1
|
Tayara A, Shang C, Zhao J, Xiang Y. Machine learning models for predicting the rejection of organic pollutants by forward osmosis and reverse osmosis membranes and unveiling the rejection mechanisms. WATER RESEARCH 2024; 266:122363. [PMID: 39244867 DOI: 10.1016/j.watres.2024.122363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 08/16/2024] [Accepted: 08/29/2024] [Indexed: 09/10/2024]
Abstract
While forward osmosis (FO) and reverse osmosis (RO) processes have been proven effective in rejecting organic pollutants, the rejection rate is highly dependent on compound and membrane characteristics, as well as operating conditions. This study aims to establish machine learning (ML) models for predicting the rejection of organic pollutants by FO and RO and providing insights into the underlying rejection mechanisms. Among the 14 ML models established, the random forest model (R2 = 0.85) and extreme gradient boosting model (R2 = 0.92) emerged as the best-performing models for FO and RO, respectively. Shapley additive explanations (SHAP) analysis identified the length of the compound, water flux, and hydrophobicity as the top three variables contributing to the FO model. For RO, in addition to the length of the compound and operating pressure, advanced variables including four molecular descriptors (e.g., ATSC2m and Balaban J) and three fingerprints (e.g., C=C double bond and carbonyl group) significantly contributed to the prediction. Besides, the associations between these highly ranked variables and their SHAP values shed light on the rejection mechanisms, such as size exclusion, adsorption, hydrophobic interaction, and electrostatic interaction, and illustrate the role of the operating parameters, such as the FO permeate water flux and RO operating pressure, in the rejection process. These findings provide interpretable predictive models for the removal of organic pollutants and advance the mechanistic understanding of the rejection mechanisms in the FO and RO processes.
Collapse
Affiliation(s)
- Adel Tayara
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 000, Hong Kong Special Administrative Region of China
| | - Chii Shang
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 000, Hong Kong Special Administrative Region of China; Hong Kong Branch of Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 000, Hong Kong Special Administrative Region of China
| | - Jing Zhao
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 000, Hong Kong Special Administrative Region of China
| | - Yingying Xiang
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 000, Hong Kong Special Administrative Region of China.
| |
Collapse
|
2
|
Wang T, Xu Z, Shi H, Zhao Y, Gao W, Xu Y, Zhang Q. Enhancement of alkaline pretreatment-anaerobically digested sludge dewaterability by chitosan and rice husk powder for land use of biogas slurry. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 369:122356. [PMID: 39217906 DOI: 10.1016/j.jenvman.2024.122356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 07/02/2024] [Accepted: 08/30/2024] [Indexed: 09/04/2024]
Abstract
Alkaline pretreatment can improve the methane yields and dewatering performance of anaerobically digested sludge, but it still needs to be coupled with other conditioning methods in the practical dewatering process. This study utilized four different flocculants and a skeleton builder for conditioning of alkaline pretreatment-anaerobically digested sludge. Chitosan was found to be the most effective in dewatering the sludge. Chitosan coupled with rice husk powder further improved the dewatering performance, which reduced normalized capillary suction time, specific resistance to filtration, and moisture content by 98.7%, 82.0%, and 12.1%. For land use of biogas slurry as a fertilizer, chitosan conditioning promoted the growth of corn seedlings, while the other three flocculants diminished the growth of corn seedlings. Chitosan coupled with rice husk powder further promoted the growth of corn seedlings by 103.5%, 65.0%, and 53.7% in fresh weight, dry weight, and root length, respectively. Overall, chitosan coupled with rice husk powder not only enhanced the dewaterability of alkaline pretreatment-anaerobically digested sludge but also realized the resource utilization of agricultural waste.
Collapse
Affiliation(s)
- Tianfeng Wang
- College of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou, 730050, China.
| | - Ziying Xu
- College of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Hailong Shi
- College of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Yanbin Zhao
- College of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Wenqi Gao
- School of Civil Engineering, Lanzhou Institute of Technology, Lanzhou, 730050, China
| | - Yuanshun Xu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Nanjing, 210042, China
| | - Qingfang Zhang
- College of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou, 730050, China
| |
Collapse
|
3
|
Yi X, Wang Z, Zhao P, Song W, Wang X. New insights on destruction mechanisms of waste activated sludge during simultaneous thickening and digestion process via forward osmosis membrane. WATER RESEARCH 2024; 254:121378. [PMID: 38430758 DOI: 10.1016/j.watres.2024.121378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 02/22/2024] [Accepted: 02/23/2024] [Indexed: 03/05/2024]
Abstract
This study delved into the efficacy of sludge digestion and the mechanisms involved in sludge destruction during the implementation of forward osmosis process for sludge thickening and digestion (FO-MSTD). Utilizing a lab-scale FO membrane reactor for the thickening and digestion of waste activated sludge (WAS), the investigation explored the effects of sludge thickening and digestion in FO-MSTD processes using draw solutions of varying concentrations. The findings underscored the significance of hydraulic retention time (HRT) as a pivotal parameter influencing the swift thickening or profound digestion of sludge. Consequently, tailoring the HRT to specific processing objectives emerged as a key strategy for achieving desired treatment outcomes. In the investigation, the use of a 1 M NaCl draw solution in the FO-MSTD process showcased enhanced thickening and digestion capabilities. This specific setup raised the concentration of mixed liquor suspended solids (MLSS) to over 30 g/L and achieved a 42.7% digestion efficiency of mixed liquor volatile suspended solids (MLVSS) within an operational timeframe of 18 days. Furthermore, the research unveiled distinct stages in the sludge digestion process of the FO-MSTD system, characterized by fully aerobic digestion and aerobic-local anaerobic co-existing digestion. In the fully aerobic digestion stage, the sludge digestion rate exhibited a steady increase, leading to the breakdown of sludge floc structures and the release of a substantial amount of nutrients into the sludge supernatant. The predominant microorganisms during this stage were typical functional microorganisms found in wastewater treatment systems. Transitioning into the aerobic-local anaerobic co-existing digestion stage, both MLSS concentration and MLVSS digestion efficiency continued to rise, accompanied by a decreasing dissolved oxygen (DO) concentration. More organic matter was released into the supernatant, and sludge microbial flocs tended to reaggregate. The localized anaerobic environment within the FO-MSTD reactor fostered an increase in the relative abundance of bacteria with nitrogen and phosphorus removal functions, thereby positively impacting the mitigation of total nitrogen (TN) and total phosphorus (TP) concentrations in the sludge supernatant. The results of this research enhance comprehension of the advanced FO-MSTD technology in the treatment of WAS.
Collapse
Affiliation(s)
- Xiawen Yi
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Ecology, Jiangnan University, Wuxi 214122, PR China
| | - Zhiwei Wang
- School of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Pin Zhao
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Ecology, Jiangnan University, Wuxi 214122, PR China
| | - Weilong Song
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Ecology, Jiangnan University, Wuxi 214122, PR China
| | - Xinhua Wang
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Ecology, Jiangnan University, Wuxi 214122, PR China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, PR China.
| |
Collapse
|
4
|
Cifuentes-Cabezas M, Luján-Facundo MJ, Cuartas-Uribe B, Iborra-Clar A, Mendoza-Roca JA. Nitrogen recovery from sludge centrate by membrane contactor: Influence of operating parameters and cleaning conditions. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 341:118051. [PMID: 37126867 DOI: 10.1016/j.jenvman.2023.118051] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/26/2023] [Accepted: 04/26/2023] [Indexed: 05/03/2023]
Abstract
In urban wastewater treatment, the sludge generated is treated by anaerobic digestion, to be subsequently dehydrated by centrifuges. Currently, the liquid fraction obtained in this dehydration process is recirculated at the head of the treatment plant. However, its high nitrogen and phosphorus content makes it an effluent with high added value. The recovery of these nutrients could be an excellent alternative for the production of fertilizers or other industrial applications. In this study, the use of a liquid-liquid phase membrane contactor is presented as a favorable solution for the recovery of ammoniacal nitrogen from sludge centrated. The polypropylene hollow fiber membrane was evaluated considering its ammonia removal and recovery capacity. For this, different parameters were evaluated: the influence of the type and concentration of the acid solution, the wastewater pH, the flow rates of feeding and the acid stripping solution, and the contact time. Results showed that with a contact time of 65 min, ammonia removal and recovery percentages of the order of 90% were achieved. The flow rates of the stripping and feed solutions together with the acid concentration did not have a significant influence on the removal but on the recovery. Concerning used acid, sulphuric and phosphoric acid solutions achieved better results than nitric acid solution. The most critical parameter was the pH, obtaining the highest removal and recovery of ammonium at the highest pH. Finally, a stable cleaning protocol was obtained, between preventive and moderate cleanings to avoid severe cleanings, keeping the membrane at its maximum capacity.
Collapse
Affiliation(s)
- Magdalena Cifuentes-Cabezas
- University Research Institute for Industrial, Radiophysical and Environmental Safety (ISIRYM), Universitat Politècnica de València, Spain.
| | - María-José Luján-Facundo
- University Research Institute for Industrial, Radiophysical and Environmental Safety (ISIRYM), Universitat Politècnica de València, Spain; Department of Chemical and Nuclear Engineering, Universitat Politècnica de València, Spain
| | - Beatriz Cuartas-Uribe
- University Research Institute for Industrial, Radiophysical and Environmental Safety (ISIRYM), Universitat Politècnica de València, Spain; Department of Chemical and Nuclear Engineering, Universitat Politècnica de València, Spain
| | - Alicia Iborra-Clar
- University Research Institute for Industrial, Radiophysical and Environmental Safety (ISIRYM), Universitat Politècnica de València, Spain; Department of Chemical and Nuclear Engineering, Universitat Politècnica de València, Spain
| | - José-Antonio Mendoza-Roca
- University Research Institute for Industrial, Radiophysical and Environmental Safety (ISIRYM), Universitat Politècnica de València, Spain; Department of Chemical and Nuclear Engineering, Universitat Politècnica de València, Spain
| |
Collapse
|
5
|
Salamanca M, Peña M, Hernandez A, Prádanos P, Palacio L. Forward Osmosis Application for the Removal of Emerging Contaminants from Municipal Wastewater: A Review. MEMBRANES 2023; 13:655. [PMID: 37505021 PMCID: PMC10384920 DOI: 10.3390/membranes13070655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/04/2023] [Accepted: 07/07/2023] [Indexed: 07/29/2023]
Abstract
Forward osmosis (FO) has attracted special attention in water and wastewater treatment due to its role in addressing the challenges of water scarcity and contamination. The presence of emerging contaminants in water sources raises concerns regarding their environmental and public health impacts. Conventional wastewater treatment methods cannot effectively remove these contaminants; thus, innovative approaches are required. FO membranes offer a promising solution for wastewater treatment and removal of the contaminants in wastewater. Several factors influence the performance of FO processes, including concentration polarization, membrane fouling, draw solute selection, and reverse salt flux. Therefore, understanding and optimizing these factors are crucial aspects for improving the efficiency and sustainability of the FO process. This review stresses the need for research to explore the potential and challenges of FO membranes to meet municipal wastewater treatment requirements, to optimize the process, to reduce energy consumption, and to promote scalability for potential industrial applications. In conclusion, FO shows promising performance for wastewater treatment, dealing with emerging pollutants and contributing to sustainable practices. By improving the FO process and addressing its challenges, we could contribute to improve the availability of water resources amid the global water scarcity concerns, as well as contribute to the circular economy.
Collapse
Affiliation(s)
- Mónica Salamanca
- Institute of Sustainable Processes (ISP), Dr. Mergelina s/n, 47011 Valladolid, Spain
- Department of Chemical Engineering and Environmental Technology, University of Valladolid, Dr. Mergelina s/n, 47011 Valladolid, Spain
- Department of Applied Physics, Faculty of Sciences, University of Valladolid, Paseo Belén 7, 47011 Valladolid, Spain
| | - Mar Peña
- Institute of Sustainable Processes (ISP), Dr. Mergelina s/n, 47011 Valladolid, Spain
- Department of Chemical Engineering and Environmental Technology, University of Valladolid, Dr. Mergelina s/n, 47011 Valladolid, Spain
| | - Antonio Hernandez
- Institute of Sustainable Processes (ISP), Dr. Mergelina s/n, 47011 Valladolid, Spain
- Department of Applied Physics, Faculty of Sciences, University of Valladolid, Paseo Belén 7, 47011 Valladolid, Spain
| | - Pedro Prádanos
- Institute of Sustainable Processes (ISP), Dr. Mergelina s/n, 47011 Valladolid, Spain
- Department of Applied Physics, Faculty of Sciences, University of Valladolid, Paseo Belén 7, 47011 Valladolid, Spain
| | - Laura Palacio
- Institute of Sustainable Processes (ISP), Dr. Mergelina s/n, 47011 Valladolid, Spain
- Department of Applied Physics, Faculty of Sciences, University of Valladolid, Paseo Belén 7, 47011 Valladolid, Spain
| |
Collapse
|
6
|
Boubakri A, Elgharbi S, Dhaouadi I, Mansour D, Al-Tahar Bouguecha S. Optimization and prediction of lead removal from aqueous solution using FO-MD hybrid process: Statistical and artificial intelligence analysis. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 337:117731. [PMID: 36933539 DOI: 10.1016/j.jenvman.2023.117731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/03/2023] [Accepted: 03/10/2023] [Indexed: 06/18/2023]
Abstract
Heavy metals (HMs) has become one of the most serious pollutants that are harmful to the environment and ecology. This paper focused on the removal of lead contaminant from wastewater by forward osmosis-membrane distillation (FO-MD) hybrid process using seawater as draw solution. Modeling, optimization, and prediction of FO performance are developed using complementary approach based on response surface methodology (RSM) and an artificial neural network (ANN). FO process optimization using RSM revealed that under initial lead concentration of 60 mg/L, feed velocity of 11.57 cm/s and draw velocity of 7.66 cm/s, FO process achieved highest water flux of 6.75 LMH, lowest reverse salt flux of 2.78 gMH and highest lead removal efficiency of 87.07%. Fitness of all models was evaluated based on determination coefficient (R2) and mean square error (MSE). Results showed highest R2 value up to 0.9906 and lowest RMSE value up to 0.0102. ANN modeling generates the highest prediction accuracy for water flux and reverse salt flux, while RSM produces the highest prediction accuracy for lead removal efficiency. Subsequently, FO optimal conditions are applied on FO-MD hybrid process using seawater as draw solution and evaluate their performance to simultaneously remove lead contaminant and desalination of seawater. Results displays that FO-MD process shows a highly efficient solution to produce fresh water with almost free heavy metals and very low conductivity.
Collapse
Affiliation(s)
- Ali Boubakri
- Laboratory Water, Membranes and Environmental Biotechnology, Center of Water Research and Technologies (CERTE), PB 273, 8020, Soliman, Tunisia.
| | - Sarra Elgharbi
- Chemistry Department, College of Sciences, University of Ha'il, Hail, Saudi Arabia
| | - Imen Dhaouadi
- Laboratory Desalination and Nature Water Valorization, Center of Water Research and Technologies (CERTE), B.P. 273, Soliman, 8020, Tunisia
| | - Dorsaf Mansour
- Chemistry Department, College of Sciences, University of Ha'il, Hail, Saudi Arabia
| | - Salah Al-Tahar Bouguecha
- Department of Mechanical Engineering, Faculty of Engineering, King Abdul-Aziz University, P.O. Box 80204, Jeddah, 21589, Saudi Arabia
| |
Collapse
|
7
|
Luo J, Jiang L, Wei Y, Li Y, Yang G, Li YY, Liu J. EDTA-enhanced alkaline anaerobic fermentation of landfill leachate-derived waste activated sludge for short-chain fatty acids production: Metals chelation and EPSs destruction. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 334:117523. [PMID: 36801695 DOI: 10.1016/j.jenvman.2023.117523] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/25/2023] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
Alkaline anaerobic fermentation (AAF) of waste activated sludge (WAS) has been demonstrated to be promising for short-chain fatty acids (SCFAs) recovery. However, high-strength metals and EPSs in the landfill leachate-derived WAS (LL-WAS) would stabilize its structure, suppressing AAF performance. To improve sludge solubilization and SCFAs production, AAF was coupled with EDTA addition for LL-WAS treatment. The results show that sludge solubilization at AAF-EDTA was promoted by 62.8% than AAF, releasing 21.8% more soluble COD. The maximal SCFAs production of 477.4 mg COD/g VSS was thus achieved, i.e., 1.21 and 6.13 times those at AAF and the control, respectively. SCFAs composition was also improved with more acetic and propionic acids (80.8% versus 64.3%). Metals bridging EPSs were chelated by EDTA, which significantly dissolved metals from sludge matrix (e.g., 23.28 times higher soluble Ca than AAF). EPSs tightly bound with microbial cells were thus destructed (e.g., 4.72 times more protein release than alkaline treatment), causing an easier sludge disruption and subsequently a higher SCFAs production by hydroxide ions. These findings suggest an effective EDTA-supported AAF for metals and EPSs-rich WAS to recover carbon source.
Collapse
Affiliation(s)
- Jinghuan Luo
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, China
| | - Li Jiang
- Shanghai Urban Construction Design & Research Institute Groups Co., Ltd., 3447 Dongfang Road, Shanghai 200125, China
| | - Yuanyuan Wei
- Shanghai Urban Construction Design & Research Institute Groups Co., Ltd., 3447 Dongfang Road, Shanghai 200125, China
| | - Yanmei Li
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, China
| | - Guiyu Yang
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, China
| | - Yu-You Li
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Jianyong Liu
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, China.
| |
Collapse
|
8
|
Asghar N, Nguyen DA, Jang A. Application of MnFe 2O 4 magnetic silica-covered ethylenediaminetetraacetic acid-functionalized nanomaterials to the draw solution in forward osmosis. CHEMOSPHERE 2023; 330:138735. [PMID: 37088213 DOI: 10.1016/j.chemosphere.2023.138735] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/24/2023] [Accepted: 04/18/2023] [Indexed: 05/03/2023]
Abstract
Forward osmosis (FO) is an emerging and promising water treatment technology. However, selection of an optimal draw solution (DS) is essential for efficient FO process operations. In this study, the potential of ethylenediaminetetraacetic acid (EDTA) functionalized SiO2-covered magnetic nanoparticles (MNPs) as DS in FO process were investigated. The MNPs were synthesized and characterized for their morphology, size distribution, magnetic behavior, and dispersibility. Investigations were carried out to determine the effects of DS concentration and MNPs type, utilizing bare, SiO2 covered, and EDTA coated MNPs at concentrations of 20, 40, and 60 g/L. Furthermore, water flux generation capability and rejection efficiency of octanoic acid (OC) was evaluated with EDTA-MNPs as DS in FO mode (active layer facing feed solution) and PRO mode (active layer facing draw solution). Our results showed that a maximum water flux of 9.59 ± 2 LMH in FO mode, and 11.104 ± 2 LMH in PRO mode was achieved using 60 g/L of EDTA-MNPs. Additionally, we investigated the reusability of the EDTA-coated MNPs and found that their recovery was higher than (>90%) with no aggregation. The stability of EDTA-MNPs was due to strong covalent linkages between their four carboxylate groups and the hydrophilic SiO2 surface layer, which resulted in steric hindrance and prevented their aggregation. Finally, we assessed the rejection efficiency of OC at different pH values and found that it was low (30-39%) at pH values below pKa and high (90-97%) at pH values above pKa. Owing to internal concentration polarization, the rejection of OC in FO mode was (10-20%) higher than in PRO mode. The findings demonstrate EDTA-coated MNPs have significant potentials as an effective DS in FO process .
Collapse
Affiliation(s)
- Nosheen Asghar
- Department of Global Smart City, Sungkyunkwan University (SKKU), 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea.
| | - Duc Anh Nguyen
- Department of Global Smart City, Sungkyunkwan University (SKKU), 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea.
| | - Am Jang
- Department of Global Smart City, Sungkyunkwan University (SKKU), 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea.
| |
Collapse
|
9
|
Ibraheem BM, Aani SA, Alsarayreh AA, Alsalhy QF, Salih IK. Forward Osmosis Membrane: Review of Fabrication, Modification, Challenges and Potential. MEMBRANES 2023; 13:membranes13040379. [PMID: 37103806 PMCID: PMC10142686 DOI: 10.3390/membranes13040379] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/01/2023] [Accepted: 03/15/2023] [Indexed: 06/12/2023]
Abstract
Forward osmosis (FO) is a low-energy treatment process driven by osmosis to induce the separation of water from dissolved solutes/foulants through the membrane in hydraulic pressure absence while retaining all of these materials on the other side. All these advantages make it an alternative process to reduce the disadvantages of traditional desalination processes. However, several critical fundamentals still require more attention for understanding them, most notably the synthesis of novel membranes that offer a support layer with high flux and an active layer with high water permeability and solute rejection from both solutions at the same time, and a novel draw solution which provides low solute flux, high water flux, and easy regeneration. This work reviews the fundamentals controlling the FO process performance such as the role of the active layer and substrate and advances in the modification of FO membranes utilizing nanomaterials. Then, other aspects that affect the performance of FO are further summarized, including types of draw solutions and the role of operating conditions. Finally, challenges associated with the FO process, such as concentration polarization (CP), membrane fouling, and reverse solute diffusion (RSD) were analyzed by defining their causes and how to mitigate them. Moreover, factors affecting the energy consumption of the FO system were discussed and compared with reverse osmosis (RO). This review will provide in-depth details about FO technology, the issues it faces, and potential solutions to those issues to help the scientific researcher facilitate a full understanding of FO technology.
Collapse
Affiliation(s)
- Bakr M. Ibraheem
- Membrane Technology Research Unit, Department of Chemical Engineering, University of Technology-Iraq, Alsinaa Street 52, Baghdad 10066, Iraq
| | - Saif Al Aani
- The State Company of Energy Production—Middle Region, Ministry of Electricity, Baghdad 10013, Iraq
| | - Alanood A. Alsarayreh
- Department of Chemical Engineering, Faculty of Engineering, Mutah University, P.O. Box 7, Karak 61710, Jordan
| | - Qusay F. Alsalhy
- Membrane Technology Research Unit, Department of Chemical Engineering, University of Technology-Iraq, Alsinaa Street 52, Baghdad 10066, Iraq
| | - Issam K. Salih
- Department of Chemical Engineering and Petroleum Industries, Al-Mustaqbal University College, Hillah 51001, Iraq
| |
Collapse
|
10
|
Emadzadeh D, Atashgar A, Kruczek B. Novel Polyelectrolyte-Based Draw Solute That Overcomes the Trade-Off between Forward Osmosis Performance and Ease of Regeneration. MEMBRANES 2022; 12:1270. [PMID: 36557177 PMCID: PMC9782068 DOI: 10.3390/membranes12121270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/30/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
Forward osmosis (FO) is an emerging technology for seawater and brackish desalination, wastewater treatment, and other applications, such as food processing, power generation, and protein and pharmaceutical enrichment. However, choosing a draw solute (DS) that provides an appropriate driving force and, at the same time, is easy to recover, is challenging. In this study, water-soluble poly(styrene sulfonate) (PSS) was modified by a high-electrical-conductivity 3,4-ethylenedioxythiophene (EDOT) monomer to fabricate a novel draw solute (mPSS). FO tests with the CTA membrane in the active layer facing the feed solution (AL-FS) orientation, using a 50 mS/cm aqueous solution of synthesized solute and distilled water as a feed solution exhibited a water flux of 4.2 L h-1 m-2 and a corresponding reverse solute flux of 0.19 g h-1 m-2. The FO tests with the same membrane, using a 50 mS/cm NaCl control draw solution, yielded a lower water flux of 3.6 L h-1 m-2 and a reverse solute flux of 4.13 g h-1 m-2, which was more than one order of magnitude greater. More importantly, the synthesized draw solute was easily regenerated using a commercial ultrafiltration membrane (PS35), which showed over 96% rejection.
Collapse
|
11
|
Cheng X, Xu Y, Lei Z, Du J. Investigation on operational parameters and membrane fouling performance in treating synthetic aquaculture wastewater via forward osmosis with sucrose as draw solution. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 847:157573. [PMID: 35882325 DOI: 10.1016/j.scitotenv.2022.157573] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/07/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
Forward osmosis (FO), a membrane separation process driven by a natural concentration gradient, is served as a potential strategy in the aspect of wastewater treatment. In this work, a worthy attempt at aquaculture wastewater treatment using a self-made FO system was conducted, confirming it was a promising approach to treating aquaculture wastewater. Optimization of operational parameters of the FO system, including draw solution (DS) concentration, cross-flow velocity, and DS temperature, was systematically investigated to enhance the running efficiency. Different selected parameters highly influenced the water flux during the single-factor experiments, and the findings indicated that the optimal conditions were DS of 1.5 M, cross-flow velocity of 15 cm/s, and temperature of 32 °C with consideration of FO performance and economical cost. An excellent linear relationship between chemical oxygen demand (COD) changing multiples and operational parameters was obtained from experimental results, offering a great interception performance of organic contamination. On the basis of optimal operating conditions, membrane fouling experiments with different running time were conducted, and the microscopic morphology and element composition of the fouled membrane were also analyzed. The results demonstrated that a layer of cake was coated on the surface of the membrane, and the main elements in the fouling cake included C, O, Na, and S, which were highly determined by the component of the feed solution (FS) and working time. Afterward, the 60-h FO fouled membrane was cleaned under the method which combined hydraulic power and chemical agents, and the water flux recovered to 12.79 Lm-2 h-1, proving a good performance for the recovery of water flux. This investigation showed that employing sucrose as DS was effective for reducing wastewater volume, and it provided an alternative choice and a sustainable way for the separation of organic pollutants from water resources.
Collapse
Affiliation(s)
- Xia Cheng
- School of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Yuliang Xu
- School of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Zeyu Lei
- School of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Jianghui Du
- School of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
12
|
Yi X, Zhong H, Xie M, Zhao P, Song W, Wang X. Novel insights on fouling mechanism of forward osmosis membrane during deep thickening waste activated sludge. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120894] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
13
|
Al-Sakaji BAK, Al-Asheh S, Maraqa MA. A Review on the Development of an Integer System Coupling Forward Osmosis Membrane and Ultrasound Waves for Water Desalination Processes. Polymers (Basel) 2022; 14:2710. [PMID: 35808754 PMCID: PMC9269142 DOI: 10.3390/polym14132710] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/28/2022] [Accepted: 06/28/2022] [Indexed: 02/04/2023] Open
Abstract
This review considers the forward osmosis (FO) membrane process as one of the feasible solutions for water desalination. Different aspects related to the FO process are reviewed with an emphasis on ultrasound assisted FO membrane processes. The different types of membranes used in FO are also reviewed and discussed; thus, their configuration, structure and applications are considered. Coupling ultrasound with FO enhances water flux through the membrane under certain conditions. In addition, this review addresses questions related to implementation of an ultrasound/FO system for seawater desalination, such as the impact on fouling, flow configuration, and location of fouling. Finally, the mechanisms for the impact of ultrasound on FO membranes are discussed and future research directions are suggested.
Collapse
Affiliation(s)
- Bara A. K. Al-Sakaji
- Department of Civil and Environmental Engineering, College of Engineering, United Arab Emirates University, Al-Ain P.O. Box 15551, United Arab Emirates; (B.A.K.A.-S.); (M.A.M.)
| | - Sameer Al-Asheh
- Department of Chemical Engineering, College of Engineering, American University of Sharjah, Sharjah P.O. Box 2666, United Arab Emirates
| | - Munjed A. Maraqa
- Department of Civil and Environmental Engineering, College of Engineering, United Arab Emirates University, Al-Ain P.O. Box 15551, United Arab Emirates; (B.A.K.A.-S.); (M.A.M.)
- National Water and Energy Center, United Arab Emirates University, Al-Ain P.O. Box 1551, United Arab Emirates
| |
Collapse
|
14
|
Wu S, An Y, Lu J, Yu Q, He Z. EDTA-Na 2 as a recoverable draw solute for water extraction in forward osmosis. ENVIRONMENTAL RESEARCH 2022; 205:112521. [PMID: 34902380 DOI: 10.1016/j.envres.2021.112521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/02/2021] [Accepted: 12/03/2021] [Indexed: 06/14/2023]
Abstract
Regeneration and reuse of draw solute (DS) is a key challenge in the application of forward osmosis (FO) technologies. Herein, EDTA-Na2 was studied as a recoverable DS for water extraction by taking advantages of its pH-responsive property. The FO system using EDTA DS achieved a higher water flux of 2.22 ± 0.06 L m-2 h-1 and a significantly lower reverse salt flux (RSF) of 0.06 ± 0.01 g m-2 h-1, compared to that with NaCl DS having either the same DS concentration or the same Na+ concentration. The suitable pH range for the application of EDTA DS was between 4.0 and 10.5. A simple recovery method via combined pH adjustment and microfiltration was employed to recover EDTA DS and could achieve the recovery efficiency (at pH 2) of 96.26 ± 0.48%, 97.13 ± 1.03% and 98.56 ± 1.40% by using H2SO4, H3PO4 and HCl, respectively. The lowest acid cost for DS recovery was estimated from 0.0012 ± 0.0001 to 0.0162 ± 0.0003 $ g-1 by using H2SO4. The recovered EDTA DS could be reused in the subsequent FO operation and the overall recovery efficiency was 94.4% for four reuse cycles. These results have demonstrated the feasible of EDTA-Na2 DS and a potentially cost-effective recovery approach, and encouraged further exploration of using EDTA-based compounds as a draw solute for FO applications.
Collapse
Affiliation(s)
- Simiao Wu
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, Jiangsu, 210023, PR China.
| | - Ying An
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, Jiangsu, 210023, PR China
| | - Jilai Lu
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, Jiangsu, 210023, PR China
| | - Qingmiao Yu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu, 210023, PR China
| | - Zhen He
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO, 63130, USA.
| |
Collapse
|
15
|
Szczygiełda M, Krajewska M, Zheng L, Nghiem LD, Prochaska K. Implementation of forward osmosis to concentrate alpha-ketoglutaric acid from fermentation broth: Performance and fouling analysis. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119593] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
16
|
Kamio E, Kurisu H, Takahashi T, Matsuoka A, Yoshioka T, Nakagawa K, Sun Y, Matsuyama H. Effect of temperature on the osmotic behavior of LCST type ionic liquid solutions as draw solutions in the forward osmosis process. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119164] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
17
|
Shi Y, Liao X, Chen R, Ge Q. pH-Responsive Polyoxometalates that Achieve Efficient Wastewater Reclamation and Source Recovery via Forward Osmosis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:12664-12671. [PMID: 34494436 DOI: 10.1021/acs.est.1c04245] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Forward osmosis (FO) has been increasingly used for water treatment. However, the lack of suitable draw solutes impedes its further development. Herein, we design pH-responsive polyoxometalates, that is, (NH4)6Mo7O24 and Na6Mo7O24, as draw solutes for simultaneous water reclamation and resource recovery from wastewater via FO. Both polyoxometalates have a cage-like configuration and release multiple ionic species in water. These characteristics allow them to generate high osmotic pressures to drive the FO separation efficiently with negligible reverse solute diffusion. (NH4)6Mo7O24 and Na6Mo7O24 at a dilute concentration (0.4 M) produce water fluxes of 16.4 LMH and 14.2 LMH, respectively, against DI water, outperforming the frequently used commercial NaCl and NH4HCO3 draw solutes, and other synthetic materials. With an average water flux of 10.0 LMH, (NH4)6Mo7O24 reclaims water from the simulated glutathione-containing wastewater more efficiently than Na6Mo7O24 (9.1 LMH), NaCl (3.3 LMH), and NH4HCO3 (5.6 LMH). The final glutathione treated with (NH4)6Mo7O24 and Na6Mo7O24 remains intact but that treated with NaCl and NH4HCO3 is either denatured or contaminated owing to their severe leakage in FO. Remarkably, both polyoxometalates are readily recycled by pH regulation and reused for FO. Polyoxometalate is thus proven to be an appropriate candidate for FO separation in wastewater reclamation and resource recovery.
Collapse
Affiliation(s)
- Yiru Shi
- College of Environment and Safety Engineering, Fuzhou University, No. 2 Xueyuan Road, Fuzhou, Fujian 350116, China
| | - Xialu Liao
- College of Environment and Safety Engineering, Fuzhou University, No. 2 Xueyuan Road, Fuzhou, Fujian 350116, China
| | - Rongzhen Chen
- College of Environment and Safety Engineering, Fuzhou University, No. 2 Xueyuan Road, Fuzhou, Fujian 350116, China
| | - Qingchun Ge
- College of Environment and Safety Engineering, Fuzhou University, No. 2 Xueyuan Road, Fuzhou, Fujian 350116, China
| |
Collapse
|
18
|
Zhu L, Ding C, Zhu T, Wang Y. A review on the forward osmosis applications and fouling control strategies for wastewater treatment. Front Chem Sci Eng 2021. [DOI: 10.1007/s11705-021-2084-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
19
|
Hosseinzadeh A, Zhou JL, Navidpour AH, Altaee A. Progress in osmotic membrane bioreactors research: Contaminant removal, microbial community and bioenergy production in wastewater. BIORESOURCE TECHNOLOGY 2021; 330:124998. [PMID: 33757679 DOI: 10.1016/j.biortech.2021.124998] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 03/10/2021] [Accepted: 03/10/2021] [Indexed: 06/12/2023]
Abstract
Renewable energy, water conservation, and environmental protection are the most important challenges today. Osmotic membrane bioreactor (OMBR) is an innovative process showing superior performance in bioenergy production, eliminating contaminants, and low fouling tendency. However, salinity build-up is the main drawback of this process. Identifying the microbial community can improve the process in bioenergy production and contaminant treatment. This review aims to study the recent progress and challenges of OMBRs in contaminant removal, microbial communities and bioenergy production. OMBRs are widely reported to remove over 80% of total organic carbon, PO43-, NH4+ and emerging contaminants from wastewater. The most important microbial phyla for both hydrogen and methane production in OMBR are Firmicutes, Proteobacteria and Bacteroidetes. Firmicutes' dominance in anaerobic processes is considerably increased from usually 20% at the beginning to 80% under stable condition. Overall, OMBR process has great potential to be applied for simultaneous bioenergy production and wastewater treatment.
Collapse
Affiliation(s)
- Ahmad Hosseinzadeh
- Centre for Green Technology, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2007, Australia
| | - John L Zhou
- Centre for Green Technology, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2007, Australia.
| | - Amir H Navidpour
- Centre for Green Technology, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2007, Australia
| | - Ali Altaee
- Centre for Green Technology, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2007, Australia
| |
Collapse
|
20
|
Li X, Shen S, Xu Y, Guo T, Dai H, Lu X. Application of membrane separation processes in phosphorus recovery: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 767:144346. [PMID: 33422961 DOI: 10.1016/j.scitotenv.2020.144346] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 12/02/2020] [Accepted: 12/05/2020] [Indexed: 05/22/2023]
Abstract
The depletion of phosphorus resources and the excess discharge of phosphorus into waste streams are contrasting problems. The key to solving both problems is to recover phosphorus from the waste streams. Current phosphorus recovery technologies require high phosphorus concentrations and lack the ability to separate toxic substances from recovered phosphorus products. Membrane separation processes such as nanofiltration, forward osmosis, and electrodialysis are examples of effective methods for solving some of these issues. In this paper, the mechanisms, performance, and influential factors affect phosphorus recovery from membrane separation are reviewed. Membrane fouling, energy consumption, and the selectivity of toxic substances in membrane separation processes were evaluated. This work will serve as a basis for future research and development of phosphorus recovery by membrane separation processes and as a response to the increasingly pressing issues of eutrophication and the growing depletion of phosphorus resources.
Collapse
Affiliation(s)
- Xiang Li
- Southeast University, School Energy & Environment, 2 Sipailou Rd, Nanjing 210096, PR China; ERC Taihu Lake Water Environment Wuxi, 99 Linghu Rd, Wuxi 214135, PR China.
| | - Shuting Shen
- Southeast University, School Energy & Environment, 2 Sipailou Rd, Nanjing 210096, PR China; ERC Taihu Lake Water Environment Wuxi, 99 Linghu Rd, Wuxi 214135, PR China
| | - Yuye Xu
- Southeast University, School Energy & Environment, 2 Sipailou Rd, Nanjing 210096, PR China; ERC Taihu Lake Water Environment Wuxi, 99 Linghu Rd, Wuxi 214135, PR China
| | - Ting Guo
- Southeast University, School Energy & Environment, 2 Sipailou Rd, Nanjing 210096, PR China; ERC Taihu Lake Water Environment Wuxi, 99 Linghu Rd, Wuxi 214135, PR China
| | - Hongliang Dai
- Southeast University, School Energy & Environment, 2 Sipailou Rd, Nanjing 210096, PR China; School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, No. 2 Mengxi Road, Zhenjiang 212018, PR China.
| | - Xiwu Lu
- Southeast University, School Energy & Environment, 2 Sipailou Rd, Nanjing 210096, PR China; ERC Taihu Lake Water Environment Wuxi, 99 Linghu Rd, Wuxi 214135, PR China.
| |
Collapse
|
21
|
Yi X, Zhong H, Xie M, Wang X. A novel forward osmosis reactor assisted with microfiltration for deep thickening waste activated sludge: performance and implication. WATER RESEARCH 2021; 195:116998. [PMID: 33714909 DOI: 10.1016/j.watres.2021.116998] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 02/24/2021] [Accepted: 03/01/2021] [Indexed: 06/12/2023]
Abstract
Waste activated sludge (WAS) treatment has gained growing interests for its increasingly capacity and high process cost. Sludge thickening is generally the first process of the WAS treatment. However, traditional sludge thickening approach was restrained by large footprint, low thickening efficiency, and tendency of releasing phosphorus. Here, we reported a novel microfiltration (MF) membrane assisting forward osmosis (FO) process (MF-FO) for sludge thickening. The MF-FO reactor achieved a sludge thickening of the mixed liquor suspended solids (MLSS) concentration from approximately 7 to 50 g/L after 10-day operation. More importantly, the effluent quality after FO filtration was superior with total organic carbon (TOC), ammonia nitrogen (NH4+-N), nitrate nitrogen (NO3--N) and total phosphorus (TP) of 1.94 ± 0.46, 0.02 ± 0.07, 4.55 ± 1.59 and 0.24 ± 0.26 mg/L, respectively. Additionally, the integration of MF membrane successfully controlled the salinity of the MF-FO reactor in a low range of 1.6-3.1 mS/cm, which mitigated the flux decline of FO membrane and thus prolonged the operating time. In this case, the flux decline of FO membrane in the MF-FO reactor was mainly due to the membrane fouling. Furthermore, the fouling layer on the FO membrane surface was a gel layer mainly composed of biofoulants and organic foulants when the MLSS concentration was less than 30 g/L, while it turned to a cake layer when the MLSS concentration exceeded 30 g/L. Results reported here demonstrated that the MF-FO reactor is a promising WAS thickening technology for its excellent thickening performance and high effluent quality of FO membrane.
Collapse
Affiliation(s)
- Xiawen Yi
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Huihui Zhong
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Ming Xie
- Department of Chemical Engineering, University of Bath, Bath, BA2 7AY, UK
| | - Xinhua Wang
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, PR China.
| |
Collapse
|
22
|
Ashraf A, Ramamurthy R. WITHDRAWN: Progress in the removal of organic microcontaminants from wastewater using high retention membrane bioreactors: A critical review. ENVIRONMENTAL RESEARCH 2021:110930. [PMID: 33640499 DOI: 10.1016/j.envres.2021.110930] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 02/20/2021] [Accepted: 02/22/2021] [Indexed: 06/12/2023]
Abstract
This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/our-business/policies/article-withdrawal.
Collapse
Affiliation(s)
- Adil Ashraf
- Department of Environmental Engineering and Water Technology, IHE Delft Institute for Water Education, Westvest 7, 2601DA, Delft, the Netherlands; Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium.
| | - Racchana Ramamurthy
- Department of Environmental Engineering and Water Technology, IHE Delft Institute for Water Education, Westvest 7, 2601DA, Delft, the Netherlands; Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| |
Collapse
|
23
|
Chang HM, Chen SS, Chen YT, Chang WS, Li CW, Nguyen NC, Ray SS, Cao DTN. Recovery of iodide as triiodide from thin-film transistor liquid crystal display wastewater by forward osmosis. JOURNAL OF HAZARDOUS MATERIALS 2021; 403:123637. [PMID: 32818831 DOI: 10.1016/j.jhazmat.2020.123637] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/31/2020] [Accepted: 08/02/2020] [Indexed: 06/11/2023]
Abstract
Triiodide, a larger charged molecule compared to iodide, is thermodynamically favored with the presence of both iodide and iodine, and is easier to be retained by membrane processes. For the first time, iodide was recovered in the form of triiodide by forward osmosis (FO) for thin-film transistor liquid crystal display industries by preoxidation of iodide to triiodide. Partial oxidation by NaOCl was used to convert the iodide to iodine and then to form triiodide. Ethylenediaminetetraacetic acid disodium salt (EDTA-2Na), a commonly used chelating agent in the industry, was used as the draw solute because of its low reverse salt flux. The results revealed that the ideal efficiency of iodide recovery was at pH 3 with a preoxidation (adding 0.0150 M NaClO) for the 0.048 M iodide wastewater with a recovery of 98.5%. Additionally, the Pourbaix diagram and starch indicator were used to verify the formation of triiodide. Membrane distillation was demonstrated to recover the EDTA-2Na draw solute, and more than 99% of recoveries for the draw solutes with initial water flux of 12.0 L/m2 h were achieved, indicating that simultaneous recovery of the EDTA-2Na draw solute and water is feasible.
Collapse
Affiliation(s)
- Hau-Ming Chang
- Institute of Environmental Engineering and Management, National Taipei University of Technology, Taipei, Taiwan
| | - Shiao-Shing Chen
- Institute of Environmental Engineering and Management, National Taipei University of Technology, Taipei, Taiwan.
| | - Yu-Ting Chen
- Institute of Environmental Engineering and Management, National Taipei University of Technology, Taipei, Taiwan
| | | | - Chi-Wang Li
- Department of Water Resources and Environmental Engineering, Tamkang University, New Taipei City, Taiwan
| | - Nguyen Cong Nguyen
- Faculty of Environment and Natural Resources, Dalat University, Viet Nam
| | - Saikat Sinha Ray
- Institute of Environmental Engineering and Management, National Taipei University of Technology, Taipei, Taiwan
| | - Dan Thanh Ngoc Cao
- Institute of Environmental Engineering and Management, National Taipei University of Technology, Taipei, Taiwan
| |
Collapse
|
24
|
Mahto A, Aruchamy K, Meena R, Kamali M, Nataraj SK, Aminabhavi TM. Forward osmosis for industrial effluents treatment – sustainability considerations. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.117568] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
25
|
Inada A, Kumagai K, Matsuyama H. Effect of the molecular weights of thermoresponsive polyalkylene glycol draw solutes on forward osmosis performance. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.117462] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
26
|
Blandin G, Ferrari F, Lesage G, Le-Clech P, Héran M, Martinez-Lladó X. Forward Osmosis as Concentration Process: Review of Opportunities and Challenges. MEMBRANES 2020; 10:membranes10100284. [PMID: 33066490 PMCID: PMC7602145 DOI: 10.3390/membranes10100284] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/02/2020] [Accepted: 10/09/2020] [Indexed: 12/25/2022]
Abstract
In the past few years, osmotic membrane systems, such as forward osmosis (FO), have gained popularity as "soft" concentration processes. FO has unique properties by combining high rejection rate and low fouling propensity and can be operated without significant pressure or temperature gradient, and therefore can be considered as a potential candidate for a broad range of concentration applications where current technologies still suffer from critical limitations. This review extensively compiles and critically assesses recent considerations of FO as a concentration process for applications, including food and beverages, organics value added compounds, water reuse and nutrients recovery, treatment of waste streams and brine management. Specific requirements for the concentration process regarding the evaluation of concentration factor, modules and design and process operation, draw selection and fouling aspects are also described. Encouraging potential is demonstrated to concentrate streams more than 20-fold with high rejection rate of most compounds and preservation of added value products. For applications dealing with highly concentrated or complex streams, FO still features lower propensity to fouling compared to other membranes technologies along with good versatility and robustness. However, further assessments on lab and pilot scales are expected to better define the achievable concentration factor, rejection and effective concentration of valuable compounds and to clearly demonstrate process limitations (such as fouling or clogging) when reaching high concentration rate. Another important consideration is the draw solution selection and its recovery that should be in line with application needs (i.e., food compatible draw for food and beverage applications, high osmotic pressure for brine management, etc.) and be economically competitive.
Collapse
Affiliation(s)
- Gaetan Blandin
- Eurecat, Centre Tecnològic de Catalunya, Water, Air and Soil Unit, 08242 Manresa, Spain;
- Institut Européen des Membranes, IEM, Université de Montpellier, CNRS, ENSCM, 34090 Montpellier, France; (G.L.); (M.H.)
- Correspondence:
| | - Federico Ferrari
- Catalan Institute for Water Research (ICRA), 17003 Girona, Spain;
| | - Geoffroy Lesage
- Institut Européen des Membranes, IEM, Université de Montpellier, CNRS, ENSCM, 34090 Montpellier, France; (G.L.); (M.H.)
| | - Pierre Le-Clech
- UNESCO Centre for Membrane Science and Technology, School of Chemical Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia;
| | - Marc Héran
- Institut Européen des Membranes, IEM, Université de Montpellier, CNRS, ENSCM, 34090 Montpellier, France; (G.L.); (M.H.)
| | - Xavier Martinez-Lladó
- Eurecat, Centre Tecnològic de Catalunya, Water, Air and Soil Unit, 08242 Manresa, Spain;
| |
Collapse
|
27
|
Le HQ, Nguyen TXQ, Chen SS, Duong CC, Cao TND, Chang HM, Ray SS, Nguyen NC. Application of progressive freezing on forward osmosis draw solute recovery. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:34664-34674. [PMID: 31401797 DOI: 10.1007/s11356-019-06079-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 07/26/2019] [Indexed: 06/10/2023]
Abstract
Progressive freezing is a solvent purification technology with low energy requirements and high concentration efficiency. Although these advantages make it a promising technology, the technique has never been explored for draw solution recovery for forward osmosis (FO). Hence, in this study, the progressive freezing process was used to concentrate three common diluted draw solutions: NaCl, MgCl2, and EDTA-2Na with different ice front speeds, stirring rates, and initial draw solution concentrations. Effective partition and intrinsic partition constants were also evaluated. The results reveal that the freezing process can achieve a draw solution recovery rate of 99.73%, 99.06%, and 98.65% with NaCl, MgCl2, and EDTA-2Na, respectively, using an ice front speed of 0.5 cm/h, a stirring rate of 2.62 m/s, and 30% of percentage of ice phase. Higher concentration efficiency for NaCl and MgCl2 was achieved due to the high solubility of NaCl and MgCl2 increased solute diffusion into the liquid phase solutions. The concentration factors for all three draw solutions exceeded 1.9, indicating that the draw solutes could be reused for the FO process. In addition, the two mass transfer coefficients depended on the ice front speed and the stirring rates were also obtained for scaling up the experiment in the future.
Collapse
Affiliation(s)
- Huy Quang Le
- Institute of Environmental Engineering and Management, National Taipei University of Technology, No.1, Sec. 3, Zhongxiao E. Rd, Taipei, 10608, Taiwan
- Faculty of Environment and Natural Resources, Dalat University, 01 Phu Dong Thien Vuong Street, Da Lat City, 66000, Vietnam
| | - Thi Xuan Quynh Nguyen
- Institute of Environmental Engineering and Management, National Taipei University of Technology, No.1, Sec. 3, Zhongxiao E. Rd, Taipei, 10608, Taiwan
| | - Shiao-Shing Chen
- Institute of Environmental Engineering and Management, National Taipei University of Technology, No.1, Sec. 3, Zhongxiao E. Rd, Taipei, 10608, Taiwan.
| | - Chinh Cong Duong
- Institute of Environmental Engineering and Management, National Taipei University of Technology, No.1, Sec. 3, Zhongxiao E. Rd, Taipei, 10608, Taiwan
- Southern Institute of Water Resources Research, 658 Vo Van Kiet Street, District 5, Ho Chi Minh City, 700000, Vietnam
| | - Thanh Ngoc-Dan Cao
- Institute of Environmental Engineering and Management, National Taipei University of Technology, No.1, Sec. 3, Zhongxiao E. Rd, Taipei, 10608, Taiwan
- Nguyen Tat Thanh University, 300A Nguyen Tat Thanh Street, District 4, Ho Chi Minh City, 700000, Vietnam
| | - Hau-Ming Chang
- Institute of Environmental Engineering and Management, National Taipei University of Technology, No.1, Sec. 3, Zhongxiao E. Rd, Taipei, 10608, Taiwan
| | - Saikat Sinha Ray
- Institute of Environmental Engineering and Management, National Taipei University of Technology, No.1, Sec. 3, Zhongxiao E. Rd, Taipei, 10608, Taiwan
| | - Nguyen Cong Nguyen
- Faculty of Environment and Natural Resources, Dalat University, 01 Phu Dong Thien Vuong Street, Da Lat City, 66000, Vietnam
| |
Collapse
|
28
|
Duc Viet N, Im SJ, Jang A. Characterization and control of membrane fouling during dewatering of activated sludge using a thin film composite forward osmosis membrane. JOURNAL OF HAZARDOUS MATERIALS 2020; 396:122736. [PMID: 32361625 DOI: 10.1016/j.jhazmat.2020.122736] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/10/2020] [Accepted: 04/13/2020] [Indexed: 06/11/2023]
Abstract
This study investigated the feasibility of applying a thin film composite (TFC) forward osmosis (FO) membrane in the dewatering of activated sludge (AS). Membrane fouling was investigated and controlled to enhance the system's performance. Investigations showed that the TFC FO membrane provided a water flux that was 120 % higher and a concentration factor that was three times higher compared to a cellulose tri-acetate (CTA) membrane. The foulant layer on the TFC membrane surface was mostly irreversible when 1.44 mg-C/cm2 and 0.13 mg-C/cm2 dissolved organic carbon (DOC) were extracted in sodium hydroxide (NaOH) and deionized (DI) water, respectively. The results of principle component analysis (PCA) revealed that among the operating conditions, the amount of aromatic organic compounds (indicated by UV254 values) followed by their hydrophilicity (specific ultraviolet absorbance (SUVA) indices) were the dominant factors controlling the different fouling potentials. SUVA value indices ranged from 0.4 to 0.6 L/m-mg DOC, illustrating that hydrophilic compounds were more responsible for membrane fouling than hydrophobic components. These results implied that aromatic and hydrophilic substances, in particular protein and polysaccharides were key components of the fouling layers, which need to be considered to enable a reduction of membrane fouling. We thus employed several novel fouling control methods, in which the combination of mono-chloramine pre-treatment and membrane cleaning by NaOH resulted in the recovery up to 86 % of the water from raw AS.
Collapse
Affiliation(s)
- Nguyen Duc Viet
- Graduate School of Water Resources, Sungkyunkwan University, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Sung-Ju Im
- Graduate School of Water Resources, Sungkyunkwan University, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Am Jang
- Graduate School of Water Resources, Sungkyunkwan University, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea.
| |
Collapse
|
29
|
Seawater Desalination: A Review of Forward Osmosis Technique, Its Challenges, and Future Prospects. Processes (Basel) 2020. [DOI: 10.3390/pr8080901] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Currently over 845 million people are believed to be living under severe water scarcity, and an estimated 2.8 billion people across the globe are projected to come under serious water scarcity by the year 2025, according to a United Nations (UN) report. Seawater desalination has gained more traction as the solution with the most potential for increasing global freshwater supplies amongst other solutions. However, the economic and energy costs associated with the major desalination technologies are considered intrinsically prohibitive largely due to their humongous energy requirements alongside the requirements of complex equipment and their maintenance in most cases. Whilst forward osmosis (FO) is being touted as a potentially more energy efficient and cost-effective alternative desalination technique, its efficiency is challenged by draw solutes and the draw solutes recovery step in FO applications alongside other challenges. This paper looks at the present situation of global water scarcity, and a brief leap into the major desalination technologies employed. A closer look at the key drivers of FO as a seawater desalination technique in their individual domain and its outlook as an technology are further highlighted.
Collapse
|
30
|
Nguyen NC, Duong HC, Nguyen HT, Chen SS, Le HQ, Ngo HH, Guo W, Duong CC, Le NC, Bui XT. Forward osmosis–membrane distillation hybrid system for desalination using mixed trivalent draw solution. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118029] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
31
|
Viet ND, Cho J, Yoon Y, Jang A. Enhancing the removal efficiency of osmotic membrane bioreactors: A comprehensive review of influencing parameters and hybrid configurations. CHEMOSPHERE 2019; 236:124363. [PMID: 31325824 DOI: 10.1016/j.chemosphere.2019.124363] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 06/30/2019] [Accepted: 07/12/2019] [Indexed: 06/10/2023]
Abstract
The amount of research conducted on osmotic membrane bioreactors (OMBRs) has increased over the past decade because of the advantages of these reactors over conventional membrane bioreactors (MBRs). OMBR process is a hybrid process involving a forward osmosis membrane and biologically activated sludge. It is a promising technology to reduce membrane fouling, enhance effluent water quality, and lower energy consumption compared to conventional MBR processes. Eleven years since the OMBR process was first proposed, about 60 papers regarding the OMBR process have been published. In this article, we address recent advances in OMBR technology based on a review of the literature. Typical factors that influence the performance of the OMBR process are discussed to provide a clear understanding of the current state of this technology. We also provide a critical review of OMBR applications in organic matter, nutrient, and micropollutant removal as well as direct recovery of nutrients from wastewater. We propose several hybrid configurations that can enhance the removal efficiency of OMBR systems. Finally, we present potential research directions for future OMBR research.
Collapse
Affiliation(s)
- Nguyen Duc Viet
- Graduate School of Water Resources, Sungkyunkwan University, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Jaeweon Cho
- School of Urban and Environmental Engineering, Ulsan Institute of Science and Technology (UNIST), UNIST-gil 50, Ulsan, 689-798, Republic of Korea
| | - Yeomin Yoon
- Department of Civil and Environmental Engineering, University of South Carolina, Columbia, 300 Main Street, SC, 29208, USA
| | - Am Jang
- Graduate School of Water Resources, Sungkyunkwan University, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea.
| |
Collapse
|
32
|
Asif MB, Ansari AJ, Chen SS, Nghiem LD, Price WE, Hai FI. Understanding the mechanisms of trace organic contaminant removal by high retention membrane bioreactors: a critical review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:34085-34100. [PMID: 30259242 DOI: 10.1007/s11356-018-3256-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 09/14/2018] [Indexed: 06/08/2023]
Abstract
High retention membrane bioreactors (HR-MBR) combine a high retention membrane separation process such as membrane distillation, forward osmosis, or nanofiltration with a conventional activated sludge (CAS) process. Depending on the physicochemical properties of the trace organic contaminants (TrOCs) as well as the selected high retention membrane process, HR-MBR can achieve effective removal (80-99%) of a broad spectrum of TrOCs. An in-depth assessment of the available literature on HR-MBR performance suggests that compared to CAS and conventional MBRs (using micro- or ultra-filtration membrane), aqueous phase removal of TrOCs in HR-MBR is significantly better. Conceptually, longer retention time may significantly improve TrOC biodegradation, but there are insufficient data in the literature to evaluate the extent of TrOC biodegradation improvement by HR-MBR. The accumulation of hardly biodegradable TrOCs within the bioreactor of an HR-MBR system may complicate further treatment and beneficial reuse of sludge. In addition to TrOCs, accumulation of salts gradually increases the salinity in bioreactor and can adversely affect microbial activities. Strategies to mitigate these limitations are discussed. A qualitative framework is proposed to predict the contribution of the different key mechanisms of TrOC removal (i.e., membrane retention, biodegradation, and sorption) in HR-MBR.
Collapse
Affiliation(s)
- Muhammad B Asif
- Strategic Water Infrastructure Lab, School of Civil, Mining and Environmental Engineering, University of Wollongong, Wollongong, New South Wales, 2522, Australia
| | - Ashley J Ansari
- Strategic Water Infrastructure Lab, School of Civil, Mining and Environmental Engineering, University of Wollongong, Wollongong, New South Wales, 2522, Australia
| | - Shiao-Shing Chen
- Institute of Environmental Engineering and Management, National Taipei University of Technology, Taipei, 10608, Taiwan
| | - Long D Nghiem
- Strategic Water Infrastructure Lab, School of Civil, Mining and Environmental Engineering, University of Wollongong, Wollongong, New South Wales, 2522, Australia
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, New South Wales, 2007, Australia
| | - William E Price
- Strategic Water Infrastructure Lab, School of Chemistry, University of Wollongong, Wollongong, New South Wales, 2522, Australia
| | - Faisal I Hai
- Strategic Water Infrastructure Lab, School of Civil, Mining and Environmental Engineering, University of Wollongong, Wollongong, New South Wales, 2522, Australia.
| |
Collapse
|
33
|
Surface Modification of Polystyrene Beads with Sulfonamide Derivatives and Application to Water Softening System. Macromol Res 2019. [DOI: 10.1007/s13233-020-8025-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
34
|
Pramanik BK, Hai FI, Ansari AJ, Roddick FA. Mining phosphorus from anaerobically treated dairy manure by forward osmosis membrane. J IND ENG CHEM 2019. [DOI: 10.1016/j.jiec.2019.05.025] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
35
|
Choi J, Im SJ, Jang A. Application of volume retarded osmosis - Low pressure membrane hybrid process for recovery of heavy metals in acid mine drainage. CHEMOSPHERE 2019; 232:264-272. [PMID: 31154187 DOI: 10.1016/j.chemosphere.2019.05.209] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 05/22/2019] [Accepted: 05/23/2019] [Indexed: 06/09/2023]
Abstract
Recovery of heavy metals in acid mine drainage (AMD) such as Mn, Fe, Cu, Zn, As, Cd and Pb was evaluated using volume retarded osmosis and low-pressure membrane (VRO-LPM) process. In VRO-LPM process, the draw solution (DS) is regenerated by the naturally generated pressure, giving its economic value. Ethylenediaminetetraacetic acid tetrasodium salt (EDTA-4Na) and Poly (sodium-4-styrenesulfonate, PSS-Na) were used and compared to determine more suitable DS in heavy metal recovery from the AMD. Forward osmosis (FO) and nanofiltration (NF) membrane were employed in VRO-LPM process, due to the low EDTA-4Na rejection (about 50%) in ultrafiltration (UF) process. For the FO part in the VRO-LPM process, PSS-Na had flux values of 0.12, 0.11 and 0.05 L m-2 h-1 and at osmotic pressure of 8.9, 12 and 13 bar, respectively. Unlike the flux values, the RSF of PSS remained at 0.01 mmol h-1 at all osmotic pressures. For EDTA-4Na, the flux values were 0.10, 0.06 and 0.04 L m-2 h-1, which are relatively higher than those of PSS-Na; and the RSF values were 0.1, 1.2, 2.2 mmol h-1, which are higher compared to those of PSS-Na. Unlike PSS-Na, RSF for EDTA-4Na increased as the concentration increases. In the NF part of the VRO-LPM process, PSS-Na had higher water flux and rejection than EDTA-4Na, and the flux and rejection both decreased with concentration for both PSS-Na and EDTA-4Na. The overall rejection in VRO-LPM process was over 95% for all heavy metal ions. Therefore, VRO-LPM process has proven its ability to be used in AMD treatment for heavy metal removal.
Collapse
Affiliation(s)
- Jungwon Choi
- Graduate School of Water Resources, Sungkyunkwan University (SKKU), 2066, Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do, 16419, Republic of Korea
| | - Sung-Ju Im
- Graduate School of Water Resources, Sungkyunkwan University (SKKU), 2066, Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do, 16419, Republic of Korea
| | - Am Jang
- Graduate School of Water Resources, Sungkyunkwan University (SKKU), 2066, Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do, 16419, Republic of Korea.
| |
Collapse
|
36
|
Wang Z, Wu S, He Z. Production of electricity and water in an osmotic microbial fuel cell by using EDTA-Na 2 as a recoverable draw solute. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 677:382-389. [PMID: 31059881 DOI: 10.1016/j.scitotenv.2019.04.319] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 04/07/2019] [Accepted: 04/21/2019] [Indexed: 06/09/2023]
Abstract
Osmotic microbial fuel cell (OsMFC) is an emerging biotechnology that integrates forward osmosis (FO) membrane into microbial fuel cells. Selection of an appropriate draw solute (DS) could affect both water extraction and electricity generation. Herein, we have investigated a promising DS - EDTA-Na2, a widely used chelating agent. The OsMFC with the EDTA DS achieved 779.6 ± 18.5C (electricity production) and 1.22 ± 0.02 LMH (water flux), both of which were comparable to that with the NaCl DS at the same conductivity. However, the EDTA DS resulted in a significantly lower reverse solute flux (RSF) of 0.36 ± 0.08 gMH and a lower catholyte pH that could ensure healthy operation of the tested FO membrane. The OsMFC with the EDTA DS exhibited a positive forward flux for Na+ ions, likely related to the effect of EDTA-Na complexion. Due to the lumping effects of EDTA dissociation equilibrium and membrane surface chemistry, a higher catholyte pH led to a higher water flux and reduced RSF, but lower electricity production. The cyclic voltammetry tests revealed that the reverse-fluxed EDTA species might have chelated FeII/III redox coupled to facilitate electron transfer on the anode surface, but the EDTA DS in the cathode could interfere with the cathodic reaction through assisting in metal wires oxidation. In the reuse test, >90% of EDTA DS could be recovered and then successfully reused in the subsequent OsMFC operation. The results of this study would encourage further exploration of using EDTA-based compounds as a draw solute for OsMFC applications.
Collapse
Affiliation(s)
- Zixuan Wang
- Department of Civil and Environmental Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Simiao Wu
- Department of Civil and Environmental Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA; School of Environmental and Chemical Engineering, Shanghai University, No. 99, Shangda Road, Shanghai 200444, PR China
| | - Zhen He
- Department of Civil and Environmental Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA.
| |
Collapse
|
37
|
A novel thin film composite hollow fiber osmotic membrane with one-step prepared dual-layer substrate for sludge thickening. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.01.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
38
|
Choi J, Im SJ, Jang A. Application of a volume retarded osmosis-low pressure membrane hybrid process for treatment of acid whey. CHEMOSPHERE 2019; 219:261-267. [PMID: 30543961 DOI: 10.1016/j.chemosphere.2018.12.055] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 12/05/2018] [Accepted: 12/07/2018] [Indexed: 06/09/2023]
Abstract
This study evaluated the treatment of acid whey through a volume-retarded osmosis-low-pressure membrane (VRO-LPM) hybrid process. The VRO-LPM process uses pressure naturally generated inside the closed draw solution (DS) tank to regenerate the DS, making it an economic process. Poly (sodium-4-styrenesulfonate) (PSS) and carboxymethyl cellulose (CMC) were compared to determine which was a more suitable DS for acid whey treatment. Forward osmosis (FO) and ultrafiltration (UF) membranes were used in the VRO-LPM hybrid process because a single UF process showed high water flux and rejection efficiencies above 85% for both PSS and CMC. In both the FO and UF parts of the VRO-LPM process, PSS had a higher water flux than CMC. However, the increasing rate of the feed solution (FS) for CMC was greater than that of PSS, however the overall rejection efficiencies were similar for both DS. Therefore, the VRO-LPM process can be applied to acid whey treatment, and CMC seems to be a better choice of DS than PSS because of its higher concentrating ratio of FS and high overall rejection.
Collapse
Affiliation(s)
- Jungwon Choi
- Graduate School of Water Resources, Sungkyunkwan University (SKKU), 2066, Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do, 16419, South Korea
| | - Sung-Ju Im
- Graduate School of Water Resources, Sungkyunkwan University (SKKU), 2066, Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do, 16419, South Korea
| | - Am Jang
- Graduate School of Water Resources, Sungkyunkwan University (SKKU), 2066, Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do, 16419, South Korea.
| |
Collapse
|
39
|
Abstract
In recent years, membrane technologies have been developed to address water shortage and energy crisis. Forward osmosis (FO), as an emerging membrane-based water treatment technology, employs an extremely concentrated draw solution (DS) to draw water pass through the semi-permeable membrane from a feed solution. DS as a critical material in FO process plays a key role in determining separation performance and energy cost. Most of existing DSs after FO still require a regeneration step making its return to initial state. Therefore, selecting suitable DS with low reverse solute, high flux, and easy regeneration is critical for improving FO energy efficiency. Numerous novel DSs with improved performance and lower regeneration cost have been developed. However, none reviews reported the categories of DS based on the energy used for recovery up to now, leading to the lack of enough awareness of energy consumption in DS regeneration. This review will give a comprehensive overview on the existing DSs based on the types of energy utilized for DS regeneration. DS categories based on different types of energy used for DS recovery, mainly including direct use based, chemical energy based, waste heat based, electric energy based, magnetic field energy based, and solar energy based are proposed. The respective benefits and detriments of the majority of DS are addressed respectively according to the current reported literatures. Finally, future directions of energy applied to DS recovery are also discussed.
Collapse
|
40
|
Zufía-Rivas J, Morales P, Veintemillas-Verdaguer S. Effect of the Sodium Polyacrylate on the Magnetite Nanoparticles Produced by Green Chemistry Routes: Applicability in Forward Osmosis. NANOMATERIALS 2018; 8:nano8070470. [PMID: 29954100 PMCID: PMC6071008 DOI: 10.3390/nano8070470] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 06/22/2018] [Accepted: 06/23/2018] [Indexed: 11/27/2022]
Abstract
Aqueous dispersions of magnetic nanocomposites have been proposed as draw electrolytes in forward osmosis. One possible approach for the production of nanocomposites based on magnetite nanoparticles and sodium polyacrylate is the synthesis of the magnetic iron oxide by coprecipitation or oxidative precipitation in the presence of an excess of the polymer. In this work, we explored the effect of the polymer proportion on the nanomaterials produced by these procedures. The materials obtained were compared with those obtained by the coating of magnetite nanocrystals produced beforehand with the same polymer. The samples were characterized by chemical analysis, photon correlation spectroscopy, thermogravimetry, X-ray diffraction, infrared spectroscopy, transmission electron microscopy, and magnetometry. The general trend observed is that the polymers heavily modify the texture of the magnetic material during the synthesis, with a drastic reduction of the particle size and magnetic response. The polycrystalline texture that is generated permits the incorporation of the polymer both on the external surface and in the intergranular space. The aqueous dispersions of the nanocomposites were highly stable, with a hydrodynamic size that was roughly independent of the polymer/magnetite ratio. Such dispersions show an osmotic pressure that is proportional to the concentration of the polymer. Interestingly, the proportionality constant was similar to that of the free polymer only in the case of the samples prepared by oxidative precipitation, being lower in the case of the samples prepared by coprecipitation. Finally, the possibilities of using these materials as draw electrolytes in forward osmosis will be briefly discussed.
Collapse
Affiliation(s)
- Juan Zufía-Rivas
- Instituto de Ciencia de Materiales de Madrid, ICMM/CSIC Sor Juana Inés de la Cruz 3, Cantoblanco, 28049 Madrid, Spain.
| | - Puerto Morales
- Instituto de Ciencia de Materiales de Madrid, ICMM/CSIC Sor Juana Inés de la Cruz 3, Cantoblanco, 28049 Madrid, Spain.
| | - Sabino Veintemillas-Verdaguer
- Instituto de Ciencia de Materiales de Madrid, ICMM/CSIC Sor Juana Inés de la Cruz 3, Cantoblanco, 28049 Madrid, Spain.
| |
Collapse
|
41
|
Nguyen NC, Chen SS, Ho ST, Nguyen HT, Ray SS, Nguyen NT, Hsu HT, Le NC, Tran TT. Optimising the recovery of EDTA-2Na draw solution in forward osmosis through direct contact membrane distillation. Sep Purif Technol 2018. [DOI: 10.1016/j.seppur.2017.02.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
42
|
Im SJ, Choi J, Lee JG, Jeong S, Jang A. Application of volume-retarded osmosis and low-pressure membrane hybrid process for water reclamation. CHEMOSPHERE 2018; 194:76-84. [PMID: 29197818 DOI: 10.1016/j.chemosphere.2017.11.067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 11/12/2017] [Accepted: 11/14/2017] [Indexed: 06/07/2023]
Abstract
A new concept of volume-retarded osmosis and low-pressure membrane (VRO-LPM) hybrid process was developed and evaluated for the first time in this study. Commercially available forward osmosis (FO) and ultrafiltration (UF) membranes were employed in a VRO-LPM hybrid process to overcome energy limitations of draw solution (DS) regeneration and production of permeate in the FO process. To evaluate its feasibility as a water reclamation process, and to optimize the operational conditions, cross-flow FO and dead-end mode UF processes were individually evaluated. For the FO process, a DS concentration of 0.15 g mL-1 of polysulfonate styrene (PSS) was determined to be optimal, having a high flux with a low reverse salt flux. The UF membrane with a molecular weight cut-off of 1 kDa was chosen for its high PSS rejection in the LPM process. As a single process, UF (LPM) exhibited a higher flux than FO, but this could be controlled by adjusting the effective membrane area of the FO and UF membranes in the VRO-LPM system. The VRO-LPM hybrid process only required a circulation pump for the FO process. This led to a decrease in the specific energy consumption of the VRO-LPM process for potable water production, that was similar to the single FO process. Therefore, the newly developed VRO-LPM hybrid process, with an appropriate DS selection, can be used as an energy efficient water production method, and can outperform conventional water reclamation processes.
Collapse
Affiliation(s)
- Sung-Ju Im
- Graduate School of Water Resources, Sungkyunkwan University (SKKU), 2066, Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do 16419, Republic of Korea
| | - Jungwon Choi
- Graduate School of Water Resources, Sungkyunkwan University (SKKU), 2066, Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do 16419, Republic of Korea
| | - Jung-Gil Lee
- King Abdullah University of Science and Technology (KAUST), Water Desalination and Reuse Center (WDRC), Biological and Environmental Science & Engineering (BESE), Thuwal 23955-6900, Saudi Arabia
| | - Sanghyun Jeong
- Graduate School of Water Resources, Sungkyunkwan University (SKKU), 2066, Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do 16419, Republic of Korea.
| | - Am Jang
- Graduate School of Water Resources, Sungkyunkwan University (SKKU), 2066, Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do 16419, Republic of Korea.
| |
Collapse
|
43
|
Nguyen NC, Chen SS, Jain S, Nguyen HT, Ray SS, Ngo HH, Guo W, Lam NT, Duong HC. Exploration of an innovative draw solution for a forward osmosis-membrane distillation desalination process. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:5203-5211. [PMID: 28527139 DOI: 10.1007/s11356-017-9192-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Accepted: 05/02/2017] [Indexed: 06/07/2023]
Abstract
Forward osmosis (FO) has emerged as a viable technology to alleviate the global water crisis. The greatest challenge facing the application of FO technology is the lack of an ideal draw solution with high water flux and low reverse salt flux. Hence, the objective of this study was to enhance FO by lowering reverse salt flux and maintaining high water flux; the method involved adding small concentrations of Al2(SO4)3 to a MgCl2 draw solution. Results showed that 0.5 M MgCl2 mixed with 0.05 M of Al2(SO4)3 at pH 6.5 achieved a lower reverse salt flux (0.53 gMH) than that of pure MgCl2 (1.55 gMH) using an FO cellulose triacetate nonwoven (CTA-NW) membrane. This was due possibly to the flocculation of aluminum hydroxide in the mixed draw solution that constricted membrane pores, resulting in reduced salt diffusion. Moreover, average water fluxes of 4.09 and 1.74 L/m2-h (LMH) were achieved over 180 min, respectively, when brackish water (5 g/L) and sea water (35 g/L) were used as feed solutions. Furthermore, three types of membrane distillation (MD) membranes were selected for draw solution recovery; of these, a polytetrafluoroethylene membrane with a pore size of 0.45 μm proved to be the most effective in achieving a high salt rejection (99.90%) and high water flux (5.41 LMH) in a diluted draw solution.
Collapse
Affiliation(s)
- Nguyen Cong Nguyen
- Institute of Environmental Engineering and Management, National Taipei University of Technology, No.1, Sec. 3, Chung -Hsiao E. Rd, Taipei, 106, Taiwan, Republic of China.
- Faculty of Environment and Natural Resources, Dalat University, Dalat, Vietnam.
| | - Shiao-Shing Chen
- Institute of Environmental Engineering and Management, National Taipei University of Technology, No.1, Sec. 3, Chung -Hsiao E. Rd, Taipei, 106, Taiwan, Republic of China.
| | - Shubham Jain
- School of Civil and Chemical Engineering, VIT University, Vellore, India
| | - Hau Thi Nguyen
- Institute of Environmental Engineering and Management, National Taipei University of Technology, No.1, Sec. 3, Chung -Hsiao E. Rd, Taipei, 106, Taiwan, Republic of China
- Faculty of Environment and Natural Resources, Dalat University, Dalat, Vietnam
| | - Saikat Sinha Ray
- Institute of Environmental Engineering and Management, National Taipei University of Technology, No.1, Sec. 3, Chung -Hsiao E. Rd, Taipei, 106, Taiwan, Republic of China
| | - Huu Hao Ngo
- School of Civil and Environmental Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, Broadway, NSW, 2007, Australia.
| | - Wenshan Guo
- School of Civil and Environmental Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, Broadway, NSW, 2007, Australia
| | - Ngoc Tuan Lam
- Faculty of Environment and Natural Resources, Dalat University, Dalat, Vietnam
| | - Hung Cong Duong
- Strategic Water Infrastructure Laboratory, School of Civil Mining and Environmental Engineering, University of Wollongong, Wollongong, NSW, 2522, Australia
| |
Collapse
|
44
|
Mahto A, Mondal D, Polisetti V, Bhatt J, M. R N, Prasad K, Nataraj SK. Sustainable Water Reclamation from Different Feed Streams by Forward Osmosis Process Using Deep Eutectic Solvents as Reusable Draw Solution. Ind Eng Chem Res 2017. [DOI: 10.1021/acs.iecr.7b03046] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Ashesh Mahto
- Sustainable
Energy Materials and Processes Group, Centre for Nano and Material
Sciences, Jain University, JGI Global Campus, Kanakapura Road, Ramanagaram, Bangalore 562 112, India
- Academy
of Scientific and Innovative Research (AcSIR), Central Salt and Marine Chemicals Research Institute, G.B. Marg, Bhavnagar 364 002, India
| | - Dibyendu Mondal
- Sustainable
Energy Materials and Processes Group, Centre for Nano and Material
Sciences, Jain University, JGI Global Campus, Kanakapura Road, Ramanagaram, Bangalore 562 112, India
| | - Veerababu Polisetti
- Reverse
Osmosis Membrane Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), G. B. Marg, Bhavnagar 364 002, India
| | - Jitkumar Bhatt
- Natural
Products and Green Chemistry Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), G. B. Marg, Bhavnagar 364 002, India
- Academy
of Scientific and Innovative Research (AcSIR), Central Salt and Marine Chemicals Research Institute, G.B. Marg, Bhavnagar 364 002, India
| | - Nidhi M. R
- Sustainable
Energy Materials and Processes Group, Centre for Nano and Material
Sciences, Jain University, JGI Global Campus, Kanakapura Road, Ramanagaram, Bangalore 562 112, India
| | - Kamalesh Prasad
- Natural
Products and Green Chemistry Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), G. B. Marg, Bhavnagar 364 002, India
- Academy
of Scientific and Innovative Research (AcSIR), Central Salt and Marine Chemicals Research Institute, G.B. Marg, Bhavnagar 364 002, India
| | - S. K. Nataraj
- Sustainable
Energy Materials and Processes Group, Centre for Nano and Material
Sciences, Jain University, JGI Global Campus, Kanakapura Road, Ramanagaram, Bangalore 562 112, India
| |
Collapse
|
45
|
Abstract
Abstract
Forward osmosis (FO) has developed rapidly over the past decade. The development of draw solutes, a key component of FO processes, has also progressed remarkably. A wide range of synthetic draw solutes have been explored in recent years. Synthetic draw solutes exhibit superiority over the conventional draw solutes obtained commercially in terms of lower reverse solute fluxes and less energy consumption in draw solute recycling. However, there are still some big challenges for synthetic draw solutes, such as complicated synthetic procedures, low water fluxes, severe concentration polarization (CP) and decreased water recovery efficiency when recycled draw solutes are reused in FO. These challenges are also the current research focus on the exploration of novel draw solutes. This article aims to review the recent progress especially on synthetic draw solutes. Their design strategies, synthesis routes and FO performance are assessed. Some representative applications involving the synthetic draw solutes-facilitated FO processes are exemplified. The advantages and disadvantages of the existing synthetic draw solutions are evaluated. The challenges and future directions in exploring novel draw solutes are highlighted.
Collapse
Affiliation(s)
- Qiaozhen Chen
- College of Environment and Resources , Fuzhou University , No. 2 University of New Garden Road , Fujian 350116 , China
| | - Wenxuan Xu
- College of Environment and Resources , Fuzhou University , No. 2 University of New Garden Road , Fujian 350116 , China
| | - Qingchun Ge
- College of Environment and Resources , Fuzhou University , No. 2 University of New Garden Road , Fujian 350116 , China
| |
Collapse
|
46
|
New concept of pump-less forward osmosis (FO) and low-pressure membrane (LPM) process. Sci Rep 2017; 7:14569. [PMID: 29109434 PMCID: PMC5673930 DOI: 10.1038/s41598-017-15274-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 10/24/2017] [Indexed: 11/30/2022] Open
Abstract
We tested the possibility of energy-saving water treatment methods by using a pump-less forward osmosis (FO) and low-pressure membrane (LPM) hybrid process (FO-LPM). In this pump-less FO-LPM, permeate migrates from the feed solution (FS) to the draw solution (DS) through the FO membrane by use of osmotic pressure differences. At the same time, within the closed DS tank, inner pressure increases as the DS volume increases. By using the DS tank’s internal pressure, the LPM process works to re-concentrate the diluted DS, maintaining the DS concentration and producing clean water. In this study, a polymer - polystyrene sulfonate (PSS) was used as a draw solute. Based on the results of each individual portion of the process, the optimal range of the PSS DS was determined. The performance of the pump-less FO-LPM process was lower than that of a single process; however, we observed that the hybrid process can be operated without a pump for regeneration of a diluted DS. This research highlights the feasibility and applicability of pump-less FO-LPM processes using a polymeric DS for water treatment. Additionally, it is suggested that this novel process offers a breakthrough in FO technology that is often limited by operation and management cost.
Collapse
|
47
|
Chi XY, Zhang PY, Guo XJ, Xu ZL. Interforce initiated by magnetic nanoparticles for reducing internal concentration polarization in CTA forward osmosis membrane. J Appl Polym Sci 2017. [DOI: 10.1002/app.44852] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Xiang-Yu Chi
- State Key Laboratory of Chemical Engineering, Membrane Science and Engineering R&D Lab, Chemical Engineering Research Center; East China University of Science and Technology; 130 Meilong Road Shanghai 200237 China
| | - Ping-Yun Zhang
- State Key Laboratory of Chemical Engineering, Membrane Science and Engineering R&D Lab, Chemical Engineering Research Center; East China University of Science and Technology; 130 Meilong Road Shanghai 200237 China
| | - Xue-Jiao Guo
- State Key Laboratory of Chemical Engineering, Membrane Science and Engineering R&D Lab, Chemical Engineering Research Center; East China University of Science and Technology; 130 Meilong Road Shanghai 200237 China
| | - Zhen-Liang Xu
- State Key Laboratory of Chemical Engineering, Membrane Science and Engineering R&D Lab, Chemical Engineering Research Center; East China University of Science and Technology; 130 Meilong Road Shanghai 200237 China
| |
Collapse
|
48
|
Ju C, Kang H. Zwitterionic polymers showing upper critical solution temperature behavior as draw solutes for forward osmosis. RSC Adv 2017. [DOI: 10.1039/c7ra10831a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
We investigated the suitability of homopolymer with UCST characteristics as draw solutes for the FO process for the first time.
Collapse
Affiliation(s)
- Changha Ju
- Department of Chemical Engineering
- Dong-A University
- Busan 604-714
- Korea
| | - Hyo Kang
- Department of Chemical Engineering
- Dong-A University
- Busan 604-714
- Korea
| |
Collapse
|
49
|
Wang C, Gao B, Zhao P, Li R, Yue Q, Shon HK. Exploration of polyepoxysuccinic acid as a novel draw solution in the forward osmosis process. RSC Adv 2017. [DOI: 10.1039/c7ra04036a] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Polyepoxysuccinic acid (PESA) is a green corrosion scale inhibitor.
Collapse
Affiliation(s)
- Chen Wang
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse
- School of Environmental Science and Engineering
- Shandong University
- Jinan 250100
- China
| | - Baoyu Gao
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse
- School of Environmental Science and Engineering
- Shandong University
- Jinan 250100
- China
| | - Pin Zhao
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse
- School of Environmental Science and Engineering
- Shandong University
- Jinan 250100
- China
| | - Ruihua Li
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse
- School of Environmental Science and Engineering
- Shandong University
- Jinan 250100
- China
| | - Qinyan Yue
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse
- School of Environmental Science and Engineering
- Shandong University
- Jinan 250100
- China
| | - Ho Kyong Shon
- School of Civil and Environmental Engineering
- University of Technology
- Sydney (UTS)
- Australia
| |
Collapse
|
50
|
Nguyen NC, Chen SS, Weng YT, Thi Nguyen H, Ray SS, Li CW, Yan B, Wang J. Iodide recovery from thin film transistor liquid crystal display plants by using potassium hydroxide - driven forward osmosis. J Memb Sci 2016. [DOI: 10.1016/j.memsci.2016.07.062] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|