1
|
Liu X, Zhao H, Yuan M, Li P, Xie J, Fu Y, Li B, Yu X, Chen T, Lin Y, Chen W, Jiang D, Cheng J. An effector essential for virulence of necrotrophic fungi targets plant HIRs to inhibit host immunity. Nat Commun 2024; 15:9391. [PMID: 39477937 PMCID: PMC11525884 DOI: 10.1038/s41467-024-53725-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 10/20/2024] [Indexed: 11/02/2024] Open
Abstract
Phytopathogens often secrete effectors to enhance their infection of plants. In the case of Sclerotinia sclerotiorum, a necrotrophic phytopathogen, a secreted protein named SsPEIE1 (Sclerotinia sclerotiorum Plant Early Immunosuppressive Effector 1) plays a crucial role in its virulence. During the early stages of infection, SsPEIE1 is significantly up-regulated. Additionally, transgenic plants expressing SsPEIE1 exhibit increased susceptibility to different phytopathogens. Further investigations revealed that SsPEIE1 interacts with a plasma membrane protein known as hypersensitive induced reaction (HIR) that dampens immune responses. SsPEIE1 is required for S. sclerotiorum virulence on wild-type Arabidopsis but not on Arabidopsis hir4 mutants. Moreover, Arabidopsis hir2 and hir4 mutants exhibit suppressed pathogen-associated molecular pattern-triggered reactive oxygen species (ROS) bursts and salicylic acid (SA)-associated immune gene induction, all of which are phenocopied by the SsPEIE1 transgenic plants. We find that the oligomerization of AtHIR4 is essential for its role in mediating immunity, and that SsPEIE1 inhibits its oligomerization through competitively binding to AtHIR4. Remarkably, both Arabidopsis and rapeseed plants overexpress AtHIR4 display significantly increased resistance to S. sclerotiorum. In summary, these results demonstrate that SsPEIE1 inhibits AtHIR4 oligomerization-mediated immune responses by interacting with the key immune factor AtHIR4, thereby promoting S. sclerotiorum infection.
Collapse
Affiliation(s)
- Xiaofan Liu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei Province, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, China
| | - Huihui Zhao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei Province, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, China
| | - Mingyun Yuan
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei Province, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, China
| | - Pengyue Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei Province, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, China
| | - Jiatao Xie
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei Province, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, China
| | - Yanping Fu
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, China
| | - Bo Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei Province, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, China
| | - Xiao Yu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei Province, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, China
| | - Tao Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei Province, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, China
| | - Yang Lin
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei Province, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, China
| | - Weidong Chen
- United States Department of Agriculture, Agricultural Research Service, and Department of Plant Pathology, Washington State University, Pullman, WA, USA
| | - Daohong Jiang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei Province, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, China
| | - Jiasen Cheng
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei Province, China.
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, China.
| |
Collapse
|
2
|
Longsaward R, Viboonjun U, Wen Z, Asiegbu FO. In silico analysis of secreted effectorome of the rubber tree pathogen Rigidoporus microporus highlights its potential virulence proteins. Front Microbiol 2024; 15:1439454. [PMID: 39360316 PMCID: PMC11446221 DOI: 10.3389/fmicb.2024.1439454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 08/27/2024] [Indexed: 10/04/2024] Open
Abstract
Rigidoporus microporus, the causative agent of the white root rot disease of rubber trees, poses a significant threat to natural rubber production worldwide. Understanding the molecular mechanisms facilitating its pathogenicity would be crucial for developing effective disease management strategies. The pathogen secretes effector proteins, which play pivotal roles in modulating host immune responses and infection. In this study, in silico analyses identified 357 putative secreted effector proteins from the R. microporus genome. These were then integrated into previous RNA-seq data obtained in response to rubber tree latex exposure. Annotation of putative effectors suggested the abundance of proteins in several families associated with the virulence of R. microporus, especially hydrophobin proteins and glycoside hydrolase (GH) proteins. The contribution of secreted effectors to fungal pathogenicity was discussed, particularly in response to rubber tree latex exposure. Some unknown highly expressed effectors were predicted for the protein structures, revealing their similarity to aminopeptidase, ubiquitin ligase, spherulin, and thaumatin protein. This integrative study further elucidates the molecular mechanism of R. microporus pathogenesis and offers alternative targets for developing control strategies for managing white root rot disease in rubber plantations.
Collapse
Affiliation(s)
- Rawit Longsaward
- Department of Plant Pathology, Faculty of Agriculture, Kasetsart University, Bangkok, Thailand
| | - Unchera Viboonjun
- Department of Plant Science, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Zilan Wen
- Forest Pathology Research Laboratory, Department of Forest Sciences, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
| | - Fred O. Asiegbu
- Forest Pathology Research Laboratory, Department of Forest Sciences, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
| |
Collapse
|
3
|
Ding Y, Yang N, Lu Y, Xu J, Rana K, Chen Y, Xu Z, Qian W, Wan H. Fusiform nanoparticle boosts efficient genetic transformation in Sclerotinia sclerotiorum. J Nanobiotechnology 2024; 22:494. [PMID: 39160572 PMCID: PMC11334516 DOI: 10.1186/s12951-024-02736-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 07/23/2024] [Indexed: 08/21/2024] Open
Abstract
BACKGROUND Sclerotinia sclerotiorum is a highly destructive phytopathogenic fungus that poses a significant threat to a wide array of crops. The current constraints in genetic manipulation techniques impede a thorough comprehension of its pathogenic mechanisms and the development of effective control strategies. RESULTS Herein, we present a highly efficient genetic transformation system for S. sclerotiorum, leveraging the use of fusiform nanoparticles, which are synthesized with FeCl3 and 2,6-diaminopyrimidine (DAP). These nanoparticles, with an average longitude length of 59.00 nm and a positively charged surface, facilitate the direct delivery of exogenous DNA into the mycelial cells of S. sclerotiorum, as well as successful integration with stable expression. Notably, this system circumvents fungal protoplast preparation and tedious recovery processes, streamlining the transformation process considerably. Furthermore, we successfully employed this system to generate S. sclerotiorum strains with silenced oxaloacetate acetylhydrolase-encoding gene Ss-oah1. CONCLUSIONS Our findings demonstrate the feasibility of using nanoparticle-mediated delivery as a rapid and reliable tool for genetic modification in S. sclerotiorum. Given its simplicity and high efficiency, it has the potential to significantly propel genetic research in filamentous fungi, offering new avenues for elucidating the intricacies of pathogenicity and developing innovative disease management strategies.
Collapse
Affiliation(s)
- Yijuan Ding
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Chongqing and Southwest University, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing, 400715, China
- Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing, 400715, China
| | - Nan Yang
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Chongqing and Southwest University, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing, 400715, China
- Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing, 400715, China
| | - Yi Lu
- School of Materials and Energy, Southwest University, Beibei, Chongqing, 400715, China
| | - Jiming Xu
- School of Materials and Energy, Southwest University, Beibei, Chongqing, 400715, China
| | - Kusum Rana
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Chongqing and Southwest University, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing, 400715, China
- Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing, 400715, China
| | - Yangui Chen
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Chongqing and Southwest University, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing, 400715, China
- Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing, 400715, China
| | - Zhigang Xu
- School of Materials and Energy, Southwest University, Beibei, Chongqing, 400715, China
| | - Wei Qian
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Chongqing and Southwest University, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing, 400715, China.
- Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing, 400715, China.
| | - Huafang Wan
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Chongqing and Southwest University, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing, 400715, China.
- Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing, 400715, China.
| |
Collapse
|
4
|
de Novaes MIC, Robertson C, Doyle VP, Burk D, Thomas-Sharma S. Distribution and Sequestration of Cercosporin by Cercospora cf. flagellaris. PHYTOPATHOLOGY 2024; 114:1822-1831. [PMID: 38700938 DOI: 10.1094/phyto-09-23-0310-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Plant-pathogenic fungi produce toxins as virulence factors in many plant diseases. In Cercospora leaf blight of soybean caused by Cercospora cf. flagellaris, symptoms are a consequence of the production of a perylenequinone toxin, cercosporin, which is light-activated to produce damaging reactive oxygen species. Cercosporin is universally toxic to cells, except to the cells of the producer. The current model of self-resistance to cercosporin is largely attributed to the maintenance of cercosporin in a chemically reduced state inside hyphae, unassociated with cellular organelles. However, in another perylenequinone-producing fungus, Phaeosphaeria sp., the toxin was specifically sequestered inside lipid droplets (LDs) to prevent reactive oxygen species production. This study hypothesized that LD-based sequestration of cercosporin occurred in C. cf. flagellaris and that lipid-inhibiting fungicides could inhibit toxin production. Confocal microscopy using light-cultured C. cf. flagellaris indicated that 3-day-old hyphae contained two forms of cercosporin distributed in two types of hyphae. Reduced cercosporin was uniformly distributed in the cytoplasm of thick, primary hyphae, and, contrary to previous studies, active cercosporin was observed specifically in the LDs of thin, secondary hyphae. The production of hyphae of two different thicknesses, a characteristic of hemibiotrophic plant pathogens, has not been documented in C. cf. flagellaris. No correlation was observed between cercosporin production and total lipid extracted, and two lipid-inhibiting fungicides had little effect on fungal growth in growth-inhibition assays. This study lays a foundation for exploring the importance of pathogen lifestyle, toxin production, and LD content in the pathogenicity and symptomology of Cercospora.
Collapse
Affiliation(s)
- Maria Izabel Costa de Novaes
- Department of Plant Pathology & Crop Physiology, Louisiana State University Agricultural Center, Baton Rouge, LA 70803
| | - Clark Robertson
- Louisiana State University Agricultural Center, 20140 Iowa Street, Livingston, LA 70754
| | - Vinson P Doyle
- Department of Plant Pathology & Crop Physiology, Louisiana State University Agricultural Center, Baton Rouge, LA 70803
| | - David Burk
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA 70803
| | - Sara Thomas-Sharma
- Department of Plant Pathology & Crop Physiology, Louisiana State University Agricultural Center, Baton Rouge, LA 70803
| |
Collapse
|
5
|
Sun Y, Yang N, Li S, Chen F, Xie Y, Tang C. Mechanism of oxalate decarboxylase Oxd_S12 from Bacillus velezensis BvZ45-1 in defence against cotton verticillium wilt. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:3500-3520. [PMID: 38517318 DOI: 10.1093/jxb/erae100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 03/21/2024] [Indexed: 03/23/2024]
Abstract
Verticillium wilt, a soilborne vascular disease caused by Verticillium dahliae, strongly affects cotton yield and quality. In this study, an isolated rhizosphere bacterium, designated Bacillus velezensis BvZ45-1, exhibited >46% biocontrol efficacy against cotton verticillium wilt under greenhouse and field conditions. Moreover, through crude protein extraction and mass spectrometry analyses, we found many antifungal compounds present in the crude protein extract of BvZ45-1. The purified oxalate decarboxylase Odx_S12 from BvZ45-1 inhibited the growth of V. dahliae Vd080 by reducing the spore yield, causing mycelia to rupture, spore morphology changes, cell membrane rupture, and cell death. Subsequently, overexpression of Odx_S12 in Arabidopsis significantly improved plant resistance to V. dahliae. Through studies of the resistance mechanism of Odx_S12, V. dahliae was shown to produce oxalic acid (OA), which has a toxic effect on Arabidopsis leaves. Odx_S12 overexpression reduced Arabidopsis OA content, enhanced tolerance to OA, and improved resistance to verticillium wilt. Transcriptomics and quantitative real-time PCR analysis revealed that Odx_S12 promoted a reactive oxygen species burst and a salicylic acid- and abscisic acid-mediated defence response in Arabidopsis. In summary, this study not only identified B. velezensis BvZ45-1 as an efficient biological control agent, but also identified the resistance gene Odx_S12 as a candidate for cotton breeding against verticillium wilt.
Collapse
Affiliation(s)
- Ying Sun
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Na Yang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Sirui Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Fei Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Yijing Xie
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Canming Tang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| |
Collapse
|
6
|
Kaliapan K, Mazlin SNA, Chua KO, Rejab NA, Mohd-Yusuf Y. Secreted in Xylem (SIX) genes in Fusarium oxysporum f.sp. cubense (Foc) unravels the potential biomarkers for early detection of Fusarium wilt disease. Arch Microbiol 2024; 206:271. [PMID: 38767679 DOI: 10.1007/s00203-024-03996-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 04/26/2024] [Accepted: 05/07/2024] [Indexed: 05/22/2024]
Abstract
Secreted in Xylem (SIX) are small effector proteins released by Fusarium oxysporum f.sp. cubense (Foc) into the plant's xylem sap disrupting the host's defence responses causing Fusarium wilt disease resulting in a significant decline in banana crop yields and economic losses. Notably, different races of Foc possess unique sets of SIX genes responsible for their virulence, however, these genes remain underutilized, despite their potential as biomarkers for early disease detection. Herein, we identified seven SIX genes i.e. SIX1, SIX2, SIX4, SIX6, SIX8a, SIX9a and SIX13 present in Foc Tropical Race 4 (FocTR4), while only SIX9b in Foc Race 1 (Foc1). Analysis of SIX gene expression in infected banana roots revealed differential patterns during infection providing valuable insights into host-pathogen interactions, virulence level, and early detection time points. Additionally, a comprehensive analysis of virulent Foc1_C2HIR and FocTR4_C1HIR isolates yielded informative genomic insights. Hence, these discoveries contribute to our comprehension of potential disease control targets in these plants, as well as enhancing plant diagnostics and breeding programs.
Collapse
Affiliation(s)
- Kausalyaa Kaliapan
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
- Centre for Research in Biotechnology for Agriculture (CEBAR), Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Siti Nur Akmar Mazlin
- Centre for Research in Biotechnology for Agriculture (CEBAR), Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Kah Ooi Chua
- Centre for Research in Biotechnology for Agriculture (CEBAR), Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Nur Ardiyana Rejab
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
- Centre for Research in Biotechnology for Agriculture (CEBAR), Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Yusmin Mohd-Yusuf
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
- Centre for Research in Biotechnology for Agriculture (CEBAR), Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
- Glami Lemi Biotechnology Research Centre Universiti Malaya, 71650, Jelebu, Negeri Sembilan, Malaysia.
| |
Collapse
|
7
|
Ma M, Tang L, Sun R, Lyu X, Xie J, Fu Y, Li B, Chen T, Lin Y, Yu X, Chen W, Jiang D, Cheng J. An effector SsCVNH promotes the virulence of Sclerotinia sclerotiorum through targeting class III peroxidase AtPRX71. MOLECULAR PLANT PATHOLOGY 2024; 25:e13464. [PMID: 38695733 PMCID: PMC11064801 DOI: 10.1111/mpp.13464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 04/15/2024] [Accepted: 04/17/2024] [Indexed: 05/05/2024]
Abstract
Many plant pathogens secrete effector proteins into the host plant to suppress host immunity and facilitate pathogen colonization. The necrotrophic pathogen Sclerotinia sclerotiorum causes severe plant diseases and results in enormous economic losses, in which secreted proteins play a crucial role. SsCVNH was previously reported as a secreted protein, and its expression is significantly upregulated at 3 h after inoculation on the host plant. Here, we further demonstrated that deletion of SsCVNH leads to attenuated virulence. Heterologous expression of SsCVNH in Arabidopsis enhanced pathogen infection, inhibited the host PAMP-triggered immunity (PTI) response and increased plant susceptibility to S. sclerotiorum. SsCVNH interacted with class III peroxidase AtPRX71, a positive regulator of innate immunity against plant pathogens. SsCVNH could also interact with other class III peroxidases, thus reducing peroxidase activity and suppressing plant immunity. Our results reveal a new infection strategy employed by S. sclerotiorum in which the fungus suppresses the function of class III peroxidases, the major component of PTI to promote its own infection.
Collapse
Affiliation(s)
- Ming Ma
- National Key Laboratory of Agricultural MicrobiologyHuazhong Agricultural UniversityWuhanHubeiChina
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanHubeiChina
| | - Liguang Tang
- Wuhan Vegetable Research InstituteWuhan Academy of Agricultural ScienceWuhanHubeiChina
| | - Rui Sun
- National Key Laboratory of Agricultural MicrobiologyHuazhong Agricultural UniversityWuhanHubeiChina
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanHubeiChina
| | - Xueliang Lyu
- National Key Laboratory of Agricultural MicrobiologyHuazhong Agricultural UniversityWuhanHubeiChina
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanHubeiChina
| | - Jiatao Xie
- National Key Laboratory of Agricultural MicrobiologyHuazhong Agricultural UniversityWuhanHubeiChina
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanHubeiChina
| | - Yanping Fu
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanHubeiChina
| | - Bo Li
- National Key Laboratory of Agricultural MicrobiologyHuazhong Agricultural UniversityWuhanHubeiChina
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanHubeiChina
| | - Tao Chen
- National Key Laboratory of Agricultural MicrobiologyHuazhong Agricultural UniversityWuhanHubeiChina
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanHubeiChina
| | - Yang Lin
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanHubeiChina
| | - Xiao Yu
- National Key Laboratory of Agricultural MicrobiologyHuazhong Agricultural UniversityWuhanHubeiChina
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanHubeiChina
| | - Weidong Chen
- United States Department of Agriculture, Agricultural Research ServiceWashington State UniversityPullmanWashingtonUSA
| | - Daohong Jiang
- National Key Laboratory of Agricultural MicrobiologyHuazhong Agricultural UniversityWuhanHubeiChina
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanHubeiChina
| | - Jiasen Cheng
- National Key Laboratory of Agricultural MicrobiologyHuazhong Agricultural UniversityWuhanHubeiChina
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanHubeiChina
| |
Collapse
|
8
|
Williams A, Sinanaj B, Hoysted GA. Plant-microbe interactions through a lens: tales from the mycorrhizosphere. ANNALS OF BOTANY 2024; 133:399-412. [PMID: 38085925 PMCID: PMC11006548 DOI: 10.1093/aob/mcad191] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 12/11/2023] [Indexed: 04/12/2024]
Abstract
BACKGROUND The soil microbiome plays a pivotal role in maintaining ecological balance, supporting food production, preserving water quality and safeguarding human health. Understanding the intricate dynamics within the soil microbiome necessitates unravelling complex bacterial-fungal interactions (BFIs). BFIs occur in diverse habitats, such as the phyllosphere, rhizosphere and bulk soil, where they exert substantial influence on plant-microbe associations, nutrient cycling and overall ecosystem functions. In various symbiotic associations, fungi form mycorrhizal connections with plant roots, enhancing nutrient uptake through the root and mycorrhizal pathways. Concurrently, specific soil bacteria, including mycorrhiza helper bacteria, play a pivotal role in nutrient acquisition and promoting plant growth. Chemical communication and biofilm formation further shape plant-microbial interactions, affecting plant growth, disease resistance and nutrient acquisition processes. SCOPE Promoting synergistic interactions between mycorrhizal fungi and soil microbes holds immense potential for advancing ecological knowledge and conservation. However, despite the significant progress, gaps remain in our understanding of the evolutionary significance, perception, functional traits and ecological relevance of BFIs. Here we review recent findings obtained with respect to complex microbial communities - particularly in the mycorrhizosphere - and include the latest advances in the field, outlining their profound impacts on our understanding of ecosystem dynamics and plant physiology and function. CONCLUSIONS Deepening our understanding of plant BFIs can help assess their capabilities with regard to ecological and agricultural safe-guarding, in particular buffering soil stresses, and ensuring sustainable land management practices. Preserving and enhancing soil biodiversity emerge as critical imperatives in sustaining life on Earth amidst pressures of anthropogenic climate change. A holistic approach integrates scientific knowledge on bacteria and fungi, which includes their potential to foster resilient soil ecosystems for present and future generations.
Collapse
Affiliation(s)
- Alex Williams
- Plants, Photosynthesis and Soil, School of Bioscience, University of Sheffield, Sheffield, S10 2TN, UK
| | - Besiana Sinanaj
- Plants, Photosynthesis and Soil, School of Bioscience, University of Sheffield, Sheffield, S10 2TN, UK
| | - Grace A Hoysted
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
| |
Collapse
|
9
|
Wang P, Wang Y, Hu Y, Chen Z, Han L, Zhu W, Tian B, Fang A, Yang Y, Bi C, Yu Y. Plant hypersensitive induced reaction protein facilitates cell death induced by secreted xylanase associated with the pathogenicity of Sclerotinia sclerotiorum. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:90-105. [PMID: 38113332 DOI: 10.1111/tpj.16593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/27/2023] [Accepted: 12/06/2023] [Indexed: 12/21/2023]
Abstract
Necrotrophic fungal plant pathogens employ cell death-inducing proteins (CDIPs) to facilitate infection. However, the specific CDIPs and their mechanisms in pathogenic processes of Sclerotinia sclerotiorum, a necrotrophic pathogen that causes disease in many economically important crop species, have not yet been clearly defined. This study found that S. sclerotiorum secretes SsXyl2, a glycosyl hydrolase family 11 xylanase, at the late stage of hyphal infection. SsXyl2 targets the apoplast of host plants to induce cell death independent of xylanase activity. Targeted disruption of SsXyl2 leads to serious impairment of virulence, which can be recovered by a catalytically impaired SsXyl2 variant, thus supporting the critical role of cell death-inducing activity of SsXyl2 in establishing successful colonization of S. sclerotiorum. Remarkably, infection by S. sclerotiorum induces the accumulation of Nicotiana benthamiana hypersensitive-induced reaction protein 2 (NbHIR2). NbHIR2 interacts with SsXyl2 at the plasma membrane and promotes its localization to the cell membrane and cell death-inducing activity. Furthermore, gene-edited mutants of NbHIR2 displayed increased resistance to the wild-type strain of S. sclerotiorum, but not to the SsXyl2-deletion strain. Hence, SsXyl2 acts as a CDIP that manipulates host cell physiology by interacting with hypersensitive induced reaction protein to facilitate colonization by S. sclerotiorum. These findings provide valuable insights into the pathogenic mechanisms of CDIPs in necrotrophic pathogens and lead to a more promising approach for breeding resistant crops against S. sclerotiorum.
Collapse
Affiliation(s)
- Pei Wang
- College of Plant Protection, Southwest University, Chongqing, 400715, China
| | - Yabo Wang
- College of Plant Protection, Southwest University, Chongqing, 400715, China
| | - Yawen Hu
- College of Plant Protection, Southwest University, Chongqing, 400715, China
| | - Ziyang Chen
- College of Plant Protection, Southwest University, Chongqing, 400715, China
| | - Lili Han
- College of Plant Protection, Southwest University, Chongqing, 400715, China
| | - Wenjun Zhu
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, Hubei, 430023, China
| | - Binnian Tian
- College of Plant Protection, Southwest University, Chongqing, 400715, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Ministry of Education, Southwest University, Chongqing, 400715, China
| | - Anfei Fang
- College of Plant Protection, Southwest University, Chongqing, 400715, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Ministry of Education, Southwest University, Chongqing, 400715, China
| | - Yuheng Yang
- College of Plant Protection, Southwest University, Chongqing, 400715, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Ministry of Education, Southwest University, Chongqing, 400715, China
| | - Chaowei Bi
- College of Plant Protection, Southwest University, Chongqing, 400715, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Ministry of Education, Southwest University, Chongqing, 400715, China
| | - Yang Yu
- College of Plant Protection, Southwest University, Chongqing, 400715, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Ministry of Education, Southwest University, Chongqing, 400715, China
| |
Collapse
|
10
|
Li C, Luo S, Feng L, Wang Q, Cheng J, Xie J, Lin Y, Fu Y, Jiang D, Chen T. Protist ubiquitin ligase effector PbE3-2 targets cysteine protease RD21A to impede plant immunity. PLANT PHYSIOLOGY 2024; 194:1764-1778. [PMID: 38035763 DOI: 10.1093/plphys/kiad603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 10/18/2023] [Indexed: 12/02/2023]
Abstract
Clubroot, caused by the soil-borne protist pathogen Plasmodiophora brassicae, is one of the most devastating diseases of Brassica oil and vegetable crops worldwide. Understanding the pathogen infection strategy is crucial for the development of disease control. However, because of its obligate biotrophic nature, the molecular mechanism by which this pathogen promotes infection remains largely unknown. P. brassicae E3 ubiquitin ligase 2 (PbE3-2) is a Really Interesting New Gene (RING)-type E3 ubiquitin ligase in P. brassicae with E3 ligase activity in vitro. Yeast (Saccharomyces cerevisiae) invertase assay and apoplast washing fluid extraction showed that PbE3-2 harbors a functional signal peptide. Overexpression of PbE3-2 in Arabidopsis (Arabidopsis thaliana) resulted in higher susceptibility to P. brassicae and decreases in chitin-triggered reactive oxygen species burst and expression of marker genes in salicylic acid signaling. PbE3-2 interacted with and ubiquitinated host cysteine protease RESPONSIVE TO DEHYDRATION 21A (RD21A) in vitro and in vivo. Mutant plants deficient in RD21A exhibited similar susceptibility and compromised immune responses as in PbE3-2 overexpression plants. We show that PbE3-2, which targets RD21A, is an important virulence factor for P. brassicae. Two other secretory RING-type E3 ubiquitin ligases in P. brassicae performed the same function as PbE3-2 and ubiquitinated RD21A. This study reveals a substantial virulence functional role of protist E3 ubiquitin ligases and demonstrates a mechanism by which protist E3 ubiquitin ligases degrade host immune-associated cysteine proteases to impede host immunity.
Collapse
Affiliation(s)
- Chao Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Key Laboratory of Plant, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan 430070, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Shaofeng Luo
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Key Laboratory of Plant, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Lu Feng
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Key Laboratory of Plant, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Qianqian Wang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Key Laboratory of Plant, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiasen Cheng
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Key Laboratory of Plant, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiatao Xie
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Key Laboratory of Plant, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yang Lin
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Key Laboratory of Plant, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yanping Fu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Key Laboratory of Plant, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Daohong Jiang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Key Laboratory of Plant, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Tao Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Key Laboratory of Plant, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan 430070, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| |
Collapse
|
11
|
Shang Q, Jiang D, Xie J, Cheng J, Xiao X. The schizotrophic lifestyle of Sclerotinia sclerotiorum. MOLECULAR PLANT PATHOLOGY 2024; 25:e13423. [PMID: 38407560 PMCID: PMC10895550 DOI: 10.1111/mpp.13423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/30/2023] [Accepted: 01/07/2024] [Indexed: 02/27/2024]
Abstract
Sclerotinia sclerotiorum is a cosmopolitan and typical necrotrophic phytopathogenic fungus that infects hundreds of plant species. Because no cultivars highly resistant to S. sclerotiorum are available, managing Sclerotinia disease caused by S. sclerotiorum is still challenging. However, recent studies have demonstrated that S. sclerotiorum has a beneficial effect and can live mutualistically as an endophyte in graminaceous plants, protecting the plants against major fungal diseases. An in-depth understanding of the schizotrophic lifestyle of S. sclerotiorum during interactions with plants under different environmental conditions will provide new strategies for controlling fungal disease. In this review, we summarize the pathogenesis mechanisms of S. sclerotiorum during its attack of host plants as a destructive pathogen and discuss its lifestyle as a beneficial endophytic fungus.
Collapse
Affiliation(s)
- Qingna Shang
- National Key Laboratory of Agricultural MicrobiologyHuazhong Agricultural UniversityWuhanChina
- Hubei Hongshan LaboratoryWuhanChina
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Daohong Jiang
- National Key Laboratory of Agricultural MicrobiologyHuazhong Agricultural UniversityWuhanChina
- Hubei Hongshan LaboratoryWuhanChina
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Jiatao Xie
- National Key Laboratory of Agricultural MicrobiologyHuazhong Agricultural UniversityWuhanChina
- Hubei Hongshan LaboratoryWuhanChina
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Jiasen Cheng
- National Key Laboratory of Agricultural MicrobiologyHuazhong Agricultural UniversityWuhanChina
- Hubei Hongshan LaboratoryWuhanChina
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Xueqiong Xiao
- National Key Laboratory of Agricultural MicrobiologyHuazhong Agricultural UniversityWuhanChina
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| |
Collapse
|
12
|
Martín-Cardoso H, Bundó M, Val-Torregrosa B, San Segundo B. Phosphate accumulation in rice leaves promotes fungal pathogenicity and represses host immune responses during pathogen infection. FRONTIERS IN PLANT SCIENCE 2024; 14:1330349. [PMID: 38298608 PMCID: PMC10827867 DOI: 10.3389/fpls.2023.1330349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/29/2023] [Indexed: 02/02/2024]
Abstract
Rice is one of the most important crops in the world and a staple food for more than half of the world's population. At present, the blast disease caused by the fungus Magnaporthe oryzae poses a severe threat to food security through reduction of rice yields worldwide. High phosphate fertilization has previously been shown to increase blast susceptibility. At present, however, our knowledge on the mechanisms underpinning phosphate-induced susceptibility to M. oryzae infection in rice is limited. In this work, we conducted live cell imaging on rice sheaths inoculated with a M. oryzae strain expressing two fluorescently-tagged M. oryzae effectors. We show that growing rice under high phosphate fertilization, and subsequent accumulation of phosphate in leaf sheaths, promotes invasive growth of M. oryzae. Consistent with this, stronger expression of M. oryzae effectors and Pathogenicity Mitogen-activated Protein Kinase (PMK1) occurs in leaf sheaths of rice plants grown under high a phosphate regime. Down-regulation of fungal genes encoding suppressors of plant cell death and up-regulation of plant cell death-inducing effectors also occurs in sheaths of phosphate over-accumulating rice plants. Treatment with high Pi causes alterations in the expression of fungal phosphate transporter genes potentially contributing to pathogen virulence. From the perspective of the plant, Pi accumulation in leaf sheaths prevents H2O2 accumulation early during M. oryzae infection which was associated to a weaker activation of Respiratory Burst Oxidase Homologs (RBOHs) genes involved in reactive oxygen species (ROS) production. Further, a weaker activation of defense-related genes occurs during infection in rice plants over-accumulating phosphate. From these results, it can be concluded that phosphate fertilization has an effect on the two interacting partners, pathogen and host. Phosphate-mediated stimulation of fungal effector genes (e.g., potentiation of fungal pathogenicity) in combination with repression of pathogen-inducible immune responses (e.g., ROS accumulation, defense gene expression) explains higher colonization by M. oryzae in rice tissues accumulating phosphate. Phosphate content can therefore be considered as an important factor in determining the outcome of the rice/M. oryzae interaction. As fertilizers and pesticides are commonly used in rice cultivation to maintain optimal yield and to prevent losses caused by pathogens, a better understanding of how phosphate impacts blast susceptibility is crucial for developing strategies to rationally optimize fertilizer and pesticide use in rice production.
Collapse
Affiliation(s)
- Héctor Martín-Cardoso
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, C/de la Vall Moronta, CRAG Building, Campus Universitat Autònoma de Barcelona (UAB), Bellaterra (Cerdanyola del Vallés), Barcelona, Spain
| | - Mireia Bundó
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, C/de la Vall Moronta, CRAG Building, Campus Universitat Autònoma de Barcelona (UAB), Bellaterra (Cerdanyola del Vallés), Barcelona, Spain
| | - Beatriz Val-Torregrosa
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, C/de la Vall Moronta, CRAG Building, Campus Universitat Autònoma de Barcelona (UAB), Bellaterra (Cerdanyola del Vallés), Barcelona, Spain
| | - Blanca San Segundo
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, C/de la Vall Moronta, CRAG Building, Campus Universitat Autònoma de Barcelona (UAB), Bellaterra (Cerdanyola del Vallés), Barcelona, Spain
- Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
| |
Collapse
|
13
|
Tiwari R, Garg K, Senthil-Kumar M, Bisht NC. XLG2 and CORI3 function additively to regulate plant defense against the necrotrophic pathogen Sclerotinia sclerotiorum. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:616-631. [PMID: 37910396 DOI: 10.1111/tpj.16518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 10/01/2023] [Accepted: 10/13/2023] [Indexed: 11/03/2023]
Abstract
The membrane-bound heterotrimeric G-proteins in plants play a crucial role in defending against a broad range of pathogens. This study emphasizes the significance of Extra-large Gα protein 2 (XLG2), a plant-specific G-protein, in mediating the plant response to Sclerotinia sclerotiorum, which infects over 600 plant species worldwide. Our analysis of Arabidopsis G-protein mutants showed that loss of XLG2 function increased susceptibility to S. sclerotiorum, accompanied by compromised accumulation of jasmonic acid (JA) during pathogen infection. Overexpression of the XLG2 gene in xlg2 mutant plants resulted in higher resistance and increased JA accumulation during S. sclerotiorum infection. Co-immunoprecipitation (co-IP) analysis on S. sclerotiorum infected Col-0 samples, using two different approaches, identified 201 XLG2-interacting proteins. The identified JA-biosynthetic and JA-responsive proteins had compromised transcript expression in the xlg2 mutant during pathogen infection. XLG2 was found to interact physically with a JA-responsive protein, Coronatine induced 1 (CORI3) in Co-IP, and confirmed using split firefly luciferase complementation and bimolecular fluorescent complementation assays. Additionally, genetic analysis revealed an additive effect of XLG2 and CORI3 on resistance against S. sclerotiorum, JA accumulation, and expression of the defense marker genes. Overall, our study reveals two independent pathways involving XLG2 and CORI3 in contributing resistance against S. sclerotiorum.
Collapse
Affiliation(s)
- Ruchi Tiwari
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Kajal Garg
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Muthappa Senthil-Kumar
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Naveen C Bisht
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| |
Collapse
|
14
|
Wang K, Wang S, Wang T, Xia Q, Xia S. The Sclerotinia sclerotiorum ADP-Ribosylation Factor 6 Plays an Essential Role in Abiotic Stress Response and Fungal Virulence to Host Plants. J Fungi (Basel) 2023; 10:12. [PMID: 38248922 PMCID: PMC10817261 DOI: 10.3390/jof10010012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 01/23/2024] Open
Abstract
The ADP-ribosylation factor 6 (Arf6), as the only member of the Arf family III protein, has been extensively studied for its diverse biological functions in animals. Previously, the Arf6 protein in Magnaporthe oryzae was found to be crucial for endocytosis and polarity establishment during asexual development. However, its role remains unclear in S. sclerotiorum. Here, we identified and characterized SsArf6 in S. sclerotiorum using a reverse genetic approach. Deletion of SsArf6 impaired hyphal growth and development and produced more branches. Interestingly, knockout of SsArf6 resulted in an augmented tolerance of S. sclerotiorum towards oxidative stress, and increased its sensitivity towards osmotic stress, indicative of the different roles of SsArf6 in various stress responses. Simultaneously, SsArf6 deletion led to an elevation in melanin accumulation. Moreover, the appressorium formation was severely impaired, and fungal virulence to host plants was significantly reduced. Overall, our findings demonstrate the essential role of SsArf6 in hyphal development, stress responses, appressorium formation, and fungal virulence to host plants.
Collapse
Affiliation(s)
| | | | | | | | - Shitou Xia
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; (K.W.); (S.W.); (T.W.)
| |
Collapse
|
15
|
Tian B, Chen Z, Yu Y, Yang Y, Fang A, Bi C, Qu Z, Fu Y, Mehmood MA, Zhou C, Jiang D. Transcriptional plasticity of schizotrophic Sclerotinia sclerotiorum responds to symptomatic rapeseed and endophytic wheat hosts. Microbiol Spectr 2023; 11:e0261223. [PMID: 37905914 PMCID: PMC10714719 DOI: 10.1128/spectrum.02612-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 09/14/2023] [Indexed: 11/02/2023] Open
Abstract
IMPORTANCE The broad host range of fungi with differential fungal responses leads to either a pathogenic or an endophytic lifestyle in various host plants. Yet, the molecular basis of schizotrophic fungal responses to different plant hosts remains unexplored. Here, we observed a general increase in the gene expression of S. sclerotiorum associated with pathogenicity in symptomatic rapeseed, including small protein secretion, appressorial formation, and oxalic acid toxin production. Conversely, in wheat, many carbohydrate metabolism and transport-associated genes were induced, indicating a general increase in processes associated with carbohydrate acquisition. Appressorium is required for S. sclerotiorum during colonization in symptomatic hosts but not in endophytic wheat. These findings provide new clues for understanding schizotrophic fungi, fungal evolution, and the emergence pathways of new plant diseases.
Collapse
Affiliation(s)
- Binnian Tian
- College of Plant Protection, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing, China
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Ziyang Chen
- College of Plant Protection, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing, China
| | - Yang Yu
- College of Plant Protection, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing, China
| | - Yuheng Yang
- College of Plant Protection, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing, China
| | - Anfei Fang
- College of Plant Protection, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing, China
| | - Chaowei Bi
- College of Plant Protection, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing, China
| | - Zheng Qu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Yanping Fu
- The Provincial Key Lab of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Mirza Abid Mehmood
- Plant Pathology, Institute of Plant Protection, Muhammad Nawaz Shareef University of Agriculture, Multan, Pakistan
| | - Changyong Zhou
- College of Plant Protection, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing, China
| | - Daohong Jiang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
16
|
Reglinski T, Wurms KV, Vanneste JL, Ah Chee A, Schipper M, Cornish D, Yu J, McAlinden J, Hedderley D. Kiwifruit Resistance to Sclerotinia sclerotiorum and Pseudomonas syringae pv. actinidiae and Defence Induction by Acibenzolar-S-methyl and Methyl Jasmonate Are Cultivar Dependent. Int J Mol Sci 2023; 24:15952. [PMID: 37958935 PMCID: PMC10647243 DOI: 10.3390/ijms242115952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/25/2023] [Accepted: 11/01/2023] [Indexed: 11/15/2023] Open
Abstract
Pathogen susceptibility and defence gene inducibility were compared between the Actinidia arguta cultivar 'Hortgem Tahi' and the two cultivars of A. chinensis 'Hayward' and 'Zesy002'. Plants were treated with acibenzolar-s-methyl (ASM) or methyl jasmonate (MeJA) one week before inoculation with Pseudomonas syringae pv. actinidiae (Psa biovar3) or Sclerotinia sclerotiorum, or secondary induction with chitosan+glucan (Ch-Glu) as a potential pathogen proxy. Defence expression was evaluated by measuring the expression of 18 putative defence genes. 'Hortgem Tahi' was highly susceptible to sclerotinia and very resistant to Psa, whereas 'Zesy002' was highly resistant to both, and 'Hayward' was moderately susceptible to both. Gene expression in 'Hayward' and 'Zesy002' was alike but differed significantly from 'Hortgem Tahi' which had higher basal levels of PR1-i, PR5-i, JIH1, NPR3 and WRKY70 but lower expression of RD22 and PR2-i. Treatment with ASM caused upregulation of NIMIN2, PR1-i, WRKY70, DMR6 and PR5-i in all cultivars and induced resistance to Psa in 'Zesy002' and 'Hayward' but decreased resistance to sclerotinia in 'Zesy002'. MeJA application caused upregulation of LOX2 and downregulation of NIMIN2, DMR6 and PR2-i but did not affect disease susceptibility. The Ch-Glu inducer induced PR-gene families in each cultivar, highlighting its possible effectiveness as an alternative to actual pathogen inoculation. The significance of variations in fundamental and inducible gene expression among the cultivars is explored.
Collapse
Affiliation(s)
- Tony Reglinski
- Ruakura Research Centre, The New Zealand Institute for Plant and Food Research Limited, Hamilton 3214, New Zealand; (K.V.W.); (J.L.V.); (A.A.C.); (M.S.); (D.C.); (J.Y.); (J.M.)
| | - Kirstin V. Wurms
- Ruakura Research Centre, The New Zealand Institute for Plant and Food Research Limited, Hamilton 3214, New Zealand; (K.V.W.); (J.L.V.); (A.A.C.); (M.S.); (D.C.); (J.Y.); (J.M.)
| | - Joel L. Vanneste
- Ruakura Research Centre, The New Zealand Institute for Plant and Food Research Limited, Hamilton 3214, New Zealand; (K.V.W.); (J.L.V.); (A.A.C.); (M.S.); (D.C.); (J.Y.); (J.M.)
| | - Annette Ah Chee
- Ruakura Research Centre, The New Zealand Institute for Plant and Food Research Limited, Hamilton 3214, New Zealand; (K.V.W.); (J.L.V.); (A.A.C.); (M.S.); (D.C.); (J.Y.); (J.M.)
| | - Magan Schipper
- Ruakura Research Centre, The New Zealand Institute for Plant and Food Research Limited, Hamilton 3214, New Zealand; (K.V.W.); (J.L.V.); (A.A.C.); (M.S.); (D.C.); (J.Y.); (J.M.)
| | - Deirdre Cornish
- Ruakura Research Centre, The New Zealand Institute for Plant and Food Research Limited, Hamilton 3214, New Zealand; (K.V.W.); (J.L.V.); (A.A.C.); (M.S.); (D.C.); (J.Y.); (J.M.)
| | - Janet Yu
- Ruakura Research Centre, The New Zealand Institute for Plant and Food Research Limited, Hamilton 3214, New Zealand; (K.V.W.); (J.L.V.); (A.A.C.); (M.S.); (D.C.); (J.Y.); (J.M.)
| | - Jordan McAlinden
- Ruakura Research Centre, The New Zealand Institute for Plant and Food Research Limited, Hamilton 3214, New Zealand; (K.V.W.); (J.L.V.); (A.A.C.); (M.S.); (D.C.); (J.Y.); (J.M.)
| | - Duncan Hedderley
- Palmerston North Research Centre, The New Zealand Institute for Plant and Food Research Limited, Palmerston North 4410, New Zealand;
| |
Collapse
|
17
|
Vieira G, Sette LD, de Angelis DA, Sass DC. Antifungal activity of cyclopaldic acid from Antarctic Penicillium against phytopathogenic fungi. 3 Biotech 2023; 13:374. [PMID: 37860288 PMCID: PMC10581961 DOI: 10.1007/s13205-023-03792-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 09/26/2023] [Indexed: 10/21/2023] Open
Abstract
Plant pathogens cause great economic losses in agriculture. To reduce damage, chemical pesticides have been frequently used, but these compounds in addition to causing risks to the environment and health, its continuous use has given rise to resistant phytopathogens, threatening the efficiency of control methods. One alternative for such a problem is the use of natural products with high antifungal activity and low toxicity. Here, we present the production, isolation, and identification of cyclopaldic acid, a bioactive compound produced by Penicillium sp. CRM 1540, a fungal strain isolated from Antarctic marine sediment. The crude extract was fractionated by reversed-phase chromatography and yielded 40 fractions, from which fraction F17 was selected. We used 1D and 2D Nuclear Magnetic Resonance analysis in DMSO-d6 and CDCl3, together with mass spectrometry, to identify the compound as cyclopaldic acid C11H10O6 (238 Da). The pure compound was evaluated for antimicrobial activity against phytopathogenic fungi of global agricultural importance, namely: Macrophomina phaseolina, Rhizoctonia solani, and Sclerotinia sclerotiorum. The antifungal assay revealed the potential of cyclopaldic acid, produced by Penicillium sp. CRM 1540, as a leading molecule against M. phaseolina and R. solani, with more than 90% of growth inhibition after 96h of contact with the fungal cells using 100 µg mL-1, and more than 70% using 50 µg mL-1. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03792-9.
Collapse
Affiliation(s)
- Gabrielle Vieira
- Department of General and Applied Biology, Institute of Biosciences, São Paulo State University Campus Rio Claro, Av. 24-A, 1515, Rio Claro, São Paulo 13506-900 Brazil
| | - Lara Durães Sette
- Department of General and Applied Biology, Institute of Biosciences, São Paulo State University Campus Rio Claro, Av. 24-A, 1515, Rio Claro, São Paulo 13506-900 Brazil
| | - Derlene Attili de Angelis
- Division of Microbial Resources, CPQBA, University of Campinas, Cidade Universitária “Zeferino Vaz”, Campinas, São Paulo 13083-970 Brazil
| | - Daiane Cristina Sass
- Department of General and Applied Biology, Institute of Biosciences, São Paulo State University Campus Rio Claro, Av. 24-A, 1515, Rio Claro, São Paulo 13506-900 Brazil
| |
Collapse
|
18
|
Dort EN, Layne E, Feau N, Butyaev A, Henrissat B, Martin FM, Haridas S, Salamov A, Grigoriev IV, Blanchette M, Hamelin RC. Large-scale genomic analyses with machine learning uncover predictive patterns associated with fungal phytopathogenic lifestyles and traits. Sci Rep 2023; 13:17203. [PMID: 37821494 PMCID: PMC10567782 DOI: 10.1038/s41598-023-44005-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 10/03/2023] [Indexed: 10/13/2023] Open
Abstract
Invasive plant pathogenic fungi have a global impact, with devastating economic and environmental effects on crops and forests. Biosurveillance, a critical component of threat mitigation, requires risk prediction based on fungal lifestyles and traits. Recent studies have revealed distinct genomic patterns associated with specific groups of plant pathogenic fungi. We sought to establish whether these phytopathogenic genomic patterns hold across diverse taxonomic and ecological groups from the Ascomycota and Basidiomycota, and furthermore, if those patterns can be used in a predictive capacity for biosurveillance. Using a supervised machine learning approach that integrates phylogenetic and genomic data, we analyzed 387 fungal genomes to test a proof-of-concept for the use of genomic signatures in predicting fungal phytopathogenic lifestyles and traits during biosurveillance activities. Our machine learning feature sets were derived from genome annotation data of carbohydrate-active enzymes (CAZymes), peptidases, secondary metabolite clusters (SMCs), transporters, and transcription factors. We found that machine learning could successfully predict fungal lifestyles and traits across taxonomic groups, with the best predictive performance coming from feature sets comprising CAZyme, peptidase, and SMC data. While phylogeny was an important component in most predictions, the inclusion of genomic data improved prediction performance for every lifestyle and trait tested. Plant pathogenicity was one of the best-predicted traits, showing the promise of predictive genomics for biosurveillance applications. Furthermore, our machine learning approach revealed expansions in the number of genes from specific CAZyme and peptidase families in the genomes of plant pathogens compared to non-phytopathogenic genomes (saprotrophs, endo- and ectomycorrhizal fungi). Such genomic feature profiles give insight into the evolution of fungal phytopathogenicity and could be useful to predict the risks of unknown fungi in future biosurveillance activities.
Collapse
Affiliation(s)
- E N Dort
- Department of Forest and Conservation Sciences, Faculty of Forestry, University of British Columbia, Vancouver, BC, Canada
| | - E Layne
- School of Computer Science, McGill University, Montreal, QC, Canada
| | - N Feau
- Pacific Forestry Centre, Canadian Forest Service, Natural Resources Canada, Victoria, BC, Canada
| | - A Butyaev
- School of Computer Science, McGill University, Montreal, QC, Canada
| | - B Henrissat
- Department of Biotechnology and Biomedicine (DTU Bioengineering), Technical University of Denmark, 2800, Kgs. Lyngby, Denmark
- Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - F M Martin
- Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Unité Mixte de Recherche Interactions Arbres/Microorganismes, Centre INRAE, Grand Est-Nancy, Université de Lorraine, Champenoux, France
| | - S Haridas
- Lawrence Berkeley National Laboratory, U.S. Department of Energy Joint Genome Institute, Berkeley, CA, USA
| | - A Salamov
- Lawrence Berkeley National Laboratory, U.S. Department of Energy Joint Genome Institute, Berkeley, CA, USA
| | - I V Grigoriev
- Lawrence Berkeley National Laboratory, U.S. Department of Energy Joint Genome Institute, Berkeley, CA, USA
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA, USA
| | - M Blanchette
- School of Computer Science, McGill University, Montreal, QC, Canada
| | - R C Hamelin
- Department of Forest and Conservation Sciences, Faculty of Forestry, University of British Columbia, Vancouver, BC, Canada.
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC, Canada.
- Département des Sciences du bois et de la Forêt, Faculté de Foresterie et Géographie, Université Laval, Québec, QC, Canada.
| |
Collapse
|
19
|
Li T, Liu R, Liu Z, Chang J, Li J. Effects of Intermittent Temperature and Humidity Regulation on Tomato Gray Mold. PLANT DISEASE 2023; 107:2335-2345. [PMID: 36627805 DOI: 10.1094/pdis-10-22-2339-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Temperature and humidity play an important role in plant-pathogen interactions. However, regulating the temperature and humidity specifically to inhibit the development of plant diseases remains unclear. In this study, we explored the influence of intermittent temperature and humidity variation on tomato gray mold. Intermittent regulation of temperature and humidity (increasing temperature with decreasing humidity for different periods within 24 h) inhibited the disease severity of plants and the infection process of Botrytis cinerea. The 4-h treatment (increasing temperature accompanied by decreasing humidity for 4 h and recovering for 4 h, and so on) effectively inhibited the development of tomato gray mold, reduced the biomass of B. cinerea, delayed the differentiation time of mycelia, and inhibited the accumulation of hydrogen peroxide in tomato leaves at the later stage of infection. The increased expressions of heat-shock protein (HSP) genes HSP20, HSP70, HSP90, BAG6, and BAG7 in tomato were mainly caused by environmental changes and environment-plant-pathogen interactions, and the increased expression of the latter was greater than that of the former in the 2-h (increasing temperature accompanied by decreasing humidity for 2 h and recovering for 2 h, and so on) and 4-h treatments. Pathogen infection induced the expression of defense-related genes in tomato, and the increase in the expressions of FLS2, FEI1, PI2, Pti5, and WRKY75 induced by B. cinerea in the 4-h treatment was greater than that under unregulated temperature and humidity conditions. In general, intermittent temperature and humidity variation can effectively inhibit the development of tomato gray mold, and the 4-h treatment had the best inhibitory effect.
Collapse
Affiliation(s)
- Tianzhu Li
- College of Horticulture, Northwest Agricultural and Forestry University, Yangling 712100, China
| | - Ruyi Liu
- College of Horticulture, Northwest Agricultural and Forestry University, Yangling 712100, China
| | - Zhaoyu Liu
- College of Horticulture, Northwest Agricultural and Forestry University, Yangling 712100, China
| | - Jiayue Chang
- College of Horticulture, Northwest Agricultural and Forestry University, Yangling 712100, China
| | - Jianming Li
- College of Horticulture, Northwest Agricultural and Forestry University, Yangling 712100, China
| |
Collapse
|
20
|
Newman TE, Kim H, Khentry Y, Sohn KH, Derbyshire MC, Kamphuis LG. The broad host range pathogen Sclerotinia sclerotiorum produces multiple effector proteins that induce host cell death intracellularly. MOLECULAR PLANT PATHOLOGY 2023; 24:866-881. [PMID: 37038612 PMCID: PMC10346375 DOI: 10.1111/mpp.13333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 03/19/2023] [Accepted: 03/20/2023] [Indexed: 06/19/2023]
Abstract
Sclerotinia sclerotiorum is a broad host range necrotrophic fungal pathogen, which causes disease on many economically important crop species. S. sclerotiorum has been shown to secrete small effector proteins to kill host cells and acquire nutrients. We set out to discover novel necrosis-inducing effectors and characterize their activity using transient expression in Nicotiana benthamiana leaves. Five intracellular necrosis-inducing effectors were identified with differing host subcellular localization patterns, which were named intracellular necrosis-inducing effector 1-5 (SsINE1-5). We show for the first time a broad host range pathogen effector, SsINE1, that uses an RxLR-like motif to enter host cells. Furthermore, we provide preliminary evidence that SsINE5 induces necrosis via an NLR protein. All five of the identified effectors are highly conserved in globally sourced S. sclerotiorum isolates. Taken together, these results advance our understanding of the virulence mechanisms employed by S. sclerotiorum and reveal potential avenues for enhancing genetic resistance to this damaging fungal pathogen.
Collapse
Affiliation(s)
- Toby E. Newman
- Centre for Crop and Disease Management, School of Molecular and Life SciencesCurtin UniversityBentleyWestern AustraliaAustralia
| | - Haseong Kim
- Plant Immunity Research CenterSeoul National UniversitySeoul08826Republic of Korea
| | - Yuphin Khentry
- Centre for Crop and Disease Management, School of Molecular and Life SciencesCurtin UniversityBentleyWestern AustraliaAustralia
| | - Kee Hoon Sohn
- Plant Immunity Research CenterSeoul National UniversitySeoul08826Republic of Korea
- Department of Agricultural BiotechnologySeoul National UniversitySeoul08826Republic of Korea
- Research Institute of Agriculture and Life SciencesSeoul National UniversitySeoul08826Republic of Korea
| | - Mark C. Derbyshire
- Centre for Crop and Disease Management, School of Molecular and Life SciencesCurtin UniversityBentleyWestern AustraliaAustralia
| | - Lars G. Kamphuis
- Centre for Crop and Disease Management, School of Molecular and Life SciencesCurtin UniversityBentleyWestern AustraliaAustralia
| |
Collapse
|
21
|
Oladzad A, Roy J, Mamidi S, Miklas PN, Lee R, Clevenger J, Myers Z, Korani W, McClean PE. Linked candidate genes of different functions for white mold resistance in common bean ( Phaseolus vulgaris L) are identified by multiple QTL mapping approaches. FRONTIERS IN PLANT SCIENCE 2023; 14:1233285. [PMID: 37583595 PMCID: PMC10425182 DOI: 10.3389/fpls.2023.1233285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 07/11/2023] [Indexed: 08/17/2023]
Abstract
White mold (WM) is a major disease in common bean (Phaseolus vulgaris L.), and its complex quantitative genetic control limits the development of WM resistant cultivars. WM2.2, one of the nine meta-QTL with a major effect on WM tolerance, explains up to 35% of the phenotypic variation and was previously mapped to a large genomic interval on Pv02. Our objective was to narrow the interval of this QTL using combined approach of classic QTL mapping and QTL-based bulk segregant analysis (BSA), and confirming those results with Khufu de novo QTL-seq. The phenotypic and genotypic data from two RIL populations, 'Raven'/I9365-31 (R31) and 'AN-37'/PS02-029C-20 (Z0726-9), were used to select resistant and susceptible lines to generate subpopulations for bulk DNA sequencing. The QTL physical interval was determined by considering overlapping interval of the identified QTL or peak region in both populations by three independent QTL mapping analyses. Our findings revealed that meta-QTL WM2.2 consists of three regions, WM2.2a (4.27-5.76 Mb; euchromatic), WM 2.2b (12.19 to 17.61 Mb; heterochromatic), and WM2.2c (23.01-25.74 Mb; heterochromatic) found in both populations. Gene models encoding for gibberellin 2-oxidase 8, pentatricopeptide repeat, and heat-shock proteins are the likely candidate genes associated with WM2.2a resistance. A TIR-NBS-LRR class of disease resistance protein (Phvul.002G09200) and LRR domain containing family proteins are potential candidate genes associated with WM2.2b resistance. Nine gene models encoding disease resistance protein [pathogenesis-related thaumatin superfamily protein and disease resistance-responsive (dirigent-like protein) family protein etc] found within the WM2.2c QTL interval are putative candidate genes. WM2.2a region is most likely associated with avoidance mechanisms while WM2.2b and WM2.2c regions trigger physiological resistance based on putative candidate genes.
Collapse
Affiliation(s)
- Atena Oladzad
- Genomics Data Scientist II, Sound Agriculture, Emeryville, CA, United States
| | - Jayanta Roy
- Department of Plant Sciences, North Dakota State University, Fargo, ND, United States
| | - Sujan Mamidi
- Hudson Alpha Institute for Biotechnology, Huntsville, AL, United States
| | - Phillip N. Miklas
- Grain Legume Genetics and Physiology Research Unit, United States Department of Agriculture - Agricultural Research Service (USDA-ARS), Prosser, WA, United States
| | - Rian Lee
- Department of Plant Sciences, North Dakota State University, Fargo, ND, United States
| | - Josh Clevenger
- Hudson Alpha Institute for Biotechnology, Huntsville, AL, United States
| | - Zachary Myers
- Hudson Alpha Institute for Biotechnology, Huntsville, AL, United States
| | - Walid Korani
- Hudson Alpha Institute for Biotechnology, Huntsville, AL, United States
| | - Phillip E. McClean
- Department of Plant Sciences, North Dakota State University, Fargo, ND, United States
- Genomics, Phenomics, and Bioinformatics Program, North Dakota State University, Fargo, ND, United States
| |
Collapse
|
22
|
Hu Y, Gong H, Lu Z, Zhang P, Zheng S, Wang J, Tian B, Fang A, Yang Y, Bi C, Cheng J, Yu Y. Variable Tandem Glycine-Rich Repeats Contribute to Cell Death-Inducing Activity of a Glycosylphosphatidylinositol-Anchored Cell Wall Protein That Is Associated with the Pathogenicity of Sclerotinia sclerotiorum. Microbiol Spectr 2023; 11:e0098623. [PMID: 37140432 PMCID: PMC10269696 DOI: 10.1128/spectrum.00986-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 04/07/2023] [Indexed: 05/05/2023] Open
Abstract
Glycosylphosphatidylinositol (GPI) anchoring of proteins is a conserved posttranslational modification in eukaryotes. GPI-anchored proteins are widely distributed in fungal plant pathogens, but the specific roles of the GPI-anchored proteins in the pathogenicity of Sclerotinia sclerotiorum, a devastating necrotrophic plant pathogen with a worldwide distribution, remain largely unknown. This research addresses SsGSR1, which encodes an S. sclerotiorum glycine- and serine-rich protein named SsGsr1 with an N-terminal secretory signal and a C-terminal GPI-anchor signal. SsGsr1 is located at the cell wall of hyphae, and deletion of SsGSR1 leads to abnormal cell wall architecture and impaired cell wall integrity of hyphae. The transcription levels of SsGSR1 were maximal in the initial stage of infection, and SsGSR1-deletion strains showed impaired virulence in multiple hosts, indicating that SsGSR1 is critical for the pathogenicity. Interestingly, SsGsr1 targeted the apoplast of host plants to induce cell death that relies on the glycine-rich 11-amino-acid repeats arranged in tandem. The homologs of SsGsr1 in Sclerotinia, Botrytis, and Monilinia species contain fewer repeat units and have lost their cell death activity. Moreover, allelic variants of SsGSR1 exist in field isolates of S. sclerotiorum from rapeseed, and one of the variants lacking one repeat unit results in a protein that exhibits loss of function relative to the cell death-inducing activity and the virulence of S. sclerotiorum. Taken together, our results demonstrate that a variation in tandem repeats provides the functional diversity of GPI-anchored cell wall protein that, in S. sclerotiorum and other necrotrophic pathogens, allows successful colonization of the host plants. IMPORTANCE Sclerotinia sclerotiorum is an economically important necrotrophic plant pathogen and mainly applies cell wall-degrading enzymes and oxalic acid to kill plant cells before colonization. In this research, we characterized a glycosylphosphatidylinositol (GPI)-anchored cell wall protein named SsGsr1, which is critical for the cell wall architecture and the pathogenicity of S. sclerotiorum. Additionally, SsGsr1 induces rapid cell death of host plants that is dependent on glycine-rich tandem repeats. Interestingly, the number of repeat units varies among homologs and alleles of SsGsr1, and such a variation creates alterations in the cell death-inducing activity and the role in pathogenicity. This work advances our understanding of the variation of tandem repeats in accelerating the evolution of a GPI-anchored cell wall protein associated with the pathogenicity of necrotrophic fungal pathogens and prepares the way toward a fuller understanding of the interaction between S. sclerotiorum and host plants.
Collapse
Affiliation(s)
- Yawen Hu
- College of Plant Protection, Southwest University, Chongqing City, China
| | - Hang Gong
- College of Plant Protection, Southwest University, Chongqing City, China
| | - Ziyang Lu
- College of Plant Protection, Southwest University, Chongqing City, China
| | - Pengpeng Zhang
- College of Plant Protection, Southwest University, Chongqing City, China
| | - Sinian Zheng
- College of Plant Protection, Southwest University, Chongqing City, China
| | - Jing Wang
- College of Plant Protection, Southwest University, Chongqing City, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Ministry of Education, Southwest University, Chongqing City, China
| | - Binnian Tian
- College of Plant Protection, Southwest University, Chongqing City, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Ministry of Education, Southwest University, Chongqing City, China
| | - Anfei Fang
- College of Plant Protection, Southwest University, Chongqing City, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Ministry of Education, Southwest University, Chongqing City, China
| | - Yuheng Yang
- College of Plant Protection, Southwest University, Chongqing City, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Ministry of Education, Southwest University, Chongqing City, China
| | - Chaowei Bi
- College of Plant Protection, Southwest University, Chongqing City, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Ministry of Education, Southwest University, Chongqing City, China
| | - Jiasen Cheng
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan City, China
| | - Yang Yu
- College of Plant Protection, Southwest University, Chongqing City, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Ministry of Education, Southwest University, Chongqing City, China
| |
Collapse
|
23
|
Hossain MM, Sultana F, Li W, Tran LSP, Mostofa MG. Sclerotinia sclerotiorum (Lib.) de Bary: Insights into the Pathogenomic Features of a Global Pathogen. Cells 2023; 12:cells12071063. [PMID: 37048136 PMCID: PMC10093061 DOI: 10.3390/cells12071063] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 03/11/2023] [Accepted: 03/23/2023] [Indexed: 04/03/2023] Open
Abstract
Sclerotinia sclerotiorum (Lib.) de Bary is a broad host-range fungus that infects an inclusive array of plant species and afflicts significant yield losses globally. Despite being a notorious pathogen, it has an uncomplicated life cycle consisting of either basal infection from myceliogenically germinated sclerotia or aerial infection from ascospores of carpogenically germinated sclerotia. This fungus is unique among necrotrophic pathogens in that it inevitably colonizes aging tissues to initiate an infection, where a saprophytic stage follows the pathogenic phase. The release of cell wall-degrading enzymes, oxalic acid, and effector proteins are considered critical virulence factors necessary for the effective pathogenesis of S. sclerotiorum. Nevertheless, the molecular basis of S. sclerotiorum pathogenesis is still imprecise and remains a topic of continuing research. Previous comprehensive sequencing of the S. sclerotiorum genome has revealed new insights into its genome organization and provided a deeper comprehension of the sophisticated processes involved in its growth, development, and virulence. This review focuses on the genetic and genomic aspects of fungal biology and molecular pathogenicity to summarize current knowledge of the processes utilized by S. sclerotiorum to parasitize its hosts. Understanding the molecular mechanisms regulating the infection process of S. sclerotiorum will contribute to devising strategies for preventing infections caused by this destructive pathogen.
Collapse
|
24
|
Yang C, Tang L, Qin L, Zhong W, Tang X, Gong X, Xie W, Li Y, Xia S. mRNA Turnover Protein 4 Is Vital for Fungal Pathogenicity and Response to Oxidative Stress in Sclerotinia sclerotiorum. Pathogens 2023; 12:pathogens12020281. [PMID: 36839553 PMCID: PMC9960052 DOI: 10.3390/pathogens12020281] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/02/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
Ribosome assembly factors have been extensively studied in yeast, and their abnormalities may affect the assembly process of ribosomes and cause severe damage to cells. However, it is not clear whether mRNA turnover protein 4 (MRT4) functions in the fungal growth and pathogenicity in Sclerotinia sclerotiorum. Here, we identified the nucleus-located gene SsMRT4 using reverse genetics, and found that knockdown of SsMRT4 resulted in retard mycelia growth and complete loss of pathogenicity. Furthermore, mrt4 knockdown mutants showed almost no appressorium formation and oxalic acid production comparing to the wild-type and complementary strains. In addition, the abilities to ROS elimination and resistance to oxidative and osmotic stresses were also seriously compromised in mrt4 mutants. Overall, our study clarified the role of SsMRT4 in S. sclerotiorum, providing new insights into ribosome assembly in regulating pathogenicity and resistance to environmental stresses of fungi.
Collapse
Affiliation(s)
- Chenghuizi Yang
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha 410128, China
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Lan Tang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Lei Qin
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha 410128, China
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Weiping Zhong
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha 410128, China
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Xianyu Tang
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha 410128, China
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Xin Gong
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha 410128, China
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Wenqi Xie
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Yifu Li
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha 410128, China
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Shitou Xia
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha 410128, China
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
- Correspondence:
| |
Collapse
|
25
|
Bi K, Liang Y, Mengiste T, Sharon A. Killing softly: a roadmap of Botrytis cinerea pathogenicity. TRENDS IN PLANT SCIENCE 2023; 28:211-222. [PMID: 36184487 DOI: 10.1016/j.tplants.2022.08.024] [Citation(s) in RCA: 43] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 08/23/2022] [Accepted: 08/31/2022] [Indexed: 06/16/2023]
Abstract
Botrytis cinerea, a widespread plant pathogen with a necrotrophic lifestyle, causes gray mold disease in many crops. Massive secretion of enzymes and toxins was long considered to be the main driver of infection, but recent studies have uncovered a rich toolbox for B. cinerea pathogenicity. The emerging picture is of a multilayered infection process governed by the exchange of factors that collectively contribute to disease development. No plant shows complete resistance against B. cinerea, but pattern-triggered plant immune responses have the potential to significantly reduce disease progression, opening new possibilities for producing B. cinerea-tolerant plants. We examine current B. cinerea infection models, highlight knowledge gaps, and suggest directions for future studies.
Collapse
Affiliation(s)
- Kai Bi
- College of Life Science and Technology, Wuhan Polytechnic University, Wuhan City, Hubei Province, China
| | - Yong Liang
- School of Plant Sciences and Food Security, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Tesfaye Mengiste
- Department of Botany and Plant Pathology, Purdue University, 915 West State Street, West Lafayette, IN 47907, USA
| | - Amir Sharon
- School of Plant Sciences and Food Security, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel.
| |
Collapse
|
26
|
Venkatesan RM, Muthusamy K, Iruthayasamy J, Prithiviraj B, Kumaresan PV, Lakshmanan P, Perianadar IV. First Report of Clonostachys rosea as a Mycoparasite on Sclerotinia sclerotiorum Causing Head Rot of Cabbage in India. PLANTS (BASEL, SWITZERLAND) 2023; 12:199. [PMID: 36616328 PMCID: PMC9824872 DOI: 10.3390/plants12010199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/07/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
Clonostachys rosea, an ascomycetous, omnipresent, cellulose-decaying soil fungus, has been reported to be a well-known mycoparasitic biological control agent. In this study, we isolated C. rosea, a mycoparasitic fungus for the first time in India from sclerotia of the notorious plant pathogen Sclerotinia sclerotiorum, causing head rot disease in cabbage. A total of five mycoparasitic fungi were isolated from the sclerotial bodies of S. sclerotiorum (TNAU-CR 01, 02, 03, 04 and 05). All the isolates were tested under morpho-molecular characterization. Among them, TNAU-CR 02 showed the greatest mycelial inhibition of 79.63% over the control. Similarly, the SEM imaging of effective C. rosea isolates indicated the presence of numerous conidia destroying the outer cortex layers of sclerotia. Metabolite fingerprinting of C. rosea TNAU-CR 02 identified 18 chemical compounds using GC-MS analysis. The crude antibiotics of C. rosea TNAU-CR 02 were verified for their antifungal activity against S. sclerotiorum and the results revealed 97.17% mycelial inhibition compared with the control. Similarly, foliar application of TNAU-CR 02 at 5 mL/litre on 30, 45 and 60 days after transplanting showed the lowest disease incidence of 15.1 PDI compared to the control. This discovery expands our understanding of the biology and the dissemination of C. rosea, providing a way for the exploitation of C. rosea against cabbage head rot pathogens.
Collapse
Affiliation(s)
- Ruppavalli M. Venkatesan
- Department of Plant Pathology, Tamil Nadu Agricultural University, Coimbatore 641003, India
- Department of Plant, Food and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS B2N 5E3, Canada
| | - Karthikeyan Muthusamy
- Department of Plant Pathology, Tamil Nadu Agricultural University, Coimbatore 641003, India
| | - Johnson Iruthayasamy
- Department of Plant Pathology, Tamil Nadu Agricultural University, Coimbatore 641003, India
| | - Balakrishnan Prithiviraj
- Department of Plant, Food and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS B2N 5E3, Canada
| | - Parthiban V. Kumaresan
- Department of Plant Pathology, Tamil Nadu Agricultural University, Coimbatore 641003, India
| | - Pugalendhi Lakshmanan
- Department of Vegetable Sciences, Horticultural College and Research Institute, Tamil Nadu Agricultural University, Coimbatore 641003, Tamil Nadu, India
| | - Irene Vethamoni Perianadar
- Department of Vegetable Sciences, Horticultural College and Research Institute, Tamil Nadu Agricultural University, Coimbatore 641003, Tamil Nadu, India
| |
Collapse
|
27
|
Fei W, Liu Y. Biotrophic Fungal Pathogens: a Critical Overview. Appl Biochem Biotechnol 2023; 195:1-16. [PMID: 35951248 DOI: 10.1007/s12010-022-04087-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/15/2022] [Indexed: 01/13/2023]
Abstract
Biotrophic fungi are one group of heterogeneous organisms and these fungi differ in their traits like mode of nutrition, types of reproduction, and dispersal systems. Generally, based on the nutritional mode, fungi are classified into three broad categories, viz. biotrophs, necrotrophs, and hemi-biotrophs. Biotrophs derive their nutrients and energy from living plant cells and survive within the interstitial space of the cells. Biotrophic fungi cause serious crop diseases but are highly challenging to investigate and develop a treatment strategy. Blumeria (Erysiphe) graminis, Uromyces fabae, Ustilago maydis, Cladosporium fulvum, Puccinia graminis, and Phytophthora infestans are some of the significant biotrophic fungi that affect mainly plants. One among the biotrophic fungus, Pneumocystis jirovecii (Taphrinomycotina subphylum of the Ascomycota) exclusively a human pathogen, can cause lung diseases such as "pneumocystis." Biotrophic fungus widely parasitizing Solanaceae family crops (Tomato and potato) has done massive damage to the crops and has led to economic impact worldwide. During infection and for nutrient absorption, biotrophs develops external appendages such as appressoria or haustoria. The hyphae or appressorium adheres to the plant cell wall and collapses the layers for their nutrient absorption. The pathogen also secretes effector molecules to escape from the plant defense mechanism. Later, plants activate their primary and secondary defense mechanisms; however, the pathogen induces virulence genes to escape the host immune responses. Obligate biotrophic fungi pathogenicity has not been fully understood at the molecular level because of the complex interaction, recognition, and signaling with the host. This review summarizes the mechanism of infection in the host, and immune response to emphasize the understanding of the biotrophic fungal biology and pathogenesis in crops. Thus, the detailed review will pave the way to design methods to overcome the resistance of biotrophic fungi and develop disease-free crops.
Collapse
Affiliation(s)
- Wang Fei
- Zhengzhou Yongfeng Bio-Fertilizer Co., Ltd, high-tech district, 6 Tsui Zhu Street, 863 Software Park, Building 9 1102, Henan Province, 450001, Zhengzhou City, China.
| | - Ye Liu
- Xiangtan Institute for Food and Drug Control, Xiangtan, China
| |
Collapse
|
28
|
Westrick NM, Park SC, Keller NP, Smith DL, Kabbage M. A broadly conserved fungal alcohol oxidase (AOX) facilitates fungal invasion of plants. MOLECULAR PLANT PATHOLOGY 2023; 24:28-43. [PMID: 36251755 PMCID: PMC9742500 DOI: 10.1111/mpp.13274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
Alcohol oxidases (AOXs) are ecologically important enzymes that facilitate a number of plant-fungal interactions. Within Ascomycota they are primarily associated with methylotrophy, as a peroxisomal AOX catalysing the conversion of methanol to formaldehyde in methylotrophic yeast. In this study we demonstrate that AOX orthologues are phylogenetically conserved proteins that are common in the genomes of nonmethylotrophic, plant-associating fungi. Additionally, AOX orthologues are highly expressed during infection in a range of diverse pathosystems. To study the role of AOX in plant colonization, AOX knockout mutants were generated in the broad host range pathogen Sclerotinia sclerotiorum. Disease assays in soybean showed that these mutants had a significant virulence defect as evidenced by markedly reduced stem lesions and mortality rates. Chemical genomics suggested that SsAOX may function as an aromatic AOX, and growth assays demonstrated that ΔSsAOX is incapable of properly utilizing plant extract as a nutrient source. Profiling of known aromatic alcohols pointed towards the monolignol coniferyl alcohol (CA) as a possible substrate for SsAOX. As CA and other monolignols are ubiquitous among land plants, the presence of highly conserved AOX orthologues throughout Ascomycota implies that this is a broadly conserved protein used by ascomycete fungi during plant colonization.
Collapse
Affiliation(s)
- Nathaniel M. Westrick
- Department of Plant PathologyUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
- United States Department of Agriculture–Agricultural Research ServiceMadisonWisconsinUSA
| | - Sung Chul Park
- Department of Medical Microbiology and ImmunologyUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Nancy P. Keller
- Department of Plant PathologyUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
- Department of Medical Microbiology and ImmunologyUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Damon L. Smith
- Department of Plant PathologyUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Mehdi Kabbage
- Department of Plant PathologyUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| |
Collapse
|
29
|
The SsAtg1 Activating Autophagy Is Required for Sclerotia Formation and Pathogenicity in Sclerotinia sclerotiorum. J Fungi (Basel) 2022; 8:jof8121314. [PMID: 36547647 PMCID: PMC9787769 DOI: 10.3390/jof8121314] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 11/24/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Sclerotinia sclerotiorum is a necrotrophic phytopathogenic fungus that produces sclerotia. Sclerotia are essential components of the survival and disease cycle of this devastating pathogen. In this study, we analyzed comparative transcriptomics of hyphae and sclerotia. A total of 1959 differentially expressed genes, 919 down-regulated and 1040 up-regulated, were identified. Transcriptomes data provide the possibility to precisely comprehend the sclerotia development. We further analyzed the differentially expressed genes (DEGs) in sclerotia to explore the molecular mechanism of sclerotia development, which include ribosome biogenesis and translation, melanin biosynthesis, autophagy and reactivate oxygen metabolism. Among these, the autophagy-related gene SsAtg1 was up-regulated in sclerotia. Atg1 homologs play critical roles in autophagy, a ubiquitous and evolutionarily highly conserved cellular mechanism for turnover of intracellular materials in eukaryotes. Therefore, we investigated the function of SsAtg1 to explore the function of the autophagy pathway in S. sclerotiorum. Deficiency of SsAtg1 inhibited autophagosome accumulation in the vacuoles of nitrogen-starved cells. Notably, ΔSsAtg1 was unable to form sclerotia and displayed defects in vegetative growth under conditions of nutrient restriction. Furthermore, the development and penetration of the compound appressoria in ΔSsAtg1 was abnormal. Pathogenicity analysis showed that SsAtg1 was required for full virulence of S. sclerotiorum. Taken together, these results indicate that SsAtg1 is a core autophagy-related gene that has vital functions in nutrient utilization, sclerotia development and pathogenicity in S. sclerotiorum.
Collapse
|
30
|
Gupta NC, Yadav S, Arora S, Mishra DC, Budhlakoti N, Gaikwad K, Rao M, Prasad L, Rai PK, Sharma P. Draft genome sequencing and secretome profiling of Sclerotinia sclerotiorum revealed effector repertoire diversity and allied broad-host range necrotrophy. Sci Rep 2022; 12:21855. [PMID: 36528657 PMCID: PMC9759525 DOI: 10.1038/s41598-022-22028-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 10/07/2022] [Indexed: 12/23/2022] Open
Abstract
White mold commonly known as Sclerotinia sclerotiorum causes stem rot disease and has emerged as one of the major fungal pathogens of oilseed Brassica across the world. In the present study, consistently virulent S. sclerotiorum isolate "ESR-01" was sequenced and an assembly size of ~ 41 Mb with 328 scaffolds having N50 of 447,128 was obtained. Additionally, 27,450 single nucleotide polymorphisms (SNPs) were identified from 155 scaffolds against S. sclerotiorum 1980 isolate, with an average SNP density of ~ 1.5 per kb genome. 667 repetitive elements were identified and approximately comprised 7% of the total annotated genes. The DDE_1 with 454 in numbers was found to be the most abundant and accounts for 68% of the total predicted repetitive elements. In total, 3844 simple sequence repeats are identified in the 328 scaffolds. A total of 9469 protein-coding genes were predicted from the whole genome assembly with an average gene length of 1587 bp and their distribution as 230.95 genes per Mb in the genome. Out of 9469 predicted protein-coding genes, 529 genes were observed encoding the CAZymes (Carbohydrate-Active enzymes) capable of degradation of the complex polysaccharides. Glycosyltransferase (GT) families were most abundant (49.71%) among the predicted CAZymes and GT2 (23%), GT4 (20%), and glycoside hydrolase (GH) 23% with GH18 (11%) were the prominent cell wall degrading enzyme families in the ESR-01 secretome. Besides this, 156 genes essential for the pathogen-host interactions were also identified. The effector analysis in the whole genome proteomics dataset revealed a total of 57 effector candidates (ECs) and 27 of them were having their analogs whereas the remaining 30 were novel ones. Eleven selected ECs were validated experimentally by analyzing the expression profile of the ESR-01 isolate of S. sclerotiorum. Together, the present investigation offers a better understanding of the S. sclerotiorum genome, secretome, and its effector repertoire which will help in refining the present knowledge on S. sclerotiorum-Brassica interactions and necrotrophic lifestyle of the phytopathogen in general.
Collapse
Affiliation(s)
- Navin C Gupta
- ICAR-National Institute for Plant Biotechnology, New Delhi, India.
| | - Sunita Yadav
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Shaweta Arora
- ICAR-National Institute for Plant Biotechnology, New Delhi, India
| | - Dwijesh C Mishra
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Neeraj Budhlakoti
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Kishore Gaikwad
- ICAR-National Institute for Plant Biotechnology, New Delhi, India
| | - Mahesh Rao
- ICAR-National Institute for Plant Biotechnology, New Delhi, India
| | - Lakshman Prasad
- ICAR-Indian Agricultural Research Institute, Pusa, New Delhi, India
| | - Pramod K Rai
- ICAR-Directorate of Rapeseed-Mustard Research, Bharatpur, Rajasthan, India
| | - Pankaj Sharma
- ICAR-Directorate of Rapeseed-Mustard Research, Bharatpur, Rajasthan, India.
| |
Collapse
|
31
|
Guimaraes PM, Quintana AC, Mota APZ, Berbert PS, Ferreira DDS, de Aguiar MN, Pereira BM, de Araújo ACG, Brasileiro ACM. Engineering Resistance against Sclerotinia sclerotiorum Using a Truncated NLR (TNx) and a Defense-Priming Gene. PLANTS (BASEL, SWITZERLAND) 2022; 11:3483. [PMID: 36559595 PMCID: PMC9786959 DOI: 10.3390/plants11243483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/06/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
The association of both cell-surface PRRs (Pattern Recognition Receptors) and intracellular receptor NLRs (Nucleotide-Binding Leucine-Rich Repeat) in engineered plants have the potential to activate strong defenses against a broad range of pathogens. Here, we describe the identification, characterization, and in planta functional analysis of a novel truncated NLR (TNx) gene from the wild species Arachis stenosperma (AsTIR19), with a protein structure lacking the C-terminal LRR (Leucine Rich Repeat) domain involved in pathogen perception. Overexpression of AsTIR19 in tobacco plants led to a significant reduction in infection caused by Sclerotinia sclerotiorum, with a further reduction in pyramid lines containing an expansin-like B gene (AdEXLB8) potentially involved in defense priming. Transcription analysis of tobacco transgenic lines revealed induction of hormone defense pathways (SA; JA-ET) and PRs (Pathogenesis-Related proteins) production. The strong upregulation of the respiratory burst oxidase homolog D (RbohD) gene in the pyramid lines suggests its central role in mediating immune responses in plants co-expressing the two transgenes, with reactive oxygen species (ROS) production enhanced by AdEXLB8 cues leading to stronger defense response. Here, we demonstrate that the association of potential priming elicitors and truncated NLRs can produce a synergistic effect on fungal resistance, constituting a promising strategy for improved, non-specific resistance to plant pathogens.
Collapse
Affiliation(s)
- Patricia Messenberg Guimaraes
- Embrapa Genetic Resources and Biotechnology, Brasilia 70770-917, Brazil
- National Institute of Science and Technology (INCT Plant Stress Biotech), Brasilia 70770-917, Brazil
| | | | - Ana Paula Zotta Mota
- INRAE, Institut Sophia Agrobiotech, CNRS, Université Côte d’Azur, 06903 Sophia Antipolis, France
| | | | | | | | | | | | - Ana Cristina Miranda Brasileiro
- Embrapa Genetic Resources and Biotechnology, Brasilia 70770-917, Brazil
- National Institute of Science and Technology (INCT Plant Stress Biotech), Brasilia 70770-917, Brazil
| |
Collapse
|
32
|
Haidoulis JF, Nicholson P. Tissue-specific transcriptome responses to Fusarium head blight and Fusarium root rot. FRONTIERS IN PLANT SCIENCE 2022; 13:1025161. [PMID: 36352885 PMCID: PMC9637937 DOI: 10.3389/fpls.2022.1025161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
Fusarium head blight (FHB) and Fusarium root rot (FRR) are important diseases of small-grain cereals caused by Fusarium species. While host response to FHB has been subject to extensive study, very little is known about response to FRR and the transcriptome responses of FHB and FRR have not been thoroughly compared. Brachypodium distachyon (Bd) is an effective model for investigating host responses to both FHB and FRR. In this study the transcriptome response of Bd to F. graminearum (Fg) infection of heads and roots was investigated. An RNA-seq analysis was performed on both Bd FHB and FRR during the early infection. Additionally, an RNA-seq analysis was performed on in vitro samples of Fg for comparison with Fg gene expression in planta. Differential gene expression and gene-list enrichment analyses were used to compare FHB and FRR transcriptome responses in both Bd and Fg. Differential expression of selected genes was confirmed using RT-qPCR. Most genes associated with receptor signalling, cell-wall modification, oxidative stress metabolism, and cytokinin and auxin biosynthesis and signalling genes were generally upregulated in FHB or were downregulated in FRR. In contrast, Bd genes involved in jasmonic acid and ethylene biosynthesis and signalling, and antimicrobial production were similarly differentially expressed in both tissues in response to infection. A transcriptome analysis of predicted Fg effectors with the same infected material revealed elevated expression of core tissue-independent genes including cell-wall degradation enzymes and the gene cluster for DON production but also several tissue-dependent genes including those for aurofusarin production and cutin degradation. This evidence suggests that Fg modulates its transcriptome to different tissues of the same host.
Collapse
Affiliation(s)
| | - Paul Nicholson
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, England
| |
Collapse
|
33
|
Cheng X, Zhao C, Gao L, Zeng L, Xu Y, Liu F, Huang J, Liu L, Liu S, Zhang X. Alternative splicing reprogramming in fungal pathogen Sclerotinia sclerotiorum at different infection stages on Brassica napus. FRONTIERS IN PLANT SCIENCE 2022; 13:1008665. [PMID: 36311105 PMCID: PMC9597501 DOI: 10.3389/fpls.2022.1008665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
Alternative splicing (AS) is an important post-transcriptional mechanism promoting the diversity of transcripts and proteins to regulate various life processes in eukaryotes. Sclerotinia stem rot is a major disease of Brassica napus caused by Sclerotinia sclerotiorum, which causes severe yield loss in B. napus production worldwide. Although many transcriptome studies have been carried out on the growth, development, and infection of S. sclerotiorum, the genome-wide AS events of S. sclerotiorum remain poorly understood, particularly at the infection stage. In this study, transcriptome sequencing was performed to systematically explore the genome-scale AS events of S. sclerotiorum at five important infection stages on a susceptible oilseed rape cultivar. A total of 130 genes were predicted to be involved in AS from the S. sclerotiorum genome, among which 98 genes were differentially expressed and may be responsible for AS reprogramming for its successful infection. In addition, 641 differential alternative splicing genes (DASGs) were identified during S. sclerotiorum infection, accounting for 5.76% of all annotated S. sclerotiorum genes, and 71 DASGs were commonly found at all the five infection stages. The most dominant AS type of S. sclerotiorum was found to be retained introns or alternative 3' splice sites. Furthermore, the resultant AS isoforms of 21 DASGs became pseudogenes, and 60 DASGs encoded different putative proteins with different domains. More importantly, 16 DASGs of S. sclerotiorum were found to have signal peptides and possibly encode putative effectors to facilitate the infection of S. sclerotiorum. Finally, about 69.27% of DASGs were found to be non-differentially expressed genes, indicating that AS serves as another important way to regulate the infection of S. sclerotiorum on plants besides the gene expression level. Taken together, this study provides a genome-wide landscape for the AS of S. sclerotiorum during infection as well as an important resource for further elucidating the pathogenic mechanisms of S. sclerotiorum.
Collapse
Affiliation(s)
- Xiaohui Cheng
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture of the People’s Republic of China (PRC), Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Chuanji Zhao
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture of the People’s Republic of China (PRC), Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Lixia Gao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Lingyi Zeng
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture of the People’s Republic of China (PRC), Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Yu Xu
- Hebei Provincial Academy of Ecological and Environmental Sciences, Shijiazhuang, China
| | - Fan Liu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture of the People’s Republic of China (PRC), Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Junyan Huang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture of the People’s Republic of China (PRC), Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Lijiang Liu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture of the People’s Republic of China (PRC), Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Shengyi Liu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture of the People’s Republic of China (PRC), Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Xiong Zhang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture of the People’s Republic of China (PRC), Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| |
Collapse
|
34
|
Ma X, Duan G, Chen H, Tang P, Su S, Wei Z, Yang J. Characterization of infected process and primary mechanism in rice Acuce defense against rice blast fungus, Magnaporthe oryzae. PLANT MOLECULAR BIOLOGY 2022; 110:219-234. [PMID: 35759052 DOI: 10.1007/s11103-022-01296-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 06/11/2022] [Indexed: 06/15/2023]
Abstract
Identification of infection process and defense response during M. oryzae infecting Acuce. Magnaporthe oryzae is a destructive rice pathogen. Recent studies have focused on the initial infectious stage, with a few studies conducted to elucidate the characteristics of the late infectious stages. This study aims to decipher the characteristics at different stages (biotrophic, biotrophy-necrotrophy switch (BNS), and necrotrophic) between the interaction of two M. oryzae-rice combinations and investigate the resistance mechanisms of rice to M. oryzae using cytological and molecular methods. The biotrophic phase of M. oryzae-LTH compatible interaction was found to be longer than that of M. oryzae-Acuce incompatible interaction. We also found that jasmonic acid (JA) signaling plays an important role in defense by regulating antimicrobial compound accumulation in infected Acuce via a synergistic interaction of JA-salicylic acid (SA) and JA-ethylene (ET). In infected LTH, JA-ET/JA-SA showed antagonistic interaction. Ibuprofen (IBU) is a JA inhibitor. Despite the above findings, we found that exogenous JA-Ile and IBU significantly alleviated blast symptoms in infected LTH at 36 hpi (biotrophic) and 72 hpi (BNS), indicating these two-time points may be critical for managing blast disease in the compatible interaction. Conversely, IBU significantly increased blast symptoms on the infected Acuce at 36 hpi, confirming that the JA signal plays a central role in the defense response in infected Acuce. According to transcriptional analysis, the number of genes enriched in the plant hormone signal pathway was significantly higher than in other pathways. Our findings suggested that JA-mediated defense mechanism is essential in regulating Acuce resistance, particularly during the biotrophic and BNS phases.
Collapse
Affiliation(s)
- Xiaoqing Ma
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Ministry of Education, Yunnan Agricultural University, Kunming, 650201, China
| | - Guihua Duan
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Ministry of Education, Yunnan Agricultural University, Kunming, 650201, China
| | - Hongfeng Chen
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Ministry of Education, Yunnan Agricultural University, Kunming, 650201, China
| | - Ping Tang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Ministry of Education, Yunnan Agricultural University, Kunming, 650201, China
| | - Shunyu Su
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Ministry of Education, Yunnan Agricultural University, Kunming, 650201, China
| | - Zhaoxia Wei
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Ministry of Education, Yunnan Agricultural University, Kunming, 650201, China
| | - Jing Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China.
- Key Laboratory of Agro-Biodiversity and Pest Management of Ministry of Education, Yunnan Agricultural University, Kunming, 650201, China.
| |
Collapse
|
35
|
Proteomics analysis of the phytopathogenic fungus Sclerotinia sclerotiorum: a narrative review. JOURNAL OF BIO-X RESEARCH 2022. [DOI: 10.1097/jbr.0000000000000130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
36
|
Li W, Lu J, Yang C, Arildsen K, Li X, Xia S. An Amidase Contributes to Full Virulence of Sclerotinia sclerotiorum. Int J Mol Sci 2022; 23:11207. [PMID: 36232508 PMCID: PMC9570306 DOI: 10.3390/ijms231911207] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/17/2022] [Accepted: 09/20/2022] [Indexed: 11/25/2022] Open
Abstract
Sclerotinia sclerotiorum is one of the most notorious and ubiquitous soilborne plant pathogens, causing serious economic losses to a large number of hosts worldwide. Although virulence factors have been identified in this filamentous fungus, including various cell-wall-degrading enzymes, toxins, oxalic acids and effectors, our understanding of its virulence strategies is far from complete. To explore novel factors contributing to disease, a new pipeline combining forward genetic screening and next-generation sequencing was utilized in this study. Analysis of a hypovirulent mutant revealed that a mutation in an amidase-encoding gene, Sscle_10g079050, resulted in reduced virulence. This is a first report on the contribution of an amidase to fungal virulence, likely through affecting oxalic acid homeostasis.
Collapse
Affiliation(s)
- Wei Li
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- College of Life Science, Chongqing Normal University, Chongqing 401331, China
| | - Junxing Lu
- College of Life Science, Chongqing Normal University, Chongqing 401331, China
| | - Chenghuizi Yang
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Kate Arildsen
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Xin Li
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Shitou Xia
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
37
|
Gao X, Dang X, Yan F, Li Y, Xu J, Tian S, Li Y, Huang K, Lin W, Lin D, Wang Z, Wang A. ANGUSTIFOLIA negatively regulates resistance to Sclerotinia sclerotiorum via modulation of PTI and JA signalling pathways in Arabidopsis thaliana. MOLECULAR PLANT PATHOLOGY 2022; 23:1091-1106. [PMID: 35426480 PMCID: PMC9276947 DOI: 10.1111/mpp.13222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 03/25/2022] [Accepted: 03/28/2022] [Indexed: 06/14/2023]
Abstract
Sclerotinia sclerotiorum is a devastating pathogen that infects a broad range of host plants. The mechanism underlying plant defence against fungal invasion is still not well characterized. Here, we report that ANGUSTIFOLIA (AN), a CtBP family member, plays a role in the defence against S. sclerotiorum attack. Arabidopsis an mutants exhibited stronger resistance to S. sclerotiorum at the early stage of infection than wild-type plants. Accordingly, an mutants exhibited stronger activation of pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) responses, including mitogen-activated protein kinase activation, reactive oxygen species accumulation, callose deposition, and the expression of PTI-responsive genes, upon treatment with PAMPs/microbe-associated molecular patterns. Moreover, Arabidopsis lines overexpressing AN were more susceptible to S. sclerotiorum and showed defective PTI responses. Our luminometry, bimolecular fluorescence complementation, coimmunoprecipitation, and in vitro pull-down assays indicate that AN interacts with allene oxide cyclases (AOC), essential enzymes involved in jasmonic acid (JA) biosynthesis, negatively regulating JA biosynthesis in response to S. sclerotiorum infection. This work reveals AN is a negative regulator of the AOC-mediated JA signalling pathway and PTI activation.
Collapse
Affiliation(s)
- Xiuqin Gao
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsCollege of Plant ProtectionFujian Agriculture and Forestry UniversityFuzhouChina
| | - Xie Dang
- Haixia Institute of Science and TechnologyFujian Agriculture and Forestry UniversityFuzhouChina
| | - Fengting Yan
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsCollege of Plant ProtectionFujian Agriculture and Forestry UniversityFuzhouChina
| | - Yuhua Li
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsCollege of Plant ProtectionFujian Agriculture and Forestry UniversityFuzhouChina
| | - Jing Xu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsCollege of Plant ProtectionFujian Agriculture and Forestry UniversityFuzhouChina
| | - Shifu Tian
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsCollege of Plant ProtectionFujian Agriculture and Forestry UniversityFuzhouChina
| | - Yaling Li
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsCollege of Plant ProtectionFujian Agriculture and Forestry UniversityFuzhouChina
| | - Kun Huang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsCollege of Plant ProtectionFujian Agriculture and Forestry UniversityFuzhouChina
| | - Wenwei Lin
- Haixia Institute of Science and TechnologyFujian Agriculture and Forestry UniversityFuzhouChina
| | - Deshu Lin
- Haixia Institute of Science and TechnologyFujian Agriculture and Forestry UniversityFuzhouChina
| | - Zonghua Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsCollege of Plant ProtectionFujian Agriculture and Forestry UniversityFuzhouChina
- Marine and Agricultural Biotechnology CenterInstitute of OceanographyMinjiang UniversityFuzhouChina
| | - Airong Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsCollege of Plant ProtectionFujian Agriculture and Forestry UniversityFuzhouChina
| |
Collapse
|
38
|
Derbyshire MC, Newman TE, Khentry Y, Owolabi Taiwo A. The evolutionary and molecular features of the broad-host-range plant pathogen Sclerotinia sclerotiorum. MOLECULAR PLANT PATHOLOGY 2022; 23:1075-1090. [PMID: 35411696 PMCID: PMC9276942 DOI: 10.1111/mpp.13221] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 03/09/2022] [Accepted: 03/25/2022] [Indexed: 05/21/2023]
Abstract
Sclerotinia sclerotiorum is a pathogenic fungus that infects hundreds of plant species, including many of the world's most important crops. Key features of S. sclerotiorum include its extraordinary host range, preference for dicotyledonous plants, relatively slow evolution, and production of protein effectors that are active in multiple host species. Plant resistance to this pathogen is highly complex, typically involving numerous polymorphisms with infinitesimally small effects, which makes resistance breeding a major challenge. Due to its economic significance, S. sclerotiorum has been subjected to a large amount of molecular and evolutionary research. In this updated pathogen profile, we review the evolutionary and molecular features of S. sclerotiorum and discuss avenues for future research into this important species.
Collapse
Affiliation(s)
- Mark C. Derbyshire
- Centre for Crop and Disease ManagementSchool of Molecular and Life SciencesCurtin UniversityPerthWestern AustraliaAustralia
| | - Toby E. Newman
- Centre for Crop and Disease ManagementSchool of Molecular and Life SciencesCurtin UniversityPerthWestern AustraliaAustralia
| | - Yuphin Khentry
- Centre for Crop and Disease ManagementSchool of Molecular and Life SciencesCurtin UniversityPerthWestern AustraliaAustralia
| | - Akeem Owolabi Taiwo
- Centre for Crop and Disease ManagementSchool of Molecular and Life SciencesCurtin UniversityPerthWestern AustraliaAustralia
| |
Collapse
|
39
|
Zhang YJ, Pang YB, Wang XY, Jiang YH, Herrera-Balandrano DD, Jin Y, Wang SY, Laborda P. Exogenous genistein enhances soybean resistance to Xanthomonas axonopodis pv. glycines. PEST MANAGEMENT SCIENCE 2022; 78:3664-3675. [PMID: 35611815 DOI: 10.1002/ps.7009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 04/08/2022] [Accepted: 05/25/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Xanthomonas axonopodis pv. glycines (Xag) is the causal agent of bacterial pustule disease and results in enormous losses in soybean production. Although isoflavones are known to be involved in soybean resistance against pathogen infection, the effects of exogenous isoflavones on soybean plants remain unexplored. RESULTS Irrigation of soybean plants with isoflavone genistein inhibited plant growth for short periods, probably by inhibiting the tyrosine (brassinosteroids) kinase pathway, and increased disease resistance against Xag. The number of lesions was reduced by 59%-63% when applying 50 μg ml-1 genistein. The effects on disease resistance were observed for 15 days after treatment. Genistein also enhanced the disease resistance of soybean against the fungal pathogen Sclerotinia sclerotiorum. Exogenous genistein increased antioxidant capacity, decreased H2 O2 level and promoted the accumulation of phenolics in Xag-infected soybean leaves. Exogenous genistein reduced the amounts of endogenous daidzein, genistein and glycitein and increased the concentration of genistin, which was found to show strong antibacterial activity against the pathogen and to reduce the expression of virulence factor yapH, and flagella formation gene flgK. The expression of several soybean defense genes, such as chalcone isomerase, glutathione S-transferase and 1-aminocyclopropane-1-carboxylate oxidase 1, was upregulated after genistein treatment. CONCLUSIONS The effects of exogenous genistein on soybean plants were examined for the first time, revealing new insights into the roles of isoflavones in soybean defense and demonstrating that irrigation with genistein can be a suitable method to induce disease resistance in soybean plants. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yun-Jiao Zhang
- School of Life Sciences, Nantong University, Nantong, People's Republic of China
| | - Yi-Bo Pang
- School of Life Sciences, Nantong University, Nantong, People's Republic of China
| | - Xin-Yi Wang
- School of Life Sciences, Nantong University, Nantong, People's Republic of China
| | - Yong-Hui Jiang
- School of Life Sciences, Nantong University, Nantong, People's Republic of China
| | | | - Yan Jin
- School of Life Sciences, Nantong University, Nantong, People's Republic of China
| | - Su-Yan Wang
- School of Life Sciences, Nantong University, Nantong, People's Republic of China
| | - Pedro Laborda
- School of Life Sciences, Nantong University, Nantong, People's Republic of China
| |
Collapse
|
40
|
Liu L, Lyu X, Pan Z, Wang Q, Mu W, Benny U, Rollins JA, Pan H. The C2H2 Transcription Factor SsZFH1 Regulates the Size, Number, and Development of Apothecia in Sclerotinia sclerotiorum. PHYTOPATHOLOGY 2022; 112:1476-1485. [PMID: 35021860 DOI: 10.1094/phyto-09-21-0378-r] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Sclerotinia sclerotiorum is a notorious phytopathogenic Ascomycota fungus with a host range of >600 plant species worldwide. This homothallic Leotiomycetes species reproduces sexually through a multicellular apothecium that produces and releases ascospores. These ascospores serve as the primary inoculum source for disease initiation in the majority of S. sclerotiorum disease cycles. The regulation of apothecium development for this pathogen and other apothecium-producing fungi remains largely unknown. Here, we report that a C2H2 transcription factor, SsZFH1 (zinc finger homologous protein), is necessary for the proper development and maturation of sclerotia and apothecia in S. sclerotiorum and is required for the normal growth rate of hyphae. Furthermore, ΔSszfh1 strains exhibit decreased H2O2 accumulation in hyphae, increased melanin deposition, and enhanced tolerance to H2O2 in the process of vegetative growth and sclerotia formation. Infection assays on common bean leaves, with thin cuticles, and soybean and tomato leaves, with thick cuticles, suggest that the deletion of Sszfh1 slows the mycelial growth rate, which in turn affects the expansion of leaf lesions. Collectively, our results provide novel insights into a major fungal factor mediating maturation of apothecia with additional effects on hyphae and sclerotia development.
Collapse
Affiliation(s)
- Ling Liu
- College of Plant Sciences, Jilin University, Changchun 130062, China
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China
| | - Xingming Lyu
- College of Plant Sciences, Jilin University, Changchun 130062, China
| | - Zequn Pan
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China
| | - Qiaochu Wang
- College of Plant Sciences, Jilin University, Changchun 130062, China
| | - Wenhui Mu
- College of Plant Sciences, Jilin University, Changchun 130062, China
| | - Ulla Benny
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611, U.S.A
| | - Jeffrey A Rollins
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611, U.S.A
| | - Hongyu Pan
- College of Plant Sciences, Jilin University, Changchun 130062, China
| |
Collapse
|
41
|
Roy J, Del Río Mendoza LE, Bandillo N, McClean PE, Rahman M. Genetic mapping and genomic prediction of sclerotinia stem rot resistance to rapeseed/canola (Brassica napus L.) at seedling stage. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:2167-2184. [PMID: 35522263 DOI: 10.1007/s00122-022-04104-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 04/12/2022] [Indexed: 06/14/2023]
Abstract
GWAS detected ninety-eight significant SNPs associated with Sclerotinia sclerotiorum resistance. Six statistical models resulted in medium to high predictive ability, depending on trait, indicating potential of genomic prediction for disease resistance breeding. The lack of complete host resistance and a complex resistance inheritance nature between rapeseed/canola and Sclerotinia sclerotiorum often limits the development of functional molecular markers that enable breeding for sclerotinia stem rot (SSR) resistance. However, genomics-assisted selection has the potential to accelerate the breeding for SSR resistance. Therefore, genome-wide association (GWA) mapping and genomic prediction (GP) were performed using a diverse panel of 337 rapeseed/canola genotypes. Three-week-old seedlings were screened using the petiole inoculation technique (PIT). Days to wilt (DW) up to 2 weeks and lesion phenotypes (LP) at 3, 4, and 7 days post-inoculation (dpi) were recorded. A strong correlation (r = - 0.90) between DW and LP_4dpi implied that a single time point scoring at four days could be used as a proxy trait. GWA analyses using single-locus (SL) and multi-locus (ML) models identified a total of 41, and 208 significantly associated SNPs, respectively. Out of these, ninety-eight SNPs were identified by a combination of the SL model and any of the ML models, at least two ML models, or two traits. These SNPs explained 1.25-12.22% of the phenotypic variance and considered as significant, could be associated with SSR resistance. Eighty-three candidate genes with a function in disease resistance were associated with the significant SNPs. Six GP models resulted in moderate to high (0.42-0.67) predictive ability depending on SSR resistance traits. The resistant genotypes and significant SNPs will serve as valuable resources for future SSR resistance breeding. Our results also highlight the potential of genomic selection to improve rapeseed/canola breeding for SSR resistance.
Collapse
Affiliation(s)
- Jayanta Roy
- Department of Plant Sciences, North Dakota State University, Fargo, ND, 58108, USA
| | | | - Nonoy Bandillo
- Department of Plant Sciences, North Dakota State University, Fargo, ND, 58108, USA
| | - Phillip E McClean
- Department of Plant Sciences, North Dakota State University, Fargo, ND, 58108, USA
- Genomics, Phenomics, and Bioinformatics Program, North Dakota State University, Fargo, ND, 58108, USA
| | - Mukhlesur Rahman
- Department of Plant Sciences, North Dakota State University, Fargo, ND, 58108, USA.
| |
Collapse
|
42
|
Buijs VA, Groenewald JZ, Haridas S, LaButti KM, Lipzen A, Martin FM, Barry K, Grigoriev IV, Crous PW, Seidl MF. Enemy or ally: a genomic approach to elucidate the lifestyle of Phyllosticta citrichinaensis. G3 (BETHESDA, MD.) 2022; 12:jkac061. [PMID: 35311955 PMCID: PMC9073689 DOI: 10.1093/g3journal/jkac061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 03/02/2022] [Indexed: 11/14/2022]
Abstract
Members of the fungal genus Phyllosticta can colonize a variety of plant hosts, including several Citrus species such as Citrus sinensis (orange), Citrus limon (lemon), and Citrus maxima (pomelo). Some Phyllosticta species have the capacity to cause disease, such as Citrus Black Spot, while others have only been observed as endophytes. Thus far, genomic differences underlying lifestyle adaptations of Phyllosticta species have not yet been studied. Furthermore, the lifestyle of Phyllosticta citrichinaensis is ambiguous, as it has been described as a weak pathogen but Koch's postulates may not have been established and the presence of this species was never reported to cause any crop or economic losses. Here, we examined the genomic differences between pathogenic and endophytic Phyllosticta spp. colonizing Citrus and specifically aimed to elucidate the lifestyle of Phyllosticta citrichinaensis. We found several genomic differences between species of different lifestyles, including groups of genes that were only present in pathogens or endophytes. We also observed that species, based on their carbohydrate active enzymes, group independent of their phylogenetic association, and this clustering correlated with trophy prediction. Phyllosticta citrichinaensis shows an intermediate lifestyle, sharing genomic and phenotypic attributes of both pathogens and endophytes. We thus present the first genomic comparison of multiple citrus-colonizing pathogens and endophytes of the genus Phyllosticta, and therefore provide the basis for further comparative studies into the lifestyle adaptations within this genus.
Collapse
Affiliation(s)
- Valerie A Buijs
- Evolutionary Phytopathology, Westerdijk Fungal Biodiversity Institute, Utrecht 3584 CT, The Netherlands
- Department of Plant Sciences, Laboratory of Phytopathology, Wageningen University and Research, Wageningen 6708 PB, The Netherlands
| | - Johannes Z Groenewald
- Evolutionary Phytopathology, Westerdijk Fungal Biodiversity Institute, Utrecht 3584 CT, The Netherlands
| | - Sajeet Haridas
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Kurt M LaButti
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Anna Lipzen
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Francis M Martin
- Department of Biology, Institut National de la Recherche Agronomique, UMR INRA-Université de Lorraine “Interaction Arbres/Microorganismes”, Champenoux F-54280, France
| | - Kerrie Barry
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Igor V Grigoriev
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA 94720, USA
| | - Pedro W Crous
- Evolutionary Phytopathology, Westerdijk Fungal Biodiversity Institute, Utrecht 3584 CT, The Netherlands
- Department of Plant Sciences, Laboratory of Phytopathology, Wageningen University and Research, Wageningen 6708 PB, The Netherlands
| | - Michael F Seidl
- Theoretical Biology & Bioinformatics, Utrecht University, Utrecht 3584 CH, The Netherlands
| |
Collapse
|
43
|
Underwood W, Gilley M, Misar CG, Gulya TJ, Seiler GJ, Markell SG. Multiple Species of Asteraceae Plants Are Susceptible to Root Infection by the Necrotrophic Fungal Pathogen Sclerotinia sclerotiorum. PLANT DISEASE 2022; 106:1366-1373. [PMID: 34874175 DOI: 10.1094/pdis-06-21-1314-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The necrotrophic fungal pathogen Sclerotinia sclerotiorum can cause disease on numerous plant species, including many important crops. Most S. sclerotiorum-incited diseases of crop plants are initiated by airborne ascospores produced when fungal sclerotia germinate to form spore-bearing apothecia. However, basal stalk rot of sunflower occurs when S. sclerotiorum sclerotia germinate to form mycelia within the soil, which subsequently invade sunflower roots. To determine whether other plant species in the Asteraceae family are susceptible to root infection by S. sclerotiorum, cultivated sunflower (Helianthus annuus L.) and seven other Asteraceae species were evaluated for S. sclerotiorum root infection by inoculation with either sclerotia or mycelial inoculum. Additionally, root susceptibility of sunflower was compared with that of dry edible bean and canola, two plant species susceptible to S. sclerotiorum but not known to display root-initiated infections. Results indicated that multiple Asteraceae family plants are susceptible to S. sclerotiorum root infection after inoculation with either sclerotia or mycelium. These observations expand the range of plant hosts susceptible to S. sclerotiorum root infection, elucidate differences in root inoculation methodology, and emphasize the importance of soilborne infection to Asteraceae crop and weed species.
Collapse
Affiliation(s)
- William Underwood
- U.S. Department of Agriculture-Agricultural Research Service (USDA-ARS) Sunflower & Plant Biology Research Unit, Edward T. Schafer Agricultural Research Center, Fargo, ND 58102
| | - Michelle Gilley
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58102
| | - Christopher G Misar
- U.S. Department of Agriculture-Agricultural Research Service (USDA-ARS) Sunflower & Plant Biology Research Unit, Edward T. Schafer Agricultural Research Center, Fargo, ND 58102
| | - Thomas J Gulya
- USDA-ARS Sunflower & Plant Biology Research Unit (retired), Edward T. Schafer Agricultural Research Center, Fargo, ND 58102
| | - Gerald J Seiler
- U.S. Department of Agriculture-Agricultural Research Service (USDA-ARS) Sunflower & Plant Biology Research Unit, Edward T. Schafer Agricultural Research Center, Fargo, ND 58102
| | - Samuel G Markell
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58102
| |
Collapse
|
44
|
SsNEP2 Contributes to the Virulence of Sclerotinia sclerotiorum. Pathogens 2022; 11:pathogens11040446. [PMID: 35456121 PMCID: PMC9026538 DOI: 10.3390/pathogens11040446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 04/01/2022] [Accepted: 04/05/2022] [Indexed: 01/06/2023] Open
Abstract
Sclerotinia sclerotiorum is a notorious soilborne fungal pathogen that causes serious economic losses globally. The necrosis and ethylene-inducible peptide 1 (NEP1)-like proteins (NLPs) were previously shown to play an important role in pathogenicity in fungal and oomycete pathogens. Here, we generated S. sclerotiorum necrosis and ethylene-inducible peptide 2 (SsNEP2) deletion mutant through homologous recombination and found that SsNEP2 contributes to the virulence of S. sclerotiorum without affecting the development of mycelia, the formation of appressoria, or the secretion of oxalic acid. Although knocking out SsNEP2 did not affect fungal sensitivity to oxidative stress, it did lead to decreased accumulation of reactive oxygen species (ROS) in S. sclerotiorum. Furthermore, Ssnlp24SsNEP2 peptide derived from SsNEP2 triggered host mitogen-activated protein kinase (MAPK) activation, increased defense marker gene expression, and enhanced resistance to Hyaloperonospora arabidopsidis Noco2. Taken together, our data suggest that SsNEP2 is involved in fungal virulence by affecting ROS levels in S. sclerotiorum. It can serve as a pathogen-associated molecular pattern (PAMP) and trigger host pattern triggered immunity to promote the necrotrophic lifestyle of S. sclerotiorum.
Collapse
|
45
|
De Miccolis Angelini RM, Landi L, Raguseo C, Pollastro S, Faretra F, Romanazzi G. Tracking of Diversity and Evolution in the Brown Rot Fungi Monilinia fructicola, Monilinia fructigena, and Monilinia laxa. Front Microbiol 2022; 13:854852. [PMID: 35356516 PMCID: PMC8959702 DOI: 10.3389/fmicb.2022.854852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 02/15/2022] [Indexed: 11/13/2022] Open
Abstract
Monilinia species are among the most devastating fungi worldwide as they cause brown rot and blossom blight on fruit trees. To understand the molecular bases of their pathogenic lifestyles, we compared the newly assembled genomes of single strains of Monilinia fructicola, M. fructigena and M. laxa, with those of Botrytis cinerea and Sclerotinia sclerotiorum, as the closest species within Sclerotiniaceae. Phylogenomic analysis of orthologous proteins and syntenic investigation suggest that M. laxa is closer to M. fructigena than M. fructicola, and is closest to the other investigated Sclerotiniaceae species. This indicates that M. laxa was the earliest result of the speciation process. Distinct evolutionary profiles were observed for transposable elements (TEs). M. fructicola and M. laxa showed older bursts of TE insertions, which were affected (mainly in M. fructicola) by repeat-induced point (RIP) mutation gene silencing mechanisms. These suggested frequent occurrence of the sexual process in M. fructicola. More recent TE expansion linked with low RIP action was observed in M. fructigena, with very little in S. sclerotiorum and B. cinerea. The detection of active non-syntenic TEs is indicative of horizontal gene transfer and has resulted in alterations in specific gene functions. Analysis of candidate effectors, biosynthetic gene clusters for secondary metabolites and carbohydrate-active enzymes, indicated that Monilinia genus has multiple virulence mechanisms to infect host plants, including toxins, cell-death elicitor, putative virulence factors and cell-wall-degrading enzymes. Some species-specific pathogenic factors might explain differences in terms of host plant and organ preferences between M. fructigena and the other two Monilinia species.
Collapse
Affiliation(s)
| | - Lucia Landi
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
| | - Celeste Raguseo
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Stefania Pollastro
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Francesco Faretra
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Gianfranco Romanazzi
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
| |
Collapse
|
46
|
Arya GC, Cohen H. The Multifaceted Roles of Fungal Cutinases during Infection. J Fungi (Basel) 2022; 8:199. [PMID: 35205953 PMCID: PMC8879710 DOI: 10.3390/jof8020199] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/13/2022] [Accepted: 02/13/2022] [Indexed: 01/25/2023] Open
Abstract
Cuticles cover the aerial epidermis cells of terrestrial plants and thus represent the first line of defence against invading pathogens, which must overcome this hydrophobic barrier to colonise the inner cells of the host plant. The cuticle is largely built from the cutin polymer, which consists of C16 and C18 fatty acids attached to a glycerol backbone that are further modified with terminal and mid-chain hydroxyl, epoxy, and carboxy groups, all cross-linked by ester bonds. To breach the cuticle barrier, pathogenic fungal species employ cutinases-extracellular secreted enzymes with the capacity to hydrolyse the ester linkages between cutin monomers. Herein, we explore the multifaceted roles that fungal cutinases play during the major four stages of infection: (i) spore landing and adhesion to the host plant cuticle; (ii) spore germination on the host plant cuticle; (iii) spore germ tube elongation and the formation of penetrating structures; and (iv) penetration of the host plant cuticle and inner tissue colonisation. Using previous evidence from the literature and a comprehensive molecular phylogenetic tree of cutinases, we discuss the notion whether the lifestyle of a given fungal species can predict the activity nature of its cutinases.
Collapse
Affiliation(s)
- Gulab Chand Arya
- Department of Vegetable and Field Crops, Institute of Plant Sciences, Agricultural Research Organization (ARO), Volcani Center, Rishon Lezion 7505101, Israel
| | - Hagai Cohen
- Department of Vegetable and Field Crops, Institute of Plant Sciences, Agricultural Research Organization (ARO), Volcani Center, Rishon Lezion 7505101, Israel
| |
Collapse
|
47
|
Maximiano M, Santos L, Santos C, Aragão F, Dias S, Franco O, Mehta A. Host induced gene silencing of Sclerotinia sclerotiorum effector genes for the control of white mold. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
48
|
Jiao W, Yu H, Cong J, Xiao K, Zhang X, Liu J, Zhang Y, Pan H. Transcription factor SsFoxE3 activating SsAtg8 is critical for sclerotia, compound appressoria formation, and pathogenicity in Sclerotinia sclerotiorum. MOLECULAR PLANT PATHOLOGY 2022; 23:204-217. [PMID: 34699137 PMCID: PMC8743022 DOI: 10.1111/mpp.13154] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 09/22/2021] [Accepted: 10/07/2021] [Indexed: 06/13/2023]
Abstract
Sclerotinia sclerotiorum, the notorious necrotrophic phytopathogenic fungus with wide distribution, is responsible for sclerotium disease in more than 600 plant species, including many economic crops such as soybean, oilseed rape, and sunflower. The compound appressorium is a crucial multicellular infection structure that is a prerequisite for infecting healthy tissues. Previously, the Forkhead-box family transcription factors (FOX TFs) SsFoxE2 and SsFKH1 were shown to play a key regulatory role in the hyphae growth, sexual reproduction, and pathogenicity of S. sclerotiorum. However, little is known about the roles of SsFoxE3 regulating growth and development and pathogenicity. Here, we report SsFoxE3 contributes to sclerotium formation and deletion of SsFoxE3 leads to reduced formation of compound appressoria and developmental delays. Transcripts of SsFoxE3 were greatly increased during the initial stage of infection and SsFoxE3 deficiency reduced virulence on the host, while stabbing inoculation could partially restore pathogenicity. The SsFoxE3 mutant showed sensitivity to H2 O2 , and the expression of reactive oxygen species detoxification and autophagy-related genes were reduced. Moreover, expression of SsAtg8 was also decreased during the infection process of the SsFoxE3 mutant. Yeast 1-hybrid tests suggested that SsFoxE3 interacted with the promoter of SsAtg8. Disruption of SsAtg8 resulted in a phenotype similar to that of the SsFoxE3 mutant. Comparative analysis of the level of autophagy in the wild type and SsFoxE3 mutant showed that N starvation-induced autophagy was reduced in the SsFoxE3 mutant. Taken together, our findings indicate that SsFoxE3 plays an important role in compound appressorium formation and is involved in transcriptional activation of SsAtg8 during infection by S. sclerotiorum.
Collapse
Affiliation(s)
- Wenli Jiao
- College of Plant SciencesJilin UniversityChangchunChina
| | - Huilin Yu
- College of Plant SciencesJilin UniversityChangchunChina
| | - Jie Cong
- College of Plant SciencesJilin UniversityChangchunChina
| | - Kunqin Xiao
- College of Plant SciencesJilin UniversityChangchunChina
| | | | - Jinliang Liu
- College of Plant SciencesJilin UniversityChangchunChina
| | - Yanhua Zhang
- College of Plant SciencesJilin UniversityChangchunChina
| | - Hongyu Pan
- College of Plant SciencesJilin UniversityChangchunChina
| |
Collapse
|
49
|
Rana K, Yuan J, Liao H, Banga SS, Kumar R, Ding Y, Qian W. Host-induced gene silencing reveals the role of Sclerotinia sclerotiorum oxaloacetate acetylhydrolase gene in fungal oxalic acid accumulation and virulence. Microbiol Res 2022; 258:126981. [DOI: 10.1016/j.micres.2022.126981] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 10/13/2021] [Accepted: 02/08/2022] [Indexed: 02/01/2023]
|
50
|
Fan H, Yang W, Nie J, Lin C, Wu J, Wu D, Wang Y. Characterization of a Secretory YML079-like Cupin Protein That Contributes to Sclerotinia sclerotiorum Pathogenicity. Microorganisms 2021; 9:2519. [PMID: 34946121 PMCID: PMC8704077 DOI: 10.3390/microorganisms9122519] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 11/28/2021] [Accepted: 12/03/2021] [Indexed: 11/17/2022] Open
Abstract
Sclerotinia sclerotiorum causes devastating diseases in many agriculturally important crops, including oilseed rape and sunflower. However, the mechanisms of Sclerotinia sclerotiorum pathogenesis remain poorly understood. In this study, we characterized a YML079-like cupin protein (SsYCP1) from Sclerotinia sclerotiorum. We showed that SsYCP1 is strongly expressed and secreted during Sclerotinia sclerotiorum infection. Sclerotinia sclerotiorum infection was promoted by SsYCP1 overexpression and inhibited by silencing this gene with synthetic double-stranded RNA. These results collectively indicate SsYCP1 as a putative effector protein that contributes to Sclerotinia sclerotiorum pathogenicity. These findings extend our understanding of effector-mediated Sclerotinia sclerotiorum pathogenesis and suggest a novel role for YML079-like cupin proteins in plant-pathogen interactions.
Collapse
Affiliation(s)
- Hongxia Fan
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China; (H.F.); (W.Y.); (J.N.); (C.L.); (J.W.)
| | - Wenwen Yang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China; (H.F.); (W.Y.); (J.N.); (C.L.); (J.W.)
| | - Jiayue Nie
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China; (H.F.); (W.Y.); (J.N.); (C.L.); (J.W.)
| | - Chen Lin
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China; (H.F.); (W.Y.); (J.N.); (C.L.); (J.W.)
| | - Jian Wu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China; (H.F.); (W.Y.); (J.N.); (C.L.); (J.W.)
| | - Dewei Wu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China; (H.F.); (W.Y.); (J.N.); (C.L.); (J.W.)
| | - Youping Wang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China; (H.F.); (W.Y.); (J.N.); (C.L.); (J.W.)
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|