1
|
Wall MB, Harding R, Ertl N, Barba T, Zafar R, Sweeney M, Nutt DJ, Rabiner EA, Erritzoe D. Neuroimaging and the Investigation of Drug-Drug Interactions Involving Psychedelics. Neurosci Insights 2024; 19:26331055241286518. [PMID: 39386147 PMCID: PMC11462571 DOI: 10.1177/26331055241286518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 09/09/2024] [Indexed: 10/12/2024] Open
Abstract
Psychedelic therapies are an emerging class of treatments in psychiatry with great potential, however relatively little is known about their interactions with other commonly used psychiatric medications. As psychedelic therapies become more widespread and move closer to the clinic, they likely will need to be integrated into existing treatment models which may include one or more traditional pharmacological therapies, meaning an awareness of potential drug-drug interactions will become vital. This commentary outlines some of the issues surrounding the study of drug-drug interactions of this type, provides a summary of some of the relevant key results to date, and charts a way forward which relies crucially on multimodal neuroimaging investigations. Studies in humans which combine Positron Emission Tomography (PET) and functional Magnetic Resonance Imaging (fMRI), plus ancillary measures, are likely to provide the most comprehensive assessment of drug-drug interactions involving psychedelics and the relevant effects at multiple levels of the drug response (molecular, functional, and clinical).
Collapse
Affiliation(s)
- Matthew B Wall
- Invicro, London, UK
- Faculty of Medicine, Imperial College London, London UK
- Centre for Psychedelic research and Neuropsychopharmacology, Imperial College London, UK
| | - Rebecca Harding
- Clinical Psychopharmacology Unit, Faculty of Brain Sciences, University College London, UK
| | - Natalie Ertl
- Invicro, London, UK
- Centre for Psychedelic research and Neuropsychopharmacology, Imperial College London, UK
| | - Tommaso Barba
- Centre for Psychedelic research and Neuropsychopharmacology, Imperial College London, UK
| | - Rayyan Zafar
- Faculty of Medicine, Imperial College London, London UK
- Centre for Psychedelic research and Neuropsychopharmacology, Imperial College London, UK
| | - Mark Sweeney
- Faculty of Medicine, Imperial College London, London UK
- Centre for Psychedelic research and Neuropsychopharmacology, Imperial College London, UK
| | - David J Nutt
- Faculty of Medicine, Imperial College London, London UK
- Centre for Psychedelic research and Neuropsychopharmacology, Imperial College London, UK
| | | | - David Erritzoe
- Faculty of Medicine, Imperial College London, London UK
- Centre for Psychedelic research and Neuropsychopharmacology, Imperial College London, UK
| |
Collapse
|
2
|
Najib J. The role of psilocybin in depressive disorders. Curr Med Res Opin 2024; 40:1793-1808. [PMID: 39177339 DOI: 10.1080/03007995.2024.2396536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/19/2024] [Accepted: 08/20/2024] [Indexed: 08/24/2024]
Abstract
Depression is a serious psychiatric disorder with a high incidence of morbidity and mortality and psilocybin with psychotherapy has emerged as a promising potential in the treatment of depressive disorders. A review of psilocybin use in patients with depressive disorders is presented.A search was conducted investigating the use of psilocybin in patients with depressive disorders and treatment resistant depression via PubMed/MEDLINE, EMBASE, and Google Scholar in October 2023; all publication types were permitted and limited for English-language. Keyword search terms included: "psilocybin" or "psychedelics" and "depression", or "major depressive disorder", or "treatment-resistant depression". Controlled and uncontrolled clinical trials utilizing psilocybin with psychological support for major depressive disorder and treatment-resistant depression, as well as in patients with depression and cancer related anxiety have demonstrated immediate and sustained antidepressant and anxiolytic effects. Psilocybin has a favorable safety profile and was well-tolerated in clinical trials. Psilocybin's abuse potential is low and clinical research suggests the potential of psilocybin to produce rapid and lasting antidepressant effects up to 12 months post-treatment. Psilocybin may offer a valuable contribution as an option to the currently available pharmacological and psychotherapeutic agents for patients with major depressive disorders, treatment-resistant depression as well as for patients with depression and comorbid terminal cancer. Future studies are needed to demonstrate these findings and any synergistic interaction between psilocybin and the psychological support offered to patients during sessions.
Collapse
Affiliation(s)
- Jadwiga Najib
- LIU, Arnold & Marie Schwartz College of Pharmacy and Health Sciences, Brooklyn, New York, USA
- Zucker Hillside Hospital of Northwell Health, Glen Oaks, New York, USA
| |
Collapse
|
3
|
Chisamore N, Johnson D, Chen MJQ, Offman H, Chen-Li D, Kaczmarek ES, Doyle Z, McIntyre RS, Rosenblat JD. Protocols and practices in psilocybin assisted psychotherapy for depression: A systematic review. J Psychiatr Res 2024; 176:77-84. [PMID: 38850581 DOI: 10.1016/j.jpsychires.2024.05.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 04/04/2024] [Accepted: 05/29/2024] [Indexed: 06/10/2024]
Abstract
BACKGROUND Psilocybin-assisted psychotherapy (PAP) is a promising treatment option for depression, with randomized controlled trials (RCTs) providing preliminary support for its safety and efficacy. However, there is a lack of consistency across existing treatment protocols and psychotherapeutic approaches. The objective of this review is to summarize and compare current psychotherapy methods of PAP in treating depression and distress in life-threatening illnesses. We sought to comprehensively summarize published psychotherapy protocols from clinical trials to provide insights for future practices. METHODS A systematic search of four databases (Embase, MEDLINE, PsycINFO, CINAHL) for data relating to psychotherapy protocols was conducted by two independent reviewers. RESULTS In total, our search identified 1869 articles; after removing duplicates, we screened 1107 articles. We included 70 articles in the full-text review and determined that 28 were eligible for the final review. All protocols include sessions before (preparatory) and after (integration) the psychedelic dosing session with supportive monitoring. However, there was substantial variability and inconsistencies in all other aspects of therapy protocols (e.g., duration and number of sessions, model of therapy). Additionally, significant limitations were identified in the frequent need for more clarity in the description of therapeutic approaches. CONCLUSION In published clinical trials, PAP has consisted of preparation, supportive dosing, and integration sessions. Beyond this basic framework, significant heterogeneity and lack of clarity were identified in reported psychotherapy protocols, meaning a validated and universally agreed upon protocol for PAP currently does not exist. Future studies should more clearly define and report psychotherapeutic components to identify the safest and most efficacious approaches to PAP.
Collapse
Affiliation(s)
- Noah Chisamore
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, Ontario, Canada; Department of Pharmacology, University of Toronto, Toronto, ON, Canada.
| | - Danica Johnson
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, ON, Canada.
| | - Margery J Q Chen
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, Ontario, Canada; Johns Hopkins University, Baltimore, MD, United States.
| | - Hilary Offman
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.
| | - David Chen-Li
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, ON, Canada.
| | - Erica S Kaczmarek
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, Ontario, Canada; Department of Pharmacology, University of Toronto, Toronto, ON, Canada.
| | - Zoe Doyle
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, Ontario, Canada; Brain and Cognition Discovery Foundation, Toronto, ON, Canada; Canadian Rapid Treatment Centre of Excellence, Mississauga, ON, Canada.
| | - Roger S McIntyre
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, Ontario, Canada; Department of Pharmacology, University of Toronto, Toronto, ON, Canada; Institute of Medical Science, University of Toronto, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Brain and Cognition Discovery Foundation, Toronto, ON, Canada; Canadian Rapid Treatment Centre of Excellence, Mississauga, ON, Canada.
| | - Joshua D Rosenblat
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
4
|
Zheng S, Ma R, Yang Y, Li G. Psilocybin for the treatment of Alzheimer's disease. Front Neurosci 2024; 18:1420601. [PMID: 39050672 PMCID: PMC11266071 DOI: 10.3389/fnins.2024.1420601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 06/21/2024] [Indexed: 07/27/2024] Open
Abstract
Alzheimer's disease (AD) stands as a formidable neurodegenerative ailment and a prominent contributor to dementia. The scarcity of available therapies for AD accentuates the exigency for innovative treatment modalities. Psilocybin, a psychoactive alkaloid intrinsic to hallucinogenic mushrooms, has garnered attention within the neuropsychiatric realm due to its established safety and efficacy in treating depression. Nonetheless, its potential as a therapeutic avenue for AD remains largely uncharted. This comprehensive review endeavors to encapsulate the pharmacological effects of psilocybin while elucidating the existing evidence concerning its potential mechanisms contributing to a positive impact on AD. Specifically, the active metabolite of psilocybin, psilocin, elicits its effects through the modulation of the 5-hydroxytryptamine 2A receptor (5-HT2A receptor). This modulation causes heightened neural plasticity, diminished inflammation, and improvements in cognitive functions such as creativity, cognitive flexibility, and emotional facial recognition. Noteworthy is psilocybin's promising role in mitigating anxiety and depression symptoms in AD patients. Acknowledging the attendant adverse reactions, we proffer strategies aimed at tempering or mitigating its hallucinogenic effects. Moreover, we broach the ethical and legal dimensions inherent in psilocybin's exploration for AD treatment. By traversing these avenues, We propose therapeutic potential of psilocybin in the nuanced management of Alzheimer's disease.
Collapse
Affiliation(s)
- Siyi Zheng
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rong Ma
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yang Yang
- Department of General Medicine, Binzhou Medical University Hospital, Binzhou, China
| | - Gang Li
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
5
|
Ramos L, Vicente SG. The effects of psilocybin on cognition and emotional processing in healthy adults and adults with depression: a systematic literature review. J Clin Exp Neuropsychol 2024; 46:393-421. [PMID: 38842300 DOI: 10.1080/13803395.2024.2363343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 05/30/2024] [Indexed: 06/07/2024]
Abstract
INTRODUCTION Psilocybin, a naturally occurring serotonergic agonist in some mushroom species, has shown promise as a novel, fast-acting pharmacotherapy seeking to overcome the limitations of conventional first-line antidepressants. Studying psilocybin effects on cognition and emotional processing may help to clarify the mechanisms underlying the therapeutic potential of psilocybin and may also support studies with people suffering from depression. Thus, this review aims to provide a comprehensive overview of the current literature regarding the effects of psilocybin on these two key areas in both healthy and depressed populations. METHOD A systematic search was performed on 29 January 2024, in the PubMed, EBSCOhost, Web of Science and SCOPUS databases. After duplicates removal, study selection was conducted considering pre-specified criteria. Data extraction was then performed. The quality assessment of the studies was carried out using the Cochrane Collaboration tools for randomized (RoB 2.0) and non-randomized (ROBINS-I) controlled trials. RESULTS Twenty articles were included, with 18 targeting healthy adults and two adults with depression. Results point to impairments within attentional and inhibitory processes, and improvements in the domains of creativity and social cognition in healthy individuals. In the population with depression, only cognitive flexibility and emotional recognition were affected, both being enhanced. The comparison of outcomes from both populations proved limited. CONCLUSIONS Psilocybin acutely alters several cognitive domains, with a localized rather than global focus, in a dose- and time-dependent manner. However, the significant methodological constraints call for further research, in the context of depression and with standardized protocols, with longitudinal studies also imperative.
Collapse
Affiliation(s)
- Laura Ramos
- Faculty of Psychology and Educational Sciences, University of Porto, Porto, Portugal
| | - Selene G Vicente
- Faculty of Psychology and Educational Sciences, University of Porto, Porto, Portugal
| |
Collapse
|
6
|
Lee HJ, Tsang VW, Chai BS, Lin MC, Howard A, Uy C, Elefante JO. Psilocybin's Potential Mechanisms in the Treatment of Depression: A Systematic Review. J Psychoactive Drugs 2024; 56:301-315. [PMID: 37385217 DOI: 10.1080/02791072.2023.2223195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/05/2023] [Accepted: 03/15/2023] [Indexed: 07/01/2023]
Abstract
Evidence suggests that psilocybin has therapeutic benefit for treating depression. However, there is little consensus regarding the mechanism by which psilocybin elicits antidepressant effects. This systematic review summarizes existing evidence. Ovid MEDLINE, EMBASE, psychINFO, and Web of Science were searched, for both human and animal studies, using a combination of MeSH Terms and free-text keywords in September 2021. No other mood disorders or psychiatric diagnoses were included. Original papers in English were included. The PRISMA framework was followed for the screening of papers. Two researchers screened the retrieved articles from the literature search, and a third researcher resolved any conflicts. Of 2,193 papers identified, 49 were selected for full-text review. 14 articles were included in the qualitative synthesis. Six supported psilocybin's mechanism of antidepressant action via changes to serotonin or glutamate receptor activity and three papers found an increase in synaptogenesis. Thirteen papers investigated changes in non-receptor or pathway-specific brain activity. Five papers found changes in functional connectivity or neurotransmission, most commonly in the hippocampus or prefrontal cortex. Several neuroreceptors, neurotransmitters, and brain areas are thought to be involved in psilocybin's ability to mitigate depressive symptoms. Psilocybin appears to alter cerebral blood flow to the amygdala and prefrontal cortex, but the evidence on changes in functional connectivity and specific receptor activity remains sparse. The lack of consensus between studies suggests that psilocybin's mechanism of action may involve a variety of pathways, demonstrating the need for more studies on psilocybin's mechanism of action as an antidepressant.
Collapse
Affiliation(s)
- Harrison J Lee
- Department of Psychiatry, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Vivian Wl Tsang
- Department of Psychiatry, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Brandon S Chai
- Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Michelle Cq Lin
- Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Andrew Howard
- Department of Psychiatry, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Christopher Uy
- Department of Neurology, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Julius O Elefante
- Department of Psychiatry, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
7
|
Stoliker D, Novelli L, Vollenweider FX, Egan GF, Preller KH, Razi A. Neural Mechanisms of Resting-State Networks and the Amygdala Underlying the Cognitive and Emotional Effects of Psilocybin. Biol Psychiatry 2024; 96:57-66. [PMID: 38185235 DOI: 10.1016/j.biopsych.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 12/19/2023] [Accepted: 01/02/2024] [Indexed: 01/09/2024]
Abstract
BACKGROUND Serotonergic psychedelics, such as psilocybin, alter perceptual and cognitive systems that are functionally integrated with the amygdala. These changes can alter cognition and emotions that are hypothesized to contribute to their therapeutic utility. However, the neural mechanisms of cognitive and subcortical systems altered by psychedelics are not well understood. METHODS We used resting-state functional magnetic resonance images collected during a randomized, double-blind, placebo-controlled clinical trial of 24 healthy adults under 0.2 mg/kg psilocybin to estimate the directed (i.e., effective) changes between the amygdala and 3 large-scale resting-state networks involved in cognition. These networks are the default mode network, the salience network, and the central executive network. RESULTS We found a pattern of decreased top-down effective connectivity from these resting-state networks to the amygdala. Effective connectivity decreased within the default mode network and salience network but increased within the central executive network. These changes in effective connectivity were statistically associated with behavioral measures of altered cognition and emotion under the influence of psilocybin. CONCLUSIONS Our findings suggest that temporary amygdala signal attenuation is associated with mechanistic changes to resting-state network connectivity. These changes are significant for altered cognition and perception and suggest targets for research investigating the efficacy of psychedelic therapy for internalizing psychiatric disorders. More broadly, our study suggests the value of quantifying the brain's hierarchical organization using effective connectivity to identify important mechanisms for basic cognitive function and how they are integrated to give rise to subjective experiences.
Collapse
Affiliation(s)
- Devon Stoliker
- Turner Institute for Brain and Mental Health, Monash University, Clayton, Victoria, Australia; Monash Biomedical Imaging, Monash University, Clayton, Victoria, Australia
| | - Leonardo Novelli
- Turner Institute for Brain and Mental Health, Monash University, Clayton, Victoria, Australia; Monash Biomedical Imaging, Monash University, Clayton, Victoria, Australia
| | - Franz X Vollenweider
- Department of Psychiatry, Psychotherapy & Psychosomatics, Psychiatric University Hospital Zurich, Zurich, Switzerland
| | - Gary F Egan
- Turner Institute for Brain and Mental Health, Monash University, Clayton, Victoria, Australia; Monash Biomedical Imaging, Monash University, Clayton, Victoria, Australia
| | - Katrin H Preller
- Department of Psychiatry, Psychotherapy & Psychosomatics, Psychiatric University Hospital Zurich, Zurich, Switzerland
| | - Adeel Razi
- Turner Institute for Brain and Mental Health, Monash University, Clayton, Victoria, Australia; Monash Biomedical Imaging, Monash University, Clayton, Victoria, Australia; Wellcome Centre for Human Neuroimaging, University College London, London, United Kingdom; CIFAR Azrieli Global Scholars Program, CIFAR, Toronto, Ontario, Canada.
| |
Collapse
|
8
|
Effinger DP, Hoffman JL, Mott SE, Magee SN, Quadir SG, Rollison CS, Toedt D, Echeveste Sanchez M, High MW, Hodge CW, Herman MA. Increased reactivity of the paraventricular nucleus of the hypothalamus and decreased threat responding in male rats following psilocin administration. Nat Commun 2024; 15:5321. [PMID: 38909051 PMCID: PMC11193716 DOI: 10.1038/s41467-024-49741-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 06/17/2024] [Indexed: 06/24/2024] Open
Abstract
Psychedelics have experienced renewed interest following positive clinical effects, however the neurobiological mechanisms underlying effects remain unclear. The paraventricular nucleus of the hypothalamus (PVN) plays an integral role in stress response, autonomic function, social behavior, and other affective processes. We investigated the effect of psilocin, the psychoactive metabolite of psilocybin, on PVN reactivity in Sprague Dawley rats. Psilocin increased stimulus-independent PVN activity as measured by c-Fos expression in male and female rats. Psilocin increased PVN reactivity to an aversive air-puff stimulus in males but not females. Reactivity was restored at 2- and 7-days post-injection with no group differences. Additionally, prior psilocin injection did not affect PVN reactivity following acute restraint stress. Experimental groups sub-classified by baseline threat responding indicate that increased male PVN reactivity is driven by active threat responders. These findings identify the PVN as a significant site of psychedelic drug action with implications for threat responding behavior.
Collapse
Affiliation(s)
- Devin P Effinger
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jessica L Hoffman
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Sarah E Mott
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Sarah N Magee
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Sema G Quadir
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Christian S Rollison
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Daniel Toedt
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Maria Echeveste Sanchez
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Margaret W High
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Clyde W Hodge
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Melissa A Herman
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
9
|
Pasculli G, Busan P, Jackson ES, Alm PA, De Gregorio D, Maguire GA, Goodwin GM, Gobbi G, Erritzoe D, Carhart-Harris RL. Psychedelics in developmental stuttering to modulate brain functioning: a new therapeutic perspective? Front Hum Neurosci 2024; 18:1402549. [PMID: 38962146 PMCID: PMC11221540 DOI: 10.3389/fnhum.2024.1402549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 05/27/2024] [Indexed: 07/05/2024] Open
Abstract
Developmental stuttering (DS) is a neurodevelopmental speech-motor disorder characterized by symptoms such as blocks, repetitions, and prolongations. Persistent DS often has a significant negative impact on quality of life, and interventions for it have limited efficacy. Herein, we briefly review existing research on the neurophysiological underpinnings of DS -specifically, brain metabolic and default mode/social-cognitive networks (DMN/SCN) anomalies- arguing that psychedelic compounds might be considered and investigated (e.g., in randomized clinical trials) for treatment of DS. The neural background of DS is likely to be heterogeneous, and some contribution from genetically determinants of metabolic deficiencies in the basal ganglia and speech-motor cortical regions are thought to play a role in appearance of DS symptoms, which possibly results in a cascade of events contributing to impairments in speech-motor execution. In persistent DS, the difficulties of speech are often linked to a series of associated aspects such as social anxiety and social avoidance. In this context, the SCN and DMN (also influencing a series of fronto-parietal, somato-motor, and attentional networks) may have a role in worsening dysfluencies. Interestingly, brain metabolism and SCN/DMN connectivity can be modified by psychedelics, which have been shown to improve clinical evidence of some psychiatric conditions (e.g., depression, post-traumatic stress disorder, etc.) associated with psychological constructs such as rumination and social anxiety, which also tend to be present in persistent DS. To date, while there have been no controlled trials on the effects of psychedelics in DS, anecdotal evidence suggests that these agents may have beneficial effects on stuttering and its associated characteristics. We suggest that psychedelics warrant investigation in DS.
Collapse
Affiliation(s)
- Giuseppe Pasculli
- Department of Computer, Control, and Management Engineering (DIAG), La Sapienza University, Rome, Italy
- Italian Society of Psychedelic Medicine (Società Italiana di Medicina Psichedelica–SIMePsi), Bari, Italy
| | | | - Eric S. Jackson
- Department of Communicative Sciences and Disorders, New York University, New York, NY, United States
| | - Per A. Alm
- Department of Communicative Sciences and Disorders, New York University, New York, NY, United States
- Department of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden
| | - Danilo De Gregorio
- IRCCS, San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Gerald A. Maguire
- School of Medicine, American University of Health Sciences, Signal Hill, CA, United States
- CenExel CIT Research, Riverside, CA, United States
| | - Guy M. Goodwin
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom
| | - Gabriella Gobbi
- Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - David Erritzoe
- Department of Medicine, Centre for Psychedelic Research, Imperial College London, London, United Kingdom
| | - Robin L. Carhart-Harris
- Department of Medicine, Centre for Psychedelic Research, Imperial College London, London, United Kingdom
- Psychedelics Division, Neuroscape, University of California, San Francisco, CA, United States
| |
Collapse
|
10
|
Davis LL, Hamner MB. Post-traumatic stress disorder: the role of the amygdala and potential therapeutic interventions - a review. Front Psychiatry 2024; 15:1356563. [PMID: 38903645 PMCID: PMC11187309 DOI: 10.3389/fpsyt.2024.1356563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 05/16/2024] [Indexed: 06/22/2024] Open
Abstract
Introduction Post-traumatic stress disorder (PTSD) is a psychiatric disorder triggered by exposure to a life-threatening or sexually violent traumatic event, and is characterized by symptoms involving intrusive re-experiencing, persistent avoidance of associated stimuli, emotional and cognitive disturbances, and hyperarousal for long periods after the trauma has occurred. These debilitating symptoms induce occupational and social impairments that contribute to a significant clinical burden for PTSD patients, and substantial socioeconomic costs, reaching approximately $20,000 dollars per individual with PTSD each year in the US. Despite increased translational research focus in the field of PTSD, the development of novel, effective pharmacotherapies for its treatment remains an important unmet clinical need. Observations In this review, we summarize the evidence implicating dysfunctional activity of the amygdala in the pathophysiology of PTSD. We identify the transient receptor potential canonical (TRPC) ion channels as promising drug targets given their distribution in the amygdala, and evidence from animal studies demonstrating their role in fear response modulation. We discuss the evidence-based pharmacotherapy and psychotherapy treatment approaches for PTSD. Discussion In view of the prevalence and economic burden associated with PTSD, further investigation is warranted into novel treatment approaches based on our knowledge of the involvement of brain circuitry and the role of the amygdala in PTSD, as well as the potential added value of combined pharmacotherapy and psychotherapy to better manage PTSD symptoms.
Collapse
Affiliation(s)
- Lori L. Davis
- Mental Health Service, Birmingham VA Health Care System, Birmingham, AL, United States
- Department of Psychiatry, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, United States
- Department of Psychiatry, University of Alabama College of Community Health Science, Tuscaloosa, AL, United States
| | - Mark B. Hamner
- Department of Veterans Affairs, Ralph H. Johnson VA Medical Center, Charleston, SC, United States
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, United States
| |
Collapse
|
11
|
Lasch A, Schweikert T, Dora E, Kolb T, Schurig HL, Walther A. [Psilocybin-Assisted Treatment of Depression, Anxiety and Substance use Disorders: Neurobiological Basis and Clinical Application]. FORTSCHRITTE DER NEUROLOGIE-PSYCHIATRIE 2024; 92:230-245. [PMID: 37207669 DOI: 10.1055/a-2046-5202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Successful therapy of mental disorders is very important in view of the high level of suffering of those affected. Since established pharmaceutical and psychotherapeutic approaches do not lead to the desired improvement in all cases, complementary or alternative treatment methods are intensively researched. Psilocybin-assisted psychotherapy seems particularly promising, and has been approved in the USA for larger clinical trials. Psilocybin belongs to the group of psychedelics and influences psychological experiences. In assisted therapy, psilocybin is administered in controlled doses under medical supervision to patients with different mental disorders. In the studies conducted so far, longer-term positive effects could be shown after just one or a few doses. In order to provide a better understanding of the potential therapeutic mechanisms, this article will first describe neurobiological and psychological effects of psilocybin. To better assess the potential of psilocybin-assisted psychotherapy for various disorders, clinical studies conducted so far with patients administered psilocybin are reviewed.
Collapse
Affiliation(s)
- Anna Lasch
- Biopsychologie, Technische Universität Dresden, Dresden, Germany
| | - Timo Schweikert
- Psychotherapie und Systemneurowissenschaften, Justus-Liebig-Universität Gießen, Gießen, Germany
| | - Eva Dora
- Biopsychologie, Technische Universität Dresden, Dresden, Germany
| | - Theresa Kolb
- Universitätsklinikum Carl Gustav Carus Dresden, Division Psychological and Social Medicine and Developmental Neuroscience, Dresden, Germany
| | - Hanne Lilian Schurig
- Universitätsklinikum Carl Gustav Carus Dresden, Division Psychological and Social Medicine and Developmental Neuroscience, Dresden, Germany
| | - Andreas Walther
- Klinische Psychologie und Psychotherapie, Universität Zürich Psychologisches Institut, Zurich, Switzerland
| |
Collapse
|
12
|
Harari R, Chatterjee I, Getselter D, Elliott E. Psilocybin induces acute anxiety and changes in amygdalar phosphopeptides independently from the 5-HT2A receptor. iScience 2024; 27:109686. [PMID: 38660396 PMCID: PMC11039401 DOI: 10.1016/j.isci.2024.109686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/29/2024] [Accepted: 04/05/2024] [Indexed: 04/26/2024] Open
Abstract
Psilocybin, and its metabolite psilocin, induces psychedelic effects through activation of the 5-HT2A receptor. Psilocybin has been proposed as a treatment for depression and anxiety but sometimes induces anxiety in humans. An understanding of mechanisms underlying the anxiety response will help to better develop therapeutic prospects of psychedelics. In the current study, psilocybin induced an acute increase in anxiety in behavioral paradigms in mice. Importantly, pharmacological blocking of the 5-HT2A receptor attenuates psilocybin-induced head twitch response, a behavioral proxy for the psychedelic response, but does not rescue psilocybin's effect on anxiety-related behavior. Phosphopeptide analysis in the amygdala uncovered signal transduction pathways that are dependent or independent of the 5-HT2A receptor. Furthermore, presynaptic proteins are specifically involved in psilocybin-induced acute anxiety. These insights into how psilocybin may induce short-term anxiety are important for understanding how psilocybin may best be used in the clinical framework.
Collapse
Affiliation(s)
- Ram Harari
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed 13215, Israel
| | - Ipsita Chatterjee
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed 13215, Israel
- Department of Neuroscience, Yale University, New Haven, CT 06520, USA
| | - Dmitriy Getselter
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed 13215, Israel
| | - Evan Elliott
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed 13215, Israel
| |
Collapse
|
13
|
Schmid Y, Bershad AK. Altered States and Social Bonds: Effects of MDMA and Serotonergic Psychedelics on Social Behavior as a Mechanism Underlying Substance-Assisted Therapy. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2024; 9:490-499. [PMID: 38341085 PMCID: PMC11378972 DOI: 10.1016/j.bpsc.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/14/2024] [Accepted: 02/04/2024] [Indexed: 02/12/2024]
Abstract
There has been renewed interest in the use of 3,4-methylenedioxy-methamphetamine (MDMA) and serotonergic psychedelics in the treatment of multiple psychiatric disorders. Many of these compounds are known to produce prosocial effects, but how these effects relate to therapeutic efficacy and the extent to which prosocial effects are unique to a particular drug class is unknown. In this article, we present a narrative overview and compare evidence for the prosocial effects of MDMA and serotonergic psychedelics to elucidate shared mechanisms that may underlie the therapeutic process. We discuss 4 categories of prosocial effects: altered self-image, responses to social reward, responses to negative social input, and social neuroplasticity. While both categories of drugs alter self-perception, MDMA may do so in a way that is less related to the experience of mystical-type states than serotonergic psychedelics. In the case of social reward, evidence supports the ability of MDMA to enhance responses and suggests that serotonergic psychedelics may also do so, but more research is needed in this area. Both drug classes consistently dampen reactivity to negative social stimuli. Finally, preclinical evidence supports the ability of both drug classes to induce social neuroplasticity, promoting adaptive rewiring of neural circuits, which may be helpful in trauma processing. While both MDMA and serotonergic psychedelics produce prosocial effects, they differ in the mechanisms through which they do this. These differences affect the types of psychosocial interventions that may work best with each compound.
Collapse
Affiliation(s)
- Yasmin Schmid
- Clinical Pharmacology and Toxicology, Department of Biomedicine and Department of Clinical Research, University Hospital Basel and University of Basel, Switzerland; Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Anya K Bershad
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, California.
| |
Collapse
|
14
|
Metaxa AM, Clarke M. Efficacy of psilocybin for treating symptoms of depression: systematic review and meta-analysis. BMJ 2024; 385:e078084. [PMID: 38692686 PMCID: PMC11062320 DOI: 10.1136/bmj-2023-078084] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/06/2024] [Indexed: 05/03/2024]
Abstract
OBJECTIVE To determine the efficacy of psilocybin as an antidepressant compared with placebo or non-psychoactive drugs. DESIGN Systematic review and meta-analysis. DATA SOURCES Five electronic databases of published literature (Cochrane Central Register of Controlled Trials, Medline, Embase, Science Citation Index and Conference Proceedings Citation Index, and PsycInfo) and four databases of unpublished and international literature (ClinicalTrials.gov, WHO International Clinical Trials Registry Platform, ProQuest Dissertations and Theses Global, and PsycEXTRA), and handsearching of reference lists, conference proceedings, and abstracts. DATA SYNTHESIS AND STUDY QUALITY Information on potential treatment effect moderators was extracted, including depression type (primary or secondary), previous use of psychedelics, psilocybin dosage, type of outcome measure (clinician rated or self-reported), and personal characteristics (eg, age, sex). Data were synthesised using a random effects meta-analysis model, and observed heterogeneity and the effect of covariates were investigated with subgroup analyses and metaregression. Hedges' g was used as a measure of treatment effect size, to account for small sample effects and substantial differences between the included studies' sample sizes. Study quality was appraised using Cochrane's Risk of Bias 2 tool, and the quality of the aggregated evidence was evaluated using GRADE guidelines. ELIGIBILITY CRITERIA Randomised trials in which psilocybin was administered as a standalone treatment for adults with clinically significant symptoms of depression and change in symptoms was measured using a validated clinician rated or self-report scale. Studies with directive psychotherapy were included if the psychotherapeutic component was present in both experimental and control conditions. Participants with depression regardless of comorbidities (eg, cancer) were eligible. RESULTS Meta-analysis on 436 participants (228 female participants), average age 36-60 years, from seven of the nine included studies showed a significant benefit of psilocybin (Hedges' g=1.64, 95% confidence interval (CI) 0.55 to 2.73, P<0.001) on change in depression scores compared with comparator treatment. Subgroup analyses and metaregressions indicated that having secondary depression (Hedges' g=3.25, 95% CI 0.97 to 5.53), being assessed with self-report depression scales such as the Beck depression inventory (3.25, 0.97 to 5.53), and older age and previous use of psychedelics (metaregression coefficient 0.16, 95% CI 0.08 to 0.24 and 4.2, 1.5 to 6.9, respectively) were correlated with greater improvements in symptoms. All studies had a low risk of bias, but the change from baseline metric was associated with high heterogeneity and a statistically significant risk of small study bias, resulting in a low certainty of evidence rating. CONCLUSION Treatment effects of psilocybin were significantly larger among patients with secondary depression, when self-report scales were used to measure symptoms of depression, and when participants had previously used psychedelics. Further research is thus required to delineate the influence of expectancy effects, moderating factors, and treatment delivery on the efficacy of psilocybin as an antidepressant. SYSTEMATIC REVIEW REGISTRATION PROSPERO CRD42023388065.
Collapse
Affiliation(s)
- Athina-Marina Metaxa
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford OX2 6GG, UK
| | - Mike Clarke
- Northern Ireland Methodology Hub, Centre for Public Health, ICS-A Royal Hospitals, Belfast, Ireland, UK
| |
Collapse
|
15
|
Solaja I, Haldane K, Mason N, Weiss B, Xu X, Xu M, Nikolin S, Jayasena T, Millard M, Brett J, Bayes A, Loo CK, Martin DM. Who are you after psychedelics? A systematic review and a meta-analysis of the magnitude of long-term effects of serotonergic psychedelics on cognition/creativity, emotional processing and personality. Neurosci Biobehav Rev 2024; 158:105570. [PMID: 38311046 DOI: 10.1016/j.neubiorev.2024.105570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 02/06/2024]
Abstract
This systematic review and a meta-analysis synthesised the results from contemporary, randomized and non-randomized controlled studies to assess lasting (one week minimum) changes on cognition/creativity, emotional processing and personality from serotonergic psychedelics. PubMed, Embase and PsycInfo were searched in July 2022. Risk of bias was assessed using Rob 2.0 and ROBINS-I. Ten studies met the eligibility criteria which involved 304 participants. No statistically significant effects were found for the majority outcome measures across the three constructs. A meta-analysis of emotional recognition outcomes found an overall significant effect for faster reaction times in the active treatment groups for disgust (SMD=-0.63, 95% CI=[-1.01 to -0.25], I2 = 65%) and sadness (SMD=-0.45, 95% CI=[-0.85 to -0.06], I2 = 60%). Future research should include larger samples, better control conditions, standardized doses and longer follow-up periods to confirm these preliminary findings.
Collapse
Affiliation(s)
- Ivana Solaja
- School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, Australia.
| | | | - Natasha Mason
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Brandon Weiss
- Centre for Psychedelic Research, Division of Academic Psychiatry, Imperial College London, London, UK
| | - Xiaomin Xu
- School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, Australia
| | - Mei Xu
- School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, Australia
| | - Stevan Nikolin
- School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, Australia; Black Dog Institute, Sydney, Australia
| | - Tharusha Jayasena
- School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, Australia
| | | | | | - Adam Bayes
- School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, Australia; Black Dog Institute, Sydney, Australia
| | - Colleen K Loo
- School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, Australia; Black Dog Institute, Sydney, Australia
| | - Donel M Martin
- School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, Australia; Black Dog Institute, Sydney, Australia
| |
Collapse
|
16
|
Funk D, Araujo J, Slassi M, Lanthier J, Atkinson J, Feng D, Lau W, Lê A, Higgins GA. Effect of a single psilocybin treatment on Fos protein expression in male rat brain. Neuroscience 2024; 539:1-11. [PMID: 38184069 DOI: 10.1016/j.neuroscience.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 12/31/2023] [Accepted: 01/02/2024] [Indexed: 01/08/2024]
Abstract
Psilocybin has received attention as a treatment for depression, stress disorders and drug and alcohol addiction. To help determine the mechanisms underlying its therapeutic effects, here we examined acute effects of a range of behaviourally relevant psilocybin doses (0.1-3 mg/kg SC) on regional expression of Fos, the protein product of the immediate early gene, c-fos in brain areas involved in stress, reward and motivation in male rats. We also determined the cellular phenotypes activated by psilocybin, in a co-labeling analysis with NeuN, a marker of mature neurons, or Olig1, a marker of oligodendrocytes. In adult male Sprague-Dawley rats, psilocybin increased Fos expression dose dependently in several brain regions, including the frontal cortex, nucleus accumbens, central and basolateral amygdala and locus coeruleus. These effects were most marked in the central amygdala. Double labeling experiments showed that Fos was expressed in both neurons and oligodendrocytes. These results extend previous research by determining Fos expression in multiple brain areas at a wider psilocybin dose range, and the cellular phenotypes expressing Fos. The data also highlight the amygdala, especially the central nucleus, a key brain region involved in emotional processing and learning and interconnected with other brain areas involved in stress, reward and addiction, as a potentially important locus for the therapeutic effects of psilocybin. Overall, the present findings suggest that the central amygdala may be an important site through which the initial brain activation induced by psilocybin is translated into neuroplastic changes, locally and in other regions that underlie its extended therapeutic effects.
Collapse
Affiliation(s)
- Douglas Funk
- Campbell Family Research Institute, Centre for Addiction and Mental Health, Toronto M5S 2S1, Canada.
| | - Joseph Araujo
- Transpharmation Ltd., Fergus N1M 2W8, Canada; Mindset Pharma, Toronto M5V 0R2, Canada
| | | | | | | | - Daniel Feng
- Transpharmation Ltd., Fergus N1M 2W8, Canada
| | - Winnie Lau
- Transpharmation Ltd., Fergus N1M 2W8, Canada
| | - Anh Lê
- Campbell Family Research Institute, Centre for Addiction and Mental Health, Toronto M5S 2S1, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto M5S 1A8, Canada
| | - Guy A Higgins
- Transpharmation Ltd., Fergus N1M 2W8, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto M5S 1A8, Canada
| |
Collapse
|
17
|
Arruda Sanchez T, Ramos LR, Araujo F, Schenberg EE, Yonamine M, Lobo I, de Araujo DB, Luna LE. Emotion regulation effects of Ayahuasca in experienced subjects during implicit aversive stimulation: An fMRI study. JOURNAL OF ETHNOPHARMACOLOGY 2024; 320:117430. [PMID: 37979818 DOI: 10.1016/j.jep.2023.117430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 08/15/2023] [Accepted: 11/12/2023] [Indexed: 11/20/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ayahuasca is a beverage used in Amazonian traditional medicine and it has been part of the human experience for millennia as well as other different psychoactive plants. Although Ayahuasca has been proposed as potentially therapeutic as an anxiolytic and antidepressant, whilst no studies have been carried out so far investigating their direct effect on brain emotional processing. AIM OF THE STUDY This study aimed to measure the emotional acute effect of Ayahuasca on brain response to implicit aversive stimulation using a face recognition task in functional magnetic resonance imaging (fMRI). MATERIALS AND METHODS Nineteen male experienced Ayahuasca users participated in this study in two fMRI sessions before and after 50 min of the Ayahuasca ingestion. Subjects were presented with pictures of neutral (A) and aversive (B) (fearful or disgusted) faces from the Pictures of Facial Affect Series. Subjects were instructed to identify the gender of the faces (gender discrimination task) while the emotional content was implicit. Subjective mood states were also evaluated before Ayahuasca intake and after the second fMRI session, using a visual analogue mood scale (VAMS). RESULTS During the aversive stimuli, the activity in the bilateral amygdala was attenuated by Ayahuasca (qFDR<0.05). Furthermore, in an exploratory analysis of the effects after intake, Ayahuasca enhances the activation in the insular cortex bilaterally, as well as in the right dorsolateral prefrontal cortex (qFDR<0.05). In the psychometric VAMS scale, subjects reported attenuation of both anxiety and mental sedation (p < 0.01) during acute effects. CONCLUSIONS Together, all reported results including neuroimaging, behavioral data and psychometric self-report suggest that Ayahuasca can promote an emotion regulation mechanism in response to aversive stimuli with corresponding improved cognition including reduced anxiety and mental sedation.
Collapse
Affiliation(s)
- Tiago Arruda Sanchez
- Laboratory of Neuroimaging and Psychophysiology, Faculdade de Medicina, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil.
| | - Lucas Rego Ramos
- Laboratory of Neuroimaging and Psychophysiology, Faculdade de Medicina, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Felipe Araujo
- Laboratory of Neuroimaging and Psychophysiology, Faculdade de Medicina, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | | | - Mauricio Yonamine
- Faculdade de Ciências Farmacêuticas, Universidade de São Paulo (USP), São Paulo, SP, Brazil
| | - Isabela Lobo
- Instituto de Biodiversidade e Sustentabilidade (NUPEM), UFRJ, Macaé, RJ, Brazil
| | - Draulio Barros de Araujo
- Brain Institute / Hospital Universitário Onofre Lopes, Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN, Brazil
| | - Luis Eduardo Luna
- Research Centre for the study of psychointegrator plants, Visionary Art and Consciousness - Wasiwaska, Florianópolis, SC, Brazil
| |
Collapse
|
18
|
Duan W, Cao D, Wang S, Cheng J. Serotonin 2A Receptor (5-HT 2AR) Agonists: Psychedelics and Non-Hallucinogenic Analogues as Emerging Antidepressants. Chem Rev 2024; 124:124-163. [PMID: 38033123 DOI: 10.1021/acs.chemrev.3c00375] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Psychedelics make up a group of psychoactive compounds that induce hallucinogenic effects by activating the serotonin 2A receptor (5-HT2AR). Clinical trials have demonstrated the traditional psychedelic substances like psilocybin as a class of rapid-acting and long-lasting antidepressants. However, there is a pressing need for rationally designed 5-HT2AR agonists that possess optimal pharmacological profiles in order to fully reveal the therapeutic potential of these agonists and identify safer drug candidates devoid of hallucinogenic effects. This Perspective provides an overview of the structure-activity relationships of existing 5-HT2AR agonists based on their chemical classifications and discusses recent advancements in understanding their molecular pharmacology at a structural level. The encouraging clinical outcomes of psychedelics in depression treatment have sparked drug discovery endeavors aimed at developing novel 5-HT2AR agonists with improved subtype selectivity and signaling bias properties, which could serve as safer and potentially nonhallucinogenic antidepressants. These efforts can be significantly expedited through the utilization of structure-based methods and functional selectivity-directed screening.
Collapse
Affiliation(s)
- Wenwen Duan
- iHuman Institute, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
| | - Dongmei Cao
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences; University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Sheng Wang
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences; University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Jianjun Cheng
- iHuman Institute, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
- School of Life Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
| |
Collapse
|
19
|
Jones NT, Wagner L, Hahn MCP, Scarlett CO, Wenthur CJ. In vivo validation of psilacetin as a prodrug yielding modestly lower peripheral psilocin exposure than psilocybin. Front Psychiatry 2024; 14:1303365. [PMID: 38264637 PMCID: PMC10804612 DOI: 10.3389/fpsyt.2023.1303365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 11/17/2023] [Indexed: 01/25/2024] Open
Abstract
Introduction The use of the psychedelic compound psilocybin in conjunction with psychotherapy has shown promising results in the treatment of psychiatric disorders, though the underlying mechanisms supporting these effects remain unclear. Psilocybin is a Schedule I substance that is dephosphorylated in vivo to form an active metabolite, psilocin. Psilacetin, also known as O-acetylpsilocin or 4-acetoxy-N,N-dimethyltryptamine (4-AcO-DMT), is an unscheduled compound that has long been suggested as an alternative psilocin prodrug, though direct in vivo support for this hypothesis has thus far been lacking. Methods This study employed liquid chromatography-tandem mass spectrometry (LC-MS/MS) to assess the time-course and plasma concentrations of psilocin following the intraperitoneal (IP) administration of psilacetin fumarate or psilocybin to male and female C57Bl6/J mice. Results Direct comparisons of the time courses for psilocin exposure arising from psilocybin and psilacetin found that psilocybin led to 10-25% higher psilocin concentrations than psilacetin at 15-min post-injection. The half-life of psilocin remained approximately 30 min, irrespective of whether it came from psilocybin or psilacetin. Overall, the relative amount of psilocin exposure from psilacetin fumarate was found to be approximately 70% of that from psilocybin. Discussion These findings provide the first direct support for the long-standing assumption in the field that psilacetin functions as a prodrug for psilocin in vivo. In addition, these results indicate that psilacetin fumarate results in lower peripheral psilocin exposure than psilocybin when dosed on an equimolar basis. Thoughtful substitution of psilocybin with psilacetin fumarate appears to be a viable approach for conducting mechanistic psychedelic research in C57Bl6/J mice.
Collapse
Affiliation(s)
- Nathan T. Jones
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI, United States
| | - Laura Wagner
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI, United States
| | - Molly C. Pellitteri Hahn
- Analytical Instrumentation Center, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, United States
| | - Cameron O. Scarlett
- Analytical Instrumentation Center, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, United States
| | - Cody J. Wenthur
- School of Pharmacy, Transdisciplinary Center for Research in Psychoactive Substances, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
20
|
Leerssen J, Aghajani M, Bresser T, Rösler L, Winkler AM, Foster-Dingley JC, Van Someren EJW. Cognitive, Behavioral, and Circadian Rhythm Interventions for Insomnia Alter Emotional Brain Responses. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2024; 9:60-69. [PMID: 36958474 DOI: 10.1016/j.bpsc.2023.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 03/08/2023] [Accepted: 03/08/2023] [Indexed: 03/25/2023]
Abstract
BACKGROUND The highest risk of depression is conveyed by insomnia. This risk can be mitigated by sleep interventions. Understanding brain mechanisms underlying increased emotional stability following insomnia treatment could provide insight relevant to the prevention of depression. Here, we investigated how different sleep interventions alter emotion-related brain activity in people with insomnia at high risk of developing depression. METHODS Functional magnetic resonance imaging was used to assess how the amygdala response to emotional stimuli (negative facial expression) in 122 people with insomnia disorder differed from 36 control subjects and how the amygdala response changed after 6 weeks of either no treatment or internet-based circadian rhythm support (CRS), cognitive behavioral therapy for insomnia (CBT-I), or their combination (CBT-I+CRS). Effects on depression, insomnia and anxiety severity were followed up for 1 year. RESULTS Only combined treatment (CBT-I+CRS) significantly increased the amygdala response, compared with no treatment, CBT-I, and CRS. Individual differences in the degree of response enhancement were associated with improvement of insomnia symptoms directly after treatment (r = -0.41, p = .021). Moreover, exclusively CBT-I+CRS enhanced responsiveness of the left insula, which occurred in proportion to the reduction in depressive symptom severity (r = -0.37, p = .042). CONCLUSIONS This functional magnetic resonance imaging study on insomnia treatment, the largest to date, shows that a combined cognitive, behavioral, and circadian intervention enhances emotional brain responsiveness and might improve resilience in patients with insomnia who are at high risk of developing depression.
Collapse
Affiliation(s)
- Jeanne Leerssen
- Department of Sleep and Cognition, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, the Netherlands; Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU University, Amsterdam, the Netherlands.
| | - Moji Aghajani
- Section Forensic Family and Youth Care, Institute of Education and Child Studies, Leiden University, Leiden, the Netherlands; Department of Psychiatry, Amsterdam Neuroscience, Amsterdam UMC, VU University, Amsterdam, the Netherlands
| | - Tom Bresser
- Department of Sleep and Cognition, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, the Netherlands; Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU University, Amsterdam, the Netherlands; Department of Clinical Genetics, Amsterdam Neuroscience, VU University Medical Center, Amsterdam, the Netherlands
| | - Lara Rösler
- Department of Sleep and Cognition, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, the Netherlands
| | - Anderson M Winkler
- National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
| | - Jessica C Foster-Dingley
- Department of Sleep and Cognition, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, the Netherlands
| | - Eus J W Van Someren
- Department of Sleep and Cognition, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, the Netherlands; Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU University, Amsterdam, the Netherlands; Department of Psychiatry, Amsterdam Neuroscience, Amsterdam UMC, VU University, Amsterdam, the Netherlands
| |
Collapse
|
21
|
Bottemanne H, Berkovitch L, Gauld C, Balcerac A, Schmidt L, Mouchabac S, Fossati P. Storm on predictive brain: A neurocomputational account of ketamine antidepressant effect. Neurosci Biobehav Rev 2023; 154:105410. [PMID: 37793581 DOI: 10.1016/j.neubiorev.2023.105410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 08/24/2023] [Accepted: 09/26/2023] [Indexed: 10/06/2023]
Abstract
For the past decade, ketamine, an N-methyl-D-aspartate receptor (NMDAr) antagonist, has been considered a promising treatment for major depressive disorder (MDD). Unlike the delayed effect of monoaminergic treatment, ketamine may produce fast-acting antidepressant effects hours after a single administration at subanesthetic dose. Along with these antidepressant effects, it may also induce transient dissociative (disturbing of the sense of self and reality) symptoms during acute administration which resolve within hours. To understand ketamine's rapid-acting antidepressant effect, several biological hypotheses have been explored, but despite these promising avenues, there is a lack of model to understand the timeframe of antidepressant and dissociative effects of ketamine. In this article, we propose a neurocomputational account of ketamine's antidepressant and dissociative effects based on the Predictive Processing (PP) theory, a framework for cognitive and sensory processing. PP theory suggests that the brain produces top-down predictions to process incoming sensory signals, and generates bottom-up prediction errors (PEs) which are then used to update predictions. This iterative dynamic neural process would relies on N-methyl-D-aspartate (NMDAr) and α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic receptors (AMPAr), two major component of the glutamatergic signaling. Furthermore, it has been suggested that MDD is characterized by over-rigid predictions which cannot be updated by the PEs, leading to miscalibration of hierarchical inference and self-reinforcing negative feedback loops. Based on former empirical studies using behavioral paradigms, neurophysiological recordings, and computational modeling, we suggest that ketamine impairs top-down predictions by blocking NMDA receptors, and enhances presynaptic glutamate release and PEs, producing transient dissociative symptoms and fast-acting antidepressant effect in hours following acute administration. Moreover, we present data showing that ketamine may enhance a delayed neural plasticity pathways through AMPAr potentiation, triggering a prolonged antidepressant effect up to seven days for unique administration. Taken together, the two sides of antidepressant effects with distinct timeframe could constitute the keystone of antidepressant properties of ketamine. These PP disturbances may also participate to a ketamine-induced time window of mental flexibility, which can be used to improve the psychotherapeutic process. Finally, these proposals could be used as a theoretical framework for future research into fast-acting antidepressants, and combination with existing antidepressant and psychotherapy.
Collapse
Affiliation(s)
- Hugo Bottemanne
- Paris Brain Institute - Institut du Cerveau (ICM), UMR 7225 / UMRS 1127, Sorbonne University / CNRS / INSERM, Paris, France; Sorbonne University, Department of Philosophy, Science Norm Democracy Research Unit, UMR, 8011, Paris, France; Sorbonne University, Department of Psychiatry, Pitié-Salpêtrière Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France.
| | - Lucie Berkovitch
- Saclay CEA Centre, Neurospin, Gif-Sur-Yvette Cedex, France; Department of Psychiatry, GHU Paris Psychiatrie et Neurosciences, Service Hospitalo-Universitaire, Paris, France
| | - Christophe Gauld
- Department of Child Psychiatry, CHU de Lyon, F-69000 Lyon, France; Institut des Sciences Cognitives Marc Jeannerod, UMR 5229 CNRS & Université Claude Bernard Lyon 1, F-69000 Lyon, France
| | - Alexander Balcerac
- Paris Brain Institute - Institut du Cerveau (ICM), UMR 7225 / UMRS 1127, Sorbonne University / CNRS / INSERM, Paris, France; Sorbonne University, Department of Neurology, Pitié-Salpêtrière Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Liane Schmidt
- Paris Brain Institute - Institut du Cerveau (ICM), UMR 7225 / UMRS 1127, Sorbonne University / CNRS / INSERM, Paris, France
| | - Stephane Mouchabac
- Paris Brain Institute - Institut du Cerveau (ICM), UMR 7225 / UMRS 1127, Sorbonne University / CNRS / INSERM, Paris, France; Sorbonne University, Department of Psychiatry, Saint-Antoine Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Philippe Fossati
- Paris Brain Institute - Institut du Cerveau (ICM), UMR 7225 / UMRS 1127, Sorbonne University / CNRS / INSERM, Paris, France; Sorbonne University, Department of Philosophy, Science Norm Democracy Research Unit, UMR, 8011, Paris, France
| |
Collapse
|
22
|
Wall MB, Harding R, Zafar R, Rabiner EA, Nutt DJ, Erritzoe D. Neuroimaging in psychedelic drug development: past, present, and future. Mol Psychiatry 2023; 28:3573-3580. [PMID: 37759038 PMCID: PMC10730398 DOI: 10.1038/s41380-023-02271-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 09/13/2023] [Indexed: 09/29/2023]
Abstract
Psychedelic therapy (PT) is an emerging paradigm with great transdiagnostic potential for treating psychiatric disorders, including depression, addiction, post-traumatic stress disorder, and potentially others. 'Classic' serotonergic psychedelics, such as psilocybin and lysergic acid diethylamide (LSD), which have a key locus of action at the 5-HT2A receptor, form the main focus of this movement, but substances including ketamine, 3,4-Methylenedioxymethamphetamine (MDMA) and ibogaine also hold promise. The modern phase of development of these treatment modalities in the early 21st century has occurred concurrently with the wider use of advanced human neuroscientific research methods; principally neuroimaging. This can potentially enable assessment of drug and therapy brain effects with greater precision and quantification than any previous novel development in psychiatric pharmacology. We outline the major trends in existing data and suggest the modern development of PT has benefitted greatly from the use of neuroimaging. Important gaps in existing knowledge are identified, namely: the relationship between acute drug effects and longer-term (clinically-relevant) effects, the precise characterisation of effects at the 5-HT2A receptor and relationships with functional/clinical effects, and the possible impact of these compounds on neuroplasticity. A road-map for future research is laid out, outlining clinical studies which will directly address these three questions, principally using combined Positron Emission Tomography (PET) and Magnetic Resonance Imaging (MRI) methods, plus other adjunct techniques. Multimodal (PET/MRI) studies using modern PET techniques such as the 5-HT2A-selective ligand [11 C]Cimbi-36 (and other ligands sensitive to neuroplasticity changes) alongside MRI measures of brain function would provide a 'molecular-functional-clinical bridge' in understanding. Such results would help to resolve some of these questions and provide a firmer foundation for the ongoing development of PT.
Collapse
Affiliation(s)
- Matthew B Wall
- Invicro, London, UK.
- Faculty of Medicine, Imperial College London, London, UK.
- Centre for Psychedelic research and Neuropsychopharmacology, Imperial College London, London, UK.
| | - Rebecca Harding
- Clinical Psychopharmacology Unit, Faculty of Brain Sciences, University College London, London, UK
| | - Rayyan Zafar
- Faculty of Medicine, Imperial College London, London, UK
- Centre for Psychedelic research and Neuropsychopharmacology, Imperial College London, London, UK
| | | | - David J Nutt
- Faculty of Medicine, Imperial College London, London, UK
- Centre for Psychedelic research and Neuropsychopharmacology, Imperial College London, London, UK
| | - David Erritzoe
- Faculty of Medicine, Imperial College London, London, UK
- Centre for Psychedelic research and Neuropsychopharmacology, Imperial College London, London, UK
| |
Collapse
|
23
|
Dodd S, Norman TR, Eyre HA, Stahl SM, Phillips A, Carvalho AF, Berk M. Psilocybin in neuropsychiatry: a review of its pharmacology, safety, and efficacy. CNS Spectr 2023; 28:416-426. [PMID: 35811423 DOI: 10.1017/s1092852922000888] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Psilocybin is a tryptamine alkaloid found in some mushrooms, especially those of the genus Psilocybe. Psilocybin has four metabolites including the pharmacologically active primary metabolite psilocin, which readily enters the systemic circulation. The psychoactive effects of psilocin are believed to arise due to the partial agonist effects at the 5HT2A receptor. Psilocin also binds to various other receptor subtypes although the actions of psilocin at other receptors are not fully explored. Psilocybin administered at doses sufficient to cause hallucinogenic experiences has been trialed for addictive disorders, anxiety and depression. This review investigates studies of psilocybin and psilocin and assesses the potential for use of psilocybin and a treatment agent in neuropsychiatry. The potential for harm is also assessed, which may limit the use of psilocybin as a pharmacotherapy. Careful evaluation of the number needed to harm vs the number needed to treat will ultimately justify the potential clinical use of psilocybin. This field needs a responsible pathway forward.
Collapse
Affiliation(s)
- Seetal Dodd
- IMPACT - The Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geelong, VIC, Australia
- School of Medicine, Deakin University, Geelong, VIC, Australia
- University Hospital Geelong, Barwon Health, Geelong, VIC, Australia
- Department of Psychiatry, The University of Melbourne, Parkville, VIC, Australia
- Centre for Youth Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Trevor R Norman
- Department of Psychiatry, The University of Melbourne, Parkville, VIC, Australia
| | - Harris A Eyre
- IMPACT - The Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geelong, VIC, Australia
- School of Medicine, Deakin University, Geelong, VIC, Australia
- Neuroscience-Inspired Policy Initiative, Organisation for Economic Co-Operation and Development (OECD), Meadows Mental Health Policy Institute and the PRODEO Institute, Paris, France
- Global Brain Health Institute, University of California, San Francisco (UCSF), San Francisco, CA, USA
- Global Brain Health Institute, Trinity College Dublin, Dublin, Ireland
- Latin American Brain Health (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile
- Brain Health Nexus, Cohen Veterans Network, Boston, MA, USA
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA
| | - Stephen M Stahl
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA
| | - Arnie Phillips
- IMPACT - The Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geelong, VIC, Australia
- School of Medicine, Deakin University, Geelong, VIC, Australia
| | - André F Carvalho
- IMPACT - The Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geelong, VIC, Australia
- School of Medicine, Deakin University, Geelong, VIC, Australia
| | - Michael Berk
- IMPACT - The Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geelong, VIC, Australia
- School of Medicine, Deakin University, Geelong, VIC, Australia
- University Hospital Geelong, Barwon Health, Geelong, VIC, Australia
- Department of Psychiatry, The University of Melbourne, Parkville, VIC, Australia
- Centre for Youth Mental Health, The University of Melbourne, Parkville, VIC, Australia
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
24
|
Wall MB, Lam C, Ertl N, Kaelen M, Roseman L, Nutt DJ, Carhart-Harris RL. Increased low-frequency brain responses to music after psilocybin therapy for depression. J Affect Disord 2023; 333:321-330. [PMID: 37094657 DOI: 10.1016/j.jad.2023.04.081] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 03/27/2023] [Accepted: 04/18/2023] [Indexed: 04/26/2023]
Abstract
BACKGROUND Psychedelic-assisted psychotherapy with psilocybin is an emerging therapy with great promise for depression, and modern psychedelic therapy (PT) methods incorporate music as a key element. Music is an effective emotional/hedonic stimulus that could also be useful in assessing changes in emotional responsiveness following PT. METHODS Brain responses to music were assessed before and after PT using functional Magnetic Resonance Imaging (fMRI) and ALFF (Amplitude of Low Frequency Fluctuations) analysis methods. Nineteen patients with treatment-resistant depression underwent two treatment sessions involving administration of psilocybin, with MRI data acquired one week prior and the day after completion of psilocybin dosing sessions. RESULTS Comparison of music-listening and resting-state scans revealed significantly greater ALFF in bilateral superior temporal cortex for the post-treatment music scan, and in the right ventral occipital lobe for the post-treatment resting-state scan. ROI analyses of these clusters revealed a significant effect of treatment in the superior temporal lobe for the music scan only. Voxelwise comparison of treatment effects showed relative increases for the music scan in the bilateral superior temporal lobes and supramarginal gyrus, and relative decreases in the medial frontal lobes for the resting-state scan. ALFF in these music-related clusters was significantly correlated with intensity of subjective effects felt during the dosing sessions. LIMITATIONS Open-label trial. Relatively small sample size. CONCLUSIONS These data suggest an effect of PT on the brain's response to music, implying an elevated responsiveness to music after psilocybin therapy that was related to subjective drug effects felt during dosing.
Collapse
Affiliation(s)
- Matthew B Wall
- Invicro London, Hammersmith Hospital, UK; Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, UK; Clinical Psychopharmacology Unit, University College London, UK.
| | - Cynthia Lam
- Division of Brain Sciences, Faculty of Medicine, Imperial College London, UK; Department of Clinical Neurosciences, University of Cambridge, UK
| | - Natalie Ertl
- Invicro London, Hammersmith Hospital, UK; Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, UK
| | - Mendel Kaelen
- Centre for Psychedelic Research, Imperial College London, UK
| | - Leor Roseman
- Centre for Psychedelic Research, Imperial College London, UK
| | - David J Nutt
- Centre for Psychedelic Research, Imperial College London, UK
| | - Robin L Carhart-Harris
- Centre for Psychedelic Research, Imperial College London, UK; Psychedelics Division - Neuroscape, University of California San Francisco, USA
| |
Collapse
|
25
|
Rossi GN, Rocha JM, Osório FL, Bouso JC, Ona G, Silveira GDO, Yonamine M, Bertozi G, Crevelin EJ, Queiroz ME, Crippa JAS, Hallak JEC, Dos Santos RG. Interactive Effects of Ayahuasca and Cannabidiol in Social Cognition in Healthy Volunteers: A Pilot, Proof-of-Concept, Feasibility, Randomized-Controlled Trial. J Clin Psychopharmacol 2023; Publish Ahead of Print:00004714-990000000-00152. [PMID: 37335211 DOI: 10.1097/jcp.0000000000001691] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
BACKGROUND Serotonergic hallucinogens and cannabinoids may alter the recognition of emotions in facial expressions (REFE). Cannabidiol (CBD) attenuates the psychoactive effects of the cannabinoid-1 agonist tetrahydrocannabinol. Ayahuasca is a dimethyltryptamine-containing hallucinogenic decoction. It is unknown if CBD may moderate and attenuate the effects of ayahuasca on REFE. PROCEDURES Seventeen healthy volunteers participated in a 1-week preliminary parallel-arm, randomized controlled trial for 18 months. Volunteers received a placebo or 600 mg of oral CBD followed by oral ayahuasca (1 mL/kg) 90 minutes later. Primary outcomes included REFE and empathy tasks (coprimary outcome). Tasks were performed at baseline and 6.5 hours, 1 and 7 days after the interventions. Secondary outcome measures included subjective effects, tolerability, and biochemical assessments. RESULTS Significant reductions (all P values <0.05) only in reaction times were observed in the 2 tasks in both groups, without between-group differences. Furthermore, significant reductions in anxiety, sedation, cognitive deterioration, and discomfort were observed in both groups, without between-group differences. Ayahuasca, with or without CBD, was well tolerated, producing mainly nausea and gastrointestinal discomfort. No clinically significant effects were observed on cardiovascular measurements and liver enzymes. CONCLUSIONS There was no evidence of interactive effects between ayahuasca and CBD. The safety of separate and concomitant drug intake suggests that both drugs could be applied to clinical populations with anxiety disorders and in further trials with larger samples to confirm findings.
Collapse
Affiliation(s)
- Giordano Novak Rossi
- From the Department of Neurosciences and Behavior, Ribeirão Preto Medical School, University of São Paulo
| | - Juliana Mendes Rocha
- From the Department of Neurosciences and Behavior, Ribeirão Preto Medical School, University of São Paulo
| | | | | | | | | | - Mauricio Yonamine
- School of Pharmaceutical Sciences, University of Sao Paulo, São Paulo
| | | | | | | | - José Alexandre S Crippa
- From the Department of Neurosciences and Behavior, Ribeirão Preto Medical School, University of São Paulo
| | | | | |
Collapse
|
26
|
Zafar R, Siegel M, Harding R, Barba T, Agnorelli C, Suseelan S, Roseman L, Wall M, Nutt DJ, Erritzoe D. Psychedelic therapy in the treatment of addiction: the past, present and future. Front Psychiatry 2023; 14:1183740. [PMID: 37377473 PMCID: PMC10291338 DOI: 10.3389/fpsyt.2023.1183740] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/15/2023] [Indexed: 06/29/2023] Open
Abstract
Psychedelic therapy has witnessed a resurgence in interest in the last decade from the scientific and medical communities with evidence now building for its safety and efficacy in treating a range of psychiatric disorders including addiction. In this review we will chart the research investigating the role of these interventions in individuals with addiction beginning with an overview of the current socioeconomic impact of addiction, treatment options, and outcomes. We will start by examining historical studies from the first psychedelic research era of the mid-late 1900s, followed by an overview of the available real-world evidence gathered from naturalistic, observational, and survey-based studies. We will then cover modern-day clinical trials of psychedelic therapies in addiction from first-in-human to phase II clinical trials. Finally, we will provide an overview of the different translational human neuropsychopharmacology techniques, including functional magnetic resonance imaging (fMRI) and positron emission tomography (PET), that can be applied to foster a mechanistic understanding of therapeutic mechanisms. A more granular understanding of the treatment effects of psychedelics will facilitate the optimisation of the psychedelic therapy drug development landscape, and ultimately improve patient outcomes.
Collapse
Affiliation(s)
- Rayyan Zafar
- Centre for Psychedelic Research, Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom
- Neuropsychopharmacology Unit, Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Maxim Siegel
- Centre for Psychedelic Research, Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom
- Neuropsychopharmacology Unit, Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Rebecca Harding
- Clinical Psychopharmacology Unit, University College London, London, United Kingdom
| | - Tommaso Barba
- Centre for Psychedelic Research, Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom
- Neuropsychopharmacology Unit, Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Claudio Agnorelli
- Centre for Psychedelic Research, Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom
- Neuropsychopharmacology Unit, Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Shayam Suseelan
- Centre for Psychedelic Research, Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom
- Neuropsychopharmacology Unit, Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Leor Roseman
- Centre for Psychedelic Research, Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom
- Neuropsychopharmacology Unit, Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Matthew Wall
- Centre for Psychedelic Research, Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom
- Neuropsychopharmacology Unit, Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom
- Invicro, London, United Kingdom
| | - David John Nutt
- Centre for Psychedelic Research, Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom
- Neuropsychopharmacology Unit, Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - David Erritzoe
- Centre for Psychedelic Research, Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom
- Neuropsychopharmacology Unit, Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom
| |
Collapse
|
27
|
Kotoula V, Evans JW, Punturieri C, Johnson SC, Zarate CA. Functional MRI markers for treatment-resistant depression: Insights and challenges. PROGRESS IN BRAIN RESEARCH 2023; 278:117-148. [PMID: 37414490 PMCID: PMC10501192 DOI: 10.1016/bs.pbr.2023.04.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
Imaging studies of treatment-resistant depression (TRD) have examined brain activity, structure, and metabolite concentrations to identify critical areas of investigation in TRD as well as potential targets for treatment interventions. This chapter provides an overview of the main findings of studies using three imaging modalities: structural magnetic resonance imaging (MRI), functional MRI (fMRI), and magnetic resonance spectroscopy (MRS). Decreased connectivity and metabolite concentrations in frontal brain areas appear to characterize TRD, although results are not consistent across studies. Treatment interventions, including rapid-acting antidepressants and transcranial magnetic stimulation (TMS), have shown some efficacy in reversing these changes while alleviating depressive symptoms. However, comparatively few TRD imaging studies have been conducted, and these studies often have relatively small sample sizes or employ different methods to examine a variety of brain areas, making it difficult to draw firm conclusions from imaging studies about the pathophysiology of TRD. Larger studies with more unified hypotheses, as well as data sharing, could help TRD research and spur better characterization of the illness, providing critical new targets for treatment intervention.
Collapse
Affiliation(s)
- Vasileia Kotoula
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, Bethesda, MD, United States.
| | - Jennifer W Evans
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, Bethesda, MD, United States
| | - Claire Punturieri
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, Bethesda, MD, United States
| | - Sara C Johnson
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, Bethesda, MD, United States
| | - Carlos A Zarate
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, Bethesda, MD, United States
| |
Collapse
|
28
|
Abstract
There is increasing interest in exploring the therapeutic potential of psychedelics in treatment-resistant depression (TRD). Classic psychedelics (such as psilocybin, LSD, ayahuasca/DMT), and atypical psychedelics (such as ketamine) have been studied in TRD. The evidence for the classic psychedelics TRD is limited at the present time; early studies however show promising results. There is also recognition that psychedelic research may be subject to a "hype bubble" at the present time. Future studies focused on delineating necessary ingredients of psychedelic treatments and the neurobiological basis of their effects, will help pave the way for the clinical use of these compounds.
Collapse
Affiliation(s)
- Shubham Kamal
- Department of Psychiatry, School of Medicine, Yale University, 300 George Street, Suite 901, New Haven, CT 06511, USA
| | - Manish Kumar Jha
- Department of Psychiatry, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9119, USA
| | - Rajiv Radhakrishnan
- Department of Psychiatry, School of Medicine, Yale University, 300 George Street, Suite 901, New Haven, CT 06511, USA; Department of Radiology and Biomedical Imaging, New Haven, CT 06511, USA.
| |
Collapse
|
29
|
Liu J, Wang Y, Xia K, Wu J, Zheng D, Cai A, Yan H, Su R. Acute psilocybin increased cortical activities in rats. Front Neurosci 2023; 17:1168911. [PMID: 37287797 PMCID: PMC10243528 DOI: 10.3389/fnins.2023.1168911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 05/04/2023] [Indexed: 06/09/2023] Open
Abstract
Psilocybin, a naturally occurring hallucinogenic component of magic mushrooms, has significant psychoactive effects in both humans and rodents. But the underlying mechanisms are not fully understood. Blood-oxygenation level-dependent (BOLD) functional magnetic resonance imaging (fMRI) is a useful tool in many preclinical and clinical trials to investigate psilocybin-induced changes of brain activity and functional connectivity (FC) due to its noninvasive nature and widespread availability. However, fMRI effects of psilocybin on rats have not been carefully investigated. This study aimed to explore how psilocybin affects resting-state brain activity and FC, through a combination of BOLD fMRI and immunofluorescence (IF) of EGR1, an immediate early gene (IEG) closely related to depressive symptoms. Ten minutes after psilocybin hydrochloride injection (2.0 mg/kg, i.p.), positive brain activities were observed in the frontal, temporal, and parietal cortex (including the cingulate cortex and retrosplenial cortex), hippocampus, and striatum. And a region-of-interest (ROI) -wise FC analysis matrix suggested increased interconnectivity of several regions, such as the cingulate cortex, dorsal striatum, prelimbic, and limbic regions. Further seed-based analyses revealed increased FC of cingulate cortex within the cortical and striatal areas. Consistently, acute psilocybin increased the EGR1 level throughout the brain, indicating a consistent activation thought the cortical and striatal areas. In conclusion, the psilocybin-induced hyperactive state of rats is congruent to that of humans, and may be responsible for its pharmacological effects.
Collapse
Affiliation(s)
- Junhong Liu
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Yuanyuan Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, China
- Nanjing University of Chinese Medicine, Nanjing, China
| | - Ke Xia
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Jinfeng Wu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Center for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Danhao Zheng
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Center for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Aoling Cai
- The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou Second People's Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou, China
| | - Haitao Yan
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Ruibin Su
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| |
Collapse
|
30
|
Zeifman RJ, Wagner AC, Monson CM, Carhart-Harris RL. How does psilocybin therapy work? An exploration of experiential avoidance as a putative mechanism of change. J Affect Disord 2023; 334:100-112. [PMID: 37146908 DOI: 10.1016/j.jad.2023.04.105] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 04/17/2023] [Accepted: 04/28/2023] [Indexed: 05/07/2023]
Abstract
BACKGROUND Psilocybin therapy is receiving attention as a mental health intervention with transdiagnostic potential. In line with psychotherapeutic research, qualitative research has highlighted the role of reductions in experiential avoidance (and increases in connectedness) within psilocybin therapy. However, no quantitative research has examined experiential avoidance as a mechanism underlying psilocybin therapy's therapeutic effects. METHOD Data was used from a double-blind randomized controlled trial that compared psilocybin therapy (two 25 mg psilocybin session plus daily placebo for six weeks) with escitalopram (two 1 mg psilocybin sessions plus 10-20 mg daily escitalopram for six weeks) among individuals with major depressive disorder (N = 59). All participants received psychological support. Experiential avoidance, connectedness, and treatment outcomes were measured at pre-treatment and at a 6 week primary endpoint. Acute psilocybin experiences and psychological insight were also measured. RESULTS With psilocybin therapy, but not escitalopram, improvements in mental health outcomes (i.e., well-being, depression severity, suicidal ideation, and trait anxiety) occurred via reductions in experiential avoidance. Exploratory analyses suggested that improvements in mental health (except for suicidal ideation) via reduction in experiential avoidance were serially mediated through increases in connectedness. Additionally, experiences of ego dissolution and psychological insight predicted reductions in experiential avoidance following psilocybin therapy. LIMITATIONS Difficulties inferring temporal causality, maintaining blindness to condition, and reliance upon self-report. CONCLUSIONS These results provide support for the role of reduced experiential avoidance as a putative mechanism underlying psilocybin therapy's positive therapeutic outcomes. The present findings may help to tailor, refine, and optimize psilocybin therapy and its delivery.
Collapse
Affiliation(s)
- Richard J Zeifman
- Department of Psychology, Toronto Metropolitan University, Toronto, Canada; Centre for Psychedelic Research, Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, UK; NYU Langone Centre for Psychedelic Medicine, Department of Psychiatry, NYU Grossman School of Medicine, New York, USA.
| | - Anne C Wagner
- Department of Psychology, Toronto Metropolitan University, Toronto, Canada; Remedy Institute, Toronto, Canada
| | - Candice M Monson
- Department of Psychology, Toronto Metropolitan University, Toronto, Canada
| | - Robin L Carhart-Harris
- Centre for Psychedelic Research, Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, UK; Psychedelics Division, Neuroscape, University of California, San Francisco, USA
| |
Collapse
|
31
|
Zhou X, Yi W, Zhi Y, Yu J, Lu D, Luo Z, Yuan L, Chen L, Xu Z, Xu D. Stress-Activated Protein Kinase JNK Modulates Depression-like Behaviors in Mice. Mol Neurobiol 2023; 60:2367-2378. [PMID: 36650421 DOI: 10.1007/s12035-023-03209-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 01/04/2023] [Indexed: 01/19/2023]
Abstract
Stress is considered as a major cause of depression. C-Jun N-terminal kinase (JNK) is a member of the stress-induced mitogen activated protein (MAP) kinase family which is often activated through phosphorylation. Clinical studies and animal experiments have found that abnormal phosphorylation/activation of JNK exists in the occurrence of various psychiatric diseases. Recently, several studies linked JNK kinase activity to depression. However, whether excessive activation of JNK activity is directly responsible for the occurrence of depression and the underlying mechanisms remain unclear. Here, we constructed a conditional transgenic mouse which is specifically expressing MKK7-JNK1 (CAJNK1) in the central nervous system. CAJNK1 mice showed activation of JNK and lead to depression-like behavior in mice. Transcriptome analysis indicates reduced expression of synaptic-associated genes in CAJNK1 mice brains. Consistently, we found abnormal dendritic spine development and PSD95 downregulation in CAJNK1 hippocampal neurons. Our studies provide compelling evidence that activation of JNK as an intrinsic factor leading to depression-like behavior in mice provides direct clues for targeting the JNK activity as a potential therapeutic strategy for depression.
Collapse
Affiliation(s)
- Xiaokun Zhou
- Fujian Key Laboratory of Molecular Neurology, Institute of Neuroscience, Fujian Medical University, Fuzhou, 350005, China
- College of Biological Science and Engineering, Institute of Life Sciences, Fuzhou University, Fuzhou, 350108, China
| | - Wenxiang Yi
- Fujian Key Laboratory of Molecular Neurology, Institute of Neuroscience, Fujian Medical University, Fuzhou, 350005, China
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350108, China
| | - Yiqiang Zhi
- Fujian Key Laboratory of Molecular Neurology, Institute of Neuroscience, Fujian Medical University, Fuzhou, 350005, China
- College of Biological Science and Engineering, Institute of Life Sciences, Fuzhou University, Fuzhou, 350108, China
| | - Jurui Yu
- Fujian Key Laboratory of Molecular Neurology, Institute of Neuroscience, Fujian Medical University, Fuzhou, 350005, China
- College of Biological Science and Engineering, Institute of Life Sciences, Fuzhou University, Fuzhou, 350108, China
| | - Danping Lu
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zhousong Luo
- Fujian Key Laboratory of Molecular Neurology, Institute of Neuroscience, Fujian Medical University, Fuzhou, 350005, China
| | - Ling Yuan
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, 410028, China
| | - Liyu Chen
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zhiheng Xu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Dan Xu
- Fujian Key Laboratory of Molecular Neurology, Institute of Neuroscience, Fujian Medical University, Fuzhou, 350005, China.
| |
Collapse
|
32
|
Effinger DP, Quadir SG, Ramage MC, Cone MG, Herman MA. Sex-specific effects of psychedelic drug exposure on central amygdala reactivity and behavioral responding. Transl Psychiatry 2023; 13:119. [PMID: 37031219 PMCID: PMC10082812 DOI: 10.1038/s41398-023-02414-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 03/22/2023] [Accepted: 03/24/2023] [Indexed: 04/10/2023] Open
Abstract
Psilocybin and its active metabolite psilocin have been shown to elicit rapid and long-lasting symptom improvements in a variety of affective psychiatric illnesses. However, the region-specific alterations underlying these therapeutic effects remain relatively unknown. The central amygdala (CeA) is a primary output region within the extended amygdala that is dysregulated in affective psychiatric disorders. Here, we measured CeA activity using the activity marker c-Fos and CeA reactivity using fiber photometry paired with an aversive air-puff stimulus. We found that psilocin administration acutely increased CeA activity in both males and females and increased stimulus specific CeA reactivity in females, but not males. In contrast, psilocin produced time-dependent decreases in reactivity in males, but not in females, as early as 2 days and lasting to 28 days post administration. We also measured behavioral responses to the air-puff stimulus and found sex-dependent changes in threat responding but not exploratory behavior or general locomotion. Repeated presentations of the auditory component of the air-puff were also performed and sex-specific effects of psilocin on CeA reactivity to the auditory-alone stimulus were also observed. This study provides new evidence that a single dose of psilocin produces sex-specific, time-dependent, and enduring changes in CeA reactivity and behavioral responding to specific components of an aversive stimulus.
Collapse
Affiliation(s)
- D P Effinger
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - S G Quadir
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - M C Ramage
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - M G Cone
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - M A Herman
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
33
|
Kelly DF, Heinzerling K, Sharma A, Gowrinathan S, Sergi K, Mallari RJ. Psychedelic-Assisted Therapy and Psychedelic Science: A Review and Perspective on Opportunities in Neurosurgery and Neuro-Oncology. Neurosurgery 2023; 92:680-694. [PMID: 36512813 PMCID: PMC9988324 DOI: 10.1227/neu.0000000000002275] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 09/23/2022] [Indexed: 12/14/2022] Open
Abstract
After a decades-long pause, psychedelics are again being intensely investigated for treating a wide range of neuropsychiatric ailments including depression, anxiety, addiction, post-traumatic stress disorder, anorexia, and chronic pain syndromes. The classic serotonergic psychedelics psilocybin and lysergic acid diethylamide and nonclassic psychedelics 3,4-methylenedioxymethamphetamine and ketamine are increasingly appreciated as neuroplastogens given their potential to fundamentally alter mood and behavior well beyond the time window of measurable exposure. Imaging studies with psychedelics are also helping advance our understanding of neural networks and connectomics. This resurgence in psychedelic science and psychedelic-assisted therapy has potential significance for the fields of neurosurgery and neuro-oncology and their diverse and challenging patients, many of whom continue to have mental health issues and poor quality of life despite receiving state-of-the-art care. In this study, we review recent and ongoing clinical trials, the set and setting model of psychedelic-assisted therapy, potential risks and adverse events, proposed mechanisms of action, and provide a perspective on how the safe and evidence-based use of psychedelics could potentially benefit many patients, including those with brain tumors, pain syndromes, ruminative disorders, stroke, SAH, TBI, and movement disorders. By leveraging psychedelics' neuroplastic potential to rehabilitate the mind and brain, novel treatments may be possible for many of these patient populations, in some instances working synergistically with current treatments and in some using subpsychedelic doses that do not require mind-altering effects for efficacy. This review aims to encourage broader multidisciplinary collaboration across the neurosciences to explore and help realize the transdiagnostic healing potential of psychedelics.
Collapse
Affiliation(s)
- Daniel F. Kelly
- Treatment & Research in Psychedelics Program, Pacific Neuroscience Institute, Santa Monica, California, USA
- Saint John's Cancer Institute, Providence Saint John's Health Center, Santa Monica, California, USA
| | - Keith Heinzerling
- Treatment & Research in Psychedelics Program, Pacific Neuroscience Institute, Santa Monica, California, USA
- Saint John's Cancer Institute, Providence Saint John's Health Center, Santa Monica, California, USA
| | - Akanksha Sharma
- Treatment & Research in Psychedelics Program, Pacific Neuroscience Institute, Santa Monica, California, USA
- Saint John's Cancer Institute, Providence Saint John's Health Center, Santa Monica, California, USA
| | - Shanthi Gowrinathan
- Treatment & Research in Psychedelics Program, Pacific Neuroscience Institute, Santa Monica, California, USA
- Saint John's Cancer Institute, Providence Saint John's Health Center, Santa Monica, California, USA
| | - Karina Sergi
- Treatment & Research in Psychedelics Program, Pacific Neuroscience Institute, Santa Monica, California, USA
| | - Regin Jay Mallari
- Treatment & Research in Psychedelics Program, Pacific Neuroscience Institute, Santa Monica, California, USA
| |
Collapse
|
34
|
Wulff AB, Nichols CD, Thompson SM. Preclinical perspectives on the mechanisms underlying the therapeutic actions of psilocybin in psychiatric disorders. Neuropharmacology 2023; 231:109504. [PMID: 36921889 DOI: 10.1016/j.neuropharm.2023.109504] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/14/2023] [Accepted: 03/11/2023] [Indexed: 03/14/2023]
Abstract
Psychedelic compounds have shown extraordinary potential in treating a wide range of neuropsychiatric disorders. Psilocybin, for example, has now been shown in several clinical trials to induce a rapid (within days) and persistent (3-12 months) improvement in human treatment-resistant depression and other neuropsychiatric conditions. Here we review the preclinical models and experimental approaches that have been used to study the neurobiological actions of psychedelic drugs. We further summarize the insights these studies have provided into the possible mechanisms underlying the induction of their therapeutic actions, including the receptors to which psychedelics bind and the second messenger signaling cascades that they activate. We also discuss potential biological processes that psychedelics may alter to produce the lasting amelioration of symptoms, including improvements in synaptic structure and function and suppression of inflammation. Improved mechanistic understanding of psychedelic drug actions will aid in the advancement of these promising new medicines.
Collapse
Affiliation(s)
- Andreas B Wulff
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA; Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Charles D Nichols
- Department of Pharmacology and Experimental Therapeutics, LSU Health Sciences Center, New Orleans, LA, 70112, USA
| | - Scott M Thompson
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA; Department of Psychiatry, University of Colorado School of Medicine, Aurora, CO, 80045, USA.
| |
Collapse
|
35
|
Ponomarenko P, Seragnoli F, Calder A, Oehen P, Hasler G. Can psychedelics enhance group psychotherapy? A discussion on the therapeutic factors. J Psychopharmacol 2023:2698811231155117. [PMID: 36855289 DOI: 10.1177/02698811231155117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
BACKGROUND Despite the growth of psychedelic research, psychedelic-assisted group psychotherapy (PAGP) has received little attention in comparison to individual psychedelic-assisted psychotherapy models. METHODS In this article, we aim to discuss the therapeutic potential of PAGP, as well as outline existing models and the challenges of this approach. Using Irvin Yalom's 11 therapeutic factors of group therapy as a basic framework, we analyse current literature from clinical studies and neurobiological research relative to the topic of PAGP. RESULTS We argue that combining psychedelic substances and group psychotherapy may prove beneficial for increasing group connectedness and interpersonal learning, potentially enhancing prosocial behaviour with direct opportunities to practice newly acquired knowledge about previously maladaptive behavioural patterns. Challenges regarding this approach include a more rigid therapy structure and potential loss of openness from patients, which may be ameliorated by adequate therapeutic training. CONCLUSION We hope for this article to support clinical research on PAGP by presenting a therapeutic framework and outlining its mechanisms and challenges.
Collapse
Affiliation(s)
| | | | - Abigail Calder
- Department of Medicine, University of Freiburg, Villars-sur-Glâne, Switzerland
| | - Peter Oehen
- Private Practice for Psychiatry and Psychotherapy, Biberist, Switzerland
| | - Gregor Hasler
- Department of Medicine, University of Freiburg, Villars-sur-Glâne, Switzerland
| |
Collapse
|
36
|
Glazer J, Murray CH, Nusslock R, Lee R, de Wit H. Low doses of lysergic acid diethylamide (LSD) increase reward-related brain activity. Neuropsychopharmacology 2023; 48:418-426. [PMID: 36284231 PMCID: PMC9751270 DOI: 10.1038/s41386-022-01479-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 12/26/2022]
Abstract
Renewed interest in classic psychedelics as treatments for psychiatric disorders warrants a deeper understanding of their neural mechanisms. Single, high doses of psychedelic drugs have shown promise in treating depressive disorders, perhaps by reversing deficits in reward processing in the brain. In addition, there are anecdotal reports that repeated ingestion of low doses of LSD, or "microdosing", improve mood, cognition, and feelings of wellbeing. However, the effects of low doses of classic psychedelics on reward processing have not been studied. The current study examined the effects of two single, low doses of LSD compared to placebo on measures of reward processing. Eighteen healthy adults completed three sessions in which they received placebo (LSD-0), 13 μg LSD (LSD-13) and 26 μg LSD (LSD-26) in a within-subject, double-blind design. Neural activity was recorded while participants completed the electrophysiological monetary incentive delay task. Event-related potentials were measured during feedback processing (Reward-Positivity: RewP, Feedback-P3: FB-P3, and Late-Positive Potential: LPP). Compared to placebo, LSD-13 increased RewP and LPP amplitudes for reward (vs. neutral) feedback, and LSD-13 and LSD-26 increased FB-P3 amplitudes for positive (vs. negative) feedback. These effects were unassociated with most subjective measures of drug effects. Thus, single, low doses of LSD (vs. placebo) increased three reward-related ERP components reflecting increased hedonic (RewP), motivational (FB-P3), and affective processing of feedback (LPP). These results constitute the first evidence that low doses of LSD increase reward-related brain activity in humans. These findings may have important implications for the treatment of depressive disorders.
Collapse
Affiliation(s)
- James Glazer
- Department of Psychology, Northwestern University, 2029 Sheridan Road Evanston, Chicago, IL, 60208, USA
| | - Conor H Murray
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, 5841 S Maryland Ave, Chicago, IL, 60637, USA
| | - Robin Nusslock
- Department of Psychology, Northwestern University, 2029 Sheridan Road Evanston, Chicago, IL, 60208, USA
| | - Royce Lee
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, 5841 S Maryland Ave, Chicago, IL, 60637, USA
| | - Harriet de Wit
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, 5841 S Maryland Ave, Chicago, IL, 60637, USA.
| |
Collapse
|
37
|
Rudin D, Areesanan A, Liechti ME, Gründemann C. Classic psychedelics do not affect T cell and monocyte immune responses. Front Psychiatry 2023; 14:1042440. [PMID: 36741125 PMCID: PMC9895091 DOI: 10.3389/fpsyt.2023.1042440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 01/06/2023] [Indexed: 01/22/2023] Open
Abstract
INTRODUCTION Classic psychedelics have been shown to exert therapeutic potential for the treatment of various psychiatric disorders, neuropsychiatric diseases, and neuronal damage. Besides their psychopharmacological activity, psychedelics have been reported to modulate immune functions. There has thus far been a sparse exploration of the direct immune-modulating effect of psychedelics on human immune cells in vitro. Since T cells are key mediators of several immune functions, inhibition of their function would increase the risk of infections. METHODS We investigated the effect of the classic psychedelics lysergic acid diethylamide (LSD), psilocin, N,N-dimethyltryptamine (DMT), and mescaline on the proliferation and stimulated cytokine release of primary human T lymphocytes and on the stimulated NF-κB induction of monocytes. RESULTS We did not observe any relevant direct immune-modulatory effects of the tested classic psychedelics in either cell line. DISCUSSION We concluded that LSD, psilocin, DMT, or mescaline did not directly stimulate the proliferation or cytokine secretion of primary human T lymphocytes or stimulate NF-κB induction of monocytes. Our findings support the future safe use of classic psychedelics in assisted psychotherapy in patients with life-threatening diseases where immune suppression and diminished immune function would be detrimental.
Collapse
Affiliation(s)
- Deborah Rudin
- Clinical Pharmacology and Toxicology, Department of Biomedicine, University Hospital Basel, Basel, Switzerland.,Clinical Pharmacology and Toxicology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Alexander Areesanan
- Translational Complementary Medicine, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Matthias E Liechti
- Clinical Pharmacology and Toxicology, Department of Biomedicine, University Hospital Basel, Basel, Switzerland.,Clinical Pharmacology and Toxicology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Carsten Gründemann
- Translational Complementary Medicine, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| |
Collapse
|
38
|
Shukuroglou M, Roseman L, Wall M, Nutt D, Kaelen M, Carhart-Harris R. Changes in music-evoked emotion and ventral striatal functional connectivity after psilocybin therapy for depression. J Psychopharmacol 2023; 37:70-79. [PMID: 36433778 PMCID: PMC9834320 DOI: 10.1177/02698811221125354] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Music listening is a staple and valued component of psychedelic therapy, and previous work has shown that psychedelics can acutely enhance music-evoked emotion. AIMS The present study sought to examine subjective responses to music before and after psilocybin therapy for treatment-resistant depression, while functional magnetic resonance imaging (fMRI) data was acquired. METHODS Nineteen patients with treatment-resistant depression received a low oral dose (10 mg) of psilocybin, and a high dose (25 mg) 1 week later. fMRI was performed 1 week prior to the first dosing session and 1 day after the second. Two scans were conducted on each day: one with music and one without. Visual analogue scale ratings of music-evoked 'pleasure' plus ratings of other evoked emotions (21-item Geneva Emotional Music Scale) were completed after each scan. Given its role in musical reward, the nucleus accumbens (NAc) was chosen as region of interest for functional connectivity (FC) analyses. Effects of drug (vs placebo) and music (vs no music) on subjective and FC outcomes were assessed. Anhedonia symptoms were assessed pre- and post-treatment (Snaith-Hamilton Pleasure Scale). RESULTS Results revealed a significant increase in music-evoked emotion following treatment with psilocybin that correlated with post-treatment reductions in anhedonia. A post-treatment reduction in NAc FC with areas resembling the default mode network was observed during music listening (vs no music). CONCLUSION These results are consistent with current thinking on the role of psychedelics in enhancing music-evoked pleasure and provide some new insight into correlative brain mechanisms.
Collapse
Affiliation(s)
- Melissa Shukuroglou
- Independent Researcher,Melissa Shukuroglou, Centre for Psychedelic Research, Department of Medicine, Imperial College London, Du Cane Road, Hammersmith Campus, London W12 0NN, UK.
| | - Leor Roseman
- Centre for Psychedelic Research, Department of Medicine, Imperial College London, UK,Computational, Cognitive and Clinical Neuroscience Laboratory (C3NL), Department of Medicine, Imperial College London, UK
| | - Matt Wall
- Centre for Psychedelic Research, Department of Medicine, Imperial College London, UK,Invicro, London, UK,Clinical Psychopharmacology Unit, UCL, UK
| | - David Nutt
- Centre for Psychedelic Research, Department of Medicine, Imperial College London, UK
| | - Mendel Kaelen
- Computational, Cognitive and Clinical Neuroscience Laboratory (C3NL), Department of Medicine, Imperial College London, UK,Wavepaths Ltd, London, UK
| | - Robin Carhart-Harris
- Centre for Psychedelic Research, Department of Medicine, Imperial College London, UK
| |
Collapse
|
39
|
Kustubayeva A, Eliassen J, Matthews G, Nelson E. FMRI study of implicit emotional face processing in patients with MDD with melancholic subtype. Front Hum Neurosci 2023; 17:1029789. [PMID: 36923587 PMCID: PMC10009191 DOI: 10.3389/fnhum.2023.1029789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 01/30/2023] [Indexed: 03/02/2023] Open
Abstract
Introduction The accurate perception of facial expressions plays a vital role in daily life, allowing us to select appropriate responses in social situations. Understanding the neuronal basis of altered emotional face processing in patients with major depressive disorder (MDD) may lead to the appropriate choice of individual interventions to help patients maintain social functioning during depressive episodes. Inconsistencies in neuroimaging studies of emotional face processing are caused by heterogeneity in neurovegetative symptoms of depressive subtypes. The aim of this study was to investigate brain activation differences during implicit perception of faces with negative and positive emotions between healthy participants and patients with melancholic subtype of MDD. The neurobiological correlates of sex differences of MDD patients were also examined. Methods Thirty patients diagnosed with MDD and 21 healthy volunteers were studied using fMRI while performing an emotional face perception task. Results Comparing general face activation irrespective of emotional content, the intensity of BOLD signal was significantly decreased in the left thalamus, right supramarginal gyrus, right and left superior frontal gyrus, right middle frontal gyrus, and left fusiform gyrus in patients with melancholic depression compared to healthy participants. We observed only limited mood-congruence in response to faces of differing emotional valence. Brain activation in the middle temporal gyrus was significantly increased in response to fearful faces in comparison to happy faces in MDD patients. Elevated activation was observed in the right cingulate for happy and fearful faces, in precuneus for happy faces, and left posterior cingulate cortex for all faces in depressed women compared to men. The Inventory for Depressive Symptomatology (IDS) score was inversely correlated with activation in the left subgenual gyrus/left rectal gyrus for sad, neutral, and fearful faces in women in the MDD group. Patients with melancholic features performed similarly to controls during implicit emotional processing but showed reduced activation. Discussion and conclusion This finding suggests that melancholic patients compensate for reduced brain activation when interpreting emotional content in order to perform similarly to controls. Overall, frontal hypoactivation in response to implicit emotional stimuli appeared to be the most robust feature of melancholic depression.
Collapse
Affiliation(s)
- Almira Kustubayeva
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, College of Medicine, Cincinnati, OH, United States.,Center for Cognitive Neuroscience, Department of Biophysics, Biomedicine, and Neuroscience, Al-Farabi Kazakh National University, Almaty, Kazakhstan.,National Centre for Neurosurgery, Astana, Kazakhstan
| | - James Eliassen
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, College of Medicine, Cincinnati, OH, United States.,Robert Bosch Automotive Steering, Florence, KY, United States
| | - Gerald Matthews
- Department of Psychology, George Mason University, Fairfax, VA, United States
| | - Erik Nelson
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, College of Medicine, Cincinnati, OH, United States
| |
Collapse
|
40
|
Moujaes F, Preller KH, Ji JL, Murray JD, Berkovitch L, Vollenweider FX, Anticevic A. Towards mapping neuro-behavioral heterogeneity of psychedelic neurobiology in humans. Biol Psychiatry 2022:S0006-3223(22)01805-4. [PMID: 36715317 DOI: 10.1016/j.biopsych.2022.10.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 10/10/2022] [Accepted: 10/31/2022] [Indexed: 12/12/2022]
Abstract
Precision psychiatry aims to identify markers of inter-individual variability that allow predicting the right treatment for each patient. However, bridging the gap between molecular-level manipulations and neural systems-level functional alterations remains an unsolved problem in psychiatry. After decades of low success rates in pharmaceutical R&D for psychiatric drugs, multiple studies now point to the potential of psychedelics as a promising fast-acting and long-lasting treatment for some psychiatric symptoms. Yet, given the highly psychoactive nature of these substances, a precision medicine approach is essential to map the neural signals related to clinical efficacy in order to identify patients who can maximally benefit from this treatment. Recent studies have shown that bridging the gap between pharmacology, systems-level neural response in humans and individual experience is possible for psychedelic substances, therefore paving the way for a precision neuropsychiatric therapeutic development. Specifically, it has been shown that the integration of brain-wide PET or transcriptomic data, i.e. receptor distribution for the serotonin 2A receptor, with computational neuroimaging methods can simulate the effect of psychedelics on the human brain. These novel 'computational psychiatry' approaches allow for modeling inter-individual differences in neural as well as subjective effects of psychedelic substances. Collectively, this review provides a deep dive into psychedelic pharmaco-neuroimaging studies with a core focus on how recent computational psychiatry advances in biophysically based circuit modeling can be leveraged to predict individual responses. Finally, we emphasize the importance of human pharmacological neuroimaging for the continued precision therapeutic development of psychedelics.
Collapse
Affiliation(s)
- Flora Moujaes
- Department of Psychiatry, Psychotherapy and Psychosomatics, University Hospital for Psychiatry Zurich, Lenggstr. 31, 8032 Zurich, Switzerland; Department of Psychiatry, Yale University School of Medicine, 40 Temple Street, New Haven, CT, 06511, United States
| | - Katrin H Preller
- Department of Psychiatry, Psychotherapy and Psychosomatics, University Hospital for Psychiatry Zurich, Lenggstr. 31, 8032 Zurich, Switzerland; Department of Psychiatry, Yale University School of Medicine, 40 Temple Street, New Haven, CT, 06511, United States
| | - Jie Lisa Ji
- Department of Psychiatry, Yale University School of Medicine, 40 Temple Street, New Haven, CT, 06511, United States
| | - John D Murray
- Department of Psychiatry, Yale University School of Medicine, 40 Temple Street, New Haven, CT, 06511, United States; Department of Physics, Yale University, New Haven, CT, 06511, United States; Interdepartmental Neuroscience Program, Yale University, New Haven, CT, 06511, United States
| | - Lucie Berkovitch
- Department of Psychiatry, Yale University School of Medicine, 40 Temple Street, New Haven, CT, 06511, United States; Université de Paris, 15 Rue de l'École de Médecine, F-75006 Paris, France; Department of Psychiatry, Service Hospitalo-Universitaire, GHU Paris Psychiatrie & Neurosciences, 1 rue Cabanis, F-75014, Paris, France
| | - Franz X Vollenweider
- Department of Psychiatry, Psychotherapy and Psychosomatics, University Hospital for Psychiatry Zurich, Lenggstr. 31, 8032 Zurich, Switzerland
| | - Alan Anticevic
- Department of Psychiatry, Yale University School of Medicine, 40 Temple Street, New Haven, CT, 06511, United States; Interdepartmental Neuroscience Program, Yale University, New Haven, CT, 06511, United States.
| |
Collapse
|
41
|
George DR, Hanson R, Wilkinson D, Garcia-Romeu A. Ancient Roots of Today's Emerging Renaissance in Psychedelic Medicine. Cult Med Psychiatry 2022; 46:890-903. [PMID: 34476719 PMCID: PMC8412860 DOI: 10.1007/s11013-021-09749-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/25/2021] [Indexed: 01/30/2023]
Abstract
An international ban on psychedelics initiated by the United Nations' Convention on Psychotropic Substances in 1971 restricted the clinical use of these ancient psychoactive substances. Yet, in an era marked by rising mental health concerns and a growing "Deaths of Despair" epidemic (i.e., excess mortality and morbidity from suicide, drug overdose, and alcoholism), the structured psychedelic use that has long been a part of ritual healing experiences for human societies is slowly regaining credibility in Western medicine for its potential to treat various mental health conditions. We use a historical lens to examine the use of psychedelic therapies over time, translate ancient lessons to contemporary clinical and research practice, and interrogate the practical and ethical questions researchers must grapple with before they can enter mainstream medicine. Given the COVID-19 pandemic and its contributions to the global mental health burden, we also reflect on how psychedelic therapy might serve as a tool for medicine in the aftermath of collective trauma. Ultimately, it is argued that a "psychedelic renaissance" anchored in the lessons of antiquity can potentially help shift healthcare systems-and perhaps the broader society-towards practices that are more humane, attentive to underlying causes of distress, and supportive of human flourishing.
Collapse
Affiliation(s)
- Daniel R George
- Department of Humanities, Penn State Milton S Hershey Medical Center, Penn State College of Medicine, Hershey, PA, 17033, USA.
| | - Ryan Hanson
- Anesthesiology Institute, Cleveland Clinic, Cleveland, OH, USA
| | | | - Albert Garcia-Romeu
- Center for Psychedelic and Consciousness Research, Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA
| |
Collapse
|
42
|
Kelly JR, Baker A, Babiker M, Burke L, Brennan C, O'Keane V. The psychedelic renaissance: the next trip for psychiatry? Ir J Psychol Med 2022; 39:335-339. [PMID: 31543078 DOI: 10.1017/ipm.2019.39] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The psychedelic research renaissance is gaining traction. Preliminary clinical studies of the hallucinogenic fungi, psilocybin, with psychological support, have indicated improvements in mood, anxiety and quality of life. A seminal, open-label study demonstrated marked reductions in depression symptoms in participants with treatment-resistant depression (TRD). The associated neurobiological processes involve alterations in brain connectivity, together with altered amygdala and default mode network activity. At the cellular level, psychedelics promote synaptogenesis and neural plasticity. Prompted by the promising preliminary studies, a randomized, double-blind trial has recently been launched across Europe and North America to investigate the efficacy of psilocybin in TRD. One of these centres is based in Ireland - CHO Area 7 and Tallaght University Hospital. The outcome of this trial will determine whether psilocybin with psychological support will successfully translate into the psychiatric clinic for the benefit of patients.
Collapse
Affiliation(s)
- J R Kelly
- Department of Psychiatry, Trinity College Dublin & Tallaght Hospital, Trinity Centre for Health Sciences, Tallaght University Hospital, Tallaght, Dublin, Ireland
- Tallaght University Hospital, Tallaght, Dublin, Ireland
| | - A Baker
- Sheaf House, Exchange Hall, Tallaght, Dublin, Ireland
| | - M Babiker
- Tallaght University Hospital, Tallaght, Dublin, Ireland
| | - L Burke
- Sheaf House, Exchange Hall, Tallaght, Dublin, Ireland
| | - C Brennan
- Sheaf House, Exchange Hall, Tallaght, Dublin, Ireland
| | - V O'Keane
- Department of Psychiatry, Trinity College Dublin & Tallaght Hospital, Trinity Centre for Health Sciences, Tallaght University Hospital, Tallaght, Dublin, Ireland
| |
Collapse
|
43
|
Muacevic A, Adler JR, Dimassi O, Dhillon N, Minhas A, Larice J. Psilocybin as a Treatment for Psychiatric Illness: A Meta-Analysis. Cureus 2022; 14:e31796. [PMID: 36569662 PMCID: PMC9779908 DOI: 10.7759/cureus.31796] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/22/2022] [Indexed: 11/23/2022] Open
Abstract
Psilocybin is an emerging potential therapy for the treatment of psychiatric illnesses. Microdosing has been shown to result in an overall improvement in patients with anxiety, depression, obsessive-compulsive disorder, post-traumatic stress disorder, and substance abuse. This meta-analysis explores and compiles prior research to make further inferences regarding psilocybin and its use for the treatment of psychiatric illness along with its safety and efficacy. Database searches were conducted to identify peer-reviewed randomized controlled trials and clinical trials mentioning psilocybin use and psychiatric illness. A Preferred Reporting Items for Systematic Reviews and Meta-Analyses flow diagram was created and analysis was run on the nine articles that met all established inclusion criteria. An event is defined as a participant who showed improvement, in a quantitative method, from baseline after the use of psilocybin. Another analysis was done using depression severity (Quick Inventory of Depressive Symptomatology 16-Item Self Report, QIDS-SR16) at baseline and after the use of psilocybin. Analyses of the original data and the nine articles showed a great deal of heterogeneity with an I2 value of 73.68%, suggesting that the studies in this meta-analysis cannot be considered to be studies of the same population. The Q value of 30.4 was higher than 15.507, which is the critical value for eight degrees of freedom found in a chi-square distribution. This Q value showed a high degree of variation and lacked significance. The second meta-run on QIDS-SR16 scores from three studies showed a Q value of 1.16 which was lower than 5.991, the critical value for two degrees of freedom found in a chi-square distribution. The I2 statistic for this second meta-analysis was -73% which can be equated to zero. This indicated that the data were homogeneous or that there was no observed heterogeneity. Due to low heterogeneity, the fixed-effects model was used. Based on this meta-analysis, psilocybin seems to show symptom improvement in some psychiatric illnesses. The effectiveness of psilocybin microdosing and the use of psilocybin, in general, need to be studied further to determine the efficacy and safety of potential applications in psychiatry.
Collapse
|
44
|
Alizamini MM, Fattahi M, Sayehmiri F, Haghparast A, Liang J. Regulatory Role of PFC Corticotropin-Releasing Factor System in Stress-Associated Depression Disorders: A Systematic Review. Cell Mol Neurobiol 2022:10.1007/s10571-022-01289-2. [PMID: 36227396 DOI: 10.1007/s10571-022-01289-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 09/19/2022] [Indexed: 11/03/2022]
Abstract
Stress has a substantial role in formation of psychiatric disorders especially depression. Meanwhile, impairment of the prefrontal cortex (PFC) is connected to the executive and cognitive deficits induced by the stress. Given the involvement of the corticotropin-releasing factor (CRF) in stress-related processes and knowing the fact that PFC hosts a lot of CRF receptors and CRF neurotransmissions, it can worth to look at the CRF as a potential treatment for the regulation of depression disorders induced by stress within PFC region. Here, for the first time we aimed to systematically review the effectiveness of intra-PFC CRF system in the modulation of depression dysfunction caused by the stress in clinical and preclinical models/studies. Qualified researches were combined utilizing a comprehensive search of six databases including Scopus, Pubmed, Web of Science, Sciencedirect, APA PsycNet, and Embase in April 2021 and were evaluated through proper methodological quality assessment tools. Results indicate that PFC has a remarkable role in the modulation for stress-induced depression and intra-PFC CRF receptors agonist and antagonist are very considerable for regulating these types of impairments. Specifically, elevation of both CRF immunoreactivity and gene expression were observed in human studies. In the animal studies, mostly immunoreactivity or excitatory/inhibitory currents of CRF within the PFC regulated depression dysfunction. In conclusion, reviewed studies show a positive attitude toward the CRF system in regulation of the stress-induced depression; however, obviously further investigations are required to get closer to the best treatment. Prefrontal cortex corticotropin-releasing factor system regulates stress-induced depression. CRFR1, Corticotropin-releasing factor receptor of type1; PFC, Prefrontal cortex; Minus (-) and Plus (+) signs, dysregulation and upregulation, respectively.
Collapse
Affiliation(s)
- Mirmohammadali Mirramezani Alizamini
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Zip Code 100101, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Mojdeh Fattahi
- Student Research Committee, Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Sayehmiri
- Student Research Committee, Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Haghparast
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, P.O.Box 19615-1178, Tehran, Iran.
| | - Jing Liang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Zip Code 100101, Beijing, China. .,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
45
|
Stoliker D, Egan GF, Friston KJ, Razi A. Neural Mechanisms and Psychology of Psychedelic Ego Dissolution. Pharmacol Rev 2022; 74:876-917. [PMID: 36786290 DOI: 10.1124/pharmrev.121.000508] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 06/26/2022] [Accepted: 06/29/2022] [Indexed: 11/22/2022] Open
Abstract
Neuroimaging studies of psychedelics have advanced our understanding of hierarchical brain organization and the mechanisms underlying their subjective and therapeutic effects. The primary mechanism of action of classic psychedelics is binding to serotonergic 5-HT2A receptors. Agonist activity at these receptors leads to neuromodulatory changes in synaptic efficacy that can have a profound effect on hierarchical message-passing in the brain. Here, we review the cognitive and neuroimaging evidence for the effects of psychedelics: in particular, their influence on selfhood and subject-object boundaries-known as ego dissolution-surmised to underwrite their subjective and therapeutic effects. Agonism of 5-HT2A receptors, located at the apex of the cortical hierarchy, may have a particularly powerful effect on sentience and consciousness. These effects can endure well after the pharmacological half-life, suggesting that psychedelics may have effects on neural plasticity that may play a role in their therapeutic efficacy. Psychologically, this may be accompanied by a disarming of ego resistance that increases the repertoire of perceptual hypotheses and affords alternate pathways for thought and behavior, including those that undergird selfhood. We consider the interaction between serotonergic neuromodulation and sentience through the lens of hierarchical predictive coding, which speaks to the value of psychedelics in understanding how we make sense of the world and specific predictions about effective connectivity in cortical hierarchies that can be tested using functional neuroimaging. SIGNIFICANCE STATEMENT: Classic psychedelics bind to serotonergic 5-HT2A receptors. Their agonist activity at these receptors leads to neuromodulatory changes in synaptic efficacy, resulting in a profound effect on information processing in the brain. Here, we synthesize an abundance of brain imaging research with pharmacological and psychological interpretations informed by the framework of predictive coding. Moreover, predictive coding is suggested to offer more sophisticated interpretations of neuroimaging findings by bridging the role between the 5-HT2A receptors and large-scale brain networks.
Collapse
Affiliation(s)
- Devon Stoliker
- Turner Institute for Brain and Mental Health (D.S., G.F.E., A.R.) and Monash Biomedical Imaging (G.F.E., A.R.), Monash University, Clayton, Victoria, Australia; Wellcome Centre for Human Neuroimaging, UCL, London, United Kingdom (K.J.F., A.R.); and CIFAR Azrieli Global Scholar, CIFAR, Toronto, Canada (A.R.)
| | - Gary F Egan
- Turner Institute for Brain and Mental Health (D.S., G.F.E., A.R.) and Monash Biomedical Imaging (G.F.E., A.R.), Monash University, Clayton, Victoria, Australia; Wellcome Centre for Human Neuroimaging, UCL, London, United Kingdom (K.J.F., A.R.); and CIFAR Azrieli Global Scholar, CIFAR, Toronto, Canada (A.R.)
| | - Karl J Friston
- Turner Institute for Brain and Mental Health (D.S., G.F.E., A.R.) and Monash Biomedical Imaging (G.F.E., A.R.), Monash University, Clayton, Victoria, Australia; Wellcome Centre for Human Neuroimaging, UCL, London, United Kingdom (K.J.F., A.R.); and CIFAR Azrieli Global Scholar, CIFAR, Toronto, Canada (A.R.)
| | - Adeel Razi
- Turner Institute for Brain and Mental Health (D.S., G.F.E., A.R.) and Monash Biomedical Imaging (G.F.E., A.R.), Monash University, Clayton, Victoria, Australia; Wellcome Centre for Human Neuroimaging, UCL, London, United Kingdom (K.J.F., A.R.); and CIFAR Azrieli Global Scholar, CIFAR, Toronto, Canada (A.R.)
| |
Collapse
|
46
|
Psilocybin Efficacy and Mechanisms of Action in Major Depressive Disorder: a Review. Curr Psychiatry Rep 2022; 24:573-581. [PMID: 35953638 DOI: 10.1007/s11920-022-01361-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/28/2022] [Indexed: 01/29/2023]
Abstract
PURPOSE OF THE REVIEW We aim to provide an overview of the current state of knowledge about the efficacy of psilocybin in the treatment of depression, as well as its mechanisms of action. RECENT FINDINGS Psilocybin has a large, rapid, and persistent clinical effect in the treatment of resistant or end-of-life depression. Tolerance is good, with mild side effects limited to a few hours after dosing. The studies conducted to date have had small sample sizes. One clinical trial has been conducted against a reference treatment (escitalopram) without showing a significant superiority of psilocybin in the main outcome. The neurobiological mechanisms, mostly unknown, differ from those of SSRI antidepressants. Psilocybin represents a promising alternative in the treatment of depression. Further research with larger sample sizes, particularly against reference treatments, is needed to better understand the neurobiological factors of its effects and to investigate its potential for use in everyday practice.
Collapse
|
47
|
Bogenschutz MP, Ross S, Bhatt S, Baron T, Forcehimes AA, Laska E, Mennenga SE, O’Donnell K, Owens LT, Podrebarac S, Rotrosen J, Tonigan JS, Worth L. Percentage of Heavy Drinking Days Following Psilocybin-Assisted Psychotherapy vs Placebo in the Treatment of Adult Patients With Alcohol Use Disorder: A Randomized Clinical Trial. JAMA Psychiatry 2022; 79:953-962. [PMID: 36001306 PMCID: PMC9403854 DOI: 10.1001/jamapsychiatry.2022.2096] [Citation(s) in RCA: 206] [Impact Index Per Article: 103.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
IMPORTANCE Although classic psychedelic medications have shown promise in the treatment of alcohol use disorder (AUD), the efficacy of psilocybin remains unknown. OBJECTIVE To evaluate whether 2 administrations of high-dose psilocybin improve the percentage of heavy drinking days in patients with AUD undergoing psychotherapy relative to outcomes observed with active placebo medication and psychotherapy. DESIGN, SETTING, AND PARTICIPANTS In this double-blind randomized clinical trial, participants were offered 12 weeks of manualized psychotherapy and were randomly assigned to receive psilocybin vs diphenhydramine during 2 day-long medication sessions at weeks 4 and 8. Outcomes were assessed over the 32-week double-blind period following the first dose of study medication. The study was conducted at 2 academic centers in the US. Participants were recruited from the community between March 12, 2014, and March 19, 2020. Adults aged 25 to 65 years with a DSM-IV diagnosis of alcohol dependence and at least 4 heavy drinking days during the 30 days prior to screening were included. Exclusion criteria included major psychiatric and drug use disorders, hallucinogen use, medical conditions that contraindicated the study medications, use of exclusionary medications, and current treatment for AUD. INTERVENTIONS Study medications were psilocybin, 25 mg/70 kg, vs diphenhydramine, 50 mg (first session), and psilocybin, 25-40 mg/70 kg, vs diphenhydramine, 50-100 mg (second session). Psychotherapy included motivational enhancement therapy and cognitive behavioral therapy. MAIN OUTCOMES AND MEASURES The primary outcome was percentage of heavy drinking days, assessed using a timeline followback interview, contrasted between groups over the 32-week period following the first administration of study medication using multivariate repeated-measures analysis of variance. RESULTS A total of 95 participants (mean [SD] age, 46 [12] years; 42 [44.2%] female) were randomized (49 to psilocybin and 46 to diphenhydramine). One participant (1.1%) was American Indian/Alaska Native, 3 (3.2%) were Asian, 4 (4.2%) were Black, 14 (14.7%) were Hispanic, and 75 (78.9%) were non-Hispanic White. Of the 95 randomized participants, 93 received at least 1 dose of study medication and were included in the primary outcome analysis. Percentage of heavy drinking days during the 32-week double-blind period was 9.7% for the psilocybin group and 23.6% for the diphenhydramine group, a mean difference of 13.9%; (95% CI, 3.0-24.7; F1,86 = 6.43; P = .01). Mean daily alcohol consumption (number of standard drinks per day) was also lower in the psilocybin group. There were no serious adverse events among participants who received psilocybin. CONCLUSIONS AND RELEVANCE Psilocybin administered in combination with psychotherapy produced robust decreases in percentage of heavy drinking days over and above those produced by active placebo and psychotherapy. These results provide support for further study of psilocybin-assisted treatment for AUD. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT02061293.
Collapse
Affiliation(s)
- Michael P. Bogenschutz
- Department of Psychiatry, New York University Langone Center for Psychedelic Medicine, New York University Grossman School of Medicine, New York
| | - Stephen Ross
- Department of Psychiatry, New York University Langone Center for Psychedelic Medicine, New York University Grossman School of Medicine, New York
| | - Snehal Bhatt
- Department of Psychiatry and Behavioral Sciences, University of New Mexico School of Medicine, Albuquerque
| | - Tara Baron
- Department of Psychiatry, New York University Langone Center for Psychedelic Medicine, New York University Grossman School of Medicine, New York
| | | | - Eugene Laska
- Department of Psychiatry, New York University Langone Center for Psychedelic Medicine, New York University Grossman School of Medicine, New York,Department of Population Health, Division of Biostatistics, New York University Grossman School of Medicine, New York
| | - Sarah E. Mennenga
- Department of Psychiatry, New York University Langone Center for Psychedelic Medicine, New York University Grossman School of Medicine, New York
| | - Kelley O’Donnell
- Department of Psychiatry, New York University Langone Center for Psychedelic Medicine, New York University Grossman School of Medicine, New York
| | - Lindsey T. Owens
- Department of Psychiatry, New York University Langone Center for Psychedelic Medicine, New York University Grossman School of Medicine, New York,Department of Psychology, University of Alabama at Birmingham
| | - Samantha Podrebarac
- Department of Psychiatry, New York University Langone Center for Psychedelic Medicine, New York University Grossman School of Medicine, New York
| | - John Rotrosen
- Department of Psychiatry, New York University Langone Center for Psychedelic Medicine, New York University Grossman School of Medicine, New York
| | - J. Scott Tonigan
- University of New Mexico Center on Alcohol, Substance Use and Addictions, Albuquerque
| | - Lindsay Worth
- Department of Psychiatry and Behavioral Sciences, University of New Mexico School of Medicine, Albuquerque
| |
Collapse
|
48
|
Pouyan N, Halvaei Khankahdani Z, Younesi Sisi F, Lee Y, Rosenblat JD, Teopiz KM, Lui LMW, Subramaniapillai M, Lin K, Nasri F, Rodrigues N, Gill H, Lipsitz O, Cao B, Ho R, Castle D, McIntyre RS. A Research Domain Criteria (RDoC)-Guided Dashboard to Review Psilocybin Target Domains: A Systematic Review. CNS Drugs 2022; 36:1031-1047. [PMID: 36097251 PMCID: PMC9550777 DOI: 10.1007/s40263-022-00944-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/17/2022] [Indexed: 11/03/2022]
Abstract
BACKGROUND Preliminary results from randomized controlled studies as well as identified molecular, cellular, and circuit targets of select psychedelics (e.g., psilocybin) suggest that their effects are transdiagnostic. In this review, we exploit the Research Domain Criteria (RDoC) transdiagnostic framework, to synthesize extant literature on psilocybin. OBJECTIVE We aimed to identify RDoC-based effects of psilocybin and vistas for future mechanistic and interventional research. METHODS A systematic search in electronic databases (i.e., PubMed, Scopus, PsycINFO, and Web of Science) performed in January and February 2021 identified English articles published between 1990 and 2020 reporting the effects of psilocybin on mental health measures. Data from included articles were retrieved and organized according to the RDoC bio-behavioral matrix and its constituent six main domains, namely: positive valence systems, negative valence systems, cognitive systems, social processes, sensorimotor systems, and arousal and regulatory systems. RESULTS The preponderance of research with psilocybin has differentially reported beneficial effects on positive valence systems, negative valence system, and social process domains. The data from the included studies support both short-term (23 assessments) and long-term (15 assessments) beneficial effects of psilocybin on the positive valence systems. While 12 of the extracted outcome measures suggest that psilocybin use is associated with increases in the "fear" construct of the negative valence systems domain, 19 findings show no significant effects on this construct, and seven parameters show lowered levels of the "sustained threat" construct in the long term. Thirty-four outcome measures revealed short-term alterations in the social systems' construct namely, "perception and understanding of self," and "social communications" as well as enhancements in "perception and understanding of others" and "affiliation and attachment". The majority of findings related to the cognitive systems' domain reported dyscognitive effects. There have been relatively few studies reporting outcomes of psilocybin on the remaining RDoC domains. Moreover, seven of the included studies suggest the transdiagnostic effects of psilocybin. The dashboard characterization of RDoC outcomes with psilocybin suggests beneficial effects in the measures of reward, threat, and arousal, as well as general social systems. CONCLUSIONS Psilocybin possesses a multi-domain effectiveness. The field would benefit from highly rigorous proof-of-mechanism research to assess the effects of psilocybin using the RDoC framework. The combined effect of psilocybin with psychosocial interventions with RDoC-based outcomes is a priority therapeutic vista.
Collapse
Affiliation(s)
- Niloufar Pouyan
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital, Zurich, Switzerland.
- Program in Biomedical Sciences (PIBS), University of Michigan, 1135 Catherine Street, Box 5619, 2960 Taubman Health Science Library, Ann Arbor, MI, 48109-5619, USA.
- Aracell Zist Darou Pharmaceutical, Tehran, Iran.
| | - Zahra Halvaei Khankahdani
- Faculty of Pharmacy, Islamic Azad University of Medical Sciences, Tehran, Iran
- Bayer Pharmaceuticals, Tehran, Iran
| | - Farnaz Younesi Sisi
- Faculty of Pharmacy, Islamic Azad University of Medical Sciences, Tehran, Iran
- Yaadmaan Institute for Brain, Cognition and Memory Studies, Tehran, Iran
| | - Yena Lee
- Mood Disorders Psychopharmacology Unit (MDPU), University Health Network, Toronto, ON, Canada
| | - Joshua D Rosenblat
- Mood Disorders Psychopharmacology Unit (MDPU), University Health Network, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Kayla M Teopiz
- Mood Disorders Psychopharmacology Unit (MDPU), University Health Network, Toronto, ON, Canada
| | - Leanna M W Lui
- Mood Disorders Psychopharmacology Unit (MDPU), University Health Network, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | | | - Kangguang Lin
- Department of Affective Disorders, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Flora Nasri
- Mood Disorders Psychopharmacology Unit (MDPU), University Health Network, Toronto, ON, Canada
| | - Nelson Rodrigues
- Mood Disorders Psychopharmacology Unit (MDPU), University Health Network, Toronto, ON, Canada
| | - Hartej Gill
- Mood Disorders Psychopharmacology Unit (MDPU), University Health Network, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Orly Lipsitz
- Mood Disorders Psychopharmacology Unit (MDPU), University Health Network, Toronto, ON, Canada
| | - Bing Cao
- School of Psychology and Key Laboratory of Cognition and Personality (Ministry of Education), Southwest University, Chongqing, People's Republic of China
| | - Roger Ho
- Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - David Castle
- Department of Psychiatry, Centre for Complex Interventions, Centre for Addictions and Mental Health, University of Toronto, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Roger S McIntyre
- Mood Disorders Psychopharmacology Unit (MDPU), University Health Network, Toronto, ON, Canada
| |
Collapse
|
49
|
Abstract
BACKGROUND Postpartum depression (PPD) is a major public health concern and has, at its core, a sense of maternal 'disconnection' - from the self, the infant, and the support system. While PPD bears similarities with MDD, there is increasing evidence for its distinct nature, especially with the unique aspect of the mother-infant relationship. Current treatment modalities for PPD, largely based on those used in major depressive disorder (MDD), have low remission rates with emerging evidence for treatment resistance. It is, therefore, necessary to explore alternative avenues of treatment for PPD. OBJECTIVE In this narrative review, we outline the potential therapeutic rationale for serotonergic psychedelics in the treatment of PPD, and highlight safety and pragmatic considerations for the use of psychedelics in the postpartum period. METHODS We examined the available evidence for the treatment of PPD and the evidence for psychedelics in the treatment of MDD. We explored safety considerations in the use of psychedelics in the postpartum period. RESULTS There is increasing evidence for safety, and encouraging signals for efficacy, of psilocybin in the treatment of MDD. Psilocybin has been shown to catalyse a sense of 'reconnection' in participants with MDD. This effect in PPD, by fostering a sense of 'reconnection' for the mother, may allow for improved mood and maternal sensitivity towards the infant, which can positively impact maternal role gratification and the mother-infant relationship. CONCLUSION Psychedelic assisted therapy in PPD may have a positive effect on the mother-infant dyad and warrants further examination.
Collapse
Affiliation(s)
- Chaitra Jairaj
- Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK,The National Maternity Hospital, Dublin, Ireland,Chaitra Jairaj, Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, De Crespigny Park, London SE5 8AF, UK.
| | - James J Rucker
- Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK,Bethlem Royal Hospital, South London and Maudsley National Health Service Foundation Trust, Beckenham, UK
| |
Collapse
|
50
|
Psychedelic drugs for psychiatric disorders. J Neurol Sci 2022; 440:120332. [DOI: 10.1016/j.jns.2022.120332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 05/31/2022] [Accepted: 06/23/2022] [Indexed: 11/19/2022]
|