1
|
Mazzaferro L, Grasseschi TM, Like BD, Panzer MJ, Asatekin A. Amphiphilic Polyelectrolyte Complexes for Fouling-Resistant and Easily Tunable Membranes. ACS APPLIED MATERIALS & INTERFACES 2024; 16:37952-37962. [PMID: 38990338 DOI: 10.1021/acsami.4c05723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Commercial membranes today are manufactured from a handful of membrane materials. While these systems are well-optimized, their capabilities remain constrained by limited chemistries and manufacturing methods available. As a result, membranes cannot address many relevant separations where precise selectivity is needed, especially with complex feeds. This constraint requires the development of novel membrane materials that offer customizable features to provide specific selectivity and durability requirements for each application, enabled by incorporating different functional chemistries into confined nanopores in a scalable process. This study introduces a new class of membrane materials, amphiphilic polyelectrolyte complexes (APECs), comprised of a blend two distinct amphiphilic polyelectrolytes of opposite charge that self-assemble to form a polymer selective layer. When coated on a porous support from a mixture in a nonaqueous solvent, APECs self-assemble to create ionic nanodomains acting as water-conducting nanochannels, enveloped within hydrophobic nanodomains, ensuring structural integrity of the layer in water. Notably, this approach allows precise control over selectivity without compromising pore size, permeability, or fouling resistance. For example, using only one pair of amphiphilic copolymers, sodium sulfate rejections can be varied from >95% to <10% with no change in effective pore size and fouling resistance. Given the wide range of amphiphilic polyelectrolytes (i.e., combinations of different hydrophobic, anionic, and cationic monomers), APECs can create membranes with many diverse chemistries and selectivities. Resultant membranes can potentially address precision separations in many applications, from wastewater treatment to chemical and biological manufacturing.
Collapse
Affiliation(s)
- Luca Mazzaferro
- Department of Chemical and Biological Engineering, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, United States
| | - Teresa M Grasseschi
- Department of Chemical and Biological Engineering, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, United States
| | - Bricker D Like
- Department of Chemical and Biological Engineering, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, United States
| | - Matthew J Panzer
- Department of Chemical and Biological Engineering, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, United States
| | - Ayse Asatekin
- Department of Chemical and Biological Engineering, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, United States
| |
Collapse
|
2
|
Jeon I, Lee J, Zhong M, Kim JH. Tailoring Thermoresponsive Polymer Architecture to Enhance Antifouling and Fouling Reversibility of Membranes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:17610-17619. [PMID: 37910821 DOI: 10.1021/acs.est.3c05514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Cleaning a fouled membrane using warm water, instead of commonly used fouling control chemicals, is an approach advocated in resource-limited settings, where small-scale membrane filtration is used to provide clean water. Thermoresponsive polymers coated onto membranes undergo a conformational change across their lower critical solution temperature (LCST), enabling foulant removal during such temperature-swing cleaning. However, their intrinsic hydrophobicity above the LCST poses a fundamental material challenge. In this study, we examine how thermoresponsive polymers can be optimally copolymerized with hydrophilic polymers by precisely manipulating monomer arrangement of thermoresponsive N-isopropylacrylamide and hydrophilic 2-[2-(2-methoxyethoxy)ethoxy]ethyl acrylate. We successfully grafted these copolymers with different monomer arrangements onto poly(ether sulfone) ultrafiltration membranes while maintaining other polymer characteristics, such as the degree of polymerization and grafting density, constant. We found that placing hydrophilic polymer blocks at the outermost surface above the thermoresponsive polymer blocks is critical to achieving high surface hydrophilicity while preserving the thermoresponsive functionality. We demonstrate enhanced fouling resistance and efficient temperature-swing cleaning with optimized copolymer design based on their interaction with bovine serum albumin during static adsorption, filtration, and cleaning processes. These findings emphasize the importance of accurately tailoring the polymer architecture to enable more efficient filtration with reduced fouling and the capability to effectively clean the fouled membrane by simply using warm water.
Collapse
Affiliation(s)
- Inhyeong Jeon
- Department of Chemical and Environmental Engineering, Yale University, 17 Hillhouse Ave, New Haven, Connecticut 06511, United States
| | - Junwoo Lee
- Department of Chemical and Environmental Engineering, Yale University, 17 Hillhouse Ave, New Haven, Connecticut 06511, United States
| | | | | |
Collapse
|
3
|
Al-Jumaily AM, Grau-Bartual S, Weerasinghe NT. Biocompatible Polymer for Self-Humidification. Polymers (Basel) 2023; 15:4101. [PMID: 37896345 PMCID: PMC10611040 DOI: 10.3390/polym15204101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/12/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
Lung supportive devices (LSDs) have been extensively utilized in treating patients diagnosed with various respiratory disorders. However, these devices can cause moisture depletion in the upper airway by interfering with the natural lubrication and air conditioning process. To remedy this, current technologies implement heated humidification processes, which are bulky, costly, and nonfriendly. However, it has been demonstrated that in a breath cycle, the amount of water vapor in the exhaled air is of a similar quantity to the amount needed to humidify the inhaled air. This research proposes to trap the moisture from exhaled air and reuse it during inhalation by developing a state-of-the-art hydrophilic/hydrophobic polymer tuned to deliver this purpose. Using the atom transfer radical polymerization (ATRP) method, a substrate was successfully created by incorporating poly (N-isopropyl acrylamide) (PNIPAM) onto cotton. The fabricated material exhibited a water vapor release rate of 24.2 ± 1.054%/min at 32 °C, indicating its ability to humidify the inhaled air effectively. These findings highlight the potential of the developed material as a promising solution for applications requiring rapid moisture recovery.
Collapse
Affiliation(s)
- Ahmed M. Al-Jumaily
- AUT—Institute of Biomedical Technologies, Auckland University of Technology, Auckland 1010, New Zealand
| | | | | |
Collapse
|
4
|
Mazzaferro L, Lounder SJ, Asatekin A. Amphiphilic Polyampholytes for Fouling-Resistant and Easily Tunable Membranes. ACS APPLIED MATERIALS & INTERFACES 2023; 15:42557-42567. [PMID: 37656014 DOI: 10.1021/acsami.3c07745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
The versatility of membranes is limited by the narrow range of material chemistries on the market, which cannot address many relevant separations. Expanding their use requires new membrane materials that can be tuned to address separations by providing the desired selectivity and robustness. Self-assembly is a versatile and scalable approach to create tunable membranes with a narrow pore size distribution. This study reports the first examples of a new class of membrane materials that derives state-of-the-art permeability, selectivity, and fouling resistance from the self-assembly of random polyampholyte amphiphilic copolymers. These membranes feature a network of ionic nanodomains that serve as nanochannels for water permeation, framed by hydrophobic nanodomains that preserve their structural integrity. This copolymer design approach enables precise selectivity control. For example, sodium sulfate rejections can be tuned from 5% to 93% with no significant change in the pore size or fouling resistance. Membranes developed here have potential applications in wastewater treatment and chemical separations.
Collapse
Affiliation(s)
- Luca Mazzaferro
- Department of Chemical and Biological Engineering, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, United States
| | - Samuel J Lounder
- Department of Chemical and Biological Engineering, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, United States
| | - Ayse Asatekin
- Department of Chemical and Biological Engineering, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, United States
| |
Collapse
|
5
|
Viana TS, Campos D, Bartilotti M, Leite FG, Zanoni MVB, Dorta DJ, Oliveira DP, Pestana JLT. Magnetized vermiculite as a tool for the treatment of produced water generated by oil companies: Effects on aquatic organisms before and after treatment. J Appl Toxicol 2023; 43:1393-1405. [PMID: 37055923 DOI: 10.1002/jat.4473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 04/04/2023] [Accepted: 04/08/2023] [Indexed: 04/15/2023]
Abstract
Produced water (PW) generated by oil companies is a highly impacting waste that contains chemicals such as metals and organic and inorganic compounds. Given its polluting potential, PW requires effective treatment before being discharged into the environment. Conventional treatments have limited efficiency in removing PW toxicity, so alternative approaches must be developed and standardized. In this context, treatment with adsorbent materials like magnetized vermiculite (VMT-mag) is highlighted. This work aimed to evaluate the efficiency of treatment with VMT-mag in reducing PW toxicity to aquatic biota. For this purpose, three aquatic species (the midge Chironomus riparius, the planarian Girardia tigrina, and the crustacean Daphnia magna) were exposed to untreated PW and to PW treated with VMT-mag at laboratory conditions. The assessed endpoints included mortality, growth, emergence, and developmental time of C. riparius; mortality, locomotion, feeding, and head regeneration of G. tigrina; and intrinsic population growth rate (r) and reproductive output of D. magna. The results showed that all the species exposed to raw PW were impaired: C. riparius had delayed development, G. tigrina had reduced locomotor activity and delayed head regeneration, and D. magna had reduced reproduction and delayed intrinsic population growth rate (r). Most of the analyzed parameters showed that treatment with VMT-mag diminished PW toxicity. Therefore, using VMT-mag to treat PW may be the key to reducing the PW effects on aquatic organisms.
Collapse
Affiliation(s)
- Tais S Viana
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
| | - Diana Campos
- CESAM - Centre for Environmental and Marine Studies and Department of Biology, University of Aveiro, Aveiro, Portugal
| | - Mariana Bartilotti
- Institute of Chemistry, São Paulo State University (Unesp), Araraquara, São Paulo, Brazil
| | - Fernanda G Leite
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
| | - Maria Valnice Boldrin Zanoni
- Institute of Chemistry, São Paulo State University (Unesp), Araraquara, São Paulo, Brazil
- National Institute of Science and Technology for Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactive Substances (INCT-DATREM), Araraquara, São Paulo, Brazil
| | - Daniel J Dorta
- National Institute of Science and Technology for Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactive Substances (INCT-DATREM), Araraquara, São Paulo, Brazil
- Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Departamento de Química, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Danielle P Oliveira
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
- National Institute of Science and Technology for Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactive Substances (INCT-DATREM), Araraquara, São Paulo, Brazil
| | - João L T Pestana
- CESAM - Centre for Environmental and Marine Studies and Department of Biology, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
6
|
Hliavitskaya T, Plisko T, Bildyukevich A, Liubimova A, Shumskaya A, Mikchalko A, Rogachev AA, Melnikova GB, Pratsenko SA. Novel Hydrophobic Ultrafiltration Membranes for Treatment of Oil-Contaminated Wastewater. MEMBRANES 2023; 13:402. [PMID: 37103829 PMCID: PMC10145576 DOI: 10.3390/membranes13040402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/20/2023] [Accepted: 03/29/2023] [Indexed: 06/19/2023]
Abstract
Cutting fluids are the main source of oily wastewater in the metalworking industry. This study deals with the development of antifouling composite hydrophobic membranes for treatment of oily wastewater. The novelty of this study is that a low energy electron-beam deposition technique was applied for a polysulfone (PSf) membrane with a molecular-weight cut-off of 300 kDa, which is promising for use in the treatment of oil-contaminated wastewater, by using polytetrafluoroethylene (PTFE) as target materials. The effect of the thickness of the PTFE layer (45, 660, and 1350 nm) on the structure, composition, and hydrophilicity of membranes was investigated using scanning electron microscopy, water contact angle (WCA) measurements, atomic force microscopy, and FTIR-spectroscopy. The separation and antifouling performance of the reference and modified membranes were evaluated during ultrafiltration of cutting fluid emulsions. It was found that the increase in the PTFE layer thickness results in the significant increase in WCA (from 56° up to 110-123° for the reference and modified membranes respectively) and decrease in surface roughness. It was found that cutting fluid emulsion flux of modified membranes was similar to the flux of the reference PSf-membrane (7.5-12.4 L·m-2·h-1 at 6 bar) while cutting fluid rejection (RCF) of modified membranes increased compared to the reference membrane (RCF = 58.4-93.3% for modified and RCF = 13% for the reference PSf membrane). It was established that despite the similar flux of cutting fluid emulsion, modified membranes demonstrate 5-6.5 times higher flux recovery ratio (FRR) compared to the reference membrane. The developed hydrophobic membranes were found to be highly efficient in oily wastewater treatment.
Collapse
Affiliation(s)
- Tatsiana Hliavitskaya
- Institute of Physical Organic Chemistry, National Academy of Sciences of Belarus, 220072 Minsk, Belarus
| | - Tatiana Plisko
- Institute of Physical Organic Chemistry, National Academy of Sciences of Belarus, 220072 Minsk, Belarus
| | - Alexandr Bildyukevich
- Institute of Physical Organic Chemistry, National Academy of Sciences of Belarus, 220072 Minsk, Belarus
| | - Alena Liubimova
- Institute of Physical Organic Chemistry, National Academy of Sciences of Belarus, 220072 Minsk, Belarus
| | - Alena Shumskaya
- Institute of Chemistry of New Materials, 220141 Minsk, Belarus
| | | | - Alexandr A. Rogachev
- Institute of Chemistry of New Materials, 220141 Minsk, Belarus
- F. Skorina Gomel State University, 246019 Gomel, Belarus
| | - Galina B. Melnikova
- Lykov Heat and Mass Transfer Institute, National Academy of Sciences of Belarus, 220072 Minsk, Belarus
| | - Svetlana A. Pratsenko
- Institute of Physical Organic Chemistry, National Academy of Sciences of Belarus, 220072 Minsk, Belarus
| |
Collapse
|
7
|
Aguiar AO, Yi H, Asatekin A. Fouling-resistant membranes with zwitterion-containing ultra-thin hydrogel selective layers. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2022.121253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
8
|
Naderi N, Hosseini SS, Atassi Y. Tailoring the morphology and performance of polyacrylonitrile ultrafiltration membranes for produced water treatment via solvent mixture strategy. Chem Eng Technol 2022. [DOI: 10.1002/ceat.202100638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Noushin Naderi
- Membrane Science and Technology Research Group, Department of Chemical Engineering Tarbiat Modares University Jalal-Ale-Ahmad Tehran Iran
| | - Seyed Saeid Hosseini
- Membrane Science and Technology Research Group, Department of Chemical Engineering Tarbiat Modares University Jalal-Ale-Ahmad Tehran Iran
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering and Technology University of South Africa Johannesburg South Africa
| | - Yomen Atassi
- Department of Applied Physics Higher Institute for Applied Sciences and Technology Damascus Syria
| |
Collapse
|
9
|
Amakiri KT, Canon AR, Molinari M, Angelis-Dimakis A. Review of oilfield produced water treatment technologies. CHEMOSPHERE 2022; 298:134064. [PMID: 35240151 DOI: 10.1016/j.chemosphere.2022.134064] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 02/04/2022] [Accepted: 02/18/2022] [Indexed: 06/14/2023]
Abstract
Produced water is the wastewater formed when water is brought from subsurface reservoirs during oil or gas extraction. Currently, produced water is mainly treated using conventional trains that contain adsorbates, membrane filters, phase separators and cyclones. This paper reviewed the detailed characteristics of oilfield-produced water and the assessment of multiple technologies at primary, secondary, and tertiary treatments stages. The effectiveness of the treatment technology from the production of waste, energy requirements, usage of chemicals and the treatment effect of contaminants has been discussed. Then a qualitative assessment was presented in terms of energy requirements, robustness, flexibility, waste generation, modularity, and mobility, which has become critical to the development and application prospects of any technology.
Collapse
Affiliation(s)
- Kingsley Tamunokuro Amakiri
- Department of Chemical Sciences, School of Applied Sciences, University of Huddersfield, Queensgate, HD1 3DH, UK.
| | | | - Marco Molinari
- Department of Chemical Sciences, School of Applied Sciences, University of Huddersfield, Queensgate, HD1 3DH, UK
| | - Athanasios Angelis-Dimakis
- Department of Chemical Sciences, School of Applied Sciences, University of Huddersfield, Queensgate, HD1 3DH, UK
| |
Collapse
|
10
|
Fabrication of a Modified Polyethersulfone Membrane with Anti-Fouling and Self-Cleaning Properties from SiO 2- g-PHEMA NPs for Application in Oil/Water Separation. Polymers (Basel) 2022; 14:polym14112169. [PMID: 35683842 PMCID: PMC9182934 DOI: 10.3390/polym14112169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 05/22/2022] [Accepted: 05/23/2022] [Indexed: 01/27/2023] Open
Abstract
To prepare anti-fouling and self-cleaning membrane material, a physical blending modification combined with surface grafting modification has been carried out; first, poly (2-hydroxyethyl methacrylate) grafted silica nanoparticles (SiO2-g-PHEMA NPs) were synthesized using surface-initiated activators regenerated by electron transfer atom transfer radical polymerization (ARGET ATRP) and used as a blending modifier to fabricate a polyethersulfone (PES)/SiO2-g-PHEMA organic-inorganic membrane by the phase-inversion method. During the membrane formation process, hydrophobic PES segments coagulated immediately to form a membrane matrix, and the hydrophilic SiO2-g-PHEMA NPs migrated spontaneously to the membrane surface in order to reduce interfacial energy, which enhanced the hydrophilicity and anti-fouling properties of the PES/SiO2-g-PHEMA membrane. Importantly, the membrane surface contained abundant PHEMA segments, which provided active sites for further surface functionalization. Subsequently, the carboxyl-terminated fluorocarbon surfactant (fPEG-COOH) composed of hydrophilic polyethyleneglycol segments and low-surface-energy perfluorinated alkyl segments was synthesized via the esterification of fPEG with succinic anhydride. Lastly, the PES/SiO2-g-PHEMA/fPEG membrane was prepared by grafting fPEG-COOH onto surface of the PES/SiO2-g-PHEMA. Thus, a versatile membrane surface with both fouling-resistant and fouling-release properties was acquired. The PES/SiO2-g-PHEMA/fPEG membrane has a large oil-water flux (239.93 L·m-2·h-1), almost 21 times that of PES blank membrane and 2.8 times of the PES/SiO2-g-PHEMA membrane. Compared with the unmodified PES membrane, the flux recovery ratio increased from 45.75% to 90.52%, while the total flux decline ratio decreased drastically from 82.70% to 13.79%, exhibiting outstanding anti-fouling and self-cleaning properties. Moreover, the grafted fPEG segments on the membrane surface show excellent stability due to the presence of stable chemical bonds. The grafted segments remain at the surface of the membrane even after a long shaking treatment. This suggests that this PES/SiO2-g-PHEMA/fPEG membrane material has potential for application in oil/water separation.
Collapse
|
11
|
Das R, Lindström T, Sharma PR, Chi K, Hsiao BS. Nanocellulose for Sustainable Water Purification. Chem Rev 2022; 122:8936-9031. [PMID: 35330990 DOI: 10.1021/acs.chemrev.1c00683] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nanocelluloses (NC) are nature-based sustainable biomaterials, which not only possess cellulosic properties but also have the important hallmarks of nanomaterials, such as large surface area, versatile reactive sites or functionalities, and scaffolding stability to host inorganic nanoparticles. This class of nanomaterials offers new opportunities for a broad spectrum of applications for clean water production that were once thought impractical. This Review covers substantial discussions based on evaluative judgments of the recent literature and technical advancements in the fields of coagulation/flocculation, adsorption, photocatalysis, and membrane filtration for water decontamination through proper understanding of fundamental knowledge of NC, such as purity, crystallinity, surface chemistry and charge, suspension rheology, morphology, mechanical properties, and film stability. To supplement these, discussions on low-cost and scalable NC extraction, new characterizations including solution small-angle X-ray scattering evaluation, and structure-property relationships of NC are also reviewed. Identifying knowledge gaps and drawing perspectives could generate guidance to overcome uncertainties associated with the adaptation of NC-enabled water purification technologies. Furthermore, the topics of simultaneous removal of multipollutants disposal and proper handling of post/spent NC are discussed. We believe NC-enabled remediation nanomaterials can be integrated into a broad range of water treatments, greatly improving the cost-effectiveness and sustainability of water purification.
Collapse
Affiliation(s)
- Rasel Das
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States
| | - Tom Lindström
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States.,KTH Royal Institute of Technology, Stockholm 100 44, Sweden
| | - Priyanka R Sharma
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States
| | - Kai Chi
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States
| | - Benjamin S Hsiao
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States
| |
Collapse
|
12
|
Dmitrieva ES, Anokhina TS, Novitsky EG, Volkov VV, Borisov IL, Volkov AV. Polymeric Membranes for Oil-Water Separation: A Review. Polymers (Basel) 2022; 14:polym14050980. [PMID: 35267801 PMCID: PMC8912433 DOI: 10.3390/polym14050980] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/17/2022] [Accepted: 02/20/2022] [Indexed: 02/01/2023] Open
Abstract
This review is devoted to the application of bulk synthetic polymers such as polysulfone (PSf), polyethersulfone (PES), polyacrylonitrile (PAN), and polyvinylidene fluoride (PVDF) for the separation of oil-water emulsions. Due to the high hydrophobicity of the presented polymers and their tendency to be contaminated with water-oil emulsions, methods for the hydrophilization of membranes based on them were analyzed: the mixing of polymers, the introduction of inorganic additives, and surface modification. In addition, membranes based on natural hydrophilic materials (cellulose and its derivatives) are given as a comparison.
Collapse
Affiliation(s)
| | - Tatyana S. Anokhina
- Correspondence: ; Tel.: +7-(495)-647-59-27 (ext. 202); Fax: +7-(495)-633-85-20
| | | | | | | | | |
Collapse
|
13
|
Porter CJ, DuChanois RM, MacDonald E, Kilpatrick SM, Zhong M, Elimelech M. Tethered electrolyte active-layer membranes. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.120004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
14
|
Suresh D, Goh PS, Ismail AF, Hilal N. Surface Design of Liquid Separation Membrane through Graft Polymerization: A State of the Art Review. MEMBRANES 2021; 11:832. [PMID: 34832061 PMCID: PMC8621935 DOI: 10.3390/membranes11110832] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 10/17/2021] [Accepted: 10/21/2021] [Indexed: 11/17/2022]
Abstract
Surface modification of membranes is an effective approach for imparting unique characteristics and additional functionalities to the membranes. Chemical grafting is a commonly used membrane modification technique due to its versatility in tailoring and optimizing the membrane surface with desired functionalities. Various types of polymers can be precisely grafted onto the membrane surface and the operating conditions of grafting can be tailored to further fine-tune the membrane surface properties. This review focuses on the recent strategies in improving the surface design of liquid separation membranes through grafting-from technique, also known as graft polymerization, to improve membrane performance in wastewater treatment and desalination applications. An overview on membrane technology processes such as pressure-driven and osmotically driven membrane processes are first briefly presented. Grafting-from surface chemical modification approaches including chemical initiated, plasma initiated and UV initiated approaches are discussed in terms of their features, advantages and limitations. The innovations in membrane surface modification techniques based on grafting-from techniques are comprehensively reviewed followed by some highlights on the current challenges in this field. It is concluded that grafting-from is a versatile and effective technique to introduce various functional groups to enhance the surface properties and separation performances of liquid separation membranes.
Collapse
Affiliation(s)
- Deepa Suresh
- Advanced Membrane Technology Research Centre, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Johor, Malaysia; (D.S.); (A.F.I.)
| | - Pei Sean Goh
- Advanced Membrane Technology Research Centre, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Johor, Malaysia; (D.S.); (A.F.I.)
| | - Ahmad Fauzi Ismail
- Advanced Membrane Technology Research Centre, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Johor, Malaysia; (D.S.); (A.F.I.)
| | - Nidal Hilal
- NYUAD Water Research Center, New York University Abu Dhabi, Abu Dhabi P.O. Box 129188, United Arab Emirates
| |
Collapse
|
15
|
A Mini-Review of Enhancing Ultrafiltration Membranes (UF) for Wastewater Treatment: Performance and Stability. CHEMENGINEERING 2021. [DOI: 10.3390/chemengineering5030034] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The scarcity of freshwater resources in many regions of the world has contributed to the emergence of various technologies for treating and recovering wastewater for reuse in industry, agriculture, and households. Deep wastewater treatment from oils and petroleum products is one of the difficult tasks that must be solved. Among the known technologies, UF membranes have found wide industrial application with high efficiency in removing various pollutants from wastewater. It is shown that the search for and development of highly efficient, durable, and resistant to oil pollution UF membranes for the treatment of oily wastewater is an urgent research task. The key parameters to improve the performance of UF membranes are by enhancing wettability (hydrophilicity) and the antifouling behavior of membranes. In this review, we highlight the using of ultrafiltration (UF) membranes primarily to treat oily wastewater. Various methods of polymer alterations of the UF membrane were studied to improve hydrophilicity, the ability of antifouling the membrane, and oil rejection, including polymer blending, membrane surface modification, and the mixed membrane matrix. The influence of the type and composition of the hydrophilic additives of nanoparticles (e.g., Multiwall carbon nanotubes (MWCNT), graphene oxide (GO), zinc oxide (ZnO), and titanium dioxide (TiO2), etc.) was investigated. The review further provides an insight into the removal efficiency percent.
Collapse
|
16
|
Sengupta A, Vu A, Qian X, Wickramasinghe SR. Remote Performance Modulation of Ultrafiltration Membranes by Magnetically and Thermally Responsive Polymer Chains. MEMBRANES 2021; 11:membranes11050340. [PMID: 34064385 PMCID: PMC8147820 DOI: 10.3390/membranes11050340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/26/2021] [Accepted: 04/28/2021] [Indexed: 11/16/2022]
Abstract
Ultrafiltration membranes, that respond to an external magnetic field and local temperature have been developed. Surface-initiated activator-generated electron transfer (AGET) atom transfer radical polymerization (ATRP) has been used to graft poly(N-isopropylacrylamide) (PNIPAm) from the surface of 300 kDa regenerated cellulose membranes. The polymerization initiator was selectively attached to the entire membrane surface, only the outer membrane surface or only the inner pore surface. A superparamagnetic nanoparticle was attached to the end of the polymer chain. The DI water flux as well as the flux and rejection of bovine serum albumin were investigated in the absence and presence of a 20 and 1000 Hz oscillating magnetic field. In an oscillating magnetic field, the tethered superparamagnetic nanoparticles can cause movement of the PNIPAm chains or induce heating. A 20 Hz magnetic field maximizes movement of the chains. A 1000 Hz magnetic field leads to greater induced heating. PNIPAm displays a lower critical solution temperature at 32 °C. Heating leads to collapse of the PNIPAm chains above their Lower Critical Solution Temperature (LCST). This work highlights the versatility of selectively grafting polymer chains containing a superparamagnetic nanoparticle from specific membrane locations. Depending on the frequency of the oscillating external magnetic field, membrane properties may be tuned.
Collapse
Affiliation(s)
- Arijit Sengupta
- Ralph E Martin Department of Chemical Engineering, University of Arkansas, Fayettteville, AR 72701, USA; (A.S.); (A.V.)
- Bhabha Atomic Research Centre, Radiochemistry Division, Mumbai 400085, India
| | - Anh Vu
- Ralph E Martin Department of Chemical Engineering, University of Arkansas, Fayettteville, AR 72701, USA; (A.S.); (A.V.)
| | - Xianghong Qian
- Department of Biomedical Engineering, University of Arkansas, Fayettteville, AR 72701, USA;
| | - S. Ranil Wickramasinghe
- Ralph E Martin Department of Chemical Engineering, University of Arkansas, Fayettteville, AR 72701, USA; (A.S.); (A.V.)
- Correspondence: ; Tel.: +1-479-575-8475
| |
Collapse
|
17
|
Hejase CA, Tarabara VV. Nanofiltration of saline oil-water emulsions: Combined and individual effects of salt concentration polarization and fouling by oil. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118607] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
18
|
Facile pore structure control of poly(vinylidene fluoride) membrane for oil/water separation. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.117305] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
19
|
Lou D, Hou Z, Yang H, Liu Y, Wang T. Antifouling Membranes Prepared from Polyethersulfone Grafted with Poly(ethylene glycol) Methacrylate by Radiation-Induced Copolymerization in Homogeneous Solution. ACS OMEGA 2020; 5:27094-27102. [PMID: 33134669 PMCID: PMC7594002 DOI: 10.1021/acsomega.0c02439] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 07/31/2020] [Indexed: 06/11/2023]
Abstract
To synthesize evenly grafted copolymers, gamma radiation of homogeneous solutions was employed to graft poly(ethylene glycol) methacrylate (PEGMA) onto polyethersulfone (PES). The grafting was verified by Fourier transform infrared spectroscopy, and the degrees of grafting (DGs) were determined by elementary analysis. The PES-g-polyPEGMA copolymers with different DGs were obtained by changing the monomer concentration. Membranes were cast from pristine PES, PES/PEG blends, and PES-g-polyPEGMA with different DGs, respectively, via nonsolvent-induced phase separation. Results from water contact angle measurements and scanning electron microscopy analysis indicated that increasing DGs led to PES-g-polyPEGMA membranes with increasing hydrophilicity and porousness. Filtration experimental results showed that increasing DGs without adding pore-forming agents caused PES-g-polyPEGMA membranes with higher permeability. Compared with PES/PEG membranes with analogous permeation characteristics, in which PEG is added as a pore-forming agent, PES-g-polyPEGMA membranes exhibited superior antifouling properties.
Collapse
Affiliation(s)
- Dan Lou
- Department
of Polymer Materials, College of Materials Science and Engineering, Shanghai University (SHU), Shanghai 200444, China
- Shanghai
Institute of Applied Physics, Chinese Academy
of Sciences, Shanghai 201800, China
| | - Zhengchi Hou
- Shanghai
Institute of Applied Physics, Chinese Academy
of Sciences, Shanghai 201800, China
- Shanghai
Advanced Research Institute, Chinese Academy
of Sciences, 239 Zhangheng
Road, Pudong New District, Shanghai 201204, China
| | - Haijun Yang
- Shanghai
Institute of Applied Physics, Chinese Academy
of Sciences, Shanghai 201800, China
- Shanghai
Advanced Research Institute, Chinese Academy
of Sciences, 239 Zhangheng
Road, Pudong New District, Shanghai 201204, China
| | - Yinfeng Liu
- Department
of Polymer Materials, College of Materials Science and Engineering, Shanghai University (SHU), Shanghai 200444, China
| | - Ting Wang
- Shanghai
Institute of Applied Physics, Chinese Academy
of Sciences, Shanghai 201800, China
| |
Collapse
|
20
|
Tummons E, Han Q, Tanudjaja HJ, Hejase CA, Chew JW, Tarabara VV. Membrane fouling by emulsified oil: A review. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.116919] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
21
|
Bolto B, Zhang J, Wu X, Xie Z. A Review on Current Development of Membranes for Oil Removal from Wastewaters. MEMBRANES 2020; 10:membranes10040065. [PMID: 32272650 PMCID: PMC7231389 DOI: 10.3390/membranes10040065] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/23/2020] [Accepted: 04/02/2020] [Indexed: 12/04/2022]
Abstract
The current situation with the problems associated with the removal of oil from wastewaters by membranes is being explored. Many types of membranes have been investigated—organic polymers, inorganic or ceramic species and hybrids of the two. Polymeric membranes can be designed to facilitate the passage of oil, but the more successful approach is with hydrophilic types that encourage the passage of water. Ceramic membranes have an advantage here as they are less often irreversibly fouled and give a higher recovery of oil, with a lower flux decline. Furthermore, they can be cleaned up by a simple heating procedure. More attention should be given to understanding the mechanism of fouling so that operating conditions can be optimised to further reduce fouling and further decrease the flux decline, as well as assisting in the design of antifouling membranes. Another obstacle to ceramic membrane use is the high cost of manufacture. Cheaper starting materials such as clays have been surveyed.
Collapse
Affiliation(s)
- Brian Bolto
- CSIRO Manufacturing, Private bag 10, Clayton South, VIC 3169, Australia; (B.B.); (X.W.)
| | - Jianhua Zhang
- Institute for Sustainable Industries & Liveable Cities, Victoria University, Melbourne, VIC 8001, Australia;
| | - Xing Wu
- CSIRO Manufacturing, Private bag 10, Clayton South, VIC 3169, Australia; (B.B.); (X.W.)
| | - Zongli Xie
- CSIRO Manufacturing, Private bag 10, Clayton South, VIC 3169, Australia; (B.B.); (X.W.)
- Correspondence:
| |
Collapse
|
22
|
Paiman SH, Rahman MA, Uchikoshi T, Md Nordin NAH, Alias NH, Abdullah N, Abas KH, Othman MHD, Jaafar J, Ismail AF. In situ growth of α-Fe2O3 on Al2O3/YSZ hollow fiber membrane for oily wastewater. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2019.116250] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
23
|
Pourziad S, Omidkhah MR, Abdollahi M. Improved antifouling and self-cleaning ability of PVDF ultrafiltration membrane grafted with polymer brushes for oily water treatment. J IND ENG CHEM 2020. [DOI: 10.1016/j.jiec.2019.12.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
24
|
Ding C, Zhang X, Xiong S, Shen L, Yi M, Liu B, Wang Y. Organophosphonate draw solution for produced water treatment with effectively mitigated membrane fouling via forward osmosis. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117429] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
25
|
Vu A, Mark NS, Ramon GZ, Qian X, Sengupta A, Wickramasinghe SR. Oil Deposition on Polymer Brush-Coated NF Membranes. MEMBRANES 2019; 9:E168. [PMID: 31817680 PMCID: PMC6949896 DOI: 10.3390/membranes9120168] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 11/17/2019] [Accepted: 11/29/2019] [Indexed: 11/17/2022]
Abstract
Membrane-based processes are attractive for treating oily wastewaters. However, membrane fouling due to the deposition of oil droplets on the membrane surface compromises performance. Here, real-time observation of the deposition of oil droplets by direct confocal microscopy was conducted. Experiments were conducted in dead-end and crossflow modes. Base NF 270 nanofiltration membranes as well as membranes modified by grafting poly(N-isopropylacrylamide) chains from the membrane surface using atom transfer radical polymerization were investigated. By using feed streams containing low and high NaCl concentrations, the grafted polymer chains could be induced to switch conformation from a hydrated to a dehydrated state, as the lower critical solution temperature for the grafted polymer chains moved above and below the room temperature, respectively. For the modified membrane, it was shown that switching conformation of the grafted polymer chains led to the partial release of adsorbed oil. The results also indicate that, unlike particles such as polystyrene beads, adsorption of oil droplets can lead to coalescence of the adsorbed oil droplets on the membrane surface. The results provide further evidence of the importance of membrane properties, feed solution characteristics, and operating mode and conditions on membrane fouling.
Collapse
Affiliation(s)
- Anh Vu
- Ralph E Martin Department of Chemical Engineering, University of Arkansas, Fayetteville, AR 72701, USA; (A.V.); (A.S.)
| | - Naama Segev Mark
- Department of Civil & Environmental Engineering, Technion—Israel Institute of Technology, Haifa 32000, Israel; (N.S.M.); (G.Z.R.)
| | - Guy Z. Ramon
- Department of Civil & Environmental Engineering, Technion—Israel Institute of Technology, Haifa 32000, Israel; (N.S.M.); (G.Z.R.)
| | - Xianghong Qian
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR 72701, USA;
| | - Arijit Sengupta
- Ralph E Martin Department of Chemical Engineering, University of Arkansas, Fayetteville, AR 72701, USA; (A.V.); (A.S.)
| | - S. Ranil Wickramasinghe
- Ralph E Martin Department of Chemical Engineering, University of Arkansas, Fayetteville, AR 72701, USA; (A.V.); (A.S.)
| |
Collapse
|
26
|
|
27
|
Development of forward osmosis membranes modified by cross-linked layer by layer assembly for brackish water desalination. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.04.052] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
28
|
Delavari A, Breite D, Schulze A, Baltus RE. Latex particle rejections from virgin and mixed charged surface polycarbonate track etched membranes. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.04.065] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
29
|
Ardeshiri F, Akbari A, Peyravi M, Jahanshahi M. PDADMAC/PAA semi-IPN hydrogel-coated PVDF membrane for robust anti-wetting in membrane distillation. J IND ENG CHEM 2019. [DOI: 10.1016/j.jiec.2019.01.035] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
30
|
Aksoy C, Kaner P, Asatekin A, Çulfaz-Emecen PZ. Co-Deposition of Stimuli-Responsive Microgels with Foulants During Ultrafiltration as a Fouling Removal Strategy. ACS APPLIED MATERIALS & INTERFACES 2019; 11:18711-18719. [PMID: 31059214 DOI: 10.1021/acsami.9b03217] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In this study, we show that codeposition of temperature responsive microgels in the foulant cake layer and cleaning of the cake upon stimuli-induced size change of the microgels is an effective method of fouling removal. Humic acid in CaCl2 solution was used as a model foulant and poly( n-isopropylacrylamide) (p(NIPAm)) and poly( n-isopropylacrylamide- co-sulfobetainemethacrylate) (p(NIPAm- co-SBMA)) were used as temperature responsive microgels. Filtrations were done below the lower critical solution temperature (LCST) and temperature was increased to above the LCST for cleaning. As an extra cleaning a temperature swing of above, below and then again above the LCST was applied. P(NIPAm) was found to be ineffective in cleaning the foulant deposit despite the 20-fold change in its volume with temperature change at LCST. P(NIPAm- co-SBMA) microgels, on the other hand, provided high fouling reversibility on hydrophilic poly(ether sulfone)(PES)/poly(vinylpyrrolidone) (PVP) and hydrophobic PES membranes. Better fouling reversibility with these microgels was observed at low and high solution ionic strength. While the use of microgels alone increased fouling reversibility to some extent, even in the absence of temperature stimulus, 100% reversibility could only be obtained when a temperature switch was applied in the presence of microgels, showing the effect of microgels' volume change in cleaning.
Collapse
Affiliation(s)
- Canan Aksoy
- Middle East Technical University , Chemical Engineering Department , Ankara 06800 , Turkey
| | - Papatya Kaner
- Chemical and Biological Engineering , Tufts University , Medford , Massachusetts 02155 , United States
| | - Ayse Asatekin
- Chemical and Biological Engineering , Tufts University , Medford , Massachusetts 02155 , United States
| | - P Zeynep Çulfaz-Emecen
- Middle East Technical University , Chemical Engineering Department , Ankara 06800 , Turkey
| |
Collapse
|
31
|
Zhu X, Jassby D. Electroactive Membranes for Water Treatment: Enhanced Treatment Functionalities, Energy Considerations, and Future Challenges. Acc Chem Res 2019; 52:1177-1186. [PMID: 31032611 DOI: 10.1021/acs.accounts.8b00558] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
To meet the increasing demand for water, potable water providers are turning toward unconventional waters, such as seawater and wastewater. These highly saline and/or heavily contaminated water sources are difficult to treat, demanding the use of advanced technology not typically used to treat conventional water sources such as river water or fresh groundwater. Of these advanced technologies, membrane separation processes are fast becoming the most widely used methods to convert these marginal waters into useful resources. The main factors contributing to the widespread adoption of membrane separation processes for water treatment include their modular nature, small physical footprint, and relative energy efficiency compared to traditional distillation processes. In addition, membranes present a physical barrier to pathogens, which is an attractive feature in terms of disinfection credits. However, traditional membrane materials suffer from several distinct drawbacks, which include membrane fouling (the accumulation of material on the membrane surface that blocks the flow of water), the need for high-pressure membranes (such as reverse osmosis (RO) or nanofiltration (NF)) or membrane/thermal processes (e.g., membrane distillation (MD)) to remove small contaminant compounds (e.g., trace metals, salt, endocrine disrupting compounds), and a pressure-driven membrane's inability to effectively remove small, uncharged molecules (e.g., N-nitrosodimethylamine (NDMA), phenol, acetone, and boron). Electrically driven physical and chemical phenomena, such as electrophoresis, electrostatic repulsion, dielectrophoresis, and electricity-driven redox reactions, have long been coupled to membrane-based separation processes, in a process known as electrofiltration. However, it is only in recent years that appropriate membrane materials (i.e., electrically conducting membranes (EMs)) have been developed that enable the efficient use of these electro-driven processes. Specifically, the development of EM materials (both polymeric and inorganic) have reduced the energy consumption of electrofiltration by using the membrane as an electrode in an electrochemical circuit. In essence, a membrane-electrode allows for the concentrated delivery of electrical energy directly to the membrane/water interface where the actual separation process takes place. In the past, metal electrodes were placed on either side of the membrane, which resulted in large potentials needed to drive electrochemical/electrokinetic phenomena. The use of a membrane-electrode dramatically reduces the required potentials, which reduces energy consumption and can also eliminate electrocorrosion and the formation of undesirable byproducts. In this Account, we review recent developments in the field of electrofiltration, with a focus on two water treatment applications: desalination and water reuse (wastewater or contaminated groundwater recycling). Specifically, we discuss how EMs can be used to minimize multiple forms of fouling (biofouling, mineral scaling, organic fouling); how electrochemical reactions at the membrane/water interface are used to destroy toxic contaminants, clean a membrane surface, and transform the local pH environment, which enhances the rejection of certain contaminants; how electric fields and electrostatic forces can be used to reorient molecules at the membrane/water interface; and how electrical energy can be transformed into thermal energy to drive separation processes. A special emphasis is placed on explicitly defining the additional energy consumption associated with the electrochemical phenomena, as well as the additional cost associated with fabricating EM materials. In addition, we will discuss current limitations of the electrofiltration process, with particular attention given to the current limitations of membrane materials and the future research needs in the area of membrane materials and module development.
Collapse
Affiliation(s)
- Xiaobo Zhu
- Department of Civil and Environmental Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - David Jassby
- Department of Civil and Environmental Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| |
Collapse
|
32
|
Pourziad S, Omidkhah MR, Abdollahi M. Preparation of fouling‐resistant and self‐cleaning PVDF membrane via surface‐initiated atom transfer radical polymerization for emulsified oil/water separation. CAN J CHEM ENG 2019. [DOI: 10.1002/cjce.23372] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Sakineh Pourziad
- Department of Chemical EngineeringTarbiat Modares University14155‐4838, TehranIran
| | | | - Mahdi Abdollahi
- Department of Chemical EngineeringTarbiat Modares University14155‐4838, TehranIran
| |
Collapse
|
33
|
Magnetically responsive nano filtration membranes for treatment of coal bed methane produced water. J Taiwan Inst Chem Eng 2019. [DOI: 10.1016/j.jtice.2018.01.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
34
|
Song G, Sengupta A, Qian X, Wickramasinghe SR. Investigation on suppression of fouling by magnetically responsive nanofiltration membranes. Sep Purif Technol 2018. [DOI: 10.1016/j.seppur.2018.05.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
35
|
Rajendran Royan NR, Sulong AB, Yuhana NY, Chen RS, Ab Ghani MH, Ahmad S. UV/O3 treatment as a surface modification of rice husk towards preparation of novel biocomposites. PLoS One 2018; 13:e0197345. [PMID: 29847568 PMCID: PMC5976143 DOI: 10.1371/journal.pone.0197345] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Accepted: 05/01/2018] [Indexed: 11/18/2022] Open
Abstract
The use of rice husks (RH) to reinforce polymers in biocomposites are increasing tremendously. However, the incompatibility between the hydrophilic RH fibers and the hydrophobic thermoplastic matrices leads to unsatisfactory biocomposites. Surface modification of the fiber surface was carried out to improve the adhesion between fiber and matrix. In this study, the effect of surface modification of RH via alkali, acid and ultraviolet-ozonolysis (UV/O3) treatments on the properties of composites recycled high density polyethylene (rHDPE) composites was investigated. The untreated and treated RH were characterized by Fourier Transform Infrared (FTIR) and Scanning Electron Microscope (SEM). The composites containing 30 wt% of RH (treated and untreated) were then prepared via extrusion and followed by compression molding. As compared to untreated RH, all surface treated RH exhibited rougher surface and showed improved adhesion with rHDPE matrix. Tensile strength of UV/O3-treated RH composites showed an optimum result at 18.37 MPa which improved about 5% in comparison to the composites filled with untreated RH. UV/O3 treatment promotes shorter processing time and lesser raw material waste during treatment process where this is beneficial for commercialization in the future developments of wood plastic composites (WPCs). Therefore, UV/O3 treatment can be served as an alternative new method to modify RH surface in order to improve the adhesion between hydrophilic RH fibre and hydrophobic rHDPE polymer matrix.
Collapse
Affiliation(s)
| | - Abu Bakar Sulong
- Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Nor Yuliana Yuhana
- Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Ruey Shan Chen
- School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
- * E-mail:
| | - Mohd Hafizuddin Ab Ghani
- School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Sahrim Ahmad
- School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| |
Collapse
|
36
|
Fux G, Ramon GZ. Microscale Dynamics of Oil Droplets at a Membrane Surface: Deformation, Reversibility, and Implications for Fouling. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:13842-13849. [PMID: 29110471 DOI: 10.1021/acs.est.7b03391] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Despite their excellent capabilities, wide implementation of membranes for oil/water emulsion separation is limited due to severe fouling. To date, microscale dynamics of the oil-water-membrane system are poorly understood. The present study uses confocal microscopy at unprecedented resolution for direct observation of oil droplet deposition, deformation, and detachment during separation and cleaning, respectively. The 3D shape of the droplets was imaged as a function of the permeation rate, J, droplet radius, R, membrane permeance, k, water viscosity, μ, and the water/oil interfacial tension coefficient, σ. These parameters yield a modified capillary number, [Formula: see text] = μVR1/2/σk1/2, which accounts for the extra viscous "suction" at close proximity to the membrane surface. A clear correlation was observed between the degree of droplet deformation and an increasing [Formula: see text]. Furthermore, the reversibility of droplet deposition and membrane performance were assessed through microscopic surface coverage and flux recovery analysis. In general, operation at a low flux (3.9 μm/s) yields spherical droplets that are easily removed by crossflow cleaning, whereas a high flux (85 μm/s) leads to significant deformation and mostly irreversible deposition. These results shed important new insight on the influence of hydrodynamic conditions on fouling reversibility during emulsion separation, and may guide better design of surface-modified membranes.
Collapse
Affiliation(s)
- Gali Fux
- Department of Civil & Environmental Engineering, Technion - Israel Institute of Technology , Haifa, Israel 32000
| | - Guy Z Ramon
- Department of Civil & Environmental Engineering, Technion - Israel Institute of Technology , Haifa, Israel 32000
| |
Collapse
|
37
|
Extremely fouling resistant zwitterionic copolymer membranes with ~ 1 nm pore size for treating municipal, oily and textile wastewater streams. J Memb Sci 2017. [DOI: 10.1016/j.memsci.2017.08.058] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
38
|
Ebrahimi M, Kerker S, Schmitz O, Schmidt AA, Czermak P. Evaluation of the fouling potential of ceramic membrane configurations designed for the treatment of oilfield produced water. SEP SCI TECHNOL 2017. [DOI: 10.1080/01496395.2017.1386217] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- M. Ebrahimi
- Institute of Bioprocess Engineering and Membrane Technology, University of Applied Sciences Mittelhessen, Giessen, Germany
- Department of Life Science Engineering, ehc-memtec UG, Giessen, Germany
| | - S. Kerker
- Institute of Bioprocess Engineering and Membrane Technology, University of Applied Sciences Mittelhessen, Giessen, Germany
| | - O. Schmitz
- Institute of Bioprocess Engineering and Membrane Technology, University of Applied Sciences Mittelhessen, Giessen, Germany
| | - A. A. Schmidt
- Department of Life Science Engineering, DECKMA HAMBURG GmbH, Hamburg, Germany
| | - P. Czermak
- Institute of Bioprocess Engineering and Membrane Technology, University of Applied Sciences Mittelhessen, Giessen, Germany
- Department of Chemical Engineering, Kansas State University, Manhattan, KS, USA
- Faculty of Biology and Chemistry, Justus‐Liebig University of Giessen, Giessen, Germany
| |
Collapse
|
39
|
Hassan E, Hassan M, Abou-Zeid R, Berglund L, Oksman K. Use of Bacterial Cellulose and Crosslinked Cellulose Nanofibers Membranes for Removal of Oil from Oil-in-Water Emulsions. Polymers (Basel) 2017; 9:E388. [PMID: 30965688 PMCID: PMC6418680 DOI: 10.3390/polym9090388] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Revised: 08/14/2017] [Accepted: 08/18/2017] [Indexed: 11/20/2022] Open
Abstract
Abstract: Never-dried bacterial cellulose (BC) and crosslinked cellulose nanofibers (CNF) were used for the removal of oil from stabilized and non-stabilized oil-in-water emulsions with droplet sizes less than 1 µm. The CNF membranes were exchanged with isopropyl alcohol before drying. The microscopic structure of the prepared membranes was evaluated using scanning electron microscopy (SEM); the water flux and the rejection of oil were evaluated using a dead-end filtration cell. BC harvested after different incubation time periods (2 to 10 days) did not show a change in the width of the nanofibers, but only the thickness of the membranes was increased. Pure water flux was not affected as a result of increasing thicknesses of BC membranes harvested after 4⁻10 days while BC harvested after two days had significantly higher water flux than the others. BC showed a higher flux and efficiency in removing oil from oil emulsions than CNF membranes. Removal of oil by the different membranes from the non-stabilized oil emulsion was more efficient than from the stabilized one.
Collapse
Affiliation(s)
- Enas Hassan
- Cellulose and Paper Department & Centre of Excellence for Advanced Sciences, National Research Centre, 33 El-Behouth Street, Dokki 12622, Egypt.
| | - Mohammad Hassan
- Cellulose and Paper Department & Centre of Excellence for Advanced Sciences, National Research Centre, 33 El-Behouth Street, Dokki 12622, Egypt.
- Egypt Nanotechnology Centre, Cairo University, El-Sheikh Zayed, 6th of October City 12588, Egypt.
| | - Ragab Abou-Zeid
- Cellulose and Paper Department & Centre of Excellence for Advanced Sciences, National Research Centre, 33 El-Behouth Street, Dokki 12622, Egypt.
| | - Linn Berglund
- Department of Engineering Sciences and Mathematics, Luleä University of Technology, Luleä SE 97187, Sweden.
| | - Kristiina Oksman
- Department of Engineering Sciences and Mathematics, Luleä University of Technology, Luleä SE 97187, Sweden.
| |
Collapse
|
40
|
Zoubeik M, Ismail M, Salama A, Henni A. New Developments in Membrane Technologies Used in the Treatment of Produced Water: A Review. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2017. [DOI: 10.1007/s13369-017-2690-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
41
|
Chew NGP, Zhao S, Loh CH, Permogorov N, Wang R. Surfactant effects on water recovery from produced water via direct-contact membrane distillation. J Memb Sci 2017. [DOI: 10.1016/j.memsci.2017.01.024] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
42
|
Zoppe JO, Ataman NC, Mocny P, Wang J, Moraes J, Klok HA. Surface-Initiated Controlled Radical Polymerization: State-of-the-Art, Opportunities, and Challenges in Surface and Interface Engineering with Polymer Brushes. Chem Rev 2017; 117:1105-1318. [PMID: 28135076 DOI: 10.1021/acs.chemrev.6b00314] [Citation(s) in RCA: 610] [Impact Index Per Article: 87.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The generation of polymer brushes by surface-initiated controlled radical polymerization (SI-CRP) techniques has become a powerful approach to tailor the chemical and physical properties of interfaces and has given rise to great advances in surface and interface engineering. Polymer brushes are defined as thin polymer films in which the individual polymer chains are tethered by one chain end to a solid interface. Significant advances have been made over the past years in the field of polymer brushes. This includes novel developments in SI-CRP, as well as the emergence of novel applications such as catalysis, electronics, nanomaterial synthesis and biosensing. Additionally, polymer brushes prepared via SI-CRP have been utilized to modify the surface of novel substrates such as natural fibers, polymer nanofibers, mesoporous materials, graphene, viruses and protein nanoparticles. The last years have also seen exciting advances in the chemical and physical characterization of polymer brushes, as well as an ever increasing set of computational and simulation tools that allow understanding and predictions of these surface-grafted polymer architectures. The aim of this contribution is to provide a comprehensive review that critically assesses recent advances in the field and highlights the opportunities and challenges for future work.
Collapse
Affiliation(s)
- Justin O Zoppe
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères Bâtiment MXD, Ecole Polytechnique Fédérale de Lausanne (EPFL) , Station 12 CH-1015 Lausanne, Switzerland
| | - Nariye Cavusoglu Ataman
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères Bâtiment MXD, Ecole Polytechnique Fédérale de Lausanne (EPFL) , Station 12 CH-1015 Lausanne, Switzerland
| | - Piotr Mocny
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères Bâtiment MXD, Ecole Polytechnique Fédérale de Lausanne (EPFL) , Station 12 CH-1015 Lausanne, Switzerland
| | - Jian Wang
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères Bâtiment MXD, Ecole Polytechnique Fédérale de Lausanne (EPFL) , Station 12 CH-1015 Lausanne, Switzerland
| | - John Moraes
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères Bâtiment MXD, Ecole Polytechnique Fédérale de Lausanne (EPFL) , Station 12 CH-1015 Lausanne, Switzerland
| | - Harm-Anton Klok
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères Bâtiment MXD, Ecole Polytechnique Fédérale de Lausanne (EPFL) , Station 12 CH-1015 Lausanne, Switzerland
| |
Collapse
|
43
|
Sabir A, Falath W, Jacob KI, Shafiq M, Munawar MA, Islam A, Gull N, Butt MTZ, Sanaullah K, Jamil T. Hyperbranched polyethyleneimine induced polycationic membranes for improved fouling resistance and high RO performance. Eur Polym J 2016. [DOI: 10.1016/j.eurpolymj.2016.10.032] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
44
|
Gajda M, Ulbricht M. Capillary pore membranes with grafted diblock copolymers showing reversibly changing ultrafiltration properties with independent response to ions and temperature. J Memb Sci 2016. [DOI: 10.1016/j.memsci.2016.05.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
45
|
Chenette HC, Welsh JM, Husson SM. Affinity membrane adsorbers for binding arginine-rich proteins. SEP SCI TECHNOL 2016; 52:276-286. [PMID: 37830059 PMCID: PMC10569433 DOI: 10.1080/01496395.2016.1206934] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 06/24/2016] [Indexed: 10/21/2022]
Abstract
Delivering protein chemotherapeutics into cancer cells is a challenge. Fusing the protein to an arginine-rich cell-penetrating peptide offers a possible solution. The goal of this work was to develop an affinity membrane for purification of Arg-rich fusion proteins via capture chromatography. Membranes were prepared by grafting polymers bearing diethyl-4-aminobenzyl phosphonate (D4ABP) ligands from macroporous membrane supports. Incorporation of D4ABP was studied by infrared spectroscopy and energy dispersive spectroscopy. Protein binding capacities of 3 mg lysozyme/mL were measured. While further studies are required to evaluate binding kinetics and Arg-selectivity, achieving higher protein binding capacity is needed before investment in such studies.
Collapse
Affiliation(s)
| | - James M. Welsh
- Department of Chemical and Biomolecular Engineering and Center for Advanced Engineering Fibers and Films, Clemson University, Clemson, SC 29634, USA
| | - Scott M. Husson
- Department of Chemical and Biomolecular Engineering and Center for Advanced Engineering Fibers and Films, Clemson University, Clemson, SC 29634, USA
| |
Collapse
|
46
|
Ding Y, Maruf S, Aghajani M, Greenberg AR. Surface patterning of polymeric membranes and its effect on antifouling characteristics. SEP SCI TECHNOL 2016. [DOI: 10.1080/01496395.2016.1201115] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Yifu Ding
- Membrane Science, Engineering and Technology Center, Department of Mechanical Engineering, University of Colorado Boulder, Boulder, Colorado, USA
- Materials Science and Engineering Program, University of Colorado, Boulder, Colorado, USA
| | - Sajjad Maruf
- Membrane Science, Engineering and Technology Center, Department of Mechanical Engineering, University of Colorado Boulder, Boulder, Colorado, USA
| | - Masoud Aghajani
- Membrane Science, Engineering and Technology Center, Department of Mechanical Engineering, University of Colorado Boulder, Boulder, Colorado, USA
| | - Alan R. Greenberg
- Membrane Science, Engineering and Technology Center, Department of Mechanical Engineering, University of Colorado Boulder, Boulder, Colorado, USA
| |
Collapse
|
47
|
Zhu L, Chen M, Dong Y, Tang CY, Huang A, Li L. A low-cost mullite-titania composite ceramic hollow fiber microfiltration membrane for highly efficient separation of oil-in-water emulsion. WATER RESEARCH 2016; 90:277-285. [PMID: 26748205 DOI: 10.1016/j.watres.2015.12.035] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Revised: 12/10/2015] [Accepted: 12/19/2015] [Indexed: 05/04/2023]
Abstract
Oil-in-water (O/W) emulsion is considered to be difficult to treat. In this work, a low-cost multi-layer-structured mullite-titania composite ceramic hollow fiber microfiltration membrane was fabricated and utilized to efficiently remove fine oil droplets from (O/W) emulsion. In order to reduce membrane cost, coal fly ash was effectively recycled for the first time to fabricate mullite hollow fiber with finger-like and sponge-like structures, on which a much more hydrophilic TiO2 layer was further deposited. The morphology, crystalline phase, mechanical and surface properties were characterized in details. The filtration capability of the final composite membrane was assessed by the separation of a 200 mg·L(-1) synthetic (O/W) emulsion. Even with this microfiltration membrane, a TOC removal efficiency of 97% was achieved. Dilute NaOH solution backwashing was used to effectively accomplish membrane regeneration (∼96% flux recovery efficiency). This study is expected to guide an effective way to recycle waste coal fly ash not only to solve its environmental problems but also to produce a high-valued mullite hollow fiber membrane for highly efficient separation application of O/W emulsion with potential simultaneous functions of pure water production and oil resource recovery.
Collapse
Affiliation(s)
- Li Zhu
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, PR China; Ningbo Urban Environment Observation and Research Station-NUEORS, Chinese Academy of Sciences, PR China
| | - Mingliang Chen
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, PR China; Ningbo Urban Environment Observation and Research Station-NUEORS, Chinese Academy of Sciences, PR China
| | - Yingchao Dong
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, PR China; Ningbo Urban Environment Observation and Research Station-NUEORS, Chinese Academy of Sciences, PR China.
| | - Chuyang Y Tang
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong
| | - Aisheng Huang
- Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, PR China
| | - Lingling Li
- School of Chemistry and Chemical Engineering, South China University of Technology, PR China
| |
Collapse
|
48
|
Mondal S. Polymeric membranes for produced water treatment: an overview of fouling behavior and its control. REV CHEM ENG 2016. [DOI: 10.1515/revce-2015-0027] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
AbstractProduced water (PW) from the oil/gas field is an important waste stream. Due to its highly pollutant nature and large volume of generation, the management of PW is a significant challenge for the petrochemical industry. The treatment of PW can improve the economic viability of oil and gas exploration, and the treated water can provide a new source of water in the water-scarce region for some beneficial uses. The reverse osmosis (RO) and selective nanofiltration (NF) membrane treatment of PW can reduce the salt and organic contents to acceptable levels for some beneficial uses, such as irrigation, and different industrial reuses. However, membrane fouling is a major obstacle for the membrane-based treatment of PW. In this review, the author discusses the polymeric membrane (mainly RO/NF) fouling during PW treatment. Membrane fouling mechanisms by various types of foulants, such as organic, inorganic, colloidal, and biological matters, are discussed. The review concludes with some of the measures to control fouling by membrane surface modification approaches.
Collapse
|
49
|
Wu CJ, Xie R, Wei HB, Xu TT, Liu Z, Wang W, Ju XJ, Chu LY. Fabrication of a thermo-responsive membrane with cross-linked smart gates via a ‘grafting-to’ method. RSC Adv 2016. [DOI: 10.1039/c6ra05192h] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A novel thermo-responsive membrane with the cross-linked microspheres as smart gates is fabricated by the “grafting to” technique, which exhibits excellent thermo-responsive characteristics with satisfactory reversibility and stability.
Collapse
Affiliation(s)
- Cheng-Jing Wu
- School of Chemical Engineering
- Sichuan University
- Chengdu
- China
| | - Rui Xie
- School of Chemical Engineering
- Sichuan University
- Chengdu
- China
| | - Hong-Bo Wei
- School of Chemical Engineering
- Sichuan University
- Chengdu
- China
| | - Ting-Ting Xu
- School of Chemical Engineering
- Sichuan University
- Chengdu
- China
| | - Zhuang Liu
- School of Chemical Engineering
- Sichuan University
- Chengdu
- China
| | - Wei Wang
- School of Chemical Engineering
- Sichuan University
- Chengdu
- China
| | - Xiao-Jie Ju
- School of Chemical Engineering
- Sichuan University
- Chengdu
- China
- State Key Laboratory of Polymer Materials Engineering
| | - Liang-Yin Chu
- School of Chemical Engineering
- Sichuan University
- Chengdu
- China
- State Key Laboratory of Polymer Materials Engineering
| |
Collapse
|
50
|
Liu Z, Ju XJ, Huang YH, Xie R, Wang W, Lee KR, Chu LY. Diffusional permeability characteristics of positively K+-responsive membranes caused by spontaneously changing membrane pore size and surface wettability. J Memb Sci 2016. [DOI: 10.1016/j.memsci.2015.09.052] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|