1
|
Ainé L, Jacquin J, Breysse C, Colin C, Andanson JM, Delor-Jestin F. Microplastics and nanoplastics detection using flow cytometry: Challenges and methodological advances with fluorescent dye application. MethodsX 2025; 14:103200. [PMID: 40026591 PMCID: PMC11870216 DOI: 10.1016/j.mex.2025.103200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 02/03/2025] [Indexed: 03/05/2025] Open
Abstract
Flow cytometry (FC) enables the precise quantification of specific types of microparticles and larger nanoparticles (>200 nm) in liquid media. Initially developed for biological applications, this technique has recently been adapted to the environmental field for the measurement of microplastics and nanoplastics (MNPs). Nile Red, a fluorochrome extensively used in MNP analysis due to its effectiveness and accessibility, has been applied to significantly enhance the sensitivity and specificity of MNP detection of this technique. Additionally, flow cytometry offers the advantage of automated detection, allowing the quantification of smaller particles, including those under 1 µm, which are often missed by traditional spectroscopic methods. However, despite its promise, the presence of undissolved dye in aqueous media presents a significant challenge for accurate quantification. In recent years, various methodologies have been developed to overcome these limitations, including the use of co-solvents, surfactants, and pre-filtration or pre-sonication techniques to enhance quantification accuracy. This review examines recent literature on MNPs detection via FC, with a focus on technical improvements made and the remaining metrological challenges, offering insights into how this method can be further refined for future investigations.
Collapse
Affiliation(s)
- Lucas Ainé
- CT-IPC: CT-IPC 3 rue Emile Duclaux, Biopôle Clermont, Limagne, 63360 SAINT-BEAUZIRE
- Université Clermont Auvergne, Clermont Auvergne INP, CNRS, ICCF, F-63000 Clermont–Ferrand, France
| | - Justine Jacquin
- CT-IPC: CT-IPC 3 rue Emile Duclaux, Biopôle Clermont, Limagne, 63360 SAINT-BEAUZIRE
| | - Colette Breysse
- CT-IPC: CT-IPC 3 rue Emile Duclaux, Biopôle Clermont, Limagne, 63360 SAINT-BEAUZIRE
| | - Catherine Colin
- CT-IPC: CT-IPC 3 rue Emile Duclaux, Biopôle Clermont, Limagne, 63360 SAINT-BEAUZIRE
| | - Jean-Michel Andanson
- Université Clermont Auvergne, Clermont Auvergne INP, CNRS, ICCF, F-63000 Clermont–Ferrand, France
| | - Florence Delor-Jestin
- Université Clermont Auvergne, Clermont Auvergne INP, CNRS, ICCF, F-63000 Clermont–Ferrand, France
| |
Collapse
|
2
|
Shukla S, Khanna S, Khanna K. Unveiling the toxicity of micro-nanoplastics: A systematic exploration of understanding environmental and health implications. Toxicol Rep 2025; 14:101844. [PMID: 39811819 PMCID: PMC11730953 DOI: 10.1016/j.toxrep.2024.101844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/21/2024] [Accepted: 11/28/2024] [Indexed: 01/16/2025] Open
Abstract
The surge in plastic production has spurred a global crisis as plastic pollution intensifies, with microplastics and nanoplastics emerging as notable environmental threats. Due to their miniature size, these particles are ubiquitous across ecosystems and pose severe hazards as they are ingested and bioaccumulate within organisms. Although global plastic production has reached an alarming 400.3 MTs, recycling efforts remain limited, with only 18.5 MTs being recycled. Currently, out of the total plastic waste, 49.6 % is converted into energy, 27 % is recycled, and 23.5 % is recovered as material, indicating a need for better waste management practices to combat the escalating pollution levels. Research studies on micro-nanoplastics have primarily concentrated on their environmental presence and laboratory-based toxicity studies. This review critically examines the sources and detection methods for micro-nanoplastics, emphasising their toxicological effects and ecological impacts. Organisms like zebrafish and rats serve as key models for studying these particle's bioaccumulative potential, showcasing adverse effects that extend to DNA damage, oxidative stress, and cellular apoptosis. Studies reveal that micro-nanoplastics can permeate biological barriers, including the blood-brain barrier, neurological imbalance, cardiac, respiratory, and dermatological disorders. These health risks, particularly relevant for humans, underscore the urgency for broader, real-world studies beyond controlled laboratory conditions. Additionally, the review discusses innovative energy-harvesting technologies as sustainable alternatives for plastic waste utilisation, particularly valuable for energy-deficient regions. These strategies aim to simultaneously address energy demands and mitigate plastic waste. This approach aligns with global sustainability goals, providing a promising avenue for both pollution reduction and energy generation. The review calls for further research to enhance detection techniques, assess long-term environmental impacts, and explore sustainable solutions that integrate energy recovery with pollution mitigation, especially in regions most affected by both energy shortages and increased plastic waste.
Collapse
Affiliation(s)
- Saurabh Shukla
- School of Forensic Sciences, Centurion University of Technology and Management, Bhubaneswar Campus, Bhubaneswar, Odisha 752050, India
| | - Sakshum Khanna
- School of Technology, Pandit Deendayal Energy University, Gandhinagar, Gujarat 382007, India
- Relx Pvt Ltd, Gurugram, Haryana 122002, India
| | - Kushagra Khanna
- Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
3
|
Massaccesi L, Marabottini R, De Feudis M, Leccese A, Poesio C, Marinari S, Moscatelli MC, Agnelli A. Impact of high-density polyethylene (HDPE) microparticles on soil physical-chemical properties, CO 2 emissions, and microbial community in a two-year field trial. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 966:178703. [PMID: 39904213 DOI: 10.1016/j.scitotenv.2025.178703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 01/28/2025] [Accepted: 01/30/2025] [Indexed: 02/06/2025]
Abstract
Contamination by microplastics (MPs) is a serious problem affecting both aquatic and terrestrial ecosystems, but despite the large number of papers published in recent years, the impact of microplastics (MPs) on soil is still debated. This work aims to evaluate the effects of different amounts (0, 1, 2 % v/v) of high-density polyethylene (HDPE) microparticles (1-0.25 mm in size) on soil properties over time. Specifically, in a field plot experiment lasting about 2 years, treated and control soils were periodically sampled and analysed for their physical (aggregate stability and distribution), chemical (total N, soluble C and N, available P), and soil biochemical (basal respiration, microbial biomass C, enzyme activities, and fatty acid methyl ester - EL-FAME) properties. In addition, CO2 fluxes from soil to atmosphere were measured throughout the experiment. The physical and chemical parameters of the treated soils did not differ significantly from the control soil, whereas specific changes occurred in the biochemical characteristics during the experiment, particularly in the soil treated with the higher dose of MPs. In the early period (21 to 46 days after the treatment), some changes in the microbial community structure were observed for the soil treated with 2 % MPs, suggesting the occurrence of stress conditions for the microbial biomass, likely due to nutrient limitation. After 166 g from the start of the experiment, the 2 % MPs-treated soil showed, other than a lower CO2 flux than the control soil, a reduction of basal respiration together with an increase in actinomycetes and total fungi (both saprophytes and AMF). There was also an increase in C-related enzyme activities one year after treatment with MPs. These latter results suggest that the soil microbial community may be adapting to the new conditions and available energy substrates, which may also indicate the onset of HDPE degradation processes.
Collapse
Affiliation(s)
- L Massaccesi
- National Research Council of Italy, Institute for Agriculture and Forestry Systems in the Mediterranean (ISAFOM-CNR), Perugia, Italy.
| | - R Marabottini
- Department for Innovation in Biological, Agro-food and Forest Systems, University of Tuscia, Viterbo, Italy
| | - M De Feudis
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - A Leccese
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Perugia, Italy
| | - C Poesio
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Perugia, Italy
| | - S Marinari
- Department for Innovation in Biological, Agro-food and Forest Systems, University of Tuscia, Viterbo, Italy
| | - M C Moscatelli
- Department for Innovation in Biological, Agro-food and Forest Systems, University of Tuscia, Viterbo, Italy
| | - A Agnelli
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Perugia, Italy; Research Institute on Terrestrial Ecosystem (IRET-CNR), Sesto Fiorentino, FI, Italy
| |
Collapse
|
4
|
Mendrik F, Hackney CR, Cumming VM, Waller C, Hak D, Dorrell R, Hung NN, Parsons DR. The transport and vertical distribution of microplastics in the Mekong River, SE Asia. JOURNAL OF HAZARDOUS MATERIALS 2025; 484:136762. [PMID: 39642727 DOI: 10.1016/j.jhazmat.2024.136762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 11/28/2024] [Accepted: 12/02/2024] [Indexed: 12/09/2024]
Abstract
Rivers are primary vectors of plastic debris to oceans, but sources, transport mechanisms, and fate of fluvial microplastics (<5 mm) remain poorly understood, impeding accurate predictions of microplastic flux, ecological risk and socio-economic impacts. We report on microplastic concentrations, characteristics and dynamics in the Mekong River, one of the world's largest and polluting rivers, in Cambodia and Vietnam. Sampling throughout the water column at multiple localities detected an average of 24 microplastics m-3 (0.073 mg l-1). Concentrations increased downstream from rural Kampi, Cambodia (344 km from river mouth; 2 microplastics m-3, 0.006 mg l-1), to Can Tho, Vietnam (83 km from river mouth; 64 microplastics m-3, 0.182 mg l-1) with most microplastics being fibres (53 %), followed by fragments (44 %) and the most common polymer being polyethylene terephthalate (PET) or polyester. Pathways of microplastic pollution are expected to be from urban wastewater highlighting the need for improved wastewater treatment in this region. On average, 86 % of microplastics are transported within the water column and consequently we identified an optimum sampling depth capturing a representative flux value, highlighting that sampling only the water surface substantially biases microplastic concentration predictions. Additionally, microplastic abundance does not linearly follow discharge changes during annual monsoonal floods or mirror siliciclastic sediment transport, as microplastic concentrations decrease rapidly during higher monsoon flows. The findings reveal complex microplastic transport in large rivers and call for improved sampling methods and predictive models to better assess environmental risk and guide policy.
Collapse
Affiliation(s)
- Freija Mendrik
- Energy and Environment Institute, University of Hull, UK.
| | | | | | | | - Danet Hak
- Department of Civil Engineering, Institute of Technology of Cambodia, Cambodia
| | - Robert Dorrell
- Energy and Environment Institute, University of Hull, UK
| | | | - Daniel R Parsons
- International Centre for Informatics and Disaster Resilience, Loughborough University, UK
| |
Collapse
|
5
|
Li J, Peng Z, Zhao W, Chu X, Tian Y. Effects of polystyrene microplastics on the distribution behaviors and mechanisms of metalloid As(III) and As(V) on pipe scales in drinking water distribution systems. JOURNAL OF HAZARDOUS MATERIALS 2025; 483:136542. [PMID: 39591933 DOI: 10.1016/j.jhazmat.2024.136542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 11/09/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024]
Abstract
Pipe scales have long been considered the primary adsorption medium for trace heavy metals in drinking water distribution systems (DWDSs). Microplastics (MPs) potentially affect the distribution of metalloid arsenic (As) pollutants in DWDSs. Herein, the accumulation behaviors of As(Ⅲ) and As(V) on pipe scales and polystyrene microplastics (PSMPs) under different water conditions were studied. Additionally, As(Ⅲ) and As(V) accumulation behaviors on pipe scales coexisting with PSMPs were investigated. Results showed that pipe scales played a key role in the accumulation of As (pipe scales = 1.08-4.80 mg/g > PSMPs = 0.02-3.38 mg/g). The adsorption amount of As(Ⅲ) on PSMPs was higher than that of As(V). The addition of PSMPs promoted the accumulation of As(Ⅲ) on pipe scales at pH = 3-8 while inhibiting the accumulation of As(V) on pipe scales at pH = 3-10 due to the competitive adsorption. The oxidation of As(III) and the reduction of As(V) occurred during the accumulation of As(Ⅲ) and As(V) on pipe scales. Notably, PSMPs accumulated on pipe scales were beneficial to the oxidation of As(Ⅲ), potentially reducing the As-related risks. Overall, our results provide new insights into the hazards posed by MPs in DWDSs.
Collapse
Affiliation(s)
- Jiaxin Li
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China; Southwest Municipal Engineering Design & Research Institute of China, Chengdu, Sichuan 610081, China
| | - Zhu Peng
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China.
| | - Weigao Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Xianxian Chu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Yimei Tian
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
6
|
Rezania S, Miri S, Cho J, Hur J, Kamyab H, Darajeh N, Mohammadi AA, Molani F, Taghavijeloudar M. Microplastic pollution in the marine environment: Distribution factors and mitigation strategies in different oceans. JOURNAL OF CONTAMINANT HYDROLOGY 2025; 269:104496. [PMID: 39793407 DOI: 10.1016/j.jconhyd.2025.104496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 12/12/2024] [Accepted: 01/01/2025] [Indexed: 01/13/2025]
Abstract
As the COVID-19 pandemic began in 2020, plastic usage spiked, and microplastic (MP) generation has increased dramatically. It is documented that MP can transfer from the source to the ocean environment where they accumulate as the destination. Therefore, it is essential to understand their transferring pathways and effective environmental factors to determine the distribution of MPs in the marine environment. This article reviews the environmental factors that affect MP distribution in the oceans including abiotic such as ocean currents and wind direction, physical/chemical and biological reactions of MPs, natural sinking, particle size and settling velocity, and biotic including biofouling, and incorporation in fecal material. It was found that velocity and physical shearing are the most important parameters for MP accumulation in the deep ocean. Besides, this review proposes different research-based, national-level, and global-level strategies for the mitigation of MPs after the pandemic. Based on the findings, the level of MP pollution in the oceans is directly correlated to coastal areas with high populations, particularly in African and Asian countries. Future studies should focus on establishing predictive models based on the movement and distribution of MPs to mitigate the levels of pollution.
Collapse
Affiliation(s)
- Shahabaldin Rezania
- Department of Environment and Energy, Sejong University, Seoul 05006, South Korea.
| | - Saba Miri
- Department of Civil Engineering, Lassonde School of Engineering, York University, North York, Toronto, Ontario M3J 1P3, Canada
| | - Jinwoo Cho
- Department of Environment and Energy, Sejong University, Seoul 05006, South Korea
| | - Jin Hur
- Department of Environment and Energy, Sejong University, Seoul 05006, South Korea
| | - Hesam Kamyab
- Department of Biomaterials, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai 600077, India; The KU-KIST Graduate School of Energy and Environment, Korea University, 145 Anam-ro, Seongbuk-Gu, Seoul 02841, Republic of Korea
| | - Negisa Darajeh
- Aurecon Group, 110 Carlton Gore Road, Newmarket, Auckland 1023, New Zealand
| | - Ali Akbar Mohammadi
- Department of Environmental Health Engineering, School of Public Health, Neyshabur University of Medical Sciences, Neyshabur, Iran; Workplace Health Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Farzad Molani
- Department of Chemistry, Islamic Azad University, Sanandaj Branch, Sanandaj, Iran
| | - Mohsen Taghavijeloudar
- Department of Civil and Environmental Engineering, Seoul National University, 151-744 Seoul, South Korea
| |
Collapse
|
7
|
Wu B, Yu H, Lei P, He J, Yi J, Wu W, Wang H, Yang Q, Zeng G, Sun D. Microplastics in aquatic ecosystems: Detection, source tracing, and sustainable management strategies. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 291:117883. [PMID: 39965319 DOI: 10.1016/j.ecoenv.2025.117883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 02/08/2025] [Accepted: 02/10/2025] [Indexed: 02/20/2025]
Abstract
Microplastics (MPs) are emerging contaminants characterized by persistence, cross-media transport, and complex pollutant interactions, posing serious ecotoxicological risks to ecosystems and human health. Effective MPs management requires multi-faced, long-term, strategies involving targeted sampling, quantitative detection, and comprehensive risk assessments, all of which entail significant resource investment. Despite advancements in remediation technologies, a holistic governance framework integrating these innovations remains underdeveloped. This review synthesizes current knowledge on MPs, elaborating on their diverse morphologies, degradation pathways, and their role as vectors for toxic substances. State-of-the-art extraction techniques are evaluated in this article, including micropore adsorption using nanocomposites, alongside the incorporation of advanced analytical tools such as spectroscopic methods, electron microscopy, and bioinformatics to augment environmental forensics. This review also underscores the necessity of formulating robust global policies to regulate MPs pollution and discusses the potential of biodegradation and thermal degradation as sustainable solutions for MPs removal. By promoting an interdisciplinary approach, this review advocates for a coordinated global response, integrating environmental science, policy frameworks, and waste management strategies to mitigate the escalating impact of MPs on ecosystems and human well-being.
Collapse
Affiliation(s)
- Baihui Wu
- National & Local Joint Engineering Research Center for Ecological Treatment Technology of Urban Water Pollution, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Haiyang Yu
- National & Local Joint Engineering Research Center for Ecological Treatment Technology of Urban Water Pollution, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Pengyu Lei
- Institute of Life Science & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Jiaxuan He
- Institute of Life Science & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Jia Yi
- Institute of Life Science & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Wei Wu
- Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Hanbing Wang
- Department of Biotechnology, The University of Hong Kong, 999077, Hong Kong
| | - Qinsi Yang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China
| | - Guoming Zeng
- School of Civil and Hydraulic Engineering, Chongqing University of Science and Technology, Chongqing 401331, China.
| | - Da Sun
- National & Local Joint Engineering Research Center for Ecological Treatment Technology of Urban Water Pollution, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; Institute of Life Science & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China.
| |
Collapse
|
8
|
Rivera-Rivera DM, Quintanilla-Villanueva GE, Luna-Moreno D, Sánchez-Álvarez A, Rodríguez-Delgado JM, Cedillo-González EI, Kaushik G, Villarreal-Chiu JF, Rodríguez-Delgado MM. Exploring Innovative Approaches for the Analysis of Micro- and Nanoplastics: Breakthroughs in (Bio)Sensing Techniques. BIOSENSORS 2025; 15:44. [PMID: 39852095 PMCID: PMC11763714 DOI: 10.3390/bios15010044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/09/2025] [Accepted: 01/09/2025] [Indexed: 01/26/2025]
Abstract
Plastic pollution, particularly from microplastics (MPs) and nanoplastics (NPs), has become a critical environmental and health concern due to their widespread distribution, persistence, and potential toxicity. MPs and NPs originate from primary sources, such as cosmetic microspheres or synthetic fibers, and secondary fragmentation of larger plastics through environmental degradation. These particles, typically less than 5 mm, are found globally, from deep seabeds to human tissues, and are known to adsorb and release harmful pollutants, exacerbating ecological and health risks. Effective detection and quantification of MPs and NPs are essential for understanding and mitigating their impacts. Current analytical methods include physical and chemical techniques. Physical methods, such as optical and electron microscopy, provide morphological details but often lack specificity and are time-intensive. Chemical analyses, such as Fourier transform infrared (FTIR) and Raman spectroscopy, offer molecular specificity but face challenges with smaller particle sizes and complex matrices. Thermal analytical methods, including pyrolysis gas chromatography-mass spectrometry (Py-GC-MS), provide compositional insights but are destructive and limited in morphological analysis. Emerging (bio)sensing technologies show promise in addressing these challenges. Electrochemical biosensors offer cost-effective, portable, and sensitive platforms, leveraging principles such as voltammetry and impedance to detect MPs and their adsorbed pollutants. Plasmonic techniques, including surface plasmon resonance (SPR) and surface-enhanced Raman spectroscopy (SERS), provide high sensitivity and specificity through nanostructure-enhanced detection. Fluorescent biosensors utilizing microbial or enzymatic elements enable the real-time monitoring of plastic degradation products, such as terephthalic acid from polyethylene terephthalate (PET). Advancements in these innovative approaches pave the way for more accurate, scalable, and environmentally compatible detection solutions, contributing to improved monitoring and remediation strategies. This review highlights the potential of biosensors as advanced analytical methods, including a section on prospects that address the challenges that could lead to significant advancements in environmental monitoring, highlighting the necessity of testing the new sensing developments under real conditions (composition/matrix of the samples), which are often overlooked, as well as the study of peptides as a novel recognition element in microplastic sensing.
Collapse
Affiliation(s)
- Denise Margarita Rivera-Rivera
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Químicas, Av. Universidad S/N Ciudad Universitaria, San Nicolás de los Garza 66455, Nuevo León, Mexico;
- Centro de Investigación en Biotecnología y Nanotecnología (CIByN), Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, Parque de Investigación e Innovación Tecnológica, Km. 10 Autopista al Aeropuerto Internacional Mariano Escobedo, Apodaca 66629, Nuevo León, Mexico
| | | | - Donato Luna-Moreno
- Centro de Investigaciones en Óptica AC, Div. de Fotónica, Loma del Bosque 115, Lomas del Campestre, León 37150, Guanajuato, Mexico; (G.E.Q.-V.); (D.L.-M.)
| | - Araceli Sánchez-Álvarez
- Universidad Tecnológica de León, Electromecánica Industrial, Blvd. Universidad Tecnológica 225, Col. San Carlos, León 37670, Guanajuato, Mexico;
| | - José Manuel Rodríguez-Delgado
- Tecnológico de Monterrey, School of Engineering and Sciences, Av. Eugenio Garza Sada Sur 2501, Col. Tecnológico, Monterrey 64849, Nuevo León, Mexico;
| | - Erika Iveth Cedillo-González
- Department of Engineering “Enzo Ferrari”, University of Modena and Reggio Emilia, Via P. Vivarelli 10/1, 41125 Modena, Italy;
| | - Garima Kaushik
- Department of Environmental Science, School of Earth Sciences, Central University of Rajasthan, Ajmer 305817, Rajasthan, India;
| | - Juan Francisco Villarreal-Chiu
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Químicas, Av. Universidad S/N Ciudad Universitaria, San Nicolás de los Garza 66455, Nuevo León, Mexico;
- Centro de Investigación en Biotecnología y Nanotecnología (CIByN), Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, Parque de Investigación e Innovación Tecnológica, Km. 10 Autopista al Aeropuerto Internacional Mariano Escobedo, Apodaca 66629, Nuevo León, Mexico
| | - Melissa Marlene Rodríguez-Delgado
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Químicas, Av. Universidad S/N Ciudad Universitaria, San Nicolás de los Garza 66455, Nuevo León, Mexico;
- Centro de Investigación en Biotecnología y Nanotecnología (CIByN), Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, Parque de Investigación e Innovación Tecnológica, Km. 10 Autopista al Aeropuerto Internacional Mariano Escobedo, Apodaca 66629, Nuevo León, Mexico
| |
Collapse
|
9
|
Li Y, Sha X, Wang Y, Zhao Y, Zhang J, Wang P, Chen X, Xing B, Wang L. In situ imaging of microplastics in living organisms based on mass spectrometry technology. ECO-ENVIRONMENT & HEALTH 2024; 3:412-417. [PMID: 39524474 PMCID: PMC11541458 DOI: 10.1016/j.eehl.2024.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/13/2024] [Accepted: 05/27/2024] [Indexed: 11/16/2024]
Abstract
Plastic pollution is widely present in terrestrial and aquatic ecosystems, and microplastics (MPs) can be detected in organisms. In situ detection methods for MPs in organisms have attracted widespread attention. Traditional imaging characterization methods of MPs, including stereo microscopes and fluorescence microscopy, are typically used to image artificially added microsphere standards under laboratory conditions. However, they cannot specifically identify MPs in biological samples. Thus, there is a need for a detection technique that can provide spatial distribution information of MPs in biological samples as well as measure their quality and quantity. In this perspective, to obtain high-resolution images with chemical composition analysis, we compared ion sources for ionizing plastic macromolecules and mass analyzers for analyzing macromolecules. Matrix-assisted laser desorption/ionization (MALDI) is suitable for imaging characterization, while time-of-flight (TOF) and Orbitrap mass spectrometry are suitable for polymer mass spectrometry analysis. Furthermore, we propose a technique that combines MALDI with TOF or Orbitrap, which holds promise for the in situ imaging of MPs in biological samples.
Collapse
Affiliation(s)
- Ye Li
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA, USA
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Xiaoyu Sha
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Yuan Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Yanfang Zhao
- School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Junjie Zhang
- Analytical Chemistry Group, Department of Plant and Environmental Science, Faculty of Science, University of Copenhagen, 1871 Frederiksberg C, Denmark
| | - Ping Wang
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA, USA
- School of Business, Qingdao University, Qingdao 266100, China
| | - Xiangfeng Chen
- School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA, USA
| | - Lei Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| |
Collapse
|
10
|
Sabaliauskaitė V, Kataržytė M, Rubavičiūtė R, Tiškus E, Balčiūnas A. Beach wrack as a potential microplastic hot spot in the South-Eastern Baltic Sea environment. MARINE POLLUTION BULLETIN 2024; 209:117139. [PMID: 39461173 DOI: 10.1016/j.marpolbul.2024.117139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/10/2024] [Accepted: 10/10/2024] [Indexed: 10/29/2024]
Abstract
Beach wrack is considered as a major source of nutrients to the sandy coast ecosystems in the South-East Baltic Sea, and it serves as the natural beach sediment storage and habitat formation material. However, it also could be a hot spot for microplastic and other types of marine litter accumulation. We carried out the recovery rate experiments to determine the most reliable method for a rapid and cost-effective application to extract microplastics from the beach wrack. The aeration of media in a saturated solution of sodium chloride revealed to be statistically significant and reliable, therefore was selected as a most suitable to extract the microplastics from the beach wrack. This study shows that the concentration of microplastics is significantly different between the four analyzed compartments in the coastal zone. The microplastic concentration in a beach wrack, with a mean value of 0.47 ± 0.17 items/cm3, contained 4.7 times more microplastics than observed in the surface sand samples. This study estimated that on average over 450 million microplastic items could be found during the castaway event in the South-East Baltic Sea coast.
Collapse
Affiliation(s)
- Viktorija Sabaliauskaitė
- Klaipeda University, Marine Research Institute, University Avenue 17, 92295 Klaipėda, Lithuania.
| | - Marija Kataržytė
- Klaipeda University, Marine Research Institute, University Avenue 17, 92295 Klaipėda, Lithuania
| | - Renata Rubavičiūtė
- Klaipeda University, Marine Research Institute, University Avenue 17, 92295 Klaipėda, Lithuania
| | - Edvinas Tiškus
- Klaipeda University, Marine Research Institute, University Avenue 17, 92295 Klaipėda, Lithuania
| | - Arūnas Balčiūnas
- Klaipeda University, Marine Research Institute, University Avenue 17, 92295 Klaipėda, Lithuania
| |
Collapse
|
11
|
Kumar M, Chaudhary V, Chaudhary V, Srivastav AL, Madhav S. Impacts of microplastics on ecosystem services and their microbial degradation: a systematic review of the recent state of the art and future prospects. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:63524-63575. [PMID: 39508948 DOI: 10.1007/s11356-024-35472-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 10/26/2024] [Indexed: 11/15/2024]
Abstract
Microplastics are tiny plastic particles with a usual diameter ranging from ~ 1 μ to 5 µm. Recently, microplastic pollution has raised the attention of the worldwide environmental and human concerns. In human beings, digestive system illness, respiratory system disorders, sleep disturbances, obesity, diabetes, and even cancer have been reported after microplastic exposure either through food, air, or skin. Similarly, microplastics are also having negative impacts on the plant health, soil microorganisms, aquatic lives, and other animals. Policies and initiatives have already been in the pipeline to address this problem to deal with microplastic pollution. However, many obstacles are also being observed such as lack of knowledge, lack of research, and also absence of regulatory frameworks. This article has covered the distribution of microplastics in water, soil, food and air. Application of multimodel strategies including fewer plastic item consumption, developing low-cost novel technologies using microorganisms, biofilm, and genetic modified microorganisms has been used to reduce microplastics from the environment. Researchers, academician, policy-makers, and environmentalists should work jointly to cope up with microplastic contamination and their effect on the ecosystem as a whole which can be reduced in the coming years and also to make earth clean.
Collapse
Affiliation(s)
- Mukesh Kumar
- College of Horticulture, Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut, Uttar Pradesh, India
| | - Veena Chaudhary
- Department of Chemistry, Meerut College Meerut, Meerut, Uttar Pradesh, India
| | - Vidisha Chaudhary
- Institute of Business Studies, CCS University, Meerut, India, Uttar Pradesh
| | - Arun Lal Srivastav
- Chitkara University School of Engineering and Technology, Chitkara University, Solan, Himachal Pradesh, India.
- Center of Excellence for Sustainability, Chitkara University, Solan, Himachal Pradesh, India.
| | - Sughosh Madhav
- Department of Civil Engineering, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
12
|
Zhang M, Jin Y, Fan C, Xu Y, Li J, Pan W, Lou Z, Chen H, Jin B. Exploring the trophic transfer and effects of microplastics in freshwater ecosystems: A focus on Bellamya aeruginosa to Mylopharyngodon piceus. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 357:124426. [PMID: 38917945 DOI: 10.1016/j.envpol.2024.124426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 06/01/2024] [Accepted: 06/21/2024] [Indexed: 06/27/2024]
Abstract
Microplastics (MPs) can enter aquatic food webs through direct ingestion from the environment or indirectly via trophic transfer, but their fate and biological effects within local freshwater food chains remain largely unexplored. In this study, we conducted the first investigation on the trophic transfer and impacts of fluorescently labeled polystyrene microplastics (PS-MPs) (100-nm and 10-μm) in a model freshwater food chain consisting of the snail Bellamya aeruginosa and the commercially important fish Mylopharyngodon piceus, both prevalent in Chinese freshwater ecosystems. Quantitative analysis revealed substantial accumulation of MPs in B. aeruginosa, reaching an equilibrium state within 12 h of exposure. While steady-state was not observed, a pronounced time-dependent bioaccumulation of MPs was evident in M. piceus over a five-week period following dietary exposure through the consumption of contaminated B. aeruginosa. Notably, MPs of both sizes underwent translocation from the gastrointestinal tract to the muscle tissue in M. piceus. High-throughput sequencing of the gut microbiota revealed that exposure to 100-nm MPs significantly altered the microbial community composition in M. piceus, and both particle sizes led to increased relative abundance of potentially pathogenic bacterial genera. Our findings provide novel insights into the trophic transfer, tissue accumulation, and biological impacts of MPs in a model freshwater food chain, highlighting the need for further research to assess the ecological and food safety risks associated with microplastic pollution in freshwater environments.
Collapse
Affiliation(s)
- Ming Zhang
- School of Life and Environmental Science, Hangzhou Normal University, 2318 Yuhangtang Road, Hangzhou, Zhejiang 311121, China
| | - Yijie Jin
- School of Life and Environmental Science, Hangzhou Normal University, 2318 Yuhangtang Road, Hangzhou, Zhejiang 311121, China
| | - Cenyi Fan
- School of Life and Environmental Science, Hangzhou Normal University, 2318 Yuhangtang Road, Hangzhou, Zhejiang 311121, China
| | - Yiwen Xu
- School of Life and Environmental Science, Hangzhou Normal University, 2318 Yuhangtang Road, Hangzhou, Zhejiang 311121, China
| | - Jiateng Li
- School of Life and Environmental Science, Hangzhou Normal University, 2318 Yuhangtang Road, Hangzhou, Zhejiang 311121, China
| | - Wenjing Pan
- School of Life and Environmental Science, Hangzhou Normal University, 2318 Yuhangtang Road, Hangzhou, Zhejiang 311121, China
| | - Ziyang Lou
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai Engineering Research Center of Solid Waste Treatment and Resource Recovery, Shanghai 200240, China
| | - Huili Chen
- School of Life and Environmental Science, Hangzhou Normal University, 2318 Yuhangtang Road, Hangzhou, Zhejiang 311121, China
| | - Binsong Jin
- School of Life and Environmental Science, Hangzhou Normal University, 2318 Yuhangtang Road, Hangzhou, Zhejiang 311121, China.
| |
Collapse
|
13
|
Liu D, Yang Z, Gong Y, Song D, Chen Y. Occurrence and emission characteristics of microplastics in agricultural surface runoff under different natural rainfall and short-term fertilizer application. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135254. [PMID: 39038379 DOI: 10.1016/j.jhazmat.2024.135254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/12/2024] [Accepted: 07/17/2024] [Indexed: 07/24/2024]
Abstract
Land-based microplastics (MPs) are considered the primary source of MPs in aquatic environments, with runoff being a major pathway for their transfer from soil to surface water. However, the transportation characteristics of MPs via agricultural surface runoff remain unclear. In this study, we investigated the occurrence and emission characteristics of MPs in agricultural surface runoff under various short-term fertilizer applications and natural rainfall events using laser direct infrared imaging analysis (LDIR). MPs from fertilizers and soils co-migrated with the agricultural runoff. The abundance and concentration of MPs in runoff were 145.90 ± 22.48-2043.38 ± 89.51 items·L-1 and 39.17 ± 21.94-523.04 ± 47.85 µg·L-1, respectively. Small and low-density MPs, such as polyethylene (PE), chlorinated polyethylene (CPE), and polyurethane (PU) in film/fragment form with 20-50 µm exhibited a higher mobility. No statistical differences were observed in the distribution of runoff MPs with the application of different fertilizers. There was a significant positive relationship between runoff MP abundance and rainfall intensity. The annual emission load in this study area was 116.73 g·hm-2, indicating that the transportation of MPs via agricultural surface runoff cannot be ignored. This study is conducive to understanding the migration behavior of MPs in soil-water environments in a better manner.
Collapse
Affiliation(s)
- Dengping Liu
- College of Resources and Environment, Southwest University, Chongqing 400715, China; Chongqing Engineering Research Center of Rural Cleaning, Chongqing 400715, China
| | - Zhimin Yang
- College of Resources and Environment, Southwest University, Chongqing 400715, China; Chongqing Engineering Research Center of Rural Cleaning, Chongqing 400715, China
| | - Yang Gong
- College of Resources and Environment, Southwest University, Chongqing 400715, China; Chongqing Engineering Research Center of Rural Cleaning, Chongqing 400715, China
| | - Dan Song
- Chongqing Academe of Eco-Environmental Science, Chongqing 401147, China
| | - Yucheng Chen
- College of Resources and Environment, Southwest University, Chongqing 400715, China; Chongqing Engineering Research Center of Rural Cleaning, Chongqing 400715, China.
| |
Collapse
|
14
|
Duan Q, Zhai B, Zhao C, Liu K, Yang X, Zhang H, Yan P, Huang L, Lee J, Wu W, Zhou C, Quan X, Kang W. Nationwide meta-analysis of microplastic distribution and risk assessment in China's aquatic ecosystems, soils, and sediments. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135331. [PMID: 39067288 DOI: 10.1016/j.jhazmat.2024.135331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/13/2024] [Accepted: 07/24/2024] [Indexed: 07/30/2024]
Abstract
Microplastic (MP) accumulation has recently become a pressing global environmental challenge. As a major producer and consumer of plastic products, China's MP pollution has garnered significant attention from researchers. However, accurate and comprehensive investigations of national-level MP pollution are still lacking. In this study, we systematically collated a national MP pollution dataset consisting of 7766 water, soil, and sediment sampling sites from 544 publicly published studies, revealing the spatiotemporal distribution and potential risks of MP pollution in China. The results indicate that MP distribution is influenced by various regional factors, including economic development level, population distribution, and geographical environment, exhibiting considerable range and complexity. MP concentrations are generally higher in economically prosperous areas, but the degree of pollution varies significantly across different environmental media. Given the uncertainty and lack of standardized data in traditional microplastic risk assessment methods, this article highlights the urgency of developing a comprehensive big data and artificial intelligence (AI)-based regulatory framework. This work provides a substantial amount of accurate MP pollution data and offers a fresh perspective on leveraging AI for microplastic pollution regulation.
Collapse
Affiliation(s)
- Qiannan Duan
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, PR China
| | - Baoxin Zhai
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, PR China
| | - Chen Zhao
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, PR China
| | - Kangping Liu
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, PR China
| | - Xiangyi Yang
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, PR China
| | - Hailong Zhang
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, PR China
| | - Pengwei Yan
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, PR China
| | - Lei Huang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China.
| | - Jianchao Lee
- Department of Environment Science, Shaanxi Normal University, Xi'an 710119, PR China.
| | - Weidong Wu
- Shaanxi Key Laboratory of Environmental Monitoring and Forewarning of Trace Pollutants, Xi'an 710005, PR China
| | - Chi Zhou
- Shaanxi Key Laboratory of Environmental Monitoring and Forewarning of Trace Pollutants, Xi'an 710005, PR China
| | - Xudong Quan
- Shaanxi Key Laboratory of Environmental Monitoring and Forewarning of Trace Pollutants, Xi'an 710005, PR China
| | - Wei Kang
- Shaanxi Key Laboratory of Environmental Monitoring and Forewarning of Trace Pollutants, Xi'an 710005, PR China
| |
Collapse
|
15
|
Lykkemark J, Mattonai M, Vianello A, Gomiero A, Modugno F, Vollertsen J. Py-GC-MS analysis for microplastics: Unlocking matrix challenges and sample recovery when analyzing wastewater for polypropylene and polystyrene. WATER RESEARCH 2024; 261:122055. [PMID: 38996726 DOI: 10.1016/j.watres.2024.122055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 06/26/2024] [Accepted: 07/04/2024] [Indexed: 07/14/2024]
Abstract
Matrix interference and recovery when using pyrolysis gas chromatography (Py-GC-MS) to analyze wastewater for polystyrene (PS) and polypropylene (PP) microplastics (MP) was studied. Raw wastewater underwent a sample preparation train commonly applied for such matrix. The train consisted of six discrete steps to reduce the organic matter content without affecting MP in the sample. One large wastewater sample was collected, homogenized, and subdivided into 21 subsamples. Three samples were analyzed without further sample preparation. The remaining samples were divided in sets of three, and each set underwent an increasing number of steps of the procedure, up to the last set, which underwent the full treatment. The matrix effect on the determination of PS and PP was statistically evaluated by comparing in-matrix and external calibration curves at each step. Recovery of MP was assessed after each step by adding deuterated PS to the samples. A main finding was that there was no significant matrix effect for these polymers throughout the preparation train, suggesting that matrix components did not interfere with the analytical method. However, a significant loss of polymer mass was found between the steps, which may result in MPs falling below detection limits. Therefore, Py-GC-MS could be used for MP quantification before analysis by other techniques which require more extensive matrix removal. A downside of this approach is that analyzing such samples without matrix reduction will increase the need for instrumental maintenance.
Collapse
Affiliation(s)
- Jeanette Lykkemark
- Department of the Built Environment, Aalborg University, Aalborg, Denmark
| | - Marco Mattonai
- Department of Chemistry and Industrial Chemistry, University of Pisa, Pisa, Italy; National Interuniversity Consortium of Materials Science and Technology, Italy.
| | - Alvise Vianello
- Department of the Built Environment, Aalborg University, Aalborg, Denmark
| | - Alessio Gomiero
- NORCE Norwegian Research Centre AS, Norway; North Atlantic Microplastic Centre (NAMC), Norway
| | - Francesca Modugno
- Department of Chemistry and Industrial Chemistry, University of Pisa, Pisa, Italy; North Atlantic Microplastic Centre (NAMC), Norway
| | - Jes Vollertsen
- Department of the Built Environment, Aalborg University, Aalborg, Denmark; North Atlantic Microplastic Centre (NAMC), Norway
| |
Collapse
|
16
|
Visentin E, Manuelian CL, Niero G, Benetti F, Perini A, Zanella M, Pozza M, De Marchi M. Characterization of microplastics in skim-milk powders. J Dairy Sci 2024; 107:5393-5401. [PMID: 38608944 DOI: 10.3168/jds.2023-24373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 03/05/2024] [Indexed: 04/14/2024]
Abstract
The diffusion of microplastics in the food supply chain is prompting public concern as their impact on human health is still largely unknown. The aim of this study was to qualitatively and quantitatively characterize microplastics in skim-milk powder samples (n = 16) from different European countries (n = 8) through Fourier-transform infrared microspectroscopy in attenuated total reflectance mode analysis. The present study highlights that the use of hot alkaline digestion has enabled the efficacious identification of microplastics in skim-milk powders used for cheesemaking across European countries. The adopted protocol allowed detection of 29 different types of polymeric matrices for a total of 536 plastic particles. The most abundant microplastics were polypropylene, polyethylene, polystyrene, and polyethylene terephthalate. Microplastics were found in skim-milk powders in 3 different shapes (fiber, sphere, and irregular fragments) and 6 different colors (black, blue, brown, fuchsia, green, and gray). Results demonstrate the presence of microplastics in all skim-milk powder samples, suggesting a general contamination. Results of the present study will help to evaluate the impact of microplastics intake on human health.
Collapse
Affiliation(s)
- E Visentin
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, 35020, Legnaro (PD), Italy
| | - C L Manuelian
- Group of Ruminant Research (G2R), Department of Animal and Food Sciences, Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Spain
| | - G Niero
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, 35020, Legnaro (PD), Italy.
| | - F Benetti
- European Center for the Sustainable Impact of Nanotechnology, EcamRicert S.r.l., 35127 Padova (PD), Italy
| | - A Perini
- European Center for the Sustainable Impact of Nanotechnology, EcamRicert S.r.l., 35127 Padova (PD), Italy
| | - M Zanella
- European Center for the Sustainable Impact of Nanotechnology, EcamRicert S.r.l., 35127 Padova (PD), Italy
| | - M Pozza
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, 35020, Legnaro (PD), Italy
| | - M De Marchi
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, 35020, Legnaro (PD), Italy
| |
Collapse
|
17
|
Peinador RI, H P PT, Calvo JI. Innovative application of Nile Red (NR)-based dye for direct detection of micro and nanoplastics (MNPs) in diverse aquatic environments. CHEMOSPHERE 2024; 362:142609. [PMID: 38878980 DOI: 10.1016/j.chemosphere.2024.142609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/01/2024] [Accepted: 06/12/2024] [Indexed: 06/20/2024]
Abstract
This paper presents the results of a research aimed at establishing a novel method for the detection of primary and secondary micro- and nanoplastics (MNPs), by using the fluorescence properties of the dye Nile Red-n-heptane (NR-H). The method has been applied to the detection of laboratory degraded polymers (Polystyrene, PS and Polyethylene Terephthalate, PET) as well as traceable latex microspheres in aqueous environments, showing a remarkable detection capacity and avoiding the prior extraction or processing of MNPs in natural samples, with significant time savings compared to conventional methods. The study has been carried out on various types of water, including samples from wastewater treatment plants, boreholes, seawater and synthesized seawater. The effectiveness of the staining process was evaluated by scanning electron microscopy (SEM), dynamic light scattering (DLS) and optical microscopy. As a result, a novel standardizable protocol for the rapid detection of MNPs has been established, with the potential to improve environmental protection through fast in-situ detection and identification of plastic contaminants. The limitations of the protocol in the quantification of MNPs have also been identified and further studies are proposed to overcome these limitations.
Collapse
Affiliation(s)
- R I Peinador
- Institut de la Filtration et des Techniques Séparatives (IFTS), Rue Marcel Pagnol, 47510 Foulayronnes, France.
| | - Phuong Thanh H P
- Institut de la Filtration et des Techniques Séparatives (IFTS), Rue Marcel Pagnol, 47510 Foulayronnes, France
| | - Jose I Calvo
- Departamento de Física Aplicada, ETSIIAA, Universidad de Valladolid, Avenida de Madrid 57, 34004 Palencia, Spain; Institute of Sustainable Processes (ISP), Dr. Mergelina s/n, 47071, Valladolid, Spain
| |
Collapse
|
18
|
Bryksa J, McGlashan P, Stelck N, Wong J, Anderson-Serson A, Hart M, Malcom T, Battle B, Mussone P. High throughput application of ASTM D8332: Detailed prototype design and operating conditions for microplastic sampling of riverine systems. MethodsX 2024; 12:102680. [PMID: 38585180 PMCID: PMC10995887 DOI: 10.1016/j.mex.2024.102680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 03/25/2024] [Indexed: 04/09/2024] Open
Abstract
Microplastic sampling strategies for aquatic systems commonly employ small mesh nets to collect suspended microparticles. These methods work well for marine sampling campaigns; however, complex water systems such as freshwater rivers, effluent discharges, and stormwater ponds characterized by high total suspended solids and fast-moving water can cause the nets to clog, rip, or tear. Published in 2020, ASTM D8332 is an alternative approach to sampling complex water systems for microplastics involving pumping large volumes of water across a cascading stack of sieves to collect suspended particles. Here we show that ASTM D8332 can be applied to sample freshwater rivers for microplastic collection. A high throughput sampling prototype developed in this work is capable of pumping 1500 L of river water in 45 min to collect particles as small as 45 µm. The system is lightweight, modular, and easily transportable. It has a discrete power supply, allowing for the collection of microplastics anywhere along the river, including municipal discharges. The design minimizes the amount of plastic in the flow path and provides a practical way to measure field contamination. Finally, we outline lessons learned through extensive field trials and testing using this system sampling the North Saskatchewan River in Edmonton, Alberta. •Existing small mesh nets face limitations in freshwater rivers, encountering clogging and tearing issues from high suspended solids and fast moving water.•Using a standardized method, ASTM D8332 - a pumping-based approach is efficient for microplastic collection in freshwater rivers.•Lightweight, modular, plastic free prototype system pumps 1500 L of river water in 45 min, collecting particles as small as 45 µm. Successfully tested in the North Saskatchewan River.
Collapse
Affiliation(s)
- Jeremiah Bryksa
- Northern Alberta Institute of Technology, 10210 Princess Elizabeth Ave, Edmonton Alberta, T5G 0Y2 Canada
| | - Patric McGlashan
- Northern Alberta Institute of Technology, 10210 Princess Elizabeth Ave, Edmonton Alberta, T5G 0Y2 Canada
| | - Nadia Stelck
- Northern Alberta Institute of Technology, 10210 Princess Elizabeth Ave, Edmonton Alberta, T5G 0Y2 Canada
| | - Jon Wong
- Northern Alberta Institute of Technology, 10210 Princess Elizabeth Ave, Edmonton Alberta, T5G 0Y2 Canada
| | - Andrew Anderson-Serson
- Northern Alberta Institute of Technology, 10210 Princess Elizabeth Ave, Edmonton Alberta, T5G 0Y2 Canada
| | - Matthew Hart
- Northern Alberta Institute of Technology, 10210 Princess Elizabeth Ave, Edmonton Alberta, T5G 0Y2 Canada
| | - Trace Malcom
- Northern Alberta Institute of Technology, 10210 Princess Elizabeth Ave, Edmonton Alberta, T5G 0Y2 Canada
| | - Bob Battle
- Northern Alberta Institute of Technology, 10210 Princess Elizabeth Ave, Edmonton Alberta, T5G 0Y2 Canada
| | - Paolo Mussone
- Northern Alberta Institute of Technology, 10210 Princess Elizabeth Ave, Edmonton Alberta, T5G 0Y2 Canada
| |
Collapse
|
19
|
Parolini M, Perin E, De Felice B, Gazzotti S, Palazzi A, Conti L, Conterosito E, Rosio E, Bruno F, Gianotti V, Cavallo R. Altitudinal variation of microplastic abundance in lakeshore sediments from Italian lakes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:35864-35877. [PMID: 38743335 PMCID: PMC11136813 DOI: 10.1007/s11356-024-33648-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 05/07/2024] [Indexed: 05/16/2024]
Abstract
Microplastic (MP) contamination represents an issue of global concern for both aquatic and terrestrial ecosystems, but only in recent years, the study of MPs has been focused on freshwaters. Several monitoring surveys have detected the presence of a wide array of MPs differing in size, shape, and polymer composition in rivers and lakes worldwide. Because of their role of sink for plastic particles, the abundance of MPs was investigated in waters, and deep and shoreline sediments from diverse lakes, confirming the ubiquity of this contamination. Although diverse factors, including those concerning anthropogenic activities and physical characteristics of lakes, have been supposed to affect MP abundances, very few studies have directly addressed these links. Thus, the aim of the present study was to explore the levels of MP contamination in mountain and subalpine lakes from Northern Italy. Fourteen lakes dislocated at different altitudes and characterized by dissimilar anthropic pressures were visited. Lakeshore sediments were collected close to the drift line to assess MPs contamination. Our results showed the presence of MPs in lakeshore sediments from all the lakes, with a mean (± standard deviation) expressed as MPs/Kg dry sediment accounting to 14.42 ± 13.31 (range 1.57-61.53), while expressed as MPs/m2, it was 176.07 ± 172.83 (range 25.00-666.67). The MP abundance measured for Garda Lake was significantly higher compared to all the other ones (F1,13 = 7.344; P < 0.001). The pattern of contamination was dominated by fibers in all the lakes, but they were the main contributors in mountain lakes. These findings showed that the MP abundance varied according to the altitude of the lakes, with higher levels measured in subalpine lakes located at low altitudes and surrounded by populated areas.
Collapse
Affiliation(s)
- Marco Parolini
- Department of Environmental Science and Policy, University of Milan, Via Celoria 26, 20133, Milan, Italy.
| | - Elena Perin
- Department of Sustainable Development and Ecological Transition, University of Piemonte Orientale, Via T. Michel 11, 13100, Vercelli, Italy
| | - Beatrice De Felice
- Department of Environmental Science and Policy, University of Milan, Via Celoria 26, 20133, Milan, Italy
| | - Stefano Gazzotti
- Department of Chemistry, University of Milan, Via Golgi 19, 20133, Milan, Italy
| | - Adriano Palazzi
- Department of Environmental Science and Policy, University of Milan, Via Celoria 26, 20133, Milan, Italy
| | - Luca Conti
- ERICA Soc. Coop, Via Santa Margherita, 26, 12051, Cuneo, Italy
| | - Eleonora Conterosito
- Department of Sustainable Development and Ecological Transition, University of Piemonte Orientale, Via T. Michel 11, 13100, Vercelli, Italy
| | - Emanuela Rosio
- ERICA Soc. Coop, Via Santa Margherita, 26, 12051, Cuneo, Italy
| | - Francesco Bruno
- ERICA Soc. Coop, Via Santa Margherita, 26, 12051, Cuneo, Italy
| | - Valentina Gianotti
- Department of Sustainable Development and Ecological Transition, University of Piemonte Orientale, Via T. Michel 11, 13100, Vercelli, Italy
| | - Roberto Cavallo
- ERICA Soc. Coop, Via Santa Margherita, 26, 12051, Cuneo, Italy
| |
Collapse
|
20
|
Hsu YJ, Huang C, Lee M. Unveiling microplastic spectral signatures under weathering and digestive environments through shortwave infrared hyperspectral sensing. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 342:123106. [PMID: 38070648 DOI: 10.1016/j.envpol.2023.123106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 12/03/2023] [Accepted: 12/04/2023] [Indexed: 01/26/2024]
Abstract
Microplastic (MP) pollution presents a novel challenge for marine environmental protection, necessitating comprehensive and long-term monitoring and assessment approaches. Environmental MPs can undergo weathering and microorganism-related digestive processes, altering their original surface properties and chemical structure, thus complicating their quantification and identification. This study aims to establish a comprehensive hyperspectral database for weathered and digestion-degraded MPs, using a wide variety of polymer types collected as either virgin particles or commercial products (within a size range of approximately 3 mm), and to investigate the impact of these processes on their spectral characteristics. Polypropylene (PP) and polyethylene (PE) MPs exhibited significant responses to weathering treatment, as indicated by the formation of new characteristic peaks or slight peak shifts around 1679-1705 nm, which can be attributed to the formation of carbonyl and vinyl functional groups through Norrish reactions. Similarly, polyethylene terephthalate (PET), acrylonitrile butadiene styrene (ABS), and polystyrene (PS) MPs demonstrated notable degradation following digestive treatment, as evidenced by the emergence of new absorption peaks at approximately 1135-1165 nm, possibly associated with alterations involving carbonyl and vinyl functional groups. The results were further validated based on their comparable spectral characteristics of the resultant MPs to reference polymers and possible additives, considering a reasonably accurate match of approximately 80% for the studied MP samples. This study showcases the significant advantage of using shortwave infrared hyperspectral sensing for rapid identification of virgin and exposed MPs with a relatively large scan area after a simple sample preparation. This approach, combined with other complementary characterization techniques, shall provide highly throughput results for MPs identification. This research provides valuable insights into the features extracted from environmental MPs and establishes a foundation for improving their classification efficiency for environmental applications.
Collapse
Affiliation(s)
- Yu-Jhen Hsu
- Department of Safety, Health and Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan
| | - Chihchi Huang
- Department of Safety, Health and Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan
| | - Mengshan Lee
- Department of Safety, Health and Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan.
| |
Collapse
|
21
|
Wu T, Hu G, Ning J, Yang J, Zhou Y. A photoluminescence strategy for detection nanoplastics in water and biological imaging in cells and plants. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132695. [PMID: 37804760 DOI: 10.1016/j.jhazmat.2023.132695] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/30/2023] [Accepted: 09/30/2023] [Indexed: 10/09/2023]
Abstract
Nanoplastics exposure poses a significant threat to the environment and human health, and accurate measurement of nanoparticles in aqueous solutions remains challenging. In this work, we synthesized the cationic fluorescent probe 4-[1-Cyano- 2-[4-(Diethylamino)-2-hydroxyphenyl]ethenyl]-1-ethylpyridinium (PCP) through a straightforward procedure for the rapid and accurate detection and labeling of nanoplastics in aqueous solutions. PCP binds to nanoplastics through electrostatic and hydrophobic interactions with restricted intramolecular rotation and exhibits enhanced fluorescence emission. Using carboxylation-modified polystyrene nanoplastics as a model, PCP could accurately detect concentrations as low as 0.525 mg∙L-1 in aqueous solution and perform wash-free semi-quantitative direct observation. The method demonstrated good reproducibility and recovery in actual sample spiking experiments. In addition, PCP-labeled nanoplastics were successfully used to visualize the uptake and distribution of cells and Arabidopsis thaliana when exposed to different concentrations of nanoplastics. This work provides a simple and sensitive method for efficiently identify, track, and quantify nanoplastics without requiring additional pretreatment and complex instrumentation, making it an ideal tool for accurately quantifying nanoplastics in aqueous solutions and studying the biological interactions of nanoplastics.
Collapse
Affiliation(s)
- Tian Wu
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, China
| | - Guizhen Hu
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, China
| | - Juan Ning
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, China
| | - Jialu Yang
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, China
| | - Yanmei Zhou
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, China.
| |
Collapse
|
22
|
Kamel AH, Hefnawy A, Hazeem LJ, Rashdan SA, Abd-Rabboh HSM. Current perspectives, challenges, and future directions in the electrochemical detection of microplastics. RSC Adv 2024; 14:2134-2158. [PMID: 38205235 PMCID: PMC10777194 DOI: 10.1039/d3ra06755f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
Microplastics (5 μm) are a developing threat that contaminate every environmental compartment. The detection of these contaminants is undoubtedly an important topic of study because of their high potential to cause harm to ecosystems. For many years, scientists have been assiduously striving to surmount the obstacle of detection restrictions and minimize the likelihood of receiving results that are either false positives or false negatives. This study covers the current state of electrochemical sensing technology as well as its application as a low-cost analytical platform for the detection and characterization of novel contaminants. Examples of detection mechanisms, electrode modification procedures, device configuration, and performance are given to show how successful these approaches are for monitoring microplastics in the environment. Additionally included are the recent developments in nanoimpact techniques. Compared to electrochemical methods for microplastic remediation, the use of electrochemical sensors for microplastic detection has received very little attention. With an overview of microplastic electrochemical sensors, this review emphasizes the promise of existing electrochemical remediation platforms toward sensor design and development. In order to enhance the monitoring of these substances, a critical assessment of the requirements for future research, challenges associated with detection, and opportunities is provided. In addition to-or instead of-the now-in-use laboratory-based analytical equipment, these technologies can be utilized to support extensive research and manage issues pertaining to microplastics in the environment and other matrices.
Collapse
Affiliation(s)
- Ayman H Kamel
- Department, College of Science, University of Bahrain Zallaq 32038 Kingdom of Bahrain
- Department of Chemistry, Faculty of Science, Ain Shams University Cairo 11566 Egypt
| | - A Hefnawy
- Department, College of Science, University of Bahrain Zallaq 32038 Kingdom of Bahrain
- Department of Materials Science, Institute of Graduate Studies and Research, Alexandria University El-Shatby Alexandria 21526 Egypt
| | - Layla J Hazeem
- Department of Biology, College of Science, University of Bahrain Zallaq 32038 Bahrain
| | - Suad A Rashdan
- Department, College of Science, University of Bahrain Zallaq 32038 Kingdom of Bahrain
| | - Hisham S M Abd-Rabboh
- Chemistry Department, Faculty of Science, King Khalid University Abha 62529 Saudi Arabia
| |
Collapse
|
23
|
Liu H, Pan B, Zhang J, Huang Z, Li P, Shen J. Determination of microplastics in agricultural soil by double-shot pyrolysis-gas chromatography combined with two-step extraction. J Sep Sci 2024; 47:e2300253. [PMID: 37994289 DOI: 10.1002/jssc.202300253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 11/08/2023] [Accepted: 11/13/2023] [Indexed: 11/24/2023]
Abstract
A method for the determination of five microplastics in agricultural soil was established by double-shot pyrolysis-gas chromatography combined with two-step extraction. First, polycarbonate (PC), polystyrene (PS), polypropylene (PP), and polyethylene (PE) were extracted from soil samples using a mixed solvent of cyclohexanone and p-xylene, and then PE terephthalate was extracted with m-methylphenol. Subsequently, PC and PE terephthalate were analyzed by thermochemolysis, and PE, PP, and PS were investigated by direct pyrolysis at 600°C. The linearity of the method was satisfactory for five microplastics and the correlation coefficients were higher than 0.97 in the respective concentration range. The limits of detection and the limits of quantification were 0.2-10.0 and 0.5-20.0 μg/g, respectively. The method provided recoveries of 75.1%-141.5%, with acceptable repeatability within 20.0%. It was a supplementary method for the existing characterization of microplastics in agricultural soil.
Collapse
Affiliation(s)
- Huijun Liu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, China
| | - Baoquan Pan
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, China
| | - Jingkun Zhang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, China
| | - Zhongping Huang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, China
- Ningbo Academy of Product and Food Quality Inspection, Ningbo Fiber Inspection Institute, Ningbo, China
| | - Pingping Li
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, China
| | - Jian Shen
- Ningbo Academy of Product and Food Quality Inspection, Ningbo Fiber Inspection Institute, Ningbo, China
| |
Collapse
|
24
|
Gao P, Md Shaarani S, Mohd Noor NQI. Recent advances in inspection technologies of food safety health hazards for fish and fish products. Crit Rev Food Sci Nutr 2023; 65:1109-1125. [PMID: 38059602 DOI: 10.1080/10408398.2023.2289077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
The development of reliable and sensitive detection methods is essential for addressing the escalating concerns surrounding fish and fish products, driven by increasing market demands. This comprehensive review presents recent advances in detection approaches, specifically focusing on microplastic, biological, and chemical hazards associated with these products. The overview encompasses 21 distinct detection methods, categorized based on the type of hazard they target. For microplastic hazards, six methods are visual, spectroscopic, and thermal analyses. Biological hazard identification relies on six approaches employing nucleic-acid sequence, immunological, and biosensor technologies. The investigation of chemical hazards encompasses ten methods, including chromatography, spectroscopy, mass spectrometry, immunological, biosensor, and electrochemical techniques. The review provides in-depth insights into the basic principles, general characteristics, and the recognized advantages and disadvantages of each method. Moreover, it elaborates on recent advancements within these methodologies. The concluding section of the review discusses current challenges and outlines future perspectives for these detection methods. Overall, this comprehensive summary not only serves as a guide for researchers involved in fish safety and quality control but also emphasizes the significance of staying abreast of evolving detection technologies to ensure the continued safety of fish and fish products in response to emerging food safety hazards.
Collapse
Affiliation(s)
- Peiru Gao
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Kota Kinabalu, Malaysia
| | - Sharifudin Md Shaarani
- Food Biotechnology Programme, Faculty of Science and Technology, Universiti Sains Islam Malaysia, Nilai, Malaysia
| | | |
Collapse
|
25
|
Chen Q, Wang J, Yao F, Zhang W, Qi X, Gao X, Liu Y, Wang J, Zou M, Liang P. A review of recent progress in the application of Raman spectroscopy and SERS detection of microplastics and derivatives. Mikrochim Acta 2023; 190:465. [PMID: 37953347 DOI: 10.1007/s00604-023-06044-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 10/23/2023] [Indexed: 11/14/2023]
Abstract
The global environmental concern surrounding microplastic (MP) pollution has raised alarms due to its potential health risks to animals, plants, and humans. Because of the complex structure and composition of microplastics (MPs), the detection methods are limited, resulting in restricted detection accuracy. Surface enhancement of Raman spectroscopy (SERS), a spectral technique, offers several advantages, such as high resolution and low detection limit. It has the potential to be extensively employed for sensitive detection and high-resolution imaging of microplastics. We have summarized the research conducted in recent years on the detection of microplastics using Raman and SERS. Here, we have reviewed qualitative and quantitative analyses of microplastics and their derivatives, as well as the latest progress, challenges, and potential applications.
Collapse
Affiliation(s)
- Qiang Chen
- College of Metrology and Measurement Engineering, China Jiliang University, Hangzhou, 310018, China
| | - Jiamiao Wang
- College of Metrology and Measurement Engineering, China Jiliang University, Hangzhou, 310018, China
| | - Fuqi Yao
- College of Metrology and Measurement Engineering, China Jiliang University, Hangzhou, 310018, China
| | - Wei Zhang
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou, 310018, China
| | - Xiaohua Qi
- Chinese Academy of Inspection and Quarantine (CAIQ), Beijing, 100123, China
| | - Xia Gao
- Institute of Analysis and Testing, Beijing Research Institute of Science and Technology, Beijing, 100089, China
| | - Yan Liu
- Institute of Analysis and Testing, Beijing Research Institute of Science and Technology, Beijing, 100089, China
| | - Jiamin Wang
- Institute of Analysis and Testing, Beijing Research Institute of Science and Technology, Beijing, 100089, China
| | - Mingqiang Zou
- Chinese Academy of Inspection and Quarantine (CAIQ), Beijing, 100123, China.
| | - Pei Liang
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou, 310018, China.
| |
Collapse
|
26
|
Lee SY, An J, Kwon JH. Sequential quantification of number and mass of microplastics in municipal wastewater using Fourier-transform infrared spectroscopy and pyrolysis gas chromatography-mass spectrometry. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 336:122452. [PMID: 37633435 DOI: 10.1016/j.envpol.2023.122452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 08/28/2023]
Abstract
Plastic pollution is a significant environmental concern because microplastics (MPs) accumulate in various ecosystems; therefore, the accurate identification and quantification of MPs in environmental samples is crucial. This study presents a new sequential analytical method that combines Fourier-transform infrared spectroscopy (FTIR) and pyrolysis-gas chromatography/mass spectrometry (Pyr-GC/MS) to characterize and quantify MPs. FTIR with a microscope allows the identification of the polymer type and physical dimensions of MPs, whereas Pyr-GC/MS enables determining the chemical composition of MPs with plastic additives. Pretreated wastewater influent samples spiked with reference MPs were filtered through an Al2O3 disk for FTIR analysis, and the surface contents were collected and subjected to Pyr-GC/MS analysis. The mass of the reference MPs estimated using FTIR were in good agreement but were slightly lower than those obtained using Pyr-GC/MS. This finding supports the notion that the proposed sequential method can be used to determine both the number and the mass of MPs in environmental samples.
Collapse
Affiliation(s)
- So-Young Lee
- Division of Environmental Science and Ecological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea; Knoell Korea, 37 Gukjegeumyung-ro 2-gil, Yeongdeungpo-gu, Seoul, 07327, Republic of Korea.
| | - Jiyul An
- Division of Environmental Science and Ecological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Jung-Hwan Kwon
- Division of Environmental Science and Ecological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea.
| |
Collapse
|
27
|
Qin X, Teng W, Zhang X, Yang Y, Zhu Y, Liu Z, Li W, Dong H, Qiang Z, Zeng J, Lian J. Ethanol-diluted turbidimetry method for rapid and accurate quantification of low-density microplastics in synthetic samples. Anal Chim Acta 2023; 1278:341712. [PMID: 37709455 DOI: 10.1016/j.aca.2023.341712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/07/2023] [Accepted: 08/12/2023] [Indexed: 09/16/2023]
Abstract
Retention and transport behaviours of microplastics (MPs) and their associated pollutants in porous media are of great concern. The homogeneity of the studied MPs in artificially controlled lab-scale studies makes rapid and accurate MP quantification feasible. In this study, an economical ethanol-diluted turbidimetry method for polypropylene (PP) and polyethylene (PE) MPs was developed. With ethanol dilution, the MP dispersion system exhibited an excellent suspension performance. Strong linear relationships were observed between MP concentrations and turbidities in both low (<1.3 mg L-1) and high (<170 mg L-1) MP concentration ranges. Solution density and MP agglomeration governed the MP suspension performance. For low surface tension and high molecular mass, the addition of ethanol decreased the contact angles of PP-MPs with solutions from 81.73 to 15.5°, and consequently improved the MP suspension performance. The suspension system was optimised to an ethanol/water (v/v) ratio of 3:2 and 4:1 for PP- and PE-MPs, when the slopes of standard curves were determined to be 1.252 and 0.471 with the recovery of 100.54 ± 3.09% and 103.19 ± 1.66%, and the limit of detection and quantification values of 0.025 and 0.082 mg L-1, and 0.060 and 0.201 mg L-1, respectively. Solution pH, salinity, and dissolved organic matter in the selected range induced acceptable fluctuations in the MP recovery and matrix effect values. The Derjaguin-Landau-Verwey-Overbeek (DLVO) energy barriers were calculated to be > 20 kT, indicating excellent tolerance to the solution matrix. Additionally, applications in real water samples were validated to demonstrate the potential of the developed method.
Collapse
Affiliation(s)
- Xinxin Qin
- Ganzhou Key Laboratory of Basin Pollution Simulation and Control, Jiangxi University of Science and Technology, 1958 Ke-jia Road, Ganzhou, 341000, China; Jiangxi Provincial Key Laboratory of Environmental Geotechnology and Engineering Disaster Control, Jiangxi University of Science and Technology, 1958 Ke-jia Road, Ganzhou, 341000, China
| | - Wenxi Teng
- Ganzhou Key Laboratory of Basin Pollution Simulation and Control, Jiangxi University of Science and Technology, 1958 Ke-jia Road, Ganzhou, 341000, China
| | - Xiang Zhang
- Ganzhou Key Laboratory of Basin Pollution Simulation and Control, Jiangxi University of Science and Technology, 1958 Ke-jia Road, Ganzhou, 341000, China
| | - Yalin Yang
- Ganzhou Key Laboratory of Basin Pollution Simulation and Control, Jiangxi University of Science and Technology, 1958 Ke-jia Road, Ganzhou, 341000, China
| | - Yichun Zhu
- Ganzhou Key Laboratory of Basin Pollution Simulation and Control, Jiangxi University of Science and Technology, 1958 Ke-jia Road, Ganzhou, 341000, China; Jiangxi Provincial Key Laboratory of Environmental Geotechnology and Engineering Disaster Control, Jiangxi University of Science and Technology, 1958 Ke-jia Road, Ganzhou, 341000, China
| | - Zuwen Liu
- Jiangxi Provincial Key Laboratory of Environmental Geotechnology and Engineering Disaster Control, Jiangxi University of Science and Technology, 1958 Ke-jia Road, Ganzhou, 341000, China; School of Life Sciences, Jinggangshan University, Ji'an, 343009, China
| | - Wentao Li
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuang-qing Road, Beijing, 100085, China
| | - Huiyu Dong
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuang-qing Road, Beijing, 100085, China
| | - Zhimin Qiang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuang-qing Road, Beijing, 100085, China
| | - Jinfeng Zeng
- Ganzhou Key Laboratory of Basin Pollution Simulation and Control, Jiangxi University of Science and Technology, 1958 Ke-jia Road, Ganzhou, 341000, China; Hydrology and Water Resources Monitoring Center for Ganjiang Upstream Watershed, 8 Zhang-jia-wei Road, Ganzhou, 341000, China
| | - Junfeng Lian
- Ganzhou Key Laboratory of Basin Pollution Simulation and Control, Jiangxi University of Science and Technology, 1958 Ke-jia Road, Ganzhou, 341000, China; Jiangxi Provincial Key Laboratory of Environmental Geotechnology and Engineering Disaster Control, Jiangxi University of Science and Technology, 1958 Ke-jia Road, Ganzhou, 341000, China.
| |
Collapse
|
28
|
Range D, Scherer C, Stock F, Ternes TA, Hoffmann TO. Hydro-geomorphic perspectives on microplastic distribution in freshwater river systems: A critical review. WATER RESEARCH 2023; 245:120567. [PMID: 37716300 DOI: 10.1016/j.watres.2023.120567] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/29/2023] [Accepted: 08/31/2023] [Indexed: 09/18/2023]
Abstract
Freshwater river systems are commonly defined as the main transport paths of microplastics (MP) from land into the seas. A shift in research interest from oceans to rivers can be observed, as a large number of i) case studies, ii) review papers and iii) experimental studies in this field have been published recently. Still, studies often lack an in-depth consideration of quantification, as units are mostly based on item numbers. Spatiotemporal aspects are often neglected. Transport paths linking MP sources and sinks in the environment are insufficiently understood and only recently the awareness increased that sustainable management of the MP pollution cannot be addressed without a sound knowledge of water- and sediment-driven MP transport. Within this review paper, we therefore i) reviewed 92 MP case-studies, with a special focus on spatiotemporal aspects and ii) gathered and compared global load-estimation data from these studies. We then outlined the key processes determining MP movement in rivers on the basis of existing laboratory experiments and theoretical approaches. A procedure to effectively compare units of MP in the water column and in riverine sediments was developed on the basis of i) an extensive MP-dataset in German waterways and ii) suspended sediment concentrations (SSC) of nearest monitoring stations of the German water and shipping authority. Our analysis indicates that relating MP in water samples to SSC reduces the often stated large difference between MP concentrations in the water column and bed sediments and therefore relativizes the importance of river beds as a major "MP sink". As for a quantification of MP fluxes, the use of MP masses as unit is crucial, we applied an approach to convert MP items to masses with the help of i) a power-law distribution of MP-particle size, triangular distributions of ii) form-ratios and iii) polymer densities. An evaluation with an own, extensive dataset of MP-particles showed reasonable results. Therefore, we translated global load data from item numbers to mass values for further analysis. Values were within a reasonable range, especially when considering the respective catchment size of each river at the sampling site.
Collapse
Affiliation(s)
- David Range
- German Federal Institute of Hydrology, Koblenz 56068, Germany.
| | | | | | - Thomas A Ternes
- German Federal Institute of Hydrology, Koblenz 56068, Germany
| | | |
Collapse
|
29
|
Luo Y, Su W, Xu D, Wang Z, Wu H, Chen B, Wu J. Component identification for the SERS spectra of microplastics mixture with convolutional neural network. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 895:165138. [PMID: 37379925 DOI: 10.1016/j.scitotenv.2023.165138] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/16/2023] [Accepted: 06/24/2023] [Indexed: 06/30/2023]
Abstract
With the increasing interest in microplastics (MPs) pollutants, relevant detection technologies are also developing. In MPs analysis, vibrational spectroscopy represented by surface-enhanced Raman spectroscopy (SERS) is widely used because they can provide unique fingerprint characteristics of chemical components. However, it is still a challenge to separate various chemical components from the SERS spectra of MPs mixture. In this study, it is innovatively proposed to combine the convolutional neural networks (CNN) model to simultaneously identify and analyze each component in the SERS spectra of six common MPs mixture. Different from the traditional method, which requires a series of spectral preprocessing such as baseline correction, smoothing and filtering, the average identification accuracy of MP components is as high as 99.54 % after the unpreprocessed spectral data is trained by CNN, which is better than other classical algorithms such as support vector machine (SVM), principal component analysis linear discriminant analysis (PCA-LDA), partial least squares discriminant analysis (PLS-DA), Random Forest (RF), and K Near Neighbor (KNN), with or without spectral preprocessing. The high accuracy shows that CNN can be used to quickly identify MPs mixture with unpreprocessed SERS spectra data.
Collapse
Affiliation(s)
- Yinlong Luo
- College of Science, Hohai University, Changzhou 213022, China
| | - Wei Su
- College of Science, Hohai University, Changzhou 213022, China.
| | - Dewen Xu
- College of Science, Hohai University, Changzhou 213022, China
| | - Zhenfeng Wang
- College of Science, Hohai University, Changzhou 213022, China
| | - Hong Wu
- School of Science, Nanjing University of Posts and Telecommunications, Nanjing 210003, China
| | - Bingyan Chen
- College of Science, Hohai University, Changzhou 213022, China
| | - Jian Wu
- College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410003, China
| |
Collapse
|
30
|
Lee J, Jeong S. Approach to an answer to "How dangerous microplastics are to the human body": A systematic review of the quantification of MPs and simultaneously exposed chemicals. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132404. [PMID: 37672992 DOI: 10.1016/j.jhazmat.2023.132404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 08/08/2023] [Accepted: 08/24/2023] [Indexed: 09/08/2023]
Abstract
This review aims to facilitate future research on microplastics (MPs) in the environment using systematic and analytical protocols, ultimately contributing to assessment of the risk to human health due to continuous daily exposure to MPs. Despite extensive studies on MP abundance in environment, identification, and treatment, their negative effects on human health remain unknown due to the lack of proof from clinical studies and limited technology on the MP identification. To assess the risk of MPs to human health, the first step is to estimate MP intake via ingestion, inhalation, and dermal contact under standardized exposure conditions in daily life. Furthermore, rather than focusing on the sole MPs, migrating chemicals from plastic products should be quantified and their health risk be assessed concurrently with MP release. The critical factors influencing MP release and simultaneously exposed chemicals (SECs) must be investigated using a standardized identification method. This review summarises release sources, factors, and possible routes of MPs from the environment to the human body, and the quantification methods used in risk assessment. We also discussed the issues encountered in MP release and SEC migration. Consequently, this review provides directions for future MP studies that can answer questions about MP toxicity to human health.
Collapse
Affiliation(s)
- Jieun Lee
- Institute for Environment and Energy, Pusan National University, Busan 46241, South Korea
| | - Sanghyun Jeong
- Department of Environmental Engineering, Pusan National University, Busan 46241, South Korea.
| |
Collapse
|
31
|
Kadac-Czapska K, Trzebiatowska PJ, Knez E, Zaleska-Medynska A, Grembecka M. Microplastics in food - a critical approach to definition, sample preparation, and characterisation. Food Chem 2023; 418:135985. [PMID: 36989641 DOI: 10.1016/j.foodchem.2023.135985] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 02/27/2023] [Accepted: 03/17/2023] [Indexed: 03/29/2023]
Abstract
The ubiquity of microplastics (MPs) is a more and more frequently brought up topic. The fact that such particles are present in food raises particular concern. Information regarding the described contamination is incoherent and difficult to interpret. Problems appear already at the level of the definition of MPs. This paper will discuss ways of explaining the concept of MPs and methods used for its analysis. Isolation of characterised particles is usually performed using filtration, etching and/or density separation. Spectroscopic techniques are commonly applied for analysis, whereas visual evaluation of the particles is possible thanks to microscopic analysis. Basic information about the sample can be obtained by the combination of Fourier Transform Infrared spectroscopy or Raman spectroscopy and microscopy or using the thermal method combined with spectroscopy or chromatography. The unification of the research methodology will allow a credible assessment of the influence of this pollution coming from food on health.
Collapse
|
32
|
Kaur J, Kelpsiene E, Gupta G, Dobryden I, Cedervall T, Fadeel B. Label-free detection of polystyrene nanoparticles in Daphnia magna using Raman confocal mapping. NANOSCALE ADVANCES 2023; 5:3453-3462. [PMID: 37383076 PMCID: PMC10295233 DOI: 10.1039/d3na00323j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 05/27/2023] [Indexed: 06/30/2023]
Abstract
Micro- and nanoplastic pollution has emerged as a global environmental problem. Moreover, plastic particles are of increasing concern for human health. However, the detection of so-called nanoplastics in relevant biological compartments remains a challenge. Here we show that Raman confocal spectroscopy-microscopy can be deployed for the non-invasive detection of amine-functionalized and carboxy-functionalized polystyrene (PS) nanoparticles (NPs) in Daphnia magna. The presence of PS NPs in the gastrointestinal (GI) tract of D. magna was confirmed by using transmission electron microscopy. Furthermore, we investigated the ability of NH2-PS NPs and COOH-PS NPs to disrupt the epithelial barrier of the GI tract using the human colon adenocarcinoma cell line HT-29. To this end, the cells were differentiated for 21 days and then exposed to PS NPs followed by cytotoxicity assessment and transepithelial electrical resistance measurements. A minor disruption of barrier integrity was noted for COOH-PS NPs, but not for the NH2-PS NPs, while no overt cytotoxicity was observed for both NPs. This study provides evidence of the feasibility of applying label-free approaches, i.e., confocal Raman mapping, to study PS NPs in a biological system.
Collapse
Affiliation(s)
- Jasreen Kaur
- Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet Nobels väg 13 171 77 Stockholm Sweden
| | - Egle Kelpsiene
- NanoLund, Department of Biochemistry and Structural Biology, Lund University Lund Sweden
| | - Govind Gupta
- Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet Nobels väg 13 171 77 Stockholm Sweden
| | - Illia Dobryden
- Department of Material and Surface Design, RISE Research Institutes of Sweden Stockholm Sweden
| | - Tommy Cedervall
- NanoLund, Department of Biochemistry and Structural Biology, Lund University Lund Sweden
| | - Bengt Fadeel
- Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet Nobels väg 13 171 77 Stockholm Sweden
| |
Collapse
|
33
|
Liu M, Liu J, Xiong F, Xu K, Pu Y, Huang J, Zhang J, Pu Y, Sun R, Cheng K. Research advances of microplastics and potential health risks of microplastics on terrestrial higher mammals: a bibliometric analysis and literature review. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:2803-2838. [PMID: 36598611 PMCID: PMC9811881 DOI: 10.1007/s10653-022-01458-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 12/14/2022] [Indexed: 06/01/2023]
Abstract
Microplastics (MPs) have become increasingly serious global problems due to their wide distribution and complicated impacts on living organisms. To obtain a comprehensive overview of the latest research progress on MPs, we conducted a bibliometric analysis combined with a literature review. The results showed that the number of studies on MPs has grown exponentially since 2010. Recently, the hotspot on MPs has shifted to terrestrial ecosystems and biological health risks, including human health risks. In addition, the toxic effects, identification and quantification of MPs are relatively new research hotspots. We subsequently provide a review of MPs studies related to health risks to terrestrial higher mammals and, in particular, to humans, including detection methods and potential toxicities based on current studies. Currently, MPs have been found existing in human feces, blood, colon, placenta and lung, but it is still unclear whether this is associated with related systemic diseases. In vivo and in vitro studies have demonstrated that MPs cause intestinal toxicity, metabolic disruption, reproductive toxicity, neurotoxicity, immunotoxicity through oxidative stress, apoptosis and specific pathways, etc. Notably, in terms of combined effects with pollutants and neurotoxicity, the effects of MPs are still controversial. Future attention should be paid to the detection and quantification of MPs in human tissues, exploring the combined effects and related mechanisms of MPs with other pollutants and clarifying the association between MPs and the development of pre-existing diseases. Our work enhances further understanding of the potential health risks of MPs to terrestrial higher mammals.
Collapse
Affiliation(s)
- Manman Liu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Jinyan Liu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Fei Xiong
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Kai Xu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Yunqiu Pu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Jiawei Huang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Juan Zhang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Yuepu Pu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Rongli Sun
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China.
| | - Keping Cheng
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China.
- Zhongda Hospital Affiliated to Southeast University, Nanjing, 210009, Jiangsu, China.
| |
Collapse
|
34
|
Kurniawan TA, Haider A, Ahmad HM, Mohyuddin A, Umer Aslam HM, Nadeem S, Javed M, Othman MHD, Goh HH, Chew KW. Source, occurrence, distribution, fate, and implications of microplastic pollutants in freshwater on environment: A critical review and way forward. CHEMOSPHERE 2023; 325:138367. [PMID: 36907482 DOI: 10.1016/j.chemosphere.2023.138367] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/15/2023] [Accepted: 03/08/2023] [Indexed: 06/18/2023]
Abstract
The generation of microplastics (MPs) has increased recently and become an emerging issue globally. Due to their long-term durability and capability of traveling between different habitats in air, water, and soil, MPs presence in freshwater ecosystem threatens the environment with respect to its quality, biotic life, and sustainability. Although many previous works have been undertaken on the MPs pollution in the marine system recently, none of the study has covered the scope of MPs pollution in the freshwater. To consolidate scattered knowledge in the literature body into one place, this work identifies the sources, fate, occurrence, transport pathways, and distribution of MPs pollution in the aquatic system with respect to their impacts on biotic life, degradation, and detection techniques. This article also discusses the environmental implications of MPs pollution in the freshwater ecosystems. Certain techniques for identifying MPs and their limitations in applications are presented. Through a literature survey of over 276 published articles (2000-2023), this study presents an overview of solutions to the MP pollution, while identifying research gaps in the body of knowledge for further work. It is conclusive from this review that the MPs exist in the freshwater due to an improper littering of plastic waste and its degradation into smaller particles. Approximately 15-51 trillion MP particles have accumulated in the oceans with their weight ranging between 93,000 and 236,000 metric ton (Mt), while about 19-23 Mt of plastic waste was released into rivers in 2016, which was projected to increase up to 53 Mt by 2030. A subsequent degradation of MPs in the aquatic environment results in the generation of NPs with size ranging from 1 to 1000 nm. It is expected that this work facilitates stakeholders to understand the multi-aspects of MPs pollution in the freshwater and recommends policy actions to implement sustainable solutions to this environmental problem.
Collapse
Affiliation(s)
| | - Ahtisham Haider
- Department of Chemistry, School of Science, University of Management and Technology, Lahore, 54770, Pakistan
| | - Hafiz Muhammad Ahmad
- Department of Chemistry, School of Science, University of Management and Technology, Lahore, 54770, Pakistan
| | - Ayesha Mohyuddin
- Department of Chemistry, School of Science, University of Management and Technology, Lahore, 54770, Pakistan.
| | - Hafiz Muhammad Umer Aslam
- Department of Chemistry, School of Science, University of Management and Technology, Lahore, 54770, Pakistan
| | - Sohail Nadeem
- Department of Chemistry, School of Science, University of Management and Technology, Lahore, 54770, Pakistan
| | - Mohsin Javed
- Department of Chemistry, School of Science, University of Management and Technology, Lahore, 54770, Pakistan
| | - Mohd Hafiz Dzarfan Othman
- Advanced Membrane Technology Research Centre (AMTEC), Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor Bahru, Malaysia
| | - Hui Hwang Goh
- School of Electrical Engineering, Guangxi University, Nanning, 530004, Guangxi, PR China
| | - Kit Wayne Chew
- School of Chemistry, Chemical Engineering, and Biotechnology, Nanyang Technological University, 637459, Singapore
| |
Collapse
|
35
|
Râpă M, Darie-Niță RN, Matei E, Predescu AM, Berbecaru AC, Predescu C. Insights into Anthropogenic Micro- and Nanoplastic Accumulation in Drinking Water Sources and Their Potential Effects on Human Health. Polymers (Basel) 2023; 15:polym15112425. [PMID: 37299225 DOI: 10.3390/polym15112425] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/13/2023] [Accepted: 05/19/2023] [Indexed: 06/12/2023] Open
Abstract
Anthropogenic microplastics (MPs) and nanoplastics (NPs) are ubiquitous pollutants found in aquatic, food, soil and air environments. Recently, drinking water for human consumption has been considered a significant pathway for ingestion of such plastic pollutants. Most of the analytical methods developed for detection and identification of MPs have been established for particles with sizes > 10 μm, but new analytical approaches are required to identify NPs below 1 μm. This review aims to evaluate the most recent information on the release of MPs and NPs in water sources intended for human consumption, specifically tap water and commercial bottled water. The potential effects on human health of dermal exposure, inhalation, and ingestion of these particles were examined. Emerging technologies used to remove MPs and/or NPs from drinking water sources and their advantages and limitations were also assessed. The main findings showed that the MPs with sizes > 10 μm were completely removed from drinking water treatment plants (DWTPs). The smallest NP identified using pyrolysis-gas chromatography-mass spectrometry (Pyr-GC/MS) had a diameter of 58 nm. Contamination with MPs/NPs can occur during the distribution of tap water to consumers, as well as when opening and closing screw caps of bottled water or when using recycled plastic or glass bottles for drinking water. In conclusion, this comprehensive study emphasizes the importance of a unified approach to detect MPs and NPs in drinking water, as well as raising the awareness of regulators, policymakers and the public about the impact of these pollutants, which pose a human health risk.
Collapse
Affiliation(s)
- Maria Râpă
- Faculty of Materials Science and Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei, 060042 Bucharest, Romania
| | - Raluca Nicoleta Darie-Niță
- Physical Chemistry of Polymers Department, Petru Poni Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| | - Ecaterina Matei
- Faculty of Materials Science and Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei, 060042 Bucharest, Romania
| | - Andra-Mihaela Predescu
- Faculty of Materials Science and Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei, 060042 Bucharest, Romania
| | - Andrei-Constantin Berbecaru
- Faculty of Materials Science and Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei, 060042 Bucharest, Romania
| | - Cristian Predescu
- Faculty of Materials Science and Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei, 060042 Bucharest, Romania
| |
Collapse
|
36
|
Taghipour H, Ghayebzadeh M, Ganji F, Mousavi S, Azizi N. Tracking microplastics contamination in drinking water in Zahedan, Iran: From source to consumption taps. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 872:162121. [PMID: 36773917 DOI: 10.1016/j.scitotenv.2023.162121] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 02/04/2023] [Accepted: 02/05/2023] [Indexed: 06/18/2023]
Abstract
Microplastics (MPs) that pollute drinking water are inherently toxic, act as an adsorbent of hazardous pollutants, and threaten human health. So, the fate of microplastics in drinking water from the source to consumption taps (CTs) was assessed in spring and winter in Zahedan city in Iran. Sampling was performed from 4 reservoirs (raw water), before and after two water treatment plants (WTPs), and 10 CTs. The reservoirs were sampled using a plankton net (pore size = 100 μm), and the remaining samples were taken using a sampling device (containing a stainless steel membrane as a filter with pore size = 5 μm). The combination of density separation techniques, digestion, observation, Micro-Raman and FTIR, and SEM analysis was performed to recognize MPs. The average number of MPs in raw water varied between 15.4 and 44.7 MP/m3 (winter) and 22-51.8 MP/m3 (spring). The results before and after the treatment plant showed that about 64 % and 75 % of particles were eliminated in WTP1 and WTP2, respectively. The average number of MPs in CTs was more than treatment water (CTa = 85-390 MP/m3 and CTb = 75-400 MP/m3), which is a probable confirmation of secondary contamination (abrasion from pipes, installations, and sealing materials). The dominant type of polymer detected in raw water, treated water, and consumption taps were PS. The estimated daily intake for children and adults was about 0.16-15 MP/kg/bw/year and 0.07-5.7 MP/kg/bw/year, respectively. The surface morphology of MPs showed that the particles were affected by continuous weathering, mechanical breakage, and oxidation. MPs threaten the environment and human health due to the adsorption and transport of hazardous pollution and their intrinsic toxicity, so a solution must be thought of to prevent the pollution of drinking water by MPs.
Collapse
Affiliation(s)
- Hassan Taghipour
- Health and Environment Research Center, School of Public Health, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Ghayebzadeh
- Department of Environmental Health Engineering, Health Promotion Research Center, Zahedan University of Medical Sciences, Zahedan, Iran; Department of Environmental Health Engineering, Zahedan University of Medical Sciences, Zahedan, Iran.
| | - Fatemeh Ganji
- Department of Environmental Health Engineering, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Saeid Mousavi
- Department of Statistics and Epidemiology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nahid Azizi
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
37
|
Lee J, Lee Y, Lee J, Kang M, Jeong S. Complementary Analysis for Undetectable Microplastics from Contact Lenses to Aquatic Environments via Fourier Transform Infrared Spectroscopy. Molecules 2023; 28:molecules28093713. [PMID: 37175123 PMCID: PMC10179804 DOI: 10.3390/molecules28093713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/18/2023] [Accepted: 04/19/2023] [Indexed: 05/15/2023] Open
Abstract
Although microplastics (MPs) are intrinsically toxic and function as vectors for organic micropollutants, their discharge from wastewater treatment plant effluents and human activity remains unknown owing to the limitations of detection and treatment technologies. It is imperative to quantify MPs from human activities involving the consumption of various plastic products. This study warns that contact lenses can generate MPs and nanoplastics (NPs) after being discharged into aquatic environments. Identification via micro-Fourier transform infrared spectroscopy revealed that the fragmented particles (from a few tens to a few hundred micrometres) could not be detected as poly(2-hydroxyl methacrylate), the component of contact lenses, owing to changes in its chemical properties. After the degradation process, the median size of the contact lens particles decreased from 313 to 85 µm. Approximately 300,600 g of contact lens waste is discharged into sewage systems daily in the United States of America (USA), where 45 million people wear contact lenses and throw away one-fifth of them every day. Contact lens waste (1 g) has the potential to release 5653.3-17,773.3 particles of MPs. This implies that the currently reported MP amounts in the environmental matrix exclude significant amounts of MPs and NPs from discharged contact lenses. The identification method should be examined, and a registration of the disposal process should be established.
Collapse
Affiliation(s)
- Jieun Lee
- Institute for Environmental and Energy, Pusan National University, Busan 46241, Republic of Korea
| | - Yejin Lee
- Department of Environmental Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Jeonghyeon Lee
- Department of Environmental Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Minseong Kang
- Department of Environmental Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Sanghyun Jeong
- Institute for Environmental and Energy, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
38
|
Falzarano M, Polettini A, Pomi R, Rossi A, Zonfa T. Anaerobic Biodegradability of Commercial Bioplastic Products: Systematic Bibliographic Analysis and Critical Assessment of the Latest Advances. MATERIALS (BASEL, SWITZERLAND) 2023; 16:2216. [PMID: 36984096 PMCID: PMC10058929 DOI: 10.3390/ma16062216] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 02/28/2023] [Accepted: 03/07/2023] [Indexed: 06/18/2023]
Abstract
Bioplastics have entered everyday life as a potential sustainable substitute for commodity plastics. However, still further progress should be made to clarify their degradation behavior under controlled and uncontrolled conditions. The wide array of biopolymers and commercial blends available make predicting the biodegradation degree and kinetics quite a complex issue that requires specific knowledge of the multiple factors affecting the degradation process. This paper summarizes the main scientific literature on anaerobic digestion of biodegradable plastics through a general bibliographic analysis and a more detailed discussion of specific results from relevant experimental studies. The critical analysis of literature data initially included 275 scientific references, which were then screened for duplication/pertinence/relevance. The screened references were analyzed to derive some general features of the research profile, trends, and evolution in the field of anaerobic biodegradation of bioplastics. The second stage of the analysis involved extracting detailed results about bioplastic degradability under anaerobic conditions by screening analytical and performance data on biodegradation performance for different types of bioplastic products and different anaerobic biodegradation conditions, with a particular emphasis on the most recent data. A critical overview of existing biopolymers is presented, along with their properties and degradation mechanisms and the operating parameters influencing/enhancing the degradation process under anaerobic conditions.
Collapse
|
39
|
Dey S, Anand U, Kumar V, Kumar S, Ghorai M, Ghosh A, Kant N, Suresh S, Bhattacharya S, Bontempi E, Bhat SA, Dey A. Microbial strategies for degradation of microplastics generated from COVID-19 healthcare waste. ENVIRONMENTAL RESEARCH 2023; 216:114438. [PMID: 36179880 PMCID: PMC9514963 DOI: 10.1016/j.envres.2022.114438] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 08/20/2022] [Accepted: 09/22/2022] [Indexed: 05/10/2023]
Abstract
COVID-19 pandemic has led to the generation of massive plastic wastes, comprising of onetime useable gloves, masks, tissues, and other personal protective equipment (PPE). Recommendations for the employ of single-use disposable masks made up of various polymeric materials like polyethylene, polyurethane, polyacrylonitrile, and polypropylene, polystyrene, can have significant aftermath on environmental, human as well as animal health. Improper disposal and handling of healthcare wastes and lack of proper management practices are creating serious health hazards and an extra challenge for the local authorities designated for management of solid waste. Most of the COVID-19 medical wastes generated are now being treated by incineration which generates microplastic particles (MPs), dioxin, furans, and various toxic metals, such as cadmium and lead. Moreover, natural degradation and mechanical abrasion of these wastes can lead to the generation of MPs which cause a serious health risk to living beings. It is a major threat to aquatic lives and gets into foods subsequently jeopardizing global food safety. Moreover, the presence of plastic is also considered a threat owing to the increased carbon emission and poses a profound danger to the global food chain. Degradation of MPs by axenic and mixed culture microorganisms, such as bacteria, fungi, microalgae etc. can be considered an eco-sustainable technique for the mitigation of the microplastic menace. This review primarily deals with the increase in microplastic pollution due to increased use of PPE along with different disinfection methods using chemicals, steam, microwave, autoclave, and incineration which are presently being employed for the treatment of COVID-19 pandemic-related wastes. The biological treatment of the MPs by diverse groups of fungi and bacteria can be an alternative option for the mitigation of microplastic wastes generated from COVID-19 healthcare waste.
Collapse
Affiliation(s)
- Satarupa Dey
- Department of Botany, Shyampur Siddheswari Mahavidyalaya (affiliated to University of Calcutta), Howrah-711312, West Bengal, India.
| | - Uttpal Anand
- Zuckerberg Institute for Water Research, Jacob Blaustein Institutes for Desert Research, Ben Gurion University of the Negev, Midreshet Ben Gurion, 8499000, Israel
| | - Vineet Kumar
- Waste Re-processing Division, CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 440 020, Maharashtra, India; Department of Basic and Applied Sciences, School of Engineering and Sciences, GD Goenka University, Sohna Road, Gurugram, Haryana,122103, India.
| | - Sunil Kumar
- Waste Re-processing Division, CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 440 020, Maharashtra, India
| | - Mimosa Ghorai
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, 700073, West Bengal, India
| | - Arabinda Ghosh
- Department of Botany, Gauhati University, Guwahati, 781014, Assam, India
| | - Nishi Kant
- Department of Chemical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, Delhi, 110016, India
| | - S Suresh
- Department of Chemical Engineering, Maulana Azad National Institute of Technology, Bhopal, 462 003, Madhya Pradesh, India
| | - Sayan Bhattacharya
- School of Ecology and Environment Studies, Nalanda University, Rajgir, Nalanda, 803116, Bihar, India
| | - Elza Bontempi
- INSTM and Chemistry for Technologies Laboratory, Department of Mechanical and Industrial Engineering, University of Brescia, Via Branze, 38, 25123, Brescia, Italy
| | - Sartaj Ahmad Bhat
- Waste Re-processing Division, CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 440 020, Maharashtra, India; River Basin Research Center, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, 700073, West Bengal, India.
| |
Collapse
|
40
|
Entezari S, Al MA, Mostashari A, Ganjidoust H, Ayati B, Yang J. Microplastics in urban waters and its effects on microbial communities: a critical review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:88410-88431. [PMID: 36327084 DOI: 10.1007/s11356-022-23810-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
Microplastic (MP) pollution is one of the emerging threats to the water and terrestrial environment, forcing a new environmental challenge due to the growing trend of plastic released into the environment. Synthetic and non-synthetic plastic components can be found in rivers, lakes/reservoirs, oceans, mountains, and even remote areas, such as the Arctic and Antarctic ice sheets. MPs' main challenge is identifying, measuring, and evaluating their impacts on environmental behaviors, such as carbon and nutrient cycles, water and wastewater microbiome, and the associated side effects. However, until now, no standardized methodical protocols have been proposed for comparing the results of studies in different environments, especially in urban water and wastewater. This review briefly discusses MPs' sources, fate, and transport in urban waters and explains methodological uncertainty. The effects of MPs on urban water microbiomes, including urban runoff, sewage wastewater, stagnant water in plumbing networks, etc., are also examined in depth. Furthermore, this study highlights the pathway of MPs and their transport vectors to different parts of ecosystems and human life, particularly through mediating microbial communities, antibiotic-resistant genes, and biogeochemical cycles. Overall, we have briefly highlighted the present research gaps, the lack of appropriate policy for evaluating microplastics and their interactions with urban water microbiomes, and possible future initiatives.
Collapse
Affiliation(s)
- Saber Entezari
- Environmental Engineering Division, Faculty of Civil & Env. Eng., TMU, Tehran, Iran
| | - Mamun Abdullah Al
- Aquatic Eco-Health Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Amir Mostashari
- Environmental Engineering Division, Faculty of Civil & Env. Eng., TMU, Tehran, Iran
| | - Hossein Ganjidoust
- Environmental Engineering Division, Faculty of Civil & Env. Eng., TMU, Tehran, Iran.
| | - Bita Ayati
- Environmental Engineering Division, Faculty of Civil & Env. Eng., TMU, Tehran, Iran
| | - Jun Yang
- Aquatic Eco-Health Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, China
| |
Collapse
|
41
|
Kokilathasan N, Dittrich M. Nanoplastics: Detection and impacts in aquatic environments - A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 849:157852. [PMID: 35944628 DOI: 10.1016/j.scitotenv.2022.157852] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/13/2022] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
The rise in the global production of plastics has led to severe concerns about the impacts of plastics in aquatic environments. Although plastic materials degrade over extreme long periods, they can be broken down through physical, chemical, and/or biological processes to form microplastics (MPs), defined here as particles between 1 μm and 5 mm in size, and later to form nanoplastics (NPls), defined as particles <1 μm in size. We know little about the abundance and effects of NPls, even though a lot of research has been conducted on the ecotoxicological impacts of MPs on both aquatic biota. Nevertheless, there is evidence that NPls can both bypass the cell membranes of microorganisms and bioaccumulate in the tissues and organs of higher organisms. This review analyzes 150 publications collected by searching through the databases Web of Science, SCOPUS, and Google Scholar using keywords such as nanoplastics*, aquatic*, detection*, toxic*, biofilm*, formation*, and extracellular polymeric substance* as singular or plural combinations. We highlight and critically synthesize current studies on the formation and degradation of NPls, NPls' interactions with aquatic biota and biofilm communities, and methods of detection. One reason for the missing data and studies in this area of research is the lack of a protocol for the detection of, and suitable methods for the characterization of, NPls in the field. Our primary aim is to identify gaps in knowledge throughout the review and define future directions of research to address the impacts of NPls in aquatic environments. The development of consistent and standardized sets of procedures would address the gaps in knowledge regarding the formation and degradation of NPls as well as sampling and characterizing natural NPls needed to observe the full extent of NPls on aquatic biota and biofilm communities.
Collapse
Affiliation(s)
- Nigarsan Kokilathasan
- Biogeochemistry Group, Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1065 Military Trail, Toronto, ON M1C1A4, Canada
| | - Maria Dittrich
- Biogeochemistry Group, Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1065 Military Trail, Toronto, ON M1C1A4, Canada.
| |
Collapse
|
42
|
Microplastics and nanoplastics in food, water, and beverages, part II. Methods. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
43
|
Wen S, Zhao Y, Wang M, Yuan H, Xu H. Micro(nano)plastics in food system: potential health impacts on human intestinal system. Crit Rev Food Sci Nutr 2022; 64:1429-1447. [PMID: 36066327 DOI: 10.1080/10408398.2022.2116559] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Micro(nano)plastics (MNPs) in human food system have been broadly recognized by researchers and have drawn an increasing public attention to their potential health risks, particularly the risk to the intestinal system regarding the long-term exposure to MNPs through food consumption. This study aims to review the environmental properties (formation and composition) of MNPs and MNPs pollution in human food system following the order of food production, food processing and food consumption. The current analytic and identical technologies utilized by researchers are also summarized in this review. In fact, parts of commonly consumed food raw materials, processed food and the way to take in food all become the possible sources for human MNPs ingestion. In addition, the available literatures investigating MNPs-induced intestinal adverse effect are discussed from in vitro models and in vivo mammalian experiments, respectively. Particle translocation, cytotoxicity, damaged gut barrier, intestinal inflammation as well as microbial alteration are mostly reported. Moreover, the practical remediation strategies for MNPs pollution are also illustrated in the last section. This review is expected to provide a research insight for foodborne MNPs and arouse more public awareness of MNPs pollution in food and potential risk for human intestinal health.
Collapse
Affiliation(s)
- Siyue Wen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Yu Zhao
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Mengqi Wang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Hongbin Yuan
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Hengyi Xu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| |
Collapse
|
44
|
Changfu Y, Jiani G, Yidi Y, Yijin L, Yiyao L, Yu F. Interface behavior changes of weathered polystyrene with ciprofloxacin in seawater environment. ENVIRONMENTAL RESEARCH 2022; 212:113132. [PMID: 35305981 DOI: 10.1016/j.envres.2022.113132] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 02/21/2022] [Accepted: 03/14/2022] [Indexed: 06/14/2023]
Abstract
With the progress of research on micro-nano plastics, the weathering degradation process in the natural environment has gradually become the focus of academic discussion. This study adopted the Fenton immersion method to accelerate the simulation of the weathering process of microplastics in nature, and explored the interface behavior of the weathered microplastics and hydrophilic antibiotics. It was found that the weathered polystyrene (PS) has a smaller crystallinity, increased oxygen-containing functional groups, and cracks appear on the surface, making it more likely to be weathered. At the same time, the rougher surface and stronger hydrophilicity of the weathered PS particles made it easier to adsorb hydrophilic antibiotics. Subsequent studies showed that the adsorption of ciprofloxacin (CIP·HCl) by weathered PS is much larger than that of original PS particles, whose maximum adsorption is 5.45 mg/g in the isotherm experiments. We found that the adsorption behavior of weathered PS particles with CIP in seawater would be weakened in the real seawater environment and humic acid, which might be due to the competitive adsorption of CIP by various ions. Further studies have shown that changes in the ionic strength and pH of the solution also affected the adsorption behavior to varying degrees. The results of dynamic adsorption were the same as the static adsorption, and the adsorption rate and capacity of weathered PS particles were enhanced compared with the original particles. The results of this article not only provided a data reference for studying the weathering process of microplastics but also helped to explore the ultimate fate of microplastics.
Collapse
Affiliation(s)
- Yang Changfu
- College of Marine Ecology and Environment, Shanghai Ocean University, No 999, Huchenghuan Road, Shanghai, 201306, PR China
| | - Guan Jiani
- College of Marine Ecology and Environment, Shanghai Ocean University, No 999, Huchenghuan Road, Shanghai, 201306, PR China
| | - Yang Yidi
- College of Marine Ecology and Environment, Shanghai Ocean University, No 999, Huchenghuan Road, Shanghai, 201306, PR China
| | - Liu Yijin
- College of Marine Ecology and Environment, Shanghai Ocean University, No 999, Huchenghuan Road, Shanghai, 201306, PR China
| | - Li Yiyao
- College of Marine Ecology and Environment, Shanghai Ocean University, No 999, Huchenghuan Road, Shanghai, 201306, PR China
| | - Fei Yu
- College of Marine Ecology and Environment, Shanghai Ocean University, No 999, Huchenghuan Road, Shanghai, 201306, PR China.
| |
Collapse
|
45
|
Gongi W, Touzi H, Sadly I, Ben ouada H, Tamarin O, Ben ouada H. A Novel Impedimetric Sensor Based on Cyanobacterial Extracellular Polymeric Substances for Microplastics Detection. JOURNAL OF POLYMERS AND THE ENVIRONMENT 2022; 30:4738-4748. [PMID: 36032357 PMCID: PMC9392654 DOI: 10.1007/s10924-022-02555-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/10/2022] [Indexed: 05/28/2023]
Abstract
Cyanobacterial extracellular polymeric substances "EPS" have attracted intensive concern in biomedicine and food. Nevertheless, the use of those polymers as a sensor coating material has not yet been investigated mainly for microplastic detection. This study focuses on the application of EPS as a sensitive membrane deposited on a gold electrode and investigated with electrochemical impedance spectroscopy to detect four types of microplastics with a size range of 0.1 µm to 1 mm. The surface properties of this impedimetric sensor were investigated by Scanning electron microscopy, Fourier transforms infrared spectroscopy, and X-ray spectroscopy and, showed a high homogenous structure with the presence of several functional groups. The measurements showed a high homogenous structure with the presence of several functional groups. The EPS-based sensor could detect the four tested microplastics with a low limit of detection of 10-11 M. It is the first report focusing on EPS extracted from cyanobacteria that could be a new quantification method for low concentrations of microplastics. Supplementary Information The online version contains supplementary material available at 10.1007/s10924-022-02555-6.
Collapse
Affiliation(s)
- Wejdene Gongi
- Laboratory of Blue Biotechnology & Aquatic Bioproducts, National Institute of Marine Sciences and Technologies, 5000 Monastir, Tunisia
- University of French Guiana, Espace-Dev, UMR 228, 97300 Cayenne, France
| | - Hassen Touzi
- Laboratoire des Interfaces et Matériaux Avancés, Faculté des Sciences de Monastir, Monastir University, 5000 Monastir, Tunisia
| | - Idris Sadly
- University of French Guiana, Espace-Dev, UMR 228, 97300 Cayenne, France
| | - Hafedh Ben ouada
- Laboratoire des Interfaces et Matériaux Avancés, Faculté des Sciences de Monastir, Monastir University, 5000 Monastir, Tunisia
| | - Ollivier Tamarin
- University of French Guiana, Espace-Dev, UMR 228, 97300 Cayenne, France
- Université de Bordeaux, CNRS, Bordeaux INP, IMS, UMR 5218, 33400 Talence, France
| | - Hatem Ben ouada
- Laboratory of Blue Biotechnology & Aquatic Bioproducts, National Institute of Marine Sciences and Technologies, 5000 Monastir, Tunisia
| |
Collapse
|
46
|
Sambolino A, Herrera I, Álvarez S, Rosa A, Alves F, Canning-Clode J, Cordeiro N, Dinis A, Kaufmann M. Seasonal variation in microplastics and zooplankton abundances and characteristics: The ecological vulnerability of an oceanic island system. MARINE POLLUTION BULLETIN 2022; 181:113906. [PMID: 35835051 DOI: 10.1016/j.marpolbul.2022.113906] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/08/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
The ingestion of microplastics (MPs - plastic particles <5 mm) by planktivorous organisms represents a significant threat to marine food webs. To investigate how seasonality might affect plastic intake in oceanic islands' ecosystems, relative abundances and composition of MPs and mesozooplankton samples collected off Madeira Island (NE Atlantic) between February 2019 and January 2020 were analysed. MPs were found in all samples, with fibres accounting for 89 % of the particles. MPs and zooplankton mean abundance was 0.262 items/m3 and 18.137 individuals/m3, respectively. Their monthly variations follow the seasonal fluctuation of environmental parameters, such as currents, chlorophyll-a concentration, sea surface temperature and precipitation intensity. A higher MPs/zooplankton ratio was recorded in the warm season (May-Oct), reaching 0.068 items/individual when considering large-sized particles (1000-5000 μm). This is the first study to assess the seasonal variability of MPs in an oceanic island system providing essential information respecting its ecological impact in pelagic environments.
Collapse
Affiliation(s)
- Annalisa Sambolino
- MARE - Marine and Environmental Sciences Centre / ARNET - Aquatic Research Network, Regional Agency for the Development of Research, Technology and Innovation (ARDITI), Funchal, Madeira, Portugal; LB3, Faculty of Exact Science and Engineering, University of Madeira, Funchal, Portugal; Marine Biology Station of Funchal, Faculty of Life Sciences, University of Madeira, Funchal, Portugal.
| | - Inma Herrera
- Marine Biology Station of Funchal, Faculty of Life Sciences, University of Madeira, Funchal, Portugal; Grupo en Biodiversidad y Conservación (BIOCON), IU-ECOAQUA, Universidad de Las Palmas de Gran Canaria, Telde, Spain
| | - Soledad Álvarez
- MARE - Marine and Environmental Sciences Centre / ARNET - Aquatic Research Network, Regional Agency for the Development of Research, Technology and Innovation (ARDITI), Funchal, Madeira, Portugal
| | - Alexandra Rosa
- Oceanic Observatory of Madeira (OOM), Regional Agency for the Development of Research, Technology and Innovation (ARDITI), Funchal, Portugal
| | - Filipe Alves
- MARE - Marine and Environmental Sciences Centre / ARNET - Aquatic Research Network, Regional Agency for the Development of Research, Technology and Innovation (ARDITI), Funchal, Madeira, Portugal; Oceanic Observatory of Madeira (OOM), Regional Agency for the Development of Research, Technology and Innovation (ARDITI), Funchal, Portugal
| | - João Canning-Clode
- MARE - Marine and Environmental Sciences Centre / ARNET - Aquatic Research Network, Regional Agency for the Development of Research, Technology and Innovation (ARDITI), Funchal, Madeira, Portugal; Smithsonian Environmental Research Center, Edgewater, USA
| | - Nereida Cordeiro
- LB3, Faculty of Exact Science and Engineering, University of Madeira, Funchal, Portugal; CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Porto, Portugal
| | - Ana Dinis
- MARE - Marine and Environmental Sciences Centre / ARNET - Aquatic Research Network, Regional Agency for the Development of Research, Technology and Innovation (ARDITI), Funchal, Madeira, Portugal; Oceanic Observatory of Madeira (OOM), Regional Agency for the Development of Research, Technology and Innovation (ARDITI), Funchal, Portugal
| | - Manfred Kaufmann
- Marine Biology Station of Funchal, Faculty of Life Sciences, University of Madeira, Funchal, Portugal; CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Porto, Portugal
| |
Collapse
|
47
|
Jung JW, Kim S, Kim YS, Jeong S, Lee J. Tracing microplastics from raw water to drinking water treatment plants in Busan, South Korea. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 825:154015. [PMID: 35189238 DOI: 10.1016/j.scitotenv.2022.154015] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 02/14/2022] [Accepted: 02/15/2022] [Indexed: 06/14/2023]
Abstract
The increasing amount of plastic waste has raised concerns about microplastics (MPs) in aquatic environments. MPs can be fragmented into nanoplastics that can pass through water treatment processes and into tap water; potentially threatening human health because of their high adsorption capacity for hazardous organic materials and their intrinsic toxicity. This case study investigates the identification, fate, and removal efficiency of MPs in Korean drinking water treatment plants. Two sites on the Nakdong River, two lake reservoirs (raw water sources), and four corresponding drinking water treatment plants were targeted to trace the amounts, types, and sizes of MPs throughout the treatment process. Monthly quantitative and qualitative analyses were conducted by chemical image mapping using micro-Fourier-transform infrared spectroscopy. MPs larger than 20 μm were detected, and their sizes and types were quantified using siMPle software. Overall, the number of MPs in the river sites (January to April and October to November) exceeded those in the reservoirs, but only slight differences in the number of MPs between rivers and lake reservoirs were detected from June to October. The annual average number of MPs in River A, B and Lack C and D was not distinctively different (2.65, 2.48, 2.46 and 1.87 particles/L, respectively). The majority of MPs found in raw waters were polyethylene (PE)/polypropylene (PP) (> 60%) and polyethylene terephthalate (PET)/poly(methyl methacrylate) (PMMA) (20%), in addition to polyamide (<10%) in the river and polystyrene (<10%) in the lake reservoirs. Approximately 70-80% of the MPs were removed by pre-ozonation/sedimentation; 81-88% of PE/PP was removed by this process. PET/PMMA was removed by filtration. Correlation of MPs with water quality parameters showed that the Mn concentration was moderately correlated with the MP abundance in rivers and lake reservoirs, excluding the lake with the lowest Mn concentration, while the total organic carbon was negatively correlated with the MP abundance in both rivers (A and B) and lake reservoir C.
Collapse
Affiliation(s)
- Jae-Won Jung
- Water quality research institute, Busan Water Authority, Busan 47210, South Korea
| | - Siyoung Kim
- Water quality research institute, Busan Water Authority, Busan 47210, South Korea
| | - Yong-Soon Kim
- Water quality research institute, Busan Water Authority, Busan 47210, South Korea
| | - Sanghyun Jeong
- Department of Environmental Engineering, Pusan National University, Busan 46241, South Korea
| | - Jieun Lee
- Institute for Environment and Energy, Pusan National University, Busan 46241, South Korea.
| |
Collapse
|
48
|
Xu D, Su W, Lu H, Luo Y, Yi T, Wu J, Wu H, Yin C, Chen B. A gold nanoparticle doped flexible substrate for microplastics SERS detection. Phys Chem Chem Phys 2022; 24:12036-12042. [PMID: 35537128 DOI: 10.1039/d1cp05870c] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Due to overuse of plastic products, decomposed microplastics (MPs) are widely spread in aquatic ecosystems, and will cause irreparable harm to the human body through the food chain. Traditional MP detection methods require cumbersome sample pre-processing procedures and complex instruments, so there is an urgent demand to develop methods to achieve simple on-site detection. Herein, a simple, sensitive, accurate, and stable MP detection method based on surface-enhanced Raman scattering (SERS) is investigated. Considering the hydrophobic problems of MPs, gold nanoparticle (AuNP) doped filter paper as a flexible SERS substrate is applied to capture MPs in the fiber pores. Benefitting from the electromagnetic (EM) hot spots generated by AuNPs, the Raman signal of MPs can be effectively enhanced. Meanwhile, the flexible SERS substrate has good sensitivity to a minimum detectable concentration of 0.1 g L-1 for polyethylene terephthalate (PET) in water, and the maximum enhancement factor (EF) can reach 360.5. Furthermore, the practicability of the developed method has been proved by the successful detection of MPs in tap water and pond water. This research provides an easy process, high sensitivity, and good reproducibility method for MP detection.
Collapse
Affiliation(s)
- Dewen Xu
- College of Science, Hohai University, Changzhou, 213022, China. .,Research Institute of Ocean and Offshore Engineering, Hohai University, Nantong, 226300, China
| | - Wei Su
- College of Science, Hohai University, Changzhou, 213022, China. .,Research Institute of Ocean and Offshore Engineering, Hohai University, Nantong, 226300, China
| | - Hanwen Lu
- College of Science, Hohai University, Changzhou, 213022, China. .,Research Institute of Ocean and Offshore Engineering, Hohai University, Nantong, 226300, China
| | - Yinlong Luo
- College of Science, Hohai University, Changzhou, 213022, China. .,Research Institute of Ocean and Offshore Engineering, Hohai University, Nantong, 226300, China
| | - Tianan Yi
- College of Science, Hohai University, Changzhou, 213022, China. .,Research Institute of Ocean and Offshore Engineering, Hohai University, Nantong, 226300, China
| | - Jian Wu
- College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha, 410073, China.
| | - Hong Wu
- School of Science, Nanjing University of Posts and Telecommunications, Nanjing, 210003, China
| | - Cheng Yin
- College of Science, Hohai University, Changzhou, 213022, China.
| | - Bingyan Chen
- College of Science, Hohai University, Changzhou, 213022, China.
| |
Collapse
|
49
|
Hu R, Zhang K, Wang W, Wei L, Lai Y. Quantitative and sensitive analysis of polystyrene nanoplastics down to 50 nm by surface-enhanced Raman spectroscopy in water. JOURNAL OF HAZARDOUS MATERIALS 2022; 429:128388. [PMID: 35236023 DOI: 10.1016/j.jhazmat.2022.128388] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/21/2022] [Accepted: 01/27/2022] [Indexed: 06/14/2023]
Abstract
Despite being an emerging risk to the environment and human health, little is known about the occurrence, formation, transport, and environmental impact of nanoplastics owing to the lack of quantitative and sensitive sensing techniques. Herein, a surface-enhanced Raman spectroscopy (SERS) method was developed for quantitative sensitive nanoplastics analysis, in which KI was added to Ag nanoparticles as a coagulant and cleaner to remove surface impurities. Polystyrene (PS) nanoplastics with four sizes (50, 100, 200, and 500 nm) were used to evaluate the proposed method, which exhibited high sensitivity (detection limit of 6.25 μg/mL for 100 nm PS nanoplastics), interference resistance, good repeatability, and quantitative analysis ability (R2 > 0.970). The feasibility of extending the proposed method to real-world water samples was verified using spiked lake water, and satisfactory recovery rates (87.5-110%) were obtained for nanoplastics with different sizes and concentrations. Thus, this study serves as a solid step in the quantitative analysis of nanoplastics, and the findings can be applied to other areas of research on nanoplastics.
Collapse
Affiliation(s)
- Rui Hu
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Kaining Zhang
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Wei Wang
- School of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Long Wei
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Yongchao Lai
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China.
| |
Collapse
|
50
|
Ye Y, Yu K, Zhao Y. The development and application of advanced analytical methods in microplastics contamination detection: A critical review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 818:151851. [PMID: 34822881 DOI: 10.1016/j.scitotenv.2021.151851] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/17/2021] [Accepted: 11/17/2021] [Indexed: 06/13/2023]
Abstract
Microplastics have gradually become emerging environmental contaminants for their extensive distribution, small particle size, and harmful effects on organisms. Therefore, finding accurate, efficient, and rapid analytical methods for detecting microplastics pollution has become an urgent problem. We reviewed the derivation, transport, and classification of microplastics and then highlighted the harmfulness of microplastics which would bring microplastics pollution to the environment and potential damage to organisms. Further, various analytical methods were classified into the thermal analytical method, spectral analytical approach, and other analytical methods based on detection principles. In addition, the application of each analytical method in sea and soil was concluded in detail, and the promising development prospect of each analytical method was discussed. In the end, the chemical analytical method was proposed to explore further in the direction of no sample preparation, nondestructive analysis, low detection limit and it is crucial to establish a unified detection and identification method for microplastics in different environments.
Collapse
Affiliation(s)
- Yongkai Ye
- College of Mechanical and Electronic Engineering, Northwest A&F University, 22 Xinong Road, Yangling, Shaanxi 712100, PR China
| | - Keqiang Yu
- College of Mechanical and Electronic Engineering, Northwest A&F University, 22 Xinong Road, Yangling, Shaanxi 712100, PR China; Key Laboratory of Agricultural Internet of Things, Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi 712100, PR China; Shaanxi Key Laboratory of Agricultural Information Perception and Intelligent Service, Yangling, Shaanxi 712100, PR China
| | - Yanru Zhao
- College of Mechanical and Electronic Engineering, Northwest A&F University, 22 Xinong Road, Yangling, Shaanxi 712100, PR China; Key Laboratory of Agricultural Internet of Things, Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi 712100, PR China; Shaanxi Key Laboratory of Agricultural Information Perception and Intelligent Service, Yangling, Shaanxi 712100, PR China.
| |
Collapse
|