1
|
Zhang XM, Qing MJ, Liu XK, Peng L. Complement factor B inhibitor LNP023 mediates the effect and mechanism of AMPK/mTOR on autophagy and oxidative stress in lupus nephritis. Kaohsiung J Med Sci 2024; 40:996-1005. [PMID: 39394911 DOI: 10.1002/kjm2.12894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/25/2024] [Accepted: 08/26/2024] [Indexed: 10/14/2024] Open
Abstract
This study investigated the impact of LNP023 on the AMPK/mTOR signaling pathway in lupus nephritis (LN) and its effects on autophagy and oxidative stress. A mouse model of LN was established, and renal injury was confirmed by assessing various LN markers, including antinuclear antibody, ds-DNA, anti-Sm antibody, and others. Mice were treated with LNP023, the AMPK activator AICAR, or the AMPK inhibitor dorsomorphin. Renal injury and fibrosis were evaluated using HE and Masson staining. Expression levels of AMPK, mTOR, LC3, Beclin1, and p62 were assessed by immunohistochemistry and Western blot. Oxidative stress and inflammatory markers were measured by polymerase chain reaction and enzyme-linked immunosorbent assay. LN mice exhibited low AMPK/p-AMPK and high mTOR/p-mTOR levels, alongside significant renal injury, fibrosis, reduced autophagy, and elevated oxidative stress. LNP023 treatment improved these parameters, with enhanced effects when combined with AICAR. Conversely, dorsomorphin reversed LNP023's therapeutic benefits. The complement factor B inhibitor LNP023 promotes kidney health in LN mice by mediating the AMPK/mTOR pathway, promoting autophagy, and attenuating oxidative stress.
Collapse
Affiliation(s)
- Xi-Mei Zhang
- Department of Nephrology, The Second Affiliated Hospital of University of South China, Hengyang, China
| | - Ming-Jie Qing
- Department of Endocrinology, The Second Affiliated Hospital of University of South China, Hengyang, China
| | - Xin-Kuo Liu
- Department of Basic Medicine, Yueyang Vocational and Technical College, Yueyang, China
| | - Liang Peng
- Department of Nephrology, The Second Affiliated Hospital of University of South China, Hengyang, China
| |
Collapse
|
2
|
Steggerda JA, Heeger PS. The Promise of Complement Therapeutics in Solid Organ Transplantation. Transplantation 2024; 108:1882-1894. [PMID: 38361233 DOI: 10.1097/tp.0000000000004927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Transplantation is the ideal therapy for end-stage organ failure, but outcomes for all transplant organs are suboptimal, underscoring the need to develop novel approaches to improve graft survival and function. The complement system, traditionally considered a component of innate immunity, is now known to broadly control inflammation and crucially contribute to induction and function of adaptive T-cell and B-cell immune responses, including those induced by alloantigens. Interest of pharmaceutical industries in complement therapeutics for nontransplant indications and the understanding that the complement system contributes to solid organ transplantation injury through multiple mechanisms raise the possibility that targeting specific complement components could improve transplant outcomes and patient health. Here, we provide an overview of complement biology and review the roles and mechanisms through which the complement system is pathogenically linked to solid organ transplant injury. We then discuss how this knowledge has been translated into novel therapeutic strategies to improve organ transplant outcomes and identify areas for future investigation. Although the clinical application of complement-targeted therapies in transplantation remains in its infancy, the increasing availability of new agents in this arena provides a rich environment for potentially transformative translational transplant research.
Collapse
Affiliation(s)
- Justin A Steggerda
- Division of Abdominal Transplant Surgery, Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA
- Comprehensive Transplant Center, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Peter S Heeger
- Comprehensive Transplant Center, Cedars-Sinai Medical Center, Los Angeles, CA
- Division of Nephrology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA
| |
Collapse
|
3
|
Hillmen P, Horneff R, Yeh M, Kolev M, Deschatelets P. Navigating the Complement Pathway to Optimize PNH Treatment with Pegcetacoplan and Other Currently Approved Complement Inhibitors. Int J Mol Sci 2024; 25:9477. [PMID: 39273426 PMCID: PMC11395449 DOI: 10.3390/ijms25179477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/27/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024] Open
Abstract
Paroxysmal nocturnal hemoglobinuria (PNH) is a rare and potentially life-threatening hematologic disorder caused by a somatic mutation in a relevant portion of hematopoietic stem cells. Mutation of the phosphatidylinositol glycan biosynthesis class A (PIGA) gene prevents the expression of cell-surface proteins, including the complement regulatory proteins CD55 and CD59. With decreased or a lack of CD55 and CD59 expression on their membranes, PNH red blood cells become susceptible to complement-mediated hemolysis (symptoms of which include anemia, dysphagia, abdominal pain, and fatigue), leading to thrombosis. State-of-the-art PNH treatments act by inhibiting the dysregulated complement at distinct points in the activation pathway: late at the C5 level (C5 inhibitors, eculizumab, ravulizumab, and crovalimab), centrally at the C3 level (C3/C3b inhibitors and pegcetacoplan), and early at the initiation and amplification of the alternative pathway (factor B inhibitor, iptacopan; factor D inhibitor, danicopan). Through their differing mechanisms of action, these treatments elicit varying profiles of disease control and offer valuable insights into the molecular underpinnings of PNH. This narrative review provides an overview of the mechanisms of action of the six complement inhibitors currently approved for PNH, with a focus on the C3/C3b-targeted therapy, pegcetacoplan.
Collapse
Affiliation(s)
- Peter Hillmen
- Apellis Pharmaceuticals, Inc., Waltham, MA 02451, USA
| | | | - Michael Yeh
- Apellis Pharmaceuticals, Inc., Waltham, MA 02451, USA
| | - Martin Kolev
- Apellis Pharmaceuticals, Inc., Waltham, MA 02451, USA
| | | |
Collapse
|
4
|
Negro-Demontel L, Maleki AF, Reich DS, Kemper C. The complement system in neurodegenerative and inflammatory diseases of the central nervous system. Front Neurol 2024; 15:1396520. [PMID: 39022733 PMCID: PMC11252048 DOI: 10.3389/fneur.2024.1396520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 06/17/2024] [Indexed: 07/20/2024] Open
Abstract
Neurodegenerative and neuroinflammatory diseases, including Alzheimer's disease, Parkinson's disease, and multiple sclerosis, affect millions of people globally. As aging is a major risk factor for neurodegenerative diseases, the continuous increase in the elderly population across Western societies is also associated with a rising prevalence of these debilitating conditions. The complement system, a crucial component of the innate immune response, has gained increasing attention for its multifaceted involvement in the normal development of the central nervous system (CNS) and the brain but also as a pathogenic driver in several neuroinflammatory disease states. Although complement is generally understood as a liver-derived and blood or interstitial fluid operative system protecting against bloodborne pathogens or threats, recent research, particularly on the role of complement in the healthy and diseased CNS, has demonstrated the importance of locally produced and activated complement components. Here, we provide a succinct overview over the known beneficial and pathological roles of complement in the CNS with focus on local sources of complement, including a discussion on the potential importance of the recently discovered intracellularly active complement system for CNS biology and on infection-triggered neurodegeneration.
Collapse
Affiliation(s)
- Luciana Negro-Demontel
- National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Complement and Inflammation Research Section (CIRS), Bethesda, MD, United States
- Department of Histology and Embryology, Faculty of Medicine, UDELAR, Montevideo, Uruguay
- Neuroinflammation and Gene Therapy Laboratory, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Adam F. Maleki
- National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Complement and Inflammation Research Section (CIRS), Bethesda, MD, United States
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke (NINDS), NIH, Bethesda, MD, United States
| | - Daniel S. Reich
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke (NINDS), NIH, Bethesda, MD, United States
| | - Claudia Kemper
- National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Complement and Inflammation Research Section (CIRS), Bethesda, MD, United States
| |
Collapse
|
5
|
Froehlich F, Landerholm K, Neeb J, Meß AK, Seiler DL, Tilburgs T, Karsten CM. Emerging role of C5aR2: novel insights into the regulation of uterine immune cells during pregnancy. Front Immunol 2024; 15:1411315. [PMID: 38979410 PMCID: PMC11229525 DOI: 10.3389/fimmu.2024.1411315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 05/27/2024] [Indexed: 07/10/2024] Open
Abstract
Pregnancy is a fascinating immunological phenomenon because it allows allogeneic fetal and placental tissues to survive inside the mother. As a component of innate immunity with high inflammatory potential, the complement system must be tightly regulated during pregnancy. Dysregulation of the complement system plays a role in pregnancy complications including pre-eclampsia and intrauterine growth restriction. Complement components are also used as biomarkers for pregnancy complications. However, the mechanisms of detrimental role of complement in pregnancy is poorly understood. C5a is the most potent anaphylatoxin and generates multiple immune reactions via two transmembrane receptors, C5aR1 and C5aR2. C5aR1 is pro-inflammatory, but the role of C5aR2 remains largely elusive. Interestingly, murine NK cells have been shown to express C5aR2 without the usual co-expression of C5aR1. Furthermore, C5aR2 appears to regulate IFN-γ production by NK cells in vitro. As IFN-γ produced by uterine NK cells is one of the major factors for the successful development of a vital pregnancy, we investigated the role anaphylatoxin C5a and its receptors in the establishment of pregnancy and the regulation of uterine NK cells by examinations of murine C5ar2-/- pregnancies and human placental samples. C5ar2-/- mice have significantly reduced numbers of implantation sites and a maternal C5aR2 deficiency results in increased IL-12, IL-18 and IFN-γ mRNA expression as well as reduced uNK cell infiltration at the maternal-fetal interface. Human decidual leukocytes have similar C5a receptor expression patterns showing clinical relevance. In conclusion, this study identifies C5aR2 as a key contributor to dNK infiltration and pregnancy success.
Collapse
Affiliation(s)
- Fenna Froehlich
- Institute for Systemic Inflammation Research (ISEF), University of Lübeck, Luebeck, Germany
| | - Konstanze Landerholm
- Institute for Systemic Inflammation Research (ISEF), University of Lübeck, Luebeck, Germany
| | - Johanna Neeb
- Institute for Systemic Inflammation Research (ISEF), University of Lübeck, Luebeck, Germany
| | - Ann-Kathrin Meß
- Institute for Systemic Inflammation Research (ISEF), University of Lübeck, Luebeck, Germany
| | - Daniel Leonard Seiler
- Institute for Systemic Inflammation Research (ISEF), University of Lübeck, Luebeck, Germany
| | - Tamara Tilburgs
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | | |
Collapse
|
6
|
WANG Z, LI Y, WANG D, MA B, MIAO L, REN J, LIU J, LIU J. Proteomics analysis of coronary atherosclerotic heart disease with different Traditional Chinese Medicine syndrome types before and after percutaneous coronary intervention. J TRADIT CHIN MED 2024; 44:554-563. [PMID: 38767640 PMCID: PMC11077157 DOI: 10.19852/j.cnki.jtcm.20240408.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 05/25/2023] [Indexed: 05/22/2024]
Abstract
OBJECTIVE To investigate the underlying protein molecular mechanisms of "Qi stagnation and blood stasis syndrome" (QS) and "Qi deficiency and blood stasis syndrome" (QD), as two subtypes of coronary artery disease (CAD) in Traditional Chinese Medicine (TCM), following percutaneous coronary intervention (PCI). METHODS In this study, a total of 227 CAD patients with QS and 211 CAD patients with QD were enrolled; all participants underwent PCI. Label-free quantification proteomics were employed to analyze the changes in serum in two subtypes of CAD patients before and 6 months after PCI, aiming to elucidate the intervention mechanism of PCI in treating CAD characterized by two different TCM syndromes. RESULTS Biochemical analysis revealed significant changes in tumor necrosis factor-α, high density lipoprotein cholesterol, blood stasis clinical symptoms observation, and Gensini levels in both patient groups post-PCI; Proteomic analysis identified 79 and 95 differentially expressed proteins in the QS and QD patient groups, respectively, compared to their control groups. complement C8 alpha chain, complement factor H, apolipoprotein H, apolipoprotein B, plasminogen, carbonic anhydrase 2, and complement factor I were altered in both comparison groups. Furthermore, enrichment analysis demonstrated that cell adhesion and connectivity-related processes underwent changes in QS patients post-PCI, whereas lipid metabolism-related pathways, including the peroxisome proliferator-activated receptor signaling pathway and extracellular matrix receptor interaction, underwent changes in the QD group. The protein-protein interaction network analysis further enriched 52 node proteins, including apolipoprotein B, lipoprotein (a), complement C5, apolipoprotein A4, complement C8 alpha chain, complement C8 beta chain, complement C8 gamma chain, apolipoprotein H, apolipoprotein A-Ⅱ, albumin, complement C4-B, apolipoprotein C3, among others. The functional network of these proteins is posited to contribute to the pathophysiology of CAD characterized by TCM syndromes. CONCLUSION The current quantitative proteomic study has preliminarily identified biomarkers of CAD in different TCM subtypes treated with PCI, potentially laying the groundwork for understanding the protein profiles associated with the treatment of various TCM subtypes of CAD.
Collapse
Affiliation(s)
- Zhibo WANG
- 1 Beijing Key Laboratory of Pharmacology of Chinese Materia Region, Institute of Basic Medical Sciences, Xiyuan Hospital, China Academy of Chinese Medical Sciences, National Clinical Research Center of Cardiovascular Disease of Traditional Chinese Medicine, Beijing 100000, China
| | - Ying LI
- 1 Beijing Key Laboratory of Pharmacology of Chinese Materia Region, Institute of Basic Medical Sciences, Xiyuan Hospital, China Academy of Chinese Medical Sciences, National Clinical Research Center of Cardiovascular Disease of Traditional Chinese Medicine, Beijing 100000, China
| | - Daoping WANG
- 2 the National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Science, Beijing 100098, China
| | - Bo MA
- 1 Beijing Key Laboratory of Pharmacology of Chinese Materia Region, Institute of Basic Medical Sciences, Xiyuan Hospital, China Academy of Chinese Medical Sciences, National Clinical Research Center of Cardiovascular Disease of Traditional Chinese Medicine, Beijing 100000, China
| | - Lan MIAO
- 1 Beijing Key Laboratory of Pharmacology of Chinese Materia Region, Institute of Basic Medical Sciences, Xiyuan Hospital, China Academy of Chinese Medical Sciences, National Clinical Research Center of Cardiovascular Disease of Traditional Chinese Medicine, Beijing 100000, China
| | - Junguo REN
- 1 Beijing Key Laboratory of Pharmacology of Chinese Materia Region, Institute of Basic Medical Sciences, Xiyuan Hospital, China Academy of Chinese Medical Sciences, National Clinical Research Center of Cardiovascular Disease of Traditional Chinese Medicine, Beijing 100000, China
| | - Jinghua LIU
- 3 Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | - Jianxun LIU
- 1 Beijing Key Laboratory of Pharmacology of Chinese Materia Region, Institute of Basic Medical Sciences, Xiyuan Hospital, China Academy of Chinese Medical Sciences, National Clinical Research Center of Cardiovascular Disease of Traditional Chinese Medicine, Beijing 100000, China
| |
Collapse
|
7
|
Ratajczak MZ, Bujko K, Brzezniakiewicz-Janus K, Ratajczak J, Kucia M. Hematopoiesis Revolves Around the Primordial Evolutional Rhythm of Purinergic Signaling and Innate Immunity - A Journey to the Developmental Roots. Stem Cell Rev Rep 2024; 20:827-838. [PMID: 38363476 PMCID: PMC10984895 DOI: 10.1007/s12015-024-10692-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/04/2024] [Indexed: 02/17/2024]
Abstract
A cell's most significant existential task is to survive by ensuring proper metabolism, avoiding harmful stimuli, and adapting to changing environments. It explains why early evolutionary primordial signals and pathways remained active and regulate cell and tissue integrity. This requires energy supply and a balanced redox state. To meet these requirements, the universal intracellular energy transporter purine nucleotide-adenosine triphosphate (ATP) became an important signaling molecule and precursor of purinergic signaling after being released into extracellular space. Similarly, ancient proteins involved in intracellular metabolism gave rise to the third protein component (C3) of the complement cascade (ComC), a soluble arm of innate immunity. These pathways induce cytosol reactive oxygen (ROS) and reactive nitrogen species (RNS) that regulate the redox state of the cells. While low levels of ROS and RNS promote cell growth and differentiation, supra-physiological concentrations can lead to cell damage by pyroptosis. This balance explains the impact of purinergic signaling and innate immunity on cell metabolism, organogenesis, and tissue development. Subsequently, along with evolution, new regulatory cues emerge in the form of growth factors, cytokines, chemokines, and bioactive lipids. However, their expression is still modulated by both primordial signaling pathways. This review will focus on the data that purinergic signaling and innate immunity carry on their ancient developmental task in hematopoiesis and specification of hematopoietic stem/progenitor cells (HSPCs). Moreover, recent evidence shows both these regulatory pathways operate in a paracrine manner and inside HSPCs at the autocrine level.
Collapse
Affiliation(s)
- Mariusz Z Ratajczak
- Laboratory of Regenerative Medicine, Medical University of Warsaw, Warsaw, Poland.
- Department of Hematology, University of Zielona Gora, Multi-Specialist Hospital Gorzow Wlkp., Gorzow Wielkopolski, Poland.
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, 500 S. Floyd Street, Rm. 107, Louisville, KY, 40202, USA.
| | - Kamila Bujko
- Laboratory of Regenerative Medicine, Medical University of Warsaw, Warsaw, Poland
- Center for Preclinical Studies and Technology, Department of Regenerative Medicine at Medical, University of Warsaw, Warsaw, Poland
| | | | - Janina Ratajczak
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, 500 S. Floyd Street, Rm. 107, Louisville, KY, 40202, USA
| | - Magdalena Kucia
- Laboratory of Regenerative Medicine, Medical University of Warsaw, Warsaw, Poland
- Center for Preclinical Studies and Technology, Department of Regenerative Medicine at Medical, University of Warsaw, Warsaw, Poland
| |
Collapse
|
8
|
Mattos-Graner RO, Klein MI, Alves LA. The complement system as a key modulator of the oral microbiome in health and disease. Crit Rev Microbiol 2024; 50:138-167. [PMID: 36622855 DOI: 10.1080/1040841x.2022.2163614] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 01/10/2023]
Abstract
In this review, we address the interplay between the complement system and host microbiomes in health and disease, focussing on oral bacteria known to contribute to homeostasis or to promote dysbiosis associated with dental caries and periodontal diseases. Host proteins modulating complement activities in the oral environment and expression profiles of complement proteins in oral tissues were described. In addition, we highlight a sub-set of bacterial proteins involved in complement evasion and/or dysregulation previously characterized in pathogenic species (or strains), but further conserved among prototypical commensal species of the oral microbiome. Potential roles of these proteins in host-microbiome homeostasis and in the emergence of commensal strain lineages with increased virulence were also addressed. Finally, we provide examples of how commensal bacteria might exploit the complement system in competitive or cooperative interactions within the complex microbial communities of oral biofilms. These issues highlight the need for studies investigating the effects of the complement system on bacterial behaviour and competitiveness during their complex interactions within oral and extra-oral host sites.
Collapse
Affiliation(s)
- Renata O Mattos-Graner
- Department of Oral Diagnosis, Piracicaba Dental School, State University of Campinas (UNICAMP), Sao Paulo, Brazil
| | - Marlise I Klein
- Department of Oral Diagnosis, Piracicaba Dental School, State University of Campinas (UNICAMP), Sao Paulo, Brazil
| | - Lívia Araújo Alves
- Department of Oral Diagnosis, Piracicaba Dental School, State University of Campinas (UNICAMP), Sao Paulo, Brazil
- School of Dentistry, Cruzeiro do Sul University (UNICSUL), Sao Paulo, Brazil
| |
Collapse
|
9
|
Xiao MT, Ellsworth CR, Qin X. Emerging role of complement in COVID-19 and other respiratory virus diseases. Cell Mol Life Sci 2024; 81:94. [PMID: 38368584 PMCID: PMC10874912 DOI: 10.1007/s00018-024-05157-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/03/2024] [Accepted: 02/03/2024] [Indexed: 02/19/2024]
Abstract
The complement system, a key component of innate immunity, provides the first line of defense against bacterial infection; however, the COVID-19 pandemic has revealed that it may also engender severe complications in the context of viral respiratory disease. Here, we review the mechanisms of complement activation and regulation and explore their roles in both protecting against infection and exacerbating disease. We discuss emerging evidence related to complement-targeted therapeutics in COVID-19 and compare the role of the complement in other respiratory viral diseases like influenza and respiratory syncytial virus. We review recent mechanistic studies and animal models that can be used for further investigation. Novel knockout studies are proposed to better understand the nuances of the activation of the complement system in respiratory viral diseases.
Collapse
Affiliation(s)
- Mark T Xiao
- Division of Comparative Pathology, Tulane National Primate Research Center, Health Sciences Campus, 18703 Three Rivers Road, Covington, LA, 70433, USA
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Calder R Ellsworth
- Division of Comparative Pathology, Tulane National Primate Research Center, Health Sciences Campus, 18703 Three Rivers Road, Covington, LA, 70433, USA
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Xuebin Qin
- Division of Comparative Pathology, Tulane National Primate Research Center, Health Sciences Campus, 18703 Three Rivers Road, Covington, LA, 70433, USA.
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, 70112, USA.
| |
Collapse
|
10
|
Li XX, Fung JN, Clark RJ, Lee JD, Woodruff TM. Cell-intrinsic C5a synergizes with Dectin-1 in macrophages to mediate fungal killing. Proc Natl Acad Sci U S A 2024; 121:e2314627121. [PMID: 38252818 PMCID: PMC10835034 DOI: 10.1073/pnas.2314627121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 12/20/2023] [Indexed: 01/24/2024] Open
Abstract
The complement factor C5a is a core effector product of complement activation. C5a, acting through its receptors C5aR1 and C5aR2, exerts pleiotropic immunomodulatory functions in myeloid cells, which is vital for host defense against pathogens. Pattern-recognition receptors (PRRs) are similarly expressed by immune cells as detectors of pathogen-associated molecular patterns. Although there is evidence of cross talk between complement and PRR signaling pathways, knowledge of the full potential for C5a-PRR interaction is limited. In this study, we comprehensively investigated how C5a signaling through C5a receptors can modulate diverse PRR-mediated cytokine responses in human primary monocyte-derived macrophages and observed a powerful, concentration-dependent bidirectional effect of C5a on PRR activities. Unexpectedly, C5a synergized with Dectin-1, Mincle, and STING in macrophages to a much greater extent than TLRs. Notably, we also identified that selective Dectin-1 activation using depleted zymosan triggered macrophages to generate cell-intrinsic C5a, which acted on intracellular and cell surface C5aR1, to help sustain mitochondrial ROS generation, up-regulate TNFα production, and enhance fungal killing. This study adds further evidence to the holistic functions of C5a as a central immunomodulator and important orchestrator of pathogen sensing and killing by phagocytes.
Collapse
Affiliation(s)
- Xaria X. Li
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia, QLD4072, Australia
| | - Jenny N. Fung
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia, QLD4072, Australia
| | - Richard J. Clark
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia, QLD4072, Australia
| | - John D. Lee
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia, QLD4072, Australia
| | - Trent M. Woodruff
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia, QLD4072, Australia
| |
Collapse
|
11
|
Bujko K, Brzenziakiewicz-Janus K, Kucia M, Ratajczak MZ. Intracellular Complement (Complosome) is Expressed in Several Types of Human Adult Bone Marrow-Derived Stem Cells. Stem Cell Rev Rep 2024; 20:437-439. [PMID: 37917411 DOI: 10.1007/s12015-023-10650-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Affiliation(s)
- Kamila Bujko
- Laboratory of Regenerative Medicine at, Medical University of Warsaw, Warsaw, Poland
| | | | - Magda Kucia
- Laboratory of Regenerative Medicine at, Medical University of Warsaw, Warsaw, Poland
| | - Mariusz Z Ratajczak
- Laboratory of Regenerative Medicine at, Medical University of Warsaw, Warsaw, Poland.
- Department of Hematology, University of Zielona Gora, Multi-Specialist Hospital Gorzow Wlkp., Gorzow Wielkopolski, Poland.
- Stem Cell Institute at Brown Cancer Center, University of Louisville, 500 S. Floyd Street, Rm. 107, Louisville, KY, 40202, USA.
| |
Collapse
|
12
|
Avdonin PP, Blinova MS, Generalova GA, Emirova KM, Avdonin PV. The Role of the Complement System in the Pathogenesis of Infectious Forms of Hemolytic Uremic Syndrome. Biomolecules 2023; 14:39. [PMID: 38254639 PMCID: PMC10813406 DOI: 10.3390/biom14010039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/24/2023] [Accepted: 12/18/2023] [Indexed: 01/24/2024] Open
Abstract
Hemolytic uremic syndrome (HUS) is an acute disease and the most common cause of childhood acute renal failure. HUS is characterized by a triad of symptoms: microangiopathic hemolytic anemia, thrombocytopenia, and acute kidney injury. In most of the cases, HUS occurs as a result of infection caused by Shiga toxin-producing microbes: hemorrhagic Escherichia coli and Shigella dysenteriae type 1. They account for up to 90% of all cases of HUS. The remaining 10% of cases grouped under the general term atypical HUS represent a heterogeneous group of diseases with similar clinical signs. Emerging evidence suggests that in addition to E. coli and S. dysenteriae type 1, a variety of bacterial and viral infections can cause the development of HUS. In particular, infectious diseases act as the main cause of aHUS recurrence. The pathogenesis of most cases of atypical HUS is based on congenital or acquired defects of complement system. This review presents summarized data from recent studies, suggesting that complement dysregulation is a key pathogenetic factor in various types of infection-induced HUS. Separate links in the complement system are considered, the damage of which during bacterial and viral infections can lead to complement hyperactivation following by microvascular endothelial injury and development of acute renal failure.
Collapse
Affiliation(s)
- Piotr P. Avdonin
- Koltzov Institute of Developmental Biology RAS, ul. Vavilova, 26, 119334 Moscow, Russia; (M.S.B.); (P.V.A.)
| | - Maria S. Blinova
- Koltzov Institute of Developmental Biology RAS, ul. Vavilova, 26, 119334 Moscow, Russia; (M.S.B.); (P.V.A.)
| | - Galina A. Generalova
- Saint Vladimir Moscow City Children’s Clinical Hospital, 107014 Moscow, Russia; (G.A.G.); (K.M.E.)
- Department of Pediatrics, A.I. Evdokimov Moscow State University of Medicine and Dentistry, 127473 Moscow, Russia
| | - Khadizha M. Emirova
- Saint Vladimir Moscow City Children’s Clinical Hospital, 107014 Moscow, Russia; (G.A.G.); (K.M.E.)
- Department of Pediatrics, A.I. Evdokimov Moscow State University of Medicine and Dentistry, 127473 Moscow, Russia
| | - Pavel V. Avdonin
- Koltzov Institute of Developmental Biology RAS, ul. Vavilova, 26, 119334 Moscow, Russia; (M.S.B.); (P.V.A.)
| |
Collapse
|
13
|
Cyranka L, Mariegaard I, Skjødt MO, Bayarri-Olmos R, Mollnes TE, Garred P, Rosbjerg A. Functional Analysis of a Novel Complement C5a Receptor 1-Blocking Monoclonal Antibody. J Innate Immun 2023; 15:836-849. [PMID: 37952515 PMCID: PMC10691831 DOI: 10.1159/000535084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 10/31/2023] [Indexed: 11/14/2023] Open
Abstract
INTRODUCTION The complement system anaphylatoxin C5a is a critical player in inflammation. By binding to complement C5a receptor 1 (C5aR1/CD88), C5a regulates many cellular functions, mainly as a potent pro-inflammatory inducer. We describe the generation and selection of a potent antagonistic C5aR1 mouse monoclonal antibody (mAb). METHODS Initial C5aR1 hybridoma clone selection was performed with a cell-binding study in human whole blood. In-house C5aR1 mAb assessment for C5aR1 inhibition was done via the iLite® C5a assay. C5aR1 mAb specificity was investigated on C5aR1his- and C5aR2his-expressing Flp-In™-CHO cells. Physiological C5aR1 inhibition was assessed via a C5a-driven calcium flux assay and stimulation assay based on isolated polymorphonuclear leukocytes (PMNs) and a whole blood model stimulated with Escherichia coli. RESULTS The supernatant of hybridoma clones targeting the N-terminal section of C5aR1 displayed efficient binding to C5aR1 in whole blood, which was confirmed for purified mAbs. The C5aR1 mAb 18-41-6 was selected following the assay of in-house C5aR1 mAbs via the iLite® C5a assay. The mAb 18-41-6 was specific for C5aR1. Full-size and/or F(ab')2 preparations of mAb 18-41-6 were found to efficiently abrogate C5a-induced calcium flux in neutrophils and to significantly reduce the upregulation of the activation markers CD11b (neutrophils, monocytes) and CD66b (neutrophils). CONCLUSION Our results demonstrate that mAb 18-41-6 is a valuable tool for investigating the C5a-C5aR1 axis and a potential therapeutic candidate for inflammatory disease treatment.
Collapse
Affiliation(s)
- Leon Cyranka
- Department of Clinical Immunology, Laboratory of Molecular Medicine, Section 7631, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Ida Mariegaard
- Department of Clinical Immunology, Laboratory of Molecular Medicine, Section 7631, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Mikkel-Ole Skjødt
- Department of Clinical Immunology, Laboratory of Molecular Medicine, Section 7631, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Rafael Bayarri-Olmos
- Department of Clinical Immunology, Laboratory of Molecular Medicine, Section 7631, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Tom Eirik Mollnes
- Department of Immunology, Oslo University Hospital and University of Oslo, Oslo, Norway
- Research Laboratory, Nordland Hospital, Bodø, Norway
| | - Peter Garred
- Department of Clinical Immunology, Laboratory of Molecular Medicine, Section 7631, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Anne Rosbjerg
- Department of Clinical Immunology, Laboratory of Molecular Medicine, Section 7631, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
14
|
Nelke C, Schroeter CB, Theissen L, Preusse C, Pawlitzki M, Räuber S, Dobelmann V, Cengiz D, Kleefeld F, Roos A, Schoser B, Brunn A, Neuen-Jacob E, Zschüntzsch J, Meuth SG, Stenzel W, Ruck T. Senescent fibro-adipogenic progenitors are potential drivers of pathology in inclusion body myositis. Acta Neuropathol 2023; 146:725-745. [PMID: 37773216 PMCID: PMC10564677 DOI: 10.1007/s00401-023-02637-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/18/2023] [Accepted: 09/19/2023] [Indexed: 10/01/2023]
Abstract
Inclusion body myositis (IBM) is unique across the spectrum of idiopathic inflammatory myopathies (IIM) due to its distinct clinical presentation and refractoriness to current treatment approaches. One explanation for this resistance may be the engagement of cell-autonomous mechanisms that sustain or promote disease progression of IBM independent of inflammatory activity. In this study, we focused on senescence of tissue-resident cells as potential driver of disease. For this purpose, we compared IBM patients to non-diseased controls and immune-mediated necrotizing myopathy patients. Histopathological analysis suggested that cellular senescence is a prominent feature of IBM, primarily affecting non-myogenic cells. In-depth analysis by single nuclei RNA sequencing allowed for the deconvolution and study of muscle-resident cell populations. Among these, we identified a specific cluster of fibro-adipogenic progenitors (FAPs) that demonstrated key hallmarks of senescence, including a pro-inflammatory secretome, expression of p21, increased β-galactosidase activity, and engagement of senescence pathways. FAP function is required for muscle cell health with changes to their phenotype potentially proving detrimental. In this respect, the transcriptomic landscape of IBM was also characterized by changes to the myogenic compartment demonstrating a pronounced loss of type 2A myofibers and a rarefication of acetylcholine receptor expressing myofibers. IBM muscle cells also engaged a specific pro-inflammatory phenotype defined by intracellular complement activity and the expression of immunogenic surface molecules. Skeletal muscle cell dysfunction may be linked to FAP senescence by a change in the collagen composition of the latter. Senescent FAPs lose collagen type XV expression, which is required to support myofibers' structural integrity and neuromuscular junction formation in vitro. Taken together, this study demonstrates an altered phenotypical landscape of muscle-resident cells and that FAPs, and not myofibers, are the primary senescent cell type in IBM.
Collapse
Affiliation(s)
- Christopher Nelke
- Department of Neurology, Medical Faculty, Heinrich Heine University Duesseldorf, Moorenstr. 5, 40225, Duesseldorf, Germany
| | - Christina B Schroeter
- Department of Neurology, Medical Faculty, Heinrich Heine University Duesseldorf, Moorenstr. 5, 40225, Duesseldorf, Germany
| | - Lukas Theissen
- Department of Neurology, Medical Faculty, Heinrich Heine University Duesseldorf, Moorenstr. 5, 40225, Duesseldorf, Germany
| | - Corinna Preusse
- Department of Neuropathology, Charité-University Medicine Berlin, Bonhoefferweg 3, 10117, Berlin, Germany
| | - Marc Pawlitzki
- Department of Neurology, Medical Faculty, Heinrich Heine University Duesseldorf, Moorenstr. 5, 40225, Duesseldorf, Germany
| | - Saskia Räuber
- Department of Neurology, Medical Faculty, Heinrich Heine University Duesseldorf, Moorenstr. 5, 40225, Duesseldorf, Germany
| | - Vera Dobelmann
- Department of Neurology, Medical Faculty, Heinrich Heine University Duesseldorf, Moorenstr. 5, 40225, Duesseldorf, Germany
| | - Derya Cengiz
- Department of Neurology, Medical Faculty, Heinrich Heine University Duesseldorf, Moorenstr. 5, 40225, Duesseldorf, Germany
| | - Felix Kleefeld
- Department of Neurology, Charité-University Medicine Berlin, Bonhoefferweg 3, 10117, Berlin, Germany
| | - Andreas Roos
- Department of Neuropediatrics, Developmental Neurology and Social Pediatrics, Centre for Neuromuscular Disorders in Children, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Benedikt Schoser
- Friedrich Baur Institute at the Department of Neurology, LMU University Hospital, LMU Munich, 80336, Munich, Germany
| | - Anna Brunn
- Institute of Neuropathology, Heinrich Heine University, University Hospital of Düsseldorf, Düsseldorf, Germany
| | - Eva Neuen-Jacob
- Institute of Neuropathology, Heinrich Heine University, University Hospital of Düsseldorf, Düsseldorf, Germany
| | - Jana Zschüntzsch
- Department of Neurology, University Medical Center Göttingen, Robert-Koch-Str. 40, Göttingen, Germany
| | - Sven G Meuth
- Department of Neurology, Medical Faculty, Heinrich Heine University Duesseldorf, Moorenstr. 5, 40225, Duesseldorf, Germany
| | - Werner Stenzel
- Department of Neuropathology, Charité-University Medicine Berlin, Bonhoefferweg 3, 10117, Berlin, Germany
| | - Tobias Ruck
- Department of Neurology, Medical Faculty, Heinrich Heine University Duesseldorf, Moorenstr. 5, 40225, Duesseldorf, Germany.
| |
Collapse
|
15
|
Kareem S, Jacob A, Mathew J, Quigg RJ, Alexander JJ. Complement: Functions, location and implications. Immunology 2023; 170:180-192. [PMID: 37222083 PMCID: PMC10524990 DOI: 10.1111/imm.13663] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 05/09/2023] [Indexed: 05/25/2023] Open
Abstract
The complement system, an arm of the innate immune system plays a critical role in both health and disease. The complement system is highly complex with dual possibilities, helping or hurting the host, depending on the location and local microenvironment. The traditionally known functions of complement include surveillance, pathogen recognition, immune complex trafficking, processing and pathogen elimination. The noncanonical functions of the complement system include their roles in development, differentiation, local homeostasis and other cellular functions. Complement proteins are present in both, the plasma and on the membranes. Complement activation occurs both extra- and intracellularly, which leads to considerable pleiotropy in their activity. In order to design more desirable and effective therapies, it is important to understand the different functions of complement, and its location-based and tissue-specific responses. This manuscript will provide a brief overview into the complex nature of the complement cascade, outlining some of their complement-independent functions, their effects at different locale, and their implication in disease settings.
Collapse
Affiliation(s)
- Samer Kareem
- Department of Medicine, University at Buffalo, Buffalo, New York, United States
| | - Alexander Jacob
- Department of Medicine, University at Buffalo, Buffalo, New York, United States
| | - John Mathew
- Department of Rheumatology, Christian Medical College, Vellore, India
| | - Richard J Quigg
- Department of Medicine, University at Buffalo, Buffalo, New York, United States
| | - Jessy J Alexander
- Department of Medicine, University at Buffalo, Buffalo, New York, United States
| |
Collapse
|
16
|
Bode M, Diemer JN, Luu TV, Ehnert N, Teigeler T, Wiech T, Lindenmeyer MT, Herrnstadt GR, Bülow J, Huber TB, Tomas NM, Wenzel UO. Complement component C3 as a new target to lower albuminuria in hypertensive kidney disease. Br J Pharmacol 2023; 180:2412-2435. [PMID: 37076314 DOI: 10.1111/bph.16097] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 04/08/2023] [Accepted: 04/12/2023] [Indexed: 04/21/2023] Open
Abstract
BACKGROUND AND PURPOSE Complement activation may drive hypertension through its effects on immunity and tissue integrity. EXPERIMENTAL APPROACH We examined expression of C3, the central protein of the complement cascade, in hypertension. KEY RESULTS Increased C3 expression was found in kidney biopsies and micro-dissected glomeruli of patients with hypertensive nephropathy. Renal single cell RNA sequence data from normotensive and hypertensive patients confirmed expression of C3 in different cellular compartments of the kidney. In angiotensin II (Ang II) induced hypertension renal C3 expression was up-regulated. C3-/- mice revealed a significant lower albuminuria in the early phase of hypertension. However, no difference was found for blood pressure, renal injury (histology, glomerular filtration rate, inflammation) and cardiac injury (fibrosis, weight, gene expression) between C3-/- and wildtype mice after Ang II infusion. Also, in deoxycorticosterone acetate (DOCA) salt hypertension, a significantly lower albuminuria was found in the first weeks of hypertension in C3 deficient mice but no significant difference in renal and cardiac injury. Down-regulation of C3 by C3 targeting GalNAc (n-acetylgalactosamine) small interfering RNA (siRNA) conjugate decreased C3 in the liver by 96% and lowered albuminuria in the early phase but showed no effect on blood pressure and end-organ damage. Inhibition of complement C5 by siRNA showed no effect on albuminuria. CONCLUSION AND IMPLICATIONS Increased C3 expression is found in the kidneys of hypertensive mice and men. Genetic and therapeutic knockdown of C3 improved albuminuria in the early phase of hypertension but did not ameliorate arterial blood pressure nor renal and cardiac injury.
Collapse
Affiliation(s)
- Marlies Bode
- III. Department of Medicine, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Jan Niklas Diemer
- III. Department of Medicine, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - The Vinh Luu
- III. Department of Medicine, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Nikolas Ehnert
- III. Department of Medicine, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Teresa Teigeler
- III. Department of Medicine, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Thorsten Wiech
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute for Pathology, Section Nephropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Maja T Lindenmeyer
- III. Department of Medicine, University Hospital Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Georg R Herrnstadt
- III. Department of Medicine, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Jasmin Bülow
- Institute of Orthopedic Research and Biomechanics, University Medical Center Ulm, Ulm, Germany
| | - Tobias B Huber
- III. Department of Medicine, University Hospital Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nicola M Tomas
- III. Department of Medicine, University Hospital Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ulrich O Wenzel
- III. Department of Medicine, University Hospital Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
17
|
Wang X, Hao Y, Chen J, Ding P, Lv X, Zhou D, Li L, Li L, Xu Y, Zhu Y, Zhang W, Chen L, Liao T, He X, Ji QH, Hu W. Nuclear complement C3b promotes paclitaxel resistance by assembling the SIN3A/HDAC1/2 complex in non-small cell lung cancer. Cell Death Dis 2023; 14:351. [PMID: 37291119 PMCID: PMC10250389 DOI: 10.1038/s41419-023-05869-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 04/12/2023] [Accepted: 05/31/2023] [Indexed: 06/10/2023]
Abstract
In addition to the classical role as a serum effector system of innate immunity, accumulating evidence suggests that intracellular complement components have indispensable functions in immune defense, T cell homeostasis, and tumor cell proliferation and metastasis. Here, we revealed that complement component 3 (C3) is remarkably upregulated in paclitaxel (PTX)-resistant non-small cell lung cancer (NSCLC) cells and that knockdown of C3 promoted PTX-induced cell apoptosis, sensitizing resistant cells to PTX therapy. Ectopic C3 decreased PTX-induced apoptosis and induced resistance to PTX treatment in original NSCLC cells. Interestingly, C3b, the activated fragment of C3, was found to translocate into the nucleus and physically associate with the HDAC1/2-containing SIN3A complex to repress the expression of GADD45A, which plays an important role in cell growth inhibition and apoptosis induction. Importantly, C3 downregulated GADD45A by enhancing the binding of the SIN3A complex with the promoter of GADD45A, thus decreasing the H3Ac level to compress chromatin around the GADD45A locus. Subsequently, ectopic GADD45A promoted PTX-induced cell apoptosis, sensitizing resistant cells to PTX therapy, and insufficiency of GADD45A in original cancer cells induced resistance to PTX treatment. These findings identify a previously unknown nucleus location and oncogenic property for C3 in chemotherapy and provide a potential therapeutic opportunity to overcome PTX resistance.
Collapse
Affiliation(s)
- Xiaochao Wang
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yan Hao
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Jianfeng Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 East Dongfeng Road, Guangzhou, Guangdong, 510060, China
| | - Peipei Ding
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Xinyue Lv
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Danlei Zhou
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Ling Li
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Luying Li
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yanqing Xu
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yumeng Zhu
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Wei Zhang
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Lu Chen
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Tian Liao
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Xianghuo He
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, China
| | - Qing-Hai Ji
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Weiguo Hu
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
18
|
Washburn RL, Martinez-Marin D, Sniegowski T, Korać K, Rodriguez AR, Miranda JM, Chilton BS, Bright RK, Pruitt K, Bhutia YD, Dufour JM. Sertoli Cells Express Accommodation, Survival, and Immunoregulatory Factors When Exposed to Normal Human Serum. Biomedicines 2023; 11:1650. [PMID: 37371745 DOI: 10.3390/biomedicines11061650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 05/30/2023] [Accepted: 06/03/2023] [Indexed: 06/29/2023] Open
Abstract
Transplantation is a clinical procedure that treats a variety of diseases yet is unattainable for many patients due to a nationwide organ shortage and the harsh side effects of chronic immune suppression. Xenografted pig organs are an attractive alternative to traditional allografts and would provide an endless supply of transplantable tissue, but transplants risk rejection by the recipient's immune system. An essential component of the rejection immune response is the complement system. Sertoli cells, an immunoregulatory testicular cell, survive complement as xenografts long term without any immune suppressants. We hypothesized that exposure to the xenogeneic complement influences Sertoli cell gene expression of other accommodation factors that contribute to their survival; thus, the purpose of this study was to describe these potential changes in gene expression. RNA sequencing of baseline neonatal pig Sertoli cells (NPSC) as compared to NPSC after exposure to normal human serum (NHS, containing complement) revealed 62 significantly differentially expressed genes (DEG) that affect over 30 pathways involved in immune regulation, cell survival, and transplant accommodation. Twelve genes of interest were selected for further study, and Sertoli cell protein expression of CCL2 and the accommodation factor A20 were confirmed for the first time. Functional pathway analyses were conducted in NPSC and three biological clusters were revealed as being considerably affected by NHS exposure: innate immune signaling, cytokine signaling, and T cell regulation. Better understanding of the interaction of Sertoli cells with complement in a xenograft environment may reveal the mechanisms behind immune-privileged systems to increase graft viability.
Collapse
Affiliation(s)
- Rachel L Washburn
- Department of Cell Biology and Biochemistry, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79424, USA
- Department of Immunology and Molecular Microbiology, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79424, USA
| | - Dalia Martinez-Marin
- Department of Cell Biology and Biochemistry, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79424, USA
- Department of Immunology and Molecular Microbiology, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79424, USA
| | - Tyler Sniegowski
- Department of Cell Biology and Biochemistry, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79424, USA
| | - Ksenija Korać
- Department of Cell Biology and Biochemistry, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79424, USA
| | - Alexis R Rodriguez
- Department of Cell Biology and Biochemistry, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79424, USA
| | - Jonathan M Miranda
- Department of Cell Biology and Biochemistry, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79424, USA
| | - Beverly S Chilton
- Department of Cell Biology and Biochemistry, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79424, USA
| | - Robert K Bright
- Department of Immunology and Molecular Microbiology, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79424, USA
| | - Kevin Pruitt
- Department of Immunology and Molecular Microbiology, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79424, USA
| | - Yangzom D Bhutia
- Department of Cell Biology and Biochemistry, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79424, USA
| | - Jannette M Dufour
- Department of Cell Biology and Biochemistry, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79424, USA
| |
Collapse
|
19
|
Franczak S, Ulrich H, Ratajczak MZ. Hematopoietic stem cells on the crossroad between purinergic signaling and innate immunity. Purinergic Signal 2023:10.1007/s11302-023-09943-0. [PMID: 37184740 DOI: 10.1007/s11302-023-09943-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 05/09/2023] [Indexed: 05/16/2023] Open
Abstract
Hematopoiesis is regulated by several mediators such as peptide-based growth factors, cytokines, and chemokines, whose biological effects have been studied for many years. However, several other mediators have been identified recently that affect the fate of hematopoietic stem/progenitor cells (HSPC) as well as non-hematopoietic cells in the bone marrow microenvironment. These new mediators comprise members of purinergic signaling pathways and are active mediators of the soluble arm of innate immunity, the complement cascade (ComC). In this review, we will discuss the coordinated effects of these pathways in regulating the biology of HSPC. Importantly, both purinergic signaling and the ComC are activated in stress situations and interact with specific receptors expressed on HSPC. Evidence has accumulated indicating that some of the purinergic as well as ComC receptors could also be activated intracellularly by intrinsically expressed ligands. To support this recent evidence, our work indicates that the major mediator of purinergic signaling, adenosine triphosphate, and the cleavage product of the fifth component of the ComC (C5), C5a anaphylatoxin, can activate their corresponding receptors expressed on the outer mitochondrial membrane in an autocrine manner. We will also discuss recent evidence that these responses, mediated by purinergic signaling and the ComC network, are coordinated by activation of the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 2 - reactive oxygen species - NLR family pyrin domain containing 3 (NLRP3) inflammasome (Nox2-ROS-NLRP3) axis.
Collapse
Affiliation(s)
- Stephanie Franczak
- Laboratory of Regenerative Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Henning Ulrich
- Department of Biochemistry, University of Sao Paulo, Sao Paulo, Brazil
| | - Mariusz Z Ratajczak
- Laboratory of Regenerative Medicine, Medical University of Warsaw, Warsaw, Poland.
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, 500 S. Floyd Street, Rm. 107, Louisville, KY, 40202, USA.
| |
Collapse
|
20
|
Bain W, Tabary M, Moore SR, An X, Kitsios GD, McVerry BJ, Ray P, Ray A, Mallampalli RK, Ferreira VP, Lee JS, Nouraie SM. Factor H preserves alternative complement function during ARDS, linked to improved survival. ERJ Open Res 2023; 9:00702-2022. [PMID: 37377659 PMCID: PMC10291301 DOI: 10.1183/23120541.00702-2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 04/05/2023] [Indexed: 06/29/2023] Open
Abstract
Background Effective regulation of complement activation may be crucial to preserving complement function during acute respiratory distress syndrome (ARDS). Factor H is the primary negative regulator of the alternative pathway of complement. We hypothesised that preserved factor H levels are associated with decreased complement activation and reduced mortality during ARDS. Methods Total alternative pathway function was measured by serum haemolytic assay (AH50) using available samples from the ARDSnet Lisofylline and Respiratory Management of Acute Lung Injury (LARMA) trial (n=218). Factor B and factor H levels were quantified using ELISA using samples from the ARDSnet LARMA and Statins for Acutely Injured Lungs from Sepsis (SAILS) (n=224) trials. Meta-analyses included previously quantified AH50, factor B and factor H values from an observational registry (Acute Lung Injury Registry and Biospecimen Repository (ALIR)). Complement C3, and complement activation products C3a and Ba plasma levels were measured in SAILS. Results AH50 greater than the median was associated with reduced mortality in meta-analysis of LARMA and ALIR (hazard ratio (HR) 0.66, 95% CI 0.45-0.96). In contrast, patients in the lowest AH50 quartile demonstrated relative deficiency of both factor B and factor H. Relative deficiency of factor B (HR 1.99, 95% CI 1.44-2.75) or factor H (HR 1.52, 95% CI 1.09-2.11) was associated with increased mortality in meta-analysis of LARMA, SAILS and ALIR. Relative factor H deficiency was associated with increased factor consumption, as evidenced by lower factor B and C3 levels and Ba:B and C3a:C3 ratios. Higher factor H levels associated with lower inflammatory markers. Conclusions Relative factor H deficiency, higher Ba:B and C3a:C3 ratios and lower factor B and C3 levels suggest a subset of ARDS with complement factor exhaustion, impaired alternative pathway function, and increased mortality, that may be amenable to therapeutic targeting.
Collapse
Affiliation(s)
- William Bain
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA, USA
| | - Mohammadreza Tabary
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Sara R. Moore
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Xiaojing An
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Georgios D. Kitsios
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Bryan J. McVerry
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Prabir Ray
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Anuradha Ray
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Viviana P. Ferreira
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Janet S. Lee
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Medicine, Ohio State University, Columbus, OH, USA
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University in St Louis, St Louis, MO, USA
| | - S. Mehdi Nouraie
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- These authors contributed equally to this work
| |
Collapse
|
21
|
West EE, Kemper C. Complosome - the intracellular complement system. Nat Rev Nephrol 2023:10.1038/s41581-023-00704-1. [PMID: 37055581 PMCID: PMC10100629 DOI: 10.1038/s41581-023-00704-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/10/2023] [Indexed: 04/15/2023]
Abstract
The complement system is a recognized pillar of host defence against infection and noxious self-derived antigens. Complement is traditionally known as a serum-effective system, whereby the liver expresses and secretes most complement components, which participate in the detection of bloodborne pathogens and drive an inflammatory reaction to safely remove the microbial or antigenic threat. However, perturbations in normal complement function can cause severe disease and, for reasons that are currently not fully understood, the kidney is particularly vulnerable to dysregulated complement activity. Novel insights into complement biology have identified cell-autonomous and intracellularly active complement - the complosome - as an unexpected central orchestrator of normal cell physiology. For example, the complosome controls mitochondrial activity, glycolysis, oxidative phosphorylation, cell survival and gene regulation in innate and adaptive immune cells, and in non-immune cells, such as fibroblasts and endothelial and epithelial cells. These unanticipated complosome contributions to basic cell physiological pathways make it a novel and central player in the control of cell homeostasis and effector responses. This discovery, together with the realization that an increasing number of human diseases involve complement perturbations, has renewed interest in the complement system and its therapeutic targeting. Here, we summarize the current knowledge about the complosome across healthy cells and tissues, highlight contributions from dysregulated complosome activities to human disease and discuss potential therapeutic implications.
Collapse
Affiliation(s)
- Erin E West
- National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Complement and Inflammation Research Section (CIRS), Bethesda, MD, USA
| | - Claudia Kemper
- National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Complement and Inflammation Research Section (CIRS), Bethesda, MD, USA.
| |
Collapse
|
22
|
Thapa A, Ratajczak J, Kucia M, Ratajczak MZ. External Liver-Derived Complement and Intrinsic Present in Hematopoietic Stem/Progenitor Cells Complosome Modulate Cell Metabolism and Response to Stress. Stem Cell Rev Rep 2023:10.1007/s12015-023-10533-1. [PMID: 36976465 PMCID: PMC10366307 DOI: 10.1007/s12015-023-10533-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/20/2023] [Indexed: 03/29/2023]
Abstract
Hematopoietic stem/progenitor cells (HSPCs) express receptors for complement cascade (ComC) cleavage fragments C3a and C5a and may respond to inflammation-related cues by sensing pathogen-associated molecular pattern molecules (PAMPs) released by pathogens as well as non-infectious danger associated molecular pattern molecules (DAMPs) or alarmin generated during stress/tissue damage sterile inflammation. To facilitate this HSPCs are equipped with C3a and C5a receptors, C3aR and C5aR, respectively, and express on the outer cell membrane and in cytosol pattern recognition receptors (PPRs) that sense PAMPs and DAMPs. Overall, danger-sensing mechanisms in HSPCs mimic those seen in immune cells, which should not surprise as hematopoiesis and the immune system develop from the same common stem cell precursor. This review will focus on the role of ComC-derived C3a and C5a that trigger nitric oxide synthetase-2 (Nox2) complex to release reactive oxygen species (ROS) that activate important cytosolic PRRs-Nlrp3 inflammasome, which orchestrates responsiveness of HSPCs to stress. Moreover, recent data indicate that in addition to circulating in peripheral blood (PB) activated liver-derived ComC proteins, a similar role plays ComC expressed and intrinsically activated in HSPCs known as "complosome". We postulate that ComC triggered Nox2-ROS-Nlrp3 inflammasome responses, if they occur within non-toxic to cells' "hormetic range of activation", positively regulate HSCs migration, metabolism, and proliferation. This sheds a new light on the immune-metabolic regulation of hematopoiesis.
Collapse
Affiliation(s)
- Arjun Thapa
- Stem Cell Program at Division of Hematology, Brown Cancer Center, University of Louisville, 500 S. Floyd Street, Rm. 107, Louisville, KY, 40202, USA
| | - Janina Ratajczak
- Stem Cell Program at Division of Hematology, Brown Cancer Center, University of Louisville, 500 S. Floyd Street, Rm. 107, Louisville, KY, 40202, USA
| | - Magdalena Kucia
- Laboratory of Regenerative Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Mariusz Z Ratajczak
- Stem Cell Program at Division of Hematology, Brown Cancer Center, University of Louisville, 500 S. Floyd Street, Rm. 107, Louisville, KY, 40202, USA.
- Laboratory of Regenerative Medicine, Medical University of Warsaw, Warsaw, Poland.
| |
Collapse
|
23
|
Yang Z, Nicholson SE, Cancio TS, Cancio LC, Li Y. Complement as a vital nexus of the pathobiological connectome for acute respiratory distress syndrome: An emerging therapeutic target. Front Immunol 2023; 14:1100461. [PMID: 37006238 PMCID: PMC10064147 DOI: 10.3389/fimmu.2023.1100461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 02/27/2023] [Indexed: 03/19/2023] Open
Abstract
The hallmark of acute respiratory distress syndrome (ARDS) pathobiology is unchecked inflammation-driven diffuse alveolar damage and alveolar-capillary barrier dysfunction. Currently, therapeutic interventions for ARDS remain largely limited to pulmonary-supportive strategies, and there is an unmet demand for pharmacologic therapies targeting the underlying pathology of ARDS in patients suffering from the illness. The complement cascade (ComC) plays an integral role in the regulation of both innate and adaptive immune responses. ComC activation can prime an overzealous cytokine storm and tissue/organ damage. The ARDS and acute lung injury (ALI) have an established relationship with early maladaptive ComC activation. In this review, we have collected evidence from the current studies linking ALI/ARDS with ComC dysregulation, focusing on elucidating the new emerging roles of the extracellular (canonical) and intracellular (non-canonical or complosome), ComC (complementome) in ALI/ARDS pathobiology, and highlighting complementome as a vital nexus of the pathobiological connectome for ALI/ARDS via its crosstalking with other systems of the immunome, DAMPome, PAMPome, coagulome, metabolome, and microbiome. We have also discussed the diagnostic/therapeutic potential and future direction of ALI/ARDS care with the ultimate goal of better defining mechanistic subtypes (endotypes and theratypes) through new methodologies in order to facilitate a more precise and effective complement-targeted therapy for treating these comorbidities. This information leads to support for a therapeutic anti-inflammatory strategy by targeting the ComC, where the arsenal of clinical-stage complement-specific drugs is available, especially for patients with ALI/ARDS due to COVID-19.
Collapse
Affiliation(s)
- Zhangsheng Yang
- Combat Casualty Care Research Team (CRT) 3, United States (US) Army Institute of Surgical Research, Joint Base San Antonio (JBSA)-Fort Sam Houston, TX, United States
| | - Susannah E. Nicholson
- Division of Trauma Research, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Tomas S. Cancio
- Combat Casualty Care Research Team (CRT) 3, United States (US) Army Institute of Surgical Research, Joint Base San Antonio (JBSA)-Fort Sam Houston, TX, United States
| | - Leopoldo C. Cancio
- United States (US) Army Burn Center, United States (US) Army Institute of Surgical Research, Joint Base San Antonio (JBSA)-Fort Sam Houston, TX, United States
| | - Yansong Li
- Division of Trauma Research, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
- The Geneva Foundation, Immunological Damage Control Resuscitation Program, Tacoma, WA, United States
- *Correspondence: Yansong Li,
| |
Collapse
|
24
|
Xiao F, Guo J, Tomlinson S, Yuan G, He S. The role of the complosome in health and disease. Front Immunol 2023; 14:1146167. [PMID: 36969185 PMCID: PMC10036758 DOI: 10.3389/fimmu.2023.1146167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 02/28/2023] [Indexed: 03/12/2023] Open
Abstract
The complement system is one of the immune system's oldest defense mechanisms and is historically regarded as a liver-derived and serum-active innate immune system that 'complements' cell-mediated and antibody-mediated immune responses against pathogens. However, the complement system is now recognized as a central component of both innate and adaptive immunity at both the systemic and local tissue levels. More findings have uncovered novel activities of an intracellularly active complement system-the complosome-that have shifted established functional paradigms in the field. The complosome has been shown to play a critical function in regulating T cell responses, cell physiology (such as metabolism), inflammatory disease processes, and cancer, which has amply proved its immense research potential and informed us that there is still much to learn about this system. Here, we summarize current understanding and discuss the emerging roles of the complosome in health and disease.
Collapse
Affiliation(s)
- Fang Xiao
- Division of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Jixu Guo
- Division of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Stephen Tomlinson
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, United States
| | - Guandou Yuan
- Division of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Nanning, Guangxi, China
| | - Songqing He
- Division of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Nanning, Guangxi, China
| |
Collapse
|
25
|
Johansen A, Thiede B, Anonsen JH, Nilsson GE. Surviving without oxygen involves major tissue specific changes in the proteome of crucian carp ( Carassius carassius). PeerJ 2023; 11:e14890. [PMID: 36915662 PMCID: PMC10007964 DOI: 10.7717/peerj.14890] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 01/23/2023] [Indexed: 03/10/2023] Open
Abstract
The crucian carp (Carassius carassius) can survive complete oxygen depletion (anoxia) for several months at low temperatures, making it an excellent model for studying molecular adaptations to anoxia. Still, little is known about how its global proteome responds to anoxia and reoxygenation. By applying mass spectrometry-based proteome analyses on brain, heart and liver tissue from crucian carp exposed to normoxia, five days anoxia, and reoxygenation, we found major changes in particularly cardiac and hepatic protein levels in response to anoxia and reoxygenation. These included tissue-specific differences in mitochondrial proteins involved in aerobic respiration and mitochondrial membrane integrity. Enzymes in the electron transport system (ETS) decreased in heart and increased massively in liver during anoxia and reoxygenation but did not change in the brain. Importantly, the data support a special role for the liver in succinate handling upon reoxygenation, as suggested by a drastic increase of components of the ETS and uncoupling protein 2, which could allow for succinate metabolism without excessive formation of reactive oxygen species (ROS). Also during reoxygenation, the levels of proteins involved in the cristae junction organization of the mitochondria changed in the heart, possibly functioning to suppress ROS formation. Furthermore, proteins involved in immune (complement) system activation changed in the anoxic heart compared to normoxic controls. The results emphasize that responses to anoxia are highly tissue-specific and related to organ function.
Collapse
Affiliation(s)
| | - Bernd Thiede
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Jan Haug Anonsen
- Department of Biosciences, University of Oslo, Oslo, Norway
- Climate & Environment Department, NORCE, Norwegian Research Centre AS, Stavanger, Norway
| | | |
Collapse
|
26
|
Santarsiero D, Aiello S. The Complement System in Kidney Transplantation. Cells 2023; 12:cells12050791. [PMID: 36899927 PMCID: PMC10001167 DOI: 10.3390/cells12050791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/24/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
Kidney transplantation is the therapy of choice for patients who suffer from end-stage renal diseases. Despite improvements in surgical techniques and immunosuppressive treatments, long-term graft survival remains a challenge. A large body of evidence documented that the complement cascade, a part of the innate immune system, plays a crucial role in the deleterious inflammatory reactions that occur during the transplantation process, such as brain or cardiac death of the donor and ischaemia/reperfusion injury. In addition, the complement system also modulates the responses of T cells and B cells to alloantigens, thus playing a crucial role in cellular as well as humoral responses to the allograft, which lead to damage to the transplanted kidney. Since several drugs that are capable of inhibiting complement activation at various stages of the complement cascade are emerging and being developed, we will discuss how these novel therapies could have potential applications in ameliorating outcomes in kidney transplantations by preventing the deleterious effects of ischaemia/reperfusion injury, modulating the adaptive immune response, and treating antibody-mediated rejection.
Collapse
|
27
|
Washburn RL, Martinez-Marin D, Korać K, Sniegowski T, Rodriguez AR, Chilton BS, Hibler T, Pruitt K, Bhutia YD, Dufour JM. The Sertoli Cell Complement Signature: A Suspected Mechanism in Xenograft Survival. Int J Mol Sci 2023; 24:ijms24031890. [PMID: 36768217 PMCID: PMC9916409 DOI: 10.3390/ijms24031890] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/15/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023] Open
Abstract
The complement system is an important component of transplant rejection. Sertoli cells, an immune regulatory testicular cell, survive long-term when transplanted across immunological barriers; thus, understanding the mechanisms behind this unique survival would be of great benefit to the transplantation field. This study focused on Sertoli cell inhibition of complement as relevant in xenotransplantation. Neonatal pig Sertoli cells (NPSCs) survived activated human complement in vitro while neonatal pig islet (NPI) aggregates and pig aortic endothelial cell (PAEC) survival were diminished to about 65% and 12%, respectively. PAECs cultured in NPSC-conditioned media and human complement demonstrated a 200% increase in survival suggesting that NPSCs secrete complement-inhibiting substances that confer protection. Bioinformatic and molecular analyses identified 21 complement inhibitors expressed by NPSCs with several significantly increased in NPSCs compared to NPIs or PAECs. Lastly, RNA sequencing revealed that NPSCs express 25 other complement factors including cascade components and receptors. Overall, this study identified the most comprehensive Sertoli cell complement signature to date and indicates that the expression of a variety of complement inhibitors ensures a proper regulation of complement through redundant inhibition points. Understanding the regulation of the complement system should be further investigated for extending xenograft viability.
Collapse
Affiliation(s)
- Rachel L. Washburn
- Department of Cell Biology and Biochemistry, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79424, USA
- Department of Immunology and Molecular Microbiology, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79404, USA
| | - Dalia Martinez-Marin
- Department of Cell Biology and Biochemistry, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79424, USA
- Department of Immunology and Molecular Microbiology, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79404, USA
| | - Ksenija Korać
- Department of Cell Biology and Biochemistry, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79424, USA
| | - Tyler Sniegowski
- Department of Cell Biology and Biochemistry, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79424, USA
| | - Alexis R. Rodriguez
- Department of Cell Biology and Biochemistry, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79424, USA
| | - Beverly S. Chilton
- Department of Cell Biology and Biochemistry, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79424, USA
| | - Taylor Hibler
- Department of Cell Biology and Biochemistry, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79424, USA
- Department of Immunology and Molecular Microbiology, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79404, USA
| | - Kevin Pruitt
- Department of Immunology and Molecular Microbiology, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79404, USA
| | - Yangzom D. Bhutia
- Department of Cell Biology and Biochemistry, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79424, USA
| | - Jannette M. Dufour
- Department of Cell Biology and Biochemistry, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79424, USA
- Correspondence:
| |
Collapse
|
28
|
Kemper C, Ferreira VP, Paz JT, Holers VM, Lionakis MS, Alexander JJ. Complement: The Road Less Traveled. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:119-125. [PMID: 36596217 PMCID: PMC10038130 DOI: 10.4049/jimmunol.2200540] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 09/11/2022] [Indexed: 01/04/2023]
Abstract
The complement field has recently experienced a strong resurgence of interest because of the unexpected discovery of new complement functions extending complement's role beyond immunity and pathogen clearance, a growing list of diseases in which complement plays a role, and the proliferation of complement therapeutics. Importantly, although the majority of complement components in the circulation are generated by the liver and activated extracellularly, complement activation unexpectedly also occurs intracellularly across a broad range of cells. Such cell-autonomous complement activation can engage intracellular complement receptors, which then drive noncanonical cell-specific effector functions. Thus, much remains to be discovered about complement biology. In this brief review, we focus on novel noncanonical activities of complement in its "classic areas of operation" (kidney and brain biology, infection, and autoimmunity), with an outlook on the next generation of complement-targeted therapeutics.
Collapse
Affiliation(s)
- Claudia Kemper
- Complement and Inflammation Research Section, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Viviana P Ferreira
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine, Toledo, OH
| | - Jeanne T Paz
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco CA
- Department of Neurology, University of California, San Francisco, San Francisco, CA
- Neurosciences Graduate Program, University of California, San Francisco, San Francisco, CA
| | - V Michael Holers
- Division of Rheumatology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Michail S Lionakis
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD; and
| | | |
Collapse
|
29
|
García-González M, Gómez-Bernal F, Quevedo-Abeledo JC, Fernández-Cladera Y, González-Rivero AF, de Vera-González A, de la Rua-Figueroa I, López-Mejias R, Díaz-González F, González-Gay MÁ, Ferraz-Amaro I. Full characterization of the three pathways of the complement system in patients with systemic lupus erythematosus. Front Immunol 2023; 14:1167055. [PMID: 37153614 PMCID: PMC10160460 DOI: 10.3389/fimmu.2023.1167055] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 03/29/2023] [Indexed: 05/09/2023] Open
Abstract
Background To date a complete characterization of the components of the complement (C) pathways (CLassical, LEctin and ALternative) in patients with systemic lupus erythematosus (SLE) has not been performed. We aimed to assess the function of these three C cascades through functional assays and the measurement of individual C proteins. We then studied how they relate to clinical characteristics. Methods New generation functional assays of the three pathways of the C system were assessed in 284 patients with SLE. Linear regression analysis was performed to study the relationship between the activity, severity, and damage of the disease and C system. Results Lower values of the functional tests AL and LE were more frequent than those of the CL pathway. Clinical activity was not related to inferior values of C routes functional assays. The presence of increased DNA binding was negatively linked to all three C pathways and products, except for C1-inh and C3a which were positively related. Disease damage revealed a consistent positive, rather than a negative, relationship with pathways and C elements. Anti-ribosomes and anti-nucleosomes were the autoantibodies that showed a greater relationship with C activation, mainly due to the LE and CL pathways. Regarding antiphospholipid antibodies, the most related with C activation were IgG anti-β2GP, predominantly involving the AL pathway. Conclusion Not only the CL route, but also the AL and LE are related to SLE features. C expression patterns are linked to disease profiles. While accrual damage was associated with higher functional tests of C pathways, anti-DNA, anti-ribosomes and anti-nucleosomes antibodies, were the ones that showed a higher relationship with C activation, mainly due to the LE and CL pathways.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Raquel López-Mejias
- Epidemiology, Genetics and Atherosclerosis Research Group on Systemic Inflammatory Diseases, Hospital Universitario Marqués de Valdecilla, Instituto de Investigación sanitaria Marqués de Valdecilla (IDIVAL), Santander, Spain
| | - Federico Díaz-González
- Division of Rheumatology, Hospital Universitario de Canarias, Tenerife, Spain
- Department of Internal Medicine. University of La Laguna (ULL), Tenerife, Spain
| | - Miguel Á. González-Gay
- Division of Rheumatology, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
- University of Cantabria, Instituto de Investigación sanitaria Marqués de Valdecilla (IDIVAL), Santander, Spain
- Cardiovascular Pathophysiology and Genomics Research Unit, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- *Correspondence: Iván Ferraz-Amaro, ; Miguel Á. González-Gay,
| | - Iván Ferraz-Amaro
- Division of Rheumatology, Hospital Universitario de Canarias, Tenerife, Spain
- Department of Internal Medicine. University of La Laguna (ULL), Tenerife, Spain
- *Correspondence: Iván Ferraz-Amaro, ; Miguel Á. González-Gay,
| |
Collapse
|
30
|
Dreismann AK, Hallam TM, Tam LC, Nguyen CV, Hughes JP, Ellis S, Harris CL. Gene targeting as a therapeutic avenue in diseases mediated by the complement alternative pathway. Immunol Rev 2023; 313:402-419. [PMID: 36369963 PMCID: PMC10099504 DOI: 10.1111/imr.13149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The complement alternative pathway (AP) is implicated in numerous diseases affecting many organs, ranging from the rare hematological disease paroxysmal nocturnal hemoglobinuria (PNH), to the common blinding disease age-related macular degeneration (AMD). Critically, the AP amplifies any activating trigger driving a downstream inflammatory response; thus, components of the pathway have become targets for drugs of varying modality. Recent validation from clinical trials using drug modalities such as inhibitory antibodies has paved the path for gene targeting of the AP or downstream effectors. Gene targeting in the complement field currently focuses on supplementation or suppression of complement regulators in AMD and PNH, largely because the eye and liver are highly amenable to drug delivery through local (eye) or systemic (liver) routes. Targeting the liver could facilitate treatment of numerous diseases as this organ generates most of the systemic complement pool. This review explains key concepts of RNA and DNA targeting and discusses assets in clinical development for the treatment of diseases driven by the alternative pathway, including the RNA-targeting therapeutics ALN-CC5, ARO-C3, and IONIS-FB-LRX, and the gene therapies GT005 and HMR59. These therapies are but the spearhead of potential drug candidates that might revolutionize the field in coming years.
Collapse
|
31
|
Abstract
Primitive underpinnings of the alternative pathway (AP), namely, a C3-like protein, likely arose more than a billion years ago. The development of an AP amplification loop, while greatly enhancing speed and potency, also presents a double-edged sword. Although critical to combat an infectious disease, it is also potentially destructive, particularly in a chronic disease process involving vital organs where scarring and reduction of regulatory function can occur. Furthermore, new knowledge is pointing to genetic factors involved in an increasing number of complement-related diseases such as age-related macular degeneration. However, even a normal functioning repertoire of complement components can drive cellular damage as a result of low-level complement activation over time. Thus, the modern human AP now faces a new challenge: cumulatively-driven tissue damage from chronic inflammatory processes that mediate cellular injury. The impact of ongoing low-level AP-enhanced complement activation in disease processes is just beginning to be appreciated and studied. However, the sheer numbers of individuals affected by chronic diseases emphasize the need for novel therapeutic agents capable of modulating the AP. The more we learn about this ancient system, the greater is the likelihood of developing fresh perspectives that could contribute to improved human health.
Collapse
Affiliation(s)
- M. Kathryn Liszewski
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri, 63110, USA
| | - John P. Atkinson
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri, 63110, USA
| |
Collapse
|
32
|
Kolev M, Barbour T, Baver S, Francois C, Deschatelets P. With complements: C3 inhibition in the clinic. Immunol Rev 2023; 313:358-375. [PMID: 36161656 DOI: 10.1111/imr.13138] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
C3 is a key complement protein, located at the nexus of all complement activation pathways. Extracellular, tissue, cell-derived, and intracellular C3 plays critical roles in the immune response that is dysregulated in many diseases, making it an attractive therapeutic target. However, challenges such as very high concentration in blood, increased acute expression, and the elevated risk of infections have historically posed significant challenges in the development of C3-targeted therapeutics. This is further complicated because C3 activation fragments and their receptors trigger a complex network of downstream effects; therefore, a clear understanding of these is needed to provide context for a better understanding of the mechanism of action (MoA) of C3 inhibitors, such as pegcetacoplan. Because of C3's differential upstream position to C5 in the complement cascade, there are mechanistic differences between pegcetacoplan and eculizumab that determine their efficacy in patients with paroxysmal nocturnal hemoglobinuria. In this review, we compare the MoA of pegcetacoplan and eculizumab in paroxysmal nocturnal hemoglobinuria and discuss the complement-mediated disease that might be amenable to C3 inhibition. We further discuss the current state and outlook for C3-targeted therapeutics and provide our perspective on which diseases might be the next success stories in the C3 therapeutics journey.
Collapse
Affiliation(s)
- Martin Kolev
- Apellis Pharmaceuticals, Waltham, Massachusetts, USA
| | - Tara Barbour
- Apellis Pharmaceuticals, Waltham, Massachusetts, USA
| | - Scott Baver
- Apellis Pharmaceuticals, Waltham, Massachusetts, USA
| | | | | |
Collapse
|
33
|
Proteomic Analysis of Murine Bone Marrow Very Small Embryonic-like Stem Cells at Steady-State Conditions and after In Vivo Stimulation by Nicotinamide and Follicle-Stimulating Factor Reflects their Germ-Lineage Origin and Multi Germ Layer Differentiation Potential. Stem Cell Rev Rep 2023; 19:120-132. [PMID: 35986128 PMCID: PMC9823037 DOI: 10.1007/s12015-022-10445-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/09/2022] [Indexed: 01/29/2023]
Abstract
Very small embryonic-like stem cells (VSELs) are a dormant population of development early stem cells deposited in adult tissues that as demonstrated contribute to tissue/organ repair and regeneration. We postulated developmental relationship of these cells to migrating primordial germ cells (PGCs) and explained the quiescent state of these cells by the erasure of differently methylated regions (DMRs) at some of the paternally imprinted genes involved in embryogenesis. Recently, we reported that VSELs began to proliferate and expand in vivo in murine bone marrow (BM) after exposure to nicotinamide (NAM) and selected pituitary and gonadal sex hormones. In the current report, we performed proteomic analysis of VSELs purified from murine bone marrow (BM) after repeated injections of NAM + Follicle-Stimulating Hormone (FSH) that in our previous studies turned out to be an effective combination to expand these cells. By employing the Gene Ontology (GO) resources, we have performed a combination of standard GO annotations (GO-CAM) to produce a network between BM steady-state conditions VSELs (SSC-VSELS) and FSH + NAM expanded VSELs (FSH + NAM VSELs). We have identified several GO biological processes regulating development, organogenesis, gene expression, signal transduction, Wnt signaling, insulin signaling, cytoskeleton organization, cell adhesion, inhibiting apoptosis, responses to extra- and intracellular stimuli, protein transport and stabilization, protein phosphorylation and ubiquitination, DNA repair, immune response, and regulation of circadian rhythm. We report that VSELs express a unique panel of proteins that only partially overlapped with the proteome of BM - derived hematopoietic stem cells (HSCs) and hematopoietic mononuclear cells (MNCs) and respond to FSH + NAM stimulation by expressing proteins involved in the development of all three germ layers. Thus, our current data supports further germ-lineage origin and multi germ layer differentiation potential of these cells.
Collapse
|
34
|
Shaughnessy J, Chabeda A, Lewis LA, Ram S. Alternative pathway amplification and infections. Immunol Rev 2023; 313:162-180. [PMID: 36336911 DOI: 10.1111/imr.13160] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The alternative pathway (AP) is the phylogenetically oldest arm of the complement system and may have evolved to mark pathogens for elimination by phagocytes. Studies using purified AP proteins or AP-specific serum showed that C3b amplification on bacteria commenced following a lag phase of about 5 min and was highly dependent on the concentration of complement. Most pathogens have evolved several elegant mechanisms to evade complement, including expressing proteases that degrade AP proteins and secreting proteins that block function of C3 convertases. In an example of convergent evolution, many microbes recruit the AP inhibitor factor H (FH) using molecular mechanisms that mimic FH interactions with host cells. In most instances, the AP serves to amplify C3b deposited on microbes by the classical pathway (CP). The role of properdin on microbes appears to be restricted to stabilization of C3 convertases; scant evidence exists for its role as an initiator of the AP on pathogens in the context of serum. Therapeutic complement inhibition carries with it an increased risk of infection. Antibody (Ab)-dependent AP activation may be critical for complement activation by vaccine-elicited Ab when the CP is blocked, and its molecular mechanism is discussed.
Collapse
Affiliation(s)
- Jutamas Shaughnessy
- Division of Infectious Diseases and Immunology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Aleyo Chabeda
- Division of Infectious Diseases and Immunology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Lisa A Lewis
- Division of Infectious Diseases and Immunology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Sanjay Ram
- Division of Infectious Diseases and Immunology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
35
|
Nonstructural Protein 1 of Variant PEDV Plays a Key Role in Escaping Replication Restriction by Complement C3. J Virol 2022; 96:e0102422. [PMID: 36037478 PMCID: PMC9517699 DOI: 10.1128/jvi.01024-22] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Zoonotic coronaviruses represent an ongoing threat to public health. The classical porcine epidemic diarrhea virus (PEDV) first appeared in the early 1970s. Since 2010, outbreaks of highly virulent PEDV variants have caused great economic losses to the swine industry worldwide. However, the strategies by which PEDV variants escape host immune responses are not fully understood. Complement component 3 (C3) is considered a central component of the three complement activation pathways and plays a crucial role in preventing viral infection. In this study, we found that C3 significantly inhibited PEDV replication in vitro, and both variant and classical PEDV strains induced high levels of interleukin-1β (IL-1β) in Huh7 cells. However, the PEDV variant strain reduces C3 transcript and protein levels induced by IL-1β compared with the PEDV classical strain. Examination of key molecules of the C3 transcriptional signaling pathway revealed that variant PEDV reduced C3 by inhibiting CCAAT/enhancer-binding protein β (C/EBP-β) phosphorylation. Mechanistically, PEDV nonstructural protein 1 (NSP1) inhibited C/EBP-β phosphorylation via amino acid residue 50. Finally, we constructed recombinant PEDVs to verify the critical role of amino acid 50 of NSP1 in the regulation of C3 expression. In summary, we identified a novel antiviral role of C3 in inhibiting PEDV replication and the viral immune evasion strategies of PEDV variants. Our study reveals new information on PEDV-host interactions and furthers our understanding of the pathogenic mechanism of this virus. IMPORTANCE The complement system acts as a vital link between the innate and the adaptive immunity and has the ability to recognize and neutralize various pathogens. Activation of the complement system acts as a double-edged sword, as appropriate levels of activation protect against pathogenic infections, but excessive responses can provoke a dramatic inflammatory response and cause tissue damage, leading to pathological processes, which often appear in COVID-19 patients. However, how PEDV, as the most severe coronavirus causing diarrhea in piglets, regulates the complement system has not been previously reported. In this study, for the first time, we identified a novel mechanism of a PEDV variant in the suppression of C3 expression, showing that different coronaviruses and even different subtype strains differ in regulation of C3 expression. In addition, this study provides a deeper understanding of the mechanism of the PEDV variant in immune escape and enhanced virulence.
Collapse
|
36
|
Jimenez-Duran G, Kozole J, Peltier-Heap R, Dickinson ER, Kwiatkowski CR, Zappacosta F, Annan RS, Galwey NW, Nichols EM, Modis LK, Triantafilou M, Triantafilou K, Booty LM. Complement membrane attack complex is an immunometabolic regulator of NLRP3 activation and IL-18 secretion in human macrophages. Front Immunol 2022; 13:918551. [PMID: 36248901 PMCID: PMC9554752 DOI: 10.3389/fimmu.2022.918551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 08/17/2022] [Indexed: 11/30/2022] Open
Abstract
The complement system is an ancient and critical part of innate immunity. Recent studies have highlighted novel roles of complement beyond lysis of invading pathogens with implications in regulating the innate immune response, as well as contributing to metabolic reprogramming of T-cells, synoviocytes as well as cells in the CNS. These findings hint that complement can be an immunometabolic regulator, but whether this is also the case for the terminal step of the complement pathway, the membrane attack complex (MAC) is not clear. In this study we focused on determining whether MAC is an immunometabolic regulator of the innate immune response in human monocyte-derived macrophages. Here, we uncover previously uncharacterized metabolic changes and mitochondrial dysfunction occurring downstream of MAC deposition. These alterations in glycolytic flux and mitochondrial morphology and function mediate NLRP3 inflammasome activation, pro-inflammatory cytokine release and gasdermin D formation. Together, these data elucidate a novel signalling cascade, with metabolic alterations at its center, in MAC-stimulated human macrophages that drives an inflammatory consequence in an immunologically relevant cell type.
Collapse
Affiliation(s)
- Gisela Jimenez-Duran
- Immunology Network, Immunology Research Unit, GSK, Stevenage, United Kingdom
- Institute ofInfection and Immunity, Cardiff University, School of Medicine, University Hospital of Wales, Cardiff, United Kingdom
| | - Joseph Kozole
- Discovery Analytical, Medicinal Science and Technology (MST), GSK, Philadelphia, PA, United States
| | - Rachel Peltier-Heap
- Discovery Analytical, Medicinal Science and Technology (MST), GSK, Stevenage, United Kingdom
| | - Eleanor R. Dickinson
- Discovery Analytical, Medicinal Science and Technology (MST), GSK, Stevenage, United Kingdom
| | | | - Francesca Zappacosta
- Discovery Analytical, Medicinal Science and Technology (MST), GSK, Philadelphia, PA, United States
| | - Roland S. Annan
- Discovery Analytical, Medicinal Science and Technology (MST), GSK, Philadelphia, PA, United States
| | - Nicholas W. Galwey
- Research Statistics, Development Biostatistics, GSK, Stevenage, United Kingdom
| | | | | | - Martha Triantafilou
- Immunology Network, Immunology Research Unit, GSK, Stevenage, United Kingdom
- Institute ofInfection and Immunity, Cardiff University, School of Medicine, University Hospital of Wales, Cardiff, United Kingdom
| | - Kathy Triantafilou
- Immunology Network, Immunology Research Unit, GSK, Stevenage, United Kingdom
- Institute ofInfection and Immunity, Cardiff University, School of Medicine, University Hospital of Wales, Cardiff, United Kingdom
- *Correspondence: Kathy Triantafilou, TriantafilouK@cardiff. ac. uk; Lee M. Booty,
| | - Lee M. Booty
- Immunology Network, Immunology Research Unit, GSK, Stevenage, United Kingdom
- *Correspondence: Kathy Triantafilou, TriantafilouK@cardiff. ac. uk; Lee M. Booty,
| |
Collapse
|
37
|
Abstract
PURPOSE OF REVIEW COVID-19 remains a major source of concern, particularly as new variants emerge and with recognition that patients may suffer long-term effects. Mechanisms underlying SARS-CoV-2 mediated organ damage and the associated vascular endotheliopathy remain poorly understood, hindering new drug development. Here, we highlight selected key concepts of how the complement system, a major component of innate immunity that is dysregulated in COVID-19, participates in the thromboinflammatory response and drives the vascular endotheliopathy. RECENT FINDINGS Recent studies have revealed mechanisms by which complement is activated directly by SARS-CoV-2, and how the system interfaces with other innate thromboinflammatory cellular and proteolytic pathways involving platelets, neutrophils, neutrophil extracellular traps and the coagulation and kallikrein-kinin systems. With this new information, multiple potential sites for therapeutic intervention are being uncovered and evaluated in the clinic. SUMMARY Infections with SARS-CoV-2 cause damage to the lung alveoli and microvascular endothelium via a process referred to as thromboinflammation. Although not alone in being dysregulated, complement is an early player, prominent in promoting the endotheliopathy and consequential organ damage, either directly and/or via the system's complex interplay with other cellular, molecular and biochemical pathways. Delineating these critical interactions is revealing novel and promising strategies for therapeutic intervention.
Collapse
Affiliation(s)
- Edward M Conway
- Centre for Blood Research, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- University of British Columbia, Vancouver, British Columbia, Canada
| | - Edward L G Pryzdial
- Centre for Blood Research, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
- Canadian Blood Services, Medical Affairs and Innovation, Ottawa, Ontario, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
38
|
Schäfer N, Grässel S. Involvement of complement peptides C3a and C5a in osteoarthritis pathology. Peptides 2022; 154:170815. [PMID: 35598724 DOI: 10.1016/j.peptides.2022.170815] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/10/2022] [Accepted: 05/17/2022] [Indexed: 12/28/2022]
Abstract
Osteoarthritis (OA) affects more than 500 million people worldwide and is among the five diseases in Germany causing the highest suffering of the patients and cost for the society. The quality of life of OA patients is severely compromised, and adequate therapy is lacking owing to a knowledge gap that acts as a major barrier to finding safe and effective solutions. Chronic, low-grade inflammation plays a central role in OA pathogenesis and is associated with both OA pain and disease progression. Innate immune pathways, such as the complement- and pattern-recognition receptor pathways, are pivotal to the inflammation in OA and key components of the innate immune system implicated in OA include DAMP-TLR signaling, the complement system, carboxypeptidase B (CPB), and mononuclear cells. Anaphylatoxins C3a and C5a are small polypeptides (77 and 74 amino acids, respectively) which are released by proteolytic cleavage of the complement components C3 and C5. The alternative complement pathway seems to play a crucial role in OA pathogenesis as these complement components, mostly C3 and its activation peptide C3a, were detected at high levels in osteoarthritic cartilage, synovial membrane, and cultured chondrocytes. Targeting the complement system by using anti-complement drugs as a therapeutic option bears the risk of major side effects such as increasing the risk of infection, interfering with cell regeneration and metabolism, and suppressing the clearance of immune complexes. Despite those adverse effects, several synthetic complement peptide antagonists show promising effects in ameliorating inflammatory cell responses also in joint tissues.
Collapse
Affiliation(s)
- Nicole Schäfer
- Experimental Orthopaedics, Centre for Medical Biotechnology (ZMB), Bio Park 1, University of Regensburg, Germany
| | - Susanne Grässel
- Experimental Orthopaedics, Centre for Medical Biotechnology (ZMB), Bio Park 1, University of Regensburg, Germany; Department of Orthopaedic Surgery, University of Regensburg, Germany.
| |
Collapse
|
39
|
Kolev M, Das M, Gerber M, Baver S, Deschatelets P, Markiewski MM. Inside-Out of Complement in Cancer. Front Immunol 2022; 13:931273. [PMID: 35860237 PMCID: PMC9291441 DOI: 10.3389/fimmu.2022.931273] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/06/2022] [Indexed: 12/21/2022] Open
Abstract
The role of complement in cancer has received increasing attention over the last decade. Recent studies provide compelling evidence that complement accelerates cancer progression. Despite the pivotal role of complement in fighting microbes, complement seems to suppress antitumor immunity via regulation of host cell in the tumor microenvironment. Although most studies link complement in cancer to complement activation in the extracellular space, the discovery of intracellular activation of complement, raises the question: what is the relevance of this process for malignancy? Intracellular activation is pivotal for the survival of immune cells. Therefore, complement can be important for tumor cell survival and growth regardless of the role in immunosuppression. On the other hand, because intracellular complement (the complosome) is indispensable for activation of T cells, these functions will be essential for priming antitumor T cell responses. Here, we review functions of complement in cancer with the consideration of extra and intracellular pathways of complement activation and spatial distribution of complement proteins in tumors and periphery and provide our take on potential significance of complement as biomarker and target for cancer therapy.
Collapse
Affiliation(s)
- Martin Kolev
- Discovery, Apellis Pharmaceuticals, Waltham, MA, United States
- *Correspondence: Martin Kolev, ; Maciej M. Markiewski,
| | - Madhumita Das
- Discovery, Apellis Pharmaceuticals, Waltham, MA, United States
| | - Monica Gerber
- Legal Department, Apellis Pharmaceuticals, Waltham, MA, United States
| | - Scott Baver
- Medical Affairs, Apellis Pharmaceuticals, Waltham, MA, United States
| | | | - Maciej M. Markiewski
- Department of Immunotherapeutics and Biotechnology, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX, United States
- *Correspondence: Martin Kolev, ; Maciej M. Markiewski,
| |
Collapse
|
40
|
Intertwined pathways of complement activation command the pathogenesis of lupus nephritis. Transl Res 2022; 245:18-29. [PMID: 35296451 PMCID: PMC9167748 DOI: 10.1016/j.trsl.2022.03.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/07/2022] [Accepted: 03/08/2022] [Indexed: 12/26/2022]
Abstract
The complement system is involved in the origin of autoimmunity and systemic lupus erythematosus. Both genetic deficiency of complement components and excessive activation are involved in primary and secondary renal diseases, including lupus nephritis. Among the pathways, the classical pathway has long been accepted as the main pathway of complement activation in systemic lupus erythematosus. However, more recent studies have shown the contribution of factors B and D which implies the involvement of the alternative pathway. While there is evidence on the role of the lectin pathway in systemic lupus erythematosus, it is yet to be demonstrated whether this pathway is protective or harmful in lupus nephritis. Complement is being explored for the development of disease biomarkers and therapeutic targeting. In the current review we discuss the involvement of complement in lupus nephritis.
Collapse
|
41
|
Fernandez-Ruiz R, Belmont HM. The role of anticomplement therapy in lupus nephritis. Transl Res 2022; 245:1-17. [PMID: 35158097 DOI: 10.1016/j.trsl.2022.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 02/03/2022] [Accepted: 02/07/2022] [Indexed: 10/19/2022]
Abstract
The complement system plays crucial roles in homeostasis and host defense against microbes. Deficiency of early complement cascade components has been associated with increased susceptibility to systemic lupus erythematosus (SLE), whereas excessive complement consumption is a hallmark of this disease. Although enhanced classical pathway activation by immune complexes was initially thought to be the main contributor to lupus nephritis (LN) pathogenesis, an increasing body of evidence has suggested the alternative and the lectin pathways are also involved. Therapeutic agents targeting complement activation have been used in LN patients and clinical trials are ongoing. We review the mechanisms by which complement system dysregulation contributes to renal injury in SLE and summarize the latest evidence on the use of anticomplement agents to manage this condition.
Collapse
Affiliation(s)
- Ruth Fernandez-Ruiz
- Division of Rheumatology, NYU Grossman School of Medicine, New York, New York
| | | |
Collapse
|
42
|
Caputo MB, Elias J, Cesar G, Alvarez MG, Laucella SA, Albareda MC. Role of the Complement System in the Modulation of T-Cell Responses in Chronic Chagas Disease. Front Cell Infect Microbiol 2022; 12:910854. [PMID: 35846776 PMCID: PMC9282465 DOI: 10.3389/fcimb.2022.910854] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/26/2022] [Indexed: 01/19/2023] Open
Abstract
Chagas disease, caused by the intracellular pathogen Trypanosoma cruzi, is the parasitic disease with the greatest impact in Latin America and the most common cause of infectious myocarditis in the world. The immune system plays a central role in the control of T. cruzi infection but at the same time needs to be controlled to prevent the development of pathology in the host. It has been shown that persistent infection with T. cruzi induces exhaustion of parasite-specific T cell responses in subjects with chronic Chagas disease. The continuous inflammatory reaction due to parasite persistence in the heart also leads to necrosis and fibrosis. The complement system is a key element of the innate immune system, but recent findings have also shown that the interaction between its components and immune cell receptors might modulate several functions of the adaptive immune system. Moreover, the findings that most of immune cells can produce complement proteins and express their receptors have led to the notion that the complement system also has non canonical functions in the T cell. During human infection by T. cruzi, complement activation might play a dual role in the acute and chronic phases of Chagas disease; it is initially crucial in controlling parasitemia and might later contributes to the development of symptomatic forms of Chagas disease due to its role in T-cell regulation. Herein, we will discuss the putative role of effector complement molecules on T-cell immune exhaustion during chronic human T. cruzi infection.
Collapse
Affiliation(s)
- María Belén Caputo
- Investigation Department, Instituto Nacional de Parasitología Dr. Fatala Chaben, Buenos Aires, Argentina
| | - Josefina Elias
- Investigation Department, Instituto Nacional de Parasitología Dr. Fatala Chaben, Buenos Aires, Argentina
| | - Gonzalo Cesar
- Investigation Department, Instituto Nacional de Parasitología Dr. Fatala Chaben, Buenos Aires, Argentina
| | - María Gabriela Alvarez
- Chagas Section, Hospital Interzonal General de Agudos Eva Perón, Buenos Aires, Argentina
| | - Susana Adriana Laucella
- Investigation Department, Instituto Nacional de Parasitología Dr. Fatala Chaben, Buenos Aires, Argentina
- Chagas Section, Hospital Interzonal General de Agudos Eva Perón, Buenos Aires, Argentina
| | - María Cecilia Albareda
- Investigation Department, Instituto Nacional de Parasitología Dr. Fatala Chaben, Buenos Aires, Argentina
| |
Collapse
|
43
|
Zauhar R, Biber J, Jabri Y, Kim M, Hu J, Kaplan L, Pfaller AM, Schäfer N, Enzmann V, Schlötzer-Schrehardt U, Straub T, Hauck SM, Gamlin PD, McFerrin MB, Messinger J, Strang CE, Curcio CA, Dana N, Pauly D, Grosche A, Li M, Stambolian D. As in Real Estate, Location Matters: Cellular Expression of Complement Varies Between Macular and Peripheral Regions of the Retina and Supporting Tissues. Front Immunol 2022; 13:895519. [PMID: 35784369 PMCID: PMC9240314 DOI: 10.3389/fimmu.2022.895519] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 05/11/2022] [Indexed: 01/02/2023] Open
Abstract
The cellular events that dictate the initiation of the complement pathway in ocular degeneration, such as age-related macular degeneration (AMD), is poorly understood. Using gene expression analysis (single cell and bulk), mass spectrometry, and immunohistochemistry, we dissected the role of multiple retinal and choroidal cell types in determining the complement homeostasis. Our scRNA-seq data show that the cellular response to early AMD is more robust in the choroid, particularly in fibroblasts, pericytes and endothelial cells. In late AMD, complement changes were more prominent in the retina especially with the expression of the classical pathway initiators. Notably, we found a spatial preference for these differences. Overall, this study provides insights into the heterogeneity of cellular responses for complement expression and the cooperation of neighboring cells to complete the pathway in healthy and AMD eyes. Further, our findings provide new cellular targets for therapies directed at complement.
Collapse
Affiliation(s)
- Randy Zauhar
- Department of Chemistry and Biochemistry, The University of the Sciences in Philadelphia, Philadelphia, PA, United States
| | - Josef Biber
- Department of Physiological Genomics, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Yassin Jabri
- Department of Ophthalmology, University Hospital Regensburg, Regensburg, Germany
| | - Mijin Kim
- Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Jian Hu
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| | - Lew Kaplan
- Department of Physiological Genomics, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Anna M. Pfaller
- Department of Physiological Genomics, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Nicole Schäfer
- Department of Ophthalmology, University Hospital Regensburg, Regensburg, Germany
- Department of Orthopaedic Surgery, Experimental Orthopaedics, Centre for Medical Biotechnology (ZMB), University of Regensburg, Regensburg, Germany
| | - Volker Enzmann
- Department of Ophthalmology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department of BioMedical Research, University of Bern, Bern, Switzerland
| | | | - Tobias Straub
- Bioinformatics Unit, Biomedical Center, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| | - Stefanie M. Hauck
- Metabolomics and Proteomics Core and Research Unit Protein Science, Helmholtz-Zentrum München, Neuherberg, Germany
| | - Paul D. Gamlin
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Michael B. McFerrin
- Department of Psychology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jeffrey Messinger
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Christianne E. Strang
- Department of Psychology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Christine A. Curcio
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Nicholas Dana
- Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Diana Pauly
- Department of Ophthalmology, University Hospital Regensburg, Regensburg, Germany
- Experimental Ophthalmology, University of Marburg, Marburg, Germany
| | - Antje Grosche
- Department of Physiological Genomics, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Mingyao Li
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| | - Dwight Stambolian
- Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
44
|
Rios-Barros LV, Silva-Moreira AL, Horta MF, Gontijo NF, Castro-Gomes T. How to get away with murder: The multiple strategies employed by pathogenic protozoa to avoid complement killing. Mol Immunol 2022; 149:27-38. [PMID: 35709630 DOI: 10.1016/j.molimm.2022.05.118] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/16/2022] [Accepted: 05/24/2022] [Indexed: 01/15/2023]
Abstract
Parasitic protozoa are eukaryotic unicellular organisms that depend on a variety of living organisms and can develop intra- and extracellularly inside their hosts. In humans, these parasites cause diseases with a significant impact on public health, such as malaria, toxoplasmosis, Chagas disease, leishmaniasis and amebiasis. The ability of a parasite in establishing a successful infection depends on a series of intricate evolutionarily selected adaptations, which include the development of molecular and cellular strategies to evade the host immune system effector mechanisms. The complement system is one of the main effector mechanisms and the first humoral shield of hosts innate immunity against pathogens. For unicellular pathogens, such as protozoa, bacteria and fungi, the activation of the complement system may culminate in the elimination of the invader mainly via 1- the formation of a pore that depolarizes the plasma membrane of the parasite, causing cell lysis; 2- opsonization and killing by phagocytes; 3- increasing vascular permeability while also recruiting neutrophils to the site of activation. Numerous strategies to avoid complement activation have been reported for parasitic protozoa, such as 1- sequestration of complement system regulatory proteins produced by the host, 2- expression of complement system regulatory proteins, 3- proteolytic cleavage of different complement effector molecules, 4- formation of a physical glycolipid barrier that prevents deposition of complement molecules on the plasma membrane, and 5- removal, by endocytosis, of complement molecules bound to plasma membrane. In this review, we revisit the different strategies of blocking various stages of complement activation described for the main species of parasitic protozoa, present the most recent discoveries in the field and discuss new perspectives on yet neglected strategies and possible new evasion mechanisms.
Collapse
Affiliation(s)
- Laura Valeria Rios-Barros
- Departamento de Parasitologia, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil.
| | - Anna Luiza Silva-Moreira
- Departamento de Parasitologia, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil.
| | - Maria Fatima Horta
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil.
| | - Nelder Figueiredo Gontijo
- Departamento de Parasitologia, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil.
| | - Thiago Castro-Gomes
- Departamento de Parasitologia, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
45
|
Leonel TB, Gabrili JJM, Squaiella-Baptistão CC, Woodruff TM, Lambris JD, Tambourgi DV. Bothrops jararaca Snake Venom Inflammation Induced in Human Whole Blood: Role of the Complement System. Front Immunol 2022; 13:885223. [PMID: 35720304 PMCID: PMC9201114 DOI: 10.3389/fimmu.2022.885223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 03/21/2022] [Indexed: 11/13/2022] Open
Abstract
The clinical manifestations of envenomation by Bothrops species are complex and characterized by prominent local effects that can progress to tissue loss, physical disability, or amputation. Systemic signs can also occur, such as hemorrhage, coagulopathy, shock, and acute kidney failure. The rapid development of local clinical manifestations is accompanied by the presence of mediators of the inflammatory process originating from tissues damaged by the bothropic venom. Considering the important role that the complement system plays in the inflammatory response, in this study, we analyzed the action of Bothrops jararaca snake venom on the complement system and cell surface receptors involved in innate immunity using an ex vivo human whole blood model. B. jararaca venom was able to induce activation of the complement system in the human whole blood model and promoted a significant increase in the production of anaphylatoxins C3a/C3a-desArg, C4a/C4a-desArg, C5a/C5a-desArg and sTCC. In leukocytes, the venom of B. jararaca reduced the expression of CD11b, CD14 and C5aR1. Inhibition of the C3 component by Cp40, an inhibitor of C3, resulted in a reduction of C3a/C3a-desArg, C5a/C5a-desArg and sTCC to basal levels in samples stimulated with the venom. Exposure to B. jararaca venom induced the production of inflammatory cytokines and chemokines such as TNF-α, IL-8/CXCL8, MCP-1/CCL2 and MIG/CXCL9 in the human whole blood model. Treatment with Cp40 promoted a significant reduction in the production of TNF-α, IL-8/CXCL8 and MCP-1/CCL2. C5aR1 inhibition with PMX205 also promoted a reduction of TNF-α and IL-8/CXCL8 to basal levels in the samples stimulated with venom. In conclusion, the data presented here suggest that the activation of the complement system promoted by the venom of the snake B. jararaca in the human whole blood model significantly contributes to the inflammatory process. The control of several inflammatory parameters using Cp40, an inhibitor of the C3 component, and PMX205, a C5aR1 antagonist, indicates that complement inhibition may represent a potential therapeutic tool in B. jararaca envenoming.
Collapse
Affiliation(s)
| | | | | | - Trent M. Woodruff
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia, QLD, Australia
| | - John D. Lambris
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | | |
Collapse
|
46
|
Kremlitzka M, Colineau L, Nowacka AA, Mohlin FC, Wozniak K, Blom AM, King BC. Alternative translation and retrotranslocation of cytosolic C3 that detects cytoinvasive bacteria. Cell Mol Life Sci 2022; 79:291. [PMID: 35546365 PMCID: PMC9095555 DOI: 10.1007/s00018-022-04308-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/29/2022] [Accepted: 04/12/2022] [Indexed: 01/05/2023]
Abstract
Complement C3 was originally regarded as a serum effector protein, although recent data has emerged suggesting that intracellular C3 can also regulate basic cellular processes. Despite the growing interest in intracellular C3 functions, the mechanism behind its generation has not been demonstrated. In this study we show that C3 can be expressed from an alternative translational start site, resulting in C3 lacking the signal peptide, which is therefore translated in the cytosol. In contrast to the secreted form, alternatively translated cytosolic C3 is not glycosylated, is present mainly in a reduced state, and is turned over by the ubiquitin–proteasome system. C3 can also be retrotranslocated from the endoplasmic reticulum into the cytosol, structurally resembling secreted C3. Finally, we demonstrate that intracellular cytosolic C3 can opsonize invasive Staphylococcus aureus within epithelial cell, slowing vacuolar escape as well as impacting bacterial survival on subsequent exposure to phagocytes. Our work therefore reveals the existence and origin of intracellular, cytosolic C3, and demonstrates functions for cytosolic C3 in intracellular detection of cytoinvasive pathogens.
Collapse
Affiliation(s)
- Mariann Kremlitzka
- Division of Medical Protein Chemistry, Department of Translational Medicine, Lund University, Malmö, Sweden.,Department of Immunology, Eötvös Loránd University, Budapest, Hungary
| | - Lucie Colineau
- Division of Medical Protein Chemistry, Department of Translational Medicine, Lund University, Malmö, Sweden
| | - Alicja A Nowacka
- Division of Medical Protein Chemistry, Department of Translational Medicine, Lund University, Malmö, Sweden
| | - Frida C Mohlin
- Division of Medical Protein Chemistry, Department of Translational Medicine, Lund University, Malmö, Sweden
| | - Katarzyna Wozniak
- Division of Medical Protein Chemistry, Department of Translational Medicine, Lund University, Malmö, Sweden
| | - Anna M Blom
- Division of Medical Protein Chemistry, Department of Translational Medicine, Lund University, Malmö, Sweden.
| | - Ben C King
- Division of Medical Protein Chemistry, Department of Translational Medicine, Lund University, Malmö, Sweden
| |
Collapse
|
47
|
Adler A, Manivel VA, Fromell K, Teramura Y, Ekdahl K, Nilsson B. A Robust Method to Store Complement C3 With Superior Ability to Maintain the Native Structure and Function of the Protein. Front Immunol 2022; 13:891994. [PMID: 35592325 PMCID: PMC9110808 DOI: 10.3389/fimmu.2022.891994] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 04/08/2022] [Indexed: 11/13/2022] Open
Abstract
Complement components have a reputation to be very labile. One of the reasons for this is the spontaneous hydrolysis of the internal thioester that is found in both C3 and C4 (but not in C5). Despite the fact that ≈20,000 papers have been published on human C3 there is still no reliable method to store the protein without generating C3(H2O), a fact that may have affected studies of the conformation and function of C3, including recent studies on intracellular C3(H2O). The aim of this work was to define the conditions for storage of native C3 and to introduce a robust method that makes C3 almost resistant to the generation of C3(H2O). Here, we precipitated native C3 at the isoelectric point in low ionic strength buffer before freezing the protein at -80°C. The formation of C3(H2O) was determined using cation exchange chromatography and the hemolytic activity of the different C3 preparations was determined using a hemolytic assay for the classical pathway. We show that freezing native C3 in the precipitated form is the best method to avoid loss of function and generation of C3(H2O). By contrast, the most efficient way to consistently generate C3(H2O) was to incubate native C3 in a buffer at pH 11.0. We conclude that we have defined the optimal storage conditions for storing and maintaining the function of native C3 without generating C3(H2O) and also the conditions for consistently generating C3(H2O).
Collapse
Affiliation(s)
- Anna Adler
- Rudbeck Laboratory, Department of Immunology, Genetics and Pathology (IGP), Uppsala University, Uppsala, Sweden
| | - Vivek Anand Manivel
- Rudbeck Laboratory, Department of Immunology, Genetics and Pathology (IGP), Uppsala University, Uppsala, Sweden
| | - Karin Fromell
- Rudbeck Laboratory, Department of Immunology, Genetics and Pathology (IGP), Uppsala University, Uppsala, Sweden
| | - Yuji Teramura
- Rudbeck Laboratory, Department of Immunology, Genetics and Pathology (IGP), Uppsala University, Uppsala, Sweden
- Cellular and Molecular Biotechnology Research Institute (CMB), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Kristina N. Ekdahl
- Rudbeck Laboratory, Department of Immunology, Genetics and Pathology (IGP), Uppsala University, Uppsala, Sweden
- Linnaeus Center of Biomaterials Chemistry, Linnaeus University, Kalmar, Sweden
| | - Bo Nilsson
- Rudbeck Laboratory, Department of Immunology, Genetics and Pathology (IGP), Uppsala University, Uppsala, Sweden
| |
Collapse
|
48
|
Jenkins AJ, Grant MB, Busik JV. Lipids, hyperreflective crystalline deposits and diabetic retinopathy: potential systemic and retinal-specific effect of lipid-lowering therapies. Diabetologia 2022; 65:587-603. [PMID: 35149880 PMCID: PMC9377536 DOI: 10.1007/s00125-022-05655-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 12/14/2021] [Indexed: 12/19/2022]
Abstract
The metabolically active retina obtains essential lipids by endogenous biosynthesis and from the systemic circulation. Clinical studies provide limited and sometimes conflicting evidence as to the relationships between circulating lipid levels and the development and progression of diabetic retinopathy in people with diabetes. Cardiovascular-system-focused clinical trials that also evaluated some retinal outcomes demonstrate the potential protective power of lipid-lowering therapies in diabetic retinopathy and some trials with ocular primary endpoints are in progress. Although triacylglycerol-lowering therapies with fibrates afforded some protection against diabetic retinopathy, the effect was independent of changes in traditional blood lipid classes. While systemic LDL-cholesterol lowering with statins did not afford protection against diabetic retinopathy in most clinical trials, and none of the trials focused on retinopathy as the main outcome, data from very large database studies suggest the possible effectiveness of statins. Potential challenges in these studies are discussed, including lipid-independent effects of fibrates and statins, modified lipoproteins and retinal-specific effects of lipid-lowering drugs. Dysregulation of retinal-specific cholesterol metabolism leading to retinal cholesterol accumulation and potential formation of cholesterol crystals are also addressed.
Collapse
Affiliation(s)
- Alicia J Jenkins
- NHMRC Clinical Trials Centre, The University of Sydney, Sydney, NSW, Australia
| | - Maria B Grant
- Department of Ophthalmology and Vision Science, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Julia V Busik
- Department of Physiology, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
49
|
Kiss MG, Binder CJ. The multifaceted impact of complement on atherosclerosis. Atherosclerosis 2022; 351:29-40. [DOI: 10.1016/j.atherosclerosis.2022.03.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 02/17/2022] [Accepted: 03/09/2022] [Indexed: 12/12/2022]
|
50
|
Complement activation in cancer: Effects on tumor-associated myeloid cells and immunosuppression. Semin Immunol 2022; 60:101642. [PMID: 35842274 DOI: 10.1016/j.smim.2022.101642] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/28/2022] [Accepted: 07/05/2022] [Indexed: 01/15/2023]
Abstract
Cancer-related inflammation plays a central role in the establishment of tumor-promoting mechanisms. Tumor-associated myeloid cells, which engage in complex interactions with cancer cells, as well as stromal and tumor immune infiltrating cells, promote cancer cell proliferation and survival, angiogenesis, and the generation of an immunosuppressive microenvironment. The complement system is one of the inflammatory mechanisms activated in the tumor microenvironment. Beside exerting anti-tumor mechanisms such as complement-dependent cytotoxicity and phagocytosis induced by therapeutic monoclonal antibodies, the complement system may promote immunosuppression and tumor growth and invasiveness, in particular, through the anaphylatoxins which target both leukocytes and cancer cells. In this review, we will discuss complement-mediated mechanisms acting on leukocytes, in particular on cells of the myelomonocytic cell lineage (macrophages, neutrophils, myeloid derived suppressor cells), which promote myeloid cell recruitment and functional skewing, leading to immunosuppression and resistance to tumor-specific immunity. Pre-clinical studies, which have elucidated the role of complement in activating pro-tumor mechanisms in myeloid cells, showing the relevance of these mechanisms in human, and therapeutic approaches based on complement targeting support the hypothesis that complement directly and indirectly interferes with many of the effector pathways associated with the cancer-immunity cycle, suggesting the relevance of complement targeting to improve responses to immunotherapeutic approaches.
Collapse
|