1
|
Li H, Tai BC, Pan A, Koh WP. Association between sleep duration from midlife to late life and the risk of depressive symptoms: the Singapore Chinese Health Study. BJPsych Open 2024; 10:e179. [PMID: 39391913 DOI: 10.1192/bjo.2024.772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/12/2024] Open
Abstract
BACKGROUND The prospective association between sleep duration and the development of late-life depressive symptomology is unclear. AIMS To investigate sleep duration from midlife to late life in relation to risk of depressive symptoms in late life. METHOD A total of 14 361 participants from the Singapore Chinese Health Study were included in the present study. Daily sleep duration was self-reported at baseline (mean age of 52.4 years; 1993-98), follow-up 2 (mean age of 65.2 years; 2006-10) and follow-up 3 (mean age of 72.5 years; 2014-16) interviews. Depressive symptoms were evaluated using the Geriatric Depression Scale at follow-up 3 interviews. Modified Poisson regression models were performed to estimate relative risks and 95% confidence intervals of late-life depressive symptoms in relation to sleep duration at baseline and the two follow-up interviews. RESULTS Compared with sleeping 7 h per day, a short sleep duration of ≤5 h per day at baseline (i.e. midlife) was related to a higher risk of depressive symptoms (relative risk 1.10, 95% CI 1.06-1.15), and this risk was not affected by subsequent prolongation of sleep. Conversely, a long sleep duration of ≥9 h per day at baseline was not related to risk of depressive symptoms. At follow-up 3 (i.e. late life), both short sleep (relative risk 1.20, 95% CI 1.16-1.25) and long sleep (relative risk 1.12, 95% CI 1.07-1.18) duration were cross-sectionally associated with depressive symptoms. CONCLUSION Short sleep duration in midlife, regardless of subsequent prolongation, is associated with an increased risk of depression in late life. Contrariwise, both short and long sleep duration in late life co-occur with depressive symptoms.
Collapse
Affiliation(s)
- Huiqi Li
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Bee Choo Tai
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore
| | - An Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Woon-Puay Koh
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; and Singapore Institute for Clinical Sciences, Agency for Science Technology and Research (A*STAR), Singapore
| |
Collapse
|
2
|
Malik DM, Rhoades SD, Kain P, Sengupta A, Sehgal A, Weljie AM. Altered Metabolism during the Dark Period in Drosophila Short Sleep Mutants. J Proteome Res 2024; 23:3823-3836. [PMID: 38836855 DOI: 10.1021/acs.jproteome.4c00106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Sleep is regulated via circadian mechanisms, but effects of sleep disruption on physiological rhythms, in particular metabolic cycling, remain unclear. To examine this question, we probed diurnal metabolic alterations of two Drosophila short sleep mutants, fumin and sleepless. Samples were collected with high temporal sampling (every 2 h) over 24 h under a 12:12 light:dark cycle, and profiling was done using an ion-switching LCMS/MS method. Fewer metabolites with 24 h oscillations were noted with short sleep (50 and 46 in fumin and sleepless, BH. Q < 0.2 by RAIN analysis) compared to a wild-type control (iso31, 63 with BH. Q < 0.2), and peak phases of the sleep mutants were consolidated into two major phase peaks at mid-day and middle of night. Overall, altered nicotinate/nicotinamide, alanine/aspartate/glutamate, acetylcholine, glyoxylate/dicarboxylate, and TCA cycle metabolism were observed in the short sleep mutants, indicative of increased energetic demand and oxidative stress compared to wild type. Both changes in cycling and discriminant models suggest unique alterations in the dark period indicative of constrained metabolic networks. Thus, we conclude that sleep loss alters metabolic function uniquely throughout the day, and further examination of specific mechanisms is warranted.
Collapse
Affiliation(s)
- Dania M Malik
- Pharmacology Graduate Group, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Seth D Rhoades
- Pharmacology Graduate Group, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Fulgens Consulting, LLC, Cambridge, Massachusetts 02142, United States
| | - Pinky Kain
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Chronobiology and Sleep Institute, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Arjun Sengupta
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Chronobiology and Sleep Institute, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Amita Sehgal
- Chronobiology and Sleep Institute, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Howard Hughes Medical Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Aalim M Weljie
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Chronobiology and Sleep Institute, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
3
|
Zheng LM, Li Y. Modifications in the Composition of the Gut Microbiota in Rats Induced by Chronic Sleep Deprivation: Potential Relation to Mental Disorders. Nat Sci Sleep 2024; 16:1313-1325. [PMID: 39247907 PMCID: PMC11380879 DOI: 10.2147/nss.s476691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 08/23/2024] [Indexed: 09/10/2024] Open
Abstract
Introduction Sleep deprivation(SD) has numerous negative effects on mental health. A growing body of research has confirmed the implication of gut microbiota in mental disorders. However, the specific modifications in mammalian gut microbiota following SD exhibit variations across different studies. Methods Male specific-pathogen-free Wistar rats were given a modified multiple-platform exposure for 7 days of SD. Fecal samples were obtained from the control and SD groups both at baseline and after 7 days of SD. We utilized 16S rDNA gene sequencing to investigate the gut microbial composition and functional pathways in rats. Results Analysis of the microbiota composition revealed a significant change in gut microbial composition after chronic SD, especially at the phylum level. The relative abundances of p_Firmicutes, g_Romboutsia, and g_Enterococcus increased, whereas those of p_Bacteroidetes, p_Verrucomicrobia, p_Fusobacteria, g_Akkermansia, and g_Cetobacterium decreased in animals after chronic SD compared with controls or animals before SD. The ratio of Firmicutes to Bacteroidetes exhibited an increase following SD. The relative abundance of gut microbiota related to the functional pathways of GABAergic and glutamatergic synapses was observed to be diminished in rats following SD compared to pre-SD. Conclusion Collectively, these findings suggest that chronic SD causes significant alterations in both the structural composition and functional pathways of the gut microbiome. Further researches are necessary to investigate the chronological and causal connections among SD, the gut microbiota and mental disorders.
Collapse
Affiliation(s)
- Li-Ming Zheng
- Department of Psychology and Sleep Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510120, People's Republic of China
| | - Yan Li
- Department of Psychology and Sleep Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510120, People's Republic of China
| |
Collapse
|
4
|
Castillo-Peinado LS, Calderón-Santiago M, Jurado-Gámez B, Priego-Capote F. Changes in human sweat metabolome conditioned by severity of obstructive sleep apnea and intermittent hypoxemia. J Sleep Res 2024; 33:e14075. [PMID: 37877569 DOI: 10.1111/jsr.14075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/13/2023] [Accepted: 10/04/2023] [Indexed: 10/26/2023]
Abstract
Obstructive sleep apnea (OSA) is a sleep disorder that has been associated with the incidence of other pathologies. Diagnosis is mainly based on the apnea-hypopnea index (AHI) obviating other repercussions such as intermittent hypoxemia, which has been found to be associated to cardiovascular complications. Blood-based samples and urine have been the most utilised biofluids in metabolomics studies related to OSA, while sweat could be an alternative due to its non-invasive and accessible sampling, its reduced complexity, and comparability with other biofluids. Therefore, this research aimed to evaluate metabolic overnight changes in sweat collected from patients with OSA classified according to the AHI and oxygen desaturation index (ODI), looking for potential cardiovascular repercussions. Pre- and post-sleeping sweat samples from all individuals (n = 61) were analysed by gas chromatography coupled to high-resolution mass spectrometry after appropriate sample preparation to detect as many metabolites as possible. Permanent significant alterations in the sweat were reported for pyruvate, serine, lactose, and hydroxybutyrate. The most relevant overnight metabolic alterations in sweat were reported for lactose, succinate, urea, and oxoproline, which presented significantly different effects on factors such as the AHI and ODI for OSA severity classification. Overall metabolic alterations mainly affected energy production-related processes, nitrogen metabolism, and oxidative stress. In conclusion, this research demonstrated the applicability of sweat for evaluation of OSA diagnosis and severity supported by the detected metabolic changes during sleep.
Collapse
Affiliation(s)
- Laura S Castillo-Peinado
- Department of Analytical Chemistry, Annex Marie Curie Building, Campus of Rabanales, University of Córdoba, Córdoba, Spain
- Maimónides Institute of Biomedical Research (IMIBIC), Reina Sofía University Hospital, University of Córdoba, Córdoba, Spain
- Energy and Environmental Chemistry University Institute (IQUEMA), Campus of Rabanales, University of Córdoba, Córdoba, Spain
- CIBER Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | - Mónica Calderón-Santiago
- Department of Analytical Chemistry, Annex Marie Curie Building, Campus of Rabanales, University of Córdoba, Córdoba, Spain
- Maimónides Institute of Biomedical Research (IMIBIC), Reina Sofía University Hospital, University of Córdoba, Córdoba, Spain
- Energy and Environmental Chemistry University Institute (IQUEMA), Campus of Rabanales, University of Córdoba, Córdoba, Spain
- CIBER Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | - Bernabé Jurado-Gámez
- Maimónides Institute of Biomedical Research (IMIBIC), Reina Sofía University Hospital, University of Córdoba, Córdoba, Spain
- Department of Respiratory Medicine, Reina Sofía University Hospital, Córdoba, Spain
| | - Feliciano Priego-Capote
- Department of Analytical Chemistry, Annex Marie Curie Building, Campus of Rabanales, University of Córdoba, Córdoba, Spain
- Maimónides Institute of Biomedical Research (IMIBIC), Reina Sofía University Hospital, University of Córdoba, Córdoba, Spain
- Energy and Environmental Chemistry University Institute (IQUEMA), Campus of Rabanales, University of Córdoba, Córdoba, Spain
- CIBER Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
5
|
Cao D, Zhao Y, Wang Y, Wei D, Yan M, Su S, Pan H, Wang Q. Effects of sleep deprivation on anxiety-depressive-like behavior and neuroinflammation. Brain Res 2024; 1836:148916. [PMID: 38609030 DOI: 10.1016/j.brainres.2024.148916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 03/31/2024] [Accepted: 04/03/2024] [Indexed: 04/14/2024]
Abstract
BACKGROUND Depression is defined by a persistent low mood and disruptions in sleep patterns, with the WHO forecasting that major depression will rank as the third most prevalent contributor to the global burden of disease by the year 2030. Sleep deprivation serves as a stressor that triggers inflammation within the central nervous system, a process known as neuroinflammation. This inflammatory response plays a crucial role in the development of depression by upregulating the expression of inflammatory mediators that contribute to symptoms such as anxiety, hopelessness, and loss of pleasure. METHODS In this study, sleep deprivation was utilized as a method to induce anxiety and depressive-like behaviors in mice. The behavioral changes in the mice were then evaluated using the EZM, EPM, TST, FST, and SPT. H&E staining and Nissl staining was used to detect morphological changes in the medial prefrontal cortical (mPFC) regions. Elisa to assess serum CORT levels. Detection of mRNA levels and protein expression of clock genes, high mobility genome box-1 (Hmgb1), silent message regulator 6 (Sirt6), and pro-inflammatory factors by RT-qPCR, Western blotting, and immunofluorescence techniques. RESULTS Sleep deprivation resulted in decreased exploration of unfamiliar territory, increased time spent in a state of despair, and lower sucrose water intake in mice. Additionally, sleep deprivation led to increased secretion of serum CORT and upregulation of clock genes, IL6, IL1β, TNFα, Cox-2, iNOS, Sirt6, and Hmgb1. Sleep. CONCLUSIONS Sleep deprivation induces anxiety-depressive-like behaviors and neuroinflammation in the brain. Transcription of clock genes and activation of the Sirt6/Hmgb1 pathway may contribute to inflammatory responses in the mPFC.
Collapse
Affiliation(s)
- Dandan Cao
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangdong, Guangzhou, China; Medical College of Acupuncture-Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangdong, Guangzhou, China
| | - Yi Zhao
- The Affiliated TCM Hospital of Guangzhou Medical University, Guangdong, Guangzhou, China
| | - Yuting Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangdong, Guangzhou, China
| | - Dongyun Wei
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangdong, Guangzhou, China
| | - Minhao Yan
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangdong, Guangzhou, China
| | - Shijie Su
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangdong, Guangzhou, China
| | - Huashan Pan
- Guangdong Chaozhou Health Vocational College, Guangdong, Chaozhou, China
| | - Qi Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangdong, Guangzhou, China.
| |
Collapse
|
6
|
Pesonen AK, Koskinen MK, Vuorenhela N, Halonen R, Mäkituuri S, Selin M, Luokkala S, Suutari A, Hovatta I. The effect of REM-sleep disruption on affective processing: A systematic review of human and animal experimental studies. Neurosci Biobehav Rev 2024; 162:105714. [PMID: 38729279 DOI: 10.1016/j.neubiorev.2024.105714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 04/15/2024] [Accepted: 05/04/2024] [Indexed: 05/12/2024]
Abstract
Evidence on the importance of rapid-eye-movement sleep (REMS) in processing emotions is accumulating. The focus of this systematic review is the outcomes of experimental REMS deprivation (REMSD), which is the most common method in animal models and human studies on REMSD. This review revealed that variations in the applied REMSD methods were substantial. Animal models used longer deprivation protocols compared with studies in humans, which mostly reported acute deprivation effects after one night. Studies on animal models showed that REMSD causes aggressive behavior, increased pain sensitivity, reduced sexual behavior, and compromised consolidation of fear memories. Animal models also revealed that REMSD during critical developmental periods elicits lasting consequences on affective-related behavior. The few human studies revealed increases in pain sensitivity and suggest stronger consolidation of emotional memories after REMSD. As pharmacological interventions (such as selective serotonin reuptake inhibitors [SSRIs]) may suppress REMS for long periods, there is a clear gap in knowledge regarding the effects and mechanisms of chronic REMS suppression in humans.
Collapse
Affiliation(s)
- Anu-Katriina Pesonen
- SleepWell Research Program and Department of Psychology and Logopedics Faculty of Medicine, University of Helsinki, Haartmaninkatu 3, 00014, Finland.
| | - Maija-Kreetta Koskinen
- SleepWell Research Program and Department of Psychology and Logopedics Faculty of Medicine, University of Helsinki, Haartmaninkatu 3, 00014, Finland
| | - Neea Vuorenhela
- SleepWell Research Program and Department of Psychology and Logopedics Faculty of Medicine, University of Helsinki, Haartmaninkatu 3, 00014, Finland
| | - Risto Halonen
- SleepWell Research Program and Department of Psychology and Logopedics Faculty of Medicine, University of Helsinki, Haartmaninkatu 3, 00014, Finland
| | - Saara Mäkituuri
- SleepWell Research Program and Department of Psychology and Logopedics Faculty of Medicine, University of Helsinki, Haartmaninkatu 3, 00014, Finland
| | - Maikki Selin
- SleepWell Research Program and Department of Psychology and Logopedics Faculty of Medicine, University of Helsinki, Haartmaninkatu 3, 00014, Finland
| | - Sanni Luokkala
- SleepWell Research Program and Department of Psychology and Logopedics Faculty of Medicine, University of Helsinki, Haartmaninkatu 3, 00014, Finland
| | - Alma Suutari
- SleepWell Research Program and Department of Psychology and Logopedics Faculty of Medicine, University of Helsinki, Haartmaninkatu 3, 00014, Finland
| | - Iiris Hovatta
- SleepWell Research Program and Department of Psychology and Logopedics Faculty of Medicine, University of Helsinki, Haartmaninkatu 3, 00014, Finland
| |
Collapse
|
7
|
Singh P, Vasundhara B, Das N, Sharma R, Kumar A, Datusalia AK. Metabolomics in Depression: What We Learn from Preclinical and Clinical Evidences. Mol Neurobiol 2024:10.1007/s12035-024-04302-5. [PMID: 38898199 DOI: 10.1007/s12035-024-04302-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 06/11/2024] [Indexed: 06/21/2024]
Abstract
Depression is one of the predominant common mental illnesses that affects millions of people of all ages worldwide. Random mood changes, loss of interest in routine activities, and prevalent unpleasant senses often characterize this common depreciated mental illness. Subjects with depressive disorders have a likelihood of developing cardiovascular complications, diabesity, and stroke. The exact genesis and pathogenesis of this disease are still questionable. A significant proportion of subjects with clinical depression display inadequate response to antidepressant therapies. Hence, clinicians often face challenges in predicting the treatment response. Emerging reports have indicated the association of depression with metabolic alterations. Metabolomics is one of the promising approaches that can offer fresh perspectives into the diagnosis, treatment, and prognosis of depression at the metabolic level. Despite numerous studies exploring metabolite profiles post-pharmacological interventions, a quantitative understanding of consistently altered metabolites is not yet established. The article gives a brief discussion on different biomarkers in depression and the degree to which biomarkers can improve treatment outcomes. In this review article, we have systemically reviewed the role of metabolomics in depression along with current challenges and future perspectives.
Collapse
Affiliation(s)
- Pooja Singh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Raebareli, 226002, India
| | - Boosani Vasundhara
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Raebareli, 226002, India
| | - Nabanita Das
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Raebareli, 226002, India
| | - Ruchika Sharma
- Centre for Precision Medicine and Centre, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi, 110017, India
| | - Anoop Kumar
- Department of Pharmacology, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi, 110017, India
| | - Ashok Kumar Datusalia
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Raebareli, 226002, India.
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Raebareli, 226002, India.
| |
Collapse
|
8
|
Francavilla M, Facchetti S, Demartini C, Zanaboni AM, Amoroso C, Bottiroli S, Tassorelli C, Greco R. A Narrative Review of Intestinal Microbiota's Impact on Migraine with Psychopathologies. Int J Mol Sci 2024; 25:6655. [PMID: 38928361 PMCID: PMC11203823 DOI: 10.3390/ijms25126655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/12/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Migraine is a common and debilitating neurological disorder characterized by the recurrent attack of pulsating headaches typically localized on one side of the head associated with other disabling symptoms, such as nausea, increased sensitivity to light, sound and smell and mood changes. Various clinical factors, including the excessive use of migraine medication, inadequate acute treatment and stressful events, can contribute to the worsening of the condition, which may evolve to chronic migraine, that is, a headache present on >15 days/month for at least 3 months. Chronic migraine is frequently associated with various comorbidities, including anxiety and mood disorders, particularly depression, which complicate the prognosis, response to treatment and overall clinical outcomes. Emerging research indicates a connection between alterations in the composition of the gut microbiota and mental health conditions, particularly anxiety and depression, which are considered disorders of the gut-brain axis. This underscores the potential of modulating the gut microbiota as a new avenue for managing these conditions. In this context, it is interesting to investigate whether migraine, particularly in its chronic form, exhibits a dysbiosis profile similar to that observed in individuals with anxiety and depression. This could pave the way for interventions aimed at modulating the gut microbiota for treating difficult-to-manage migraines.
Collapse
Affiliation(s)
- Miriam Francavilla
- Department of Brain and Behavioral Sciences, University of Pavia, Via Bassi 21, 27100 Pavia, Italy; (M.F.); (S.F.); (A.M.Z.); (S.B.); (C.T.)
- Headache Science and Neurorehabilitation Centre, IRCCS Mondino Foundation, Via Mondino 2, 27100 Pavia, Italy;
| | - Sara Facchetti
- Department of Brain and Behavioral Sciences, University of Pavia, Via Bassi 21, 27100 Pavia, Italy; (M.F.); (S.F.); (A.M.Z.); (S.B.); (C.T.)
- Headache Science and Neurorehabilitation Centre, IRCCS Mondino Foundation, Via Mondino 2, 27100 Pavia, Italy;
| | - Chiara Demartini
- Headache Science and Neurorehabilitation Centre, IRCCS Mondino Foundation, Via Mondino 2, 27100 Pavia, Italy;
| | - Anna Maria Zanaboni
- Department of Brain and Behavioral Sciences, University of Pavia, Via Bassi 21, 27100 Pavia, Italy; (M.F.); (S.F.); (A.M.Z.); (S.B.); (C.T.)
- Headache Science and Neurorehabilitation Centre, IRCCS Mondino Foundation, Via Mondino 2, 27100 Pavia, Italy;
| | - Chiara Amoroso
- Gastroenterology and Endoscopy Unit, Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico, 20135 Milan, Italy;
| | - Sara Bottiroli
- Department of Brain and Behavioral Sciences, University of Pavia, Via Bassi 21, 27100 Pavia, Italy; (M.F.); (S.F.); (A.M.Z.); (S.B.); (C.T.)
- Headache Science and Neurorehabilitation Centre, IRCCS Mondino Foundation, Via Mondino 2, 27100 Pavia, Italy;
| | - Cristina Tassorelli
- Department of Brain and Behavioral Sciences, University of Pavia, Via Bassi 21, 27100 Pavia, Italy; (M.F.); (S.F.); (A.M.Z.); (S.B.); (C.T.)
- Headache Science and Neurorehabilitation Centre, IRCCS Mondino Foundation, Via Mondino 2, 27100 Pavia, Italy;
| | - Rosaria Greco
- Headache Science and Neurorehabilitation Centre, IRCCS Mondino Foundation, Via Mondino 2, 27100 Pavia, Italy;
| |
Collapse
|
9
|
Huang B, Liang S, Li X, Xie Z, Yang R, Sun B, Xue J, Li B, Wang S, Shi H, Shi Y. Postweaning intermittent sleep deprivation enhances defensive attack in adult female mice via the microbiota-gut-brain axis. Prog Neuropsychopharmacol Biol Psychiatry 2024; 130:110915. [PMID: 38104921 DOI: 10.1016/j.pnpbp.2023.110915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 12/12/2023] [Indexed: 12/19/2023]
Abstract
Sleep is one of the most important physiological activities in life and promotes the growth and development of an individual. In modern society, sleep deprivation (SD), especially among adolescents, has become a common phenomenon. However, long-term SD severely affected adolescents' neurodevelopment leading to abnormal behavioral phenotypes. Clinical studies indicated that sleep problems caused increased aggressive behavior in adolescents. Aggressive behavior was subordinate to social behaviors, in which defensive attack was often the last line for survival. Meanwhile, increasing studies shown that gut microbiota regulated social behaviors by affecting specific brain regions via the gut-brain axis. However, whether postweaning intermittent SD is related to defensive attack in adulthood, and if so, whether it is mediated by the microbiota-gut-brain axis are still elusive. Combined with microbial sequencing and hippocampal metabolomics, the present study mainly investigated the long-term effects of postweaning intermittent SD on defensive attack in adult mice. Our study demonstrated that postweaning intermittent SD enhanced defensive attack and impaired long-term memory formation in adult female mice. Moreover, microbial sequencing and LC-MS analysis showed that postweaning intermittent SD altered the gut microbial composition and the hippocampal metabolic profile in female mice, respectively. Our attention has been drawn to the neuroactive ligand-receptor interaction pathway and related metabolites. In conclusion, our findings provide a new perspective on the relationship of early-life SD and defensive attack in adulthood, and also highlight the importance of sleep in early-life, especially in females.
Collapse
Affiliation(s)
- Boya Huang
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Forensic Medicine, Hebei Medicinal University, Shijiazhuang 050017, China; Graduate School, Tianjin Medical University, Tianjin 300070, China
| | - Shihao Liang
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Forensic Medicine, Hebei Medicinal University, Shijiazhuang 050017, China
| | - Xinrui Li
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Forensic Medicine, Hebei Medicinal University, Shijiazhuang 050017, China
| | - Ziyu Xie
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang 050017, China
| | - Rui Yang
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Forensic Medicine, Hebei Medicinal University, Shijiazhuang 050017, China
| | - Binhuang Sun
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Forensic Medicine, Hebei Medicinal University, Shijiazhuang 050017, China
| | - Jiping Xue
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang 050017, China
| | - Bingyu Li
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang 050017, China
| | - Sheng Wang
- Hebei Key Laboratory of Forensic Medicine, Hebei Medicinal University, Shijiazhuang 050017, China
| | - Haishui Shi
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Forensic Medicine, Hebei Medicinal University, Shijiazhuang 050017, China; Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang 050017, China; Nursing School, Hebei Medical University, Shijiazhuang 050031, China.
| | - Yun Shi
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang 050017, China; Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei Medicinal University, Shijiazhuang 050017, China.
| |
Collapse
|
10
|
Patterson E, Tan HTT, Groeger D, Andrews M, Buckley M, Murphy EF, Groeger JA. Bifidobacterium longum 1714 improves sleep quality and aspects of well-being in healthy adults: a randomized, double-blind, placebo-controlled clinical trial. Sci Rep 2024; 14:3725. [PMID: 38355674 PMCID: PMC10866977 DOI: 10.1038/s41598-024-53810-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 02/05/2024] [Indexed: 02/16/2024] Open
Abstract
Stress and sleep are linked with overall well-being. Bifidobacterium longum 1714 has been shown to influence stress responses and modulate neural responses during social stress, and influence sleep quality during examination stress in healthy adults. Here, we explored the ability of this strain to alter sleep quality in adults using subjective and objective measures. Eighty-nine adults (18-45y) with impaired sleep quality assessed with the Pittsburgh Sleep Quality Index (PSQI) and with a global score ≥ 5 were randomized to receive B. longum 1714 or placebo daily for eight weeks. Assessing the effect of the strain on PSQI global score was the primary objective. Secondary objectives assessed sleep quality and well-being subjectively and sleep parameters using actigraphy objectively. While PSQI global score improved in both groups, B. longum 1714 significantly improved the PSQI component of sleep quality (p < 0.05) and daytime dysfunction due to sleepiness (p < 0.05) after 4 weeks and social functioning (p < 0.05) and energy/vitality (p < 0.05) after 8 weeks, compared to placebo. No significant effect on actigraphy measures were observed. The 1714 strain had a mild effect on sleep, demonstrated by a faster improvement in sleep quality at week 4 compared to placebo, although overall improvements after 8 weeks were similar in both groups. B. longum 1714 improved social functioning and increased energy/vitality in line with previous work that showed the strain modulated neural activity which correlated with enhanced vitality/reduced mental fatigue (ClinicalTrials.gov: NCT04167475).
Collapse
Affiliation(s)
| | | | | | - Mark Andrews
- Nottingham Trent University, Nottingham, NG1 4FQ, UK
| | - Martin Buckley
- Mercy University Hospital, University College Cork, Cork, Ireland
| | | | | |
Collapse
|
11
|
Si Q, Sun W, Liang B, Chen B, Meng J, Xie D, Feng L, Jiang P. Systematic Metabolic Profiling of Mice with Sleep-Deprivation. Adv Biol (Weinh) 2024; 8:e2300413. [PMID: 37880935 DOI: 10.1002/adbi.202300413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/05/2023] [Indexed: 10/27/2023]
Abstract
Adequate sleep is essential for the biological maintenance of physical energy. Lack of sleep can affect thinking, lead to emotional anxiety, reduce immunity, and interfere with endocrine and metabolic processes, leading to disease. Previous studies have focused on long-term sleep deprivation and the risk of cancer, heart disease, diabetes, and obesity. However, systematic metabolomics analyses of blood, heart, liver, spleen, kidney, brown adipose tissue, and fecal granules have not been performed. This study aims to systematically assess the metabolic changes in the target organs caused by sleep deprivation in vivo, to search for differential metabolites and the involved metabolic pathways, to further understand the impact of sleep deprivation on health, and to provide strong evidence for the need for early intervention.
Collapse
Affiliation(s)
- Qingying Si
- Department of Endocrinology, Tengzhou Central People's Hospital, Tengzhou, 277599, People's Republic of China
| | - Wenxue Sun
- Translational Pharmaceutical Laboratory, Jining First People's Hospital, Shandong First Medical University, Jining, 272000, People's Republic of China
- Institute of Translational Pharmacy, Jining Medical Research Academy, Jining, 272000, People's Republic of China
| | - Benhui Liang
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, 410000, People's Republic of China
| | - Beibei Chen
- Translational Pharmaceutical Laboratory, Jining First People's Hospital, Shandong First Medical University, Jining, 272000, People's Republic of China
- Institute of Translational Pharmacy, Jining Medical Research Academy, Jining, 272000, People's Republic of China
| | - Junjun Meng
- Translational Pharmaceutical Laboratory, Jining First People's Hospital, Shandong First Medical University, Jining, 272000, People's Republic of China
- Institute of Translational Pharmacy, Jining Medical Research Academy, Jining, 272000, People's Republic of China
| | - Dadi Xie
- Department of Endocrinology, Tengzhou Central People's Hospital, Tengzhou, 277599, People's Republic of China
| | - Lei Feng
- Department of Neurosurgery, Jining First People's Hospital, Shandong First Medical University, Jining, 272000, People's Republic of China
| | - Pei Jiang
- Translational Pharmaceutical Laboratory, Jining First People's Hospital, Shandong First Medical University, Jining, 272000, People's Republic of China
- Institute of Translational Pharmacy, Jining Medical Research Academy, Jining, 272000, People's Republic of China
| |
Collapse
|
12
|
Wang X, Guo L, Qin T, Lai P, Jing Y, Zhang Z, Zhou G, Gao P, Ding G. Effects of X-ray cranial irradiation on metabolomics and intestinal flora in mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 270:115898. [PMID: 38171101 DOI: 10.1016/j.ecoenv.2023.115898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 12/18/2023] [Accepted: 12/26/2023] [Indexed: 01/05/2024]
Abstract
Cranial radiotherapy is an important treatment for intracranial and head and neck tumors. To investigate the effects of cranial irradiation (C-irradiation) on gut microbiota and metabolomic profile, the feces, plasma and cerebral cortex were isolated after exposing mice to cranial X-ray irradiation at a dose rate of 2.33 Gy/min (5 Gy/d for 4 d consecutively). The gut microorganisms and metabolites were detected by 16 S rRNA gene sequencing method and LC-MS method, respectively. We found that compared with sham group, the gut microbiota composition changed at 2 W and 4 W after C-irradiation at the genus level. The fecal metabolomics showed that compared with Sham group, 44 and 66 differential metabolites were found to be annotated into metabolism pathways at 2 W and 4 W after C-irradiation, which were significantly enriched in the arginine and proline metabolism. Metabolome analysis of serum and cerebral cortex showed that, at 4 W after C-irradiation, the expression pattern of metabolites in serum samples of mice was similar to that of sham group, and the cerebral cortex metabolites of the two groups were completely separated. KEGG functional analysis showed that serum and brain tissue differential metabolites were respectively enriched in tryptophan metabolism, and arginine proline metabolism. The correlation analysis showed that the changes of gut microbiota genera were significantly correlated with the changes of metabolism, especially Helicobacter, which was significantly correlated with many different metabolites at 4 W after C-irradiation. These data suggested that C-irradiation could affect the gut microbiota and metabolism profile, even at relatively long times after C-irradiation.
Collapse
Affiliation(s)
- Xing Wang
- Department of Radiation Protection Medicine, School of Military Preventive Medicine, Air Force Medical University, Xi'an, China; Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Xi'an, China.
| | - Ling Guo
- Department of Radiation Protection Medicine, School of Military Preventive Medicine, Air Force Medical University, Xi'an, China; Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Xi'an, China.
| | - Tongzhou Qin
- Department of Radiation Protection Medicine, School of Military Preventive Medicine, Air Force Medical University, Xi'an, China; Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Xi'an, China.
| | - Panpan Lai
- Department of Radiation Protection Medicine, School of Military Preventive Medicine, Air Force Medical University, Xi'an, China; Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Xi'an, China.
| | - Yuntao Jing
- Department of Radiation Protection Medicine, School of Military Preventive Medicine, Air Force Medical University, Xi'an, China; Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Xi'an, China.
| | - Zhaowen Zhang
- Department of Radiation Protection Medicine, School of Military Preventive Medicine, Air Force Medical University, Xi'an, China; Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Xi'an, China.
| | - Guiqiang Zhou
- Department of Radiation Protection Medicine, School of Military Preventive Medicine, Air Force Medical University, Xi'an, China; Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Xi'an, China; Department of Labor and Environmental Hygiene, School of public health, Weifang Medical University, Weifang, China.
| | - Peng Gao
- Department of Radiation Protection Medicine, School of Military Preventive Medicine, Air Force Medical University, Xi'an, China; Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Xi'an, China
| | - Guirong Ding
- Department of Radiation Protection Medicine, School of Military Preventive Medicine, Air Force Medical University, Xi'an, China; Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Xi'an, China.
| |
Collapse
|
13
|
Li C, Shi S. Gut microbiota and metabolic profiles in chronic intermittent hypoxia-induced rats: disease-associated dysbiosis and metabolic disturbances. Front Endocrinol (Lausanne) 2024; 14:1224396. [PMID: 38283743 PMCID: PMC10811599 DOI: 10.3389/fendo.2023.1224396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 12/27/2023] [Indexed: 01/30/2024] Open
Abstract
Aim Chronic intermittent hypoxia (CIH) is a key characteristic of obstructive sleep apnea (OSA) syndrome, a chronic respiratory disorder. The mechanisms of CIH-induced metabolic disturbance and histopathological damage remain unclear. Methods CIH-induced rats underwent daily 8-h CIH, characterized by oxygen levels decreasing from 21% to 8.5% over 4 min, remaining for 2 min, and quickly returning to 21% for 1 min. The control rats received a continuous 21% oxygen supply. The levels of hypersensitive C reactive protein (h-CRP), tumor necrosis factor-α (TNF-α), interleukin 6 (IL-6), interleukin 8 (IL-8), and nuclear factor kappa-B (NF-κB) were measured by ELISA. Histological analysis of the soft palates was conducted using HE staining. The microbial profiling of fecal samples was carried out by Accu16STM assay. Untargeted metabolomics of serum and soft palate tissue samples were analyzed by UPLC-MS. The protein expression of cAMP-related pathways in the soft palate was determined by Western blot. Results After 28 h of CIH induction, a significant increase in pro-inflammatory cytokines was observed in the serum, along with mucosal layer thickening and soft palate tissue hypertrophy. CIH induction altered the diversity and composition of fecal microbiota, specifically reducing beneficial bacteria while increasing harmful bacteria/opportunistic pathogens. Notably, CIH induction led to a significant enrichment of genera such as Dorea, Oscillibacter, Enteractinococcus, Paenibacillus, Globicatella, and Flaviflexus genera. Meanwhile, Additionally, CIH induction had a notable impact on 108 serum marker metabolites. These marker metabolites, primarily involving amino acids, organic acids, and a limited number of flavonoids or sterols, were associated with protein transport, digestion and absorption, amino acid synthesis and metabolism, as well as cancer development. Furthermore, these differential serum metabolites significantly affected 175 differential metabolites in soft palate tissue, mainly related to cancer development, signaling pathways, amino acid metabolism, nucleotide precursor or intermediate metabolism, respiratory processes, and disease. Importantly, CIH induction could significantly affect the expression of the cAMP pathway in soft palate tissue. Conclusions Our findings suggest that targeting differential metabolites in serum and soft palate tissue may represent a new approach to clinical intervention and treatment of OSA simulated by the CIH.
Collapse
Affiliation(s)
| | - Song Shi
- Department of Otorhinolaryngology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
14
|
Sah RK, Nandan A, Kv A, S P, S S, Jose A, Venkidasamy B, Nile SH. Decoding the role of the gut microbiome in gut-brain axis, stress-resilience, or stress-susceptibility: A review. Asian J Psychiatr 2024; 91:103861. [PMID: 38134565 DOI: 10.1016/j.ajp.2023.103861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 12/01/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023]
Abstract
Increased exposure to stress is associated with stress-related disorders, including depression, anxiety, and neurodegenerative conditions. However, susceptibility to stress is not seen in every individual exposed to stress, and many of them exhibit resilience. Thus, developing resilience to stress could be a big breakthrough in stress-related disorders, with the potential to replace or act as an alternative to the available therapies. In this article, we have focused on the recent advancements in gut microbiome research and the potential role of the gut-brain axis (GBA) in developing resilience or susceptibility to stress. There might be a complex interaction between the autonomic nervous system (ANS), immune system, endocrine system, microbial metabolites, and bioactive lipids like short-chain fatty acids (SCFAs), neurotransmitters, and their metabolites that regulates the communication between the gut microbiota and the brain. High fiber intake, prebiotics, probiotics, plant supplements, and fecal microbiome transplant (FMT) could be beneficial against gut dysbiosis-associated brain disorders. These could promote the growth of SCFA-producing bacteria, thereby enhancing the gut barrier and reducing the gut inflammatory response, increase the expression of the claudin-2 protein associated with the gut barrier, and maintain the blood-brain barrier integrity by promoting the expression of tight junction proteins such as claudin-5. Their neuroprotective effects might also be related to enhancing the expression of brain-derived neurotrophic factor (BDNF) and glucagon-like peptide (GLP-1). Further investigations are needed in the field of the gut microbiome for the elucidation of the mechanisms by which gut dysbiosis contributes to the pathophysiology of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Ranjay Kumar Sah
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi 682 041, Kerala, India
| | - Amritasree Nandan
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi 682 041, Kerala, India
| | - Athira Kv
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi 682 041, Kerala, India.
| | - Prashant S
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi 682 041, Kerala, India
| | - Sathianarayanan S
- NITTE (Deemed to be University), NGSM Institute of Pharmaceutical Sciences, Department of Pharmaceutical Chemistry, Mangalore, India
| | - Asha Jose
- JSS College of Pharmacy, JSS Academy of Higher Education and research, Ooty 643001, Tamil Nadu, India
| | - Baskar Venkidasamy
- Department of Oral & Maxillofacial Surgery, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai 600 077, Tamil Nadu, India.
| | - Shivraj Hariram Nile
- Division of Food and Nutritional Biotechnology, National Agri-Food Biotechnology Institute (NABI), Sector-81, Mohali 140306, Punjab, India.
| |
Collapse
|
15
|
Li N, Tan S, Wang Y, Deng J, Wang N, Zhu S, Tian W, Xu J, Wang Q. Akkermansia muciniphila supplementation prevents cognitive impairment in sleep-deprived mice by modulating microglial engulfment of synapses. Gut Microbes 2023; 15:2252764. [PMID: 37671803 PMCID: PMC10484034 DOI: 10.1080/19490976.2023.2252764] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 07/28/2023] [Accepted: 08/24/2023] [Indexed: 09/07/2023] Open
Abstract
The microbiome-gut-brain axis plays a crucial role in many neurological diseases, including mild cognitive impairment. Sleep deprivation (SD) induces cognitive decline accompanied by alterations in the gut microbiota. However, the role of gut microbiota alterations in SD-induced cognitive dysfunction and the underlying mechanisms remain unclear. Here, we found that dysbiosis of the gut microbiota following pretreatment with broad-spectrum antibiotics worsens SD-induced cognitive impairment in mice. Fecal microbiota transplantation from SD mice to healthy mice induced cognitive impairment. Additionally, the abundance of Akkermansia muciniphila (A. muciniphila) in the mouse gut microbiota was significantly reduced after 7 days of SD. A. muciniphila pretreatment alleviated cognitive dysfunction and prevented synaptic reduction in the hippocampus in SD mice. A. muciniphila pretreatment inhibited extensive microglial activation and synaptic engulfment in the hippocampus of SD mice. Metabolomics analysis revealed that A. muciniphila pretreatment increased the serum acetate and butanoic acid levels in SD mice. Finally, pretreatment with short-chain fatty acids (SCFAs) inhibited microglial synaptic engulfment and prevented neuronal synaptic loss in SD mice and primary microglia-neuron co-culture following LPS stimulation. Together, our findings illustrate that gut dysbiosis plays an essential role in SD-induced cognitive impairment by activating microglial engulfment at synapses. A. muciniphila supplementation may be a novel preventative strategy for SD-induced cognitive dysfunction, by increasing SCFAs production and maintaining microglial homeostasis.
Collapse
Affiliation(s)
- Na Li
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Shuwen Tan
- Department of Anesthesiology, Honghui Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Yue Wang
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Jiao Deng
- Department of Anesthesiology and Perioperative Medicine and Department of Critical Care Medicine, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Nan Wang
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Shan Zhu
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Wen Tian
- Department of Pharmacy, No. 95829 Military Hospital of PLA, Wuhan, Hubei, China
| | - Jing Xu
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Qiang Wang
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| |
Collapse
|
16
|
de Souza PB, de Araujo Borba L, Castro de Jesus L, Valverde AP, Gil-Mohapel J, Rodrigues ALS. Major Depressive Disorder and Gut Microbiota: Role of Physical Exercise. Int J Mol Sci 2023; 24:16870. [PMID: 38069198 PMCID: PMC10706777 DOI: 10.3390/ijms242316870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 11/24/2023] [Accepted: 11/25/2023] [Indexed: 12/18/2023] Open
Abstract
Major depressive disorder (MDD) has a high prevalence and is a major contributor to the global burden of disease. This psychiatric disorder results from a complex interaction between environmental and genetic factors. In recent years, the role of the gut microbiota in brain health has received particular attention, and compelling evidence has shown that patients suffering from depression have gut dysbiosis. Several studies have reported that gut dysbiosis-induced inflammation may cause and/or contribute to the development of depression through dysregulation of the gut-brain axis. Indeed, as a consequence of gut dysbiosis, neuroinflammatory alterations caused by microglial activation together with impairments in neuroplasticity may contribute to the development of depressive symptoms. The modulation of the gut microbiota has been recognized as a potential therapeutic strategy for the management of MMD. In this regard, physical exercise has been shown to positively change microbiota composition and diversity, and this can underlie, at least in part, its antidepressant effects. Given this, the present review will explore the relationship between physical exercise, gut microbiota and depression, with an emphasis on the potential of physical exercise as a non-invasive strategy for modulating the gut microbiota and, through this, regulating the gut-brain axis and alleviating MDD-related symptoms.
Collapse
Affiliation(s)
- Pedro Borges de Souza
- Center of Biological Sciences, Department of Biochemistry, Universidade Federal de Santa Catarina, Florianópolis 88037-000, SC, Brazil; (P.B.d.S.); (L.d.A.B.); (L.C.d.J.); (A.P.V.)
| | - Laura de Araujo Borba
- Center of Biological Sciences, Department of Biochemistry, Universidade Federal de Santa Catarina, Florianópolis 88037-000, SC, Brazil; (P.B.d.S.); (L.d.A.B.); (L.C.d.J.); (A.P.V.)
| | - Louise Castro de Jesus
- Center of Biological Sciences, Department of Biochemistry, Universidade Federal de Santa Catarina, Florianópolis 88037-000, SC, Brazil; (P.B.d.S.); (L.d.A.B.); (L.C.d.J.); (A.P.V.)
| | - Ana Paula Valverde
- Center of Biological Sciences, Department of Biochemistry, Universidade Federal de Santa Catarina, Florianópolis 88037-000, SC, Brazil; (P.B.d.S.); (L.d.A.B.); (L.C.d.J.); (A.P.V.)
| | - Joana Gil-Mohapel
- Island Medical Program, Faculty of Medicine, University of British Columbia, Victoria, BC V8P 5C2, Canada
- Division of Medical Sciences, University of Victoria, Victoria, BC V8P 5C2, Canada
| | - Ana Lúcia S. Rodrigues
- Center of Biological Sciences, Department of Biochemistry, Universidade Federal de Santa Catarina, Florianópolis 88037-000, SC, Brazil; (P.B.d.S.); (L.d.A.B.); (L.C.d.J.); (A.P.V.)
| |
Collapse
|
17
|
Zhang Y, Lin CL, Weber KM, Xing J, Peters BA, Sollecito CC, Grassi E, Wiek F, Xue X, Seaberg EC, Gustafson D, Anastos K, Sharma A, Burgess HJ, Burk RD, Qi Q, French AL. Association of Gut Microbiota With Objective Sleep Measures in Women With and Without Human Immunodeficiency Virus Infection: The IDOze Study. J Infect Dis 2023; 228:1456-1466. [PMID: 37650624 PMCID: PMC10640774 DOI: 10.1093/infdis/jiad371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 08/16/2023] [Accepted: 08/30/2023] [Indexed: 09/01/2023] Open
Abstract
BACKGROUND Poor sleep health is an underrecognized health challenge, especially for people with human immunodeficiency virus (HIV). Gut microbiota related to sleep are underinvestigated. METHODS The IDOze microbiota substudy included 190 women (114 with HIV and 76 without HIV). Wrist actigraphy measured total sleep duration, sleep efficiency, number of wake bouts, wake after sleep onset, fragmentation index, and sleep timing. 16S rRNA gene sequencing identified gut microbial genera. Analysis of compositions of microbiomes with bias correction was used to investigate cross-sectional associations between gut microbiota and sleep. Abundances of sleep-related gut microbial genera were compared between women with and without HIV. RESULTS Enrichment of 7 short-chain fatty acid-producing genera (eg, Butyricimonas, Roseburia, and Blautia) was associated with lower fragmentation index. Enrichment of 9 genera (eg, Dorea) was associated with lower sleep efficiency and/or more wake after sleep onset. Enrichment of proinflammatory Acidaminococcus was associated with late sleep midpoint and offset time. These associations were largely consistent regardless of HIV status. The abundance of Butyricimonas was lower among women with HIV compared to those without HIV. CONCLUSIONS Seventeen genera were identified to be associated with sleep continuity or timing. Butyricimonas, a potentially beneficial genus associated with sleep continuity, was less abundant among women with HIV.
Collapse
Affiliation(s)
- Yanbo Zhang
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York
| | - Chin Lun Lin
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York
| | - Kathleen M Weber
- Hektoen Institute of Medicine/Cook County Health, Chicago, Illinois
| | - Jiaqian Xing
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York
| | - Brandilyn A Peters
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York
| | | | - Evan Grassi
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, New York
| | - Fanua Wiek
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, New York
| | - Xiaonan Xue
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York
| | - Eric C Seaberg
- Department of Epidemiology, Johns Hopkins University, Baltimore, Maryland
| | - Deborah Gustafson
- Department of Neurology, State University of New York Downstate Medical Center, Brooklyn, New York
| | - Kathryn Anastos
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York
| | - Anjali Sharma
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York
| | - Helen J Burgess
- Department of Psychiatry, University of Michigan, Ann Arbor, Michigan
| | - Robert D Burk
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, New York
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York
- Department of Obstetrics, Gynecology and Women’s Health, Albert Einstein College of Medicine, Bronx, New York
| | - Qibin Qi
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York
| | - Audrey L French
- Department of Medicine, Stroger Hospital of Cook County Health, Chicago, Illinois
| |
Collapse
|
18
|
Tao Y, Qin Y, Chen S, Xu T, Lin J, Su D, Yu W, Chen X. Emerging trends and hot spots of sleep and genetic research: a bibliometric analysis of publications from 2002 to 2022 in the field. Front Neurol 2023; 14:1264177. [PMID: 38020599 PMCID: PMC10663257 DOI: 10.3389/fneur.2023.1264177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 10/04/2023] [Indexed: 12/01/2023] Open
Abstract
Background Sleep is an important biological process and has been linked to many diseases; however, very little is known about which and how genes control and regulate sleep. Although technology has seen significant development, this issue has still not been adequately resolved. Therefore, we conducted a bibliometric analysis to assess the progress in research on sleep quality and associated genes over the past 2 decades. Through our statistical data and discussions, we aimed to provide researchers with better research directions and ideas, thus promoting the advancement of this field. Methods On December 29, 2022, we utilized bibliometric techniques, such as co-cited and cluster analysis and keyword co-occurrence, using tools such as CiteSpace, VOSviewer, and the Online Analysis Platform of Literature Metrology (http://bibliometric.com/), to conduct a thorough examination of the relevant publications extracted from the Web of Science Core Collection (WoSCC). Our analysis aimed to identify the emerging trends and hot spots in this field while also predicting their potential development in future. Results Cluster analysis of the co-cited literature revealed the most popular terms relating to sleep quality and associated genes in the manner of cluster labels; these included genome-wide association studies (GWAS), circadian rhythms, obstructive sleep apnea (OSA), DNA methylation, and depression. Keyword burst detection suggested that obstructive sleep apnea, circadian clock, circadian genes, and polygenic risk score were newly emergent research hot spots. Conclusion Based on this bibliometric analysis of the publications in the last 20 years, a comprehensive analysis of the literature clarified the contributions, changes in research hot spots, and evolution of research techniques regarding sleep quality and associated genes. This research can provide medical staff and researchers with revelations into future directions of the study on the pathological mechanisms of sleep-related diseases.
Collapse
Affiliation(s)
- Ying Tao
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
| | - Yi Qin
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
| | - Sifan Chen
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
| | - Tian Xu
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
| | - Junhui Lin
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
| | - Diansan Su
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
| | - Weifeng Yu
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
| | - Xuemei Chen
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
| |
Collapse
|
19
|
Shen R, Li Z, Wang H, Wang Y, Li X, Yang Q, Fu Y, Li M, Gao LN. Chinese Materia Medica in Treating Depression: The Role of Intestinal Microenvironment. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2023; 51:1927-1955. [PMID: 37930334 DOI: 10.1142/s0192415x23500854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
Depression is a highly heterogeneous mental illness. Drug treatment is currently the main therapeutic strategy used in the clinic, but its efficacy is limited by the modulation of a single target, slow onset, and side effects. The gut-brain axis is of increasing interest because intestinal microenvironment disorders increase susceptibility to depression. In turn, depression affects intestinal microenvironment homeostasis by altering intestinal tissue structure, flora abundance and metabolism, hormone secretion, neurotransmitter transmission, and immune balance. Depression falls into the category of "stagnation syndrome" according to Traditional Chinese Medicine (TCM), which further specifies that "the heart governs the spirit and is exterior-interior with the small intestine". However, the exact mechanisms of the means by which the disordered intestinal microenvironment affects depression are still unclear. Here, we present an overview of how the Chinese materia medica (CMM) protects against depression by repairing intestinal microenvironment homeostasis. We review the past five years of research progress in classical antidepressant TCM formulae and single CMMs on regulating the intestinal microenvironment for the treatment of depression. We then analyze and clarify the multitarget functions of CMM in repairing intestinal homeostasis and aim to provide a new theoretical basis for CMM clinical application in the treatment of depression.
Collapse
Affiliation(s)
- Ruhui Shen
- College of Pharmacy, Binzhou Medical University, Yantai, Shandong 264003, P. R. China
- College of Pharmacy, Jining Medical University, Rizhao, Shandong 276800, P. R. China
| | - Zhipeng Li
- College of Pharmacy, Binzhou Medical University, Yantai, Shandong 264003, P. R. China
| | - Huiyun Wang
- College of Pharmacy, Jining Medical University, Rizhao, Shandong 276800, P. R. China
- Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, Institute of Mental Health, Jining Medical University, Jining, Shandong 272067, P. R. China
| | - Yongchao Wang
- Rizhao Hospital of Traditional Chinese Medicine, Rizhao, Shandong 276800, P. R. China
| | - Xiaofang Li
- Rizhao Hospital of Traditional Chinese Medicine, Rizhao, Shandong 276800, P. R. China
| | - Qian Yang
- College of Pharmacy, Jining Medical University, Rizhao, Shandong 276800, P. R. China
| | - Yingjie Fu
- College of Pharmacy, Jining Medical University, Rizhao, Shandong 276800, P. R. China
| | - Ming Li
- College of Pharmacy, Jining Medical University, Rizhao, Shandong 276800, P. R. China
| | - Li-Na Gao
- College of Pharmacy, Jining Medical University, Rizhao, Shandong 276800, P. R. China
- Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, Institute of Mental Health, Jining Medical University, Jining, Shandong 272067, P. R. China
- Jining Key Laboratory of Depression Prevention and Treatment, Jining Medical University, Jining, Shandong 272067, P. R. China
| |
Collapse
|
20
|
Malik DM, Sengupta A, Sehgal A, Weljie AM. Altered Metabolism During the Dark Period in Drosophila Short Sleep Mutants. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.30.564858. [PMID: 37961245 PMCID: PMC10634958 DOI: 10.1101/2023.10.30.564858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Sleep is an almost universally required state in biology. Disrupted sleep has been associated with adverse health risks including metabolic perturbations. Sleep is in part regulated via circadian mechanisms, however, metabolic dysfunction at different times of day arising from sleep disruption is unclear. We used targeted liquid chromatography-mass spectrometry to probe metabolic alterations using high-resolution temporal sampling of two Drosophila short sleep mutants, fumin and sleepless, across a circadian day. Discriminant analyses revealed overall distinct metabolic profiles for mutants when compared to a wild type dataset. Altered levels of metabolites involved in nicotinate/nicotinamide, alanine, aspartate, and glutamate, glyoxylate and dicarboxylate metabolism, and the TCA cycle were observed in mutants suggesting increased energetic demands. Furthermore, rhythmicity analyses revealed fewer 24 hr rhythmic metabolites in both mutants. Interestingly, mutants displayed two major peaks in phases while wild type displayed phases that were less concerted. In contrast to 24 hr rhythmic metabolites, an increase in the number of 12 hr rhythmic metabolites was observed in fumin while sleepless displayed a decrease. These results support that decreased sleep alters the overall metabolic profile with short sleep mutants displaying altered metabolite levels associated with a number of pathways in addition to altered neurotransmitter levels.
Collapse
Affiliation(s)
- Dania M. Malik
- Pharmacology Graduate Group
- Department of Systems Pharmacology and Translational Therapeutics
- Institute for Translational Medicine and Therapeutics
| | - Arjun Sengupta
- Department of Systems Pharmacology and Translational Therapeutics
- Institute for Translational Medicine and Therapeutics
| | - Amita Sehgal
- Chronobiology and Sleep Institute
- Howard Hughes Medical Institute
| | - Aalim M. Weljie
- Department of Systems Pharmacology and Translational Therapeutics
- Institute for Translational Medicine and Therapeutics
- Chronobiology and Sleep Institute
| |
Collapse
|
21
|
Wang A, Zhou Y, Chen H, Jin J, Mao Y, Tao S, Qiu T. Inhibition of SK Channels in VTA Affects Dopaminergic Neurons to Improve the Depression-Like Behaviors of Post-Stroke Depression Rats. Neuropsychiatr Dis Treat 2023; 19:2127-2139. [PMID: 37840624 PMCID: PMC10572402 DOI: 10.2147/ndt.s426091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 09/22/2023] [Indexed: 10/17/2023] Open
Abstract
Purpose This study aimed to investigate the effect of small-conductance calcium-activated potassium channels (SK channels) on the dopaminergic (DA) neuron pathways in the ventral tegmental area (VTA) during the pathogenesis of post-stroke depression (PSD) and explore the improvement of PSD by inhibiting the SK channels. Patients and Methods Four groups of Sprague-Dawley rats were randomly divided: Control, PSD, SK channel inhibitor (apamin) and SK channel activator (CyPPA) groups. In both control and CyPPA groups, sham surgery was performed. In the other two groups, middle cerebral arteries were occluded. The behavioral indicators related to depression in different groups were compared. Immunofluorescence was used to measure the activity of DA neurons in the VTA, while qRT-PCR was used to assess the expression of SK channel genes. Results The results showed that apamin treatment improved behavioral indicators related to depression compared to the PSD group. Furthermore, the qRT-PCR analysis revealed differential expression of the KCNN1 and KCNN3 subgenes of the SK channels in each group. Immunofluorescence analysis revealed an increase in the expression of DA neurons in the VTA of the PSD group, which was subsequently reduced upon apamin intervention. Conclusion This study suggests that SK channel activation following stroke contributes to depression-related behaviors in PSD rats through increased expression of DA neurons in the VTA. And depression-related behavior is improved in PSD rats by inhibiting the SK channels. The results of this study provide a new understanding of PSD pathogenesis and the possibility of developing new strategies to prevent PSD by targeting SK channels.
Collapse
Affiliation(s)
- Anqi Wang
- First Clinical Medical College, Zhejiang Chinese Medical University, Zhejiang, People’s Republic of China
| | - Yujia Zhou
- Second Clinical Medical College, Zhejiang Chinese Medical University, Zhejiang, People’s Republic of China
| | - Huangying Chen
- First Clinical Medical College, Zhejiang Chinese Medical University, Zhejiang, People’s Republic of China
| | - Jiawei Jin
- First Clinical Medical College, Zhejiang Chinese Medical University, Zhejiang, People’s Republic of China
| | - Yingqi Mao
- Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, People’s Republic of China
| | - Shuiliang Tao
- Basic Medicine College, Zhejiang Chinese Medical University, Zhejiang, People’s Republic of China
| | - Tao Qiu
- Department of Neurology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang, People’s Republic of China
| |
Collapse
|
22
|
Chen H, Wang C, Bai J, Song J, Bu L, Liang M, Suo H. Targeting microbiota to alleviate the harm caused by sleep deprivation. Microbiol Res 2023; 275:127467. [PMID: 37549451 DOI: 10.1016/j.micres.2023.127467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/23/2023] [Accepted: 07/27/2023] [Indexed: 08/09/2023]
Abstract
Sleep deprivation has become a common health hazard, affecting 37-58% of the population and promoting the occurrence and development of many diseases. To date, effective treatment strategies are still elusive. Accumulating evidence indicates that modulating the intestinal microbiota harbors significant potential for alleviating the deleterious impacts of sleep deprivation. This paper first reviews the effects of sleep deprivation on gastrointestinal diseases, metabolic diseases, and neuropsychiatric diseases, discussing its specific mechanisms of influence. We then focus on summarizing existing interventions, including probiotics, melatonin, prebiotics, diet, and fecal microbiota transplantation (FMT). Finally, we have discussed the advantages and limitations of each strategy. Compared with other strategies, probiotics showed a high potential in alleviating sleep deprivation-related hazards due to their reduced risk and high security. We suggest that future research should focus on the specific mechanisms by which probiotics mitigate the harms of sleep deprivation, such insights may unveil novel pathways for treating diseases exacerbated by insufficient sleep.
Collapse
Affiliation(s)
- Hongyu Chen
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Chen Wang
- College of Food Science, Southwest University, Chongqing 400715, China; Food Industry Innovation Research Institute of Modern Sichuan Cuisine & Chongqing Flavor, Chongqing 400715, China
| | - Junying Bai
- Citrus Research Institute, National Citrus Engineering Research Center, Southwest University, Chongqing 400715, China
| | - Jiajia Song
- College of Food Science, Southwest University, Chongqing 400715, China; Food Industry Innovation Research Institute of Modern Sichuan Cuisine & Chongqing Flavor, Chongqing 400715, China
| | - Linli Bu
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Ming Liang
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Huayi Suo
- College of Food Science, Southwest University, Chongqing 400715, China; Food Industry Innovation Research Institute of Modern Sichuan Cuisine & Chongqing Flavor, Chongqing 400715, China.
| |
Collapse
|
23
|
Shi S, Zhang S, Kong L. Effects of Treatment with Probiotics on Cognitive Function and Regulatory Role of Cortisol and IL-1β in Adolescent Patients with Major Depressive Disorder. Life (Basel) 2023; 13:1829. [PMID: 37763233 PMCID: PMC10532456 DOI: 10.3390/life13091829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/14/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
The aim of this study was to investigate the effects of probiotics on cognitive function and the regulation of cortisol and IL-1β in adolescents with depression. All 180 participants were randomly assigned to a study group (treated with probiotics combined with sertraline hydrochloride) and a control group (treated with sertraline hydrochloride). The repetitive Neuropsychological State Test (RBANS) and Hamilton Depression Scale (HAMD) were administered to MDD patients. The levels of serum cortisol and IL-1β were detected using an ELISA kit. Except for speech function, factors including immediate memory, visual span, attention function, delayed memory, and the RBANS in the study group were significantly higher than those in the control group. The levels of cortisol and interleukin-1β in the study group were significantly downregulated compared to those in the control group. Except for speech function, the cortisol level was negatively correlated with the RBANS total score and other factors in the study group. Interleukin-1β was also negatively correlated with the RBANS total score and each factor score. Cortisol and interleukin-1β were predictors of the RBANS total score, which explained 46.80% of the variance. Cortisol had significant predictive effects on attention function and delayed memory, and interleukin-1β had significant predictive effects on visual span and speech function. It could be concluded that probiotics could improve cognitive function in adolescents with depression by regulating cortisol and IL-1β levels.
Collapse
Affiliation(s)
- Shaoli Shi
- Psychiatry Department, The 5th People’s Hospital of Luoyang, Luoyang 471027, China;
| | - Shuyou Zhang
- Intervention Center of Mental Crisis, No.904 Hospital, Changzhou 213003, China;
| | - Lingming Kong
- Intervention Center of Mental Crisis, No.904 Hospital, Changzhou 213003, China;
| |
Collapse
|
24
|
Zhang Y, Chen X, Mo X, Xiao R, Cheng Q, Wang H, Liu L, Xie P. Enterogenic metabolomics signatures of depression: what are the possibilities for the future. Expert Rev Proteomics 2023; 20:397-418. [PMID: 37934939 DOI: 10.1080/14789450.2023.2279984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 10/24/2023] [Indexed: 11/09/2023]
Abstract
INTRODUCTION An increasing number of studies indicate that the microbiota-gut-brain axis is an important pathway involved in the onset and progression of depression. The responses of the organism (or its microorganisms) to external cues cannot be separated from a key intermediate element: their metabolites. AREAS COVERED In recent years, with the rapid development of metabolomics, an increasing amount of metabolites has been detected and studied, especially the gut metabolites. Nevertheless, the increasing amount of metabolites described has not been reflected in a better understanding of their functions and metabolic pathways. Moreover, our knowledge of the biological interactions among metabolites is also incomplete, which limits further studies on the connections between the microbial-entero-brain axis and depression. EXPERT OPINION This paper summarizes the current knowledge on depression-related metabolites and their involvement in the onset and progression of this disease. More importantly, this paper summarized metabolites from the intestine, and defined them as enterogenic metabolites, to further clarify the function of intestinal metabolites and their biochemical cross-talk, providing theoretical support and new research directions for the prevention and treatment of depression.
Collapse
Affiliation(s)
- Yangdong Zhang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xueyi Chen
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Faculty of Basic Medicine, Department of Pathology, Chongqing Medical University, Chongqing, China
| | - Xiaolong Mo
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Rui Xiao
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Faculty of Basic Medicine, Department of Pathology, Chongqing Medical University, Chongqing, China
| | - Qisheng Cheng
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Haiyang Wang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lanxiang Liu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Neurology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Peng Xie
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Neurology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
25
|
Sun J, Fang D, Wang Z, Liu Y. Sleep Deprivation and Gut Microbiota Dysbiosis: Current Understandings and Implications. Int J Mol Sci 2023; 24:ijms24119603. [PMID: 37298553 DOI: 10.3390/ijms24119603] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/25/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
Gut microbiota comprises the microbial communities inhabiting our gastrointestinal (GI) tracts. Accordingly, these complex communities play a fundamental role in many host processes and are closely implicated in human health and diseases. Sleep deprivation (SD) has become increasingly common in modern society, partly owing to the rising pressure of work and the diversification of entertainment. It is well documented that sleep loss is a significant cause of various adverse outcomes on human health including immune-related and metabolic diseases. Furthermore, accumulating evidence suggests that gut microbiota dysbiosis is associated with these SD-induced human diseases. In this review, we summarize the gut microbiota dysbiosis caused by SD and the succedent diseases ranging from the immune system and metabolic system to various organs and highlight the critical roles of gut microbiota in these diseases. The implications and possible strategies to alleviate SD-related human diseases are also provided.
Collapse
Affiliation(s)
- Jingyi Sun
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Dan Fang
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Zhiqiang Wang
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, China
| | - Yuan Liu
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
26
|
Li H, Xiao HY, Yuan LP, Yan B, Pan Y, Tian PP, Zhang WJ. Protective effect of L-pipecolic acid on constipation in C57BL/6 mice based on gut microbiome and serum metabolomic. BMC Microbiol 2023; 23:144. [PMID: 37210496 DOI: 10.1186/s12866-023-02880-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 05/04/2023] [Indexed: 05/22/2023] Open
Abstract
BACKGROUND Functional constipation (FC) in children affects their growth, development and quality of life. L-pipecolic acid (L-PA) was decreased in FC children based on gut microbiome and serum metabolomic. In this study, loperamide-induced constipation in mice was used to evaluate the effects of L-PA on constipated mice. METHOD 26 FC and 28 healthy children were recruited. Stool samples and serum samples were subjected to 16S rDNA sequencing and ultra-performance liquid chromatography/quadrupole time of flight (UPLC-Q/TOF-MS) approach, respectively. A loperamide-induced mouse constipation model was developed, and all mice were randomly divided into control (Con), loperamide (Lop) and L-PA (Lop + L-PA) treatment groups (6 mice per group). The mice in the Lop + L-PA group were given L-PA (250 mg/kg, once a day) and loperamide; the Lop group was given loperamide for 1 week, and the Con group was given saline. The fecal parameters and intestinal motility of mice in each group were detected. serum 5-HT levels and colon 5-HT expression were detected by ELISA and immunohistochemistry, respectively; qRT-PCR was used to detect the expression of AQP3 and 5-HT4R mRNA in each group. RESULTS 45 differential metabolites and 18 significantly different microbiota were found in FC children. The α and β diversity of gut microbiota in FC children was significantly reduced. Importantly, serum L-PA was significantly reduced in FC children. The KEGG pathway enrichment were mainly enriched in fatty acid biosynthesis, lysine degradation, and choline metabolism. L-PA was negatively associated with Ochrobactrum, and N6, N6, N6-trimethyl-l-lysine was positively associated with Phascolarcrobacterium. In addition, L-PA improved the fecal water content, intestinal transit rate, and increased the serum 5-HT levels in constipated mice. Moreover, L-PA increased the expression of 5-HT4R, reduced AQP3, and regulated constipation-associated genes. CONCLUSIONS Gut microbiota and serum metabolites were significantly altered in children with FC. The abundance of Phascolarctobacterium and Ochrobactrum and serum L-PA content were decreased in FC children. L-PA was found to alleviate the fecal water content, increase intestinal transit rate and the first black stool defecation time. L-PA improved constipation by increasing 5-HT and 5-HT4R expression while down-regulating AQP3 expression.
Collapse
Affiliation(s)
- Huan Li
- Department of Pediatrics, First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China
- Fuyang Hospital of Anhui Medical University, Fuyang, 236000, Anhui, China
| | - Hong-Yun Xiao
- Department of Pediatrics, First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China
- Fuyang Hospital of Anhui Medical University, Fuyang, 236000, Anhui, China
| | - Li-Ping Yuan
- Department of Pediatrics, First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China.
| | - Bo Yan
- Department of Technology, Anhui Medical College, Hefei, 230022, Anhui, China
| | - Ying Pan
- Department of Technology, Anhui Medical College, Hefei, 230022, Anhui, China
| | - Ping-Ping Tian
- Department of Technology, Anhui Medical College, Hefei, 230022, Anhui, China
| | - Wei-Jie Zhang
- Department of Technology, Anhui Medical College, Hefei, 230022, Anhui, China
| |
Collapse
|
27
|
Khezri MR, Ghasemnejad-Berenji M. Gut microbiota and circadian rhythm in Alzheimer's disease pathophysiology: a review and hypothesis on their association. NPJ AGING 2023; 9:9. [PMID: 37130863 PMCID: PMC10154390 DOI: 10.1038/s41514-023-00104-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 03/15/2023] [Indexed: 05/04/2023]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease and the leading cause of dementia worldwide. Different pathologic changes have been introduced to be involved in its progression. Although amyloid-β (Aβ) deposition and tau hyperphosphorylation and aggregation are mainly considered the main characterizations of AD, several other processes are involved. In recent years, several other changes, including alterations in gut microbiota proportion and circadian rhythms, have been noticed due to their role in AD progression. However, the exact mechanism indicating the association between circadian rhythms and gut microbiota abundance has not been investigated yet. This paper aims to review the role of gut microbiota and circadian rhythm in AD pathophysiology and introduces a hypothesis to explain their association.
Collapse
Affiliation(s)
| | - Morteza Ghasemnejad-Berenji
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran.
- Research Center for Experimental and Applied Pharmaceutical Sciences, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
28
|
Yoon DW, Baik I. Oral Administration of Human-Gut-Derived Prevotella histicola Improves Sleep Architecture in Rats. Microorganisms 2023; 11:1151. [PMID: 37317125 DOI: 10.3390/microorganisms11051151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/21/2023] [Accepted: 04/22/2023] [Indexed: 06/16/2023] Open
Abstract
(1) Background: The human gut microbiome may regulate sleep through the gut-brain axis. However, the sleep-promoting effects of gut microbiota remain unclear. (2) Methods: We obtained sleep-wake profiles from 25 rats receiving P. histicola (P. histicola group), 5 rats receiving P. stercorea (P. stercorea group), 4 rats not receiving bacteria (No administration group), and 8 rats receiving P. histicola extracellular vesicles (EV) (EV group) during the baseline, administration, and withdrawal periods. (3) Results: The P. histicola group showed increased total sleep, rapid eye movement (REM) sleep, and non-rapid eye movement (NREM) sleep time during the administration and withdrawal periods; on the last day of administration, we found significant increases of 52 min for total sleep (p < 0.01), 13 min for REM sleep (p < 0.05), and 39 min for NREM sleep (p < 0.01) over the baseline. EV administration also increased NREM sleep time on Day 3 of administration (p = 0.05). We observed a linear trend in the dose-response relationship for total sleep and NREM sleep in the P. histicola group. However, neither the no-administration group nor the P. stercorea group showed significant findings. (4) Conclusions: Oral administration of probiotic P. histicola may improve sleep and could be a potential sleep aid. Further rigorous evaluations for the safety and efficacy of P. histicola supplementation are warranted.
Collapse
Affiliation(s)
- Dae Wui Yoon
- Department of Biomedical Laboratory Science, Jungwon University, Goesan-gun 28204, Chungcheongbuk-do, Republic of Korea
| | - Inkyung Baik
- Department of Foods and Nutrition, College of Science and Technology, Kookmin University, Seoul 02707, Republic of Korea
| |
Collapse
|
29
|
Yasugaki S, Okamura H, Kaneko A, Hayashi Y. Bidirectional Relationship Between Sleep and Depression. Neurosci Res 2023:S0168-0102(23)00087-1. [PMID: 37116584 DOI: 10.1016/j.neures.2023.04.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 03/01/2023] [Accepted: 04/20/2023] [Indexed: 04/30/2023]
Abstract
Patients with depression almost inevitably exhibit abnormalities in sleep, such as shortened latency to enter rapid eye movement (REM) sleep and decrease in electroencephalogram delta power during non-REM sleep. Insufficient sleep can be stressful, and the accumulation of stress leads to the deterioration of mental health and contributes to the development of psychiatric disorders. Thus, it is likely that depression and sleep are bidirectionally related, i.e. development of depression contributes to sleep disturbances and vice versa. However, the relation between depression and sleep seems complicated. For example, acute sleep deprivation can paradoxically improve depressive symptoms. Thus, it is difficult to conclude whether sleep has beneficial or harmful effects in patients with depression. How antidepressants affect sleep in patients with depression might provide clues to understanding the effects of sleep, but caution is required considering that antidepressants have diverse effects other than sleep. Recent animal studies support the bidirectional relation between depression and sleep, and animal models of depression are expected to be beneficial for the identification of neuronal circuits that connect stress, sleep, and depression. This review provides a comprehensive overview regarding the current knowledge of the relationship between depression and sleep.
Collapse
Affiliation(s)
- Shinnosuke Yasugaki
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan; Biomedical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan; Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan; Japan Society for the Promotion of Science (JSPS), Tokyo 102-0083, Japan.
| | - Hibiki Okamura
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan; Japan Society for the Promotion of Science (JSPS), Tokyo 102-0083, Japan; Program in Humanics, School of Integrative and Global Majors, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan.
| | - Ami Kaneko
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan; Program in Humanics, School of Integrative and Global Majors, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan.
| | - Yu Hayashi
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan; Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan; Department of Human Health Sciences, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto 603-8363, Japan.
| |
Collapse
|
30
|
Kumar A, Pramanik J, Goyal N, Chauhan D, Sivamaruthi BS, Prajapati BG, Chaiyasut C. Gut Microbiota in Anxiety and Depression: Unveiling the Relationships and Management Options. Pharmaceuticals (Basel) 2023; 16:ph16040565. [PMID: 37111321 PMCID: PMC10146621 DOI: 10.3390/ph16040565] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/03/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
The gut microbiota is critical for maintaining human health and the immunological system. Several neuroscientific studies have shown the significance of microbiota in developing brain systems. The gut microbiota and the brain are interconnected in a bidirectional relationship, as research on the microbiome-gut-brain axis shows. Significant evidence links anxiety and depression disorders to the community of microbes that live in the gastrointestinal system. Modified diet, fish and omega-3 fatty acid intake, macro- and micro-nutrient intake, prebiotics, probiotics, synbiotics, postbiotics, fecal microbiota transplantation, and 5-HTP regulation may all be utilized to alter the gut microbiota as a treatment approach. There are few preclinical and clinical research studies on the effectiveness and reliability of various therapeutic approaches for depression and anxiety. This article highlights relevant research on the association of gut microbiota with depression and anxiety and the different therapeutic possibilities of gut microbiota modification.
Collapse
Affiliation(s)
- Akash Kumar
- Department of Food Technology, SRM University, Sonipat 131029, India
| | - Jhilam Pramanik
- Department of Food Technology, ITM University, Gwalior 474001, India
| | - Nandani Goyal
- Department of Skill Agriculture, Shri Vishwakarma Skill University, Gurugram 122003, India
| | - Dimple Chauhan
- School of Bio-Engineering and Food Technology, Shoolini University, Solan 173229, India
| | - Bhagavathi Sundaram Sivamaruthi
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Bhupendra G Prajapati
- Shree S. K. Patel College of Pharmaceutical Education and Research, Ganpat University, Mehsana 384012, India
| | - Chaiyavat Chaiyasut
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
31
|
Zhang ZH, Peng JY, Chen YB, Wang C, Chen C, Song GL. Different Effects and Mechanisms of Selenium Compounds in Improving Pathology in Alzheimer’s Disease. Antioxidants (Basel) 2023; 12:antiox12030702. [PMID: 36978950 PMCID: PMC10045564 DOI: 10.3390/antiox12030702] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/08/2023] [Accepted: 03/10/2023] [Indexed: 03/16/2023] Open
Abstract
Owing to the strong antioxidant capacity of selenium (Se) in vivo, a variety of Se compounds have been shown to have great potential for improving the main pathologies and cognitive impairment in Alzheimer’s disease (AD) models. However, the differences in the anti-AD effects and mechanisms of different Se compounds are still unclear. Theoretically, the absorption and metabolism of different forms of Se in the body vary, which directly determines the diversification of downstream regulatory pathways. In this study, low doses of Se-methylselenocysteine (SMC), selenomethionine (SeM), or sodium selenate (SeNa) were administered to triple transgenic AD (3× Tg-AD) mice for short time periods. AD pathology, activities of selenoenzymes, and metabolic profiles in the brain were studied to explore the similarities and differences in the anti-AD effects and mechanisms of the three Se compounds. We found that all of these Se compounds significantly increased Se levels and antioxidant capacity, regulated amino acid metabolism, and ameliorated synaptic deficits, thus improving the cognitive capacity of AD mice. Importantly, SMC preferentially increased the expression and activity of thioredoxin reductase and reduced tau phosphorylation by inhibiting glycogen synthase kinase-3 beta (GSK-3β) activity. Glutathione peroxidase 1 (GPx1), the selenoenzyme most affected by SeM, decreased amyloid beta production and improved mitochondrial function. SeNa improved methionine sulfoxide reductase B1 (MsrB1) expression, reflected in AD pathology as promoting the expression of synaptic proteins and restoring synaptic deficits. Herein, we reveal the differences and mechanisms by which different Se compounds improve multiple pathologies of AD and provide novel insights into the targeted administration of Se-containing drugs in the treatment of AD.
Collapse
Affiliation(s)
- Zhong-Hao Zhang
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
- Shenzhen Bay Laboratory, Shenzhen 518118, China
| | - Jia-Ying Peng
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Yu-Bin Chen
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Chao Wang
- Chemical Analysis & Physical Testing Institute, Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Chen Chen
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Guo-Li Song
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
- Shenzhen Bay Laboratory, Shenzhen 518118, China
- Shenzhen-Hong Kong Institute of Brain Science—Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
- Correspondence:
| |
Collapse
|
32
|
Chen J, Chen X, Mao R, Fu Y, Chen Q, Zhang C, Zheng K. Hypertension, sleep quality, depression, and cognitive function in elderly: A cross-sectional study. Front Aging Neurosci 2023; 15:1051298. [PMID: 36824262 PMCID: PMC9942596 DOI: 10.3389/fnagi.2023.1051298] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 01/16/2023] [Indexed: 02/10/2023] Open
Abstract
Background Hypertension, sleep disorders, and depression are highly prevalent in the elderly population and are all associated with cognitive impairment, but the role that sleep quality and depression play in the association between hypertension and cognitive impairment is unclear. The aim of this study was to investigate whether sleep quality and depression have a mediating role in the association between hypertension and cognitive impairment. Methods A cross-sectional study was conducted to collect data from the Tongji Hospital Comprehensive Geriatric Assessment Database. Sleep quality, depression and cognitive function were measured by the Pittsburgh Sleep Quality Index (PSQI), the Geriatric Depression Scale (GDS-15) and the Mini-Mental State Examination (MMSE), respectively. Correlation analysis, regression analysis and Bootstrap analysis were used to examine correlations between key variables and mediating effects of sleep quality and depression. Adjustments for multiple comparisons were performed using Benjamini-Hochberg adjustment for multiple testing. Results A total of 827 participants were included, hypertension was present in 68.3% of the sample. After correcting for covariates, hypertensive patients aged 65 years or older had worse cognitive function, poorer-sleep quality and higher levels of depression. Sleep quality was significantly negatively associated with depression and cognitive function, while depression was negatively associated with cognitive function. Mediation analysis revealed that hypertension can affect cognitive function in older adults through a single mediating effect of sleep quality and depression and a chain mediating effect of sleep quality and depression. Conclusion This study found that sleep quality and depression can mediate the relationship between hypertension and cognitive function in elderly. Enhanced supervision of sleep quality and depression in elderly patients with hypertension may be beneficial in maintaining cognitive function.
Collapse
Affiliation(s)
- Jiajie Chen
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xi Chen
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ruxue Mao
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Fu
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qin Chen
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | | | | |
Collapse
|
33
|
Chandra S, Sisodia SS, Vassar RJ. The gut microbiome in Alzheimer's disease: what we know and what remains to be explored. Mol Neurodegener 2023; 18:9. [PMID: 36721148 PMCID: PMC9889249 DOI: 10.1186/s13024-023-00595-7] [Citation(s) in RCA: 60] [Impact Index Per Article: 60.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 01/06/2023] [Indexed: 02/02/2023] Open
Abstract
Alzheimer's disease (AD), the most common cause of dementia, results in a sustained decline in cognition. There are currently few effective disease modifying therapies for AD, but insights into the mechanisms that mediate the onset and progression of disease may lead to new, effective therapeutic strategies. Amyloid beta oligomers and plaques, tau aggregates, and neuroinflammation play a critical role in neurodegeneration and impact clinical AD progression. The upstream modulators of these pathological features have not been fully clarified, but recent evidence indicates that the gut microbiome (GMB) may have an influence on these features and therefore may influence AD progression in human patients. In this review, we summarize studies that have identified alterations in the GMB that correlate with pathophysiology in AD patients and AD mouse models. Additionally, we discuss findings with GMB manipulations in AD models and potential GMB-targeted therapeutics for AD. Lastly, we discuss diet, sleep, and exercise as potential modifiers of the relationship between the GMB and AD and conclude with future directions and recommendations for further studies of this topic.
Collapse
Affiliation(s)
- Sidhanth Chandra
- Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 USA
- Medical Scientist Training Program, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 USA
| | - Sangram S. Sisodia
- Department of Neurobiology, University of Chicago, Chicago, IL 60637 USA
| | - Robert J. Vassar
- Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 USA
| |
Collapse
|
34
|
Jiang N, Zhang Y, Yao C, Liu Y, Chen Y, Chen F, Wang Y, Choudhary MI, Liu X. Tenuifolin ameliorates the sleep deprivation-induced cognitive deficits. Phytother Res 2023; 37:464-476. [PMID: 36608695 DOI: 10.1002/ptr.7627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 08/05/2022] [Accepted: 09/02/2022] [Indexed: 01/09/2023]
Abstract
Tenuifolin (TEN), a natural neuroprotective compound obtained from the Polygala tenuifolia Willd plant, has improved cognitive symptoms. However, the impact of TEN on memory impairments caused by sleep deprivation (SD) is unclear. Accordingly, the objective of this study was to investigate the mechanisms behind the preventative benefits of TEN on cognitive impairment caused by SD. TEN (10 and 20 mg/kg) and Huperzine A (0.1 mg/kg) were given to mice through oral gavage for 28 days during the SD process. The results indicate that TEN administrations improve short- and long-term memory impairments caused by SD in the Y-maze, object identification, and step-through tests. Moreover, TEN stimulated the generation of anti-inflammatory cytokines (interleukin-10), lowered the production of pro-inflammatory cytokines (interleukin-1β, interleukin-6, and interleukin-18), and activated microglia, improving antioxidant status in the hippocampus. TEN treatments significantly boosted the expression of nuclear factor erythroid 2-related factor 2 and heme oxygenase-1 while considerably decreasing the expression of NOD-like receptor thermal protein domain associated protein 3 and caspase-1 p20. Additionally, TEN restored the downregulation of the brain-derived neurotrophic factor signaling cascade and the impaired hippocampal neurogenesis induced by SD. When considered collectively, our data suggest that TEN is a potentially effective neuroprotective agent for cognition dysfunction.
Collapse
Affiliation(s)
- Ning Jiang
- Research Center for Pharmacology and Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yiwen Zhang
- Research Center for Pharmacology and Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Caihong Yao
- Research Center for Pharmacology and Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yupei Liu
- Key Laboratory of TCM Heart and Lung Syndrome Differentiation & Medicated Diet and Dietotherapy, Hunan University of Chinese Medicine, Changsha, China
| | - Yuzhen Chen
- Key Laboratory of TCM Heart and Lung Syndrome Differentiation & Medicated Diet and Dietotherapy, Hunan University of Chinese Medicine, Changsha, China
| | - Fang Chen
- Key Laboratory of TCM Heart and Lung Syndrome Differentiation & Medicated Diet and Dietotherapy, Hunan University of Chinese Medicine, Changsha, China
| | - Yan Wang
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Muhammad Iqbal Choudhary
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Xinmin Liu
- Research Center for Pharmacology and Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Key Laboratory of TCM Heart and Lung Syndrome Differentiation & Medicated Diet and Dietotherapy, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
35
|
Karl JP, Whitney CC, Wilson MA, Fagnant HS, Radcliffe PN, Chakraborty N, Campbell R, Hoke A, Gautam A, Hammamieh R, Smith TJ. Severe, short-term sleep restriction reduces gut microbiota community richness but does not alter intestinal permeability in healthy young men. Sci Rep 2023; 13:213. [PMID: 36604516 PMCID: PMC9816096 DOI: 10.1038/s41598-023-27463-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 01/02/2023] [Indexed: 01/06/2023] Open
Abstract
Sleep restriction alters gut microbiota composition and intestinal barrier function in rodents, but whether similar effects occur in humans is unclear. This study aimed to determine the effects of severe, short-term sleep restriction on gut microbiota composition and intestinal permeability in healthy adults. Fecal microbiota composition, measured by 16S rRNA sequencing, and intestinal permeability were measured in 19 healthy men (mean ± SD; BMI 24.4 ± 2.3 kg/m2, 20 ± 2 years) undergoing three consecutive nights of adequate sleep (AS; 7-9 h sleep/night) and restricted sleep (SR; 2 h sleep/night) in random order with controlled diet and physical activity. α-diversity measured by amplicon sequencing variant (ASV) richness was 21% lower during SR compared to AS (P = 0.03), but α-diversity measured by Shannon and Simpson indexes did not differ between conditions. Relative abundance of a single ASV within the family Ruminococcaceae was the only differentially abundant taxon (q = 0.20). No between-condition differences in intestinal permeability or β-diversity were observed. Findings indicated that severe, short-term sleep restriction reduced richness of the gut microbiota but otherwise minimally impacted community composition and did not affect intestinal permeability in healthy young men.
Collapse
Affiliation(s)
- J. Philip Karl
- grid.420094.b0000 0000 9341 8465Military Nutrition Division, U.S. Army Research Institute of Environmental Medicine, Natick, MA USA
| | - Claire C. Whitney
- grid.420094.b0000 0000 9341 8465Military Nutrition Division, U.S. Army Research Institute of Environmental Medicine, Natick, MA USA
| | - Marques A. Wilson
- grid.420094.b0000 0000 9341 8465Military Nutrition Division, U.S. Army Research Institute of Environmental Medicine, Natick, MA USA
| | - Heather S. Fagnant
- grid.420094.b0000 0000 9341 8465Military Nutrition Division, U.S. Army Research Institute of Environmental Medicine, Natick, MA USA
| | - Patrick N. Radcliffe
- grid.420094.b0000 0000 9341 8465Military Nutrition Division, U.S. Army Research Institute of Environmental Medicine, Natick, MA USA ,grid.410547.30000 0001 1013 9784Oak Ridge Institute of Science and Education, Oak Ridge, TN USA
| | - Nabarun Chakraborty
- grid.507680.c0000 0001 2230 3166Medical Readiness Systems Biology, CMPN, Walter Reed Army Institute of Research, Silver Spring, MD USA
| | - Ross Campbell
- grid.507680.c0000 0001 2230 3166Geneva Foundation, Walter Reed Army Institute of Research, Silver Spring, MD USA
| | - Allison Hoke
- grid.507680.c0000 0001 2230 3166Medical Readiness Systems Biology, CMPN, Walter Reed Army Institute of Research, Silver Spring, MD USA
| | - Aarti Gautam
- grid.507680.c0000 0001 2230 3166Medical Readiness Systems Biology, CMPN, Walter Reed Army Institute of Research, Silver Spring, MD USA
| | - Rasha Hammamieh
- grid.507680.c0000 0001 2230 3166Medical Readiness Systems Biology, CMPN, Walter Reed Army Institute of Research, Silver Spring, MD USA
| | - Tracey J. Smith
- grid.420094.b0000 0000 9341 8465Military Nutrition Division, U.S. Army Research Institute of Environmental Medicine, Natick, MA USA
| |
Collapse
|
36
|
Zhu Y, Wang F, Han J, Zhao Y, Yu M, Ma M, Yu Z. Untargeted and targeted mass spectrometry reveal the effects of theanine on the central and peripheral metabolomics of chronic unpredictable mild stress-induced depression in juvenile rats. J Pharm Anal 2023; 13:73-87. [PMID: 36816539 PMCID: PMC9937789 DOI: 10.1016/j.jpha.2022.10.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 09/25/2022] [Accepted: 10/08/2022] [Indexed: 11/07/2022] Open
Abstract
l-theanine has been shown to have a therapeutic effect on depression. However, whether l-theanine has an excellent preventive effect on depression in children and adolescents and what its mechanism is have not been well explained. Given the complexity of the pathogenesis of depression, this study investigated the preventive effect and mechanism of l-theanine on depression in juvenile rats by combining serum and hippocampal metabolomic strategies. Behavioral tests, hippocampal tissue sections, and serum and hippocampal biochemical indexes were studied, and the results confirmed the preventive effect of l-theanine. Untargeted reversed-phase liquid chromatography-quadrupole-time-of-flight mass spectrometry and targeted hydrophilic interaction liquid chromatography-triple quadrupole mass spectrometry were developed to analyze the metabolism changes in the serum and hippocampus to screen for potential biomarkers related to l-theanine treatment. The results suggested that 28 abnormal metabolites in the serum and hippocampus that were considered as potential biomarkers returned to near-normal levels after l-theanine administration. These biomarkers were involved in various metabolic pathways, mainly including amino acid metabolism and lipid metabolism. The levels of amino acids and neurotransmitters in the phenylalanine, tryptophan, and glutamic acid pathways were significantly reduced after l-theanine administration compared with chronic unpredictable mild stress-induced rats. In summary, l-theanine had a significant preventive effect on depression and achieved its preventive results on depression by regulating various aspects of the body, such as amino acids, lipids, and inflammation. This research systematically analyzed the mechanism of l-theanine in preventing depression and laid the foundation for applying l-theanine to prevent depression in children and adolescents.
Collapse
Affiliation(s)
- Yanru Zhu
- Laboratory of Pharmaceutical Analysis, School of Pharmacy, Zhejiang Pharmaceutical University, Ningbo, Zhejiang, 315100, China
- Laboratory of Pharmaceutical Analysis, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Feng Wang
- Laboratory of Pharmaceutical Analysis, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Jiatong Han
- Laboratory of Pharmaceutical Analysis, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yunli Zhao
- Laboratory of Pharmaceutical Analysis, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Miao Yu
- Laboratory of Pharmaceutical Analysis, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Mingyan Ma
- Laboratory of Pharmaceutical Analysis, School of Pharmacy, Zhejiang Pharmaceutical University, Ningbo, Zhejiang, 315100, China
| | - Zhiguo Yu
- Laboratory of Pharmaceutical Analysis, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| |
Collapse
|
37
|
Bian X, Zhou N, Zhao Y, Fang Y, Li N, Zhang X, Wang X, Li Y, Wu JL, Zhou T. Identification of proline, 1-pyrroline-5-carboxylate and glutamic acid as biomarkers of depression reflecting brain metabolism using carboxylomics, a new metabolomics method. Psychiatry Clin Neurosci 2022; 77:196-204. [PMID: 36468242 DOI: 10.1111/pcn.13517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/24/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022]
Abstract
AIM Depression is a psychiatric disease which is accompanied by metabolic disorder. Though depression has been widely studied, its metabolism is yet to be illustrated. We aimed to manifest the underlying mechanisms to diagnose depression. METHODS One hundred thirty serum samples, including 65 patients and 65 healthy controls from different hospitals (training and validation cohorts), were recruited into the research. Sensitive Profiling for ChemoSelective Derivatization Carboxylomics (SPCSDCarboxyl) was applied to deeply hunt for the differential metabolites. Then, the serum, CSF, and hippocampus from depression rat models (CUMS group) were used to further confirm the results. Additionally, the co-occurrence between enzymes and biomarkers, as well as the combinatorial marker panel and the correlation of biomarkers among serum, CSF, or hippocampus were elucidated. RESULTS Two hundred eight metabolites were identified from the sera of patients. Proline, 1-pyrroline-5-carboxylate (P5C), and glutamic acid could discriminate patients from healthy humans and were confirmed to be the potential biomarkers. After further validation through CUMS rats, proline, and P5C were enriched, while glutamic acid was depleted in the CUMS group. The co-occurrence analysis of enzymes and biomarkers indicated that they could be used for the diagnosis of depression. Moreover, the combinatorial marker panel and the correlation analysis of biomarkers between serum and CSF or between serum and hippocampus revealed that serum could be an alternative approach to directly reflect the potential physiological mechanisms and diagnose depression instead of brain samples. CONCLUSION These integrated methods may facilitate the identification of biomarkers and help manifest the underlying mechanisms of depression.
Collapse
Affiliation(s)
- Xiqing Bian
- State Key Laboratory for Quality Research of Chinese Medicine, School of Pharmacy, Macau University of Science and Technology, Macao, China
| | - Na Zhou
- State Key Laboratory for Quality Research of Chinese Medicine, School of Pharmacy, Macau University of Science and Technology, Macao, China
| | - Yiran Zhao
- State Key Laboratory for Quality Research of Chinese Medicine, School of Pharmacy, Macau University of Science and Technology, Macao, China
| | - Yichao Fang
- Shanghai Key Laboratory for Pharmaceutical Metabolite Research, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Na Li
- State Key Laboratory for Quality Research of Chinese Medicine, School of Pharmacy, Macau University of Science and Technology, Macao, China
| | - Xin Zhang
- State Key Laboratory for Quality Research of Chinese Medicine, School of Pharmacy, Macau University of Science and Technology, Macao, China
| | - Xuan Wang
- State Key Laboratory for Quality Research of Chinese Medicine, School of Pharmacy, Macau University of Science and Technology, Macao, China
| | - Yunxia Li
- Department of Neurology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jian-Lin Wu
- State Key Laboratory for Quality Research of Chinese Medicine, School of Pharmacy, Macau University of Science and Technology, Macao, China
| | - Tingting Zhou
- Shanghai Key Laboratory for Pharmaceutical Metabolite Research, School of Pharmacy, Second Military Medical University, Shanghai, China
| |
Collapse
|
38
|
Frank D, Gruenbaum BF, Zlotnik A, Semyonov M, Frenkel A, Boyko M. Pathophysiology and Current Drug Treatments for Post-Stroke Depression: A Review. Int J Mol Sci 2022; 23:ijms232315114. [PMID: 36499434 PMCID: PMC9738261 DOI: 10.3390/ijms232315114] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/21/2022] [Accepted: 11/26/2022] [Indexed: 12/03/2022] Open
Abstract
Post-stroke depression (PSD) is a biopsychosocial disorder that affects individuals who have suffered a stroke at any point. PSD has a 20 to 60 percent reported prevalence among stroke survivors. Its effects are usually adverse, can lead to disability, and may increase mortality if not managed or treated early. PSD is linked to several other medical conditions, including anxiety, hyper-locomotor activity, and poor functional recovery. Despite significant awareness of its adverse impacts, understanding the pathogenesis of PSD has proved challenging. The exact pathophysiology of PSD is unknown, yet its complexity has been definitively shown, involving mechanisms such as dysfunction of monoamine, the glutamatergic systems, the gut-brain axis, and neuroinflammation. The current effectiveness of PSD treatment is about 30-40 percent of all cases. In this review, we examined different pathophysiological mechanisms and current pharmacological and non-pharmacological approaches for the treatment of PSD.
Collapse
Affiliation(s)
- Dmitry Frank
- Department of Anesthesiology and Critical Care, Soroka University Medical Center, Ben-Gurion of the Negev, Beer-Sheva 84105, Israel
- Correspondence: or
| | - Benjamin F. Gruenbaum
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Alexander Zlotnik
- Department of Anesthesiology and Critical Care, Soroka University Medical Center, Ben-Gurion of the Negev, Beer-Sheva 84105, Israel
| | - Michael Semyonov
- Department of Anesthesiology and Critical Care, Soroka University Medical Center, Ben-Gurion of the Negev, Beer-Sheva 84105, Israel
| | - Amit Frenkel
- Department of Anesthesiology and Critical Care, Soroka University Medical Center, Ben-Gurion of the Negev, Beer-Sheva 84105, Israel
| | - Matthew Boyko
- Department of Anesthesiology and Critical Care, Soroka University Medical Center, Ben-Gurion of the Negev, Beer-Sheva 84105, Israel
| |
Collapse
|
39
|
Deng L, Zhou X, Tao G, Hao W, Wang L, Lan Z, Song Y, Wu M, Huang JQ. Ferulic acid and feruloylated oligosaccharides alleviate anxiety and depression symptom via regulating gut microbiome and microbial metabolism. Food Res Int 2022; 162:111887. [DOI: 10.1016/j.foodres.2022.111887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 08/21/2022] [Accepted: 08/25/2022] [Indexed: 11/27/2022]
|
40
|
Yang ZK, Huang XL, Peng L. Transcriptome analysis reveals gene expression changes of the basidiomycetous yeast Apiotrichum mycotoxinivorans in response to ochratoxin A exposure. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 246:114146. [PMID: 36215880 DOI: 10.1016/j.ecoenv.2022.114146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 09/23/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
Ochratoxin A (OTA) is one of the most common and deleterious mycotoxins found in food and feedstuffs worldwide; however, Apiotrichum mycotoxinivorans can detoxify OTA. Our results show that A. mycotoxinivorans GUM1709 efficiently degraded OTA, but it caused the accumulation of intracellular reactive oxygen species. The main aim of this study was to identify potential OTA-detoxifying enzymes and to explore the effects of OTA on A. mycotoxinivorans GMU1709. RNA-seq data revealed that 1643 and 1980 genes were significantly upregulated and downregulated, respectively, after OTA exposure. Functional enrichment analyses indicated that OTA exposure enhanced defense capability, protein transport, endocytosis, and energy metabolism; caused ribosomal stress; suppressed DNA replication and transcription; inhibited cell growth and division; and promoted cell death. The integration of secretome, gene expression, and molecular docking analyses revealed that two carboxypeptidase homologues (members of the metallocarboxypeptidase family) were most likely responsible for the detoxification of both extracellular and intracellular OTA. Superoxide dismutase and catalase were the main genes activated in response to oxidative stress. In addition, analysis of key genes associated with cell division and apoptosis showed that OTA exposure inhibited mitosis and promoted cell death. This study revealed the possible OTA response and detoxification mechanisms in A. mycotoxinivorans.
Collapse
Affiliation(s)
- Zhi-Kai Yang
- Innovation centre for Advanced Interdisciplinary Medicine, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| | - Xue-Ling Huang
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Liang Peng
- Department of Clinical Laboratory, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
41
|
The Exploration of Fetal Growth Restriction Based on Metabolomics: A Systematic Review. Metabolites 2022; 12:metabo12090860. [PMID: 36144264 PMCID: PMC9501562 DOI: 10.3390/metabo12090860] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/03/2022] [Accepted: 09/04/2022] [Indexed: 11/30/2022] Open
Abstract
Fetal growth restriction (FGR) is a common complication of pregnancy and a significant cause of neonatal morbidity and mortality. The adverse effects of FGR can last throughout the entire lifespan and increase the risks of various diseases in adulthood. However, the etiology and pathogenesis of FGR remain unclear. This study comprehensively reviewed metabolomics studies related with FGR in pregnancy to identify potential metabolic biomarkers and pathways. Relevant articles were searched through two online databases (PubMed and Web of Science) from January 2000 to July 2022. The reported metabolites were systematically compared. Pathway analysis was conducted through the online MetaboAnalyst 5.0 software. For humans, a total of 10 neonatal and 14 maternal studies were included in this review. Several amino acids, such as alanine, valine, and isoleucine, were high frequency metabolites in both neonatal and maternal studies. Meanwhile, several pathways were suggested to be involved in the development of FGR, such as arginine biosynthesis, arginine, and proline metabolism, glyoxylate and dicarboxylate metabolism, and alanine, aspartate, and glutamate metabolism. In addition, we also included 8 animal model studies, in which three frequently reported metabolites (glutamine, phenylalanine, and proline) were also present in human studies. In general, this study summarized several metabolites and metabolic pathways which may help us to better understand the underlying metabolic mechanisms of FGR.
Collapse
|
42
|
The microbiota-gut-brain axis in sleep disorders. Sleep Med Rev 2022; 65:101691. [DOI: 10.1016/j.smrv.2022.101691] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 08/04/2022] [Accepted: 08/19/2022] [Indexed: 12/25/2022]
|
43
|
Cai T, Zheng SP, Shi X, Yuan LZ, Hu H, Zhou B, Xiao SL, Wang F. Therapeutic effect of fecal microbiota transplantation on chronic unpredictable mild stress-induced depression. Front Cell Infect Microbiol 2022; 12:900652. [PMID: 35967846 PMCID: PMC9366333 DOI: 10.3389/fcimb.2022.900652] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 07/11/2022] [Indexed: 12/27/2022] Open
Abstract
Background and objective Depression is a complex neuropsychiatric disease with extensive morbidity. Its pathogenesis remains unclear, and it is associated with extremely low rates of cure and complete remission. It is vital to study the pathogenesis of depression to develop effective treatments. This study aimed to explore the therapeutic effects and mechanisms of fecal microbiota transplantation (FMT) for the treatment of depression in rats. Methods Thirty Sprague-Dawley (SD) rats were randomly divided into three groups: control, chronic unpredictable mild stress (CUMS) to model depression, and CUMS+FMT. For the CUMS and CUMS+FMT groups, after CUMS intervention (four weeks), the rats were given normal saline or FMT (once/week for three weeks), respectively. Behavior, colonic motility, 16S rDNA amplicon sequencing, and untargeted metabolomics on fecal samples were compared between the three rat groups. The following markers were analyzed: 5-hydroxytryptamine (5-HT), gamma-aminobutyric acid (GABA), glutamate (Glu), and brain-derived neurotrophic factor (BDNF) levels in the hippocampus; glucagon-like peptide 1 (GLP-1), lipopolysaccharide (LPS), and interleukin (IL)-6 levels in the serum; and GLP-1, GLP-1 receptor (GLP-1R), and serotonin 4 receptor (5-HT4R) levels in colonic tissues. Results FMT improved symptoms of depression and colonic motility in rats exposed to CUMS. The expression levels of 5-HT, GABA, BDNF, and other biochemical indices, significantly differed among the three groups. Meanwhile, the intestinal microbiota in the CUMS+FMT group was more similar to that of the control group with a total of 13 different fecal metabolites. Conclusion FMT exerted antidepressant effects on CUMS-induced depression in rats, and the mechanism involved various neurotransmitters, inflammatory factors, neurotrophic factors, and glucagon-like peptides.
Collapse
Affiliation(s)
- Ting Cai
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Shao-peng Zheng
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Xiao Shi
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Ling-zhi Yuan
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Hai Hu
- Department of Orthopedics, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Bai Zhou
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Shi-lang Xiao
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Fen Wang
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Fen Wang,
| |
Collapse
|
44
|
Huang B, Sun B, Yang R, Liang S, Li X, Guo Y, Meng Q, Fu Y, Li W, Zhao P, Gong M, Shi Y, Song L, Wang S, Yuan F, Shi H. Long-lasting effects of postweaning sleep deprivation on cognitive function and social behaviors in adult mice. Neuropharmacology 2022; 215:109164. [PMID: 35716724 DOI: 10.1016/j.neuropharm.2022.109164] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/21/2022] [Accepted: 06/08/2022] [Indexed: 10/18/2022]
Abstract
Sleep deprivation (SD) has adverse effects on physical and mental health. Recently increasing attention has been given to SD in the early-life stage. However, the effects and mechanisms of postweaning SD on cognitive function and social behaviors are still unclear. In this study, SD was conducted in mice from postnatal Day 21 (PND21) to PND42, 6 h a day. Meanwhile, changes in body weight, food and water intake were continuously monitored. Behavioral tests were carried out in adulthood of mice. The levels of serum corticosterone, the proinflammatory cytokines interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α), and the anti-inflammatory cytokines interleukin-10 (IL-10), vasopressin (VP) and oxytocin (OT) were measured by ELISA. Golgi staining was used to calculate neural dendritic spine density in the dorsal hippocampus (dHPC) CA1 region and medial prefrontal cortex (mPFC). We found that postweaning SD increased the food intake and the weight of female mice. Behavioral results showed that postweaning SD caused cognitive impairment and lowered social dominance in adult male mice but not in female mice. ELISA results showed that SD increased the levels of serum corticosterone, VP and OT in male mice and serum OT in female mice. Golgi staining analysis showed that SD decreased neural dendritic spine density in the dHPC in male mice. These results suggest that postweaning SD has a long-term effect on social dominance and cognitive function in male mice, which may provide a new insight into the role of SD in regulating cognitive function and social behaviors.
Collapse
Affiliation(s)
- Boya Huang
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang, 050017, China; Hebei Key Laboratory of Neurophysiology, Hebei Medicinal University, 050017, China
| | - Binhuang Sun
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang, 050017, China; Hebei Key Laboratory of Neurophysiology, Hebei Medicinal University, 050017, China
| | - Rui Yang
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang, 050017, China; Hebei Key Laboratory of Neurophysiology, Hebei Medicinal University, 050017, China
| | - Shihao Liang
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang, 050017, China; Hebei Key Laboratory of Neurophysiology, Hebei Medicinal University, 050017, China
| | - Xinrui Li
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang, 050017, China; Hebei Key Laboratory of Neurophysiology, Hebei Medicinal University, 050017, China
| | - Yi Guo
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang, 050017, China; Hebei Key Laboratory of Neurophysiology, Hebei Medicinal University, 050017, China
| | - Qian Meng
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang, 050017, China; Hebei Key Laboratory of Neurophysiology, Hebei Medicinal University, 050017, China
| | - Yaling Fu
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang, 050017, China; Hebei Key Laboratory of Neurophysiology, Hebei Medicinal University, 050017, China
| | - Wenshuya Li
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang, 050017, China
| | - Penghui Zhao
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang, 050017, China
| | - Miao Gong
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang, 050017, China; Hebei Key Laboratory of Neurophysiology, Hebei Medicinal University, 050017, China
| | - Yun Shi
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei Medicinal University, Shijiazhuang, 050017, China
| | - Li Song
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang, 050017, China; Hebei Key Laboratory of Neurophysiology, Hebei Medicinal University, 050017, China; Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei Medicinal University, Shijiazhuang, 050017, China
| | - Sheng Wang
- Hebei Key Laboratory of Neurophysiology, Hebei Medicinal University, 050017, China
| | - Fang Yuan
- Hebei Key Laboratory of Neurophysiology, Hebei Medicinal University, 050017, China
| | - Haishui Shi
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang, 050017, China; Hebei Key Laboratory of Neurophysiology, Hebei Medicinal University, 050017, China; Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei Medicinal University, Shijiazhuang, 050017, China.
| |
Collapse
|
45
|
Gut microbiome and daytime function in Chinese patients with major depressive disorder. J Psychosom Res 2022; 157:110787. [PMID: 35344817 DOI: 10.1016/j.jpsychores.2022.110787] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 03/14/2022] [Accepted: 03/16/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND Major depressive disorder (MDD) is underscored by daytime dysfunction-associated features, including mood disturbances, impaired cognition, fatigue, and daytime sleepiness. Importantly, the gut-brain axis may represent a potential mechanistic link between MDD and daytime dysfunction. Therefore, this study aimed to explore the gut microbiome composition and daytime dysfunction in Chinese patients with MDD. METHODS We enrolled 36 patients with MDD and 45 healthy controls (HCs) matched by age, sex, and body mass index (BMI). Daytime function including emotion, fatigue, and sleepiness were assessed using the Epworth Sleepiness Scale (ESS), Fatigue Severity Scale (FSS), Hamilton Anxiety Scale (HAMA), and Hamilton Depression Scale (HAMD). 16S rRNA sequencing was employed to characterize the gut microbiota in stool samples. RESULTS The operational taxonomic units (OTUs) OTU255, OUT363 were positively correlated with HAMD and HAMA. OTU244, OTU542 and OTU221 were positively correlated with ESS, HAMD and HAMA. OTU725 and OTU80 were positively correlated with FSS, ESS, HAMD and HAMA, while OTU423 and OTU502 were negatively correlated with all above. Flavonifractor positively correlated with fatigue in patients with MDD and all individuals simultaneously. The correlation between gut microbiome and daytime function was different in MDD and HCs. CONCLUSIONS We identified several OTUs associated with the severity of fatigue, depression, daytime sleepiness and anxiety in all individuals. Our results revealed the differences in microbiome found between patients with MDD and HCs. These findings provide insights into the potential microbiota changes that occur in MDD, and will enable the development of specific therapeutic strategies for targeting the various symptoms of depression.
Collapse
|
46
|
Liu H, Pu J, Zhou Q, Yang L, Bai D. Peripheral blood and urine metabolites and biological functions in post-stroke depression. Metab Brain Dis 2022; 37:1557-1568. [PMID: 35438379 DOI: 10.1007/s11011-022-00984-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 04/10/2022] [Indexed: 12/31/2022]
Abstract
Post-stroke depression (PSD) is the most common and severe neuropsychiatric complication after stroke. However, the molecular mechanism of PSD is still unclear. Previous studies have identified peripheral blood and urine metabolites associated with PSD using metabolomics techniques. We searched and systematically summarized metabolites that may be involved in metabolic changes in peripheral blood and urine of patients with PSD from the Metabolite Network of Depression Database (MENDA) and other biomedical databases. MetaboAnalyst5.0 software was used for pathway analysis and enrichment analysis of differential metabolites, and subgroup analyses were performed according to tissue types and metabolomics techniques. We identified 47 metabolites that were differentially expressed between patients with and without PSD. Five differential metabolites were found in both plasma and urine, including L-glutamic acid, pyroglutamic acid, palmitic acid, L-phenylalanine, and L-tyrosine. We integrated these metabolites into metabolic pathways, and six pathways were significantly altered. These pathways could be roughly divided into three modules including amino acid metabolism, nucleotide metabolism, and glucose metabolism. Among them, the most significantly altered pathway was "phenylalanine metabolism" and the pathway containing the most associated metabolites was "aminoacyl-tRNA biosynthesis", which deserve further study to elucidate their role in the molecular mechanism of PSD. In summary, metabolic changes in peripheral blood and urine are associated with PSD, especially the disruption of "phenylalanine metabolism" and "aminoacyl-tRNA biosynthesis" pathways. This study provides clues to the metabolic characteristics of patients with PSD, which may help to elucidate the molecular pathogenesis of PSD.
Collapse
Affiliation(s)
- Haiyan Liu
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Juncai Pu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qinxiang Zhou
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lining Yang
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Dingqun Bai
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
47
|
Alrousan G, Hassan A, Pillai AA, Atrooz F, Salim S. Early Life Sleep Deprivation and Brain Development: Insights From Human and Animal Studies. Front Neurosci 2022; 16:833786. [PMID: 35592259 PMCID: PMC9111737 DOI: 10.3389/fnins.2022.833786] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 03/25/2022] [Indexed: 11/13/2022] Open
Abstract
Adequate sleep especially during developmental stages of life, is considered essential for normal brain development and believed to play an important role in promoting healthy cognitive and psychosocial development, while persistent sleep disturbances and/or sleep deprivation during early life are believed to trigger many mental ailments such as anxiety disorders, depression, and cognitive impairment. Initially it was suggested that adverse mental health conditions adversely affect sleep, however, it is now accepted that this association is bidirectional. In fact, sleep disturbances are listed as a symptom of many mental health disorders. Of special interest is the association between early life sleep deprivation and its negative mental health outcomes. Studies have linked persistent early life sleep deprivation with later life behavioral and cognitive disturbances. Neurobiological underpinnings responsible for the negative outcomes of early life sleep deprivation are not understood. This is a significant barrier for early therapeutic and/or behavioral intervention, which can be feasible only if biological underpinnings are well-understood. Animal studies have provided useful insights in this area. This article focusses on the knowledge gained from the research conducted in the area of early life sleep deprivation, brain development, and behavioral function studies.
Collapse
Affiliation(s)
- Ghalya Alrousan
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, United States
| | - Arham Hassan
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, United States
| | - Aditya Anilkumar Pillai
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, United States
| | - Fatin Atrooz
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, United States
| | - Samina Salim
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, United States
| |
Collapse
|
48
|
Lin X, Zhai R, Mo J, Sun J, Chen P, Huang Y. How do maternal emotion and sleep conditions affect infant sleep: a prospective cohort study. BMC Pregnancy Childbirth 2022; 22:237. [PMID: 35321658 PMCID: PMC8944133 DOI: 10.1186/s12884-022-04504-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 02/21/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Recent studies suggest that the incidence of infant sleep disorder is related to maternal emotional and sleep conditions, but how they influence each other is not fully understood. METHODS A total of 513 pairs of parents and infants were enrolled in this prospective cohort study. Maternal emotional and sleep conditions were assessed using a self-rating depression scale, self-rating anxiety scale, and Pittsburgh Sleep Quality Index at the third trimester and within 3 months after delivery. Infant sleep was assessed by the Brief Screening Questionnaire for Infant Sleep Problems within 3 months after birth. Expression of the glucocorticoid receptor (GR), melatonin receptors (MR), exchange proteins directly activated by cAMP (EPAC) receptors, and dopamine receptor (DR) in the placenta was detected by immunohistochemistry. Methylation of the promoter regions for the GR (NR3C1 and NR3C2), MR (MTNR1A and MTNR1B), EPAC (RASGRF1 and RASGRF2), and DR (DRD1 and DRD2) genes was assessed by next generation sequencing-based bisulfite sequencing PCR. RESULTS The incidence of sleep disorders in infants 0-3 months of age in this cohort was 40.5%. Risk factors for infant sleep disorder were low education level of the father, depression of father, maternal postpartum depression, postpartum anxiety, postpartum sleep disorder, and maternal sleep disorder extend from the third trimester to postpartum. There was no difference in expression of placental DR, GR, MR, and EPAC between mothers whose infants were with and without sleep disorders. Methylation of MTNR1B was higher and expression of MR was lower in the placenta of mothers with sleep disorder in the third trimester than in mothers without sleep disorder. Level of NR3C2 methylation was lower and GR expression was higher in the placenta of mothers with sleep disorder extend from the third trimester to postpartum than in mothers without sleep disorder. CONCLUSION Maternal sleep disorders in the third trimester could lead to decreased MR expression by up-regulating MTNR1B methylation, and then resulting in elevated cortisol and increased GR expression by down-regulating NR3C2 methylation, which could increase the incidence of maternal postpartum sleep disorders, finally, the maternal postpartum sleep disorder could result in the high incidence of infant sleep disorder.
Collapse
Affiliation(s)
- Xuemei Lin
- Department of Neonatology, Second Affiliated Hospital of Shantou University Medical College, North Dongxia Road, Shantou, 515041, Guangdong, China
- Department of Neonatology, Shenshan Central Hospital of Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Shanwei, 516600, Guangdong, China
| | - Ronghui Zhai
- Department of Neonatology, Second Affiliated Hospital of Shantou University Medical College, North Dongxia Road, Shantou, 515041, Guangdong, China
| | - Jiafeng Mo
- Department of Neonatology, Second Affiliated Hospital of Shantou University Medical College, North Dongxia Road, Shantou, 515041, Guangdong, China
| | - Jingzhou Sun
- Department of Mathematics, Shantou University Science College, College Road, Shantou, 515041, Guangdong, China
| | - Peishan Chen
- Department of Obstetrics, Second Affiliated Hospital of Shantou University Medical College, North Dongxia Road, Shantou, 515041, Guangdong, China
| | - Yuejun Huang
- Department of Neonatology, Second Affiliated Hospital of Shantou University Medical College, North Dongxia Road, Shantou, 515041, Guangdong, China
| |
Collapse
|
49
|
Gu X, Zhang S, Ma W, Wang Q, Li Y, Xia C, Xu Y, Zhang T, Yang L, Zhou M. The Impact of Instant Coffee and Decaffeinated Coffee on the Gut Microbiota and Depression-Like Behaviors of Sleep-Deprived Rats. Front Microbiol 2022; 13:778512. [PMID: 35283829 PMCID: PMC8914519 DOI: 10.3389/fmicb.2022.778512] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 01/04/2022] [Indexed: 12/21/2022] Open
Abstract
Objective Based on our previous research, chronic paradoxical sleep deprivation (PSD) can cause depression-like behaviors and microbial changes in gut microbiota. Coffee, as the world’s most popular drink for the lack of sleep, is beneficial to health and attention and can eliminate the cognitive sequelae caused by poor sleep. The purpose of this study is to investigate the effects of coffee and decaffeinated coffee on PSD rats. Research Design and Methods A total of 32 rats were divided into four groups: control group, PSD model group, conventional coffee group, and decaffeinated coffee group. Behavioral tests, including sucrose preference test, open field test, forced swimming test, and tail suspension test, as well as biochemical detection for inflammatory and antioxidant indexes were performed. The effects of coffee and decaffeinated coffee on the gut microbiota of PSD rats were investigated by 16S rRNA gene sequencing. Results Coffee and decaffeinated coffee significantly improved the depression-like behaviors. Moreover, the serum levels of interleukin-6 and tumor necrosis factor alpha were decreased in both coffee and decaffeinated coffee groups, as well as the levels of superoxide dismutase and GSH-Px were increased. Gut microbiota analysis revealed that the abundance of S24-7, Lachnospiraceae, Oscillospira, and Parabacteroides were significantly increased in PSD rats, while the abundance of Akkermansia and Klebsiella were significantly decreased. After the treatment of coffee and decaffeinated coffee, the abundance of the above gut microbiota was all restored in different degrees. Coffee had relatively more significant effects on PSD-induced depressive-like behaviors, while the difference between coffee and decaffeinated coffee was not obvious in correcting the disorder of gut microbiota. Conclusions These findings have shown that both coffee and decaffeinated coffee are effective for sleep deprivation-induced depression-like behaviors and the dysbiosis of gut microbiota and indicated that caffeine may be not the only key substance of coffee for regulating gut microbiota.
Collapse
Affiliation(s)
- Xinyi Gu
- Institute for Interdisciplinary Medicine Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shuyi Zhang
- Institute for Interdisciplinary Medicine Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Weini Ma
- Institute for Interdisciplinary Medicine Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qixue Wang
- Institute for Interdisciplinary Medicine Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ying Li
- Institute for Interdisciplinary Medicine Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chenyi Xia
- Department of Physiology, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ying Xu
- Department of Physiology, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ting Zhang
- Institute for Interdisciplinary Medicine Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Li Yang
- Institute for Interdisciplinary Medicine Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Mingmei Zhou
- Institute for Interdisciplinary Medicine Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Mingmei Zhou,
| |
Collapse
|
50
|
Wang Z, Yuan K, Ji YB, Li SX, Shi L, Wang Z, Zhou XY, Bao YP, Xie W, Han Y, Shi J, Lu L, Yan W, Chen WH. Alterations of the Gut Microbiota in Response to Total Sleep Deprivation and Recovery Sleep in Rats. Nat Sci Sleep 2022; 14:121-133. [PMID: 35115853 PMCID: PMC8800865 DOI: 10.2147/nss.s334985] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 12/31/2021] [Indexed: 12/13/2022] Open
Abstract
INTRODUCTION Accumulating evidence suggests that both sleep loss and gut dysbiosis can lead to metabolic disorders. However, less is known about the impact of total sleep deprivation (SD) and sleep recovery on the composition, function, and metabolic dynamics of the gut microbiota. METHODS Specific-pathogen free Sprague-Dawley rats were subjected to 48 h of SD with gentle handling and then allowed to recover for 1 week. Taxonomic profiles of fecal microbiota were obtained at baseline, 24 h of SD, 48 h of SD, and 1 week of recovery. We used 16S rRNA gene sequencing to analyze the gut microbial composition and function and further characterize microbiota-derived metabolites in rats. RESULTS The microbiota composition analysis revealed that gut microbial composition and metabolites did not change in the rats after 24 h of SD but were significantly altered after 48 h of SD. These changes were reversible after 1 week of sleep recovery. A functional analysis was performed based on Kyoto Encyclopedia of Genes and Genomes (KEGG) annotations, indicating that 19 KEGG pathways were significantly altered in the gut microbiota in SD rats. These functional changes occurred within 24 h of SD, were more apparent after 48 h of SD, and did not fully recover after 1 week of sleep recovery. CONCLUSION These results indicate that acute total SD leads to significant compositional and functional changes in the gut microbiota, and these changes are reversible.
Collapse
Affiliation(s)
- Zhong Wang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, Beijing, 100191, People's Republic of China
| | - Kai Yuan
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, Beijing, 100191, People's Republic of China
| | - Yan-Bin Ji
- Department of Neurology, Qilu Hospital of Shandong University, Shandong University, Jinan, 250012, People's Republic of China
| | - Su-Xia Li
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, 100191, People's Republic of China
| | - Le Shi
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, Beijing, 100191, People's Republic of China
| | - Zhe Wang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, Beijing, 100191, People's Republic of China
| | - Xin-Yu Zhou
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Yan-Ping Bao
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, 100191, People's Republic of China
| | - Wen Xie
- Mental Health Center of Anhui Province, Hefei, 230032, People's Republic of China
| | - Ying Han
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, 100191, People's Republic of China
| | - Jie Shi
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, 100191, People's Republic of China
| | - Lin Lu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, Beijing, 100191, People's Republic of China.,National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, 100191, People's Republic of China.,Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871, People's Republic of China
| | - Wei Yan
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, Beijing, 100191, People's Republic of China
| | - Wen-Hao Chen
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, Beijing, 100191, People's Republic of China
| |
Collapse
|