1
|
Cao C, Li F, Ding Q, Jin X, Tu W, Zhu H, Sun M, Zhu J, Yang D, Fan B. Potassium sodium hydrogen citrate intervention on gut microbiota and clinical features in uric acid stone patients. Appl Microbiol Biotechnol 2024; 108:51. [PMID: 38183479 PMCID: PMC10771603 DOI: 10.1007/s00253-023-12953-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 12/06/2023] [Accepted: 12/15/2023] [Indexed: 01/08/2024]
Abstract
The high recurrence rate of renal uric acid stone (UAS) poses a significant challenge for urologists, and potassium sodium hydrogen citrate (PSHC) has been proven to be an effective oral dissolution drug. However, no studies have investigated the impact of PSHC on gut microbiota and its metabolites during stone dissolution therapy. We prospectively recruited 37 UAS patients and 40 healthy subjects, of which 12 patients completed a 3-month pharmacological intervention. Fasting vein blood was extracted and mid-stream urine was retained for biochemical testing. Fecal samples were collected for 16S ribosomal RNA (rRNA) gene sequencing and short chain fatty acids (SCFAs) content determination. UAS patients exhibited comorbidities such as obesity, hypertension, gout, and dyslipidemia. The richness and diversity of the gut microbiota were significantly decreased in UAS patients, Bacteroides and Fusobacterium were dominant genera while Subdoligranulum and Bifidobacterium were poorly enriched. After PSHC intervention, there was a significant reduction in stone size accompanied by decreased serum uric acid and increased urinary pH levels. The abundance of pathogenic bacterium Fusobacterium was significantly downregulated following the intervention, whereas there was an upregulation observed in SCFA-producing bacteria Lachnoclostridium and Parasutterella, leading to a significant elevation in butyric acid content. Functions related to fatty acid synthesis and amino acid metabolism within the microbiota showed upregulation following PSHC intervention. The correlation analysis revealed a positive association between stone pathogenic bacteria abundance and clinical factors for stone formation, while a negative correlation with SCFAs contents. Our preliminary study revealed that alterations in gut microbiota and metabolites were the crucial physiological adaptation to PSHC intervention. Targeted regulation of microbiota and SCFA holds promise for enhancing drug therapy efficacy and preventing stone recurrence. KEY POINTS: • Bacteroides and Fusobacterium were identified as dominant genera for UAS patients • After PSHC intervention, Fusobacterium decreased and butyric acid content increased • The microbiota increased capacity for fatty acid synthesis after PSHC intervention.
Collapse
Affiliation(s)
- Cheng Cao
- Department of Urology, The Changshu Hospital Affiliated to Soochow University (Changshu No. 1 People's Hospital), Changshu, China
| | - Feng Li
- Department of Urology, The Changshu Hospital Affiliated to Soochow University (Changshu No. 1 People's Hospital), Changshu, China
| | - Qi Ding
- Department of Urology, The Changshu Hospital Affiliated to Soochow University (Changshu No. 1 People's Hospital), Changshu, China
| | - Xiaohua Jin
- Department of Urology, The Changshu Hospital Affiliated to Soochow University (Changshu No. 1 People's Hospital), Changshu, China
| | - Wenjian Tu
- Department of Urology, The Changshu Hospital Affiliated to Soochow University (Changshu No. 1 People's Hospital), Changshu, China
| | - Hailiang Zhu
- Department of Urology, The Changshu Hospital Affiliated to Soochow University (Changshu No. 1 People's Hospital), Changshu, China
| | - Mubin Sun
- Department of Urology, The Changshu Hospital Affiliated to Soochow University (Changshu No. 1 People's Hospital), Changshu, China
| | - Jin Zhu
- Department of Urology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Dongrong Yang
- Department of Urology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Bo Fan
- Department of Urology, The Changshu Hospital Affiliated to Soochow University (Changshu No. 1 People's Hospital), Changshu, China.
| |
Collapse
|
2
|
Hanstock S, Chew B, Lange D. The Role of the Gut Microbiome in Kidney Stone Disease. Urol Clin North Am 2024; 51:475-482. [PMID: 39349015 DOI: 10.1016/j.ucl.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/02/2024]
Abstract
Microbiome dysbiosis is closely related to the etiology of kidney stone disease (KSD) and influences a multitude of pathways. Due to our knowledge gaps on this topic, it is still unclear if microbiome interventions can be translated to demonstrate clinical efficacy. Current evidence suggests that the enhancement of butyrate-producing pathways should be the next step for KSD research. While we are not yet at a point where we can make clinical recommendations for KSD, there are many simple dietary or supplement-based approaches that could be applied in the future for prophylaxis or treatment of KSD.
Collapse
Affiliation(s)
- Sarah Hanstock
- The Stone Centre at Vancouver General Hospital, Department of Urologic Sciences, University of British Columbia, Vancouver, Canada
| | - Ben Chew
- The Stone Centre at Vancouver General Hospital, Department of Urologic Sciences, University of British Columbia, Vancouver, Canada
| | - Dirk Lange
- The Stone Centre at Vancouver General Hospital, Department of Urologic Sciences, University of British Columbia, Vancouver, Canada.
| |
Collapse
|
3
|
Xiao F, Guan Y, Liu T, Zeng Y, Zhu H, Yang K. Oxalate-upregulated annexin A6 promotes the formation of calcium oxalate kidney stones by exacerbating calcium release-mediated oxidative stress injury in renal tubular epithelial cells and crystal-cell adhesion. Arch Biochem Biophys 2024; 761:110187. [PMID: 39490615 DOI: 10.1016/j.abb.2024.110187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 10/02/2024] [Accepted: 10/24/2024] [Indexed: 11/05/2024]
Abstract
Kidney stones result from abnormal biomineralization, although the mechanism behind their formation remains unclear. Annexin A6 (AnxA6), a calcium-dependent lipid-binding protein, is associated with several mineralization-related diseases, but its role in kidney stones is unknown. This study aimed to explore the role and mechanism of AnxA6 in calcium oxalate (CaOx) kidney stones. An in vitro model in which renal tubular epithelial cells (RTECs) were treated with 1 mmol/L oxalate was established, and AnxA6 protein and mRNA expression were examined. Genetic engineering, drug intervention, and biochemical assays were used to investigate the role of AnxA6. The results revealed that AnxA6 was significantly overexpressed in the CaOx model. AnxA6 knockdown in RTECs reduced oxalate-induced oxidative stress, ROS accumulation, and mitochondrial damage, whereas AnxA6 overexpression exacerbated these effects. Blocking ryanodine receptor-mediated calcium release reversed AnxA6-induced oxidative damage. Additionally, AnxA6 increased oxalate adhesion to RTECs by binding to oxalate. In conclusion, AnxA6 contributes to CaOx kidney stone formation by promoting both oxidative stress via calcium release and crystal-cell adhesion by binding to oxalate. This study offers new insight into CaOx kidney stone formation.
Collapse
Affiliation(s)
- Fei Xiao
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 443002, Hubei Province, China
| | - Yi Guan
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 443002, Hubei Province, China
| | - Ting Liu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 443002, Hubei Province, China
| | - Yan Zeng
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 443002, Hubei Province, China
| | - Hengcheng Zhu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 443002, Hubei Province, China.
| | - Kang Yang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 443002, Hubei Province, China.
| |
Collapse
|
4
|
Mukherjee SD, Batagello CA, Adler A, Agudelo J, Zampini A, Suryavanshi M, Nguyen A, Orr T, Dearing D, Monga M, Miller AW. Complex system modelling reveals oxalate homeostasis is driven by diverse oxalate-degrading bacteria. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.28.620613. [PMID: 39553961 PMCID: PMC11565779 DOI: 10.1101/2024.10.28.620613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Decades of research have made clear that host-associated microbiomes touch all facets of health. However, effective therapies that target the microbiome have been elusive given its inherent complexity. Here, we experimentally examined diet-microbe-host interactions through a complex systems framework, centered on dietary oxalate. Using multiple, independent molecular, animal, and in vitro experimental models, we found that microbiome composition influenced multiple oxalate-microbe-host interfaces. Importantly, administration of the oxalate-degrading specialist, Oxalobacter formigenes, was only effective against a poor oxalate-degrading microbiota background and gives critical new insights into why clinical intervention trials with this species exhibit variable outcomes. Data suggest that, while heterogeneity in the microbiome impacts multiple diet-host-microbe interfaces, metabolic redundancy among diverse microorganisms in specific diet-microbe axes is a critical variable that may impact the efficacy of bacteriotherapies, which can help guide patient and probiotic selection criteria in probiotic clinical trials.
Collapse
Affiliation(s)
- Sromona D. Mukherjee
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic, Cleveland, OH, USA
| | - Carlos A. Batagello
- Division of Urology, Hospital das Clínicas, University of Sao Paulo Medical School, Sao Paulo, Brazil
| | - Ava Adler
- Department of Urology, Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Jose Agudelo
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic, Cleveland, OH, USA
| | - Anna Zampini
- Department of Urology, Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Mangesh Suryavanshi
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic, Cleveland, OH, USA
| | - Andrew Nguyen
- M Health Fairview Southdale Hospital, Edina, MN, USA
| | - Teri Orr
- Department of Biology, New Mexico State University, Las Cruces, NM, USA
| | - Denise Dearing
- School of Biological Sciences, University of Utah, Salt Lake City, UT, USA
| | - Manoj Monga
- Department of Urology, University of California San Diego, San Diego, CA, USA
| | - Aaron W. Miller
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic, Cleveland, OH, USA
- Department of Urology, Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
5
|
Noonin C, Putpim A, Thongboonkerd V. The direct inhibitory effects of Lactobacillus acidophilus, a commensal urinary bacterium, on calcium oxalate stone development. MICROBIOME 2024; 12:175. [PMID: 39289694 PMCID: PMC11406782 DOI: 10.1186/s40168-024-01877-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 07/17/2024] [Indexed: 09/19/2024]
Abstract
BACKGROUND Lactobacillus acidophilus is a commensal urinary bacterium found more abundantly in healthy individuals than in stone patients. Hence, it has been proposed to play an inhibitory role in kidney stone disease (KSD) but with unclear mechanisms. We therefore investigated the direct effects of L. acidophilus on calcium oxalate (CaOx) stone development compared with Escherichia coli, which is known to promote CaOx stone formation. RESULTS L. acidophilus at 1 × 103 CFU/ml significantly reduced the abundance of newly formed crystals, enlargement and aggregation of seeded crystals, and crystal adhesion on renal cell membranes. By contrast, E. coli at 1 × 103 CFU/ml significantly enhanced crystal growth and aggregation but did not affect crystallization and crystal-cell adhesion. Oxalate consumption assay showed that neither L. acidophilus nor E. coli significantly reduced the remaining oxalate level after 1 - 3 h incubation. However, both of them adhered to CaOx crystals. Surface component detection revealed that only L. acidophilus expressed S-layer protein, whereas only E. coli exhibited flagella on their surfaces. Removal of L. acidophilus S-layer protein and E. coli flagella completely abolished the inhibitory and promoting effects of L. acidophilus and E. coli, respectively. CONCLUSIONS L. acidophilus inhibits CaOx stone development by hampering crystallization, growth, aggregation and cell-adhesive ability of CaOx. By contrast, E. coli enhances CaOx stone development by promoting CaOx growth and aggregation. Their contradictory effects are most likely from differential surface components (i.e., S-layer protein on L. acidophilus and flagella on E. coli) not from oxalate-degrading ability. Video Abstract.
Collapse
Affiliation(s)
- Chadanat Noonin
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Anantaya Putpim
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
- Department of Dermatology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Visith Thongboonkerd
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand.
| |
Collapse
|
6
|
Razi A, Ghiaei A, Dolatabadi FK, Haghighi R. Unraveling the association of bacteria and urinary stones in patients with urolithiasis: an update review article. Front Med (Lausanne) 2024; 11:1401808. [PMID: 39281813 PMCID: PMC11392849 DOI: 10.3389/fmed.2024.1401808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 08/14/2024] [Indexed: 09/18/2024] Open
Abstract
Urinary stone disease (USD) is a prevalent urological condition, ranking as one of the most common urinary tract disorders globally. Various risk factors influence the formation of kidney stones, and recent research indicates a rising prevalence of urolithiasis worldwide, particularly in developing countries. While the morbidity associated with urinary stones has decreased in recent years, long-term complications such as stone recurrence, kidney failure, and uremia continue to burden patients. Understanding the etiologies of urolithiasis, including the role of bacteria, is crucial as they can contribute to stone recurrence. The incidence of urinary tract infection (UTI) stones can be attributed to specific infectious risk factors, socio-demographic factors, and comorbid metabolic disorders. This review article explores the emerging evidence suggesting the involvement of bacteria in USD. It discusses the potential role of microorganisms in non-infection stones and highlights the association between UTIs and urolithiasis. Furthermore, it surveys the relationship between kidney stones and recurrent UTIs and the formation of bacterial biofilms in UTIs. Considering various risk factors, including biochemical stone analysis and the presence of bacteria, is essential for treating patients with infectious stones optimally. This review aims to provide an updated understanding of the association between bacteria and urinary stones in patients with urolithiasis, shedding light on the pathophysiology of urinary stone formation, urinary stone characteristics, and the urinary microbiome in urinary stones.
Collapse
Affiliation(s)
- Abdolah Razi
- Department of Urology, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Azita Ghiaei
- Department of Microbiology, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
| | - Fahimeh Kamali Dolatabadi
- Department of Cell and Molecular Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Ramin Haghighi
- Department of Urology, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| |
Collapse
|
7
|
Song Q, Song C, Chen X, Xiong Y, He Z, Su X, Zhou J, Ke H, Dong C, Liao W, Yang S. Oxalate regulates crystal-cell adhesion and macrophage metabolism via JPT2/PI3K/AKT signaling to promote the progression of kidney stones. J Pharm Anal 2024; 14:100956. [PMID: 39035219 PMCID: PMC11259813 DOI: 10.1016/j.jpha.2024.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 02/07/2024] [Accepted: 02/21/2024] [Indexed: 07/23/2024] Open
Abstract
Oxalate is an organic dicarboxylic acid that is a common component of plant foods. The kidneys are essential organs for oxalate excretion, but excessive oxalates may induce kidney stones. Jupiter microtubule associated homolog 2 (JPT2) is a critical molecule in Ca2+ mobilization, and its intrinsic mechanism in oxalate exposure and kidney stones remains unclear. This study aimed to reveal the mechanism of JPT2 in oxalate exposure and kidney stones. Genetic approaches were used to control JPT2 expression in cells and mice, and the JPT2 mechanism of action was analyzed using transcriptomics and untargeted metabolomics. The results showed that oxalate exposure triggered the upregulation of JPT2, which is involved in nicotinic acid adenine dinucleotide phosphate (NAADP)-mediated Ca2+ mobilization. Transcriptomic analysis revealed that cell adhesion and macrophage inflammatory polarization were inhibited by JPT2 knockdown, and these were dominated by phosphatidylinositol 3-kinase (PI3K)/AKT signaling, respectively. Untargeted metabolomics indicated that JPT2 knockdown inhibited the production of succinic acid semialdehyde (SSA) in macrophages. Furthermore, JPT2 deficiency in mice inhibited kidney stones mineralization. In conclusion, this study demonstrates that oxalate exposure facilitates kidney stones by promoting crystal-cell adhesion, and modulating macrophage metabolism and inflammatory polarization via JPT2/PI3K/AKT signaling.
Collapse
Affiliation(s)
- Qianlin Song
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Chao Song
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Xin Chen
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yunhe Xiong
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Ziqi He
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Xiaozhe Su
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Jiawei Zhou
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Hu Ke
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Caitao Dong
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Wenbiao Liao
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Sixing Yang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| |
Collapse
|
8
|
Wan W, Wu W, Amier Y, Li X, Yang J, Huang Y, Xun Y, Yu X. Engineered microorganisms: A new direction in kidney stone prevention and treatment. Synth Syst Biotechnol 2024; 9:294-303. [PMID: 38510204 PMCID: PMC10950756 DOI: 10.1016/j.synbio.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/31/2024] [Accepted: 02/20/2024] [Indexed: 03/22/2024] Open
Abstract
Numerous studies have shown that intestinal and urinary tract flora are closely related to the formation of kidney stones. The removal of probiotics represented by lactic acid bacteria and the colonization of pathogenic bacteria can directly or indirectly promote the occurrence of kidney stones. However, currently existing natural probiotics have limitations. Synthetic biology is an emerging discipline in which cells or living organisms are genetically designed and modified to have biological functions that meet human needs, or even create new biological systems, and has now become a research hotspot in various fields. Using synthetic biology approaches of microbial engineering and biological redesign to enable probiotic bacteria to acquire new phenotypes or heterologous protein expression capabilities is an important part of synthetic biology research. Synthetic biology modification of microorganisms in the gut and urinary tract can effectively inhibit the development of kidney stones by a range of means, including direct degradation of metabolites that promote stone production or indirect regulation of flora homeostasis. This article reviews the research status of engineered microorganisms in the prevention and treatment of kidney stones, to provide a new and effective idea for the prevention and treatment of kidney stones.
Collapse
Affiliation(s)
- Wenlong Wan
- Department of Urology, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Weisong Wu
- Department of Urology, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Yirixiatijiang Amier
- Department of Urology, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Xianmiao Li
- Department of Urology, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Junyi Yang
- Department of Urology, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Yisheng Huang
- Department of Urology, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Yang Xun
- Department of Urology, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Xiao Yu
- Department of Urology, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| |
Collapse
|
9
|
Joubran P, Roux FA, Serino M, Deschamps JY. Gut and Urinary Microbiota in Cats with Kidney Stones. Microorganisms 2024; 12:1098. [PMID: 38930480 PMCID: PMC11205531 DOI: 10.3390/microorganisms12061098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/10/2024] [Accepted: 05/20/2024] [Indexed: 06/28/2024] Open
Abstract
Upper urinary tract urolithiasis is an emerging disease in cats, with 98% of kidney stones composed of calcium oxalate. In humans, disturbances in the intestinal and urinary microbiota are suspected to contribute to the formation of calcium oxalate stones. We hypothesized that similar mechanisms may be at play in cats. This study examines the intestinal and urinary microbiota of nine cats with kidney stones compared to nine healthy cats before, during, and after treatment with the antibiotic cefovecin, a cephalosporin. Initially, cats with kidney stones displayed a less diverse intestinal microbiota. Antibiotic treatment reduced microbiota diversity in both groups. The absence of specific intestinal bacteria could lead to a loss of the functions these bacteria perform, such as oxalate degradation, which may contribute to the formation of calcium oxalate stones. This study confirms the presence of a distinct urobiome in cats with kidney stones, characterized by greater richness and diversity compared to healthy cats. These findings highlight the potential of microbiota modulation as a strategy to prevent renal lithiasis in cats.
Collapse
Affiliation(s)
- Patrick Joubran
- Nutrition, PathoPhysiology and Pharmacology (NP3) Unit, Oniris VetAgro Bio, Nantes-Atlantic College of Veterinary Medicine, Food Science and Engineering, La Chantrerie, CEDEX 03, 44 307 Nantes, France; (P.J.); (F.A.R.)
| | - Françoise A. Roux
- Nutrition, PathoPhysiology and Pharmacology (NP3) Unit, Oniris VetAgro Bio, Nantes-Atlantic College of Veterinary Medicine, Food Science and Engineering, La Chantrerie, CEDEX 03, 44 307 Nantes, France; (P.J.); (F.A.R.)
- Emergency and Critical Care Unit, Oniris VetAgro Bio, Nantes-Atlantic College of Veterinary Medicine, Food Science and Engineering, La Chantrerie, CEDEX 03, 44 307 Nantes, France
| | - Matteo Serino
- IRSD, Institut de Recherche en Santé Digestive, Institut National de la Santé et de la Recherche Médicale (INSERM) U1220, Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Ecole Nationale Vétérinaire de Toulouse (ENVT), Université de Toulouse III-Paul Sabatier (UPS), CS 60039, 31 024 Toulouse, France
| | - Jack-Yves Deschamps
- Nutrition, PathoPhysiology and Pharmacology (NP3) Unit, Oniris VetAgro Bio, Nantes-Atlantic College of Veterinary Medicine, Food Science and Engineering, La Chantrerie, CEDEX 03, 44 307 Nantes, France; (P.J.); (F.A.R.)
- Emergency and Critical Care Unit, Oniris VetAgro Bio, Nantes-Atlantic College of Veterinary Medicine, Food Science and Engineering, La Chantrerie, CEDEX 03, 44 307 Nantes, France
| |
Collapse
|
10
|
Zheng J, Zhang J, Cai J, Yao Y, Lu S, Wu Z, Cai Z, Tuerxun A, Batur J, Huang J, Kong J, Lin T. Development of a radiomics model to discriminate ammonium urate stones from uric acid stones in vivo : A remedy for the diagnostic pitfall of dual-energy computed tomography. Chin Med J (Engl) 2024; 137:1095-1104. [PMID: 37994499 PMCID: PMC11062676 DOI: 10.1097/cm9.0000000000002866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Indexed: 11/24/2023] Open
Abstract
BACKGROUND Dual-energy computed tomography (DECT) is purported to accurately distinguish uric acid stones from non-uric acid stones. However, whether DECT can accurately discriminate ammonium urate stones from uric acid stones remains unknown. Therefore, we aimed to explore whether they can be accurately identified by DECT and to develop a radiomics model to assist in distinguishing them. METHODS This research included two steps. For the first purpose to evaluate the accuracy of DECT in the diagnosis of uric acid stones, 178 urolithiasis patients who underwent preoperative DECT between September 2016 and December 2019 were enrolled. For model construction, 93, 40, and 109 eligible urolithiasis patients treated between February 2013 and October 2022 were assigned to the training, internal validation, and external validation sets, respectively. Radiomics features were extracted from non-contrast CT images, and the least absolute shrinkage and selection operator (LASSO) algorithm was used to develop a radiomics signature. Then, a radiomics model incorporating the radiomics signature and clinical predictors was constructed. The performance of the model (discrimination, calibration, and clinical usefulness) was evaluated. RESULTS When patients with ammonium urate stones were included in the analysis, the accuracy of DECT in the diagnosis of uric acid stones was significantly decreased. Sixty-two percent of ammonium urate stones were mistakenly diagnosed as uric acid stones by DECT. A radiomics model incorporating the radiomics signature, urine pH value, and urine white blood cell count was constructed. The model achieved good calibration and discrimination {area under the receiver operating characteristic curve (AUC; 95% confidence interval [CI]), 0.944 (0.899-0.989)}, which was internally and externally validated with AUCs of 0.895 (95% CI, 0.796-0.995) and 0.870 (95% CI, 0.769-0.972), respectively. Decision curve analysis revealed the clinical usefulness of the model. CONCLUSIONS DECT cannot accurately differentiate ammonium urate stones from uric acid stones. Our proposed radiomics model can serve as a complementary diagnostic tool for distinguishing them in vivo .
Collapse
Affiliation(s)
- Junjiong Zheng
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong Provincial Clinical Research Center for Urological Diseases, Guangzhou, Guangdong 510120, China
| | - Jie Zhang
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong Provincial Clinical Research Center for Urological Diseases, Guangzhou, Guangdong 510120, China
| | - Jinhua Cai
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China
| | - Yuhui Yao
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong Provincial Clinical Research Center for Urological Diseases, Guangzhou, Guangdong 510120, China
| | - Sihong Lu
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong Provincial Clinical Research Center for Urological Diseases, Guangzhou, Guangdong 510120, China
| | - Zhuo Wu
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China
| | - Zhaoxi Cai
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China
| | - Aierken Tuerxun
- Department of Urology, The First People's Hospital of Kashgar Prefecture, Kashgar, Xinjiang 844000, China
| | - Jesur Batur
- Department of Urology, The First People's Hospital of Kashgar Prefecture, Kashgar, Xinjiang 844000, China
| | - Jian Huang
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong Provincial Clinical Research Center for Urological Diseases, Guangzhou, Guangdong 510120, China
| | - Jianqiu Kong
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong Provincial Clinical Research Center for Urological Diseases, Guangzhou, Guangdong 510120, China
| | - Tianxin Lin
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong Provincial Clinical Research Center for Urological Diseases, Guangzhou, Guangdong 510120, China
| |
Collapse
|
11
|
Noonin C, Thongboonkerd V. Beneficial roles of gastrointestinal and urinary microbiomes in kidney stone prevention via their oxalate-degrading ability and beyond. Microbiol Res 2024; 282:127663. [PMID: 38422861 DOI: 10.1016/j.micres.2024.127663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/11/2024] [Accepted: 02/19/2024] [Indexed: 03/02/2024]
Abstract
Formation of calcium oxalate (CaOx) crystal, the most common composition in kidney stones, occurs following supersaturation of calcium and oxalate ions in the urine. In addition to endogenous source, another main source of calcium and oxalate ions is dietary intake. In the intestinal lumen, calcium can bind with oxalate to form precipitates to be eliminated with feces. High intake of oxalate-rich foods, inappropriate amount of daily calcium intake, defective intestinal transporters for oxalate secretion and absorption, and gastrointestinal (GI) malabsorption (i.e., from gastric bypass surgery) can enhance intestinal oxalate absorption, thereby increasing urinary oxalate level and risk of kidney stone disease (KSD). The GI microbiome rich with oxalate-degrading bacteria can reduce intestinal oxalate absorption and urinary oxalate level. In addition to the oxalate-degrading ability, the GI microbiome also affects expression of oxalate transporters and net intestinal oxalate transport, cholesterol level, and short-chain fatty acids (SCFAs) production, leading to lower KSD risk. Recent evidence also shows beneficial effects of urinary microbiome in KSD prevention. This review summarizes the current knowledge on the aforementioned aspects. Potential benefits of the GI and urinary microbiomes as probiotics for KSD prevention are emphasized. Finally, challenges and future perspectives of probiotic treatment in KSD are discussed.
Collapse
Affiliation(s)
- Chadanat Noonin
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Visith Thongboonkerd
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand.
| |
Collapse
|
12
|
Desenclos J, Forté V, Clément C, Daudon M, Letavernier E. Pathophysiology and management of enteric hyperoxaluria. Clin Res Hepatol Gastroenterol 2024; 48:102322. [PMID: 38503362 DOI: 10.1016/j.clinre.2024.102322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/08/2024] [Accepted: 03/16/2024] [Indexed: 03/21/2024]
Abstract
Enteric hyperoxaluria is a metabolic disorder resulting from conditions associated with fatty acid malabsorption and characterized by an increased urinary output of oxalate. Oxalate is excessively absorbed in the gut and then excreted in urine where it forms calcium oxalate crystals, inducing kidney stones formation and crystalline nephropathies. Enteric hyperoxaluria is probably underdiagnosed and may silently damage kidney function of patients affected by bowel diseases. Moreover, the prevalence of enteric hyperoxaluria has increased because of the development of bariatric surgical procedures. Therapeutic options are based on the treatment of the underlying disease, limitation of oxalate intakes, increase in calcium salts intakes but also increase in urine volume and correction of hypocitraturia. There are few data regarding the natural evolution of kidney stone events and chronic kidney disease in these patients, and there is a need for new treatments limiting kidney injury by calcium oxalate crystallization.
Collapse
Affiliation(s)
- Jordan Desenclos
- Explorations Fonctionnelles Multidisciplinaires, AP-HP, Hôpital Tenon, 4 rue de la Chine, Paris F-75020, France
| | - Valentine Forté
- Explorations Fonctionnelles Multidisciplinaires, AP-HP, Hôpital Tenon, 4 rue de la Chine, Paris F-75020, France
| | - Cécile Clément
- Explorations Fonctionnelles Multidisciplinaires, AP-HP, Hôpital Tenon, 4 rue de la Chine, Paris F-75020, France
| | - Michel Daudon
- Explorations Fonctionnelles Multidisciplinaires, AP-HP, Hôpital Tenon, 4 rue de la Chine, Paris F-75020, France; INSERM, UMR S 1155, Paris F-75020, France
| | - Emmanuel Letavernier
- Explorations Fonctionnelles Multidisciplinaires, AP-HP, Hôpital Tenon, 4 rue de la Chine, Paris F-75020, France; INSERM, UMR S 1155, Paris F-75020, France; Sorbonne Université, UMR S 1155, Paris F-75020, France.
| |
Collapse
|
13
|
Choy WH, Adler A, Morgan-Lang C, Gough EK, Hallam SJ, Manges AR, Chew BH, Penniston K, Miller A, Lange D. Deficient butyrate metabolism in the intestinal microbiome is a potential risk factor for recurrent kidney stone disease. Urolithiasis 2024; 52:38. [PMID: 38413462 DOI: 10.1007/s00240-024-01534-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 01/16/2024] [Indexed: 02/29/2024]
Abstract
Intestinal microbiome dysbiosis is a known risk factor for recurrent kidney stone disease (KSD) with prior data suggesting a role for dysfunctional metabolic pathways other than those directly utilizing oxalate. To identify alternative mechanisms, the current study analyzed differences in the metabolic potential of intestinal microbiomes of patients (n = 17) and live-in controls (n = 17) and determined their relevance to increased risk for KSD using shotgun metagenomic sequencing. We found no differences in the abundance of genes associated with known oxalate degradation pathways, supporting the notion that dysfunction in other metabolic pathways plays a role in KSD. Further analysis showed decreased abundance of key enzymes involved in butyrate biosynthesis in patient intestinal microbiomes. Furthermore, de novo construction of microbial genomes showed that the majority of genes significantly enriched in non-stone formers are affiliated with Faecalibacterium prausnitzii, a major butyrate producer. Specifically pertaining to butyrate metabolism, the majority of abundant genes mapped back to F. prausnitzii, Alistipes spp., and Akkermansia muciniphila. No differences were observed in ascorbate or glyoxylate metabolic pathways. Collectively, these data suggest that impaired bacterial-associated butyrate metabolism may be an oxalate-independent mechanism that contributes to an increased risk for recurrent KSD. This indicates that the role of the intestinal microbiome in recurrent KSD is multi-factorial, which is representative of the highly intertwined metabolic nature of this complex environment. Future bacteria-based treatments must not be restricted to targeting only oxalate metabolism.
Collapse
Affiliation(s)
- Wai Ho Choy
- Department of Urologic Sciences, The Stone Centre at VGH, University of British Columbia, Jack Bell Research Centre, Rm. 550-3, 2660 Oak Street, Vancouver, BC, V6J 1G7, Canada
| | - Ava Adler
- Departments of Urology and Immunology, Cleveland Clinic, Cleveland, OH, USA
| | - Connor Morgan-Lang
- Graduate Program in Bioinformatics, University of British Columbia, Vancouver, BC, Canada
| | - Ethan K Gough
- Johns Hopkins Bloomberg School of Public Health US, Baltimore, USA
| | - Steven J Hallam
- Graduate Program in Bioinformatics, University of British Columbia, Vancouver, BC, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
- Genome Science and Technology Program, University of British Columbia, Vancouver, BC, Canada
- ECOSCOPE Training Program, University of British Columbia, Vancouver, BC, Canada
| | - Amee R Manges
- School of Population and Public Health, University of British Columbia, Vancouver, BC, Canada
- BC Centre for Disease Control, Vancouver, BC, Canada
| | - Ben H Chew
- Department of Urologic Sciences, The Stone Centre at VGH, University of British Columbia, Jack Bell Research Centre, Rm. 550-3, 2660 Oak Street, Vancouver, BC, V6J 1G7, Canada
| | - Kristina Penniston
- Department of Urology, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Aaron Miller
- Departments of Urology and Immunology, Cleveland Clinic, Cleveland, OH, USA
| | - Dirk Lange
- Department of Urologic Sciences, The Stone Centre at VGH, University of British Columbia, Jack Bell Research Centre, Rm. 550-3, 2660 Oak Street, Vancouver, BC, V6J 1G7, Canada.
| |
Collapse
|
14
|
Yu R, Zhao Y, Liu J. Solid Electrochemiluminescence Sensor by Immobilization of Emitter Ruthenium(II)tris(bipyridine) in Bipolar Silica Nanochannel Film for Sensitive Detection of Oxalate in Serum and Urine. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:390. [PMID: 38470721 PMCID: PMC10934855 DOI: 10.3390/nano14050390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/17/2024] [Accepted: 02/18/2024] [Indexed: 03/14/2024]
Abstract
Convenient and highly sensitive detection of oxalate ions in body fluids is of crucial significance for disease prevention, diagnosis, and monitoring of treatment effectiveness. Establishing a simple solid-state electrochemiluminescence (ECL) sensing system for highly sensitive detection of oxalate ions is highly desirable. In this work, a solid ECL sensor was fabricated by immobilizing the commonly used emitter ruthenium(II)tris(bipyridine) (Ru(bpy)32+) on a double-layered bipolar silica nanochannel array film (bp-SNA)-modified electrode, enabling sensitive detection of oxalate ions in serum or urine samples. Cost-effective and readily available indium tin oxide (ITO) was used as the supporting electrode. Convenient fabrication of multiple negatively charged SNA (n-SNA)-modified ITO electrodes was achieved through the one-step Stöber solution growth method. Subsequently, a positive outer layer film (p-SNA) was rapidly prepared using an electrochemical-assisted self-assembly method. The double-layered bipolar silica nanochannel array film achieved stable immobilization of Ru(bpy)32+ on the electrode surface, facilitated by the electrostatic adsorption of Ru(bpy)32+ by n-SNA and the electrostatic repulsion by p-SNA. Utilizing oxalate ions as a co-reactant for Ru(bpy)32+, combined with the electrostatic enrichment of oxalate ions by p-SNA, the constructed sensor enabled highly sensitive detection of oxalate ions ranging from 1 nM to 25 μM and from 25 μM to 1 mM, with a detection limit (LOD) of 0.8 nM. The fabricated ECL sensor exhibited high selectivity and good stability, making it suitable for ECL detection of oxalate ions in serum and urine samples.
Collapse
Affiliation(s)
| | | | - Jiyang Liu
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China; (R.Y.); (Y.Z.)
| |
Collapse
|
15
|
Wu Y, Shi R, Chen H, Zhang Z, Bao S, Qu J, Zhou M. Effect of the gut microbiome in glaucoma risk from the causal perspective. BMJ Open Ophthalmol 2024; 9:e001547. [PMID: 38286567 PMCID: PMC10826588 DOI: 10.1136/bmjophth-2023-001547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 01/12/2024] [Indexed: 01/31/2024] Open
Abstract
OBJECTIVE Evidence from observational studies has reported possible associations between the gut microbiome (GM) and glaucoma. However, the causal effect of GM on glaucoma risk remains to be determined. METHODS AND ANALYSIS We conducted two-sample bidirectional Mendelian randomisation (MR) analyses to explore the causal association between GM and glaucoma. Genome-wide association study summary statistics of 196 GM taxa (n=18 340) and glaucoma (18 902 cases and 358 375 controls) were obtained from MiBioGen and FinnGen Consortium. Inverse variance weighted, MR-Egger, weighted median, weighted mode, Mendelian Randomisation Pleiotropy Residual Sum and Outlier, MR-Egger intercept and Cochran's Q statistical analyses were used to supplement MR results and sensitivity analysis. An independent cohort from the Medical Research Council (MRC) Integrative Epidemiology Unit at the University of Bristol (MRC-IEU) Consortium (1715 cases and 359 479 controls) was used to validate causal effects. RESULTS Results of the MR analysis suggested that the family Oxalobacteraceae (OR 0.900, 95% CI 0.843 to 0.961, p=0.002) and the genus Eggerthella (OR 0.881, 95% CI 0.811 to 0.957, p=0.003) had a negative effect on glaucoma, whereas the genus Bilophila (OR 1.202, 95% CI 1.074 to 1.346, p=0.001), LachnospiraceaeUCG010 (OR 1.256, 95% CI 1.109 to 1.423, p=0.0003) and Ruminiclostridium 9 (OR 1.258, 95% CI 1.083 to 1.461, p=0.003) had a positive effect on glaucoma. Among these, the positive causal effect of LachnospiraceaeUCG010 (OR 1.002, 95% CI 1.000 to 1.004, p=0.033) on glaucoma was replicated in an independent cohort. CONCLUSION This MR analysis from large population studies demonstrated the causal effect of GM on glaucoma risk and supported the role of GM in influencing glaucoma susceptibility.
Collapse
Affiliation(s)
- Yaxuan Wu
- School of Biomedical Engineering, School of Information and Communication Engineering, Hainan University, Haikou, People's Republic of China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, People's Republic of China
- Hainan Institute of Real World Data, Qionghai, People's Republic of China
| | - Ronghua Shi
- School of Biomedical Engineering, School of Information and Communication Engineering, Hainan University, Haikou, People's Republic of China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, People's Republic of China
- Hainan Institute of Real World Data, Qionghai, People's Republic of China
| | - He Chen
- School of Biomedical Engineering, School of Information and Communication Engineering, Hainan University, Haikou, People's Republic of China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, People's Republic of China
- Hainan Institute of Real World Data, Qionghai, People's Republic of China
| | - Zicheng Zhang
- School of Biomedical Engineering, School of Information and Communication Engineering, Hainan University, Haikou, People's Republic of China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, People's Republic of China
- Hainan Institute of Real World Data, Qionghai, People's Republic of China
| | - Siqi Bao
- School of Biomedical Engineering, School of Information and Communication Engineering, Hainan University, Haikou, People's Republic of China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, People's Republic of China
- Hainan Institute of Real World Data, Qionghai, People's Republic of China
| | - Jia Qu
- School of Biomedical Engineering, School of Information and Communication Engineering, Hainan University, Haikou, People's Republic of China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, People's Republic of China
- Hainan Institute of Real World Data, Qionghai, People's Republic of China
| | - Meng Zhou
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, People's Republic of China
| |
Collapse
|
16
|
Xu ZJ, Chen L, Tang QL, Li D, He CJ, Xu CL, Chen FT, Shao Y. Differential oral and gut microbial structure related to systemic metabolism in kidney stone patients. World J Urol 2024; 42:6. [PMID: 38172428 DOI: 10.1007/s00345-023-04712-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 10/10/2023] [Indexed: 01/05/2024] Open
Abstract
OBJECTIVES To investigate the role of the oral and gut microbiome related to systemic metabolism and clinical parameters in various types of kidney stone disease. PATIENTS AND METHODS We conducted a case-control study by analyzing 16S rRNA and untargeted metabolomics profiling of 76 fecal, 68 saliva, 73 urine, and 43 serum samples from 76 participants aged 18-75 years old. The participants included 15 patients with uric acid stones, 41 patients with calcium oxalate stones, and 20 healthy controls. Correlations among microbiome, metabolism, and clinical parameters were identified through Spearman's correlation analysis. (Clinical trial No. ChiCTR2200055316). RESULTS Patients with uric acid stones exhibited reduced richness and diversity in their microbiome, as well as altered composition in both oral and gut microbiome. Furthermore, their fecal samples showed lower relative abundances of Bacteroides and Lachnospiraceae, while their saliva samples showed higher relative abundances of Porphyromonas and Neisseria. Predicted KEGG metabolism pathways, including amino acid and fatty acid metabolisms, were significantly altered in subjects with uric acid stones. Oral, gut microbiota, and metabolism were also associated with low water intake and urine pH. The area under the curve (AUC) of the specific microbiota and metabolite prediction models was over 0.85. CONCLUSION The structure and composition of the oral and gut microbiome in different types of kidney stone disease, the correlations between oral and gut microbiome, and the associations among oral and gut microbiota, systemic metabolism and clinical parameters imply an important role that the oral and gut microbiome may play in kidney stone disease.
Collapse
Affiliation(s)
- Zi-Jie Xu
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No.100, Haining Road, Hongkou District, Shanghai, 200080, China
| | - Lei Chen
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No.100, Haining Road, Hongkou District, Shanghai, 200080, China
| | - Qi-Lin Tang
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No.100, Haining Road, Hongkou District, Shanghai, 200080, China
| | - Deng Li
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No.100, Haining Road, Hongkou District, Shanghai, 200080, China
| | - Chu-Jiang He
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No.100, Haining Road, Hongkou District, Shanghai, 200080, China
| | - Chao-Liang Xu
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No.100, Haining Road, Hongkou District, Shanghai, 200080, China
| | - Fei-Teng Chen
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No.100, Haining Road, Hongkou District, Shanghai, 200080, China
| | - Yi Shao
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No.100, Haining Road, Hongkou District, Shanghai, 200080, China.
- Shanghai Municipal Hospital Urology Specialist Alliance, Shanghai, China.
| |
Collapse
|
17
|
Al KF, Joris BR, Daisley BA, Chmiel JA, Bjazevic J, Reid G, Gloor GB, Denstedt JD, Razvi H, Burton JP. Multi-site microbiota alteration is a hallmark of kidney stone formation. MICROBIOME 2023; 11:263. [PMID: 38007438 PMCID: PMC10675928 DOI: 10.1186/s40168-023-01703-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 10/17/2023] [Indexed: 11/27/2023]
Abstract
BACKGROUND Inquiry of microbiota involvement in kidney stone disease (KSD) has largely focussed on potential oxalate handling abilities by gut bacteria and the increased association with antibiotic exposure. By systematically comparing the gut, urinary, and oral microbiota of 83 stone formers (SF) and 30 healthy controls (HC), we provide a unified assessment of the bacterial contribution to KSD. RESULTS Amplicon and shotgun metagenomic sequencing approaches were consistent in identifying multi-site microbiota disturbances in SF relative to HC. Biomarker taxa, reduced taxonomic and functional diversity, functional replacement of core bioenergetic pathways with virulence-associated gene markers, and community network collapse defined SF, but differences between cohorts did not extend to oxalate metabolism. CONCLUSIONS We conclude that multi-site microbiota alteration is a hallmark of SF, and KSD treatment should consider microbial functional restoration and the avoidance of aberrant modulators such as poor diet and antibiotics where applicable to prevent stone recurrence. Video Abstract.
Collapse
Affiliation(s)
- Kait F Al
- Centre for Human Microbiome and Probiotic Research, Lawson Health Research Institute, London, ON, Canada
- Department of Microbiology and Immunology, The University of Western Ontario, London, ON, Canada
| | - Benjamin R Joris
- Department of Biochemistry, The University of Western Ontario, London, ON, Canada
| | - Brendan A Daisley
- Molecular and Cellular Biology Department, University of Guelph, Guelph, ON, Canada
| | - John A Chmiel
- Centre for Human Microbiome and Probiotic Research, Lawson Health Research Institute, London, ON, Canada
- Department of Microbiology and Immunology, The University of Western Ontario, London, ON, Canada
| | - Jennifer Bjazevic
- Division of Urology, Department of Surgery, The University of Western Ontario, London, ON, Canada
| | - Gregor Reid
- Centre for Human Microbiome and Probiotic Research, Lawson Health Research Institute, London, ON, Canada
- Department of Microbiology and Immunology, The University of Western Ontario, London, ON, Canada
- Division of Urology, Department of Surgery, The University of Western Ontario, London, ON, Canada
| | - Gregory B Gloor
- Department of Biochemistry, The University of Western Ontario, London, ON, Canada
| | - John D Denstedt
- Division of Urology, Department of Surgery, The University of Western Ontario, London, ON, Canada
| | - Hassan Razvi
- Division of Urology, Department of Surgery, The University of Western Ontario, London, ON, Canada
| | - Jeremy P Burton
- Centre for Human Microbiome and Probiotic Research, Lawson Health Research Institute, London, ON, Canada.
- Department of Microbiology and Immunology, The University of Western Ontario, London, ON, Canada.
- Division of Urology, Department of Surgery, The University of Western Ontario, London, ON, Canada.
| |
Collapse
|
18
|
Suarez Arbelaez MC, Monshine J, Porto JG, Shah K, Singh PK, Roy S, Amin K, Marcovich R, Herrmann TRW, Shah HN. The emerging role of the urinary microbiome in benign noninfectious urological conditions: an up-to-date systematic review. World J Urol 2023; 41:2933-2948. [PMID: 37737900 DOI: 10.1007/s00345-023-04588-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 08/21/2023] [Indexed: 09/23/2023] Open
Abstract
PURPOSE The goal of this systematic review was to examine the current literature on the urinary microbiome and its associations with noninfectious, nonmalignant, urologic diseases. Secondarily, we aimed to describe the most common bioinformatics used to analyze the urinary microbiome. METHODS A comprehensive literature search of Ovid MEDLINE using the keywords "microbiota" AND "prostatic hyperplasia," "microbiota" AND "urinary bladder, overactive," "microbiota" AND "pelvic pain," and "microbiota" AND "urolithiasis" OR "nephrolithiasis" OR "urinary calculi" AND "calcium oxalate" was performed to identify relevant clinical microbiome studies associated with noninfectious benign urological conditions published from 2010 to 2022. We included human studies that evaluated the urinary, stone, or semen microbiota, or any combination of the above-mentioned locations. RESULTS A total of 25 human studies met the inclusion criteria: 4 on benign prostatic hyperplasia (BPH), 9 on overactive bladder (OAB), 8 on calcium oxalate stones, and 4 on chronic pelvic pain syndrome (CPPS). Specific taxonomic profiles in the urine microbiome were associated with each pathology, and evaluation of alpha- and beta-diversity and relative abundance was accounted for most of the studies. Symptom prevalence and severity were also analyzed and showed associations with specific microbes. CONCLUSION The study of the urogenital microbiome is rapidly expanding in urology. Noninfectious benign urogenital diseases, such as BPH, calcium oxalate stones, CPPS, and OAB were found to be associated with specific microbial taxonomies. Further research with larger study populations is necessary to solidify the knowledge of the urine microbiome in these conditions and to facilitate the creation of microbiome-based diagnostic and therapeutic approaches.
Collapse
Affiliation(s)
| | - Joshua Monshine
- Desai Sethi Urology Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Joao G Porto
- Desai Sethi Urology Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Khushi Shah
- Desai Sethi Urology Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Praveen K Singh
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Sabita Roy
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Katherine Amin
- Desai Sethi Urology Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Robert Marcovich
- Desai Sethi Urology Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | | | - Hemendra N Shah
- Desai Sethi Urology Institute, University of Miami Miller School of Medicine, Miami, FL, USA.
| |
Collapse
|
19
|
Chmiel JA, Stuivenberg GA, Al KF, Akouris PP, Razvi H, Burton JP, Bjazevic J. Vitamins as regulators of calcium-containing kidney stones - new perspectives on the role of the gut microbiome. Nat Rev Urol 2023; 20:615-637. [PMID: 37161031 PMCID: PMC10169205 DOI: 10.1038/s41585-023-00768-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/31/2023] [Indexed: 05/11/2023]
Abstract
Calcium-based kidney stone disease is a highly prevalent and morbid condition, with an often complicated and multifactorial aetiology. An abundance of research on the role of specific vitamins (B6, C and D) in stone formation exists, but no consensus has been reached on how these vitamins influence stone disease. As a consequence of emerging research on the role of the gut microbiota in urolithiasis, previous notions on the contribution of these vitamins to urolithiasis are being reconsidered in the field, and investigation into previously overlooked vitamins (A, E and K) was expanded. Understanding how the microbiota influences host vitamin regulation could help to determine the role of vitamins in stone disease.
Collapse
Affiliation(s)
- John A Chmiel
- Department of Microbiology & Immunology, Western University, London, Ontario, Canada
- Canadian Centre for Human Microbiome and Probiotic Research, London, Ontario, Canada
| | - Gerrit A Stuivenberg
- Department of Microbiology & Immunology, Western University, London, Ontario, Canada
- Canadian Centre for Human Microbiome and Probiotic Research, London, Ontario, Canada
| | - Kait F Al
- Department of Microbiology & Immunology, Western University, London, Ontario, Canada
- Canadian Centre for Human Microbiome and Probiotic Research, London, Ontario, Canada
| | - Polycronis P Akouris
- Department of Microbiology & Immunology, Western University, London, Ontario, Canada
- Canadian Centre for Human Microbiome and Probiotic Research, London, Ontario, Canada
| | - Hassan Razvi
- Division of Urology, Department of Surgery, Western University, London, Ontario, Canada
| | - Jeremy P Burton
- Department of Microbiology & Immunology, Western University, London, Ontario, Canada
- Canadian Centre for Human Microbiome and Probiotic Research, London, Ontario, Canada
- Division of Urology, Department of Surgery, Western University, London, Ontario, Canada
| | - Jennifer Bjazevic
- Division of Urology, Department of Surgery, Western University, London, Ontario, Canada.
| |
Collapse
|
20
|
Song Q, Song C, Chen X, Xiong Y, Li L, Liao W, Xue L, Yang S. FKBP5 deficiency attenuates calcium oxalate kidney stone formation by suppressing cell-crystal adhesion, apoptosis and macrophage M1 polarization via inhibition of NF-κB signaling. Cell Mol Life Sci 2023; 80:301. [PMID: 37740796 PMCID: PMC11073435 DOI: 10.1007/s00018-023-04958-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 09/25/2023]
Abstract
Surgical crushing of stones alone has not addressed the increasing prevalence of kidney stones. A promising strategy is to tackle the kidney damage and crystal aggregation inherent in kidney stones with the appropriate therapeutic target. FKBP prolyl isomerase 5 (FKBP5) is a potential predictor of kidney injury, but its status in calcium oxalate (CaOx) kidney stones is not clear. This study attempted to elucidate the role and mechanism of FKBP5 in CaOx kidney stones. Lentivirus and adeno-associated virus were used to control FKBP5 expression in a CaOx kidney stone model. Transcriptomic sequencing and immunological assays were used to analyze the mechanism of FKBP5 deficiency in CaOx kidney stones. The results showed that FKBP5 deficiency reduced renal tubular epithelial cells (RTEC) apoptosis and promoted cell proliferation by downregulating BOK expression. It also attenuated cell-crystal adhesion by downregulating the expression of CDH4. In addition, it inhibited M1 polarization and chemotaxis of macrophages by suppressing CXCL10 expression in RTEC. Moreover, the above therapeutic effects were exerted by inhibiting the activation of NF-κB signaling. Finally, in vivo experiments showed that FKBP5 deficiency attenuated stone aggregation and kidney injury in mice. In conclusion, this study reveals that FKBP5 deficiency attenuates cell-crystal adhesion, reduces apoptosis, promotes cell proliferation, and inhibits macrophage M1 polarization and chemotaxis by inhibiting NF-κB signaling. This provides a potential therapeutic target for CaOx kidney stones.
Collapse
Affiliation(s)
- Qianlin Song
- Department of Urology, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, 430060, Hubei, People's Republic of China
- Central Laboratory, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, 430060, Hubei, People's Republic of China
| | - Chao Song
- Department of Urology, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, 430060, Hubei, People's Republic of China
| | - Xin Chen
- Central Laboratory, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, 430060, Hubei, People's Republic of China.
- Reproductive Medical Center, Renmin Hospital of Wuhan University and Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Jiefang Road 238, Wuhan, 430060, Hubei, People's Republic of China.
| | - Yunhe Xiong
- Department of Urology, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, 430060, Hubei, People's Republic of China
| | - Lijun Li
- School of Power and Mechanical Engineering, The Institute of Technological Science, Wuhan University, South Donghu Road 8, Wuhan, 430072, Hubei, People's Republic of China
| | - Wenbiao Liao
- Department of Urology, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, 430060, Hubei, People's Republic of China
| | - Longjian Xue
- School of Power and Mechanical Engineering, The Institute of Technological Science, Wuhan University, South Donghu Road 8, Wuhan, 430072, Hubei, People's Republic of China.
| | - Sixing Yang
- Department of Urology, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, 430060, Hubei, People's Republic of China.
| |
Collapse
|
21
|
Cao C, Jin X, Ding Q, Zhu J, Yang D, Fan B. The altered composition of gut microbiota and biochemical features as well as dietary patterns in a southern Chinese population with recurrent renal calcium oxalate stones. Urolithiasis 2023; 51:95. [PMID: 37458823 DOI: 10.1007/s00240-023-01467-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 07/05/2023] [Indexed: 07/20/2023]
Abstract
The correlation among gut microbiota, biochemical features, and dietary patterns in recurrent stone formers has been inadequately investigated in the Chinese population. Forty-two patients with calcium oxalate stones (CaOxS group), including 34 recurrent stone formers (RS group), and 40 nonstone healthy subjects (NS group) from Changshu Hospital Affiliated with Soochow University, were prospectively recruited. Food frequency questionnaires were completed by participants, fasting vein blood was extracted, 24-h urine was collected for biochemical detection, and fecal samples were gathered for 16S ribosomal RNA (rRNA) gene sequencing. BMI; serum levels of triglycerides (TG), high-density lipoprotein cholesterol (HDL-C), magnesium, and creatinine; and urine levels of magnesium in stone formers were significantly different from those of controls, and RS patients showed significantly low serum phosphate and high urine phosphate levels. Celery, bamboo shoots, and pickled food were the favored foods of local stone formers. Patients with recurrent stones had altered microbiota composition, with Escherichia, Fusobacterium, and Epulopiscium being the predominant pathogenic genera. The gut microbiota in RS patients had stronger functions in fatty acid and amino acid degradation but weaker functions in their biosynthesis. The pathogenic genera were positively correlated with BMI; serum levels of TGs and creatinine; urine levels of calcium, phosphate, and uric acid (UA); and celery, bamboo shoots, and pickled food intake. The abundance of Escherichia and Fusobacterium and the levels of serum magnesium and creatinine were the most relevant factors associated with stone recurrence and could be validated as biomarkers of recurrence. Our research provides a novel prevention strategy for the recurrence of renal calcium oxalate stones in the Han Chinese population of southern China.
Collapse
Affiliation(s)
- Cheng Cao
- Department of Urology, The Changshu Hospital Affiliated to Soochow University, Changshu, China
| | - Xiaohua Jin
- Department of Urology, The Changshu Hospital Affiliated to Soochow University, Changshu, China
| | - Qi Ding
- Department of Urology, The Changshu Hospital Affiliated to Soochow University, Changshu, China
| | - Jin Zhu
- Department of Urology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Dongrong Yang
- Department of Urology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Bo Fan
- Department of Urology, The Changshu Hospital Affiliated to Soochow University, Changshu, China.
| |
Collapse
|
22
|
Liu M, Zhang Y, Wu J, Gao M, Zhu Z, Chen H. Causal relationship between kidney stones and gut microbiota contributes to the gut-kidney axis: a two-sample Mendelian randomization study. Front Microbiol 2023; 14:1204311. [PMID: 37502408 PMCID: PMC10368867 DOI: 10.3389/fmicb.2023.1204311] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 06/26/2023] [Indexed: 07/29/2023] Open
Abstract
Background Gut microbiota, particularly Oxalobacter formigenes, has been previously reported to be associated with kidney stones. However, the conflicting results from both observational and intervention studies have created substantial uncertainty regarding the contribution of Oxalobacter formigenes to the formation of kidney stone. Methods We employed a two-sample MR analysis to investigate the causal relationship between gut microbiota and kidney stones using GWASs summary statistics obtained from the MiBioGen and FinnGen consortia. Moreover, we conducted a reserve MR analysis to assess the direction of the causal associations between gut microbiota and kidney stones. The inverse variance weighted (IVW) approach represents the primary method of Mendelian Randomization (MR) analysis. Results Our analyses do not yield supportive evidence for a causal link between the genus Oxalobacter (OR = 0.99, 95% CI: 0.90-1.09, p = 0.811) and the formation of kidney stones. The order Actinomycetales (OR = 0.79, 95% CI: 0.65-0.96, p = 0.020), family Actinomycetaceae (OR = 0.79, 95% CI: 0.65-0.96, p = 0.019), family Clostridiaceae 1 (OR = 0.80, 95% CI: 0.67-0.96, p = 0.015), genus Clostridiumsensustricto 1 (OR = 0.81, 95% CI: 0.67-0.98, p = 0.030) and genus Hungatella (OR = 0.86, 95% CI: 0.74-0.99, p = 0.040) had protective effects on kidney stones, and the genus Haemophilus (OR = 1.16, 95% CI: 1.01-1.33, p = 0.032), genus Ruminococcaceae (UCG010) (OR = 1.38, 95% CI: 1.04-1.84, p = 0.028), genus Subdoligranulum (OR = 1.27, 95% CI: 1.06-1.52, p = 0.009) were risk factors for kidney stones. Differential abundance analysis provide no evidence of a association between Oxalobacter formigenes and kidney stones, and showed genus Subdoligranulum were risk factors for kidney stones. Reverse MR analysis did not indicate any causal association of kidney stones on gut microbiota. No considerable heterogeneity of instrumental variables or horizontal pleiotropy was observed. Conclusion Our two-sample MR study did not find any causal relationship between genus Oxalobacter and kidney stones. The association between gut microbiota and kidney stones does not solely depend on the presence of genus Oxalobacter/Oxalobacter formigenes. A more integrated approach using multiple omics platforms is needed to better understand the pathogenesis of kidney stones in the context of complex gene-environment interactions over time.
Collapse
Affiliation(s)
- Minghui Liu
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Youjie Zhang
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Jian Wu
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Meng Gao
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Zewu Zhu
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Department of Internal Medicine, Section Endocrinology, Yale University School of Medicine, New Haven, CT, United States
| | - Hequn Chen
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
23
|
Khan SR, Canales BK. Proposal for pathogenesis-based treatment options to reduce calcium oxalate stone recurrence. Asian J Urol 2023; 10:246-257. [PMID: 37538166 PMCID: PMC10394280 DOI: 10.1016/j.ajur.2023.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 12/02/2022] [Accepted: 01/18/2023] [Indexed: 08/05/2023] Open
Abstract
Objective Prevalence of kidney stone disease continues to increase globally with recurrence rates between 30% and 50% despite technological and scientific advances. Reduction in recurrence would improve patient outcomes and reduce cost and stone morbidities. Our objective was to review results of experimental studies performed to determine the efficacy of readily available compounds that can be used to prevent recurrence. Methods All relevant literature up to October 2020, listed in PubMed is reviewed. Results Clinical guidelines endorse the use of evidence-based medications, such as alkaline agents and thiazides, to reduce urinary mineral supersaturation and recurrence. However, there may be additional steps during stone pathogenesis where medications could moderate stone risk. Idiopathic calcium oxalate stones grow attached to Randall's plaques or plugs. Results of clinical and experimental studies suggest involvement of reactive oxygen species and oxidative stress in the formation of both the plaques and plugs. The renin-angiotensin-aldosterone system (RAAS), nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, mitochondria, and NOD-like receptor pyrin domain containing-3 (NLRP3) inflammasome have all been implicated at specific steps during stone pathogenesis in animal models. Conclusion In addition to supersaturation-reducing therapies, the use of anti-oxidants, free radical scavengers, and inhibitors of NADPH oxidase, NLRP3 inflammasome, and RAAS may prove beneficial for stone prevention. Compounds such as statins and angiotensin converting enzyme inhibitors are already in use as therapeutics for hypertension and cardio-vascular disease and have previously shown to reduce calcium oxalate nephrolithiasis in rats. Although clinical evidence for their use in stone prevention in humans is limited, experimental data support they be considered along with standard evidence-based medications and clinical expertise when patients are being counselled for stone prevention.
Collapse
Affiliation(s)
- Saeed R. Khan
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, USA
| | | |
Collapse
|
24
|
Wang J, Chen G, Chen H, Chen J, Su Q, Zhuang W. Exploring the characteristics of gut microbiome in patients of Southern Fujian with hypocitraturia urolithiasis and constructing clinical diagnostic models. Int Urol Nephrol 2023:10.1007/s11255-023-03662-6. [PMID: 37294502 DOI: 10.1007/s11255-023-03662-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 06/04/2023] [Indexed: 06/10/2023]
Abstract
PURPOSE Hypocitraturia is an important cause of urolithiasis. Exploring the characteristics of the gut microbiome (GMB) of hypocitriuria urolithiasis (HCU) patients can provide new ideas for the treatment and prevention of urolithiasis. METHODS The 24 h urinary citric acid excretion of 19 urolithiasis patients was measured, and patients were divided into the HCU group and the normal citrate urolithiasis (NCU) group. The 16 s ribosomal RNA (rRNA) was used to detect GMB composition differences and construct operational taxonomic units (OTUs) coexistence networks. The key bacterial community was determined by Lefse analysis, Metastats analysis and RandomForest analysis. Redundancy analysis (RDA) and Pearson correlation analysis visualized the correlation between key OTUs and clinical features and then established the disease diagnosis model of microbial-clinical indicators. Finally, PICRUSt2 was used to explore the metabolic pathway of related GMB in HCU patients. RESULTS The alpha diversity of GMB in HCU group was increased and Beta diversity analysis suggested significant differences between HCU and NCU groups, which was related to renal function damage and urinary tract infection. Ruminococcaceae_ge and Turicibacter are the characteristic bacterial groups of HCU. Correlation analysis showed that the characteristic bacterial groups were significantly associated with various clinical features. Based on this, the diagnostic models of microbiome-clinical indicators in HCU patients were constructed with the areas under the curve (AUC) of 0.923 and 0.897, respectively. Genetic and metabolic processes of HCU are affected by changes in GMB abundance. CONCLUSION GMB disorder may be involved in the occurrence and clinical characteristics of HCU by influencing genetic and metabolic pathways. The new microbiome-clinical indicator diagnostic model is effective.
Collapse
Affiliation(s)
- Jialiang Wang
- Department of Urology, The Second Affiliated Hospital of Fujian Medical University, Licheng District Zhongshan North Road, Quanzhou, 362000, Fujian, China
| | - Guofeng Chen
- Department of Urology, The Second Affiliated Hospital of Fujian Medical University, Licheng District Zhongshan North Road, Quanzhou, 362000, Fujian, China
| | - Heyi Chen
- Department of Urology, The Second Affiliated Hospital of Fujian Medical University, Licheng District Zhongshan North Road, Quanzhou, 362000, Fujian, China
| | - Jiabi Chen
- Department of Urology, The Second Affiliated Hospital of Fujian Medical University, Licheng District Zhongshan North Road, Quanzhou, 362000, Fujian, China
| | - Qingfu Su
- Department of Urology, The Second Affiliated Hospital of Fujian Medical University, Licheng District Zhongshan North Road, Quanzhou, 362000, Fujian, China.
| | - Wei Zhuang
- Department of Urology, The Second Affiliated Hospital of Fujian Medical University, Licheng District Zhongshan North Road, Quanzhou, 362000, Fujian, China.
| |
Collapse
|
25
|
Chen T, Qian B, Zou J, Luo P, Zou J, Li W, Chen Q, Zheng L. Oxalate as a potent promoter of kidney stone formation. Front Med (Lausanne) 2023; 10:1159616. [PMID: 37342493 PMCID: PMC10278359 DOI: 10.3389/fmed.2023.1159616] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/09/2023] [Indexed: 06/23/2023] Open
Abstract
Kidney stones are among the most prevalent urological diseases, with a high incidence and recurrence rate. Treating kidney stones has been greatly improved by the development of various minimally invasive techniques. Currently, stone treatment is relatively mature. However, most current treatment methods are limited to stones and cannot effectively reduce their incidence and recurrence. Therefore, preventing disease occurrence, development, and recurrence after treatment, has become an urgent issue. The etiology and pathogenesis of stone formation are key factors in resolving this issue. More than 80% of kidney stones are calcium oxalate stones. Several studies have studied the formation mechanism of stones from the metabolism of urinary calcium, but there are few studies on oxalate, which plays an equally important role in stone formation. Oxalate and calcium play equally important roles in calcium oxalate stones, whereas the metabolism and excretion disorders of oxalate play a crucial role in their occurrence. Therefore, starting from the relationship between renal calculi and oxalate metabolism, this work reviews the occurrence of renal calculi, oxalate absorption, metabolism, and excretion mechanisms, focusing on the key role of SLC26A6 in oxalate excretion and the regulatory mechanism of SLC26A6 in oxalate transport. This review provides some new clues for the mechanism of kidney stones from the perspective of oxalate to improve the understanding of the role of oxalate in the formation of kidney stones and to provide suggestions for reducing the incidence and recurrence rate of kidney stones.
Collapse
Affiliation(s)
- Tao Chen
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, Jiangxi, China
| | - Biao Qian
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, Jiangxi, China
| | - Junrong Zou
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, Jiangxi, China
| | - Peiyue Luo
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, Jiangxi, China
| | - Jun Zou
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, Jiangxi, China
| | - Wei Li
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, Jiangxi, China
| | - Qi Chen
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, Jiangxi, China
| | - Liying Zheng
- Department of Graduate, The First Affiliated Hospital of Ganna Medical University, Ganzhou, Jiangxi, China
| |
Collapse
|
26
|
Wang Y, Sun J, Xie S, Zhou Y, Wang T, Liu Z, Li C, Gao L, Pan T. Increased abundance of bacteria of the family Muribaculaceae achieved by fecal microbiome transplantation correlates with the inhibition of kidney calcium oxalate stone deposition in experimental rats. Front Cell Infect Microbiol 2023; 13:1145196. [PMID: 37313343 PMCID: PMC10258309 DOI: 10.3389/fcimb.2023.1145196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 03/27/2023] [Indexed: 06/15/2023] Open
Abstract
Background The incidence of nephrolithiasis is increasing rapidly worldwide. Calcium oxalate is the most common constituent, contributing to approximately 80% of all kidney stones. The gut microbiome, through its oxalate-degrading ability, may play a role in decreasing morbidity due to urinary calculus. Fecal microbiome transplantation (FMT) has been reported to be effective in restoring the gastrointestinal microbial community in different conditions. The transplantation of whole communities that have oxalate-degrading function may be a more effective strategy than the transplantation of isolated strains. Methods FMT was carried out in male guinea pigs and male Sprague-Dawley laboratory rats (SDRs). Fresh feces were collected from guinea pigs housed in metabolic cages. SDRs were divided into four groups: two groups received standard rat chow (SC) (groups SC and SC + FMT), and two groups were fed a 5% potassium oxalate diet (OD) (groups OD + phosphate-buffered saline (PBS) and OD + FMT). On day 14, groups OD + PBS, OD + FMT, and SC + FMT received either PBS or guinea pig feces by esophageal gavage. The composition of the microbiota of guinea pigs and SDRs was analyzed using a 16S rRNA gene sequencing approach. Biochemical analysis of urine samples from SDRs revealed the presence of calcium oxalate (CaOx) crystals, which were presumed to originate from kidney stones. Renal function was examined using real-time PCR analysis and immunohistochemical staining for renin, angiotensin-converting enzyme, and osteopontin (OPN) expression. Results FMT resulted in a gut microbiota that was a mixture of guinea pig and SDR bacteria. A microbial network involving Muribaculaceae, Lactobacillus, and Bifidobacterium was activated by FMT in group OD + FMT. As a result, urinary oxalate, calcium, uric acid, creatinine and urea in urine samples were reduced significantly. Similarly, significant reduction of uric acid and blood urea nitrogen to creatinine ratio in serum samples was observed (p < 0.05). Microscopic observations revealed a high CaOx crystal score (4+) in the kidneys of rats in group OD + PBS, whereas a lower score (2+) was observed in the rats in group OD + FMT. Up-regulation of OPN and down-regulation of renin were also associated with FMT. Conclusion A microbial network involving Muribaculaceae and other oxalate-degrading bacteria achieved by FMT was capable of reducing urinary oxalate excretion and CaOx crystal deposition in the kidney through increasing intestinal oxalate degradation. FMT may exert a renoprotective function in oxalate-related kidney stones.
Collapse
Affiliation(s)
- Yan Wang
- Department of Urology, General Hospital of Central Theater Command of Chinese People’s Liberation Army, Wuhan, Hubei, China
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - JinBo Sun
- Department of Urology, General Hospital of Central Theater Command of Chinese People’s Liberation Army, Wuhan, Hubei, China
| | - Sen Xie
- Department of Urology, General Hospital of Central Theater Command of Chinese People’s Liberation Army, Wuhan, Hubei, China
| | - Yu Zhou
- Department of Urology, General Hospital of Central Theater Command of Chinese People’s Liberation Army, Wuhan, Hubei, China
| | - Tao Wang
- Department of Urology, General Hospital of Central Theater Command of Chinese People’s Liberation Army, Wuhan, Hubei, China
| | - ZhenYu Liu
- Department of Urology, General Hospital of Central Theater Command of Chinese People’s Liberation Army, Wuhan, Hubei, China
| | - ChaoSheng Li
- Department of Urology, General Hospital of Central Theater Command of Chinese People’s Liberation Army, Wuhan, Hubei, China
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Lei Gao
- Department of Urology, General Hospital of Central Theater Command of Chinese People’s Liberation Army, Wuhan, Hubei, China
| | - TieJun Pan
- Department of Urology, General Hospital of Central Theater Command of Chinese People’s Liberation Army, Wuhan, Hubei, China
| |
Collapse
|
27
|
Li J, Huang S, Liu S, Liao X, Yan S, Liu Q. SLC26 family: a new insight for kidney stone disease. Front Physiol 2023; 14:1118342. [PMID: 37304821 PMCID: PMC10247987 DOI: 10.3389/fphys.2023.1118342] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 05/18/2023] [Indexed: 06/13/2023] Open
Abstract
The solute-linked carrier 26 (SLC26) protein family is comprised of multifunctional transporters of substrates that include oxalate, sulphate, and chloride. Disorders of oxalate homeostasis cause hyperoxalemia and hyperoxaluria, leading to urinary calcium oxalate precipitation and urolithogenesis. SLC26 proteins are aberrantly expressed during kidney stone formation, and consequently may present therapeutic targets. SLC26 protein inhibitors are in preclinical development. In this review, we integrate the findings of recent reports with clinical data to highlight the role of SLC26 proteins in oxalate metabolism during urolithogenesis, and discuss limitations of current studies and potential directions for future research.
Collapse
Affiliation(s)
- Jialin Li
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Sigen Huang
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Shengyin Liu
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Xinzhi Liao
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Sheng Yan
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Quanliang Liu
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| |
Collapse
|
28
|
Yu H, Wan X, Yang M, Xie J, Xu K, Wang J, Wang G, Xu P. A large-scale causal analysis of gut microbiota and delirium: A Mendelian randomization study. J Affect Disord 2023; 329:64-71. [PMID: 36842654 DOI: 10.1016/j.jad.2023.02.078] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/16/2023] [Accepted: 02/18/2023] [Indexed: 02/27/2023]
Abstract
BACKGROUND Several studies have linked gut microbiota to human brain activity. This study used Mendelian randomization (MR) to investigate the causal relationship between gut microbes and delirium. METHODS MR was used to select SNPs from large-scale GWAS summary data on 211 gut microbiota taxa and delirium. Inverse variance weighting (IVW), weighted median, and MR-Egger methods were used for statistical analyses. Outliers were assessed using the leave-one-out method. To avoid horizontal pleiotropy, we performed the MR-PRESSO and MR-Egger intercept tests. Cochran's Q and I2 values for IVW and MR-Egger were used to assess heterogeneity. RESULTS IVW suggested that genetic prediction of the family Desulfovibrionaceae (1.784 (1.267-2.512), P = 0.001), order Desulfovibrionales (1.501 (1.058-2.128), P = 0.023), and genus Candidatus Soleaferrea (1.322 (1.052-1.659), P = 0.016) increased the risk of delirium, but the family Oxalobacteraceae (0.841 (0.722-0.981), P = 0.027), and genera Holdemania (0.766 (0.620-0.946), P = 0.013), Ruminococcus gnavus (0.806 (0.661-0.982), P = 0.033), and Eggerthella (0.815 (0.667-0.997), P = 0.047) reduced the risk of delirium. LIMITATIONS (1) Limited sample size, (2) inability to assess gut microbiota interactions, and (3) limited to European populations. CONCLUSION Our results suggest that presence of the microbial family Desulfovibrionaceae, order Desulfovibrionales, and genus Candidatus Soleaferrea increased the risk of delirium, whereas the Oxalobacteraceae family, and the genera Holdemania, Ruminococcus gnavus, and Eggerthella decreased the risk of delirium. However, the potential of gut probiotic interventions in the prevention of perioperative delirium should be emphasized.
Collapse
Affiliation(s)
- Hui Yu
- Department of Joint Surgery, HongHui Hospital, Xi'an Jiaotong University, Xi'an, Shanxi 710054, China
| | - Xianjie Wan
- Department of Joint Surgery, HongHui Hospital, Xi'an Jiaotong University, Xi'an, Shanxi 710054, China
| | - Mingyi Yang
- Department of Joint Surgery, HongHui Hospital, Xi'an Jiaotong University, Xi'an, Shanxi 710054, China
| | - Jiale Xie
- Department of Joint Surgery, HongHui Hospital, Xi'an Jiaotong University, Xi'an, Shanxi 710054, China
| | - Ke Xu
- Department of Joint Surgery, HongHui Hospital, Xi'an Jiaotong University, Xi'an, Shanxi 710054, China
| | - Jiachen Wang
- Department of Joint Surgery, HongHui Hospital, Xi'an Jiaotong University, Xi'an, Shanxi 710054, China
| | - Guoqiang Wang
- Department of Joint Surgery, HongHui Hospital, Xi'an Jiaotong University, Xi'an, Shanxi 710054, China
| | - Peng Xu
- Department of Joint Surgery, HongHui Hospital, Xi'an Jiaotong University, Xi'an, Shanxi 710054, China.
| |
Collapse
|
29
|
Peerapen P, Thongboonkerd V. Kidney Stone Prevention. Adv Nutr 2023; 14:555-569. [PMID: 36906146 DOI: 10.1016/j.advnut.2023.03.002] [Citation(s) in RCA: 77] [Impact Index Per Article: 77.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/14/2023] [Accepted: 03/03/2023] [Indexed: 03/11/2023] Open
Abstract
Kidney stone disease (KSD) (alternatively nephrolithiasis or urolithiasis) is a global health care problem that affects almost people in developed and developing countries. Its prevalence has been continuously increasing with a high recurrence rate after stone removal. Although effective therapeutic modalities are available, preventive strategies for both new and recurrent stones are required to reduce physical and financial burdens of KSD. To prevent kidney stone formation, its etiology and risk factors should be first considered. Low urine output and dehydration are the common risks of all stone types, whereas hypercalciuria, hyperoxaluria, and hypocitraturia are the major risks of calcium stones. In this article, up-to-date knowledge on strategies (nutrition-based mainly) to prevent KSD is provided. Important roles of fluid intake (2.5-3.0 L/d), diuresis (>2.0-2.5 L/d), lifestyle and habit modifications (for example, maintain normal body mass index, fluid compensation for working in high-temperature environment, and avoid cigarette smoking), and dietary management [for example, sufficient calcium at 1000-1200 mg/d, limit sodium at 2 or 3-5 g/d of sodium chloride (NaCl), limit oxalate-rich foods, avoid vitamin C and vitamin D supplements, limit animal proteins to 0.8-1.0 g/kg body weight/d but increase plant proteins in patients with calcium and uric acid stone and those with hyperuricosuria, increase proportion of citrus fruits, and consider lime powder supplementation] are summarized. Moreover, uses of natural bioactive products (for example, caffeine, epigallocatechin gallate, and diosmin), medications (for example, thiazides, alkaline citrate, other alkalinizing agents, and allopurinol), bacterial eradication, and probiotics are also discussed. Adv Nutr 2023;x:xx-xx.
Collapse
Affiliation(s)
- Paleerath Peerapen
- Medical Proteomics Unit, Research Department, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Visith Thongboonkerd
- Medical Proteomics Unit, Research Department, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
30
|
Hong SY, Xia QD, Yang YY, Li C, Zhang JQ, Xu JZ, Qin BL, Xun Y, Wang SG. The role of microbiome: a novel insight into urolithiasis. Crit Rev Microbiol 2023; 49:177-196. [PMID: 35776498 DOI: 10.1080/1040841x.2022.2045899] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Urolithiasis, referred to as the formation of stones in the urinary tract, is a common disease with growing prevalence and high recurrence rate worldwide. Although researchers have endeavoured to explore the mechanism of urinary stone formation for novel effective therapeutic and preventative measures, the exact aetiology and pathogenesis remain unclear. Propelled by sequencing technologies and culturomics, great advances have been made in understanding the pivotal contribution of the human microbiome to urolithiasis. Indeed, there are diverse and abundant microbes interacting with the host in the urinary tract, overturning the dogma that urinary system, and urine are sterile. The urinary microbiome of stone formers was clearly distinct from healthy individuals. Besides, dysbiosis of the intestinal microbiome appears to be involved in stone formation through the gut-kidney axis. Thus, the human microbiome has potential significant implications for the aetiology of urolithiasis, providing a novel insight into diagnostic, therapeutic, and prognostic strategies. Herein, we review and summarize the landmark microbiome studies in urolithiasis and identify therapeutic implications, challenges, and future perspectives in this rapidly evolving field. To conclude, a new front has opened with the evidence for a microbial role in stone formation, offering potential applications in the prevention, and treatment of urolithiasis.
Collapse
Affiliation(s)
- Sen-Yuan Hong
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Qi-Dong Xia
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Yuan-Yuan Yang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Cong Li
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Jia-Qiao Zhang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Jin-Zhou Xu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Bao-Long Qin
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Yang Xun
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Shao-Gang Wang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| |
Collapse
|
31
|
Choi HW, Lee KW, Kim YH. Microbiome in urological diseases: Axis crosstalk and bladder disorders. Investig Clin Urol 2023; 64:126-139. [PMID: 36882171 PMCID: PMC9995957 DOI: 10.4111/icu.20220357] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/29/2022] [Accepted: 01/30/2023] [Indexed: 03/02/2023] Open
Abstract
Since the identification of the human urinary microbiome, numerous studies have characterized this microbial community and improved our knowledge of its association with urinary diseases. This association between urinary diseases and microbiota is not confined to the urinary microbiota; it is interconnected with the microbiota of other organs. The gastrointestinal, vaginal, kidney, and bladder microbiota all affect urinary diseases because they work with their respective organs to control the growth and operation of the immune, metabolic, and nervous systems through dynamic bidirectional communication along the bladder-centered axis. Therefore, disturbances in the microbial communities may result in the emergence of urinary diseases. In this review, we describe the increasing and intriguing evidence of complicated and critical relationships that may contribute to the development and progression of urinary diseases through disruption of the microbiota in various organs.
Collapse
Affiliation(s)
- Hae Woong Choi
- Division of Life Sciences, Korea University, Seoul, Korea
| | - Kwang Woo Lee
- Department of Urology, Soonchunhyang University Bucheon Hospital, Bucheon, Korea
| | - Young Ho Kim
- Department of Urology, Soonchunhyang University Bucheon Hospital, Bucheon, Korea.
| |
Collapse
|
32
|
Abstract
Oxalate homeostasis is maintained through a delicate balance between endogenous sources, exogenous supply and excretion from the body. Novel studies have shed light on the essential roles of metabolic pathways, the microbiome, epithelial oxalate transporters, and adequate oxalate excretion to maintain oxalate homeostasis. In patients with primary or secondary hyperoxaluria, nephrolithiasis, acute or chronic oxalate nephropathy, or chronic kidney disease irrespective of aetiology, one or more of these elements are disrupted. The consequent impairment in oxalate homeostasis can trigger localized and systemic inflammation, progressive kidney disease and cardiovascular complications, including sudden cardiac death. Although kidney replacement therapy is the standard method for controlling elevated plasma oxalate concentrations in patients with kidney failure requiring dialysis, more research is needed to define effective elimination strategies at earlier stages of kidney disease. Beyond well-known interventions (such as dietary modifications), novel therapeutics (such as small interfering RNA gene silencers, recombinant oxalate-degrading enzymes and oxalate-degrading bacterial strains) hold promise to improve the outlook of patients with oxalate-related diseases. In addition, experimental evidence suggests that anti-inflammatory medications might represent another approach to mitigating or resolving oxalate-induced conditions.
Collapse
Affiliation(s)
- Theresa Ermer
- Department of Surgery, Division of Thoracic Surgery, Yale School of Medicine, New Haven, CT, USA
| | - Lama Nazzal
- Department of Medicine, NYU Grossman School of Medicine, New York, NY, USA
| | - Maria Clarissa Tio
- Division of Nephrology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Sushrut Waikar
- Department of Medicine, Section of Nephrology, Boston University, Boston, MA, USA
| | - Peter S Aronson
- Department of Internal Medicine, Section of Nephrology, Yale School of Medicine, New Haven, CT, USA
| | - Felix Knauf
- Department of Internal Medicine, Section of Nephrology, Yale School of Medicine, New Haven, CT, USA.
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
33
|
Miller AW, Penniston KL, Fitzpatrick K, Agudelo J, Tasian G, Lange D. Mechanisms of the intestinal and urinary microbiome in kidney stone disease. Nat Rev Urol 2022; 19:695-707. [PMID: 36127409 PMCID: PMC11234243 DOI: 10.1038/s41585-022-00647-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/05/2022] [Indexed: 02/08/2023]
Abstract
Kidney stone disease affects ~10% of the global population and the incidence continues to rise owing to the associated global increase in the incidence of medical conditions associated with kidney stone disease including, for example, those comprising the metabolic syndrome. Considering that the intestinal microbiome has a substantial influence on host metabolism, that evidence has suggested that the intestinal microbiome might have a role in maintaining oxalate homeostasis and kidney stone disease is unsurprising. In addition, the discovery that urine is not sterile but, like other sites of the human body, harbours commensal bacterial species that collectively form a urinary microbiome, is an additional factor that might influence the induction of crystal formation and stone growth directly in the kidney. Collectively, the microbiomes of the host could influence kidney stone disease at multiple levels, including intestinal oxalate absorption and direct crystal formation in the kidneys.
Collapse
Affiliation(s)
- Aaron W Miller
- Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, OH, USA
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic, Cleveland, OH, USA
| | - Kristina L Penniston
- Department of Urology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Kate Fitzpatrick
- Division of Urology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - José Agudelo
- Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Gregory Tasian
- Division of Urology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Dirk Lange
- The Stone Centre at Vancouver General Hospital, Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
34
|
The advances of calcium oxalate calculi associated drugs and targets. Eur J Pharmacol 2022; 935:175324. [DOI: 10.1016/j.ejphar.2022.175324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/23/2022] [Accepted: 10/11/2022] [Indexed: 11/20/2022]
|
35
|
Mehra Y, Rajesh NG, Viswanathan P. Analysis and Characterization of Lactobacillus paragasseri and Lacticaseibacillus paracasei: Two Probiotic Bacteria that Can Degrade Intestinal Oxalate in Hyperoxaluric Rats. Probiotics Antimicrob Proteins 2022; 14:854-872. [PMID: 35699895 DOI: 10.1007/s12602-022-09958-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2022] [Indexed: 10/18/2022]
Abstract
In the present study, we characterized the probiotic properties of two commercially available bacterial strains, Lactobacillus paragasseri UBLG-36 and Lacticaseibacillus paracasei UBLPC-87, and evaluated their ability to degrade oxalate in vitro and in a hyperoxaluria-induced nephrolithiasis rat model. UBLG-36 harboring two oxalate catabolizing genes, oxalyl coenzyme A decarboxylase (oxc) and formyl coenzyme A transferase (frc), was previously shown to degrade oxalate in vitro effectively. Here, we show that UBLPC-87, lacking both oxc and frc, could still degrade oxalate in vitro. Both these strains harbored several potential putative probiotic genes that may have conferred them the ability to survive in low pH and 0.3% bile, resist antibiotic stress, show antagonistic activity against pathogenic bacteria, and adhere to epithelial cell surfaces. We further evaluated if UBLG-36 and UBLPC-87 could degrade oxalate in vivo and prevent hyperoxaluria-induced nephrolithiasis in rats. We observed that rats treated with 4.5% sodium oxalate (NaOx) developed hyperoxaluria and renal stones. However, when pre-treated with UBLG-36 or UBLPC-87 before administering 4.5% NaOx, the rats were protected against several pathophysiological manifestations of hyperoxaluria. Compared to the hyperoxaluric rats, the probiotic pre-treated rats showed reduced urinary excretion of oxalate and urea (p < 0.05), decreased serum blood urea nitrogen and creatinine (p < 0.05), alleviated stone formation and renal histological damage, and an overall decrease in renal tissue oxalate and calcium content (p < 0.05). Taken together, both UBLG-36 and UBLPC-87 are effective oxalate catabolizing probiotics capable of preventing hyperoxaluria and alleviating renal damage associated with nephrolithiasis.
Collapse
Affiliation(s)
- Yogita Mehra
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Nachiappa Ganesh Rajesh
- Department of Pathology, Jawaharlal Institute of Postgraduate Medical Education & Research, Pondicherry, India
| | - Pragasam Viswanathan
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India.
| |
Collapse
|
36
|
Probiotic Oxalate-Degrading Bacteria: New Insight of Environmental Variables and Expression of the oxc and frc Genes on Oxalate Degradation Activity. Foods 2022; 11:foods11182876. [PMID: 36141002 PMCID: PMC9498451 DOI: 10.3390/foods11182876] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/05/2022] [Accepted: 09/07/2022] [Indexed: 11/30/2022] Open
Abstract
Oxalate, a compound produced by many edible plants and as a terminal metabolite in the liver of mammals, is a toxin that has a detrimental role to human health. Humans and other mammals do possess enzymatic systems to degrade oxalate. Moreover, numerous oxalate-degrading bacteria reside in the mammalian gut and, thus, provide an important function for hosts. The current review focuses on the environmental factors that influence the efficacy of probiotic oxalate-degrading bacteria, relative to oxalate metabolism. We describe the mechanism of oxalate catabolism and its consumption by obligate and facultative anaerobic oxalate-degrading bacteria, in both in vitro and in vivo environments. We also explore the environmental variables that impact oxalate degradation. Studies on single species degrade oxalate have not shown a strong impact on oxalate metabolism, especially in high oxalate conditions such as consumption of foods high in oxalate (such as coffee and chocolate for humans or halogeton in animal feed). Considering effective variables which enhance oxalate degradation could be used in application of effective probiotic as a therapeutic tool in individuals with hyperoxaluria. This study indicates probiotics can be considered a good source of naturally occurring oxalate degrading agent in human colon.
Collapse
|
37
|
Favero C, Giordano L, Mihaila SM, Masereeuw R, Ortiz A, Sanchez-Niño MD. Postbiotics and Kidney Disease. Toxins (Basel) 2022; 14:toxins14090623. [PMID: 36136562 PMCID: PMC9501217 DOI: 10.3390/toxins14090623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/26/2022] [Accepted: 09/01/2022] [Indexed: 11/16/2022] Open
Abstract
Chronic kidney disease (CKD) is projected to become the fifth global cause of death by 2040 as a result of key shortcomings in the current methods available to diagnose and treat kidney diseases. In this regard, the novel holobiont concept, used to describe an individual host and its microbial community, may pave the way towards a better understanding of kidney disease pathogenesis and progression. Microbiota-modulating or -derived interventions include probiotics, prebiotics, synbiotics and postbiotics. As of 2019, the concept of postbiotics was updated by the International Scientific Association of Probiotics and Prebiotics (ISAPP) to refer to preparations of inanimate microorganisms and/or their components that confer a health benefit to the host. By explicitly excluding purified metabolites without a cellular biomass, any literature making use of such term is potentially rendered obsolete. We now review the revised concept of postbiotics concerning their potential clinical applications and research in kidney disease, by discussing in detail several formulations that are undergoing preclinical development such as GABA-salt for diet-induced hypertension and kidney injury, sonicated Lactobacillus paracasei in high fat diet-induced kidney injury, GABA-salt, lacto-GABA-salt and postbiotic-GABA-salt in acute kidney injury, and O. formigenes lysates for hyperoxaluria. Furthermore, we provide a roadmap for postbiotics research in kidney disease to expedite clinical translation.
Collapse
Affiliation(s)
- Chiara Favero
- Department of Nephrology and Hypertension, IIS-Fundacion Jimenez Diaz UAM, 28049 Madrid, Spain
| | - Laura Giordano
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Silvia Maria Mihaila
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Rosalinde Masereeuw
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Alberto Ortiz
- Department of Nephrology and Hypertension, IIS-Fundacion Jimenez Diaz UAM, 28049 Madrid, Spain
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS) 2040, 28049 Madrid, Spain
- Departamento de Medicina, Facultad de Medicina, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Correspondence: (A.O.); (M.D.S.-N.)
| | - Maria Dolores Sanchez-Niño
- Department of Nephrology and Hypertension, IIS-Fundacion Jimenez Diaz UAM, 28049 Madrid, Spain
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS) 2040, 28049 Madrid, Spain
- Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Correspondence: (A.O.); (M.D.S.-N.)
| |
Collapse
|
38
|
The effects of drinking bicarbonate-rich mineral water in calcium oxalate stone formers: an open label prospective randomized controlled study in an Asian cohort. Int Urol Nephrol 2022; 54:2133-2140. [PMID: 35781772 DOI: 10.1007/s11255-022-03256-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 05/14/2022] [Indexed: 10/17/2022]
Abstract
PURPOSE To examine the effects of drinking bicarbonate-rich mineral water in patients with calcium oxalate stones. MATERIALS AND METHODS This was an open label prospective randomized controlled study comparing the effects of a bicarbonate-rich mineral water versus plain water on urine biochemistry in patients with calcium oxalate stones. The mineral water group were instructed to consume 1.25 L of mineral water per day at meal times, and supplemented by plain water. Their total intake was up to 3 L/day. Control group consumed only plain water up to 3 L/day. 24 h urine analyses were performed at baseline, 1, 4, 8 and 12 weeks after starting protocol. RESULTS 58 patients were recruited for the study. 51 patients were included in the final analysis. Baseline data were comparable between the two groups. Over the course of 12 weeks, compared to patients drinking plain water, those drinking mineral water had higher overall urinary volume (difference = 644.0 ml/24 h, 95% CI = (206.7, 1081.3)), higher overall urinary magnesium (difference = 1.894 mmol/24 h, 95% CI = (1.006, 2.782)), and pH (difference = 0.477, 95% CI = (0.149, 0.804)). However, there was no difference in urinary oxalate and Tiselius index. Mineral water group had net increase of urinary citrate (at each study point compared to baseline) which was sustained until week 12, whereas plain water group showed no significant change. CONCLUSIONS Drinking bicarbonate-rich mineral water in calcium oxalate stone formers increased stone inhibitors such as magnesium, citrate and moderate degree of urinary alkalinization compared to patients drinking plain water, but it did not alter Tiselius index or urinary oxalate after 12 weeks.
Collapse
|
39
|
D'Ambrosio V, Moochhala S, Unwin RJ, Ferraro PM. Why is diagnosis, investigation and improved management of kidney stone disease important? Non-pharmacological and pharmacological treatments for nephrolithiasis. Expert Rev Clin Pharmacol 2022; 15:407-414. [PMID: 35612529 DOI: 10.1080/17512433.2022.2082943] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Progress in the medical treatment and management of nephrolithiasis has been limited to date and continues to depend on urinary metabolic screening to assess excretion of the main stone constituents, factors determining stone solubility and precipitation, and on dietary and lifestyle recommendations. AREAS COVERED In this review, we try to highlight some of the broader aspects of kidney stone disease in relation to recent epidemiological and pathophysiological findings, and emerging new treatments. Specifically, this review will cover recent evidence on the association between metabolic risk factors and kidney stone disease, dietary risk factors and dietary interventions to prevent kidney stones, and how genomics, metabolomics and proteomics may improve diagnosis and treatment of this troublesome, if rarely fatal, condition. PubMed was used to identify the most suitable references according to our search strategy; only full manuscripts were included. EXPERT OPINION What is emerging is that kidney stone disease is not an isolated disorder, but is systemic in nature with links to important and common co-morbidities such as diabetes, hypertension, cardiovascular disease, and chronic kidney disease. These associations support the need to take nephrolithiasis seriously as a medical condition and to adopt a more holistic approach to its investigation and treatment.
Collapse
Affiliation(s)
| | - Shabbir Moochhala
- Department of Renal Medicine, Royal Free Hospital Trust and Division of Medicine, University College London UK
| | - Robert J Unwin
- Department of Renal Medicine, Royal Free Hospital Trust and Division of Medicine, University College London UK
| | - Pietro M Ferraro
- Università Cattolica del Sacro Cuore, Roma, Italia.,U.O.S. Terapia Conservativa della Malattia Renale Cronica, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italia
| |
Collapse
|
40
|
Demoulin N, Aydin S, Gillion V, Morelle J, Jadoul M. Pathophysiology and Management of Hyperoxaluria and Oxalate Nephropathy: A Review. Am J Kidney Dis 2022; 79:717-727. [PMID: 34508834 DOI: 10.1053/j.ajkd.2021.07.018] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 07/27/2021] [Indexed: 01/11/2023]
Abstract
Hyperoxaluria results from either inherited disorders of glyoxylate metabolism leading to hepatic oxalate overproduction (primary hyperoxaluria), or increased intestinal oxalate absorption (secondary hyperoxaluria). Hyperoxaluria may lead to urinary supersaturation of calcium oxalate and crystal formation, causing urolithiasis and deposition of calcium oxalate crystals in the kidney parenchyma, a condition termed oxalate nephropathy. Considerable progress has been made in the understanding of pathophysiological mechanisms leading to hyperoxaluria and oxalate nephropathy, whose diagnosis is frequently delayed and prognosis too often poor. Fortunately, novel promising targeted therapeutic approaches are on the horizon in patients with primary hyperoxaluria. Patients with secondary hyperoxaluria frequently have long-standing hyperoxaluria-enabling conditions, a fact suggesting the role of triggers of acute kidney injury such as dehydration. Current standard of care in these patients includes management of the underlying cause, high fluid intake, and use of calcium supplements. Overall, prompt recognition of hyperoxaluria and associated oxalate nephropathy is crucial because optimal management may improve outcomes.
Collapse
Affiliation(s)
- Nathalie Demoulin
- Division of Nephrology, Cliniques Universitaires Saint-Luc, Brussels, Belgium; Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium.
| | - Selda Aydin
- Department of Pathology, Cliniques Universitaires Saint-Luc, Brussels, Belgium; Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Valentine Gillion
- Division of Nephrology, Cliniques Universitaires Saint-Luc, Brussels, Belgium; Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Johann Morelle
- Division of Nephrology, Cliniques Universitaires Saint-Luc, Brussels, Belgium; Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Michel Jadoul
- Division of Nephrology, Cliniques Universitaires Saint-Luc, Brussels, Belgium; Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| |
Collapse
|
41
|
Yuan C, Jin X, He Y, Liu Y, Xiang L, Wang K. Association of dietary patterns with gut microbiota in kidney stone and non-kidney stone individuals. Urolithiasis 2022; 50:389-399. [PMID: 35460343 DOI: 10.1007/s00240-022-01325-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 04/02/2022] [Indexed: 02/05/2023]
Abstract
The dietary patterns are closely associated with gut microbiota, which has been proved associated with kidney stones. To assess the association among the dietary patterns, gut microbiota, and kidney stones, patients with calcium oxalate stones and participants without kidney stones were recruited in West China Hospital and were divided into the low nephrolithiasis risk (LNR) and high nephrolithiasis risk (HNR) dietary pattern group based on the results of food frequency questionnaires. The genomic DNA of the fecal samples were extracted for 16S ribosomal RNA gene sequencing. The non-kidney stone (NS) group comprised 39 LNR and 45 HNR individuals, while the kidney stone (KS) group consisted of 19 LNR and 50 HNR individuals. The distribution of oxalate in urine (p < 0.01) but not calcium (p = 0.741) was significantly varied among the four groups. Significant difference was found in the dietary patterns of people with KS and NS controls (X2 = 5.744, p = 0.017). Forty-six discriminative bacteria were found among different dietary patterns groups in KS patients and NS controls. Not only gut bacteria such as Pseudomonas, Sphingomonas, Hydrogenoanaerobacterium, Faecalitalea, etc., but also metabolic pathways associated with inflammation, lipid, and mineral metabolism were found more abundant in KS patients with HNR dietary pattern. It is noteworthy that g__Prevotellaceae_UCG_001, g__hgcI_clade, and g__Bradyrhizobium were negatively related to water intake but instead had a positive correlation with salt and meat intake. Our study revealed that gut microbiota with significantly different abundance existed in the HNR dietary patterns compared to the LNR counterparts in both calcium oxalate KS and NS individuals. The dietary patterns may affect the prevention and management of calcium oxalate stones by regulating the homeostasis of gut microbiota.
Collapse
Affiliation(s)
- Chi Yuan
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, No. 37, Guoxue Alley, Chengdu, 610041, Sichuan Province, China
| | - Xi Jin
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, No. 37, Guoxue Alley, Chengdu, 610041, Sichuan Province, China
| | - Yushi He
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, No. 37, Guoxue Alley, Chengdu, 610041, Sichuan Province, China
| | - Yu Liu
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, No. 37, Guoxue Alley, Chengdu, 610041, Sichuan Province, China
| | - Liyuan Xiang
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, No. 37, Guoxue Alley, Chengdu, 610041, Sichuan Province, China
| | - Kunjie Wang
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, No. 37, Guoxue Alley, Chengdu, 610041, Sichuan Province, China.
| |
Collapse
|
42
|
Stepanova N, Akulenko I, Serhiichuk T, Dovbynchuk T, Savchenko S, Tolstanova G. Synbiotic supplementation and oxalate homeostasis in rats: focus on microbiota oxalate-degrading activity. Urolithiasis 2022; 50:249-258. [PMID: 35129638 DOI: 10.1007/s00240-022-01312-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 01/22/2022] [Indexed: 01/08/2023]
Abstract
The present study aimed (i) to evaluate whether ceftriaxone treatment could affect not only intestinal oxalate-degrading bacteria number but also their total activity to degrade oxalate and influence oxalate homeostasis in rats, (ii) and to estimate the ability of commercially available inulin-contained synbiotic to restore fecal oxalate-degrading activity and ceftriaxone-induced disruption of oxalate homeostasis in rats. Twenty-eight female Wistar rats (200-300 g) were randomly divided into four groups (n = 7). Group 1 was treated with vehicle sterile water (0.1 ml, i.m., 14 days); Group 2 received synbiotic (30 mg/kg, per os, 14 days); Group 3 was treated with ceftriaxone (300 mg/kg, i.m., 7 days); Group 4 was supplemented with ceftriaxone and synbiotic. Oxalate-degrading bacteria number and their total activity, urinary and plasma oxalate concentrations were measured on days 1 and 57 after the treatment withdrawal. The redoximetric titration with KMnO4 was adopted to evaluate the total oxalate-degrading activity in highly selective Oxalate Medium. Ceftriaxone treatment reduced total fecal oxalate-degrading activity independently on oxalate-degrading bacteria number and increased urinary and plasma oxalate concentrations. The synbiotic had higher oxalate-degrading activity vs probiotics and was able to restore fecal oxalate-degrading activity and significantly decrease urinary oxalate excretion in antibiotic-treated rats. Total fecal oxalate-degrading activity but not oxalate-degrading bacteria number should be thoroughly examined in the future to develop predictive diagnostics methods, targeted prevention and personalized treatment in kidney stone disease. Synbiotic supplementation had a beneficial effect on the total oxalate-degrading activity of gut microbiota, which resulted in decreased UOx excretion in rats.
Collapse
Affiliation(s)
- Natalia Stepanova
- State Institution, Institute of Nephrology of the National Academy of Medical Sciences of Ukraine, Kyiv, Ukraine.
| | - Iryna Akulenko
- Taras Shevchenko National University of Kyiv, Kyiv, Ukraine.,Department of Clinical Medicine, ESC "Institute of Biology and Medicine", Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | - Tetyana Serhiichuk
- Taras Shevchenko National University of Kyiv, Kyiv, Ukraine.,Department of Microbiology and Immunology, ESC "Institute of Biology and Medicine", Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | - Taisa Dovbynchuk
- Taras Shevchenko National University of Kyiv, Kyiv, Ukraine.,Department of Biology, ESC "Institute of Biology and Medicine", Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | - Svitlana Savchenko
- State Institution, Institute of Nephrology of the National Academy of Medical Sciences of Ukraine, Kyiv, Ukraine
| | | |
Collapse
|
43
|
Dong F, Jiang S, Tang C, Wang X, Ren X, Wei Q, Tian J, Hu W, Guo J, Fu X, Liu L, Patzak A, Persson PB, Gao F, Lai EY, Zhao L. Trimethylamine N-oxide promotes hyperoxaluria-induced calcium oxalate deposition and kidney injury by activating autophagy. Free Radic Biol Med 2022; 179:288-300. [PMID: 34767921 DOI: 10.1016/j.freeradbiomed.2021.11.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/06/2021] [Accepted: 11/08/2021] [Indexed: 12/12/2022]
Abstract
Calcium oxalate (CaOx) is the most common component of kidney stones. Oxidative stress, inflammation and autophagy-induced cell death are the major causes of CaOx crystal deposition and CaOx crystal deposition can further lead to kidney injury. Trimethylamine N-oxide (TMAO), a gut microbiota-derived metabolite, plays an important role in the pathogenesis of many diseases, such as atherosclerosis, diabetes and chronic kidney disease, but the effect of TMAO on hyperoxaluria-induced CaOx crystal deposition and kidney injury remains unknown. We hypothesize that TMAO aggravates CaOx crystal deposition via promoting CaOx-mediated cell death. C57Bl/6 mice were given high-oxalate diet as a model of hyperoxaluria. TMAO was provided via drinking water. Serum TMAO levels increased 15 days after CaOx treatment (6.30 ± 0.17 μmol/L vs. 34.65 ± 8.95 μmol/L). High-oxalate diet induced inflammation, CaOx deposition and kidney injury, which TMAO aggravated. In accordance, TMAO intensified high-oxalate diet induced oxidative stress, autophagy and apoptosis. Moreover, TMAO enhanced CaOx crystal adhesion to HK-2 cells and reduced cell viability (from 88.9 ± 1.6% to 75.0 ± 2.7%). Protein kinase R-like endoplasmic reticulum kinase (PERK) may mediate these TMAO effects, as TMAO promoted PERK phosphorylation. Consistently, PERK knockdown alleviated TMAO-evoked CaOx-autophagy, apoptosis and oxidative stress in HK-2 cells. In conclusion, TMAO can aggravate hyperoxaluria-induced kidney injury by triggering the PERK/ROS pathway, which enhances autophagy, apoptosis and inflammation, and facilitates CaOx crystal deposition in renal tubular cells.
Collapse
Affiliation(s)
- Fang Dong
- Department of Physiology, School of Basic Medical Sciences, and Kidney Disease Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Shan Jiang
- Department of Nephrology, Center of Kidney and Urology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Chun Tang
- Department of Nephrology, Center of Kidney and Urology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Xiaohua Wang
- Department of Nephrology, Center of Kidney and Urology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Xiaoqiu Ren
- Department of Radiation Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Qichun Wei
- Department of Radiation Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Jiong Tian
- Department of Physiology, School of Basic Medical Sciences, and Kidney Disease Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Weipeng Hu
- Department of Physiology, School of Basic Medical Sciences, and Kidney Disease Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Jie Guo
- Department of Physiology, School of Basic Medical Sciences, and Kidney Disease Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Xiaodong Fu
- Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China
| | - Linlin Liu
- Durbrain Medical Laboratory, Hangzhou, 310000, China
| | - Andreas Patzak
- Institute of Vegetative Physiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, 10117, Germany
| | - Pontus B Persson
- Institute of Vegetative Physiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, 10117, Germany
| | - Fei Gao
- Durbrain Medical Laboratory, Hangzhou, 310000, China.
| | - En Yin Lai
- Department of Physiology, School of Basic Medical Sciences, and Kidney Disease Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China; Department of Nephrology, Center of Kidney and Urology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China; Institute of Vegetative Physiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, 10117, Germany.
| | - Liang Zhao
- Department of Physiology, School of Basic Medical Sciences, and Kidney Disease Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China; Department of Nephrology, Center of Kidney and Urology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China; Institute of Vegetative Physiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, 10117, Germany.
| |
Collapse
|
44
|
Whittamore JM, Hatch M. Oxalate Flux Across the Intestine: Contributions from Membrane Transporters. Compr Physiol 2021; 12:2835-2875. [PMID: 34964122 DOI: 10.1002/cphy.c210013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Epithelial oxalate transport is fundamental to the role occupied by the gastrointestinal (GI) tract in oxalate homeostasis. The absorption of dietary oxalate, together with its secretion into the intestine, and degradation by the gut microbiota, can all influence the excretion of this nonfunctional terminal metabolite in the urine. Knowledge of the transport mechanisms is relevant to understanding the pathophysiology of hyperoxaluria, a risk factor in kidney stone formation, for which the intestine also offers a potential means of treatment. The following discussion presents an expansive review of intestinal oxalate transport. We begin with an overview of the fate of oxalate, focusing on the sources, rates, and locations of absorption and secretion along the GI tract. We then consider the mechanisms and pathways of transport across the epithelial barrier, discussing the transcellular, and paracellular components. There is an emphasis on the membrane-bound anion transporters, in particular, those belonging to the large multifunctional Slc26 gene family, many of which are expressed throughout the GI tract, and we summarize what is currently known about their participation in oxalate transport. In the final section, we examine the physiological stimuli proposed to be involved in regulating some of these pathways, encompassing intestinal adaptations in response to chronic kidney disease, metabolic acid-base disorders, obesity, and following gastric bypass surgery. There is also an update on research into the probiotic, Oxalobacter formigenes, and the basis of its unique interaction with the gut epithelium. © 2021 American Physiological Society. Compr Physiol 11:1-41, 2021.
Collapse
Affiliation(s)
- Jonathan M Whittamore
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Marguerite Hatch
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
45
|
Short-Chain Fatty Acids Reduced Renal Calcium Oxalate Stones by Regulating the Expression of Intestinal Oxalate Transporter SLC26A6. mSystems 2021; 6:e0104521. [PMID: 34783577 PMCID: PMC8594443 DOI: 10.1128/msystems.01045-21] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Renal calcium oxalate (CaOx) stone is a common urologic disease with a high prevalence and recurrence rate. However, short-chain fatty acids (SCFAs) are less often reported in the prevention of urolithiasis. This study aimed to explore the effect of SCFAs on the renal CaOx stone formation and the underlying mechanisms. Ethylene glycol was used to induce renal CaOx crystals in rats. SCFAs (acetate, propionate, or butyrate) were added as supplements to the drinking water with or without antibiotics. Because intestinal oxalate transporters SLC26A6 and SLC26A3 regulate the excretion and absorption of oxalate in the intestine, we injected adeno-associated virus 9 (AAV9)-SLC26A6-shRNA (short hairpin RNA) and AAV9-SLC26A3 into the tail vein of rats to suppress SLC26A6 and overexpress SLC26A3 expression in the intestine, respectively, to explore the role of SLC26A3 and SLC26A6 (SLC26A3/6) in the reduction of renal CaOx crystals induced by SCFAs. Results showed that SCFAs reduced renal CaOx crystals and urinary oxalate levels but, however, increased the abundance of SCFA-producing bacteria and cecum SCFA levels. SCFA supplements still reduced renal crystals and urinary oxalate after gut microbiota depletion. Propionate and butyrate downregulated intestinal oxalate transporter SLC26A3 expression, while acetate and propionate upregulated SLC26A6 expression, both in vivo and in vitro. AAV9-SLC26A3 exerted a protective effect against renal crystals, while AAV9-SLC26A6-shRNA contributed to the renal crystal formation even though the SCFAs were supplemented. In conclusion, SCFAs could reduce urinary oxalate and renal CaOx stones through the oxalate transporter SLC26A6 in the intestine. SCFAs may be new supplements for preventing the formation of renal CaOx stones. IMPORTANCE Some studies found that the relative abundances of short-chain-fatty-acid (SCFA)-producing bacteria were lower in the gut microbiota of renal stone patients than healthy controls. Our previous study demonstrated that SCFAs could reduce the formation of renal calcium oxalate (CaOx) stones, but the mechanism is still unknown. In this study, we found that SCFAs (acetate, propionate, and butyrate) reduced the formation of renal calcium oxalate (CaOx) crystals and the level of urinary oxalate. Depleting gut microbiota increased the amount of renal crystals in model rats, and SCFA supplements reduced renal crystals and urinary oxalate after gut microbiota depletion. Intestinal oxalate transporter SLC26A6 was a direct target of SCFAs. Our findings suggested that SCFAs could reduce urinary oxalate and renal CaOx stones through the oxalate transporter SLC26A6 in the intestine. SCFAs may be new supplements for preventing the formation of renal CaOx stones.
Collapse
|
46
|
Forty Years of Oxalobacter formigenes, a Gutsy Oxalate-Degrading Specialist. Appl Environ Microbiol 2021; 87:e0054421. [PMID: 34190610 DOI: 10.1128/aem.00544-21] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Oxalobacter formigenes, a unique anaerobic bacterium that relies solely on oxalate for growth, is a key oxalate-degrading bacterium in the mammalian intestinal tract. Degradation of oxalate in the gut by O. formigenes plays a critical role in preventing renal toxicity in animals that feed on oxalate-rich plants. The role of O. formigenes in reducing the risk of calcium oxalate kidney stone disease and oxalate nephropathy in humans is less clear, in part due to difficulties in culturing this organism and the lack of studies which have utilized diets in which the oxalate content is controlled. Herein, we review the literature on the 40th anniversary of the discovery of O. formigenes, with a focus on its biology, its role in gut oxalate metabolism and calcium oxalate kidney stone disease, and potential areas of future research. Results from ongoing clinical trials utilizing O. formigenes in healthy volunteers and in patients with primary hyperoxaluria type 1 (PH1), a rare but severe form of calcium oxalate kidney stone disease, are also discussed. Information has been consolidated on O. formigenes strains and best practices to culture this bacterium, which should serve as a good resource for researchers.
Collapse
|
47
|
The Effect of Oxalobacter formigenes Colonization in Patients with Calcium Oxalate Renal Stones in Comparison with Healthy People in Qom: A Case-Control Study. Nephrourol Mon 2021. [DOI: 10.5812/numonthly.115769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background: Urinary stones are a major problem world, and their incidence has increased significantly in recent years. Objectives: This study aimed to develop a simple and rapid molecular method based on PCR and qPCR assays to detect Oxalobacter formigenes (which causes oxalate degradation in intestines) in fecal samples of healthy volunteers and patients with calcium oxalate nephrolithiasis, and determine the amount of urinary oxalate in the two groups. Methods: This study was performed on urine and fecal samples of 73 patients with kidney stones and 52 healthy individuals. After DNA extraction, PCR and qPCR assays were performed on two gene regions of O. formigenes, OXC, and FRC. Also, urine oxalate was measured in the study population using biochemical methods. Results: We found that the presence of O. formigenes could reduce the risk of kidney stones and calcium oxalate stones. In fact, both FRC and OXC genes were involved in the diagnosis of O. formigenes; however, the results based on the FRC gene showed higher efficiency. In addition, the presence or absence of stones did not affect the amount of urinary excretion of oxalate, rather it is affected by diet. Conclusions: Molecular identification of O. formigenes by PCR and qPCR assays allows rapid, specific, and reproducible detection in fecal samples, which also allows immediate processing of these samples in clinical conditions.
Collapse
|
48
|
Meta-analysis of Clinical Microbiome Studies in Urolithiasis Reveal Age, Stone Composition, and Study Location as the Predominant Factors in Urolithiasis-Associated Microbiome Composition. mBio 2021; 12:e0200721. [PMID: 34372696 PMCID: PMC8406293 DOI: 10.1128/mbio.02007-21] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
To determine whether functionally relevant questions associated with the urinary or gut microbiome and urinary stone disease (USD) can be answered from metagenome-wide association studies (MWAS), we performed the most comprehensive meta-analysis of published clinical MWAS in USD to date, using publicly available data published prior to April 2021. Six relevant studies met inclusion criteria. For alpha-diversity, significant differences were noted between USD status, stone composition, sample type, study location, age, diet, and sex. For beta-diversity, significant differences were noted by USD status, stone composition, sample type, study location, antibiotic use (30 days and 12 months before sampling), sex, hypertension, water intake, body habitus, and age. Prevotella and Lactobacillus in the gut and urinary tract, respectively, were associated with healthy individuals, while Enterobacteriaceae was associated with USD in the urine and stones. Paradoxically, other Prevotella strains were also strongly associated with USD in the gut microbiome. When data were analyzed together, USD status, stone composition, age group, and study location were the predominant factors associated with microbiome composition. Meta-analysis showed significant microbiome differences based on USD status, stone composition, age group or study location. However, analyses were limited by a lack of public data from published studies, metadata collected, and differing study protocols. Results highlight the need for field-specific standardization of experimental protocols in terms of sample collection procedures and the anatomical niches to assess, as well as in defining clinically relevant metadata and subphenotypes such as stone composition.
Collapse
|
49
|
Jones-Freeman B, Chonwerawong M, Marcelino VR, Deshpande AV, Forster SC, Starkey MR. The microbiome and host mucosal interactions in urinary tract diseases. Mucosal Immunol 2021; 14:779-792. [PMID: 33542492 DOI: 10.1038/s41385-020-00372-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 12/03/2020] [Indexed: 02/06/2023]
Abstract
The urinary tract consists of the bladder, ureters, and kidneys, and is an essential organ system for filtration and excretion of waste products and maintaining systemic homeostasis. In this capacity, the urinary tract is impacted by its interactions with other mucosal sites, including the genitourinary and gastrointestinal systems. Each of these sites harbors diverse ecosystems of microbes termed the microbiota, that regulates complex interactions with the local and systemic immune system. It remains unclear whether changes in the microbiota and associated metabolites may be a consequence or a driver of urinary tract diseases. Here, we review the current literature, investigating the impact of the microbiota on the urinary tract in homeostasis and disease including urinary stones, acute kidney injury, chronic kidney disease, and urinary tract infection. We propose new avenues for exploration of the urinary microbiome using emerging technology and discuss the potential of microbiome-based medicine for urinary tract conditions.
Collapse
Affiliation(s)
- Bernadette Jones-Freeman
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Michelle Chonwerawong
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, Australia.,Department of Molecular and Translational Sciences, Monash University, Clayton, VIC, Australia
| | - Vanessa R Marcelino
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, Australia.,Department of Molecular and Translational Sciences, Monash University, Clayton, VIC, Australia
| | - Aniruddh V Deshpande
- Priority Research Centre GrowUpWell, Faculty of Health and Medicine, The University of Newcastle, Callaghan, NSW, Australia.,Department of Pediatric Urology and Surgery, John Hunter Children's Hospital, New Lambton Heights, NSW, Australia.,Urology Unit, Department of Pediatric Surgery, Children's Hospital at Westmead, Sydney Children's Hospital Network, Westmead, NSW, Australia
| | - Samuel C Forster
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, Australia.,Department of Molecular and Translational Sciences, Monash University, Clayton, VIC, Australia
| | - Malcolm R Starkey
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia. .,Priority Research Centre GrowUpWell, Faculty of Health and Medicine, The University of Newcastle, Callaghan, NSW, Australia.
| |
Collapse
|
50
|
Sivaguru M, Saw JJ, Wilson EM, Lieske JC, Krambeck AE, Williams JC, Romero MF, Fouke KW, Curtis MW, Kear-Scott JL, Chia N, Fouke BW. Human kidney stones: a natural record of universal biomineralization. Nat Rev Urol 2021; 18:404-432. [PMID: 34031587 DOI: 10.1038/s41585-021-00469-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/15/2021] [Indexed: 02/04/2023]
Abstract
GeoBioMed - a new transdisciplinary approach that integrates the fields of geology, biology and medicine - reveals that kidney stones composed of calcium-rich minerals precipitate from a continuum of repeated events of crystallization, dissolution and recrystallization that result from the same fundamental natural processes that have governed billions of years of biomineralization on Earth. This contextual change in our understanding of renal stone formation opens fundamentally new avenues of human kidney stone investigation that include analyses of crystalline structure and stratigraphy, diagenetic phase transitions, and paragenetic sequences across broad length scales from hundreds of nanometres to centimetres (five Powers of 10). This paradigm shift has also enabled the development of a new kidney stone classification scheme according to thermodynamic energetics and crystalline architecture. Evidence suggests that ≥50% of the total volume of individual stones have undergone repeated in vivo dissolution and recrystallization. Amorphous calcium phosphate and hydroxyapatite spherules coalesce to form planar concentric zoning and sector zones that indicate disequilibrium precipitation. In addition, calcium oxalate dihydrate and calcium oxalate monohydrate crystal aggregates exhibit high-frequency organic-matter-rich and mineral-rich nanolayering that is orders of magnitude higher than layering observed in analogous coral reef, Roman aqueduct, cave, deep subsurface and hot-spring deposits. This higher frequency nanolayering represents the unique microenvironment of the kidney in which potent crystallization promoters and inhibitors are working in opposition. These GeoBioMed insights identify previously unexplored strategies for development and testing of new clinical therapies for the prevention and treatment of kidney stones.
Collapse
Affiliation(s)
- Mayandi Sivaguru
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA. .,Carl Zeiss Labs@Location Partner, Carl R. Woese Institute for Genomic Biology University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| | - Jessica J Saw
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Mayo Clinic School of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Elena M Wilson
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - John C Lieske
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA.,Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Amy E Krambeck
- Department of Urology, Mayo Clinic, Rochester, MN, USA.,Department of Urology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - James C Williams
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Michael F Romero
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA.,Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Kyle W Fouke
- Jackson School of Geosciences, University of Texas at Austin, Austin, TX, USA
| | - Matthew W Curtis
- Carl Zeiss Microscopy LLC, One North Broadway, White Plains, NY, USA
| | | | - Nicholas Chia
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN, USA.,Department of Individualized Medicine, Mayo Clinic, Rochester, MN, USA
| | - Bruce W Fouke
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA. .,Carl Zeiss Labs@Location Partner, Carl R. Woese Institute for Genomic Biology University of Illinois at Urbana-Champaign, Urbana, IL, USA. .,School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA. .,Department of Geology, University of Illinois at Urbana-Champaign, Urbana, IL, USA. .,Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA. .,Roy J. Carver Biotechnology Center, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|