci 2024; 12:3745-3764. [PMID: 38959069 DOI: 10.1039/d4bm00394b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Hydrogels, as an emerging biomaterial, have found extensive use in the healing of wounds due to their distinctive physicochemical structure and functional properties. Moreover, hydrogels can be made to match a range of therapeutic requirements for materials used in wound healing through specific functional modifications. This review provides a step-by-step explanation of the processes involved in cutaneous wound healing, including hemostasis, inflammation, proliferation, and reconstitution, along with an investigation of the factors that impact these processes. Furthermore, a thorough analysis is conducted on the various stages of the wound healing process at which functional hydrogels are implemented, including hemostasis, anti-infection measures, encouraging regeneration, scar reduction, and wound monitoring. Next, the latest progress of multifunctional hydrogels for wound healing and the methods to achieve these functions are discussed in depth and categorized for elucidation. Finally, perspectives and challenges associated with the clinical applications of multifunctional hydrogels are discussed.
Collapse
Affiliation(s)
- Yongping Lu
- Guangyuan Central Hospital, Guangyuan 628000, P. R. China.
| | - Yuemin Wang
- College of Medicine, Southwest Jiaotong University, 610003, China
| | - Jie Wang
- College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, P. R. China
| | - Ling Liang
- Guangyuan Central Hospital, Guangyuan 628000, P. R. China.
| | - Jinrong Li
- Guangyuan Central Hospital, Guangyuan 628000, P. R. China.
| | - Yue Yu
- Guangyuan Central Hospital, Guangyuan 628000, P. R. China.
| | - Jia Zeng
- Guangyuan Central Hospital, Guangyuan 628000, P. R. China.
| | - Mingfang He
- Guangyuan Central Hospital, Guangyuan 628000, P. R. China.
| | - Xipeng Wei
- Guangyuan Central Hospital, Guangyuan 628000, P. R. China.
| | - Zhining Liu
- Guangyuan Central Hospital, Guangyuan 628000, P. R. China.
| | - Ping Shi
- Guangyuan Central Hospital, Guangyuan 628000, P. R. China.
| | - Jianshu Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China.
| |
Collapse
|
32
|
Zhou W, Jiang Z, Lin X, Chen Y, Wu Q, Chen J, Zhang F, Xie G, Zhang Y, Lin J, Guo N. Preparation of MPN@Zein-PpIX Membrane and Its Antibacterial Properties. ACS OMEGA 2024; 9:29274-29281. [PMID: 39005804 PMCID: PMC11238231 DOI: 10.1021/acsomega.4c00180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 06/02/2024] [Accepted: 06/12/2024] [Indexed: 07/16/2024]
Abstract
For antibacterial purposes, a photothermal and photodynamic antibacterial membrane was prepared through electrospinning. We used zein as the substrate and introduced Protoporphyrin IX (PpIX) into the protein structure. Then, we used electrospinning technology to weave the modified zein into a fiber structure. We finally introduced a metallic polyphenol network (MPN) coating on the fiber surface to form the final membrane: MPN@Zein-PpIX. Then, we investigated the photothermal and photodynamic properties of the membrane and assessed its antibacterial activity with in vitro agar plate counting methods. The MPN@Zein-PpIX membrane exhibited good singlet oxygen generation and excellent photothermal conversion. Additionally, it showed good antibacterial capacity in vitro, owing to the combination of photothermal and photodynamic properties. Our research provides a simple approach to prepare a multifunctional membrane with excellent antibacterial ability. We used the electrospinning technique to anchor PpIX onto zein to produce a fiber membrane (Zein-PpIX) that can be adhered in situ to improve the biocompatibility of PpIX, and the MPN makes the membrane surface more hydrophilic and more accessible to adhere to biological tissues. The MPN@Zein-PpIX membrane provided new ideas for combining PDT and PTT, and it had great potential for use in the antibacterial application field.
Collapse
Affiliation(s)
- Wenhong Zhou
- The
First Dongguan Affiliated Hospital; School of Pharmacy, Guangdong Medical University, Dongguan 523000, China
| | - Zhonghao Jiang
- The
First Dongguan Affiliated Hospital; School of Pharmacy, Guangdong Medical University, Dongguan 523000, China
| | - Xiao Lin
- The
First Dongguan Affiliated Hospital; School of Pharmacy, Guangdong Medical University, Dongguan 523000, China
| | - Yanan Chen
- The
First Dongguan Affiliated Hospital; School of Pharmacy, Guangdong Medical University, Dongguan 523000, China
| | - Quanxin Wu
- The
First Dongguan Affiliated Hospital; School of Pharmacy, Guangdong Medical University, Dongguan 523000, China
| | - Jia Chen
- The
First Dongguan Affiliated Hospital; School of Pharmacy, Guangdong Medical University, Dongguan 523000, China
| | - Feng Zhang
- The
First Dongguan Affiliated Hospital; School of Pharmacy, Guangdong Medical University, Dongguan 523000, China
| | - Guolie Xie
- The
First Dongguan Affiliated Hospital; School of Pharmacy, Guangdong Medical University, Dongguan 523000, China
| | - Yang Zhang
- South
China Institute of Collaborative Innovation, Dongguan 523000, China
- Guangdong
Dongguan Quality Supervision Testing Center, Dongguan 523000, China
| | - Jiantao Lin
- The
First Dongguan Affiliated Hospital; School of Pharmacy, Guangdong Medical University, Dongguan 523000, China
| | - Ning Guo
- The
First Dongguan Affiliated Hospital; School of Pharmacy, Guangdong Medical University, Dongguan 523000, China
| |
Collapse
|
33
|
Wu W, Wang Y, Yang H, Chen H, Wang C, Liang J, Song Y, Xu S, Sun Y, Wang L. Antibacterial and Biofilm Removal Strategies Based on Micro/Nanomotors in the Biomedical Field. ChemMedChem 2024:e202400349. [PMID: 38965060 DOI: 10.1002/cmdc.202400349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/30/2024] [Accepted: 07/04/2024] [Indexed: 07/06/2024]
Abstract
Bacterial infection, which can trigger varieties of diseases and tens of thousands of deaths each year, poses serious threats to human health. Particularly, the new dilemma caused by biofilms is gradually becoming a severe and tough problem in the biomedical field. Thus, the strategies to address these problems are considered an urgent task at present. Micro/nanomotors (MNMs), also named micro/nanoscale robots, are mostly driven by chemical energy or external field, exhibiting strong diffusion and self-propulsion in the liquid media, which has the potential for antibacterial applications. In particular, when MNMs are assembled in swarms, they become robust and efficient for biofilm removal. However, there is a lack of comprehensive review discussing the progress in this aspect. Bearing it in mind and based on our own research experience in this regard, the studies on MNMs driven by different mechanisms orchestrated for antibacterial activity and biofilm removal are timely and concisely summarized and discussed in this work, aiming to show the advantages of MNMs brought to this field. In addition, an outlook was proposed, hoping to provide the fundamental guidance for future development in this area.
Collapse
Affiliation(s)
- Wenlu Wu
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Yuxin Wang
- Emergency Department, Harbin First Hospital, Harbin, 150010, China
| | - Haiyue Yang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Haixu Chen
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Cong Wang
- Department of Microwave Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Junge Liang
- Department of Electronic Engineering, Jiangnan University, Wuxi, 214122, China
| | - Yiran Song
- Department of Electronic Engineering, Jiangnan University, Wuxi, 214122, China
| | - Shanshan Xu
- Emergency Department, Harbin First Hospital, Harbin, 150010, China
| | - Yuan Sun
- Center of Pharmaceutical Engineering and Technology, Harbin University of Commerce, Harbin, 150076, China
| | - Lei Wang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| |
Collapse
|
34
|
Liu WS, Chen Z, Lu ZM, Dong JH, Wu JH, Gao J, Deng D, Li M. Multifunctional hydrogels based on photothermal therapy: A prospective platform for the postoperative management of melanoma. J Control Release 2024; 371:406-428. [PMID: 38849093 DOI: 10.1016/j.jconrel.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/22/2024] [Accepted: 06/01/2024] [Indexed: 06/09/2024]
Abstract
Preventing the recurrence of melanoma after surgery and accelerating wound healing are among the most challenging aspects of melanoma management. Photothermal therapy has been widely used to treat tumors and bacterial infections and promote wound healing. Owing to its efficacy and specificity, it may be used for postoperative management of tumors. However, its use is limited by the uncontrollable distribution of photosensitizers and the likelihood of damage to the surrounding normal tissue. Hydrogels provide a moist environment with strong biocompatibility and adhesion for wound healing owing to their highly hydrophilic three-dimensional network structure. In addition, these materials serve as excellent drug carriers for tumor treatment and wound healing. It is possible to combine the advantages of both of these agents through different loading modalities to provide a powerful platform for the prevention of tumor recurrence and wound healing. This review summarizes the design strategies, research progress and mechanism of action of hydrogels used in photothermal therapy and discusses their role in preventing tumor recurrence and accelerating wound healing. These findings provide valuable insights into the postoperative management of melanoma and may guide the development of promising multifunctional hydrogels for photothermal therapy.
Collapse
Affiliation(s)
- Wen-Shang Liu
- Department of Dermatology, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai 200127, People's Republic of China
| | - Zhuo Chen
- Department of Dermatology, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai 200127, People's Republic of China
| | - Zheng-Mao Lu
- Department of Gastrointestinal Surgery, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, People's Republic of China
| | - Jin-Hua Dong
- Women and Children Hospital Affiliated to Jiaxing University, 2468 Middle Ring Eastern Road, Jiaxing City, Zhejiang 314000, People's Republic of China
| | - Jin-Hui Wu
- Ophthalmology Department of the Third Affiliated Hospital of Naval Medical University, Shanghai 201805, People's Republic of China.
| | - Jie Gao
- Changhai Clinical Research Unit, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, People's Republic of China; Shanghai Key Laboratory of Nautical Medicine and Translation of Drugs and Medical Devices, Shanghai 200433, People's Republic of China.
| | - Dan Deng
- Department of Dermatology, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai 200127, People's Republic of China.
| | - Meng Li
- Department of Dermatology, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai 200127, People's Republic of China.
| |
Collapse
|
35
|
Wang Q, Zhao J, Huang T, Sun C, Chen W, Zou H, He X, Shen J, Xiao Y. Oxygen vacancy-rich nickel oxide nanoplatforms for enhanced photothermal and chemodynamic therapy combat methicillin-resistant Staphylococcus aureus. Acta Biomater 2024; 182:275-287. [PMID: 38761960 DOI: 10.1016/j.actbio.2024.05.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/29/2024] [Accepted: 05/14/2024] [Indexed: 05/20/2024]
Abstract
Bacterial infections pose a global concern due to high fatality rates, particularly with the rise of drug-resistant bacteria and biofilm formation. There is an urgent need for innovative strategies to combat this issue. A study on chemodynamic therapy (CDT) using nanozymes in conjunction with photothermal therapy (PTT) has displayed potential in addressing drug-resistant bacterial infections. However, the effectiveness of this combined approach is limited by inadequate light absorption. This work suggests the NiOx nanoparticles enriched with oxygen vacancies enhance CDT and PTT to overcome this challenge. The presence of oxygen vacancies in NiOx can reduce the energy gap between its valence band and conduction band, facilitating oxygen adsorption. NiOx has exhibited notable antibacterial properties and complete eradication of biofilms in both laboratory and animal trials. In animal abscess models, NiOx demonstrated antibacterial and anti-inflammatory effects in the initial stages, while also promoting wound healing and tissue regeneration by influencing immune factors and encouraging collagen deposition and neovascularization. With positive biosafety and biocompatibility profiles, the oxygen vacancy-enhanced CDT and PTT therapy proposed in this article hold promise for effective sterilization, deep biofilm removal, and treatment of infections caused by drug-resistant bacteria. STATEMENT OF SIGNIFICANCE: This study constructs oxygen vacancies NiOx nanoparticles (NiOx NPs) to improve the efficacy of photothermal therapy and chemodynamic therapy. The presence of oxygen vacancies in NiOx NPs helps bridge the energy gap between its valence band and conduction band, facilitating oxygen adsorption and improving catalytic efficiency. In both in vivo and in vitro antibacterial experiments, NiOx NPs demonstrate effective antibacterial and anti-inflammatory properties. Furthermore, it aids in wound healing and tissue regeneration by modulating immune factors, collagen deposition, and angiogenesis. This approach presents a promising collaborative strategy for utilizing nickel-based defective nanomaterials in combating deep drug-resistant bacterial infections.
Collapse
Affiliation(s)
- Qinquan Wang
- Department of Urology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou Zhejiang, 325000, China
| | - Jing Zhao
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China
| | - Tian Huang
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China
| | - Chen Sun
- Department of Urology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou Zhejiang, 325000, China
| | - Wei Chen
- Department of Urology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou Zhejiang, 325000, China
| | - Haoran Zou
- Department of Urology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou Zhejiang, 325000, China
| | - Xiaojun He
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Jianliang Shen
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China.
| | - Yunbei Xiao
- Department of Urology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou Zhejiang, 325000, China.
| |
Collapse
|
36
|
Ran S, Xue L, Wei X, Huang J, Yan X, He TC, Tang Z, Zhang H, Gu M. Recent advances in injectable hydrogel therapies for periodontitis. J Mater Chem B 2024; 12:6005-6032. [PMID: 38869470 DOI: 10.1039/d3tb03070a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
Periodontitis is an immune-inflammatory disease caused by dental plaque, and deteriorates the periodontal ligament, causes alveolar bone loss, and may lead to tooth loss. To treat periodontitis, antibacterial and anti-inflammation approaches are required to reduce bone loss. Thus, appropriate drug administration methods are significant. Due to their "syringeability", biocompatibility, and convenience, injectable hydrogels and associated methods have been extensively studied and used for periodontitis therapy. Such hydrogels are made from natural and synthetic polymer materials using physical and/or chemical cross-linking approaches. Interestingly, some injectable hydrogels are stimuli-responsive hydrogels, which respond to the local microenvironment and form hydrogels that release drugs. Therefore, as injectable hydrogels are different and highly varied, we systematically reviewed the periodontal treatment field from three perspectives: raw material sources, cross-linking methods, and stimuli-responsive methods. We then discussed current challenges and opportunities for the translation of hydrogels to clinic, which may guide further injectable hydrogel designs for periodontitis.
Collapse
Affiliation(s)
- Shidian Ran
- Chongqing Key Laboratory of Oral Diseases, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, the Affiliated Stomatological Hospital of Chongqing Medical University, Chongqing, 401147, China.
| | - Linyu Xue
- Chongqing Key Laboratory of Oral Diseases, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, the Affiliated Stomatological Hospital of Chongqing Medical University, Chongqing, 401147, China.
| | - Xiaorui Wei
- Chongqing Key Laboratory of Oral Diseases, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, the Affiliated Stomatological Hospital of Chongqing Medical University, Chongqing, 401147, China.
| | - Jindie Huang
- Chongqing Key Laboratory of Oral Diseases, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, the Affiliated Stomatological Hospital of Chongqing Medical University, Chongqing, 401147, China.
| | - Xingrui Yan
- Chongqing Key Laboratory of Oral Diseases, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, the Affiliated Stomatological Hospital of Chongqing Medical University, Chongqing, 401147, China.
| | - Tong-Chuan He
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, and the Affiliated Hospitals of Chongqing Medical University, Chongqing 400016, China
| | - Zhurong Tang
- Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Hongmei Zhang
- Chongqing Key Laboratory of Oral Diseases, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, the Affiliated Stomatological Hospital of Chongqing Medical University, Chongqing, 401147, China.
| | - Mengqin Gu
- Chongqing Key Laboratory of Oral Diseases, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, the Affiliated Stomatological Hospital of Chongqing Medical University, Chongqing, 401147, China.
| |
Collapse
|
37
|
Zhang Q, Jiang Y, Zhang X, Wang Y, Ju R, Wei G. Injectable and Near-Infrared Light-Controllable Fibrin Hydrogels with Antimicrobial and Immunomodulating Properties for Infected Wound Healing. Biomater Res 2024; 28:0019. [PMID: 38938648 PMCID: PMC11210386 DOI: 10.34133/bmr.0019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/14/2024] [Indexed: 06/29/2024] Open
Abstract
The management of infected wounds poses a significant challenge due to the growing issue of antibiotic resistance, underscoring the urgent necessity to innovate and implement alternative therapeutic strategies. These strategies should be capable of eliminating bacterial infections in infected wounds while circumventing the induction of multi-drug resistance. In the current study, we developed an easily prepared and injectable fibrin gel (FG) loaded with nanoparticles (NPs) that exhibit antibacterial and immunomodulatory properties to facilitate the healing of infected wounds. Initially, a novel type of NP was generated through the electrostatic interaction between the photothermal agent, mPEG-modified polydopamine (MPDA), and the nitric oxide (NO) donor, S-nitrosocysteamine (SNO). This interaction resulted in the formation of NPs referred to as SNO-loaded MPDA (SMPDA). Subsequently, the SMPDA was encapsulated into the FG using a double-barreled syringe, thereby producing the SMPDA-loaded FG (SMPDA/G). Experimental results revealed that SMPDA/G could effectively eliminate bacterial infections and alter the immune microenvironment. This efficacy is attributed to the synergistic combination of NO therapy and photothermal therapy, along with the role of SMPDA in facilitating M2 macrophage polarization within the gel. Accordingly, these findings suggest that the SMPDA/G holds substantial promise for clinical application in infected wound healing.
Collapse
Affiliation(s)
- Qing Zhang
- School of Life Science and Engineering,
Southwest Jiaotong University, Chengdu 610031, China
- Chengdu Women’s and Children’s Central Hospital, School of Medicine,
University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Yongxian Jiang
- Sichuan Provincial Maternity and Child Health Care Hospital, the Affiliated Women’s and Children’s Hospital of Chengdu Medical College, Chengdu 610041, China
| | - Xiaolong Zhang
- Chengdu Women’s and Children’s Central Hospital, School of Medicine,
University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Yi Wang
- School of Life Science and Engineering,
Southwest Jiaotong University, Chengdu 610031, China
| | - Rong Ju
- Chengdu Women’s and Children’s Central Hospital, School of Medicine,
University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Guoqing Wei
- Chengdu Women’s and Children’s Central Hospital, School of Medicine,
University of Electronic Science and Technology of China, Chengdu 611731, China
| |
Collapse
|
38
|
Yan D, Zhang Z, Zhang J, Li X, Wu Q, Gui Y, Zhu J, Kang M, Chen X, Tang BZ, Wang D. An All-Rounder for NIR-II Phototheranostics: Well-Tailored 1064 nm-Excitable Molecule for Photothermal Combating of Orthotopic Breast Cancer. Angew Chem Int Ed Engl 2024; 63:e202401877. [PMID: 38637294 DOI: 10.1002/anie.202401877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/11/2024] [Accepted: 04/18/2024] [Indexed: 04/20/2024]
Abstract
The second near-infrared (NIR-II, 1000-1700 nm) light-activated organic photothermal agent that synchronously enables satisfying NIR-II fluorescence imaging is highly warranted yet rather challenging on the basis of the overwhelming nonradiative decay. Herein, such an agent, namely TPABT-TD, was tactfully designed and constructed via employing benzo[c]thiophene moiety as bulky electron donor/π-bridge and tailoring the peripheral molecular rotors. Benefitting from its high electron donor-acceptor strength and finely modulated intramolecular motion, TPABT-TD simultaneously exhibits ultralong absorption in NIR-II region, intense fluorescence emission in the NIR-IIa (1300-1500 nm) region as nanoaggregates, and high photothermal conversion upon 1064 nm laser irradiation. Those intrinsic advantages endow TPABT-TD nanoparticles with prominent fluorescence/photoacoustic/photothermal trimodal imaging-guided NIR-II photothermal therapy against orthotopic 4T1 breast tumor with negligible adverse effect.
Collapse
Affiliation(s)
- Dingyuan Yan
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Zhijun Zhang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Jianyu Zhang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen, 2001 Longxiang Boulevard, Longgang District, Shenzhen City, Guangdong, 518172, China
| | - Xue Li
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Qian Wu
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen, 2001 Longxiang Boulevard, Longgang District, Shenzhen City, Guangdong, 518172, China
| | - Yixiong Gui
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Jun Zhu
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Miaomiao Kang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Xiaohui Chen
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, 523808, China
| | - Ben Zhong Tang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen, 2001 Longxiang Boulevard, Longgang District, Shenzhen City, Guangdong, 518172, China
| | - Dong Wang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| |
Collapse
|
39
|
Wu J, Yang M, Huang Y, Zhang Y, Wu B, Qiu S, Hong F, Gao Y, Wang Z, Wang G. Enhancing the Biological Performance of Titanium Alloy through In Situ Modulation of the Surface Nanostructure: Near-Infrared-Responsive Antibacterial Function and Osteoinductivity. ACS APPLIED BIO MATERIALS 2024; 7:3900-3914. [PMID: 38840339 DOI: 10.1021/acsabm.4c00244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
The poor clinical performance of titanium and its alloy implants is mainly attributed to their lack of antibacterial ability and poor osseointegration. The key and challenge lie in how to enhance their osteoinductivity while imparting antibacterial capability. In this study, a titanium oxide metasurface with light-responsive behavior was constructed on the surface of titanium alloy using an alkaline-acid bidirectional hydrothermal method. The effects of the acid type, acid concentration, hydrothermal time, hydrothermal temperature, and subsequent heat treatments on the optical behavior of the metasurface were systematically investigated with a focus on exploring the influence of the metasurface and photodynamic reaction on the osteogenic activity of osteoblasts. Results show that the type of acid and heat treatment significantly affect the light absorption of the titanium alloy surface, with HCl and post-heat-treatment favoring redshift in the light absorption. Under 808 nm near-infrared (NIR) irradiation for 10 min, in vitro antibacterial experiments demonstrate that the antibacterial rate of the metasurface titanium alloy against Staphylococcus aureus and Escherichia coli were 96.87% and 99.27%, respectively. In vitro cell experiments demonstrate that the nanostructure facilitates cell adhesion, proliferation, differentiation, and expression of osteogenic-related genes. Surprisingly, the nanostructure promoted the expression of relevant osteogenic genes of MC3T3-E1 under 808 nm NIR irradiation. This study provides a method for the surface modification of titanium alloy implants.
Collapse
Affiliation(s)
- Jianbo Wu
- School of Materials Science and Engineering, Changan University, Xian, Shaanxi 710064, China
- Research Center for Human Tissues & Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Minggang Yang
- Research Center for Human Tissues & Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Yibo Huang
- Research Center for Human Tissues & Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Yuan Zhang
- Research Center for Human Tissues & Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Ben Wu
- Research Center for Human Tissues & Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Shi Qiu
- Research Center for Human Tissues & Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Feiyang Hong
- School of Materials Science and Engineering, Changzhou University, Changzhou 213164, China
| | - Ye Gao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration and National Clinical Research Center for Oral Diseases and Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, Fourth Military Medical University, Xi'an 710032, China
| | - Zhuo Wang
- School of Materials Science and Engineering, Changan University, Xian, Shaanxi 710064, China
| | - Guocheng Wang
- Research Center for Human Tissues & Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
- The Key laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| |
Collapse
|
40
|
Cui T, Xu F, Wang J, Li W, Gao Y, Li X, Yang K, Zhang W, Ge F, Tao Y. Polydopamine Nanocarriers with Cascade-Activated Nitric Oxide Release Combined Photothermal Activity for the Therapy of Drug-Resistant Bacterial Infections. ACS Infect Dis 2024; 10:2018-2031. [PMID: 38743862 DOI: 10.1021/acsinfecdis.4c00021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Antibiotic abuse leads to increased bacterial resistance, and the surviving planktonic bacteria aggregate and secrete extracellular polymers to form biofilms. Conventional antibacterial agents find it difficult to penetrate the biofilm, remove the bacteria wrapped in it, and produce an excellent therapeutic effect. In this study, a dual pH- and NIR-responsive nanocomposite (A-Ca@PDA) was developed to remove drug-resistant bacteria through a cascade of catalytic nitric oxide (NO) release and photothermal clearance. NO can melt in the outer package of the biofilm, facilitating the nanocomposites to have better permeability. Thermal therapy further inhibits the growth of planktonic bacteria. The locally generated high temperature and the burst release of NO together aggravate the biofilm collapse and bacterial death after NIR irradiation. The nanocomposites achieved a remarkable photothermal conversion efficiency of 47.5%, thereby exhibiting significant advancements in energy conversion. The nanocomposites exhibited remarkable efficacy in inhibiting multidrug-resistant (MDR) Escherichia coli and MDR Staphylococcus aureus, thus achieving an inhibition rate of >90%. Moreover, these nanocomposites significantly improved the wound-healing process in the MDR S. aureus-infected mice. Thus, this novel nanocomposite offers a novel strategy to combat drug-resistant bacterial infections.
Collapse
Affiliation(s)
- Ting Cui
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, People's Republic of China
| | - Feiyang Xu
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, People's Republic of China
| | - Jun Wang
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, People's Republic of China
| | - Wanzhen Li
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, People's Republic of China
| | - Yuan Gao
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, People's Republic of China
| | - Xing Li
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, People's Republic of China
| | - Kai Yang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RADX), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, People's Republic of China
| | - Weiwei Zhang
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, People's Republic of China
| | - Fei Ge
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, People's Republic of China
| | - Yugui Tao
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, People's Republic of China
| |
Collapse
|
41
|
Zhou D, Ge M, Wang Q, Sun J, Yao H, Deng Y, Xiao L, Wang J, Wei J. Gold Nanoparticles Confined in Mesoporous Bioactive Glass for Periodontitis Therapy. ACS Biomater Sci Eng 2024; 10:3883-3895. [PMID: 38700993 DOI: 10.1021/acsbiomaterials.4c00107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
Periodontitis is a chronic disease caused by bacterial infection and is characterized with alveolar bone resorption. Bone regeneration in periodontitis remains a critical challenge because bacterial infection induced an unfavorable microenvironment for osteogenesis. Therefore, it is necessary to design proper therapeutic platforms to control bacterial infection and promote bone regeneration. Herein, mesoporous bioactive glass (MBG) with different pore sizes (3.0, 4.3, and 12.3 nm) was used as an in situ reactor to confine the growth of gold nanoparticles (Au NPs), forming MBG@Au hybrids which combine the osteoconductivity of MBG and antibacterial properties of Au NPs. Upon near-infrared (NIR) irradiation, the MBG@Au NPs showed efficient antibacterial properties both in vitro and in vivo. Besides, the osteogenesis properties of MBG@Au also improved under NIR irradiation. Furthermore, the in vivo results demonstrated that MBG@Au can effectively promote alveolar bone regeneration and realize the healing of serious periodontitis.
Collapse
Affiliation(s)
- Dong Zhou
- School of Stomatology, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Min Ge
- School of Stomatology, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
- Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang 330006, China
- Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang 330006, China
| | - QiHui Wang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry Chinese Academy of Sciences, Changchun 130022, China
| | - Jingru Sun
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry Chinese Academy of Sciences, Changchun 130022, China
| | - Haiyan Yao
- School of Stomatology, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
- Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang 330006, China
- Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang 330006, China
| | - Yunyun Deng
- School of Stomatology, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
- Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang 330006, China
- Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang 330006, China
| | - Lan Xiao
- School of Medicine and Dentistry, Griffith University, QLD 4222, Australia
| | - Jiaolong Wang
- School of Stomatology, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
- Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang 330006, China
- Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang 330006, China
| | - Junchao Wei
- School of Stomatology, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
- Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang 330006, China
- Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang 330006, China
| |
Collapse
|
42
|
Li C, Zhu YX, Yang Y, Miao W, Shi X, Xu KF, Li ZH, Xiao H, Wu FG. Bioinspired multifunctional cellulose film: In situ bacterial capturing and killing for managing infected wounds. Bioact Mater 2024; 36:595-612. [PMID: 39206220 PMCID: PMC11350459 DOI: 10.1016/j.bioactmat.2024.06.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 06/13/2024] [Accepted: 06/24/2024] [Indexed: 09/04/2024] Open
Abstract
Bacterial infection of cutaneous wounds can easily lead to occurrence of chronic wounds and even more serious diseases. Therefore, multifunctional, biodegradable, and reusable wound dressings that can quickly manage wound infection and promote wound healing are urgently desired. Herein, inspired by the "capturing and killing" action of Drosera peltata Thunb., a biomimetic cellulose film was constructed to capture the bacteria (via the rough structure of the film) and kill them (via the combination of photodynamic therapy and chemotherapy) to promote wound tissue remodeling. The film (termed OBC-PR) was simply prepared by chemically crosslinking the oxidized bacterial cellulose (OBC) with polyhexamethylene guanidine hydrochloride (PHGH) and rose bengal (RB). Notably, it could effectively capture Escherichia coli and Staphylococcus aureus bacterial cells with capture efficiencies of ∼99 % and ∼96 %, respectively, within 10 min. Furthermore, the in vivo experiments showed that OBC-PR could effectively promote the macrophage polarization toward the M2 phenotype and adequately induce the reconstruction of blood vessels and nerves, thus promoting wound healing. This study provides a potential direction for designing multifunctional wound dressings for managing infected skin wounds in the future.
Collapse
Affiliation(s)
- Chengcheng Li
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, China
| | - Ya-Xuan Zhu
- Shanghai Frontiers Science Center of Nanocatalytic Medicine, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Ying Yang
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, China
| | - Wanting Miao
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, China
| | - Xiaotong Shi
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, China
| | - Ke-Fei Xu
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, 2 Southeast University Road, Nanjing, 211189, China
| | - Zi-Heng Li
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, 2 Southeast University Road, Nanjing, 211189, China
| | - Huining Xiao
- Department of Chemical Engineering, University of New Brunswick, Fredericton, New Brunswick, E3B 5A3, Canada
| | - Fu-Gen Wu
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, 2 Southeast University Road, Nanjing, 211189, China
| |
Collapse
|
43
|
Guan X, Wu S, Ouyang S, Ren S, Cui N, Wu X, Xiang D, Chen W, Yu B, Zhao P, Wang B. Remodeling Microenvironment for Implant-Associated Osteomyelitis by Dual Metal Peroxide. Adv Healthc Mater 2024; 13:e2303529. [PMID: 38430010 DOI: 10.1002/adhm.202303529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 01/02/2024] [Indexed: 03/03/2024]
Abstract
Implant-associated osteomyelitis (IAOM) is characterized by bone infection and destruction; current therapy of antibiotic treatment and surgical debridement often results in drug resistance and bone defect. It is challenging to develop an antibiotic-free bactericidal and osteogenic-enhanced strategy for IAOM. Herein, an IAOM-tailored antibacterial and osteoinductive composite of copper (Cu)-strontium (Sr) peroxide nanoparticles (CSp NPs), encapsulated in polyethylene glycol diacrylate (PEGDA) (CSp@PEGDA), is designed. The dual functional CSp NPs display hydrogen peroxide (H2O2) self-supplying and Fenton catalytic Cu2+ ions' release, generating plenty of hydroxyl radical (•OH) in a pH-responsive manner for bacterial killing, while the released Sr2+ promotes the in vitro osteogenicity regarding cell proliferation, alkaline phosphatase activity, extracellular matrix calcification, and osteo-associated genes expression. The integration of Cu2+ and Sr2+ in CSp NPs together with the coated PEGDA hydrogel ensures the stable and sustainable ion release during short- and long-term periods. Benefitted from the injectablity and photo-crosslink ability, CSp@PEGDA is able to thoroughly fill the infectious site and gelate in situ for bacterial elimination and bone regeneration, which is verified through in vivo evaluation using a clinical-simulating IAOM mouse model. These favorable abilities of CSp@PEGDA precisely meet the multiple therapeutic needs and pave a promising way for implant-associated osteomyelitis treatment.
Collapse
Affiliation(s)
- Xin Guan
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Siyuan Wu
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Sixue Ouyang
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Shuchen Ren
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Naiqian Cui
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Xiaohu Wu
- Department of Orthopedics, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510515, China
| | - Dayong Xiang
- Division of Orthopaedic Trauma, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Wenting Chen
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Bin Yu
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- Division of Orthopaedic Trauma, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Peng Zhao
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Bowei Wang
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- Division of Orthopaedic Trauma, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| |
Collapse
|
44
|
Quni S, Zhang Y, Liu L, Liu M, Zhang L, You J, Cui J, Liu X, Wang H, Li D, Zhou Y. NF-κB-Signaling-Targeted Immunomodulatory Nanoparticle with Photothermal and Quorum-Sensing Inhibition Effects for Efficient Healing of Biofilm-Infected Wounds. ACS APPLIED MATERIALS & INTERFACES 2024; 16:25757-25772. [PMID: 38738757 DOI: 10.1021/acsami.4c03142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
The development of therapeutics with high antimicrobial activity and immunomodulatory effects is urgently needed for the treatment of infected wounds due to the increasing danger posed by recalcitrant-infected wounds. In this study, we developed light-controlled antibacterial, photothermal, and immunomodulatory biomimetic N/hPDA@M nanoparticles (NPs). This nanoplatform was developed by loading flavonoid naringenin onto hollow mesoporous polydopamine NPs in a π-π-stacked configuration and encasing them with macrophage membranes. First, our N/hPDA@M NPs efficiently neutralized inflammatory factors present within the wound microenvironment by the integration of macrophage membranes. Afterward, the N/hPDA@M NPs effectively dismantled bacterial biofilms through a combination of the photothermal properties of PDA and the quorum sensing inhibitory effects of naringenin. It is worth noting that N/hPDA@M NPs near-infrared-enhanced release of naringenin exhibited specificity toward the NF-κB-signaling pathway, effectively mitigating the inflammatory response. This innovative design not only conferred remarkable antibacterial properties upon the N/hPDA@M NPs but also endowed them with the capacity to modulate inflammatory responses, curbing excessive inflammation and steering macrophage polarization toward the M2 phenotype. As a result, this multifaceted approach significantly contributes to expediting the healing process of infected skin wounds.
Collapse
Affiliation(s)
- Sezhen Quni
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, Jilin, China
- School of Stomatology, Jilin University, Jilin 130021, Changchun, China
| | - Yidi Zhang
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, Jilin, China
- School of Stomatology, Jilin University, Jilin 130021, Changchun, China
| | - Lijun Liu
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, Jilin, China
- School of Stomatology, Jilin University, Jilin 130021, Changchun, China
| | - Manxuan Liu
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, Jilin, China
- School of Stomatology, Jilin University, Jilin 130021, Changchun, China
| | - Lu Zhang
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, Jilin, China
- School of Stomatology, Jilin University, Jilin 130021, Changchun, China
| | - Jiaqian You
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, Jilin, China
- School of Stomatology, Jilin University, Jilin 130021, Changchun, China
| | - Jing Cui
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, Jilin, China
- School of Stomatology, Jilin University, Jilin 130021, Changchun, China
| | - Xiuyu Liu
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, Jilin, China
- School of Stomatology, Jilin University, Jilin 130021, Changchun, China
| | - Hanchi Wang
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, Jilin, China
- School of Stomatology, Jilin University, Jilin 130021, Changchun, China
| | - Daowei Li
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, Jilin, China
- School of Stomatology, Jilin University, Jilin 130021, Changchun, China
| | - Yanmin Zhou
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, Jilin, China
- School of Stomatology, Jilin University, Jilin 130021, Changchun, China
| |
Collapse
|
45
|
Huang T, He X, Ali A, Gnanasekar S, Xiang Y, Zhang K, Rao X, Kang ET, Xu LQ. Phytic Acid-Promoted Deposition of Gold Nanoparticles with Grafted Cationic Polymer Brushes for the Construction of Synergistic Contact-Killing and Photothermal Bactericidal Coatings. ACS APPLIED BIO MATERIALS 2024; 7:3283-3294. [PMID: 38727030 DOI: 10.1021/acsabm.4c00237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2024]
Abstract
Medical implants are constantly facing the risk of bacterial infections, especially infections caused by multidrug resistant bacteria. To mitigate this problem, gold nanoparticles with alkyl bromide moieties (Au NPs-Br) on the surfaces were prepared. Xenon light irradiation triggered the plasmon effect of Au NPs-Br to induce free radical graft polymerization of 2-(dimethylamino)ethyl methacrylate (DMAEMA), leading to the formation of poly(DMAEMA) brush-grafted Au NPs (Au NPs-g-PDM). The Au NPs-g-PDM nanocomposites were conjugated with phytic acid (PA) via electrostatic interaction and van der Waals interaction. The as-formed aggregates were deposited on the titanium (Ti) substrates to form the PA/Au NPs-g-PDM (PAP) hybrid coatings through surface adherence of PA and the gravitational effect. Synergistic bactericidal effects of contact-killing caused by the cationic PDM brushes, and local heating generated by the Au NPs under near-infrared irradiation, conferred strong antibacterial effects on the PAP-deposited Ti (Ti-PAP) substrates. The synergistic bactericidal effects reduced the threshold temperature required for the photothermal sterilization, which in turn minimized the secondary damage to the implant site. The Ti-PAP substrates exhibited 97.34% and 99.97% antibacterial and antiadhesive efficacy, respectively, against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli), compared to the control under in vitro antimicrobial assays. Furthermore, the as-constructed Ti-PAP surface exhibited a 99.42% reduction in the inoculated S. aureus under in vivo assays. In addition, the PAP coatings exhibited good biocompatibility in the hemolysis and cytotoxicity assays as well as in the subcutaneous implantation of rats.
Collapse
Affiliation(s)
- Tao Huang
- Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies, School of Materials and Energy, Southwest University, Chongqing, P. R. China 400715
| | - Xiaodong He
- Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies, School of Materials and Energy, Southwest University, Chongqing, P. R. China 400715
| | - Abid Ali
- Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies, School of Materials and Energy, Southwest University, Chongqing, P. R. China 400715
| | - Sathishkumar Gnanasekar
- Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies, School of Materials and Energy, Southwest University, Chongqing, P. R. China 400715
| | - Yunjie Xiang
- Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies, School of Materials and Energy, Southwest University, Chongqing, P. R. China 400715
| | - Kai Zhang
- Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies, School of Materials and Energy, Southwest University, Chongqing, P. R. China 400715
| | - Xi Rao
- Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies, School of Materials and Energy, Southwest University, Chongqing, P. R. China 400715
| | - En-Tang Kang
- Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies, School of Materials and Energy, Southwest University, Chongqing, P. R. China 400715
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Kent Ridge, Singapore 117576
| | - Li Qun Xu
- Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies, School of Materials and Energy, Southwest University, Chongqing, P. R. China 400715
| |
Collapse
|
46
|
Zheng Y, Cai X, Chen G, Xiang D, Shi W, Shen J, Xiang B. Single Atom-Dispersed Silver Incorporated in ZIF-8-Derived Porous Carbon for Enhanced Photothermal Activity and Antibacterial Activities. Int J Nanomedicine 2024; 19:4253-4261. [PMID: 38766662 PMCID: PMC11102103 DOI: 10.2147/ijn.s459176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 05/06/2024] [Indexed: 05/22/2024] Open
Abstract
Purpose Recently, Single-atom-loaded carbon-based material is a new environmentally friendly and stable photothermal antibacterial nanomaterial. It is still a great challenge to achieve single-atom loading on carbon materials. Materials and Methods Herein, We doped single-atom Ag into ZIF-8-derived porous carbon to obtain Ag-doped ZIF-8-derived porous carbon(AgSA-ZDPC). The as-prepared samples were characterized by XRD, XPS, FESEM, EDX, TEM, and HAADF-STEM which confirmed that the single-atom Ag successfully doped into the porous carbon. Further, the photothermal properties and antimicrobial activity of AgSA-ZDPC have been tested. Results The results showed that the temperature increased by 30 °C after near-infrared light irradiation(1 W/cm2) for 5 min which was better than ZIF-8-derived porous carbon(ZDPC). It also exhibits excellent photothermal stability after the laser was switched on and off 5 times. When the AgSA-ZDPC concentration was greater than 50 µg/mL and the near-infrared irradiation was performed for 5 min, the growth inhibition of S. aureus and E. coli was almost 100%. Conclusion This work provides a simple method for the preparation of single-atom Ag-doped microporous carbon which has potential antibacterial application.
Collapse
Affiliation(s)
- Yutong Zheng
- College of Chemistry and Materials Engineering, Huaihua University, Huaihua, 418000, People’s Republic of China
| | - Xiaoyi Cai
- College of Chemistry and Materials Engineering, Huaihua University, Huaihua, 418000, People’s Republic of China
| | - Gui Chen
- College of Chemistry and Materials Engineering, Huaihua University, Huaihua, 418000, People’s Republic of China
| | - Dexuan Xiang
- College of Chemistry and Materials Engineering, Huaihua University, Huaihua, 418000, People’s Republic of China
| | - Wei Shi
- College of Chemistry and Materials Engineering, Huaihua University, Huaihua, 418000, People’s Republic of China
| | - Jianliang Shen
- State Key Laboratory of Ophthalmology, Wenzhou Medical University, University of Chinese Academy of Sciences, Wenzhou, 325000, People’s Republic of China
| | - Bailin Xiang
- College of Chemistry and Materials Engineering, Huaihua University, Huaihua, 418000, People’s Republic of China
| |
Collapse
|
47
|
Hu Y, Yu L, Dai Q, Hu X, Shen Y. Multifunctional antibacterial hydrogels for chronic wound management. Biomater Sci 2024; 12:2460-2479. [PMID: 38578143 DOI: 10.1039/d4bm00155a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
Chronic wounds have gradually evolved into a global health challenge, comprising long-term non-healing wounds, local tissue necrosis, and even amputation in severe cases. Accordingly, chronic wounds place a considerable psychological and economic burden on patients and society. Chronic wounds have multifaceted pathogenesis involving excessive inflammation, insufficient angiogenesis, and elevated reactive oxygen species levels, with bacterial infection playing a crucial role. Hydrogels, renowned for their excellent biocompatibility, moisture retention, swelling properties, and oxygen permeability, have emerged as promising wound repair dressings. However, hydrogels with singular functions fall short of addressing the complex requirements associated with chronic wound healing. Hence, current research emphasises the development of multifunctional antibacterial hydrogels. This article reviews chronic wound characteristics and the properties and classification of antibacterial hydrogels, as well as their potential application in chronic wound management.
Collapse
Affiliation(s)
- Yungang Hu
- Department of Burns Surgery, Beijing Jishuitan Hospital, Capital Medical University, Beijing, 100035, China.
- Clinical Center for Wounds, Capital Medical University, Beijing, 100035, China
| | - Lu Yu
- Department of Burns Surgery, Beijing Jishuitan Hospital, Capital Medical University, Beijing, 100035, China.
- Clinical Center for Wounds, Capital Medical University, Beijing, 100035, China
| | - Qiang Dai
- Department of Burns Surgery, Beijing Jishuitan Hospital, Capital Medical University, Beijing, 100035, China.
- Clinical Center for Wounds, Capital Medical University, Beijing, 100035, China
| | - Xiaohua Hu
- Department of Burns Surgery, Beijing Jishuitan Hospital, Capital Medical University, Beijing, 100035, China.
- Clinical Center for Wounds, Capital Medical University, Beijing, 100035, China
| | - Yuming Shen
- Department of Burns Surgery, Beijing Jishuitan Hospital, Capital Medical University, Beijing, 100035, China.
- Clinical Center for Wounds, Capital Medical University, Beijing, 100035, China
| |
Collapse
|
48
|
Zhang Q, Zhang Y, Qi C, Chen J, Hu H, Tan G, Tu J. Epigallocatechin-3-gallate derived polymer coated Prussian blue for synergistic ROS elimination and antibacterial therapy. Int J Pharm 2024; 656:124095. [PMID: 38588757 DOI: 10.1016/j.ijpharm.2024.124095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 03/22/2024] [Accepted: 04/05/2024] [Indexed: 04/10/2024]
Abstract
Reactive oxygen species (ROS) play a vital role in wound healing process by fighting against invaded bacteria. However, excess ROS at the wound sites lead to oxidative stress that can trigger deleterious effects, causing cell death, tissue damage and chronic inflammation. Therefore, we fabricated a core-shell structured nanomedicine with antibacterial and antioxidant properties via a facile and green strategy. Specifically, Prussian blue (PB) nanozyme was fabricated and followed by coating a layer of epigallocatechin-3-gallate (EGCG)-derived polymer via polyphenolic condensation reaction and self-assembly process, resulting in PB@EGCG. The introduction of PB core endowed EGCG-based polyphenol nanoparticles with excellent NIR-triggered photothermal properties. Besides, owing to multiple enzyme-mimic activity of PB and potent antioxidant capacity of EGCG-derived polymer, PB@EGCG exhibited a remarkable ROS-scavenging ability, mitigated intracellular ROS level and protected cells from oxidative damage. Under NIR irradiation (808 nm, 1.5 W/cm2), PB@EGCG (50 µg/mL) exerted synergistic EGCG-derived polymer-photothermal antibacterial activity against Gram-negative Escherichia coli (E. coli) and Gram-positive Staphylococcus aureus (S. aureus). In vivo therapeutic effect was evaluated using a S. aureus-infected rat model indicated PB@EGCG with a prominent bactericidal ability could modulate the inflammatory microenvironment and accelerate wound healing. Overall, this dual-functional nanomedicine provides a promising strategy for efficient antibacterial therapy.
Collapse
Affiliation(s)
- Qinqin Zhang
- State Key Laboratory of Advanced Technology for Material Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China
| | - Yipin Zhang
- State Key Laboratory of Advanced Technology for Material Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China
| | - Chenyang Qi
- State Key Laboratory of Advanced Technology for Material Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China
| | - Jie Chen
- State Key Laboratory of Advanced Technology for Material Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China
| | - Haonan Hu
- State Key Laboratory of Advanced Technology for Material Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China
| | - Guitao Tan
- State Key Laboratory of Advanced Technology for Material Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China
| | - Jing Tu
- State Key Laboratory of Advanced Technology for Material Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China.
| |
Collapse
|
49
|
Yuan X, Zhang J, Shi J, Liu W, Kritchenkov AS, Van Vlierberghe S, Wang L, Liu W, Gao J. Cotton Fabric-Reinforced Hydrogels with Excellent Mechanical and Broad-Spectrum Photothermal Antibacterial Properties. Polymers (Basel) 2024; 16:1346. [PMID: 38794537 PMCID: PMC11124890 DOI: 10.3390/polym16101346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/04/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
Antibacterial hydrogel wound dressings hold great potential in eliminating bacteria and accelerating the healing process. However, it remains a challenge to fabricate hydrogel wound dressings that simultaneously exhibit excellent mechanical and photothermal antibacterial properties. Here we report the development of polydopamine-functionalized graphene oxide (rGO@PDA)/calcium alginate (CA)/Polypyrrole (PPy) cotton fabric-reinforced hydrogels (abbreviated as rGO@PDA/CA/PPy FHs) for tackling bacterial infections. The mechanical properties of hydrogels were greatly enhanced by cotton fabric reinforcement and an interpenetrating structure, while excellent broad-spectrum photothermal antibacterial properties based on the photothermal effect were obtained by incorporating PPy and rGO@PDA. Results indicated that rGO@PDA/CA/PPy FHs exhibited superior tensile strength in both the warp (289 ± 62.1 N) and weft directions (142 ± 23.0 N), similarly to cotton fabric. By incorporating PPy and rGO@PDA, the swelling ratio was significantly decreased from 673.5% to 236.6%, while photothermal conversion performance was significantly enhanced with a temperature elevated to 45.0 °C. Due to the synergistic photothermal properties of rGO@PDA and PPy, rGO@PDA/CA/PPy FHs exhibited excellent bacteria-eliminating efficiency for S. aureus (0.57%) and E. coli (3.58%) after exposure to NIR for 20 min. We believe that the design of fabric-reinforced hydrogels could serve as a guideline for developing hydrogel wound dressings with improved mechanical properties and broad-spectrum photothermal antibacterial properties for infected-wound treatment.
Collapse
Affiliation(s)
- Xiangnan Yuan
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
- Engineering Research Center of Technical Textiles, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai 201620, China
| | - Jun Zhang
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
- Engineering Research Center of Technical Textiles, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai 201620, China
| | - Jiayin Shi
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
- Engineering Research Center of Technical Textiles, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai 201620, China
| | - Wenfu Liu
- College of Energy Engineering, Huanghuai University, Zhumadian 463000, China
| | - Andreii S. Kritchenkov
- Institute of Environmental Engineering, Department of Human Ecology and Bioelementology, Peoples’ Friendship University of Russia (RUDN University), Moscow 117198, Russia
- Institute of Technical Acoustics NAS of Belarus, 210009 Vitebsk, Belarus
| | - Sandra Van Vlierberghe
- Polymer Chemistry and Biomaterials Group, Centre of Macromolecular Chemistry, Department of Organic and Macromolecular Chemistry, Ghent University, 9000 Ghent, Belgium
| | - Lu Wang
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
- Engineering Research Center of Technical Textiles, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai 201620, China
| | - Wanjun Liu
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
- Engineering Research Center of Technical Textiles, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai 201620, China
| | - Jing Gao
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
- Engineering Research Center of Technical Textiles, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai 201620, China
| |
Collapse
|
50
|
Önal Acet B, Gül D, Stauber RH, Odabaşı M, Acet Ö. A Review for Uncovering the "Protein-Nanoparticle Alliance": Implications of the Protein Corona for Biomedical Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:823. [PMID: 38786780 PMCID: PMC11124003 DOI: 10.3390/nano14100823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/02/2024] [Accepted: 05/04/2024] [Indexed: 05/25/2024]
Abstract
Understanding both the physicochemical and biological interactions of nanoparticles is mandatory for the biomedical application of nanomaterials. By binding proteins, nanoparticles acquire new surface identities in biological fluids, the protein corona. Various studies have revealed the dynamic structure and nano-bio interactions of the protein corona. The binding of proteins not only imparts new surface identities to nanoparticles in biological fluids but also significantly influences their bioactivity, stability, and targeting specificity. Interestingly, recent endeavors have been undertaken to harness the potential of the protein corona instead of evading its presence. Exploitation of this 'protein-nanoparticle alliance' has significant potential to change the field of nanomedicine. Here, we present a thorough examination of the latest research on protein corona, encompassing its formation, dynamics, recent developments, and diverse bioapplications. Furthermore, we also aim to explore the interactions at the nano-bio interface, paving the way for innovative strategies to advance the application potential of the protein corona. By addressing challenges and promises in controlling protein corona formation, this review provides insights into the evolving landscape of the 'protein-nanoparticle alliance' and highlights emerging.
Collapse
Affiliation(s)
- Burcu Önal Acet
- Faculty of Arts and Science, Chemistry Department, Aksaray University, Aksaray 68100, Turkey; (B.Ö.A.); (M.O.)
- Department of Otorhinolaryngology Head and Neck Surgery, Molecular and Cellular Oncology, University Medical Center, 55131 Mainz, Germany;
| | - Désirée Gül
- Department of Otorhinolaryngology Head and Neck Surgery, Molecular and Cellular Oncology, University Medical Center, 55131 Mainz, Germany;
| | - Roland H. Stauber
- Department of Otorhinolaryngology Head and Neck Surgery, Molecular and Cellular Oncology, University Medical Center, 55131 Mainz, Germany;
| | - Mehmet Odabaşı
- Faculty of Arts and Science, Chemistry Department, Aksaray University, Aksaray 68100, Turkey; (B.Ö.A.); (M.O.)
| | - Ömür Acet
- Department of Otorhinolaryngology Head and Neck Surgery, Molecular and Cellular Oncology, University Medical Center, 55131 Mainz, Germany;
- Vocational School of Health Science, Pharmacy Services Program, Tarsus University, Tarsus 33100, Turkey
| |
Collapse
|