1
|
Uslu A, Çekmen N, Torgay A, Haberal M. Perioperative management in pediatric domino liver transplantation for metabolic disorders: A narrative review. Paediatr Anaesth 2024; 34:1107-1118. [PMID: 38980227 DOI: 10.1111/pan.14967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/25/2024] [Accepted: 07/01/2024] [Indexed: 07/10/2024]
Abstract
Domino liver transplantation and domino-auxiliary partial orthotopic liver transplantation are emerging techniques that can expand the liver donor pool and provide hope for children with liver disease. The innovative technique of domino liver transplantation has emerged as a pioneering strategy, capitalizing on structurally preserved livers from donors exhibiting single enzymatic defects within a morphologically normal context, effectively broadening the donor pool. Concurrently, the increasingly prevalent domino-auxiliary partial orthotopic liver transplantation method assumes a critical role in bolstering available donor resources. These advanced transplantation methods present a unique opportunity for pediatric patients who, despite having structurally and functionally intact livers and lacking early signs of portal hypertension or extrahepatic involvement, do not attain priority on conventional transplant lists. Utilizing optimal clinical conditions enhances posttransplant outcomes, benefiting patients who would otherwise endure extended waiting periods for traditional transplantation. The perioperative management of children undergoing these procedures is complex and requires careful consideration of some factors, including clinical and metabolic conditions of the specific metabolic disorder, and the need for tailored perioperative management planning. Furthermore, the prudent consideration of de novo disease development in the recipient assumes paramount significance when selecting suitable donors for domino liver transplantation, as it profoundly influences prognosis, mortality, and morbidity. This narrative review of domino liver transplantation will discuss the pathophysiology, clinical evaluation, perioperative management, and prognostic expectations, focusing on perioperative anesthetic considerations for children undergoing domino liver transplantation.
Collapse
Affiliation(s)
- Ahmed Uslu
- Department of Surgical Sciences, Anesthesiology and Intensive Care Medicine, Başkent University, Ankara, Türkiye
| | - Nedim Çekmen
- Department of Surgical Sciences, Anesthesiology and Intensive Care Medicine, Başkent University, Ankara, Türkiye
| | - Adnan Torgay
- Department of Surgical Sciences, Anesthesiology and Intensive Care Medicine, Başkent University, Ankara, Türkiye
| | - Mehmet Haberal
- Department of Surgical Sciences, Organ and Tissue Transplantation Center, Başkent University, Ankara, Türkiye
| |
Collapse
|
2
|
Sambati V, Laudisio S, Motta M, Esposito S. Therapeutic Options for Crigler-Najjar Syndrome: A Scoping Review. Int J Mol Sci 2024; 25:11006. [PMID: 39456788 PMCID: PMC11508002 DOI: 10.3390/ijms252011006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/01/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
Crigler-Najjar Syndrome (CNS) is a rare genetic disorder caused by mutations in the UGT1A1 gene, leading to impaired bilirubin conjugation and severe unconjugated hyperbilirubinemia. CNS presents in the following forms: CNS type 1 (CNS1), the more severe form with the complete absence of UGT1A1 activity, and CNS type 2 (CNS2), with partial enzyme activity. This narrative review aims to provide a detailed overview of CNS, highlighting its clinical significance and the need for new, more effective treatments. By summarizing current knowledge and discussing future treatments, this article seeks to encourage further research and advancements that can improve outcomes for CNS patients. The literature analysis showed that CNS1 requires aggressive management, including phototherapy and plasmapheresis, but liver transplantation (LT) remains the only definitive cure. The timing of LT is critical, as it must be performed before the onset of irreversible brain damage (kernicterus), making early intervention essential. However, LT poses risks such as graft rejection and lifelong immunosuppression. CNS2 is milder, with patients responding well to phenobarbital and having a lower risk of kernicterus. Recent advancements in gene therapy and autologous hepatocyte transplantation offer promising alternatives to LT. Gene therapy using adeno-associated virus (AAV) vectors has shown potential in preclinical studies, though challenges remain in pediatric applications due to liver growth and pre-existing immunity. Autologous hepatocyte transplantation avoids the risk of rejection but requires further research. These emerging therapies provide hope for more effective and less invasive treatment options, aiming to improve the quality of life for CNS patients and reduce reliance on lifelong interventions.
Collapse
Affiliation(s)
| | | | | | - Susanna Esposito
- Pediatric Clinic, Department of Medicine and Surgery, University Hospital of Parma, 43126 Parma, Italy; (V.S.); (S.L.)
| |
Collapse
|
3
|
Ravanbakhsh N, Genyk Y, Cheng A, Vats D, Yanni G. Biliary cirrhosis associated with WDR19-related ciliopathy in siblings. J Hepatol 2024:S0168-8278(24)02475-9. [PMID: 39163899 DOI: 10.1016/j.jhep.2024.07.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/25/2024] [Accepted: 07/31/2024] [Indexed: 08/22/2024]
Affiliation(s)
- Naseem Ravanbakhsh
- Division of Gastroenterology and Hepatology, Department of Pediatrics, Lurie Children's Hospital, Chicago, IL, USA; Division of Gastroenterology and Hepatology, Department of Pediatrics, Children's Hospital Los Angeles, Los Angeles, CA, USA.
| | - Yuri Genyk
- Division of Hepatobiliary and Pancreatic Surgery and Abdominal Organ Transplantation, University of Southern California, Los Angeles, CA, USA; Division of Gastroenterology and Hepatology, Department of Pediatrics, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Alauna Cheng
- Division of Gastroenterology and Hepatology, Department of Pediatrics, Kaiser Permanente Fontana, Fontana, CA, USA
| | - Divya Vats
- Department of Genetics, Kaiser Permanente, Los Angeles, CA, USA
| | - George Yanni
- Division of Gastroenterology and Hepatology, Department of Pediatrics, Children's Hospital Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
4
|
Liu S, Cheng C, Zhu L, Zhao T, Wang Z, Yi X, Yan F, Wang X, Li C, Cui T, Yang B. Liver organoids: updates on generation strategies and biomedical applications. Stem Cell Res Ther 2024; 15:244. [PMID: 39113154 PMCID: PMC11304926 DOI: 10.1186/s13287-024-03865-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 07/27/2024] [Indexed: 08/10/2024] Open
Abstract
The liver is the most important metabolic organ in the body. While mouse models and cell lines have further deepened our understanding of liver biology and related diseases, they are flawed in replicating key aspects of human liver tissue, particularly its complex structure and metabolic functions. The organoid model represents a major breakthrough in cell biology that revolutionized biomedical research. Organoids are in vitro three-dimensional (3D) physiological structures that recapitulate the morphological and functional characteristics of tissues in vivo, and have significant advantages over traditional cell culture methods. In this review, we discuss the generation strategies and current advances in the field focusing on their application in regenerative medicine, drug discovery and modeling diseases.
Collapse
Affiliation(s)
- Sen Liu
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, 110016, China
- State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Institute of Pharmaceutical Research, Tianjin, 300301, China
| | | | - Liuyang Zhu
- First Central Clinical College of Tianjin Medical University, Tianjin, 300192, China
| | - Tianyu Zhao
- State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Institute of Pharmaceutical Research, Tianjin, 300301, China
| | - Ze Wang
- State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Institute of Pharmaceutical Research, Tianjin, 300301, China
- Research Unit for Drug Metabolism, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Xiulin Yi
- State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Institute of Pharmaceutical Research, Tianjin, 300301, China
- Research Unit for Drug Metabolism, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Fengying Yan
- State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Institute of Pharmaceutical Research, Tianjin, 300301, China
- Research Unit for Drug Metabolism, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Xiaoliang Wang
- State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Institute of Pharmaceutical Research, Tianjin, 300301, China
| | - Chunli Li
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| | - Tao Cui
- State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Institute of Pharmaceutical Research, Tianjin, 300301, China.
- Research Unit for Drug Metabolism, Chinese Academy of Medical Sciences, Beijing, 100730, China.
| | - Baofeng Yang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, 110016, China.
- School of Pharmacy, Harbin Medical University, Harbin, 150081, China.
| |
Collapse
|
5
|
Arjunan P, Kathirvelu D, Mahalingam G, Goel AK, Zacharaiah UG, Srivastava A, Marepally S. Lipid-nanoparticle-enabled nucleic acid therapeutics for liver disorders. Acta Pharm Sin B 2024; 14:2885-2900. [PMID: 39027251 PMCID: PMC11252464 DOI: 10.1016/j.apsb.2024.04.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/08/2024] [Accepted: 03/19/2024] [Indexed: 07/20/2024] Open
Abstract
Inherited genetic disorders of the liver pose a significant public health burden. Liver transplantation is often limited by the availability of donor livers and the exorbitant costs of immunosuppressive therapy. To overcome these limitations, nucleic acid therapy provides a hopeful alternative that enables gene repair, gene supplementation, and gene silencing with suitable vectors. Though viral vectors are the most efficient and preferred for gene therapy, pre-existing immunity debilitating immune responses limit their use. As a potential alternative, lipid nanoparticle-mediated vectors are being explored to deliver multiple nucleic acid forms, including pDNA, mRNA, siRNA, and proteins. Herein, we discuss the broader applications of lipid nanoparticles, from protein replacement therapy to restoring the disease mechanism through nucleic acid delivery and gene editing, as well as multiple preclinical and clinical studies as a potential alternative to liver transplantation.
Collapse
Affiliation(s)
- Porkizhi Arjunan
- Center for Stem Cell Research (A Unit of inStem, Bengaluru), Christian Medical College Campus, Bagayam, Vellore 632002, Tamil Nadu, India
- Manipal academy for higher education, Mangalore 576104, Karnataka, India
| | - Durga Kathirvelu
- Center for Stem Cell Research (A Unit of inStem, Bengaluru), Christian Medical College Campus, Bagayam, Vellore 632002, Tamil Nadu, India
| | - Gokulnath Mahalingam
- Center for Stem Cell Research (A Unit of inStem, Bengaluru), Christian Medical College Campus, Bagayam, Vellore 632002, Tamil Nadu, India
| | - Ashish Kumar Goel
- Department of Hepatology, Christian Medical College & Hospital, Vellore 632004, Tamil Nadu, India
| | - Uday George Zacharaiah
- Department of Hepatology, Christian Medical College & Hospital, Vellore 632004, Tamil Nadu, India
| | - Alok Srivastava
- Center for Stem Cell Research (A Unit of inStem, Bengaluru), Christian Medical College Campus, Bagayam, Vellore 632002, Tamil Nadu, India
- Department of Hematology, Christian Medical College & Hospital, Vellore 632004, Tamil Nadu, India
| | - Srujan Marepally
- Center for Stem Cell Research (A Unit of inStem, Bengaluru), Christian Medical College Campus, Bagayam, Vellore 632002, Tamil Nadu, India
| |
Collapse
|
6
|
Hu Y, Geng Q, Wang L, Wang Y, Huang C, Fan Z, Kong D. Research progress and application of liver organoids for disease modeling and regenerative therapy. J Mol Med (Berl) 2024; 102:859-874. [PMID: 38802517 PMCID: PMC11213763 DOI: 10.1007/s00109-024-02455-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 04/19/2024] [Accepted: 05/08/2024] [Indexed: 05/29/2024]
Abstract
The liver is a major metabolic organ of the human body and has a high incidence of diseases. In recent years, the annual incidence of liver disease has increased, seriously endangering human life and health. The study of the occurrence and development mechanism of liver diseases, discovery of new therapeutic targets, and establishment of new methods of medical treatment are major issues related to the national economy and people's livelihood. The development of stable and effective research models is expected to provide new insights into the pathogenesis of liver diseases and the search for more effective treatment options. Organoid technology is a new in vitro culture system, and organoids constructed by human cells can simulate the morphological structure, gene expression, and glucose and lipid metabolism of organs in vivo, providing a new model for related research on liver diseases. This paper reviews the latest research progress on liver organoids from the establishment of cell sources and application of liver organoids and discusses their application potential in the field of liver disease research.
Collapse
Affiliation(s)
- Yang Hu
- Chinese Medicine Modernization and Big Data Research Center, Nanjing Hospital of Chinese Medicine affiliated to Nanjing University of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210022, Jiangsu, China
| | - Qiao Geng
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, 210023, China
| | - Lu Wang
- Department of Angioenterology, Nanjing Hospital of Chinese Medicine affiliated to Nanjing University of Chinese Medicine, Nanjing University of Chinese Medicine, 157 Daming Avenue, Nanjing, 210022, Jiangsu, China
| | - Yi Wang
- Department of Angioenterology, Nanjing Hospital of Chinese Medicine affiliated to Nanjing University of Chinese Medicine, Nanjing University of Chinese Medicine, 157 Daming Avenue, Nanjing, 210022, Jiangsu, China
| | - Chuyue Huang
- Department of Angioenterology, Nanjing Hospital of Chinese Medicine affiliated to Nanjing University of Chinese Medicine, Nanjing University of Chinese Medicine, 157 Daming Avenue, Nanjing, 210022, Jiangsu, China
| | - Zhimin Fan
- Department of Angioenterology, Nanjing Hospital of Chinese Medicine affiliated to Nanjing University of Chinese Medicine, Nanjing University of Chinese Medicine, 157 Daming Avenue, Nanjing, 210022, Jiangsu, China.
| | - Desong Kong
- Chinese Medicine Modernization and Big Data Research Center, Nanjing Hospital of Chinese Medicine affiliated to Nanjing University of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210022, Jiangsu, China.
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, 210023, China.
| |
Collapse
|
7
|
Afonso MB, Marques V, van Mil SW, Rodrigues CM. Human liver organoids: From generation to applications. Hepatology 2024; 79:1432-1451. [PMID: 36815360 PMCID: PMC11095893 DOI: 10.1097/hep.0000000000000343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/11/2022] [Accepted: 12/19/2022] [Indexed: 02/24/2023]
Abstract
In the last decade, research into human hepatology has been revolutionized by the development of mini human livers in a dish. These liver organoids are formed by self-organizing stem cells and resemble their native counterparts in cellular content, multicellular architecture, and functional features. Liver organoids can be derived from the liver tissue or pluripotent stem cells generated from a skin biopsy, blood cells, or renal epithelial cells present in urine. With the development of liver organoids, a large part of previous hurdles in modeling the human liver is likely to be solved, enabling possibilities to better model liver disease, improve (personalized) drug testing, and advance bioengineering options. In this review, we address strategies to generate and use organoids in human liver disease modeling, followed by a discussion of their potential application in drug development and therapeutics, as well as their strengths and limitations.
Collapse
Affiliation(s)
- Marta B. Afonso
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Portugal
| | - Vanda Marques
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Portugal
| | - Saskia W.C. van Mil
- Center for Molecular Medicine, University Medical Center Utrecht and Utrecht University, The Netherlands
| | - Cecilia M.P. Rodrigues
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Portugal
| |
Collapse
|
8
|
Chu R, Wang Y, Kong J, Pan T, Yang Y, He J. Lipid nanoparticles as the drug carrier for targeted therapy of hepatic disorders. J Mater Chem B 2024; 12:4759-4784. [PMID: 38682294 DOI: 10.1039/d3tb02766j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
The liver, a complex and vital organ in the human body, is susceptible to various diseases, including metabolic disorders, acute hepatitis, cirrhosis, and hepatocellular carcinoma. In recent decades, these diseases have significantly contributed to global morbidity and mortality. Currently, liver transplantation remains the most effective treatment for hepatic disorders. Nucleic acid therapeutics offer a selective approach to disease treatment through diverse mechanisms, enabling the regulation of relevant genes and providing a novel therapeutic avenue for hepatic disorders. It is expected that nucleic acid drugs will emerge as the third generation of pharmaceuticals, succeeding small molecule drugs and antibody drugs. Lipid nanoparticles (LNPs) represent a crucial technology in the field of drug delivery and constitute a significant advancement in gene therapies. Nucleic acids encapsulated in LNPs are shielded from the degradation of enzymes and effectively delivered to cells, where they are released and regulate specific genes. This paper provides a comprehensive review of the structure, composition, and applications of LNPs in the treatment of hepatic disorders and offers insights into prospects and challenges in the future development of LNPs.
Collapse
Affiliation(s)
- Runxuan Chu
- National Advanced Medical Engineering Research Center, China State Institute of Pharmaceutical Industry, 285 Gebaini Road, Shanghai 201203, P. R. China.
| | - Yi Wang
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tung, Hong Kong SAR, P. R. China.
| | - Jianglong Kong
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tung, Hong Kong SAR, P. R. China.
| | - Ting Pan
- National Advanced Medical Engineering Research Center, China State Institute of Pharmaceutical Industry, 285 Gebaini Road, Shanghai 201203, P. R. China.
- Department of Pharmaceutics School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Yani Yang
- National Advanced Medical Engineering Research Center, China State Institute of Pharmaceutical Industry, 285 Gebaini Road, Shanghai 201203, P. R. China.
| | - Jun He
- National Advanced Medical Engineering Research Center, China State Institute of Pharmaceutical Industry, 285 Gebaini Road, Shanghai 201203, P. R. China.
| |
Collapse
|
9
|
Si C, Gao J, Ma X. Engineered exosomes in emerging cell-free therapy. Front Oncol 2024; 14:1382398. [PMID: 38595822 PMCID: PMC11003191 DOI: 10.3389/fonc.2024.1382398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 03/14/2024] [Indexed: 04/11/2024] Open
Abstract
The discovery and use of exosomes ushered in a new era of cell-free therapy. Exosomes are a subgroup of extracellular vesicles that show great potential in disease treatment. Engineered exosomes. with their improved functions have attracted intense interests of their application in translational medicine research. However, the technology of engineering exosomes still faces many challenges which have been the great limitation for their clinical application. This review summarizes the current status of research on engineered exosomes and the difficulties encountered in recent years, with a view to providing new approaches and ideas for future exosome modification and new drug development.
Collapse
Affiliation(s)
| | - Jianen Gao
- National Research Institute for Family Planning, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xu Ma
- National Research Institute for Family Planning, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
10
|
Kumar V, Gautam V, Agarwal S, Pandey V, Goyal S, Nasa V, Singh SA, Al-Thihli K, Al-Murshedi F, Al Hashmi N, Al Rawahi Y, Al-Bahlani AQ, Al Said K, Gupta S. Domino liver transplantation for maple syrup urine disease in children: A single-center case series. Pediatr Transplant 2023; 27:e14603. [PMID: 37658594 DOI: 10.1111/petr.14603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/20/2023] [Accepted: 08/25/2023] [Indexed: 09/03/2023]
Abstract
BACKGROUND Domino liver transplant (DLT) represents another type of liver donor to expand the donor pool. Recent reports of successful DLT in children with maple syrup urine disease (MSUD) show promising long-term outcomes. METHODS It was a retrospective study. All children with MSUD were paired with either recipients with end-stage liver disease (ESLD) or non-MSUD metabolic disease. Each pair underwent simultaneous liver transplant (LT), where the MSUD recipient received the graft from a living-related donor and the liver explanted from the MSUD donor was transplanted to the respective paired domino recipient. We report our experience regarding the techniques and outcomes of DLT at our center. RESULTS Eleven children with MSUD and 12 respective DLT recipients were enrolled, one of which was domino split-liver transplantation. DLT recipients included seven ESLD, two propionic acidemia (PA), one glycogen storage disease(GSD) type-1, one GSD type-3, and one Citrullinemia. Post-LT ICU and hospital stays were comparable (p > .05). Patient and graft survival was 100% and 66.6% in the MSUD group and DLT recipients at a mean follow-up of 13.5 and 15 months. There was no death in the MSUD group as compared to four in the DLT group. The amino acid levels rapidly normalized after the LT in the children with MSUD and they tolerated the normal unrestricted diet. No vascular, biliary, or graft-related complications were seen in the post-transplant period. No occurrence of MSUD was noted in DLT recipients. CONCLUSION DLTs have excellent post-surgical outcomes. DLT should be strongly considered and adopted by transplant programs worldwide to circumvent organ shortage.
Collapse
Affiliation(s)
- Vikram Kumar
- Department of Pediatric Hepatology, Centre for Liver and Biliary Sciences, Max Super Speciality Hospital, New Delhi, India
| | - Vipul Gautam
- Department of Pediatric Hepatology, Centre for Liver and Biliary Sciences, Max Super Speciality Hospital, New Delhi, India
| | - Shaleen Agarwal
- Department of Liver Transplant Surgery, Centre for Liver and Biliary Sciences, Max Super Speciality Hospital, New Delhi, India
| | - Vijaykant Pandey
- Department of Anesthesiology, Centre for Liver and Biliary Sciences, Max Super Speciality Hospital, New Delhi, India
| | - Sumit Goyal
- Department of Anesthesiology, Centre for Liver and Biliary Sciences, Max Super Speciality Hospital, New Delhi, India
| | - Vaibhav Nasa
- Department of Anesthesiology, Centre for Liver and Biliary Sciences, Max Super Speciality Hospital, New Delhi, India
| | - Shweta A Singh
- Department of Anesthesiology, Centre for Liver and Biliary Sciences, Max Super Speciality Hospital, New Delhi, India
| | - Khalid Al-Thihli
- Genetic and Developmental Medicine Clinic, Department of Genetics, Sultan Qaboos University Hospital, Muscat, Oman
| | - Fathiya Al-Murshedi
- Genetic and Developmental Medicine Clinic, Department of Genetics, Sultan Qaboos University Hospital, Muscat, Oman
| | | | - Yusriya Al Rawahi
- Department of Child Health, Sultan Qaboos University Hospital, Muscat, Oman
| | | | - Khoula Al Said
- Department of Pediatrics, The Royal Hospital, Muscat, Oman
| | - Subhash Gupta
- Department of Liver Transplant Surgery, Centre for Liver and Biliary Sciences, Max Super Speciality Hospital, New Delhi, India
| |
Collapse
|
11
|
Saglia C, Bracciamà V, Trotta L, Mioli F, Faini AC, Brach Del Prever GM, Kalantari S, Luca M, Romeo CM, Scolari C, Peruzzi L, Calvo PL, Mussa A, Fenoglio R, Roccatello D, Alberti C, Carli D, Amoroso A, Deaglio S, Vaisitti T. Relevance of next generation sequencing (NGS) data re-analysis in the diagnosis of monogenic diseases leading to organ failure. BMC Med Genomics 2023; 16:303. [PMID: 38012624 PMCID: PMC10680258 DOI: 10.1186/s12920-023-01747-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 11/21/2023] [Indexed: 11/29/2023] Open
Abstract
BACKGROUND In 2018, our center started a program to offer genetic diagnosis to patients with kidney and liver monogenic rare conditions, potentially eligible for organ transplantation. We exploited a clinical exome sequencing approach, followed by analyses of in silico gene panels tailored to clinical suspicions, obtaining detection rates in line with what reported in literature. However, a percentage of patients remains without a definitive genetic diagnosis. This work aims to evaluate the utility of NGS data re-analysis for those patients with an inconclusive or negative genetic test at the time of first analysis considering that (i) the advance of alignment and variant calling processes progressively improve the detection rate, limiting false positives and false negatives; (ii) gene panels are periodically updated and (iii) variant annotation may change over time. METHODS 114 patients, recruited between 2018 and 2020, with an inconclusive or negative NGS report at the time of first analysis, were included in the study. Re-alignment and variant calling of previously generated sequencing raw data were performed using the GenomSys Variant Analyzer software. RESULTS 21 previously not reported potentially causative variants were identified in 20 patients. In most cases (n = 19), causal variants were retrieved out of the re-classification from likely benign to variants of unknown significance (VUS). In one case, the variant was included because of inclusion in the analysis of a newly disease-associated gene, not present in the original gene panel, and in another one due to the improved data alignment process. Whenever possible, variants were validated with Sanger sequencing and family segregation studies. As of now, 16 out of 20 patients have been analyzed and variants confirmed in 8 patients. Specifically, in two pediatric patients, causative variants were de novo mutations while in the others, the variant was present also in other affected relatives. In the remaining patients, variants were present also in non-affected parents, raising questions on their re-classification. CONCLUSIONS Overall, these data indicate that periodic and systematic re-analysis of negative or inconclusive NGS data reports can lead to new variant identification or reclassification in a small but significant proportion of cases, with benefits for patients' management.
Collapse
Affiliation(s)
- Claudia Saglia
- Immunogenetics and Transplant Biology Service, University Hospital "Città della Salute e della Scienza di Torino", Turin, Italy
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Valeria Bracciamà
- Immunogenetics and Transplant Biology Service, University Hospital "Città della Salute e della Scienza di Torino", Turin, Italy
- Department of Medical Sciences, University of Turin, Turin, Italy
| | | | - Fiorenza Mioli
- Immunogenetics and Transplant Biology Service, University Hospital "Città della Salute e della Scienza di Torino", Turin, Italy
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Angelo Corso Faini
- Immunogenetics and Transplant Biology Service, University Hospital "Città della Salute e della Scienza di Torino", Turin, Italy
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Giulia Margherita Brach Del Prever
- Immunogenetics and Transplant Biology Service, University Hospital "Città della Salute e della Scienza di Torino", Turin, Italy
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Silvia Kalantari
- Immunogenetics and Transplant Biology Service, University Hospital "Città della Salute e della Scienza di Torino", Turin, Italy
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Maria Luca
- Immunogenetics and Transplant Biology Service, University Hospital "Città della Salute e della Scienza di Torino", Turin, Italy
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Carmelo Maria Romeo
- Immunogenetics and Transplant Biology Service, University Hospital "Città della Salute e della Scienza di Torino", Turin, Italy
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Caterina Scolari
- Immunogenetics and Transplant Biology Service, University Hospital "Città della Salute e della Scienza di Torino", Turin, Italy
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Licia Peruzzi
- Pediatric Nephrology Dialysis and Transplantation Unit, University Hospital "Città della Salute e della Scienza di Torino", Turin, Italy
| | - Pier Luigi Calvo
- Pediatric Gastroenterology Unit, University Hospital "Città della Salute e della Scienza di Torino", Turin, Italy
| | - Alessandro Mussa
- Pediatric Clinical Genetics, University Hospital "Città della Salute e della Scienza di Torino", Turin, Italy
- Department of Public Health and Pediatric Sciences, University of Turin, Turin, Italy
| | - Roberta Fenoglio
- Nephrology and Dialysis Unit, Center of Research on Immunopathology and Rare Diseases, CMID, San Giovanni Bosco Hospital, Turin, Italy
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Dario Roccatello
- Nephrology and Dialysis Unit, Center of Research on Immunopathology and Rare Diseases, CMID, San Giovanni Bosco Hospital, Turin, Italy
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | | | - Diana Carli
- Immunogenetics and Transplant Biology Service, University Hospital "Città della Salute e della Scienza di Torino", Turin, Italy
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Antonio Amoroso
- Immunogenetics and Transplant Biology Service, University Hospital "Città della Salute e della Scienza di Torino", Turin, Italy
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Silvia Deaglio
- Immunogenetics and Transplant Biology Service, University Hospital "Città della Salute e della Scienza di Torino", Turin, Italy
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Tiziana Vaisitti
- Immunogenetics and Transplant Biology Service, University Hospital "Città della Salute e della Scienza di Torino", Turin, Italy.
- Department of Medical Sciences, University of Turin, Turin, Italy.
| |
Collapse
|
12
|
Padula A, Spinelli M, Nusco E, Bujanda Cundin X, Capolongo F, Campione S, Perna C, Bastille A, Ericson M, Wang CC, Zhang S, Amoresano A, Nacht M, Piccolo P. Genome editing without nucleases confers proliferative advantage to edited hepatocytes and corrects Wilson disease. JCI Insight 2023; 8:e171281. [PMID: 37707949 PMCID: PMC10721260 DOI: 10.1172/jci.insight.171281] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 09/12/2023] [Indexed: 09/16/2023] Open
Abstract
Application of classic liver-directed gene replacement strategies is limited in genetic diseases characterized by liver injury due to hepatocyte proliferation, resulting in decline of therapeutic transgene expression and potential genotoxic risk. Wilson disease (WD) is a life-threatening autosomal disorder of copper homeostasis caused by pathogenic variants in copper transporter ATP7B and characterized by toxic copper accumulation, resulting in severe liver and brain diseases. Genome editing holds promise for the treatment of WD; nevertheless, to rescue copper homeostasis, ATP7B function must be restored in at least 25% of the hepatocytes, which surpasses by far genome-editing correction rates. We applied a liver-directed, nuclease-free genome editing approach, based on adeno-associated viral vector-mediated (AAV-mediated) targeted integration of a promoterless mini-ATP7B cDNA into the albumin (Alb) locus. Administration of AAV-Alb-mini-ATP7B in 2 WD mouse models resulted in extensive liver repopulation by genome-edited hepatocytes holding a proliferative advantage over nonedited ones, and ameliorated liver injury and copper metabolism. Furthermore, combination of genome editing with a copper chelator, currently used for WD treatment, achieved greater disease improvement compared with chelation therapy alone. Nuclease-free genome editing provided therapeutic efficacy and may represent a safer and longer-lasting alternative to classic gene replacement strategies for WD.
Collapse
Affiliation(s)
- Agnese Padula
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy
| | - Michele Spinelli
- Department of Chemical Sciences, University of Naples Federico II, Naples, Italy
| | - Edoardo Nusco
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy
| | | | | | | | - Claudia Perna
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy
| | - Amy Bastille
- LogicBio Therapeutics, Lexington, Massachusetts, USA
| | - Megan Ericson
- LogicBio Therapeutics, Lexington, Massachusetts, USA
| | | | | | - Angela Amoresano
- Department of Chemical Sciences, University of Naples Federico II, Naples, Italy
| | - Mariana Nacht
- LogicBio Therapeutics, Lexington, Massachusetts, USA
| | | |
Collapse
|
13
|
D'Antiga L, Beuers U, Ronzitti G, Brunetti-Pierri N, Baumann U, Di Giorgio A, Aronson S, Hubert A, Romano R, Junge N, Bosma P, Bortolussi G, Muro AF, Soumoudronga RF, Veron P, Collaud F, Knuchel-Legendre N, Labrune P, Mingozzi F. Gene Therapy in Patients with the Crigler-Najjar Syndrome. N Engl J Med 2023; 389:620-631. [PMID: 37585628 DOI: 10.1056/nejmoa2214084] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
BACKGROUND Patients with the Crigler-Najjar syndrome lack the enzyme uridine diphosphoglucuronate glucuronosyltransferase 1A1 (UGT1A1), the absence of which leads to severe unconjugated hyperbilirubinemia that can cause irreversible neurologic injury and death. Prolonged, daily phototherapy partially controls the jaundice, but the only definitive cure is liver transplantation. METHODS We report the results of the dose-escalation portion of a phase 1-2 study evaluating the safety and efficacy of a single intravenous infusion of an adeno-associated virus serotype 8 vector encoding UGT1A1 in patients with the Crigler-Najjar syndrome that was being treated with phototherapy. Five patients received a single infusion of the gene construct (GNT0003): two received 2×1012 vector genomes (vg) per kilogram of body weight, and three received 5×1012 vg per kilogram. The primary end points were measures of safety and efficacy; efficacy was defined as a serum bilirubin level of 300 μmol per liter or lower measured at 17 weeks, 1 week after discontinuation of phototherapy. RESULTS No serious adverse events were reported. The most common adverse events were headache and alterations in liver-enzyme levels. Alanine aminotransferase increased to levels above the upper limit of the normal range in four patients, a finding potentially related to an immune response against the infused vector; these patients were treated with a course of glucocorticoids. By week 16, serum bilirubin levels in patients who received the lower dose of GNT0003 exceeded 300 μmol per liter. The patients who received the higher dose had bilirubin levels below 300 μmol per liter in the absence of phototherapy at the end of follow-up (mean [±SD] baseline bilirubin level, 351±56 μmol per liter; mean level at the final follow-up visit [week 78 in two patients and week 80 in the other], 149±33 μmol per liter). CONCLUSIONS No serious adverse events were reported in patients treated with the gene-therapy vector GNT0003 in this small study. Patients who received the higher dose had a decrease in bilirubin levels and were not receiving phototherapy at least 78 weeks after vector administration. (Funded by Genethon and others; ClinicalTrials.gov number, NCT03466463.).
Collapse
Affiliation(s)
- Lorenzo D'Antiga
- From Department of Pediatric Hepatology, Gastroenterology, and Transplantation, Hospital Papa Giovanni XXIII, Bergamo (L.D., A.D.G.), Scuola Superiore Meridionale, Genomics and Experimental Medicine Program (N.B.-P.), Department of Translational Medicine, University of Naples Federico II, Naples (N.B.-P., R.R.), Telethon Institute of Genetics and Medicine, Pozzuoli (N.B.-P.), and the International Center for Genetic Engineering and Biotechnology, Trieste (G.B., A.F.M.) - all in Italy; Tytgat Institute for Liver and Intestinal Research, Department of Hepatology and Gastroenterology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam (U. Beuers, S.A., P.B.); Université d'Evry, Université Paris-Saclay, INSERM, Genethon, Integrare Research Unit UMR_S951 (G.R., F.C., F.M.) and Genethon (G.R., R.F.S., P.V., F.C., N.K.-L., F.M.), Evry, Assistance Publique-Hôpitaux de Paris, Université Paris-Saclay, Centre de Référence pour les Maladies Rares, Maladies Héréditaires du Métabolisme Hépatique, Hôpital Antoine Béclère, Clamart (A.H., P.L.), and Université Paris-Saclay and INSERM Unité 1195, Le Kremlin Bicêtre (A.H., P.L.) - all in France; the Division for Pediatric Gastroenterology and Hepatology, Department of Pediatric Kidney, Liver, and Metabolic Diseases, Hannover Medical School, Hannover, Germany (U. Baumann, N.J.); and Spark Therapeutics, Philadelphia (F.M.)
| | - Ulrich Beuers
- From Department of Pediatric Hepatology, Gastroenterology, and Transplantation, Hospital Papa Giovanni XXIII, Bergamo (L.D., A.D.G.), Scuola Superiore Meridionale, Genomics and Experimental Medicine Program (N.B.-P.), Department of Translational Medicine, University of Naples Federico II, Naples (N.B.-P., R.R.), Telethon Institute of Genetics and Medicine, Pozzuoli (N.B.-P.), and the International Center for Genetic Engineering and Biotechnology, Trieste (G.B., A.F.M.) - all in Italy; Tytgat Institute for Liver and Intestinal Research, Department of Hepatology and Gastroenterology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam (U. Beuers, S.A., P.B.); Université d'Evry, Université Paris-Saclay, INSERM, Genethon, Integrare Research Unit UMR_S951 (G.R., F.C., F.M.) and Genethon (G.R., R.F.S., P.V., F.C., N.K.-L., F.M.), Evry, Assistance Publique-Hôpitaux de Paris, Université Paris-Saclay, Centre de Référence pour les Maladies Rares, Maladies Héréditaires du Métabolisme Hépatique, Hôpital Antoine Béclère, Clamart (A.H., P.L.), and Université Paris-Saclay and INSERM Unité 1195, Le Kremlin Bicêtre (A.H., P.L.) - all in France; the Division for Pediatric Gastroenterology and Hepatology, Department of Pediatric Kidney, Liver, and Metabolic Diseases, Hannover Medical School, Hannover, Germany (U. Baumann, N.J.); and Spark Therapeutics, Philadelphia (F.M.)
| | - Giuseppe Ronzitti
- From Department of Pediatric Hepatology, Gastroenterology, and Transplantation, Hospital Papa Giovanni XXIII, Bergamo (L.D., A.D.G.), Scuola Superiore Meridionale, Genomics and Experimental Medicine Program (N.B.-P.), Department of Translational Medicine, University of Naples Federico II, Naples (N.B.-P., R.R.), Telethon Institute of Genetics and Medicine, Pozzuoli (N.B.-P.), and the International Center for Genetic Engineering and Biotechnology, Trieste (G.B., A.F.M.) - all in Italy; Tytgat Institute for Liver and Intestinal Research, Department of Hepatology and Gastroenterology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam (U. Beuers, S.A., P.B.); Université d'Evry, Université Paris-Saclay, INSERM, Genethon, Integrare Research Unit UMR_S951 (G.R., F.C., F.M.) and Genethon (G.R., R.F.S., P.V., F.C., N.K.-L., F.M.), Evry, Assistance Publique-Hôpitaux de Paris, Université Paris-Saclay, Centre de Référence pour les Maladies Rares, Maladies Héréditaires du Métabolisme Hépatique, Hôpital Antoine Béclère, Clamart (A.H., P.L.), and Université Paris-Saclay and INSERM Unité 1195, Le Kremlin Bicêtre (A.H., P.L.) - all in France; the Division for Pediatric Gastroenterology and Hepatology, Department of Pediatric Kidney, Liver, and Metabolic Diseases, Hannover Medical School, Hannover, Germany (U. Baumann, N.J.); and Spark Therapeutics, Philadelphia (F.M.)
| | - Nicola Brunetti-Pierri
- From Department of Pediatric Hepatology, Gastroenterology, and Transplantation, Hospital Papa Giovanni XXIII, Bergamo (L.D., A.D.G.), Scuola Superiore Meridionale, Genomics and Experimental Medicine Program (N.B.-P.), Department of Translational Medicine, University of Naples Federico II, Naples (N.B.-P., R.R.), Telethon Institute of Genetics and Medicine, Pozzuoli (N.B.-P.), and the International Center for Genetic Engineering and Biotechnology, Trieste (G.B., A.F.M.) - all in Italy; Tytgat Institute for Liver and Intestinal Research, Department of Hepatology and Gastroenterology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam (U. Beuers, S.A., P.B.); Université d'Evry, Université Paris-Saclay, INSERM, Genethon, Integrare Research Unit UMR_S951 (G.R., F.C., F.M.) and Genethon (G.R., R.F.S., P.V., F.C., N.K.-L., F.M.), Evry, Assistance Publique-Hôpitaux de Paris, Université Paris-Saclay, Centre de Référence pour les Maladies Rares, Maladies Héréditaires du Métabolisme Hépatique, Hôpital Antoine Béclère, Clamart (A.H., P.L.), and Université Paris-Saclay and INSERM Unité 1195, Le Kremlin Bicêtre (A.H., P.L.) - all in France; the Division for Pediatric Gastroenterology and Hepatology, Department of Pediatric Kidney, Liver, and Metabolic Diseases, Hannover Medical School, Hannover, Germany (U. Baumann, N.J.); and Spark Therapeutics, Philadelphia (F.M.)
| | - Ulrich Baumann
- From Department of Pediatric Hepatology, Gastroenterology, and Transplantation, Hospital Papa Giovanni XXIII, Bergamo (L.D., A.D.G.), Scuola Superiore Meridionale, Genomics and Experimental Medicine Program (N.B.-P.), Department of Translational Medicine, University of Naples Federico II, Naples (N.B.-P., R.R.), Telethon Institute of Genetics and Medicine, Pozzuoli (N.B.-P.), and the International Center for Genetic Engineering and Biotechnology, Trieste (G.B., A.F.M.) - all in Italy; Tytgat Institute for Liver and Intestinal Research, Department of Hepatology and Gastroenterology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam (U. Beuers, S.A., P.B.); Université d'Evry, Université Paris-Saclay, INSERM, Genethon, Integrare Research Unit UMR_S951 (G.R., F.C., F.M.) and Genethon (G.R., R.F.S., P.V., F.C., N.K.-L., F.M.), Evry, Assistance Publique-Hôpitaux de Paris, Université Paris-Saclay, Centre de Référence pour les Maladies Rares, Maladies Héréditaires du Métabolisme Hépatique, Hôpital Antoine Béclère, Clamart (A.H., P.L.), and Université Paris-Saclay and INSERM Unité 1195, Le Kremlin Bicêtre (A.H., P.L.) - all in France; the Division for Pediatric Gastroenterology and Hepatology, Department of Pediatric Kidney, Liver, and Metabolic Diseases, Hannover Medical School, Hannover, Germany (U. Baumann, N.J.); and Spark Therapeutics, Philadelphia (F.M.)
| | - Angelo Di Giorgio
- From Department of Pediatric Hepatology, Gastroenterology, and Transplantation, Hospital Papa Giovanni XXIII, Bergamo (L.D., A.D.G.), Scuola Superiore Meridionale, Genomics and Experimental Medicine Program (N.B.-P.), Department of Translational Medicine, University of Naples Federico II, Naples (N.B.-P., R.R.), Telethon Institute of Genetics and Medicine, Pozzuoli (N.B.-P.), and the International Center for Genetic Engineering and Biotechnology, Trieste (G.B., A.F.M.) - all in Italy; Tytgat Institute for Liver and Intestinal Research, Department of Hepatology and Gastroenterology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam (U. Beuers, S.A., P.B.); Université d'Evry, Université Paris-Saclay, INSERM, Genethon, Integrare Research Unit UMR_S951 (G.R., F.C., F.M.) and Genethon (G.R., R.F.S., P.V., F.C., N.K.-L., F.M.), Evry, Assistance Publique-Hôpitaux de Paris, Université Paris-Saclay, Centre de Référence pour les Maladies Rares, Maladies Héréditaires du Métabolisme Hépatique, Hôpital Antoine Béclère, Clamart (A.H., P.L.), and Université Paris-Saclay and INSERM Unité 1195, Le Kremlin Bicêtre (A.H., P.L.) - all in France; the Division for Pediatric Gastroenterology and Hepatology, Department of Pediatric Kidney, Liver, and Metabolic Diseases, Hannover Medical School, Hannover, Germany (U. Baumann, N.J.); and Spark Therapeutics, Philadelphia (F.M.)
| | - Sem Aronson
- From Department of Pediatric Hepatology, Gastroenterology, and Transplantation, Hospital Papa Giovanni XXIII, Bergamo (L.D., A.D.G.), Scuola Superiore Meridionale, Genomics and Experimental Medicine Program (N.B.-P.), Department of Translational Medicine, University of Naples Federico II, Naples (N.B.-P., R.R.), Telethon Institute of Genetics and Medicine, Pozzuoli (N.B.-P.), and the International Center for Genetic Engineering and Biotechnology, Trieste (G.B., A.F.M.) - all in Italy; Tytgat Institute for Liver and Intestinal Research, Department of Hepatology and Gastroenterology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam (U. Beuers, S.A., P.B.); Université d'Evry, Université Paris-Saclay, INSERM, Genethon, Integrare Research Unit UMR_S951 (G.R., F.C., F.M.) and Genethon (G.R., R.F.S., P.V., F.C., N.K.-L., F.M.), Evry, Assistance Publique-Hôpitaux de Paris, Université Paris-Saclay, Centre de Référence pour les Maladies Rares, Maladies Héréditaires du Métabolisme Hépatique, Hôpital Antoine Béclère, Clamart (A.H., P.L.), and Université Paris-Saclay and INSERM Unité 1195, Le Kremlin Bicêtre (A.H., P.L.) - all in France; the Division for Pediatric Gastroenterology and Hepatology, Department of Pediatric Kidney, Liver, and Metabolic Diseases, Hannover Medical School, Hannover, Germany (U. Baumann, N.J.); and Spark Therapeutics, Philadelphia (F.M.)
| | - Aurelie Hubert
- From Department of Pediatric Hepatology, Gastroenterology, and Transplantation, Hospital Papa Giovanni XXIII, Bergamo (L.D., A.D.G.), Scuola Superiore Meridionale, Genomics and Experimental Medicine Program (N.B.-P.), Department of Translational Medicine, University of Naples Federico II, Naples (N.B.-P., R.R.), Telethon Institute of Genetics and Medicine, Pozzuoli (N.B.-P.), and the International Center for Genetic Engineering and Biotechnology, Trieste (G.B., A.F.M.) - all in Italy; Tytgat Institute for Liver and Intestinal Research, Department of Hepatology and Gastroenterology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam (U. Beuers, S.A., P.B.); Université d'Evry, Université Paris-Saclay, INSERM, Genethon, Integrare Research Unit UMR_S951 (G.R., F.C., F.M.) and Genethon (G.R., R.F.S., P.V., F.C., N.K.-L., F.M.), Evry, Assistance Publique-Hôpitaux de Paris, Université Paris-Saclay, Centre de Référence pour les Maladies Rares, Maladies Héréditaires du Métabolisme Hépatique, Hôpital Antoine Béclère, Clamart (A.H., P.L.), and Université Paris-Saclay and INSERM Unité 1195, Le Kremlin Bicêtre (A.H., P.L.) - all in France; the Division for Pediatric Gastroenterology and Hepatology, Department of Pediatric Kidney, Liver, and Metabolic Diseases, Hannover Medical School, Hannover, Germany (U. Baumann, N.J.); and Spark Therapeutics, Philadelphia (F.M.)
| | - Roberta Romano
- From Department of Pediatric Hepatology, Gastroenterology, and Transplantation, Hospital Papa Giovanni XXIII, Bergamo (L.D., A.D.G.), Scuola Superiore Meridionale, Genomics and Experimental Medicine Program (N.B.-P.), Department of Translational Medicine, University of Naples Federico II, Naples (N.B.-P., R.R.), Telethon Institute of Genetics and Medicine, Pozzuoli (N.B.-P.), and the International Center for Genetic Engineering and Biotechnology, Trieste (G.B., A.F.M.) - all in Italy; Tytgat Institute for Liver and Intestinal Research, Department of Hepatology and Gastroenterology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam (U. Beuers, S.A., P.B.); Université d'Evry, Université Paris-Saclay, INSERM, Genethon, Integrare Research Unit UMR_S951 (G.R., F.C., F.M.) and Genethon (G.R., R.F.S., P.V., F.C., N.K.-L., F.M.), Evry, Assistance Publique-Hôpitaux de Paris, Université Paris-Saclay, Centre de Référence pour les Maladies Rares, Maladies Héréditaires du Métabolisme Hépatique, Hôpital Antoine Béclère, Clamart (A.H., P.L.), and Université Paris-Saclay and INSERM Unité 1195, Le Kremlin Bicêtre (A.H., P.L.) - all in France; the Division for Pediatric Gastroenterology and Hepatology, Department of Pediatric Kidney, Liver, and Metabolic Diseases, Hannover Medical School, Hannover, Germany (U. Baumann, N.J.); and Spark Therapeutics, Philadelphia (F.M.)
| | - Norman Junge
- From Department of Pediatric Hepatology, Gastroenterology, and Transplantation, Hospital Papa Giovanni XXIII, Bergamo (L.D., A.D.G.), Scuola Superiore Meridionale, Genomics and Experimental Medicine Program (N.B.-P.), Department of Translational Medicine, University of Naples Federico II, Naples (N.B.-P., R.R.), Telethon Institute of Genetics and Medicine, Pozzuoli (N.B.-P.), and the International Center for Genetic Engineering and Biotechnology, Trieste (G.B., A.F.M.) - all in Italy; Tytgat Institute for Liver and Intestinal Research, Department of Hepatology and Gastroenterology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam (U. Beuers, S.A., P.B.); Université d'Evry, Université Paris-Saclay, INSERM, Genethon, Integrare Research Unit UMR_S951 (G.R., F.C., F.M.) and Genethon (G.R., R.F.S., P.V., F.C., N.K.-L., F.M.), Evry, Assistance Publique-Hôpitaux de Paris, Université Paris-Saclay, Centre de Référence pour les Maladies Rares, Maladies Héréditaires du Métabolisme Hépatique, Hôpital Antoine Béclère, Clamart (A.H., P.L.), and Université Paris-Saclay and INSERM Unité 1195, Le Kremlin Bicêtre (A.H., P.L.) - all in France; the Division for Pediatric Gastroenterology and Hepatology, Department of Pediatric Kidney, Liver, and Metabolic Diseases, Hannover Medical School, Hannover, Germany (U. Baumann, N.J.); and Spark Therapeutics, Philadelphia (F.M.)
| | - Piter Bosma
- From Department of Pediatric Hepatology, Gastroenterology, and Transplantation, Hospital Papa Giovanni XXIII, Bergamo (L.D., A.D.G.), Scuola Superiore Meridionale, Genomics and Experimental Medicine Program (N.B.-P.), Department of Translational Medicine, University of Naples Federico II, Naples (N.B.-P., R.R.), Telethon Institute of Genetics and Medicine, Pozzuoli (N.B.-P.), and the International Center for Genetic Engineering and Biotechnology, Trieste (G.B., A.F.M.) - all in Italy; Tytgat Institute for Liver and Intestinal Research, Department of Hepatology and Gastroenterology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam (U. Beuers, S.A., P.B.); Université d'Evry, Université Paris-Saclay, INSERM, Genethon, Integrare Research Unit UMR_S951 (G.R., F.C., F.M.) and Genethon (G.R., R.F.S., P.V., F.C., N.K.-L., F.M.), Evry, Assistance Publique-Hôpitaux de Paris, Université Paris-Saclay, Centre de Référence pour les Maladies Rares, Maladies Héréditaires du Métabolisme Hépatique, Hôpital Antoine Béclère, Clamart (A.H., P.L.), and Université Paris-Saclay and INSERM Unité 1195, Le Kremlin Bicêtre (A.H., P.L.) - all in France; the Division for Pediatric Gastroenterology and Hepatology, Department of Pediatric Kidney, Liver, and Metabolic Diseases, Hannover Medical School, Hannover, Germany (U. Baumann, N.J.); and Spark Therapeutics, Philadelphia (F.M.)
| | - Giulia Bortolussi
- From Department of Pediatric Hepatology, Gastroenterology, and Transplantation, Hospital Papa Giovanni XXIII, Bergamo (L.D., A.D.G.), Scuola Superiore Meridionale, Genomics and Experimental Medicine Program (N.B.-P.), Department of Translational Medicine, University of Naples Federico II, Naples (N.B.-P., R.R.), Telethon Institute of Genetics and Medicine, Pozzuoli (N.B.-P.), and the International Center for Genetic Engineering and Biotechnology, Trieste (G.B., A.F.M.) - all in Italy; Tytgat Institute for Liver and Intestinal Research, Department of Hepatology and Gastroenterology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam (U. Beuers, S.A., P.B.); Université d'Evry, Université Paris-Saclay, INSERM, Genethon, Integrare Research Unit UMR_S951 (G.R., F.C., F.M.) and Genethon (G.R., R.F.S., P.V., F.C., N.K.-L., F.M.), Evry, Assistance Publique-Hôpitaux de Paris, Université Paris-Saclay, Centre de Référence pour les Maladies Rares, Maladies Héréditaires du Métabolisme Hépatique, Hôpital Antoine Béclère, Clamart (A.H., P.L.), and Université Paris-Saclay and INSERM Unité 1195, Le Kremlin Bicêtre (A.H., P.L.) - all in France; the Division for Pediatric Gastroenterology and Hepatology, Department of Pediatric Kidney, Liver, and Metabolic Diseases, Hannover Medical School, Hannover, Germany (U. Baumann, N.J.); and Spark Therapeutics, Philadelphia (F.M.)
| | - Andrés F Muro
- From Department of Pediatric Hepatology, Gastroenterology, and Transplantation, Hospital Papa Giovanni XXIII, Bergamo (L.D., A.D.G.), Scuola Superiore Meridionale, Genomics and Experimental Medicine Program (N.B.-P.), Department of Translational Medicine, University of Naples Federico II, Naples (N.B.-P., R.R.), Telethon Institute of Genetics and Medicine, Pozzuoli (N.B.-P.), and the International Center for Genetic Engineering and Biotechnology, Trieste (G.B., A.F.M.) - all in Italy; Tytgat Institute for Liver and Intestinal Research, Department of Hepatology and Gastroenterology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam (U. Beuers, S.A., P.B.); Université d'Evry, Université Paris-Saclay, INSERM, Genethon, Integrare Research Unit UMR_S951 (G.R., F.C., F.M.) and Genethon (G.R., R.F.S., P.V., F.C., N.K.-L., F.M.), Evry, Assistance Publique-Hôpitaux de Paris, Université Paris-Saclay, Centre de Référence pour les Maladies Rares, Maladies Héréditaires du Métabolisme Hépatique, Hôpital Antoine Béclère, Clamart (A.H., P.L.), and Université Paris-Saclay and INSERM Unité 1195, Le Kremlin Bicêtre (A.H., P.L.) - all in France; the Division for Pediatric Gastroenterology and Hepatology, Department of Pediatric Kidney, Liver, and Metabolic Diseases, Hannover Medical School, Hannover, Germany (U. Baumann, N.J.); and Spark Therapeutics, Philadelphia (F.M.)
| | - Ravaka F Soumoudronga
- From Department of Pediatric Hepatology, Gastroenterology, and Transplantation, Hospital Papa Giovanni XXIII, Bergamo (L.D., A.D.G.), Scuola Superiore Meridionale, Genomics and Experimental Medicine Program (N.B.-P.), Department of Translational Medicine, University of Naples Federico II, Naples (N.B.-P., R.R.), Telethon Institute of Genetics and Medicine, Pozzuoli (N.B.-P.), and the International Center for Genetic Engineering and Biotechnology, Trieste (G.B., A.F.M.) - all in Italy; Tytgat Institute for Liver and Intestinal Research, Department of Hepatology and Gastroenterology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam (U. Beuers, S.A., P.B.); Université d'Evry, Université Paris-Saclay, INSERM, Genethon, Integrare Research Unit UMR_S951 (G.R., F.C., F.M.) and Genethon (G.R., R.F.S., P.V., F.C., N.K.-L., F.M.), Evry, Assistance Publique-Hôpitaux de Paris, Université Paris-Saclay, Centre de Référence pour les Maladies Rares, Maladies Héréditaires du Métabolisme Hépatique, Hôpital Antoine Béclère, Clamart (A.H., P.L.), and Université Paris-Saclay and INSERM Unité 1195, Le Kremlin Bicêtre (A.H., P.L.) - all in France; the Division for Pediatric Gastroenterology and Hepatology, Department of Pediatric Kidney, Liver, and Metabolic Diseases, Hannover Medical School, Hannover, Germany (U. Baumann, N.J.); and Spark Therapeutics, Philadelphia (F.M.)
| | - Philippe Veron
- From Department of Pediatric Hepatology, Gastroenterology, and Transplantation, Hospital Papa Giovanni XXIII, Bergamo (L.D., A.D.G.), Scuola Superiore Meridionale, Genomics and Experimental Medicine Program (N.B.-P.), Department of Translational Medicine, University of Naples Federico II, Naples (N.B.-P., R.R.), Telethon Institute of Genetics and Medicine, Pozzuoli (N.B.-P.), and the International Center for Genetic Engineering and Biotechnology, Trieste (G.B., A.F.M.) - all in Italy; Tytgat Institute for Liver and Intestinal Research, Department of Hepatology and Gastroenterology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam (U. Beuers, S.A., P.B.); Université d'Evry, Université Paris-Saclay, INSERM, Genethon, Integrare Research Unit UMR_S951 (G.R., F.C., F.M.) and Genethon (G.R., R.F.S., P.V., F.C., N.K.-L., F.M.), Evry, Assistance Publique-Hôpitaux de Paris, Université Paris-Saclay, Centre de Référence pour les Maladies Rares, Maladies Héréditaires du Métabolisme Hépatique, Hôpital Antoine Béclère, Clamart (A.H., P.L.), and Université Paris-Saclay and INSERM Unité 1195, Le Kremlin Bicêtre (A.H., P.L.) - all in France; the Division for Pediatric Gastroenterology and Hepatology, Department of Pediatric Kidney, Liver, and Metabolic Diseases, Hannover Medical School, Hannover, Germany (U. Baumann, N.J.); and Spark Therapeutics, Philadelphia (F.M.)
| | - Fanny Collaud
- From Department of Pediatric Hepatology, Gastroenterology, and Transplantation, Hospital Papa Giovanni XXIII, Bergamo (L.D., A.D.G.), Scuola Superiore Meridionale, Genomics and Experimental Medicine Program (N.B.-P.), Department of Translational Medicine, University of Naples Federico II, Naples (N.B.-P., R.R.), Telethon Institute of Genetics and Medicine, Pozzuoli (N.B.-P.), and the International Center for Genetic Engineering and Biotechnology, Trieste (G.B., A.F.M.) - all in Italy; Tytgat Institute for Liver and Intestinal Research, Department of Hepatology and Gastroenterology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam (U. Beuers, S.A., P.B.); Université d'Evry, Université Paris-Saclay, INSERM, Genethon, Integrare Research Unit UMR_S951 (G.R., F.C., F.M.) and Genethon (G.R., R.F.S., P.V., F.C., N.K.-L., F.M.), Evry, Assistance Publique-Hôpitaux de Paris, Université Paris-Saclay, Centre de Référence pour les Maladies Rares, Maladies Héréditaires du Métabolisme Hépatique, Hôpital Antoine Béclère, Clamart (A.H., P.L.), and Université Paris-Saclay and INSERM Unité 1195, Le Kremlin Bicêtre (A.H., P.L.) - all in France; the Division for Pediatric Gastroenterology and Hepatology, Department of Pediatric Kidney, Liver, and Metabolic Diseases, Hannover Medical School, Hannover, Germany (U. Baumann, N.J.); and Spark Therapeutics, Philadelphia (F.M.)
| | - Nathalie Knuchel-Legendre
- From Department of Pediatric Hepatology, Gastroenterology, and Transplantation, Hospital Papa Giovanni XXIII, Bergamo (L.D., A.D.G.), Scuola Superiore Meridionale, Genomics and Experimental Medicine Program (N.B.-P.), Department of Translational Medicine, University of Naples Federico II, Naples (N.B.-P., R.R.), Telethon Institute of Genetics and Medicine, Pozzuoli (N.B.-P.), and the International Center for Genetic Engineering and Biotechnology, Trieste (G.B., A.F.M.) - all in Italy; Tytgat Institute for Liver and Intestinal Research, Department of Hepatology and Gastroenterology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam (U. Beuers, S.A., P.B.); Université d'Evry, Université Paris-Saclay, INSERM, Genethon, Integrare Research Unit UMR_S951 (G.R., F.C., F.M.) and Genethon (G.R., R.F.S., P.V., F.C., N.K.-L., F.M.), Evry, Assistance Publique-Hôpitaux de Paris, Université Paris-Saclay, Centre de Référence pour les Maladies Rares, Maladies Héréditaires du Métabolisme Hépatique, Hôpital Antoine Béclère, Clamart (A.H., P.L.), and Université Paris-Saclay and INSERM Unité 1195, Le Kremlin Bicêtre (A.H., P.L.) - all in France; the Division for Pediatric Gastroenterology and Hepatology, Department of Pediatric Kidney, Liver, and Metabolic Diseases, Hannover Medical School, Hannover, Germany (U. Baumann, N.J.); and Spark Therapeutics, Philadelphia (F.M.)
| | - Philippe Labrune
- From Department of Pediatric Hepatology, Gastroenterology, and Transplantation, Hospital Papa Giovanni XXIII, Bergamo (L.D., A.D.G.), Scuola Superiore Meridionale, Genomics and Experimental Medicine Program (N.B.-P.), Department of Translational Medicine, University of Naples Federico II, Naples (N.B.-P., R.R.), Telethon Institute of Genetics and Medicine, Pozzuoli (N.B.-P.), and the International Center for Genetic Engineering and Biotechnology, Trieste (G.B., A.F.M.) - all in Italy; Tytgat Institute for Liver and Intestinal Research, Department of Hepatology and Gastroenterology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam (U. Beuers, S.A., P.B.); Université d'Evry, Université Paris-Saclay, INSERM, Genethon, Integrare Research Unit UMR_S951 (G.R., F.C., F.M.) and Genethon (G.R., R.F.S., P.V., F.C., N.K.-L., F.M.), Evry, Assistance Publique-Hôpitaux de Paris, Université Paris-Saclay, Centre de Référence pour les Maladies Rares, Maladies Héréditaires du Métabolisme Hépatique, Hôpital Antoine Béclère, Clamart (A.H., P.L.), and Université Paris-Saclay and INSERM Unité 1195, Le Kremlin Bicêtre (A.H., P.L.) - all in France; the Division for Pediatric Gastroenterology and Hepatology, Department of Pediatric Kidney, Liver, and Metabolic Diseases, Hannover Medical School, Hannover, Germany (U. Baumann, N.J.); and Spark Therapeutics, Philadelphia (F.M.)
| | - Federico Mingozzi
- From Department of Pediatric Hepatology, Gastroenterology, and Transplantation, Hospital Papa Giovanni XXIII, Bergamo (L.D., A.D.G.), Scuola Superiore Meridionale, Genomics and Experimental Medicine Program (N.B.-P.), Department of Translational Medicine, University of Naples Federico II, Naples (N.B.-P., R.R.), Telethon Institute of Genetics and Medicine, Pozzuoli (N.B.-P.), and the International Center for Genetic Engineering and Biotechnology, Trieste (G.B., A.F.M.) - all in Italy; Tytgat Institute for Liver and Intestinal Research, Department of Hepatology and Gastroenterology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam (U. Beuers, S.A., P.B.); Université d'Evry, Université Paris-Saclay, INSERM, Genethon, Integrare Research Unit UMR_S951 (G.R., F.C., F.M.) and Genethon (G.R., R.F.S., P.V., F.C., N.K.-L., F.M.), Evry, Assistance Publique-Hôpitaux de Paris, Université Paris-Saclay, Centre de Référence pour les Maladies Rares, Maladies Héréditaires du Métabolisme Hépatique, Hôpital Antoine Béclère, Clamart (A.H., P.L.), and Université Paris-Saclay and INSERM Unité 1195, Le Kremlin Bicêtre (A.H., P.L.) - all in France; the Division for Pediatric Gastroenterology and Hepatology, Department of Pediatric Kidney, Liver, and Metabolic Diseases, Hannover Medical School, Hannover, Germany (U. Baumann, N.J.); and Spark Therapeutics, Philadelphia (F.M.)
| |
Collapse
|
14
|
Colella P, Meneghini V, Baldo G, Gomez-Ospina N. Editorial: Ex-vivo and in-vivo genome engineering for metabolic and neurometabolic diseases. Front Genome Ed 2023; 5:1248904. [PMID: 37484653 PMCID: PMC10359423 DOI: 10.3389/fgeed.2023.1248904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 06/29/2023] [Indexed: 07/25/2023] Open
Affiliation(s)
- Pasqualina Colella
- Department of Pediatrics, Stanford University, Stanford, CA, United States
| | - Vasco Meneghini
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Guilherme Baldo
- Clinical Hospital of Porto Alegre, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | | |
Collapse
|
15
|
Wang XY, Zeng ZG, Zhu ZJ, Wei L, Qu W, Liu Y, Tan YL, Wang J, Zhang HM, Shi W, Sun LY. Effect of liver transplantation with primary hyperoxaluria type 1: Five case reports and review of literature. World J Clin Cases 2023; 11:1068-1076. [PMID: 36874433 PMCID: PMC9979304 DOI: 10.12998/wjcc.v11.i5.1068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/22/2022] [Accepted: 01/09/2023] [Indexed: 02/14/2023] Open
Abstract
BACKGROUND Primary hyperoxaluria type 1 (PH1) is a rare autosomal recessive disease stemming from a deficiency in liver-specific alanine-glyoxylate aminotransferase, resulting in increased endogenous oxalate deposition and end-stage renal disease. Organ transplantation is the only effective treatment. However, its approach and timing remain controversial.
CASE SUMMARY We retrospectively analyzed 5 patients diagnosed with PH1 from the Liver Transplant Center of the Beijing Friendship Hospital from March 2017 to December 2020. Our cohort included 4 males and 1 female. The median age at onset was 4.0 years (range: 1.0-5.0), age at diagnosis was 12.2 years (range: 6.7-23.5), age at liver transplantation (LT) was 12.2 years (range: 7.0-25.1), and the follow-up time was 26.3 mo (range: 12.8-40.1). All patients had delayed diagnosis, and 3 patients had progressed to end-stage renal disease by the time they were diagnosed. Two patients received preemptive LT; their estimated glomerular filtration rate was maintained at > 120 mL/min/1.73 m2, indicating a better prognosis. Three patients received sequential liver and kidney transplantation. After transplantation, serum and urinary oxalate decreased, and liver function recovered. At the last follow-up, the estimated glomerular filtration rates of the latter 3 patients were 179, 52 and 21 mL/min/1.73 m2.
CONCLUSION Different transplantation strategies should be adopted for patients based on their renal function stage. Preemptive-LT offers a good therapeutic approach for PH1.
Collapse
Affiliation(s)
- Xin-Yue Wang
- Department of Critical Liver Diseases, Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing 101100, China
- Liver Transplantation Center, Beijing Friendship Hospital, Capital Medical University, Beijing 101100, China
- Clinical Center for Pediatric Liver Transplantation, Capital Medical University, Beijing 101100, China
- National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing 101100, China
| | - Zhi-Gui Zeng
- Liver Transplantation Center, Beijing Friendship Hospital, Capital Medical University, Beijing 101100, China
- Clinical Center for Pediatric Liver Transplantation, Capital Medical University, Beijing 101100, China
- National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing 101100, China
| | - Zhi-Jun Zhu
- Liver Transplantation Center, Beijing Friendship Hospital, Capital Medical University, Beijing 101100, China
- Clinical Center for Pediatric Liver Transplantation, Capital Medical University, Beijing 101100, China
- National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing 101100, China
| | - Lin Wei
- Liver Transplantation Center, Beijing Friendship Hospital, Capital Medical University, Beijing 101100, China
- Clinical Center for Pediatric Liver Transplantation, Capital Medical University, Beijing 101100, China
- National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing 101100, China
| | - Wei Qu
- Liver Transplantation Center, Beijing Friendship Hospital, Capital Medical University, Beijing 101100, China
- Clinical Center for Pediatric Liver Transplantation, Capital Medical University, Beijing 101100, China
- National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing 101100, China
| | - Ying Liu
- Department of Critical Liver Diseases, Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing 101100, China
- Liver Transplantation Center, Beijing Friendship Hospital, Capital Medical University, Beijing 101100, China
- Clinical Center for Pediatric Liver Transplantation, Capital Medical University, Beijing 101100, China
- National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing 101100, China
| | - Yu-Le Tan
- Liver Transplantation Center, Beijing Friendship Hospital, Capital Medical University, Beijing 101100, China
- Clinical Center for Pediatric Liver Transplantation, Capital Medical University, Beijing 101100, China
- National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing 101100, China
| | - Jun Wang
- Liver Transplantation Center, Beijing Friendship Hospital, Capital Medical University, Beijing 101100, China
- Clinical Center for Pediatric Liver Transplantation, Capital Medical University, Beijing 101100, China
- National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing 101100, China
| | - Hai-Ming Zhang
- Liver Transplantation Center, Beijing Friendship Hospital, Capital Medical University, Beijing 101100, China
- Clinical Center for Pediatric Liver Transplantation, Capital Medical University, Beijing 101100, China
- National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing 101100, China
| | - Wen Shi
- Beijing Clinical Research Institute, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Li-Ying Sun
- Department of Critical Liver Diseases, Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing 101100, China
- Liver Transplantation Center, Beijing Friendship Hospital, Capital Medical University, Beijing 101100, China
- Clinical Center for Pediatric Liver Transplantation, Capital Medical University, Beijing 101100, China
- National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing 101100, China
| |
Collapse
|
16
|
Capparelli R, Cuomo P, Gentile A, Iannelli D. Microbiota-Liver Diseases Interactions. Int J Mol Sci 2023; 24:3883. [PMID: 36835291 PMCID: PMC9959879 DOI: 10.3390/ijms24043883] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/08/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023] Open
Abstract
Gut microbiota regulates essential processes of host metabolism and physiology: synthesis of vitamins, digestion of foods non-digestible by the host (such as fibers), and-most important-protects the digestive tract from pathogens. In this study, we focus on the CRISPR/Cas9 technology, which is extensively used to correct multiple diseases, including liver diseases. Then, we discuss the non-alcoholic fatty liver disease (NAFLD), affecting more than 25% of the global population; colorectal cancer (CRC) is second in mortality. We give space to rarely discussed topics, such as pathobionts and multiple mutations. Pathobionts help to understand the origin and complexity of the microbiota. Since several types of cancers have as target the gut, it is vital extending the research of multiple mutations to the type of cancers affecting the gut-liver axis.
Collapse
Affiliation(s)
| | | | | | - Domenico Iannelli
- Department of Agriculture Sciences, University of Naples Federico II, 80055 Naples, Italy
| |
Collapse
|
17
|
Lee JH, Oh HK, Choi BS, Lee HH, Lee KJ, Kim UG, Lee J, Lee H, Lee GS, Ahn SJ, Han JP, Kim S, Yeom SC, Song DW. Genome editing-mediated knock-in of therapeutic genes ameliorates the disease phenotype in a model of hemophilia. MOLECULAR THERAPY - NUCLEIC ACIDS 2022; 29:551-562. [PMID: 36090746 PMCID: PMC9403902 DOI: 10.1016/j.omtn.2022.08.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 08/01/2022] [Indexed: 11/27/2022]
Abstract
Recently, clinical trials of adeno-associated virus-mediated replacement therapy have suggested long-term therapeutic effects for several genetic diseases of the liver, including hemophilia. However, there remain concerns regarding decreased therapeutic effects when the liver is regenerated or when physiological proliferation occurs. Although genome editing using the clustered regularly interspaced short palindromic repeats/Cas9 system provides an opportunity to solve this problem, low knock-in efficiency may limit its application for therapeutically relevant expression. Here, we identified a novel gene, APOC3, in which a strong promoter facilitated the expression of knocked-in genes in hepatocytes. We also investigated the effects of APOC3 editing using a small Cas9 protein derived from Campylobacter jejuni (CjCas9) in a hemophilic model. We demonstrated that adeno-associated virus-mediated delivery of CjCas9 and donor led to moderate levels of human factor 9 expression in APOC3-humanized mice. Moreover, knock-in-driven expression induced substantial recovery of clotting function in mice with hemophilia B. There was no evidence of off-target editing in vitro or in vivo. Collectively, our findings demonstrated therapeutically relevant expression using a precise and efficient APOC3-editing platform, providing insights into the development of further long-term therapeutics for diverse monogenic liver diseases.
Collapse
|
18
|
Padula A, Petruzzelli R, Philbert SA, Church SJ, Esposito F, Campione S, Monti M, Capolongo F, Perna C, Nusco E, Schmidt HH, Auricchio A, Cooper GJ, Polishchuk R, Piccolo P. Full-length ATP7B reconstituted through protein trans-splicing corrects Wilson disease in mice. Mol Ther Methods Clin Dev 2022; 26:495-504. [PMID: 36092366 PMCID: PMC9436707 DOI: 10.1016/j.omtm.2022.08.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 08/09/2022] [Indexed: 12/19/2022]
Abstract
Wilson disease (WD) is a genetic disorder of copper homeostasis, caused by deficiency of the copper transporter ATP7B. Gene therapy with recombinant adeno-associated vectors (AAV) holds promises for WD treatment. However, the full-length human ATP7B gene exceeds the limited AAV cargo capacity, hampering the applicability of AAV in this disease context. To overcome this limitation, we designed a dual AAV vector approach using split intein technology. Split inteins catalyze seamless ligation of two separate polypeptides in a highly specific manner. We selected a DnaE intein from Nostoc punctiforme (Npu) that recognizes a specific tripeptide in the human ATP7B coding sequence. We generated two AAVs expressing either the 5′-half of a codon-optimized human ATP7B cDNA followed by the N-terminal Npu DnaE intein or the C-terminal Npu DnaE intein followed by the 3′-half of ATP7B cDNA, under the control of a liver-specific promoter. Intravenous co-injection of the two vectors in wild-type and Atp7b−/− mice resulted in efficient reconstitution of full-length ATP7B protein in the liver. Moreover, Atp7b−/− mice treated with intein-ATP7B vectors were protected from liver damage and showed improvements in copper homeostasis. Taken together, these data demonstrate the efficacy of split intein technology to drive the reconstitution of full-length human ATP7B and to rescue copper-mediated liver damage in Atp7b−/− mice, paving the way to the development of a new gene therapy approach for WD.
Collapse
Affiliation(s)
- Agnese Padula
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy
| | - Raffaella Petruzzelli
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy
- Scuola Superiore Meridionale, University of Naples Federico II, Naples, Italy
| | - Sasha A. Philbert
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Centre for Advanced Discovery and Experimental Therapeutics (CADET), Manchester Academic Health Sciences Centre, Manchester, UK
| | - Stephanie J. Church
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Centre for Advanced Discovery and Experimental Therapeutics (CADET), Manchester Academic Health Sciences Centre, Manchester, UK
| | | | | | - Marcello Monti
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy
| | | | - Claudia Perna
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy
| | - Edoardo Nusco
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy
| | - Hartmut H. Schmidt
- Department of Gastroenterology and Hepatology, University Hospital Duisburg-Essen, Essen, Germany
| | - Alberto Auricchio
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
| | - Garth J.S. Cooper
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Centre for Advanced Discovery and Experimental Therapeutics (CADET), Manchester Academic Health Sciences Centre, Manchester, UK
- School of Biological Sciences, Faculty of Science, University of Auckland, Auckland, New Zealand
| | | | - Pasquale Piccolo
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy
- Corresponding author Pasquale Piccolo, PhD, Telethon Institute of Genetics and Medicine, Via Campi Flegrei 34, 80078 Pozzuoli (Napoli), Italy.
| |
Collapse
|
19
|
Pontoizeau C, Simon-Sola M, Gaborit C, Nguyen V, Rotaru I, Tual N, Colella P, Girard M, Biferi MG, Arnoux JB, Rötig A, Ottolenghi C, de Lonlay P, Mingozzi F, Cavazzana M, Schiff M. Neonatal gene therapy achieves sustained disease rescue of maple syrup urine disease in mice. Nat Commun 2022; 13:3278. [PMID: 35672312 PMCID: PMC9174284 DOI: 10.1038/s41467-022-30880-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 05/17/2022] [Indexed: 11/21/2022] Open
Abstract
Maple syrup urine disease (MSUD) is a rare recessively inherited metabolic disorder causing accumulation of branched chain amino acids leading to neonatal death, if untreated. Treatment for MSUD represents an unmet need because the current treatment with life-long low-protein diet is challenging to maintain, and despite treatment the risk of acute decompensations and neuropsychiatric symptoms remains. Here, based on significant liver contribution to the catabolism of the branched chain amino acid leucine, we develop a liver-directed adeno-associated virus (AAV8) gene therapy for MSUD. We establish and characterize the Bckdha (branched chain keto acid dehydrogenase a)−/− mouse that exhibits a lethal neonatal phenotype mimicking human MSUD. Animals were treated at P0 with intravenous human BCKDHA AAV8 vectors under the control of either a ubiquitous or a liver-specific promoter. BCKDHA gene transfer rescued the lethal phenotype. While the use of a ubiquitous promoter fully and sustainably rescued the disease (long-term survival, normal phenotype and correction of biochemical abnormalities), liver-specific expression of BCKDHA led to partial, though sustained rescue. Here we show efficacy of gene therapy for MSUD demonstrating its potential for clinical translation. Maple syrup urine disease (MSUD) is a rare inborn error of metabolism, which is currently treated with life-long low-protein diet that can be challenging to maintain. Here the authors develop an AAV8-directed gene therapy providing sustainable disease rescue in a mouse model of MSUD.
Collapse
Affiliation(s)
- Clément Pontoizeau
- Necker Hospital, APHP, Biochemistry, Metabolomics Unit, Paris Cité University, Paris, France. .,Necker Hospital, APHP, Reference Center for Inborn Error of Metabolism, Pediatrics Department, Paris Cité University, Filière G2M, Paris, France. .,Inserm UMR_S1163, Institut Imagine, Paris, France.
| | | | | | | | - Irina Rotaru
- Inserm UMR_S1163, Institut Imagine, Paris, France
| | - Nolan Tual
- Inserm UMR_S1163, Institut Imagine, Paris, France
| | | | - Muriel Girard
- Necker Hospital, APHP, Pediatric Hepatology Unit, Pediatrics Department, Paris Cité University, Paris, France.,Inserm U1151, Institut Necker Enfants Malades, Paris, France
| | - Maria-Grazia Biferi
- Sorbonne University, Inserm, Institute of Myology, Centre of Research in Myology, Paris, France
| | - Jean-Baptiste Arnoux
- Necker Hospital, APHP, Reference Center for Inborn Error of Metabolism, Pediatrics Department, Paris Cité University, Filière G2M, Paris, France
| | - Agnès Rötig
- Inserm UMR_S1163, Institut Imagine, Paris, France
| | - Chris Ottolenghi
- Necker Hospital, APHP, Biochemistry, Metabolomics Unit, Paris Cité University, Paris, France.,Necker Hospital, APHP, Reference Center for Inborn Error of Metabolism, Pediatrics Department, Paris Cité University, Filière G2M, Paris, France.,Inserm UMR_S1163, Institut Imagine, Paris, France
| | - Pascale de Lonlay
- Necker Hospital, APHP, Reference Center for Inborn Error of Metabolism, Pediatrics Department, Paris Cité University, Filière G2M, Paris, France.,Inserm U1151, Institut Necker Enfants Malades, Paris, France
| | | | - Marina Cavazzana
- Inserm UMR_S1163, Institut Imagine, Paris, France.,Necker Hospital, APHP, Biotherapies Department, Paris Cité University, Paris, France
| | - Manuel Schiff
- Necker Hospital, APHP, Reference Center for Inborn Error of Metabolism, Pediatrics Department, Paris Cité University, Filière G2M, Paris, France. .,Inserm UMR_S1163, Institut Imagine, Paris, France.
| |
Collapse
|
20
|
Wang F, Li Y, Zhao S, Chen Z, Xu Z, Wang L, Zhang TJ, Yan J, Cao L, Wang P, Li A, Zhong Y, Wu Z, Qi X, Zhang M, Wu N. The utility of hierarchical genetic testing in paediatric liver disease. Liver Int 2022; 42:1097-1108. [PMID: 35257483 DOI: 10.1111/liv.15235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 10/20/2021] [Accepted: 11/01/2021] [Indexed: 02/13/2023]
Abstract
BACKGROUND & AIMS Genetic factors underlie a substantial proportion of paediatric liver diseases. Hereditary liver diseases have considerable genetic heterogeneity and variable clinical manifestations, which bring great challenges to clinical and molecular diagnoses. In this study, we investigated a group of paediatric patients with varying degrees of liver dysfunction using a hierarchical genetic testing strategy. METHODS We first applied a panel encompassing 166 known causal genes of liver disease. We then used exome sequencing (ES) in those patients whose cases remained undiagnosed to identify the genetic aetiology of their symptoms. RESULTS In total, we enrolled 131 unrelated paediatric patients with liver disease of Chinese Han ethnicity. We first applied targeted gene sequencing of 166 genes to all patients and yielded a diagnostic rate of 35.9% (47 of 131). Eighty-four patients who remained undiagnosed after target gene sequencing were subjected to ES. As a result, eight (8/84, 9.5%) of them obtained molecular diagnoses, including four patients suspected of abnormal bilirubin metabolism and four idiopathic cases. Non-typical genetic findings, including digenic inheritance and dual molecular diagnosis, were also identified. Through a comprehensive assessment of novel candidate variants of uncertain disease association, 11 patients of the remaining undiagnosed patients were able to obtain likely molecular diagnoses. CONCLUSIONS Our study presents evidence for the diagnostic utility of sequential genetic testing in a cohort of patients with paediatric liver disease. Our findings expand the understanding of the phenotypic and mutational spectrum underlying this heterogeneous group of diseases.
Collapse
Affiliation(s)
- Fuchuan Wang
- Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yaqi Li
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Key Laboratory of Big Data for Spinal Deformities, Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China
| | - Sen Zhao
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Key Laboratory of Big Data for Spinal Deformities, Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China
| | - Zefu Chen
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Key Laboratory of Big Data for Spinal Deformities, Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China
| | - Zhiqiang Xu
- Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Lianlei Wang
- Department of Orthopedic Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, P. R. China
| | - Terry Jianguo Zhang
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Key Laboratory of Big Data for Spinal Deformities, Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China
| | - Jianguo Yan
- Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Lili Cao
- Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Pu Wang
- Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Aiqin Li
- Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yanwei Zhong
- Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Zhihong Wu
- Key Laboratory of Big Data for Spinal Deformities, Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Medical Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaolong Qi
- CHESS Center, Institute of Portal Hypertension, The First Hospital of Lanzhou University, Lanzhou, China
| | - Min Zhang
- Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Nan Wu
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Key Laboratory of Big Data for Spinal Deformities, Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China
| |
Collapse
|
21
|
Menon J, Shanmugam N, Valamparampil JJ, Hakeem A, Vij M, Jalan A, Reddy MS, Rela M. Liver Transplantation: A Safe and Definitive Alternative to Lifelong Nitisinone for Tyrosinemia Type 1. Indian J Pediatr 2022; 89:438-444. [PMID: 34398413 DOI: 10.1007/s12098-021-03826-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 05/25/2021] [Indexed: 10/20/2022]
Abstract
OBJECTIVES To report the experience of liver transplantation (LT) for tyrosinemia type 1 (TT-1). METHODS Clinical data of children with TT-1 who underwent living donor LT between July 2009 and May 2020 were retrospectively analyzed. Data included pre-LT nitisinone therapy, graft type, post-LT complications, HCC incidence, and graft/patient survival. RESULTS Nine children were diagnosed with TT-1 at a median age of 12 mo (6-54 mo). Nitisinone was started in 6 patients at a median age of 15 mo (6-42 mo), but all had frequent interruption of therapy due to logistics with drug procurement including its cost. Median age at transplantation was 5 y (2-11 y). Explant liver showed HCC in 5 patients (55% of total cohort). The graft and patient survival are 100% with median follow-up of 58 mo (24-84 mo). CONCLUSION LT is curative for TT-1 and excellent results can be obtained in experienced centers. This is especially favorable in countries with limited resources where the cost of medical therapy is highly prohibitive, with lifelong diet restrictions and unclear long-term risk of HCC.
Collapse
Affiliation(s)
- Jagadeesh Menon
- Department of Pediatric Gastroenterology & Hepatology, Dr Rela Institute & Medical Centre, Bharat Institute of Higher Education and Research, Chennai, Tamil Nadu, 600044, India
| | - Naresh Shanmugam
- Department of Pediatric Gastroenterology & Hepatology, Dr Rela Institute & Medical Centre, Bharat Institute of Higher Education and Research, Chennai, Tamil Nadu, 600044, India.
| | - Joseph J Valamparampil
- Department of Pediatric Gastroenterology & Hepatology, Dr Rela Institute & Medical Centre, Bharat Institute of Higher Education and Research, Chennai, Tamil Nadu, 600044, India
| | - Abdul Hakeem
- Department of Hepatobiliary surgery & liver transplantation, Dr Rela Institute & Medical Centre, Bharat Institute of Higher Education and Research, Chennai, Tamil Nadu, India
| | - Mukul Vij
- Department of Histopathology, Dr Rela Institute & Medical Centre, Bharat Institute of Higher Education and Research, Chennai, Tamil Nadu, India
| | - Anil Jalan
- Department of Pediatric Genetics, NIRMAN, Mumbai, Maharashtra, India
| | - Mettu Srinivas Reddy
- Department of Hepatobiliary surgery & liver transplantation, Dr Rela Institute & Medical Centre, Bharat Institute of Higher Education and Research, Chennai, Tamil Nadu, India
| | - Mohamed Rela
- Department of Hepatobiliary surgery & liver transplantation, Dr Rela Institute & Medical Centre, Bharat Institute of Higher Education and Research, Chennai, Tamil Nadu, India.,Liver Transplant Unit, Kings College Hospital, London, UK
| |
Collapse
|
22
|
Chai Z, Zhang X, Dobbins AL, Samulski RJ, Merricks EP, Nichols TC, Li C. Dexamethasone Transiently Enhances Transgene Expression in the Liver When Administered at Late-Phase Post Long-Term Adeno-Associated Virus Transduction. Hum Gene Ther 2022; 33:119-130. [PMID: 34617445 PMCID: PMC8885437 DOI: 10.1089/hum.2021.083] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Glucocorticoids have anti-inflammatory and immunosuppressive functions and have commonly been used for preventing liver toxicity after the systemic application of a high dose of adeno-associated virus (AAV) vector for gene therapy. Clinical studies have reported that glucocorticoids have rescued factor IX (FIX) expression in patients with hemophilia B who showed a reduced FIX expression at 6 to 10 weeks post-AAV vector administration. In this study, we explored whether glucocorticoids could affect transgene expression in AAV targeted livers in animal models. When dexamethasone was applied before AAV9/FIX vector administration in the wild-type C57BL/6 mice, FIX expression was much higher than that of the control mice at any time point. More importantly, FIX expression transiently increased after dexamethasone was administered at week 6 or later post-AAV injection regardless of the various dexamethasone treatments applied. The transient enhancement in transgene expression was observed once there were one to several consecutive dexamethasone treatments completed. A similar result was also achieved in other wild-type BALB/c and hemophilia B mice that were treated with AAV9/FIX and dexamethasone. This mechanism study demonstrated that the administration of dexamethasone did not change either AAV genome copy number or transgene expression at the transcription level but transiently decreased interferon beta (IFN-β) and tumor necrosis factor alpha (TNF-α) expression in the livers of mice at a later time after AAV injection. Next, we studied the effect of dexamethasone on late transgene expression in hemophilia B dogs. Dexamethasone was administered 1 year after AAV9/FIX injection. Inconsistent with the results in mice, no significant change of FIX expression was observed in hemophilia B dogs. In summary, the results from this study indicate that dexamethasone may have various effects on transgene expression in AAV-transduced livers in different species, which provides valuable information about the rational application of dexamethasone in future clinical studies.
Collapse
Affiliation(s)
- Zheng Chai
- Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Xintao Zhang
- Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Amanda Lee Dobbins
- Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Richard Jude Samulski
- Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.,Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Elizabeth P. Merricks
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.,Blood Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Timothy C. Nichols
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.,Blood Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Chengwen Li
- Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.,Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.,Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.,Correspondence: Dr. Chengwen Li, Gene Therapy Center, University of North Carolina at Chapel Hill, 7007 Thurston-Bowles Building, 104 Manning Drive, CB #7352, Chapel Hill, NC 27599, USA.
| |
Collapse
|
23
|
Ebeid K, Geary SM, Salem AK. Preparation and Characterization of a Liver Targeted, Poly(amidoamine) Based, Gene Delivery System. Methods Mol Biol 2022; 2455:319-332. [PMID: 35213004 PMCID: PMC9670859 DOI: 10.1007/978-1-0716-2128-8_24] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Nonalcoholic steatohepatitis (NASH) is an aggressive liver disease that is considered a major cause of liver cirrhosis and hepatocellular carcinoma. NASH is characterized by multiple underlying genetic mutations, with no approved cure to date. Gene therapies that target those genetic mutations may play a major role in treating this disease, once delivered specifically to the hepatocytes. In this chapter we present, in detail, the synthesis and the characterization of an efficient gene delivery system capable of targeting hepatocytes by exploiting the overexpression of asialoglycoprotein receptors on their cell surface. The targeting ligand, galactose derivative, lactobionic acid (Gal), is first conjugated to bifunctional poly(ethylene glycol) (PEG), and then the formed PEG-Gal is further conjugated to the positively charged polymer, poly(amidoamine) (PAMAM) to form a PAMAM-PEG-Gal construct that can complex and deliver genetic material (e.g., pDNA, siRNA, mRNA) specifically to hepatocytes. We first synthesize PAMAM-PEG-Gal using carbodiimide click chemistry. The synthesized conjugate is characterized using 1H NMR spectroscopy and mass spectrometry. Next, nanoplexes are prepared by combining the positively charged conjugate and the negatively charged genetic material at different nitrogen to phosphate (N/P) ratios; then the size, charge, electrophoretic mobility, and surface morphology of those nanoplexes are estimated. The simplicity of complexing our conjugate with any type of genetic material, the ability of our delivery system to overcome the current limitations of delivering naked genetic material, and the efficiency of delivering its payload specifically to hepatocytes, makes our formulation a promising tool to treat any type of genetic abnormality that arises in hepatocytes, and specifically NASH.
Collapse
Affiliation(s)
- Kareem Ebeid
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA, USA
- Department of Pharmaceutics, Faculty of Pharmacy, Minia University, Minia, Egypt
- Department of Pharmaceutics, Faculty of Pharmacy and Pharmaceutical Manufacturing, Deraya University, New Minia, Egypt
| | - Sean M Geary
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA, USA
| | - Aliasger K Salem
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA, USA.
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
24
|
Wei L, Zhang HM, Wan CD, Qu W, Zeng ZG, Liu Y, Xiong J, Sun LY, Zhu ZJ. Auxiliary Liver Graft Can Be Protected From HBV Infection in HBsAg Positive Blood Circulation. Front Med (Lausanne) 2021; 8:726502. [PMID: 34513885 PMCID: PMC8423919 DOI: 10.3389/fmed.2021.726502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 08/04/2021] [Indexed: 01/02/2023] Open
Abstract
Auxiliary grafts have a high risk of Hepatitis B virus (HBV) infection in patients with chronic HBV-related diseases. Hepatitis B virus-related auxiliary partial orthotopic liver transplantation (APOLT) cases were reviewed to show the results of current methods to block native-to-graft HBV transmission. Three patients received APOLT for HBV-related liver cirrhosis and a recurrent upper gastrointestinal hemorrhage between April 2015 and January 2017 by the liver transplant team of Beijing Friendship Hospital affiliated with Capital Medical University. All three patients were positive for HBV surface antigen (HBsAg) and had a negative HBV DNA test result before transplantation. After auxiliary transplantations, HBsAg was found to be positive in two patients and negative in one patient. To avoid graft infection of HBV, entecavir-based therapy was employed and the remnant native livers of the recipients were removed 51-878 days after liver transplantation. Then, serum conversions of HBsAg were found in all three cases. For the first time, this case series shows the possibility of blocking the transmission of HBV from a native liver to a graft in auxiliary transplantation by entecavir-based therapy. Among the cases, a left lobe graft was successfully implanted as a replacement of the right lobe of the recipient, which is also discussed.
Collapse
Affiliation(s)
- Lin Wei
- Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Clinical Center for Pediatric Liver Transplantation, Capital Medical University, Beijing, China.,National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Hai-Ming Zhang
- Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Clinical Center for Pediatric Liver Transplantation, Capital Medical University, Beijing, China.,National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Chi-Dan Wan
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Qu
- Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Clinical Center for Pediatric Liver Transplantation, Capital Medical University, Beijing, China.,National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Zhi-Gui Zeng
- Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Clinical Center for Pediatric Liver Transplantation, Capital Medical University, Beijing, China.,National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Ying Liu
- Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Clinical Center for Pediatric Liver Transplantation, Capital Medical University, Beijing, China.,National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Jun Xiong
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li-Ying Sun
- Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Clinical Center for Pediatric Liver Transplantation, Capital Medical University, Beijing, China.,National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Zhi-Jun Zhu
- Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Clinical Center for Pediatric Liver Transplantation, Capital Medical University, Beijing, China.,National Clinical Research Center for Digestive Diseases, Beijing, China
| |
Collapse
|
25
|
Vaisitti T, Peritore D, Magistroni P, Ricci A, Lombardini L, Gringeri E, Catalano S, Spada M, Sciveres M, Di Giorgio A, Limongelli G, Varrenti M, Gerosa G, Terzi A, Pace Napoleone C, Amodeo A, Ragni L, Strologo LD, Benetti E, Fontana I, Testa S, Peruzzi L, Mitrotti A, Abbate S, Comai G, Gotti E, Schiavon M, Boffini M, De Angelis D, Bertani A, Pinelli D, Torre M, Poggi C, Deaglio S, Cardillo M, Amoroso A. The frequency of rare and monogenic diseases in pediatric organ transplant recipients in Italy. Orphanet J Rare Dis 2021; 16:374. [PMID: 34481500 PMCID: PMC8418291 DOI: 10.1186/s13023-021-02013-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 08/24/2021] [Indexed: 12/28/2022] Open
Abstract
Background Rare diseases are chronic and life-threatening disorders affecting < 1 person every 2,000. For most of them, clinical symptoms and signs can be observed at birth or childhood. Approximately 80% of all rare diseases have a genetic background and most of them are monogenic conditions. In addition, while the majority of these diseases is still incurable, early diagnosis and specific treatment can improve patients’ quality of life. Transplantation is among the therapeutic options and represents the definitive treatment for end-stage organ failure, both in children and adults. The aim of this paper was to analyze, in a large cohort of Italian patients, the main rare genetic diseases that led to organ transplantation, specifically pointing the attention on the pediatric cohort. Results To the purpose of our analysis, we considered heart, lung, liver and kidney transplants included in the Transplant Registry (TR) of the Italian National Transplantation Center in the 2002–2019 timeframe. Overall, 49,404 recipients were enrolled in the cohort, 5.1% of whom in the pediatric age. For 40,909 (82.8%) transplant recipients, a disease diagnosis was available, of which 38,615 in the adult cohort, while 8,495 patients (17.2%) were undiagnosed. There were 128 disease categories, and of these, 117 were listed in the main rare disease databases. In the pediatric cohort, 2,294 (5.6%) patients had a disease diagnosis: of the 2,126 (92.7%) patients affected by a rare disease, 1,402 (61.1%) presented with a monogenic condition. As expected, the frequencies of pathologies leading to organ failure were different between the pediatric and the adult cohort. Moreover, the pediatric group was characterized, compared to the adult one, by an overall better survival of the graft at ten years after transplant, with the only exception of lung transplants. When comparing survival considering rare vs non-rare diseases or rare and monogenic vs rare non-monogenic conditions, no differences were highlighted for kidney and lung transplants, while rare diseases had a better survival in liver as opposed to heart transplants. Conclusions This work represents the first national survey analyzing the main genetic causes and frequencies of rare and/or monogenic diseases leading to organ failure and requiring transplantation both in adults and children. Supplementary Information The online version contains supplementary material available at 10.1186/s13023-021-02013-x.
Collapse
Affiliation(s)
- Tiziana Vaisitti
- Department of Medical Sciences, University of Torino, Via Nizza 52, 10126, Torino, Italy
| | - Daniela Peritore
- National Transplant Center, Istituto Superiore Di Sanità, Roma, Italy
| | - Paola Magistroni
- Immunogenetics and Transplant Biology, Azienda Ospedaliera Universitaria Città Della Salute E Della Scienza Di Torino, Torino, Italy
| | - Andrea Ricci
- National Transplant Center, Istituto Superiore Di Sanità, Roma, Italy
| | | | - Enrico Gringeri
- Hepatobiliary Surgery and Liver Transplantation Unit, Padova University Hospital, Padova, Italy
| | - Silvia Catalano
- General Surgery 2U - Liver Transplant Center, Azienda Ospedaliera Universitaria Città Della Salute E Della Scienza Di Torino, University of Turin, Torino, Italy
| | - Marco Spada
- Divison of Hepatobiliopancreatic Surgery, Liver and Kidney Transplantation, Research Unit of Clinical Hepatogastroenterology and Transplantation, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | | | - Angelo Di Giorgio
- Paediatric Hepatology, Gastroenterology and Transplantation, Papa Giovanni XXIII Hospital, Bergamo, Italy
| | - Giuseppe Limongelli
- Center for Coordination on rare diseases - Regione Campania, Cardiovascular Rare and Genetic Diseases Unit, Department of Cardiology, Monaldi Hospital, AORN Dei Colli,, Naples, Italy
| | - Marisa Varrenti
- DeGasperis CardioCenter, Niguarda Great Metropolitan Hospital, Milan, Italy
| | - Gino Gerosa
- Heart Transplantation Unit, Cardio-Thoraco-Vascular Sciences and Public Health Department, University Padova Hospital, Padova, Italy
| | - Amedeo Terzi
- UOS Transplantation Surgery, Asst Papa Giovanni XXIII Hospital, Bergamo, Italy
| | - Carlo Pace Napoleone
- Pediatric Cardiac Surgery and Congenital Cardiopathies Unit, Regina Margherita Children's Hospital, Azienda Ospedaliera Città Della Salute E Della Scienza Di Torino, Turin, Italy
| | | | - Luca Ragni
- Paediatric Cardiology and ACHD Unit, S. Orsola, Malpighi Hospital, Bologna, Italy
| | - Luca Dello Strologo
- Renal Transplant Unit. Bambino Gesù Children's Research Hospital IRCCS, Rome, Italy
| | - Elisa Benetti
- Pediatric Nephrology, Dialysis and Transplant Unit, Department of Women's and Children's Health, Padua University Hospital, Padua, Italy
| | - Iris Fontana
- Azienda Ospedaliera Universitaria San Martino, Genoa, Italy
| | - Sara Testa
- Pediatric Nephrology, Dialysis and Transplant Unit, Fondazione IRCCS Ca' Granda-Ospedale Maggiore Policlinico, Milan, Italy
| | - Licia Peruzzi
- Pediatric Nephrology Unit, Regina Margherita Children's Hospital, Azienda Ospedaliera Universitaria Città Della Salute E Della Scienza Di Torino, Turin, Italy
| | - Adele Mitrotti
- Azienda Ospedaliera, Universitaria Policlinico Di Bari, Bari, Italy
| | | | - Giorgia Comai
- Nephrology, Dialysis and Kidney Transplant Unit, IRCCS Azienda Ospedaliero-Universitaria Di Bologna, Bologna, Italy
| | - Eliana Gotti
- Unit of Nephrology, Azienda Socio Sanitaria Territoriale Papa Giovanni XXIII, Bergamo, Italy
| | - Marco Schiavon
- Thoracic Surgery and Lung Transplant Unit, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University Hospital of Padua, Padua, Italy
| | - Massimo Boffini
- Heart and Lung Transplant Center, Cardiac Surgery Division, Surgical Sciences Department, University of Torino, Torino, Italy
| | | | - Alessandro Bertani
- Division of Thoracic Surgery and Lung Transplantation, Department for the Treatment and Study of Cardiothoracic Diseases and Cardiothoracic Transplantation, IRCCS-ISMETT, Palermo, Italy
| | - Domenico Pinelli
- Department of Organ Failure and Transplantation, ASST Giovanni XXIII, Bergamo, Italy
| | | | - Camilla Poggi
- Department of Thoracic Surgery, Policlinico Umberto I Hospital, University of Rome Sapienza, Rome, Italy
| | - Silvia Deaglio
- Department of Medical Sciences, University of Torino, Via Nizza 52, 10126, Torino, Italy. .,Immunogenetics and Transplant Biology, Azienda Ospedaliera Universitaria Città Della Salute E Della Scienza Di Torino, Torino, Italy.
| | - Massimo Cardillo
- National Transplant Center, Istituto Superiore Di Sanità, Roma, Italy
| | - Antonio Amoroso
- Department of Medical Sciences, University of Torino, Via Nizza 52, 10126, Torino, Italy.,Immunogenetics and Transplant Biology, Azienda Ospedaliera Universitaria Città Della Salute E Della Scienza Di Torino, Torino, Italy
| | | |
Collapse
|
26
|
Menon J, Vij M, Sachan D, Rammohan A, Shanmugam N, Kaliamoorthy I, Rela M. Pediatric metabolic liver diseases: Evolving role of liver transplantation. World J Transplant 2021; 11:161-179. [PMID: 34164292 PMCID: PMC8218348 DOI: 10.5500/wjt.v11.i6.161] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 05/13/2021] [Accepted: 06/03/2021] [Indexed: 02/06/2023] Open
Abstract
Metabolic liver diseases (MLD) are the second most common indication for liver transplantation (LT) in children. This is based on the fact that the majority of enzymes involved in various metabolic pathways are present within the liver and LT can cure or at least control the disease manifestation. LT is also performed in metabolic disorders for end-stage liver disease, its sequelae including hepatocellular cancer. It is also performed for preventing metabolic crisis’, arresting progression of neurological dysfunction with a potential to reverse symptoms in some cases and for preventing damage to end organs like kidneys as in the case of primary hyperoxalosis and methyl malonic acidemia. Pathological findings in explant liver with patients with metabolic disease include unremarkable liver to steatosis, cholestasis, inflammation, variable amount of fibrosis, and cirrhosis. The outcome of LT in metabolic disorders is excellent except for patients with mitochondrial disorders where significant extrahepatic involvement leads to poor outcomes and hence considered a contraindication for LT. A major advantage of LT is that in the post-operative period most patients can discontinue the special formula which they were having prior to the transplant and this increases their well-being and improves growth parameters. Auxiliary partial orthotopic LT has been described for patients with noncirrhotic MLD where a segmental graft is implanted in an orthotopic position after partial resection of the native liver. The retained native liver can be the potential target for future gene therapy when it becomes a clinical reality.
Collapse
Affiliation(s)
- Jagadeesh Menon
- Institute of Liver Disease and Transplantation, Dr Rela Institute and Medical Center, Chennai 600044, Tamil Nadu, India
| | - Mukul Vij
- Department of Pathology, Dr Rela Institute and Medical Center, Chennai 600044, Tamil Nadu, India
| | - Deepti Sachan
- Department of Transfusion Medicine, Dr Rela Institute and Medical Center, Chennai 600044, Tamil Nadu, India
| | - Ashwin Rammohan
- Institute of Liver Disease and Transplantation, Dr Rela Institute and Medical Center, Chennai 600044, Tamil Nadu, India
| | - Naresh Shanmugam
- Institute of Liver Disease and Transplantation, Dr Rela Institute and Medical Center, Chennai 600044, Tamil Nadu, India
| | - Ilankumaran Kaliamoorthy
- Institute of Liver Disease and Transplantation, Dr Rela Institute and Medical Center, Chennai 600044, Tamil Nadu, India
| | - Mohamed Rela
- Institute of Liver Disease and Transplantation, Dr Rela Institute and Medical Center, Chennai 600044, Tamil Nadu, India
| |
Collapse
|
27
|
Zhu X, Zhang B, He Y, Bao J. Liver Organoids: Formation Strategies and Biomedical Applications. Tissue Eng Regen Med 2021; 18:573-585. [PMID: 34132985 DOI: 10.1007/s13770-021-00357-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 05/20/2021] [Accepted: 05/22/2021] [Indexed: 02/05/2023] Open
Abstract
The liver is the most important digestive organ in the body. Several studies have explored liver biology and diseases related to the liver. However, most of these studies have only explored liver development, mechanism of liver regeneration and pathophysiology of liver diseases mainly based on two-dimensional (2D) cell lines and animal models. Traditional 2D cell lines do not represent the complex three-dimensional tissue architecture whereas animal models are limited by inter-species differences. These shortcomings limit understanding of liver biology and diseases. Liver organoid technology is effective in elucidating structural and physiological characteristics and basic tissue-level functions of liver tissue. In this review, formation strategies and a wide range of applications in biomedicine of liver organoid are summarized. Liver organoids are derived from single type cell culture, such as induced pluripotent stem cells (iPSCs), adult stem cells, primary hepatocytes, and primary cholangiocytes and multi-type cells co-culture, such as iPSC-derived hepatic endoderm cells co-cultured with mesenchymal stem cells and umbilical cord-derived endothelial cells. In vitro studies report that liver organoids are a promising model for regenerative medicine, organogenesis, liver regeneration, disease modelling, drug screening and personalized treatment. Liver organoids are a promising in vitro model for basic research and for development of clinical therapeutic interventions for hepatopathy.
Collapse
Affiliation(s)
- Xinglong Zhu
- Institute of Clinical Pathology, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital, Sichuan University, No. 37, Guoxue Alley, Wuhou District, Chengdu, 610041, Sichuan Province, China
| | - Bingqi Zhang
- Institute of Clinical Pathology, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital, Sichuan University, No. 37, Guoxue Alley, Wuhou District, Chengdu, 610041, Sichuan Province, China
| | - Yuting He
- Institute of Clinical Pathology, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital, Sichuan University, No. 37, Guoxue Alley, Wuhou District, Chengdu, 610041, Sichuan Province, China
| | - Ji Bao
- Institute of Clinical Pathology, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital, Sichuan University, No. 37, Guoxue Alley, Wuhou District, Chengdu, 610041, Sichuan Province, China.
| |
Collapse
|
28
|
Bai J, Li L, Liu H, Liu S, Bai L, Song W, Chen Y, Zheng S, Duan Z. UGT1A1-related Bilirubin Encephalopathy/Kernicterus in Adults. J Clin Transl Hepatol 2021; 9:180-186. [PMID: 34007799 PMCID: PMC8111108 DOI: 10.14218/jcth.2020.00108] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 01/15/2021] [Accepted: 02/04/2021] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND AND AIMS Bilirubin encephalopathy/kernicterus is very rare in adults. This study is aimed to investigate the clinical manifestations and genetic features of two patients with UGT1A1-related kernicterus. METHODS Sanger sequencing analysis was performed to identify UGT1A1 gene mutations in the patients and their families. Bioinformatics analysis was used to predict the potential functional effects of novel missense mutations. Clinical manifestations and biochemical parameters were collected and analyzed. RESULTS Two patients with Crigler-Najjar syndrome type II (CNS2) developed kernicterus in adulthood. Sanger sequencing identified a compound heterozygous mutation in the UGT1A1 gene in patient 1, which was inherited from his mother (G71R) and his father (c.-3279T>G; S191F). Patient 2 carried three heterozygous mutations, namely G71R, R209W and M391K; among which, the M391K mutation has not been reported before. Multiple prediction software showed that the M391K mutation was pathogenic. Symptoms were relieved in the two patients after phenobarbital and artificial liver support treatment. Patient 1 also underwent liver transplantation. CONCLUSIONS Adults with CNS2 are at risk for kernicterus. Phenobarbital treatment is beneficial for maintaining bilirubin levels and preventing kernicterus.
Collapse
Affiliation(s)
- Jie Bai
- Fourth Department of Liver Disease (Difficult & Complicated Liver Diseases and Artificial Liver Center), Beijing You’an Hospital Affiliated to Capital Medical University, Beijing, China
- Beijing Municipal Key Laboratory of Liver Failure and Artificial Liver Treatment Research, Beijing, China
| | - Lu Li
- Fourth Department of Liver Disease (Difficult & Complicated Liver Diseases and Artificial Liver Center), Beijing You’an Hospital Affiliated to Capital Medical University, Beijing, China
| | - Hui Liu
- Department of Pathology, Beijing You’an Hospital, Capital Medical University, Beijing, China
| | - Shuang Liu
- Beijing Municipal Key Laboratory of Liver Failure and Artificial Liver Treatment Research, Beijing, China
| | - Li Bai
- Beijing Municipal Key Laboratory of Liver Failure and Artificial Liver Treatment Research, Beijing, China
| | - Wenyan Song
- Department of Radiology, Beijing You’an Hospital, Capital Medical University, Beijing, China
| | - Yu Chen
- Fourth Department of Liver Disease (Difficult & Complicated Liver Diseases and Artificial Liver Center), Beijing You’an Hospital Affiliated to Capital Medical University, Beijing, China
- Beijing Municipal Key Laboratory of Liver Failure and Artificial Liver Treatment Research, Beijing, China
| | - Sujun Zheng
- Fourth Department of Liver Disease (Difficult & Complicated Liver Diseases and Artificial Liver Center), Beijing You’an Hospital Affiliated to Capital Medical University, Beijing, China
- Beijing Municipal Key Laboratory of Liver Failure and Artificial Liver Treatment Research, Beijing, China
- Correspondence to: Sujun Zheng and Zhongping Duan, Fourth Department of Liver Disease (Difficult & Complicated Liver Diseases and Artificial Liver Center), Beijing You’an Hospital Affiliated to Capital Medical University, No. 8, Xitoutiao, You’anmen, Fengtai District, Beijing 100069, China. ORCID: https://orcid.org/0000-0002-6367-5764 (SZ). Tel: +86-10-83997127, E-mail: (SZ); Tel: +86-10-63291007, E-mail: (ZD)
| | - Zhongping Duan
- Fourth Department of Liver Disease (Difficult & Complicated Liver Diseases and Artificial Liver Center), Beijing You’an Hospital Affiliated to Capital Medical University, Beijing, China
- Beijing Municipal Key Laboratory of Liver Failure and Artificial Liver Treatment Research, Beijing, China
- Correspondence to: Sujun Zheng and Zhongping Duan, Fourth Department of Liver Disease (Difficult & Complicated Liver Diseases and Artificial Liver Center), Beijing You’an Hospital Affiliated to Capital Medical University, No. 8, Xitoutiao, You’anmen, Fengtai District, Beijing 100069, China. ORCID: https://orcid.org/0000-0002-6367-5764 (SZ). Tel: +86-10-83997127, E-mail: (SZ); Tel: +86-10-63291007, E-mail: (ZD)
| |
Collapse
|
29
|
Gu P, Yang Q, Chen B, Bie YN, Liu W, Tian Y, Luo H, Xu T, Liang C, Ye X, Liu Y, Tang X, Gu W. Genetically blocking HPD via CRISPR-Cas9 protects against lethal liver injury in a pig model of tyrosinemia type I. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2021; 21:530-547. [PMID: 33997102 PMCID: PMC8099604 DOI: 10.1016/j.omtm.2021.04.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 04/05/2021] [Indexed: 12/26/2022]
Abstract
Hereditary tyrosinemia type I (HT1) results from the loss of fumarylacetoacetate hydrolase (FAH) activity and can lead to lethal liver injury (LLI). Therapeutic options for HT1 remain limited. The FAH−/− pig, a well-characterized animal model of HT1, represents a promising candidate for testing novel therapeutic approaches to treat this condition. Here, we report an improved single-step method to establish a biallelic (FAH−/−) mutant porcine model using CRISPR-Cas9 and cytoplasmic microinjection. We also tested the feasibility of rescuing HT1 pigs through inactivating the 4-hydroxyphenylpyruvic acid dioxygenase (HPD) gene, which functions upstream of the pathogenic pathway, rather than by directly correcting the disease-causing gene as occurs with traditional gene therapy. Direct intracytoplasmic delivery of CRISPR-Cas9 targeting HPD before intrauterine death reprogrammed the tyrosine metabolism pathway and protected pigs against FAH deficiency-induced LLI. Characterization of the F1 generation revealed consistent liver-protective features that were germline transmissible. Furthermore, HPD ablation ameliorated oxidative stress and inflammatory responses and restored the gene profile relating to liver metabolism homeostasis. Collectively, this study not only provided a novel large animal model for exploring the pathogenesis of HT1, but also demonstrated that CRISPR-Cas9-mediated HPD ablation alleviated LLI in HT1 pigs and represents a potential therapeutic option for the treatment of HT1.
Collapse
Affiliation(s)
- Peng Gu
- Institute of Comparative Medicine & Laboratory Animal Management Center, Southern Medical University, Guangzhou 510515, China.,School of Basic Medical Science, Southern Medical University, Guangzhou 510515, China
| | - Qin Yang
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Bangzhu Chen
- Institute of Comparative Medicine & Laboratory Animal Management Center, Southern Medical University, Guangzhou 510515, China
| | - Ya-Nan Bie
- Institute of Comparative Medicine & Laboratory Animal Management Center, Southern Medical University, Guangzhou 510515, China.,School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Wen Liu
- Institute of Comparative Medicine & Laboratory Animal Management Center, Southern Medical University, Guangzhou 510515, China.,Department of Animal Science, Chungbuk National University, Cheongju, Chungbuk 361-763, Republic of Korea
| | - Yuguang Tian
- Institute of Comparative Medicine & Laboratory Animal Management Center, Southern Medical University, Guangzhou 510515, China
| | - Hongquan Luo
- Institute of Comparative Medicine & Laboratory Animal Management Center, Southern Medical University, Guangzhou 510515, China
| | - Tao Xu
- Institute of Comparative Medicine & Laboratory Animal Management Center, Southern Medical University, Guangzhou 510515, China
| | - Chunjin Liang
- Institute of Comparative Medicine & Laboratory Animal Management Center, Southern Medical University, Guangzhou 510515, China
| | - Xing Ye
- Institute of Comparative Medicine & Laboratory Animal Management Center, Southern Medical University, Guangzhou 510515, China
| | - Yan Liu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Xiangwu Tang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Weiwang Gu
- Institute of Comparative Medicine & Laboratory Animal Management Center, Southern Medical University, Guangzhou 510515, China.,School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China.,Songshan Lake Pearl Laboratory Animal Science & Technology Co., Ltd., Dongguan 523808, China
| |
Collapse
|
30
|
Gough A, Soto-Gutierrez A, Vernetti L, Ebrahimkhani MR, Stern AM, Taylor DL. Human biomimetic liver microphysiology systems in drug development and precision medicine. Nat Rev Gastroenterol Hepatol 2021; 18:252-268. [PMID: 33335282 PMCID: PMC9106093 DOI: 10.1038/s41575-020-00386-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/02/2020] [Indexed: 02/07/2023]
Abstract
Microphysiology systems (MPS), also called organs-on-chips and tissue chips, are miniaturized functional units of organs constructed with multiple cell types under a variety of physical and biochemical environmental cues that complement animal models as part of a new paradigm of drug discovery and development. Biomimetic human liver MPS have evolved from simpler 2D cell models, spheroids and organoids to address the increasing need to understand patient-specific mechanisms of complex and rare diseases, the response to therapeutic treatments, and the absorption, distribution, metabolism, excretion and toxicity of potential therapeutics. The parallel development and application of transdisciplinary technologies, including microfluidic devices, bioprinting, engineered matrix materials, defined physiological and pathophysiological media, patient-derived primary cells, and pluripotent stem cells as well as synthetic biology to engineer cell genes and functions, have created the potential to produce patient-specific, biomimetic MPS for detailed mechanistic studies. It is projected that success in the development and maturation of patient-derived MPS with known genotypes and fully matured adult phenotypes will lead to advanced applications in precision medicine. In this Review, we examine human biomimetic liver MPS that are designed to recapitulate the liver acinus structure and functions to enhance our knowledge of the mechanisms of disease progression and of the absorption, distribution, metabolism, excretion and toxicity of therapeutic candidates and drugs as well as to evaluate their mechanisms of action and their application in precision medicine and preclinical trials.
Collapse
Affiliation(s)
- Albert Gough
- University of Pittsburgh Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Alejandro Soto-Gutierrez
- University of Pittsburgh Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA
- McGowan Institute of Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Lawrence Vernetti
- University of Pittsburgh Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mo R Ebrahimkhani
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA
- McGowan Institute of Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Andrew M Stern
- University of Pittsburgh Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - D Lansing Taylor
- University of Pittsburgh Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA.
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
31
|
Najimi M. Cell- and Stem Cell-Based Therapies for Liver Defects: Recent Advances and Future Strategies. Stem Cells 2021. [DOI: 10.1007/978-3-030-77052-5_11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
32
|
Mawardi M, Alalwan A, Fallatah H, Abaalkhail F, Hasosah M, Shagrani M, Alghamdi M, Alghamdi A. Cholestatic liver disease: Practice guidelines from the Saudi Association for the Study of Liver diseases and Transplantation. Saudi J Gastroenterol 2021. [PMCID: PMC8411950 DOI: 10.4103/sjg.sjg_112_21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Cholestatic liver diseases (CLDs) are a group of diseases characterized by jaundice and cholestasis as the main presentation with different complications, which have considerable impact on the liver and can lead to end-stage liver disease, cirrhosis, and liver-related complications. In the last few years, tremendous progress has been made in understanding the pathophysiology, diagnosis, and treatment of patients with these conditions. However, several aspects related to the management of CLDs remain deficient and unclear. Due to the lack of recommendations that can help in the management, treatment of those conditions, the Saudi Association for the Study of Liver diseases and Transplantation (SASLT) has created a task force group to develop guidelines related to CLDs management in order to provide a standard of care for patients in need. These guidelines provide general guidance for health care professionals to optimize medical care for patients with CLDs for both adult and pediatric populations, in association with clinical judgments to be considered on a case-by-case basis. These guidelines describe common CLDs in Saudi Arabia, with recommendations on the best approach for diagnosis and management of different diseases based on the Grading of Recommendation Assessment (GRADE), combined with a level of evidence available in the literature.
Collapse
|
33
|
Successful living donor liver transplantation plus domino-auxiliary partial orthotopic liver transplantation for pediatric patients with metabolic disorders. Pediatr Surg Int 2020; 36:1443-1450. [PMID: 33040172 DOI: 10.1007/s00383-020-04756-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/29/2020] [Indexed: 12/12/2022]
Abstract
PURPOSE To investigate the efficacy of living donor liver transplantation (LDLT) plus domino-auxiliary partial orthotopic liver transplantation (D-APOLT) in pediatric patients with metabolic disorders. METHODS From May 2017 to October 2018, two patients with ornithine aminotransferase deficiency (OTCD) and one patient with type I Crigler-Najjar syndrome (CNS1) received LDLT, their livers were prepared as donors for D-APOLT. Two patients with CNS1 received domino liver grafts from OTCD patients; one OTCD patient received a domino liver graft from a CNS1 patient. RESULTS The mean follow-up was 26.6 months. The liver function and ammonia remained in the normal range at the end of the follow-up in all recipients. One D-APOLT patient experienced portal vein thrombosis 2 days after transplantation and required reoperation, this patient presented an imbalance of portal blood perfusion between the native and the domino liver at 8 months after liver transplant. The imbalance was improved by interventional radiology treatment. Two LDLT patients experienced early mild acute rejection. CONCLUSIONS The non-cirrhotic livers from pediatric patients with metabolic liver disease can be used as domino donor grafts for selected pediatric patients with different metabolic liver disease. D-APOLT achieves ideal recipient outcomes and provides a strategy to expand donor source for children.
Collapse
|
34
|
Knotek M, Novak R, Jaklin-Kekez A, Mrzljak A. Combined liver-kidney transplantation for rare diseases. World J Hepatol 2020; 12:722-737. [PMID: 33200012 PMCID: PMC7643210 DOI: 10.4254/wjh.v12.i10.722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/30/2020] [Accepted: 09/18/2020] [Indexed: 02/06/2023] Open
Abstract
Combined liver and kidney transplantation (CLKT) is indicated in patients with failure of both organs, or for the treatment of end-stage chronic kidney disease (ESKD) caused by a genetic defect in the liver. The aim of the present review is to provide the most up-to-date overview of the rare conditions as indications for CLKT. They are major indications for CLKT in children. However, in some of them (e.g., atypical hemolytic uremic syndrome or primary hyperoxaluria), CLKT may be required in adults as well. Primary hyperoxaluria is divided into three types, of which type 1 and 2 lead to ESKD. CLKT has been proven effective in renal function replacement, at the same time preventing recurrence of the disease. Nephronophthisis is associated with liver fibrosis in 5% of cases and these patients are candidates for CLKT. In alpha 1-antitrypsin deficiency, hereditary C3 deficiency, lecithin cholesterol acyltransferase deficiency and glycogen storage diseases, glomerular or tubulointerstitial disease can lead to chronic kidney disease. Liver transplantation as a part of CLKT corrects underlying genetic and consequent metabolic abnormality. In atypical hemolytic uremic syndrome caused by mutations in the genes for factor H, successful CLKT has been reported in a small number of patients. However, for this indication, CLKT has been largely replaced by eculizumab, an anti-C5 antibody. CLKT has been well established to provide immune protection of the transplanted kidney against donor-specific antibodies against class I HLA, facilitating transplantation in a highly sensitized recipient.
Collapse
Affiliation(s)
- Mladen Knotek
- Department of Medicine, Tree Top Hospital, Hulhumale 23000, Maldives
- Department of Medicine, Merkur University Hospital, Zagreb 10000, Croatia
- School of Medicine, University of Zagreb, Zagreb 10000, Croatia
| | - Rafaela Novak
- School of Medicine, University of Zagreb, Zagreb 10000, Croatia
| | | | - Anna Mrzljak
- Department of Medicine, Merkur University Hospital, Zagreb 10000, Croatia
- School of Medicine, University of Zagreb, Zagreb 10000, Croatia.
| |
Collapse
|
35
|
Abstract
The organoid model represents a major breakthrough in cell biology that has revolutionised biomedical research. Organoids are 3D physiological in vitro structures that recapitulate morphological and functional features of in vivo tissues and offer significant advantages over traditional cell culture methods. Liver organoids are of particular interest because of the pleiotropy of functions exerted by the human liver, their utility to model different liver diseases, and their potential application as cell-based therapies in regenerative medicine. Moreover, because they can be derived from patient tissues, organoid models offer new perspectives in personalised medicine and drug discovery. In this review, we discuss the current liver organoid models for the study of liver disease.
Collapse
Key Words
- 3D cultures
- A1AT, alpha-1 antitrypsin
- ALD, alcohol-related liver disease
- CCA, cholangiocarcinoma
- CFTR, cystic fibrosis transmembrane conductance regulator
- CHC, combined hepato-cholangiocarcinoma
- CLD, chronic liver disease
- CTLN1, citrullinemia type 1
- Chol-orgs, cholangiocyte organoids
- Disease modelling
- EGF, epidermal growth factor
- ER, endoplasmic reticulum
- ESCs, embryonic stem cells
- FFAs, free fatty acids
- HCC, hepatocellular carcinoma
- HUVEC, human umbilical vein endothelial cells
- Hep-orgs, hepatocyte organoids
- IL-, interleukin-
- Liver disease
- MSC, mesenchymal stem cell
- NAFLD, non-alcoholic fatty liver disease
- Organoids
- PDO, patient-derived organoid
- PDX, patient-derived xenograft
- PHH, primary human hepatocyte
- PSC, primary sclerosing cholangitis
- Personalised medicine
- Preclinical models
- iPSC, induced pluripotent stem cell
Collapse
Affiliation(s)
- Sandro Nuciforo
- Department of Biomedicine, University Hospital Basel, University of Basel, CH-4031 Basel, Switzerland
| | - Markus H Heim
- Department of Biomedicine, University Hospital Basel, University of Basel, CH-4031 Basel, Switzerland.,Clarunis, University Center for Gastrointestinal and Liver Diseases, CH-4002 Basel, Switzerland
| |
Collapse
|
36
|
Sosulski ML, Stiles KM, Frenk EZ, Hart FM, Matsumura Y, De BP, Kaminsky SM, Crystal RG. Gene therapy for alpha 1-antitrypsin deficiency with an oxidant-resistant human alpha 1-antitrypsin. JCI Insight 2020; 5:135951. [PMID: 32759494 PMCID: PMC7455074 DOI: 10.1172/jci.insight.135951] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 07/01/2020] [Indexed: 12/25/2022] Open
Abstract
Alpha 1-antitrypsin (AAT) deficiency, a hereditary disorder characterized by low serum levels of functional AAT, is associated with early development of panacinar emphysema. AAT inhibits serine proteases, including neutrophil elastase, protecting the lung from proteolytic destruction. Cigarette smoke, pollution, and inflammatory cell–mediated oxidation of methionine (M) 351 and 358 inactivates AAT, limiting lung protection. In vitro studies using amino acid substitutions demonstrated that replacing M351 with valine (V) and M358 with leucine (L) on a normal M1 alanine (A) 213 background provided maximum antiprotease protection despite oxidant stress. We hypothesized that a onetime administration of a serotype 8 adeno-associated virus (AAV8) gene transfer vector coding for the oxidation-resistant variant AAT (A213/V351/L358; 8/AVL) would maintain antiprotease activity under oxidant stress compared with normal AAT (A213/M351/M358; 8/AMM). 8/AVL was administered via intravenous (IV) and intrapleural (IPL) routes to C57BL/6 mice. High, dose-dependent AAT levels were found in the serum and lung epithelial lining fluid (ELF) of mice administered 8/AVL or 8/AMM by IV or IPL. 8/AVL serum and ELF retained serine protease–inhibitory activity despite oxidant stress while 8/AMM function was abolished. 8/AVL represents a second-generation gene therapy for AAT deficiency providing effective antiprotease protection even with oxidant stress. A gene transfer-based therapeutic to deliver oxidant-resistant alpha 1-antitrypsin (AAT) protects mice with AAT deficiency from lung destruction.
Collapse
|
37
|
Witzigmann D, Kulkarni JA, Leung J, Chen S, Cullis PR, van der Meel R. Lipid nanoparticle technology for therapeutic gene regulation in the liver. Adv Drug Deliv Rev 2020; 159:344-363. [PMID: 32622021 PMCID: PMC7329694 DOI: 10.1016/j.addr.2020.06.026] [Citation(s) in RCA: 195] [Impact Index Per Article: 48.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 06/12/2020] [Accepted: 06/25/2020] [Indexed: 02/08/2023]
Abstract
Hereditary genetic disorders, cancer, and infectious diseases of the liver affect millions of people around the globe and are a major public health burden. Most contemporary treatments offer limited relief as they generally aim to alleviate disease symptoms. Targeting the root cause of diseases originating in the liver by regulating malfunctioning genes with nucleic acid-based drugs holds great promise as a therapeutic approach. However, employing nucleic acid therapeutics in vivo is challenging due to their unfavorable characteristics. Lipid nanoparticle (LNP) delivery technology is a revolutionary development that has enabled clinical translation of gene therapies. LNPs can deliver siRNA, mRNA, DNA, or gene-editing complexes, providing opportunities to treat hepatic diseases by silencing pathogenic genes, expressing therapeutic proteins, or correcting genetic defects. Here we discuss the state-of-the-art LNP technology for hepatic gene therapy including formulation design parameters, production methods, preclinical development and clinical translation.
Collapse
Affiliation(s)
- Dominik Witzigmann
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada; NanoMedicines Innovation Network (NMIN), University of British Columbia, Vancouver, BC, Canada
| | - Jayesh A Kulkarni
- NanoMedicines Innovation Network (NMIN), University of British Columbia, Vancouver, BC, Canada; Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada; Evonik Canada, Vancouver, BC, Canada
| | - Jerry Leung
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| | - Sam Chen
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada; Integrated Nanotherapeutics, Vancouver, BC, Canada
| | - Pieter R Cullis
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada; NanoMedicines Innovation Network (NMIN), University of British Columbia, Vancouver, BC, Canada.
| | - Roy van der Meel
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| |
Collapse
|
38
|
George LA, Ragni MV, Rasko JEJ, Raffini LJ, Samelson-Jones BJ, Ozelo M, Hazbon M, Runowski AR, Wellman JA, Wachtel K, Chen Y, Anguela XM, Kuranda K, Mingozzi F, High KA. Long-Term Follow-Up of the First in Human Intravascular Delivery of AAV for Gene Transfer: AAV2-hFIX16 for Severe Hemophilia B. Mol Ther 2020; 28:2073-2082. [PMID: 32559433 DOI: 10.1016/j.ymthe.2020.06.001] [Citation(s) in RCA: 119] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 05/26/2020] [Accepted: 06/03/2020] [Indexed: 12/26/2022] Open
Abstract
Adeno-associated virus (AAV) vectors are a leading platform for gene-based therapies for both monogenic and complex acquired disorders. The success of AAV gene transfer highlights the need to answer outstanding clinical questions of safety, durability, and the nature of the human immune response to AAV vectors. Here, we present longitudinal follow-up data of subjects who participated in the first trial of a systemically delivered AAV vector. Adult males (n = 7) with severe hemophilia B received an AAV2 vector at doses ranging from 8 × 1010 to 2 × 1012 vg/kg to target hepatocyte-specific expression of coagulation factor IX; a subset (n = 4) was followed for 12-15 years post-vector administration. No major safety concerns were observed. There was no evidence of sustained hepatic toxicity or development of hepatocellular carcinoma as assessed by liver transaminase values, serum α-fetoprotein, and liver ultrasound. Subjects demonstrated persistent, increased AAV neutralizing antibodies (NAbs) to the infused AAV serotype 2 (AAV2) as well as all other AAV serotypes tested (AAV5 and AAV8) for the duration of follow-up. These data represent the longest available longitudinal follow-up data of subjects who received intravascular AAV and support the preliminary safety of intravascular AAV administration at the doses tested in adults. Data demonstrate, for the first time, the persistence of high-titer, multi-serotype cross-reactive AAV NAbs for up to 15 years post- AAV vector administration. Our observations are broadly applicable to the development of AAV-mediated gene therapy.
Collapse
Affiliation(s)
- Lindsey A George
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA; Division of Hematology and Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Margaret V Ragni
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - John E J Rasko
- Gene & Stem Cell Therapy Program, Centenary Institute, and Faculty of Medicine and Health, The University of Sydney, Sydney, Australia; Cell and Molecular Therapies, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
| | - Leslie J Raffini
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA; Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Benjamin J Samelson-Jones
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA; Division of Hematology and Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Margareth Ozelo
- Department of Internal Medicine, Faculty of Medical Sciences, University of Campinas, Campinas, São Paulo, Brazil; IHTC Hemophilia Unit Cláudio Luiz Pizzigatti Corrêa, INCT do Sangue Hemocentro UNICAMP, University of Campinas, Campinas, São Paulo, Brazil
| | - Maria Hazbon
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Alexa R Runowski
- Division of Hematology and Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | | | | | | | | | | | | | - Katherine A High
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA; Spark Therapeutics, Philadelphia, PA, USA.
| |
Collapse
|
39
|
Yap S, Vara R, Morais A. Post-transplantation Outcomes in Patients with PA or MMA: A Review of the Literature. Adv Ther 2020; 37:1866-1896. [PMID: 32270363 PMCID: PMC7141097 DOI: 10.1007/s12325-020-01305-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Indexed: 12/25/2022]
Abstract
Introduction Liver transplantation is recognised as a treatment option for patients with propionic acidemia (PA) and those with methylmalonic acidemia (MMA) without renal impairment. In patients with MMA and moderate-to-severe renal impairment, combined liver–kidney transplantation is indicated. However, clinical experience of these transplantation options in patients with PA and MMA remains limited and fragmented. We undertook an overview of post-transplantation outcomes in patients with PA and MMA using the current available evidence. Methods A literature search identified publications on the use of transplantation in patients with PA and MMA. Publications were considered if they presented adequate demographic and outcome data from patients with PA or MMA. Publications that did not report any specific outcomes for patients or provided insufficient data were excluded. Results Seventy publications were identified of which 38 were full papers. A total of 373 patients underwent liver/kidney/combined liver–kidney transplantation for PA or MMA. The most typical reason for transplantation was recurrent metabolic decompensation. A total of 27 post-transplant deaths were reported in patients with PA [14.0% (27/194)]. For patients with MMA, 18 post-transplant deaths were reported [11% (18/167)]. A total of 62 complications were reported in 115 patients with PA (54%) with cardiomyopathy (n = 12), hepatic arterial thrombosis (HAT; n = 14) and viral infections (n = 12) being the most commonly reported. A total of 52 complications were reported in 106 patients with MMA (49%) with viral infections (n = 14) and renal failure/impairment (n = 10) being the most commonly reported. Conclusions Liver transplantation and combined liver–kidney transplantation appears to benefit some patients with PA or MMA, respectively, but this approach does not provide complete correction of the metabolic defect and some patients remain at risk from disease-related and transplantation-related complications, including death. Thus, all treatment avenues should be exhausted before consideration of organ transplantation and the benefits of this approach must be weighed against the risk of perioperative complications on an individual basis.
Collapse
|
40
|
Famulari ES, Navarro-Tableros V, Herrera Sanchez MB, Bortolussi G, Gai M, Conti L, Silengo L, Tolosano E, Tetta C, Muro AF, Camussi G, Fagoonee S, Altruda F. Human liver stem cells express UGT1A1 and improve phenotype of immunocompromised Crigler Najjar syndrome type I mice. Sci Rep 2020; 10:887. [PMID: 31965023 PMCID: PMC6972964 DOI: 10.1038/s41598-020-57820-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 01/07/2020] [Indexed: 01/06/2023] Open
Abstract
Crigler Najjar Syndrome type I (CNSI) is a rare recessive disorder caused by mutations in the Ugt1a1 gene. There is no permanent cure except for liver transplantation, and current therapies present several shortcomings. Since stem cell-based therapy offers a promising alternative for the treatment of this disorder, we evaluated the therapeutic potential of human liver stem cells (HLSC) in immune-compromised NOD SCID Gamma (NSG)/Ugt1−/− mice, which closely mimic the pathological manifestations in CNSI patients. To assess whether HLSC expressed UGT1A1, decellularised mouse liver scaffolds were repopulated with these cells. After 15 days’ culture ex vivo, HLSC differentiated into hepatocyte-like cells showing UGT1A1 expression and activity. For the in vivo human cell engraftment and recovery experiments, DiI-labelled HLSC were injected into the liver of 5 days old NSG/Ugt1−/− pups which were analysed at postnatal Day 21. HLSC expressed UGT1A1 in vivo, induced a strong decrease in serum unconjugated bilirubin, thus significantly improving phenotype and survival compared to untreated controls. A striking recovery from brain damage was also observed in HLSC-injected mutant mice versus controls. Our proof-of-concept study shows that HLSC express UGT1A1 in vivo and improve the phenotype and survival of NSG/Ugt1−/− mice, and show promises for the treatment of CNSI.
Collapse
Affiliation(s)
- Elvira Smeralda Famulari
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Victor Navarro-Tableros
- 2i3T - Società per la gestione dell'incubatore di imprese e per il trasferimento tecnologico dell'Università degli studi di Torino, Scarl and Molecular Biotechnology Center, Turin, Italy
| | - Maria Beatriz Herrera Sanchez
- 2i3T - Società per la gestione dell'incubatore di imprese e per il trasferimento tecnologico dell'Università degli studi di Torino, Scarl and Molecular Biotechnology Center, Turin, Italy
| | - Giulia Bortolussi
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Marta Gai
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Laura Conti
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Lorenzo Silengo
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy.,Institute of Biostructure and Bioimaging, CNR c/o Molecular Biotechnology Center, Turin, Italy
| | - Emanuela Tolosano
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | | | - Andrés Fernando Muro
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Giovanni Camussi
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Sharmila Fagoonee
- Institute of Biostructure and Bioimaging, CNR c/o Molecular Biotechnology Center, Turin, Italy.
| | - Fiorella Altruda
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy. .,Institute of Biostructure and Bioimaging, CNR c/o Molecular Biotechnology Center, Turin, Italy.
| |
Collapse
|
41
|
Lipiński P, Ciara E, Jurkiewicz D, Pollak A, Wypchło M, Płoski R, Cielecka-Kuszyk J, Socha P, Pawłowska J, Jankowska I. Targeted Next-Generation Sequencing in Diagnostic Approach to Monogenic Cholestatic Liver Disorders-Single-Center Experience. Front Pediatr 2020; 8:414. [PMID: 32793533 PMCID: PMC7393978 DOI: 10.3389/fped.2020.00414] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 06/16/2020] [Indexed: 12/19/2022] Open
Abstract
Objective: To evaluate the clinical utility of panel-based NGS in the diagnostic approach of monogenic cholestatic liver diseases. Study design: Patients with diagnosis of chronic cholestatic liver disease of an unknown etiology underwent NGS of targeted genes panel. Group 1 included five patients (prospectively recruited) hospitalized from January to December 2017 while group 2 included seventeen patients (retrospectively recruited) hospitalized from 2010 to 2017 presenting with low-GGT PFIC phenotype (group 2a, 11 patients) or indeterminant cholestatic liver cirrhosis (group 2b, 6 patients). Results: Among 22 patients enrolled into the study, 21 various pathogenic variants (including 11 novel) in 5 different genes (including ABCB11, ABCB4, TJP2, DGUOK, CYP27A1) were identified. The molecular confirmation was obtained in 15 out of 22 patients (68%). In group 1, two out of five patients presented with low-GGT cholestasis, and were diagnosed with BSEP deficiency. Out of three patients presenting with high-GGT cholestasis, one patient was diagnosed with PFIC-3, and the remaining two were not molecularly diagnosed. In group 2a, seven out of eleven patients, were diagnosed with BSEP deficiency and two with TJP-2 deficiency. In group 2b, three out of six patients were molecularly diagnosed; one with PFIC-3, one with CYP27A1 deficiency, and one with DGUOK deficiency. Conclusions: Panel-based NGS appears to be a very useful tool in diagnosis of monogenic cholestatic liver disorders in cases when extrahepatic causes have been primarily excluded. NGS presented the highest diagnosis rate to identify the molecular background of cholestatic liver diseases presenting with a low-GGT PFIC phenotype.
Collapse
Affiliation(s)
- Patryk Lipiński
- Department of Pediatrics, Nutrition and Metabolic Diseases, The Children's Memorial Health Institute, Warsaw, Poland.,Department of Gastroenterology, Hepatology, Feeding Disorders and Pediatrics, The Children's Memorial Health Institute, Warsaw, Poland
| | - Elżbieta Ciara
- Department of Medical Genetics, The Children's Memorial Health Institute, Warsaw, Poland
| | - Dorota Jurkiewicz
- Department of Medical Genetics, The Children's Memorial Health Institute, Warsaw, Poland
| | - Agnieszka Pollak
- Department of Medical Genetics, Medical University of Warsaw, Warsaw, Poland
| | - Maria Wypchło
- Department of Medical Genetics, Medical University of Warsaw, Warsaw, Poland.,Postgraduate School of Molecular Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Rafał Płoski
- Department of Medical Genetics, Medical University of Warsaw, Warsaw, Poland
| | | | - Piotr Socha
- Department of Gastroenterology, Hepatology, Feeding Disorders and Pediatrics, The Children's Memorial Health Institute, Warsaw, Poland
| | - Joanna Pawłowska
- Department of Gastroenterology, Hepatology, Feeding Disorders and Pediatrics, The Children's Memorial Health Institute, Warsaw, Poland
| | - Irena Jankowska
- Department of Gastroenterology, Hepatology, Feeding Disorders and Pediatrics, The Children's Memorial Health Institute, Warsaw, Poland
| |
Collapse
|
42
|
Prior N, Inacio P, Huch M. Liver organoids: from basic research to therapeutic applications. Gut 2019; 68:2228-2237. [PMID: 31300517 PMCID: PMC6872443 DOI: 10.1136/gutjnl-2019-319256] [Citation(s) in RCA: 203] [Impact Index Per Article: 40.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 06/27/2019] [Accepted: 06/30/2019] [Indexed: 02/02/2023]
Abstract
Organoid cultures have emerged as an alternative in vitro system to recapitulate tissues in a dish. While mouse models and cell lines have furthered our understanding of liver biology and associated diseases, they suffer in replicating key aspects of human liver tissue, in particular its complex architecture and metabolic functions. Liver organoids have now been established for multiple species from induced pluripotent stem cells, embryonic stem cells, hepatoblasts and adult tissue-derived cells. These represent a promising addition to our toolbox to gain a deeper understanding of this complex organ. In this perspective we will review the advances in the liver organoid field, its limitations and potential for biomedical applications.
Collapse
Affiliation(s)
- Nicole Prior
- Wellcome Trust-Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, UK
| | - Patricia Inacio
- Wellcome Trust-Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, UK
| | - Meritxell Huch
- Wellcome Trust-Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, UK,Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| |
Collapse
|
43
|
Guo XL, Chung TH, Qin Y, Zheng J, Zheng H, Sheng L, Wynn T, Chang LJ. Hemophilia Gene Therapy: New Development from Bench to Bed Side. Curr Gene Ther 2019; 19:264-273. [PMID: 31549954 DOI: 10.2174/1566523219666190924121836] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 06/30/2019] [Accepted: 08/12/2019] [Indexed: 12/19/2022]
Abstract
Novel gene therapy strategies have changed the prognosis of many inherited diseases in recent years. New development in genetic tools and study models has brought us closer to a complete cure for hemophilia. This review will address the latest gene therapy research in hemophilia A and B including gene therapy tools, genetic strategies and animal models. It also summarizes the results of recent clinical trials. Potential solutions are discussed regarding the current barriers in gene therapy for hemophilia.
Collapse
Affiliation(s)
- Xiao-Lu Guo
- Geno-immune Medical Institute, Shenzhen, China
| | | | - Yue Qin
- School of Medicine, University of Electronic Science and Technology of China, Sichuan, China
| | - Jie Zheng
- Hematology Oncology Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Huyong Zheng
- Hematology Oncology Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Liyuan Sheng
- PKU-HKUST Shenzhen-Hong Kong Institution, Shenzhen, China
| | - Tung Wynn
- Department of Pediatrics and Division of Hematology/Oncology, University of Florida, Gainesville, FL, United States
| | | |
Collapse
|
44
|
Jiang YZ, Sun LY, Zhu ZJ, Wei L, Qu W, Zeng ZG, Liu Y, Tan YL, He EH, Xu RF, Zhang L, Wang J, Chen XJ. Perioperative characteristics and management of liver transplantation for isolated methylmalonic acidemia-the largest experience in China. Hepatobiliary Surg Nutr 2019; 8:470-479. [PMID: 31673536 DOI: 10.21037/hbsn.2019.03.04] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Background There are few detailed consensus and guidelines on perioperative clinical characteristics of liver transplantation (LT) in patients with methylmalonic acidemia (MMA). This retrospective study investigated details of the clinical course and individualized treatment plan of the center with largest experience in China. Methods A total of 7 MMA patients undergoing LT in Beijing Friendship Hospital from June 2013 to December 2017 were enrolled in the study, whose clinical data (clinical characteristics, laboratory findings, chronological changes in urine MMA levels, treatment, etc.) during perioperative period were analyzed retrospectively. All the patients received strict postoperative management. Results All the 7 cases were confirmed to have isolated MMA, among which, 3 cases received living donor liver transplantation (LDLT), 4 cases received deceased donor liver transplantation (DDLT). A wild fluctuate of metabolic condition was observed within the first few days after surgery and two weeks after LT, the mean base excess of blood value (BE-B) restored to normal whereas plasma bicarbonate (HCO3 -) was still below normal value even with intermittent sodium bicarbonate correction. It also showed marked reduction in propionylcarnitine (C3) and C3/C2 level and the mean urine MMA by gas chromatography-mass spectrometry (GC-MS) was reduced by 81.7% (P<0.01) but remained >72× higher than upper limit of normal. The metabolism-correcting medications were administered as before. The renal function of one case with renal insufficiency before LT (serum creatinine rising) maintained stable by adjusting the immunosuppressive regimen during the observation period. All patients survive to date. Conclusions LT is an effective treatment to prevent metabolic crisis, but patients with MMA tend to be metabolically fragile even after surgery. During perioperative period, close monitoring should be given for acidosis episodes so as to implement sodium bicarbonate correction. Metabolism-correcting medications are still needed. Special immunosuppressive regimen is an effective way of maintaining renal function for those with kidney dysfunction.
Collapse
Affiliation(s)
- Yi-Zhou Jiang
- Department of Liver Transplantation Center, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Li-Ying Sun
- Department of Liver Transplantation Center, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China.,Department of Intensive Care Unit, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Zhi-Jun Zhu
- Department of Liver Transplantation Center, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Lin Wei
- Department of Liver Transplantation Center, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Wei Qu
- Department of Liver Transplantation Center, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Zhi-Gui Zeng
- Department of Liver Transplantation Center, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Ying Liu
- Department of Liver Transplantation Center, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Yu-Le Tan
- Department of Liver Transplantation Center, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - En-Hui He
- Department of Ultrasound, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Rui-Fang Xu
- Department of Ultrasound, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Liang Zhang
- Department of Anesthesiology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Jun Wang
- Department of Liver Transplantation Center, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Xiao-Jie Chen
- Department of Liver Transplantation Center, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| |
Collapse
|
45
|
Celik N, Kelly B, Soltys K, Squires JE, Vockley J, Shellmer DA, Strauss K, McKiernan P, Ganoza A, Sindhi R, Bond G, Mazariegos G, Khanna A. Technique and outcome of domino liver transplantation from patients with maple syrup urine disease: Expanding the donor pool for live donor liver transplantation. Clin Transplant 2019; 33:e13721. [PMID: 31556146 DOI: 10.1111/ctr.13721] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 08/22/2019] [Accepted: 08/31/2019] [Indexed: 01/26/2023]
Abstract
AIM/BACKGROUND Domino liver transplantation (DLT) using liver allografts from patients with metabolic disorders enhances organ utilization. Short- and long-term course and outcome of these patients can impact the decision to offer this procedure to patients, especially those with diseases that can potentially be cured with liver transplant. We reviewed the outcomes of DLT from maple syrup urine disease (MSUD) patients in our large academic pediatric and adult transplant program. METHODS All patients receiving DLT were analyzed retrospectively with a minimum of one-year follow-up period for patient and donor characteristics, early and late postoperative complications and patient and graft survival with their MSUD donors in terms of age, weight, MELD/PELD scores, cold ischemia time, postoperative leucine levels, and peak ALT (alanine aminotransferase) levels during the first 48 postoperative hours. RESULTS Between 2006 and May 2019, 21 patients underwent domino liver transplantation with live donor allografts from MSUD patients. Four patients transplanted for different metabolic diseases are focus of a separate report. Seventeen patients with minimum one-year follow-up period are reported herein. The indications were primary sclerosing cholangitis (PSC, n = 4), congenital hepatic fibrosis (CHF, n = 2), alpha-1 antitrypsin deficiency (A-1 ATD, n = 2), progressive familial intrahepatic cholestasis (PFIC, n = 2), cystic fibrosis (n = 1), primary biliary cirrhosis (PBC, n = 1), neonatal hepatitis (n = 1), embryonal sarcoma (n = 1), Caroli disease (n = 1), hepatocellular carcinoma (HCC, n = 1), and chronic rejection after liver transplantations for PSC (n = 1). All patients and grafts survived at median follow-up of 6.4 years (range 1.2-12.9 years). Median domino recipient age was 16.2 years (range 0.6-64.6 years) and median MSUD recipient age was 17.6 years (range 4.8-32.1 years). There were no vascular complications during the early postoperative period, one patient had portal vein thrombosis 3 years after DLT and a meso-Rex bypass was successfully performed. Small for size syndrome (SFSS) occurred in reduced left lobe DLT recipient and was managed successfully with conservative management. Biliary stricture developed in 2 patients and was resolved by stenting. Comparison between DLT and MSUD recipients' peak postoperative ALT results and PELD/MELD scores showed lower levels in DLT group (P-value <.05). CONCLUSIONS Patient and graft survival in DLT from MSUD donors was excellent at short- and long-term follow-up. Metabolic functions have been normal in all recipients on a normal unrestricted protein diet. Ischemia preservation injury based on peak ALT was significantly decreased in DLT recipients. Domino transplantation from pediatric and adult recipients with selected metabolic diseases should be increasingly considered as an excellent option and alternative to deceased donor transplantation, thereby expanding the living donor pool. This, to date, is the largest world experience in DLT utilizing livers from patients with MSUD.
Collapse
Affiliation(s)
- Neslihan Celik
- Hillman Center for Pediatric Transplantation, Children's Hospital of Pittsburgh of UPMC, Thomas E. Starzl Transplant Institute, Pittsburgh, PA, USA
| | - Beau Kelly
- DCI Donor Services Inc, Sacramento, CA, USA
| | - Kyle Soltys
- Hillman Center for Pediatric Transplantation, Children's Hospital of Pittsburgh of UPMC, Thomas E. Starzl Transplant Institute, Pittsburgh, PA, USA
| | - James E Squires
- Hillman Center for Pediatric Transplantation, Children's Hospital of Pittsburgh of UPMC, Thomas E. Starzl Transplant Institute, Pittsburgh, PA, USA
| | - Jerry Vockley
- Center for Rare Disease Therapy, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA, USA
| | - Diana A Shellmer
- Hillman Center for Pediatric Transplantation, Children's Hospital of Pittsburgh of UPMC, Thomas E. Starzl Transplant Institute, Pittsburgh, PA, USA
| | - Kevin Strauss
- Pediatric Hepatology, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA, USA.,Clinic for Special Children, Strasburg, PA, USA
| | - Patrick McKiernan
- Hillman Center for Pediatric Transplantation, Children's Hospital of Pittsburgh of UPMC, Thomas E. Starzl Transplant Institute, Pittsburgh, PA, USA
| | - Armando Ganoza
- Hillman Center for Pediatric Transplantation, Children's Hospital of Pittsburgh of UPMC, Thomas E. Starzl Transplant Institute, Pittsburgh, PA, USA
| | - Rakesh Sindhi
- Hillman Center for Pediatric Transplantation, Children's Hospital of Pittsburgh of UPMC, Thomas E. Starzl Transplant Institute, Pittsburgh, PA, USA
| | - Geoffrey Bond
- Hillman Center for Pediatric Transplantation, Children's Hospital of Pittsburgh of UPMC, Thomas E. Starzl Transplant Institute, Pittsburgh, PA, USA
| | - George Mazariegos
- Hillman Center for Pediatric Transplantation, Children's Hospital of Pittsburgh of UPMC, Thomas E. Starzl Transplant Institute, Pittsburgh, PA, USA
| | - Ajai Khanna
- Hillman Center for Pediatric Transplantation, Children's Hospital of Pittsburgh of UPMC, Thomas E. Starzl Transplant Institute, Pittsburgh, PA, USA
| |
Collapse
|
46
|
Celik N, Squires JE, Soltys K, Vockley J, Shellmer DA, Chang W, Strauss K, McKiernan P, Ganoza A, Sindhi R, Bond G, Mazariegos G, Khanna A. Domino liver transplantation for select metabolic disorders: Expanding the living donor pool. JIMD Rep 2019; 48:83-89. [PMID: 31392117 PMCID: PMC6606984 DOI: 10.1002/jmd2.12053] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 05/17/2019] [Accepted: 05/21/2019] [Indexed: 01/20/2023] Open
Abstract
Domino liver transplantation (DLT) involves transplanting liver from a patient with metabolic disease into a patient with end-stage liver disease with the expectation that the recipient will not develop the metabolic syndrome or the recurrent syndrome will have minimal affect. The domino donor gets a deceased donor or a segment of live-donor liver through the deceased donor organ allocation system. Waitlist mortality for the domino recipient exceeds morbidity associated with getting the donor disease. Between 2015 and 2017, four patients with three metabolic disorders at UPMC Children's Hospital of Pittsburgh underwent DLT with domino allografts from maple syrup urine disease (MSUD) patients. These included patients with propionic acidemia (PA) (n = 1), Crigler-Najjar (CN) syndrome type-1 (n = 2), and carbamoyl phosphate synthetase deficiency (CPSD) (n = 1). Mean follow-up was 1.6 years (range 1.1-2.1 years). Total bilirubin levels normalized postoperatively in both CN patients and they maintain normal allograft function. The PA patient had normal to minimal elevations of isoleucine and leucine, and no other abnormalities on low protein diet supplemented with a low methionine and valine free formula. No metabolic crises have occurred. The patient with CPSD takes normal baby food. No elevation in ammonia levels have been observed in any of the patients. DLT for a select group of metabolic diseases alleviated the recipients of their metabolic defect with minimal evidence of transferrable-branched chain amino acid elevations or clinical MSUD despite increased protein intake. DLT using allografts with MSUD expands the live donor liver pool and should be considered for select metabolic diseases that may have a different enzymatic deficiency.
Collapse
Affiliation(s)
- Neslihan Celik
- Hillman Center for Pediatric Transplantation, Children's Hospital of Pittsburgh of UPMCThomas E. Starzl Transplantation Institute, University of Pittsburgh School of MedicinePittsburghPennsylvania
| | - James E. Squires
- Pediatric HepatologyChildren's Hospital of Pittsburgh of UPMCPittsburghPennsylvania
| | - Kyle Soltys
- Hillman Center for Pediatric Transplantation, Children's Hospital of Pittsburgh of UPMCThomas E. Starzl Transplantation Institute, University of Pittsburgh School of MedicinePittsburghPennsylvania
| | - Jerry Vockley
- Division of Medical GeneticsUniversity of Pittsburgh School of Medicine, Center for Rare Disease Therapy, Children's Hospital of Pittsburgh of UPMCPittsburghPennsylvania
| | - Diana A. Shellmer
- Hillman Center for Pediatric Transplantation, Children's Hospital of Pittsburgh of UPMCThomas E. Starzl Transplantation Institute, University of Pittsburgh School of MedicinePittsburghPennsylvania
| | - Wonbae Chang
- Hillman Center for Pediatric Transplantation, Children's Hospital of Pittsburgh of UPMCThomas E. Starzl Transplantation Institute, University of Pittsburgh School of MedicinePittsburghPennsylvania
| | - Kevin Strauss
- Division of Medical GeneticsUniversity of Pittsburgh School of Medicine, Center for Rare Disease Therapy, Children's Hospital of Pittsburgh of UPMCPittsburghPennsylvania
| | - Patrick McKiernan
- Hillman Center for Pediatric Transplantation, Children's Hospital of Pittsburgh of UPMCThomas E. Starzl Transplantation Institute, University of Pittsburgh School of MedicinePittsburghPennsylvania
| | - Armando Ganoza
- Hillman Center for Pediatric Transplantation, Children's Hospital of Pittsburgh of UPMCThomas E. Starzl Transplantation Institute, University of Pittsburgh School of MedicinePittsburghPennsylvania
| | - Rakesh Sindhi
- Hillman Center for Pediatric Transplantation, Children's Hospital of Pittsburgh of UPMCThomas E. Starzl Transplantation Institute, University of Pittsburgh School of MedicinePittsburghPennsylvania
| | - Geoffrey Bond
- Hillman Center for Pediatric Transplantation, Children's Hospital of Pittsburgh of UPMCThomas E. Starzl Transplantation Institute, University of Pittsburgh School of MedicinePittsburghPennsylvania
| | - George Mazariegos
- Hillman Center for Pediatric Transplantation, Children's Hospital of Pittsburgh of UPMCThomas E. Starzl Transplantation Institute, University of Pittsburgh School of MedicinePittsburghPennsylvania
| | - Ajai Khanna
- Hillman Center for Pediatric Transplantation, Children's Hospital of Pittsburgh of UPMCThomas E. Starzl Transplantation Institute, University of Pittsburgh School of MedicinePittsburghPennsylvania
| |
Collapse
|
47
|
Berraondo P, Martini PGV, Avila MA, Fontanellas A. Messenger RNA therapy for rare genetic metabolic diseases. Gut 2019; 68:1323-1330. [PMID: 30796097 DOI: 10.1136/gutjnl-2019-318269] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 02/04/2019] [Accepted: 02/05/2019] [Indexed: 12/12/2022]
Abstract
Decades of intense research in molecular biology and biochemistry are fructifying in the emergence of therapeutic messenger RNAs (mRNA) as a new class of drugs. Synthetic mRNAs can be sequence optimised to improve translatability into proteins, as well as chemically modified to reduce immunogenicity and increase chemical stability using naturally occurring uridine modifications. These structural improvements, together with the development of safe and efficient vehicles that preserve mRNA integrity in circulation and allow targeted intracellular delivery, have paved the way for mRNA-based therapeutics. Indeed, mRNAs formulated into biodegradable lipid nanoparticles are currently being tested in preclinical and clinical studies for multiple diseases including cancer immunotherapy and vaccination for infectious diseases. An emerging application of mRNAs is the supplementation of proteins that are not expressed or are not functional in a regulated and tissue-specific manner. This so-called 'protein replacement therapy' could represent a solution for genetic metabolic diseases currently lacking effective treatments. Here we summarise this new class of drugs and discuss the preclinical evidence supporting the potential of liver-mediated mRNA therapy for three rare genetic conditions: methylmalonic acidaemia, acute intermittent porphyria and ornithine transcarbamylase deficiency.
Collapse
Affiliation(s)
- Pedro Berraondo
- Immunology and Immunotherapy Program, Centro de Investigación Médica Aplicada (Cima), University of Navarra, Pamplona, Navarra, Spain.,Centro de Investigación Biomédica en Red de Cáncer, CIBERonc, Instituto de Salud Carlos III, Madrid, Spain.,Instituto de Investigación Sanitaria de Navarra IdiSNA, Pamplona, Spain
| | | | - Matias A Avila
- Instituto de Investigación Sanitaria de Navarra IdiSNA, Pamplona, Spain.,Hepatology Program, CIMA, University of Navarra, Pamplona, Navarra, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
| | - Antonio Fontanellas
- Instituto de Investigación Sanitaria de Navarra IdiSNA, Pamplona, Spain.,Hepatology Program, CIMA, University of Navarra, Pamplona, Navarra, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
48
|
De Caneva A, Porro F, Bortolussi G, Sola R, Lisjak M, Barzel A, Giacca M, Kay MA, Vlahoviček K, Zentilin L, Muro AF. Coupling AAV-mediated promoterless gene targeting to SaCas9 nuclease to efficiently correct liver metabolic diseases. JCI Insight 2019; 5:128863. [PMID: 31211694 DOI: 10.1172/jci.insight.128863] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Non-integrative AAV-mediated gene therapy in the liver is effective in adult patients, but faces limitations in pediatric settings due to episomal DNA loss during hepatocyte proliferation. Gene targeting is a promising approach by permanently modifying the genome. We previously rescued neonatal lethality in Crigler-Najjar mice by inserting a promoterless human uridine glucuronosyl transferase A1 (UGT1A1) cDNA in exon 14 of the albumin gene, without the use of nucleases. To increase recombination rate and therapeutic efficacy, here we used CRISPR/SaCas9. Neonatal mice were transduced with two AAVs: one expressing the SaCas9 and sgRNA, and one containing a promoterless cDNA flanked by albumin homology regions. Targeting efficiency increased ~26-fold with an eGFP reporter cDNA, reaching up to 24% of eGFP-positive hepatocytes. Next, we fully corrected the diseased phenotype of Crigler-Najjar mice by targeting the hUGT1A1 cDNA. Treated mice had normal plasma bilirubin up to 10 months after administration, hUGT1A1 protein levels were ~6-fold higher than in WT liver, with a 90-fold increase in recombination rate. Liver histology, inflammatory markers, and plasma albumin were normal in treated mice, with no off-targets in predicted sites. Thus, the improved efficacy and reassuring safety profile support the potential application of the proposed approach to other liver diseases.
Collapse
Affiliation(s)
- Alessia De Caneva
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Fabiola Porro
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Giulia Bortolussi
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Riccardo Sola
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Michela Lisjak
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Adi Barzel
- Cancer Biology Research Center, Tel Aviv University, Tel Aviv, Israel
| | - Mauro Giacca
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Mark A Kay
- Departments of Pediatrics and Genetics, Stanford University, Stanford, California, USA
| | - Kristian Vlahoviček
- Bioinformatics Group, Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Lorena Zentilin
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Andrés F Muro
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| |
Collapse
|
49
|
Spada M, Angelico R, Dionisi-Vici C. Maple Syrup Urine Disease and Domino Liver Transplantation: When and How? Liver Transpl 2019; 25:827-828. [PMID: 31038782 DOI: 10.1002/lt.25481] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 04/25/2019] [Indexed: 01/13/2023]
Affiliation(s)
- Marco Spada
- Division of Abdominal Transplantation and Hepatobiliopancreatic Surgery, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Roberta Angelico
- Division of Abdominal Transplantation and Hepatobiliopancreatic Surgery, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Carlo Dionisi-Vici
- Division of Metabolism, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| |
Collapse
|
50
|
Hammond N, Munkacsi AB, Sturley SL. The complexity of a monogenic neurodegenerative disease: More than two decades of therapeutic driven research into Niemann-Pick type C disease. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1864:1109-1123. [PMID: 31002946 DOI: 10.1016/j.bbalip.2019.04.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 03/31/2019] [Accepted: 04/06/2019] [Indexed: 12/17/2022]
Abstract
Niemann-Pick type C (NP-C) disease is a rare and fatal neurodegenerative disease typified by aberrations in intracellular lipid transport. Cholesterol and other lipids accumulate in the late endosome/lysosome of all diseased cells thereby causing neuronal and visceral atrophy. A cure for NP-C remains elusive despite the extensive molecular advances emanating from the identification of the primary genetic defect in 1997. Penetration of the blood-brain barrier and efficacy in the viscera are prerequisites for effective therapy, however the rarity of NP-C disease is the major impediment to progress. Disease diagnosis is challenging and establishment of appropriate test populations for clinical trials difficult. Fortunately, disease models that span the diversity of microbial and metazoan life have been utilized to advance the quest for a therapy. The complexity of lipid storage in this disorder and in the model systems, has led to multiple theories on the primary disease mechanism and consequently numerous and varied proposed interventions. Here, we conduct an evaluation of these studies.
Collapse
Affiliation(s)
- Natalie Hammond
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Andrew B Munkacsi
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand.
| | - Stephen L Sturley
- Department of Biology, Barnard College-Columbia University, New York, NY 10027, United States of America.
| |
Collapse
|